GB2112827A - Carbon fiber materials - Google Patents
Carbon fiber materials Download PDFInfo
- Publication number
- GB2112827A GB2112827A GB08200055A GB8200055A GB2112827A GB 2112827 A GB2112827 A GB 2112827A GB 08200055 A GB08200055 A GB 08200055A GB 8200055 A GB8200055 A GB 8200055A GB 2112827 A GB2112827 A GB 2112827A
- Authority
- GB
- United Kingdom
- Prior art keywords
- metal
- thermosetting resin
- carbon
- carbonyl
- boron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims description 29
- 229920000049 Carbon (fiber) Polymers 0.000 title claims description 3
- 239000004917 carbon fiber Substances 0.000 title claims description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title description 2
- 239000011347 resin Substances 0.000 claims abstract description 116
- 229920005989 resin Polymers 0.000 claims abstract description 116
- 229910052751 metal Inorganic materials 0.000 claims abstract description 100
- 239000002184 metal Substances 0.000 claims abstract description 100
- 229920001187 thermosetting polymer Polymers 0.000 claims abstract description 87
- 239000002131 composite material Substances 0.000 claims abstract description 55
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 46
- 229910052796 boron Inorganic materials 0.000 claims abstract description 44
- 239000003575 carbonaceous material Substances 0.000 claims abstract description 31
- 239000003870 refractory metal Substances 0.000 claims abstract description 28
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 26
- 239000011248 coating agent Substances 0.000 claims abstract description 24
- 238000000576 coating method Methods 0.000 claims abstract description 24
- CREMABGTGYGIQB-UHFFFAOYSA-N carbon carbon Chemical compound C.C CREMABGTGYGIQB-UHFFFAOYSA-N 0.000 claims abstract description 21
- 239000011203 carbon fibre reinforced carbon Substances 0.000 claims abstract description 21
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 15
- 150000001639 boron compounds Chemical class 0.000 claims abstract description 9
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 claims description 51
- 239000000835 fiber Substances 0.000 claims description 34
- XPFVYQJUAUNWIW-UHFFFAOYSA-N furfuryl alcohol Chemical compound OCC1=CC=CO1 XPFVYQJUAUNWIW-UHFFFAOYSA-N 0.000 claims description 24
- 229910052750 molybdenum Inorganic materials 0.000 claims description 20
- 239000011733 molybdenum Substances 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 19
- FQNHWXHRAUXLFU-UHFFFAOYSA-N carbon monoxide;tungsten Chemical group [W].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-] FQNHWXHRAUXLFU-UHFFFAOYSA-N 0.000 claims description 17
- 239000007795 chemical reaction product Substances 0.000 claims description 17
- 229920000728 polyester Polymers 0.000 claims description 16
- 239000011159 matrix material Substances 0.000 claims description 13
- 229920001577 copolymer Polymers 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 239000011230 binding agent Substances 0.000 claims description 5
- 239000000203 mixture Substances 0.000 abstract description 5
- 239000002657 fibrous material Substances 0.000 abstract description 3
- 230000003647 oxidation Effects 0.000 abstract description 3
- 238000007254 oxidation reaction Methods 0.000 abstract description 3
- 239000004744 fabric Substances 0.000 description 12
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 10
- 229910002804 graphite Inorganic materials 0.000 description 10
- 239000010439 graphite Substances 0.000 description 10
- 238000007596 consolidation process Methods 0.000 description 9
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 8
- 229910052721 tungsten Inorganic materials 0.000 description 8
- 239000010937 tungsten Substances 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 6
- IUHFWCGCSVTMPG-UHFFFAOYSA-N [C].[C] Chemical class [C].[C] IUHFWCGCSVTMPG-UHFFFAOYSA-N 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000003763 carbonization Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000005087 graphitization Methods 0.000 description 3
- 239000010955 niobium Substances 0.000 description 3
- 229910052758 niobium Inorganic materials 0.000 description 3
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000004408 titanium dioxide Substances 0.000 description 3
- 229910052580 B4C Inorganic materials 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 239000011253 protective coating Substances 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 1
- 229910019742 NbB2 Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 description 1
- 239000000805 composite resin Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 239000004634 thermosetting polymer Substances 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F11/00—Chemical after-treatment of artificial filaments or the like during manufacture
- D01F11/10—Chemical after-treatment of artificial filaments or the like during manufacture of carbon
- D01F11/12—Chemical after-treatment of artificial filaments or the like during manufacture of carbon with inorganic substances ; Intercalation
- D01F11/124—Boron, borides, boron nitrides
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F11/00—Chemical after-treatment of artificial filaments or the like during manufacture
- D01F11/10—Chemical after-treatment of artificial filaments or the like during manufacture of carbon
- D01F11/12—Chemical after-treatment of artificial filaments or the like during manufacture of carbon with inorganic substances ; Intercalation
- D01F11/127—Metals
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F11/00—Chemical after-treatment of artificial filaments or the like during manufacture
- D01F11/10—Chemical after-treatment of artificial filaments or the like during manufacture of carbon
- D01F11/14—Chemical after-treatment of artificial filaments or the like during manufacture of carbon with organic compounds, e.g. macromolecular compounds
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Products (AREA)
Abstract
A mixture is made containing a refractory metal and a thermosetting resin which remains flexible after being subjected to curing temperatures. The metal may be in the form of a particulate metal or atomically dispersed metal or both. The metal is capable of reacting with boron at high temperatures in a ternary system of carbon. The fibrous carbon material is coated with this mixture and the thermosetting resin is cured. The coated fibrous carbon material is then reimpregnated with a second thermosetting resin containing a boron compound and, optionally, a refractory metal capable of reacting with boron to form a metal boride. As with the refractory metal in the first coating, the metal, if present, may be in the form of particulate metal or atomically dispersed metal or both. The second thermosetting resin is at least partially cured and a plurality of layers of the fibrous material is then assembled to form a laminate. The laminate is heated to a temperature sufficient to carbonize and graphitize the thermosetting resin. The resultant carbon-carbon composite has better oxidation resistance, improved high temperature stability, higher density and improved interlaminar tensile strength than does a composite prepared without the presence of the refractory metal in the thermosetting resin.
Description
SPECIFICATION
Carbon fiber materials
The present invention relates to carbon-carbon composities, and more particularly to composites made from fibrous carbon material, a thermosetting resin, a boron containing compound, and a refractory metal capable of reacting with said boron containing compound to form a metal boride. This invention also relates to fibrous carbon material impregnated with a thermosetting resin binder useful in the preparation of such carbon-carbon composites and to a method for making such composites.
It is known to use boron in the manufacture of carbon material such as graphite made from a filler such as graphite powder and graphitizable material such as pitch or a resin. The boron enhances the combination of the materials and the conversion thereof into graphite.
It is also known in the art to use boron in the manufacture of carbon-carbon composites comprised of fibrous carbon material such as carbon or graphite cloth and a thermosetting resin.
Examples of this type of composite are disclosed in United States Patent Specification No. 3,672,936, issued June 27, 1 972 to Leo C. Ehrenreich. The Ehrenreich patent recognizes that there is some improvement in interlaminar tensile strength as well as in oxidation resistance when a boron containing compound is added to the resin impregnated fibrous carbon material prior to carbonization of the resin.
United States Patent Specification No. 4,101,354 (Robert C. Shaffer) discloses that the interlaminar tensile strength of carbon-carbon composites containing boron is greatly improved if the composite is heated to at least about 21 500C. during carbonization and graphitization and, further, that at such temperatures the tensile strength in the directions of the fibers of the fibrous carbon material typically decreases substantially, apparently due to a deterioration of the fibrous carbon material of the composite caused by reaction with boron at high temperatures. In accordance with the teachings of that patent, significant decrease in the tensile strength in the directions of the fibers of the fibrous carbon material is prevented by use of a protective coating on the fibers.The protective coating comprises a thermosetting material which remains flexible after being subjected to curing temperatures. The coating is applied to the fibers and cured prior to addition of a resin and a boron containing compound. The resin and boron containing compound may then be added with the resin being at least partially cured. Upon formation of a laminate and heating of the laminate to a temperature sufficient to carbonize and at least partially graphitize the resin, the interlaminar tensile strength has been found to be greatly improved without significant decrease in the tensile strength in the directions of the fibers of the fibrous carbon material of the laminate. The protective resin coating on the fibers creates a barrier and results in an anisotropic composite even though high levels of boron are present in the matrix.However, this barrier is insufficient to limit boron migration and to conserve the anisotropic nature of the composite when the high temperature consolidation temperature exceeds 24820C. Above this temperature, the high levels of boron exhibit such instability that either an isotropic composite results or the composite fails by gross fracture.
The present invention provides a material comprising carbon fibres impregnated with a thermosetting resin binder, said thermosetting binder including:
a first portion surrounding the fibers comprised of a flexible thermosetting resin coating containing a free or combined refractory metal capable of reacting with boron to form a metal boride; and
a second portion coated on top of said first portion comprised of a thermosetting resin containing a boron compound.
Preferably at least a part of said metal in said first portion of thermosetting resin is atomically dispersed.
Preferably said metal is chemically combined in said thermosetting resin in the form of a reaction product of either tungsten carbonyl and/or molybdenum carbonyl with pyrrolidine.
Preferably said first portion of thermosetting resin comprises a copolymer of furfuryl alcohol and a polyester prepolymer, said polyester prepolymer having been reacted with a complex which is a reaction product of tungsten carbonyl and/or molybdenum carbonyl with pyrrolidine.
Preferably at least a part of said metal is particulate metal.
The present invention further provides a carbon-carbon composite comprising a plurality of layers of fibrous carbon material in a carbon-containing matrix, said carbon-containing matrix including metal boride, wherein said carbon containing matrix comprises:
a first portion of thermosetting resin surrounding the fibers comprised of a flexible thermosetting resin coating containing a free or combined refractory metal capable of reacting with boron to form a metal boride; and
a second portion coated on top of said first portion comprised of a thermosetting resin containing a boron compound.
The present invention further provides a method of making a carbon-carbon composite comprising the steps of:
applying a coating of a flexible thermosetting resin to fibrous carbon material, which resin remains flexible upon curing and contains a free or combined refractory metal capable of reacting with boron to form a metal boride;
curing the flexible thermosetting resin;
impregnating the coated fibrous carbon material with a second thermosetting resin containing a boron compound;
at least partially curing the second thermosetting resin;
assembling a plurality of layers of the impregnated material to form a laminate; and
heating the laminate to a temperature sufficient to carbonize the thermosetting resin.
In accordance with preferred embodiments of the present invention, a fibrous carbon material is first coated with a flexible thermosetting resin which remains flexible upon curing. The thermosetting resin contains a refractory metal capable of reacting with boron to form a metal boride. The refractory metal may be atomically dispersed in the resin, i.e., wherein the refractory metal is an integral part of the molecular structure of the resin; or it may be particulate metal; or both may be used.
A thermosetting resin containing atomically dispersed metal may be prepared by incorporating the refractory metal into the resin in the form of a reaction product of either tungsten carbonyl and/or molybdenum carbonyl with pyrrolidine. An example of such a thermosetting resin comprises a copolymer of furfuryl alcohol and a polyester prepolymer, the polyester prepolymer having been reacted with a complex which is the reaction product of tungsten carbonyl and/or molybdenum carbonyl with pyrrolidine. Such copolymers are more fully disclosed in United States Patent
Specification No. 4,087,482 (Robert C. Shaffer), the disclosure of which is incorporated herein by reference.Other thermosetting polymers containing chemically bonded metal atoms which have been prepared by the reaction of monomers and prepolymers with a complex which is a reaction product of tungsten carbonyl and/or molybdenum carbonyl with pyrrolidine are disclosed in United States Patent applications Serial No. 893,622, filed April 5, 1 978 and Serial No. 06/084,310, filed October 12, 1 979, (both Robert C. Shaffer!. The disclosure of these two applications are incorporated herein by reference. After the resin has been prepared, it may be diluted with a suitable solvent, e.g., dimethyiformamide, to a solids content of, for example, 70%.
The fibrous carbon material which may be used in the practice of this invention may comprise any carbon material which is in the form of fibers, filaments or other forms. Examples include fabrics such as carbon or graphite cloth. The use of the word "carbon" herein is intended to refer to carbon in all its forms including graphite.
In a preferred embodiment of this invention, the first coat of flexible thermosetting resin contains, in addition to atomically dispersed refractory metal, particulate refractory metal having a particle size of from 5 to 50 microns. Examples of such metal include niobium, tantalum, titanium, e.g., as titanium dioxide, molybdenum and tungsten. Any refractory metal may be used which converts to the stable boride in a ternary system with carbon. Preferably, from about 50 to 90% of the total refractory metal content of the resin is particulate metal, the remainder being atomically dispersed metal.
The flexible first coating is applied to the fibrous carbon material and cured using an appropriate technique. One process which may be used is to submerge the fibrous carbon material in an open container of the coating material, then remove excess coating material by drawing the fibrous carbon material through pressure rollers and then dry the coating by hanging the fibrous material in air at ambient temperature to permit evaporation of a portion of the solvent in the coating material. Curing of the coating material is then accomplished such as by placing the fibrous carbon material in an air circulating oven to advance the polymerization of the resin and remove additional solvent. The solids content of the thermosetting coating material is adjusted to produce a cured coating comprising approximately 5 to 200% of the weight of the fibrous carbon material.
Following application of the flexible coating, the fibrous carbon material is next reimpregnated with a second thermosetting resin which is partially cured or "B-staged". This resin may be the same as the flexible thermosetting resin. This resin may or may not contain an appropriate amount of atomically dispersed or particulate refractory metal, or both, such as previously described. This resin also contains a boron compound and the amount of boron should preferably be balanced on a molecular basis with the amount of metal present in the total system. The boron containing compound is preferably amorphous boron. Impregnation and curing can be accomplished by appropriate methods such as submerging the coated fibrous carbon material in an open container of the thermosetting resin containing the boron and, if desired, the refractory metal.Excess material is removed by drawing the fibrous carbon material between pressure rollers, after which the material is dried by hanging in air at ambient temperatures to permit evaporation of a portion of the solvent contained in the resin. The dried fibrous carbon material is then treated to at least partially cure the thermosetting resin such as by placing the material in an air circulating oven to advance the polymerization of the resin. The amount of amorphous boron blended with the resin is selected so that the amorphous boron comprises approximately 2 to 9% of the volume of the laminate.
The amount of the metal contained in the flexible thermosetting resin and the thermosetting resin
containing the boron is preferably present in excess of the amount stoichiometrically necessary to
combine with the boron present. Preferably, from about 75 to 100 weight percent of the total metal content of the laminate is present in the first flexible thermosetting resin coating, the remainder being present in the second thermosetting resin coating.
The resulting laminate is then preferably unified and densified with the resin matrix being further cured. In one process for accomplishing this, the laminate is placed in a conforming mold in an electrically heated platen press at elevated pressure and temperature for a time sufficient to provide the laminate with a relatively high degree of fiber-resin matrix adhesion and make it adequately selfsupporting for maintenance of its shape and dimension through further processing.
The laminate is then carbonized and, preferably, at least partially graphitized, such as by heating at temperatures of from 2320 to 28700C. and a pressure of from 500 to 3000 psi. Examples of carbonization and graphitization processes which are used are provided by a copending United States
Patent application Serial No. 556,889, filed March 1 0, 1 975, Richard J. Larsen et al, the disclosure of which is incorporated herein by reference. In the processes described in the Larsen et al application, a carbon-organic resin composite is initially shaped as by molding and at least partially precured.
Thereafter, the composite is placed in an electric induction furnace where it is heated at a first rate to a temperature of the order of 10000 F. (5380C.) so as to substantially decompose the resin rapidly but without delamination or other damage to the composite. Heating is then continued at a second rate until the composite undergoes substantial softening and becomes plastic, typically at a temperature in excess of 35q00F. Thereafter, the composite is maintained at a high temperature, typically in excess of 5000"F. (2760"C.) for a selected period of time while at the same time continuing the application of high pressure to provide substantial densification of the composite.The continuous process provides for the manufacture of laminated articles of substantially all carbon composition and of very high density within a relatively short period of time and without the need for successive processing steps carried out in different locations or using different pieces of equipment.
The refractory metal and boron combination in the composite results in the formation of metal borides during the heat processing. The metal boride is considerably more stable at high temperature than is boron carbide. The migration of the boron is thus limited thereby preventing attack on the fiber by the boron and resultant degradation of the fibers. The presence of both the boron and the metal in the laminate exerts a synergistic effect on the interlaminar tensile strength of the final carbon-carbon composite.
The following examples illustrate this invention:
Example 1
In an example carried out according to the invention, a grind is made containing 50% by weight of a resin made in accordance with Example 1 of United States Patent Specification No. 4,087,482 (Shaffer) and 50% by weight of particulate niobium which has a particle size of -325 mesh. Graphite fabric was submerged in an open container filled with the grind. The solids content of the grind was adjusted to produce a coating comprising approximately 175% by weight of the fabric. The fabric was drawn through pressure rollers to remove excess coating and was hung in air at ambient temperatures to dry. The fabric was then placed in an air circulating oven where the temperature was maintained at approximately 3250 F, for approximately 60 minutes.This temperature treatment cured the resin sufficiently to prevent mixing with the resin in the second coat. The coated fabric was then further impregnated by being submerged in an open container holding a grind consisting of 87% by weight of a resin made in accordance with Example 1 of United States Patent Specification No. 4,087,482 (Shaffer), 5% by weight of ground graphite fiber, and 8% by weight of amorphous boron. Sufficient grind was added to apply about 120% by weight of the original weight of the fabric. The fabric was drawn between pressure rollers to remove excess resin and was dried by hanging in air at ambient temperature.Thereafter, the fabric was placed in an air circulating oven at a temperature of approximately 3250 F, for a period of approximately 30 minutes, following which the temperature was raised to 4000 F. for a period of approximately 10 minutes. This temperature treatment advanced the resin to the "B" stage. The impregnated fabric was then cut into sections of chosen size and shape that were laid up in a desired configuration. The laminate was unified and densified and the matrix material was further cured in a conforming mold in an electrically heated platen press at approximately 1000 psi and approximately 4250F for approximately 16 hours. The length of time required for cure was found to be dependent on various factors including wall thickness and the shape of the part.When removed from the press, the part had a high degree of fiber-matrix adhesion. The part was adequately self-supporting for maintenance of its shape and dimension through further processing steps. The laminate was then fully carbonized, further compacted and converted to a graphite state while under a pressure of 1000-2000 psi. in equipment heated at temperatures of approximately 52000 F. by induction heating. This step completed the conversion of the resin matrix and advanced the graphite crystallinity and the formation of the metal borides in the matrix.The interlaminar tensile strength and the tensile strength in the directions of the fibers of two different samples made according to this example were determined to be as follows:
Sample Sample 2
Tensile strength in the direc
tion of the fibers (psi): 6436 6750
Interlaminar tensile
strength (psi): 1731 1580
X-ray diffraction of Sample I showed a graphite peak of 3.35An which is highly graphitic, showing that the boron did promote graphitization. The X-ray analysis also showed NbC, NbB2, and S- WB. No B4C was found. These results show complete reaction of boron with the metals present and the great molecular distances the boron atoms will diffuse if subjected to high temperature and pressure.
Example 2
A carbon-carbon composite was prepared by a method similar to that described in Example 1, but using a high temperature consolidation temperature of 42000 F. (231 60C.). This composite contained only atomically dispersed tungsten as the metal present i.e., no particulate metal and an excess of boron on a molecular basis. This composite was found to have a tensile strength in the directions of the fibers of 9572 psi. and an interlaminar tensile strength of 2432 psi. This was a considerable improvement in interlaminar tensile strength over the carbon-carbon composites described in United
States Patent Specification No. 4,164,601 (Shaffer) i.e., composites which did not contain a refractory metal.However, another carbon-carbon composite prepared in the same manner at a high temperature consolidation temperature of 52000F. (2871 OC.) and containing only atomically dispersed tungsten as the metal present showed a tensile strength in the direction of the fibers of only 2583 psi. with an interlaminar tensile strength of 2301 psi. These results showed reduction of the tensile strength in the direction of the fibers resulting from the degradation of the anisotropic composite to an isotropic composite at elevated consolidation temperatures.
Example 3
In order to conserve the fiber identity and the anisotropic nature of the composite, additional carbon-carbon composites are prepared as described in Example 1 which contained not only atomically dispersed tungsten, but, also, particulate refractory metal. This particulate metal was added to the coating placed on the fiber to constitute a barrier in order to intercept the migrating boron atoms. This additional metal did protect the fiber and resulted in stable composites. The four metals used were tantalum, titanium (as titanium dioxide), molybdenum and tungsten substituted for the niobium of
Example 1. The high temperature consolidation temperature used to prepare each composite was 52000 F.
The interlaminar tensile strength and tensile strength in the direction of the fibers were determined to be as foliows:
Metal additive
Property TiO2 Mo W Ta
Tensile strength in the directions of the fibers (psi) 7943 8617 8038 6042
Interlaminar tensile strength (psi) 1719 1624 868 1227
It will be seen that the addition of the particulate metal did protect the fiber and resulted in stable composities. The tensile strength in the directions of the fibers for each of these samples, while lower than the composite prepared at a high temperature consolidation temperature of 42000 F. and containing only atomically dispersed tungsten, were considerably higher than the composite prepared at a high temperature consolidation temperature of 52000F. and containing only atomically dispersed tungsten.
Analysis of data obtained from the composites of Examples 1, 2 and 3 shows these composites varied in fiber volume. To standardize the values to what normal composites could be expected to have at a normal fiber volume of 60%, the following chart is given.
High temperature consolidation temperature 4200 OF 52000F 5200 OF 5200 OF 5200 OF 5200 OF 5200 OF Metal additive * * TiO2 Nb Mo W Ta
Tensile strength in the
directions of the fibers
(psi) standardized to 60%
fiber volume. 8948 2875 9046 7015 10141 10992 6068 *no particulate metal added.
This chart shows that the fiber was actually protected better at 52000 F. in three cases, e.g., with titanium dioxide, molybdenum, and tungsten systems, than the atomically dispersed system did at 42000 F.
It is thus seen that atomically dispersed metal alone will protect the fibers in composites from boron as long as the temperatures do not exceed 24820C. and this protection is superior to the flexible furfuryl resin that does not contain metal, i.e., the resins disclosed in United States Patent Specification No. 4,164,601 (Shaffer). Fibers protected by the use of atomically dispersed metal offer an important weight saving as composites made without metal particulates exhibit lower densites than those made with metal particulates. However, the use of metal particulates aids in protection of the fibers when higher high temperature consolidation temperatures are used, e.g., higher than 2482"C.
In accordance with preferred embodiments of the present invention as described hereinabove a mixture is made containing a refractory metal and a thermosetting resin which remains flexible after being subjected to curing temperatures. The metal may be in the form of a particulate metal or atomically dispersed metal or both. The metal is capable of reacting with boron at high temperatures in a ternary system of carbon. The fibrous carbon material is coated with this mixture and the thermosetting resin is cured. The coated fibrous carbon material is then reimpregnated with a second thermosetting resin containing a boron compound and, optionally, a refractory metal capable of reacting with boron to form a metal boride. As with the refractory metal in the first coating, the metal, if present, may be in the form of particulate metal or atomically dispersed metal or both. The second thermosetting resin is at least partially cured and a plurality of layers of the fibrous material is then assembled to form a laminate. The laminate is heated to a temperature sufficient to carbonize and graphitize the thermosetting resin. The resultant carbon-carbon composite has better oxidation resistance, improved high temperature stability, higher density and improved interlaminar tensile strength than does a composite prepared without the presence of the refractory metal in the thermosetting resin.
Claims (39)
1. A material comprising carbon fibers impregnated with a thermosetting resin binder, said thermosetting binder including:
a first portion surrounding the fibers comprised of a flexible thermosetting resin coating containing a free or combined refractory metal capable of reacting with boron to form a metal boride; and
a second portion coated on top of said first portion comprised of a thermosetting resin containing a boron compound.
2. A material as claimed in claim 1 wherein at least a part of said metal in said first portion of thermosetting resin is atomically dispersed.
3. A material as claimed in claim 2 wherein said metal is chemically combined in said thermosetting resin in the form of a reaction product of either tungsten carbonyl and/or molybdenum carbonyl with pyrrolidine.
4. A material as claimed in claim 3 wherein said first portion of thermosetting resin comprises a copolymer of furfuryl alcohol and a polyester prepolymer, said polyester prepolymer having been reacted with a complex which is a reaction product of tungsten carbonyl and/or molybdenum carbonyl with pyrrolidine.
5. A material as claimed in any one of the preceding claims wherein at least a part of said metal is particulate metal.
6. A material as claimed in claim 5 wherein a part of said metal is atomically dispersed and the remainder is particulate metal.
7. A material as claimed in claim 1 wherein said second portion of thermosetting resin also contains a metal capable of reacting with boron to form a metal boride.
8. A material as claimed in claim 7 wherein at least a part of said metal in said second portion of thermosetting resin is atomically dispersed.
9. A material as claimed in claim 8 wherein said metal in said second portion of thermosetting resin is chemically combined in said thermosetting resin in the form of a reaction product of either tungsten carbonyl and/or molybdenum carbonyl with pyrrolidine.
1 0. A material as claimed in claim 9 wherein said second portion of thermosetting resin comprises a copolymer of furfuryl alcohol and a polyester prepolymer, said polyester prepolymer having been reacted with a complex which is a reaction product of tungsten carbonyl and/or molybdenum carbonyl with pyrrolidine.
11. A material as claimed in any one of claims 1-10 wherein at least a part of said material in said second portion of thermosetting resin is particulate metal.
12. A material as claimed in claim 11 wherein at least a part of said metal in said second portion of thermosetting resin is atomically dispersed and the remainder is particulate metal.
13. A carbon-carbon composite comprising a plurality of layers of fibrous carbon material in a carbon-containing matrix, said carbon-containing matrix including metal boride, wherein said carbon containing matrix comprises:
a first portion of thermosetting resin surrounding the fibers comprised of a flexible thermosetting resin coating containing a free or combined refractory metal capable of reacting with boron to form a metal boride; and
a second portion coated on top of said first portion comprised of a thermosetting resin containing a boron compound.
14. A carbon-carbon composite as claimed in claim 13 wherein at least a part of said metal in said first portion of thermosetting resin is atomically dispersed.
1 5. A carbon-carbon composite as claimed in claim 14 wherein said metal is chemically combined in said thermosetting resin in the form of a reaction product of either tungsten carbonyl and/or molybdenum carbonyl and pyrrolidine.
1 6. A carbon-carbon composite as claimed in claim 1 5 wherein said first portion of thermosetting resin comprises a copolymer of furfuryl alcohol and a polyester prepolymer, said polyester prepolymer having been reacted with a complex which is a reaction product of tungsten carbonyl and/or molybdenum carbonyl with pyrrolidine.
1 7. A carbon-carbon composite as claimed in any one of claims 1 3-1 6 wherein at least a part of said metal is particulate metal.
1 8. A carbon-carbon composite as claimed in claim 1 7 wherein a part of said metal is atomically dispersed and the remainder is particulate metal.
1 9. A carbon-carbon composite as claimed in claim 13 wherein said second portion of thermosetting resin also contains metal capable of reacting with boron to form a metal boride.
20. A carbon-carbon composite as claimed in claim 1 9 wherein at least a part of said metal in said second portion of thermosetting resin is atomically dispersed.
21. A carbon-carbon composite as claimed in claim 20 wherein said metal in said second portion of thermosetting resin is chemically combined in said thermosetting resin in the form of a reaction product of either tungsten carbonyl and/or molybdenum carbonyl with pyrrolidine.
22. A carbon-carbon composite as claimed in claim 21 wherein said second portion of thermosetting resin comprises a copolymer of furfuryl alcohol and a polyester prepolymer, said polyester prepolymer having been reacted with a complex which is a reaction product of tungsten carbonyl and/or molybdenum carbonyl with pyrrolidine.
23. A carbon-carbon composite as claimed in any one of claims 1 3-22 wherein at least a part of said metal in said second portion of thermosetting resin is particulate metal.
24. A carbon-carbon composite as claimed in claim 23 wherein at least a part of said metal in said second portion of thermosetting resin is atomically dispersed and the remainder is particulate metal.
25. A method of making a carbon-carbon composite comprising the steps of:
applying a coating of a flexible thermosetting resin to fibrous carbon material, which resin remains flexible upon curing and contains a free or combined refractory metal capable of reacting with boron to form a metal boride;
curing the flexible thermosetting resin;
impregnating the coated fibrous carbon material with a second thermosetting resin containing a boron compound;
at least partially curing the second thermosetting resin;
assembling a plurality of layers of the impregnated material to form a laminate; and
heating the laminate to a temperature sufficient to carbonize the thermosetting resin.
26. A method as claimed in claim 25 wherein least a part of said metal in said flexible thermosetting resin is atomically dispersed.
27. A method as claimed in claim 26 wherein said metal is chemically combined in said thermosetting resin in the form of a reaction product of either tungsten carbonyl and/or molybdenum carbonyl with pyrrolidine.
28. A method as claimed in claim 27 wherein said flexible thermosetting resin comprises a copolymer of furfuryl alcohol and a polyester prepolymer, said polyester prepolymer having been reacted with a complex which is a reaction product of tungsten carbonyl and/or molybdenum carbonyl with pyrrolidine.
29. A method as claimed in any one of claims 25 to 28 wherein at least a part of said metal is particulate metal.
30. A method as claimed in claim 29 wherein a part of said metal is atomically dispersed and the remainder is particulate metal.
31. A method as claimed in claim 25 wherein said second thermosetting resin also contains a metal capable of reacting with boron to form a metal bolide.
32. A method as claimed in claim 31 wherein at least a part of said metal in said second thermosetting resin is atomically dispersed.
33. A method as claimed in claim 32 wherein said metal is chemically combined in said second thermosetting resin in the form of a reaction product of either tungsten carbonyl and/or molybdenum carbonyl with pyrrolidine.
34. A method as claimed in claim 33 wherein said second thermosetting resin comprises a copolymer of furfuryl alcohol and a polyester prepolymer, said polyester prepolymer having been reacted with a complex which is a reaction product of tungsten carbonyl and/or molybdenum carbonyl with pyrrolidine.
35. A method as claimed in any one of claims 25-34 wherein at least a part of said metal in said second thermosetting resin is particulate metal.
36. A method as claimed in claim 35 wherein a part of said metal in said second thermosetting resin is atomically dispersed and the remainder is particulate metal.
37. A composite material substantially as hereinbefore described in Example 1, Example 2 or
Example 3.
38. A method of making a composite material substantially as hereinbefore described in Example 1, Example2 or Example 3.
39. An object comprising a composite material substantially as hereinbefore described with reference to Example 1, Example 2 or Example 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB08200055A GB2112827B (en) | 1982-01-04 | 1982-01-04 | Carbon fiber materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB08200055A GB2112827B (en) | 1982-01-04 | 1982-01-04 | Carbon fiber materials |
Publications (2)
Publication Number | Publication Date |
---|---|
GB2112827A true GB2112827A (en) | 1983-07-27 |
GB2112827B GB2112827B (en) | 1985-11-13 |
Family
ID=10527406
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
GB08200055A Expired GB2112827B (en) | 1982-01-04 | 1982-01-04 | Carbon fiber materials |
Country Status (1)
Country | Link |
---|---|
GB (1) | GB2112827B (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5244748A (en) * | 1989-01-27 | 1993-09-14 | Technical Research Associates, Inc. | Metal matrix coated fiber composites and the methods of manufacturing such composites |
WO2006086230A1 (en) * | 2005-02-09 | 2006-08-17 | Eastman Chemical Company | Polyester polymer and copolymer compositions containing metallic tantalum particles |
US7655746B2 (en) | 2005-09-16 | 2010-02-02 | Eastman Chemical Company | Phosphorus containing compounds for reducing acetaldehyde in polyesters polymers |
US7662880B2 (en) | 2004-09-03 | 2010-02-16 | Eastman Chemical Company | Polyester polymer and copolymer compositions containing metallic nickel particles |
US7745512B2 (en) | 2005-09-16 | 2010-06-29 | Eastman Chemical Company | Polyester polymer and copolymer compositions containing carbon-coated iron particles |
US7776942B2 (en) | 2005-09-16 | 2010-08-17 | Eastman Chemical Company | Polyester polymer and copolymer compositions containing particles of titanium nitride and carbon-coated iron |
US8039577B2 (en) | 2004-11-12 | 2011-10-18 | Grupo Petrotemex, S.A. De C.V. | Polyester polymer and copolymer compositions containing titanium nitride particles |
US8557950B2 (en) | 2005-06-16 | 2013-10-15 | Grupo Petrotemex, S.A. De C.V. | High intrinsic viscosity melt phase polyester polymers with acceptable acetaldehyde generation rates |
-
1982
- 1982-01-04 GB GB08200055A patent/GB2112827B/en not_active Expired
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5244748A (en) * | 1989-01-27 | 1993-09-14 | Technical Research Associates, Inc. | Metal matrix coated fiber composites and the methods of manufacturing such composites |
US7662880B2 (en) | 2004-09-03 | 2010-02-16 | Eastman Chemical Company | Polyester polymer and copolymer compositions containing metallic nickel particles |
US8039577B2 (en) | 2004-11-12 | 2011-10-18 | Grupo Petrotemex, S.A. De C.V. | Polyester polymer and copolymer compositions containing titanium nitride particles |
WO2006086230A1 (en) * | 2005-02-09 | 2006-08-17 | Eastman Chemical Company | Polyester polymer and copolymer compositions containing metallic tantalum particles |
US8557950B2 (en) | 2005-06-16 | 2013-10-15 | Grupo Petrotemex, S.A. De C.V. | High intrinsic viscosity melt phase polyester polymers with acceptable acetaldehyde generation rates |
US8987408B2 (en) | 2005-06-16 | 2015-03-24 | Grupo Petrotemex, S.A. De C.V. | High intrinsic viscosity melt phase polyester polymers with acceptable acetaldehyde generation rates |
US7655746B2 (en) | 2005-09-16 | 2010-02-02 | Eastman Chemical Company | Phosphorus containing compounds for reducing acetaldehyde in polyesters polymers |
US7745512B2 (en) | 2005-09-16 | 2010-06-29 | Eastman Chemical Company | Polyester polymer and copolymer compositions containing carbon-coated iron particles |
US7776942B2 (en) | 2005-09-16 | 2010-08-17 | Eastman Chemical Company | Polyester polymer and copolymer compositions containing particles of titanium nitride and carbon-coated iron |
US7799891B2 (en) | 2005-09-16 | 2010-09-21 | Eastman Chemical Company | Phosphorus containing compounds for reducing acetaldehyde in polyesters polymers |
Also Published As
Publication number | Publication date |
---|---|
GB2112827B (en) | 1985-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4321298A (en) | Carbon fabrics sequentially resin coated with (1) a metal-containing composition and (2) a boron-containing composition are laminated and carbonized | |
DE69909714T2 (en) | Composite materials with ceramic matrix | |
US5067999A (en) | Method for providing a silicon carbide matrix in carbon-fiber reinforced composites | |
EP0714869B1 (en) | Carbon fiber-reinforced carbon composite material and process for the preparation thereof | |
DE69828168T2 (en) | CARBON COMPOSITES | |
US4101354A (en) | Coating for fibrous carbon material in boron containing composites | |
CA2088383C (en) | A method of manufacturing parts made of ceramic matrix composite material | |
GB2112827A (en) | Carbon fiber materials | |
JPH03150266A (en) | Production of carbon/carbon composite material | |
GB2151221A (en) | High strength oxidation resistant carbon/carbon composites | |
JPS6052103B2 (en) | Method for manufacturing carbon fiber reinforced carbon material | |
GB1410090A (en) | Reinforced carbon structures | |
WO1992001648A1 (en) | Carbon-carbon composite material | |
US4164601A (en) | Coating for fibrous carbon material in boron containing composites | |
DE68919060T2 (en) | Manufacture of refractory materials. | |
EP1281695A1 (en) | Method for producing sic fiber/sic composite material having high strength | |
JP3288433B2 (en) | Carbon fiber reinforced carbon composite precursor | |
JPS6135148B2 (en) | ||
JPH01133914A (en) | Carbon fiber reinforced carbon composite material and production thereof | |
JPH0129499B2 (en) | ||
JPS60260469A (en) | Manufacture of carbon material | |
US3758352A (en) | Porous fibrous substrate structure produced in oxidizing atmosphere | |
JPH01145375A (en) | Production of carbon fiber-reinforced carbonaceous composite | |
JPH0352426B2 (en) | ||
JP3345437B2 (en) | Method for producing carbon fiber reinforced carbon composite |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PCNP | Patent ceased through non-payment of renewal fee |