Nothing Special   »   [go: up one dir, main page]

GB2045397A - Slidable homokinetic tripod joints - Google Patents

Slidable homokinetic tripod joints Download PDF

Info

Publication number
GB2045397A
GB2045397A GB8011076A GB8011076A GB2045397A GB 2045397 A GB2045397 A GB 2045397A GB 8011076 A GB8011076 A GB 8011076A GB 8011076 A GB8011076 A GB 8011076A GB 2045397 A GB2045397 A GB 2045397A
Authority
GB
United Kingdom
Prior art keywords
joint
tripod
raceways
rollers
roller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB8011076A
Other versions
GB2045397B (en
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Glaenzer Spicer SA
Original Assignee
Glaenzer Spicer SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Glaenzer Spicer SA filed Critical Glaenzer Spicer SA
Publication of GB2045397A publication Critical patent/GB2045397A/en
Application granted granted Critical
Publication of GB2045397B publication Critical patent/GB2045397B/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/202Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints
    • F16D3/205Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints the pins extending radially outwardly from the coupling part
    • F16D3/2055Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints the pins extending radially outwardly from the coupling part having three pins, i.e. true tripod joints
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S464/00Rotary shafts, gudgeons, housings, and flexible couplings for rotary shafts
    • Y10S464/904Homokinetic coupling
    • Y10S464/905Torque transmitted via radially extending pin

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pivots And Pivotal Connections (AREA)
  • Rolling Contact Bearings (AREA)
  • Friction Gearing (AREA)
  • Transmission Devices (AREA)

Description

1 GB 2 045 397 A 1
SPECIFICATION A slidable homokinetic tripod joint and a corresponding transmission having a floating shaft
The present invention relates to slidable homokinetic tripod joints having a moderate operating angle (maximum angle less than about 201) intended in particular for automobile vehicle transmissions.
These joints usually comprise a tulip member which defines three raceways having a part-circular cross- 5 section and a tripod element which is adapted to be fixed to a shaft by means of a cylindrical skirt portion from which extend radially three arms on each of which a part- spherical roller is rotatably and slidably mounted by means of a needle bearing, each roller being received in a raceway and the tripod element being axially f ree inside the tulip element.
Among slidable homokinetic joints, the tripod joints of this type are those which provide the least 10 opposition to the sliding of the transmission shatt under torque. Indeed, in respect of a moderate, small or zero operating angle, the movement of axial extension or compresssion under torque occurs by the practically pure rolling of the connecting elements which transfer the loads between the driving and driven parts.
This is confirmed by comparative laboratory measurements which show that the tripod joints of 15 the aforementioned type, have, when they are correctly designed, the lowest mechanical loss under torque. This loss is of the order of 5/10 000 in respect of an operating angle of 51 and 2/10 000 in respect of an operating angle of 30. On the other hand, the same measurements show that the mechanical loss increases rather rapidly with the angle. For example, at an operating angle of 100, there is a mechanical loss of 25/10 000 and the opposition to sliding becomes correspondingly more marked, 20 and the tripod joint thus loses a part of its advantage over the other types of telescopic joints.
An object of the invention is to provide an improvement which may reduce by about 50% the mechanical loss of these tripod joints which correspondingly facilitates the sliding under torque without alteration in the simplicity and strength of this type of joint.
According to the invention, there is provided a joint of the aforementioned type, wherein the 25 raceways of the tulip element have the shape of a torus, the ratio of the maximum distance between the axis of the tulip element and the axis of the torii defining the raceways to the radius of these torii being between 1/4 and 3/4.
Another object of the invention is to provide a transmission comprising a floating shaft interposed between two slidable homokinetic joints, at least one of which is as defined hereinbefore. In this way, a 30 very advantageous self-centering effect on the part of the shaft is achieved in a simple and cheap manner.
Further features and advantages of the invention will be apparent from the ensuing description which is given merely by way of example with reference to the accompanying drawings in which:
Fig. 1 is a half elevational view and half-axial sectional view of a conventional slidable tripod joint, 35 Fig. 2 is a diagram corresponding to the joint of Fig. 1; Fig. 3 is an axial sectional view of a joint according to the invention; Fig. 4 is a diagrammatic sectional view taken on line 4---4of Fig. 3, and, Figs. 5 and 6 are two diagrams similar to that of Fig. 2, but corresponding to the joint of Figs. 3 and 4.
The homokinetic joint 1, shown in a perfectly aligned position in Fig. 1, comprises mainly a tulip element 2 and a tripod element 3 fixed to the splined end portion of a transmission shaft 4.
The tulip element 2 has a stem portion 5 which has an axis X-X and is internally splined. Extending from this stem portion are three petal portions 6, whose confronting longitudinal edge portions are machined in such manner as to define between adjacent petal portions raceways 7 which 45 have a part-circular cross-sectional shape, these raceways being equally angularly spaced apart. The axis Y-Y of each raceway 7 is rectilinear and parallel to the axis X-X.
The tripod element is secured to the shaft 4 by means of an internally splined cylindrical skirt portion 8. Extending radially from the skirt portion are three arms or trunnions 9 having a circular cross sectional shape. Each arm 9 carries a roller 10 having a part-spherical outer active surface 11.
Interposed between the arm 9 and the roller 10 is a ring 12 of adjoining needles which are retained axially by means of a safety device comprising suitable washers 13, 14 and a stop ring 15, the latter being received in a groove provided adjacent the end of the arm 9.
The tripod 3 is axially free inside the tulip element 2.
Externally, the tulip element 2 is circular. A fluidtight elastic gaiter 16 is secured adjacent one end 55 thereof to the periphery of the stem portion 5 around the petal portions 6 and then converges to fixing grooves 17 provided on the shaft 4. The gaiter 16 defines with the tulip element 2 a sealed enclosure 18 which retains the lubricant and protects the mechanism.
When the angle 8 that the axis Z-Z of the shaft 4 makes with the axis X-X is small, the axial sliding movement of the tripod element under torque occurs by a pure rolling, on one hand of the bore of 60 the rollers on the trunnions through the needles'and, on the other hand, of the part-spherical surface of the rollers on the raceways of the tulip element. It will be understood that, under these conditions, the reciprocating movement of the rollers on their arms 9 resulting from the rotation of the joint at an angle and the general movement of translation of the three rollers resulting from the sliding of the tripod 2 GB 2 045 397 A 2 element, occur with no marked opposition, even in respect of a high transmitted torque.
Fig. 2 shows diagrammatically a position of a roller 10 when the joint 1 operates at a given angle 8. The angle a made by the plane P of the roller with the axis Y-Y of the raceway 7 varies from + 3 to - 8 in the course of the rotation of the joint.
The preferential direction of rolling of the roller in the plane P is opposed by the guiding of the 5 raceway 7 which constrains this roller to move along the axis Y-Y, i.e. at an angle of deviation relative to its natural direction of rolling. This deviation corresponds to a lateral sliding of the roller which occurs simultaneously, on one hand, between the part-spherical surface of the roller and the raceway and, on the other hand, between the bore of the roller and its arm 9. As the roller is mounted on needles, its rotation is assumed to be perfectly free on the arm 9. The sliding movement on the raceway can 10 therefore only be contained in a plane containing the axis of the trunnion.
If p designates the distance between the centres 0 of the tripod element and 0' of the roller, and r the distance between the axes X-X and Y-Y, r cos a and the expression of the elementary sliding is the following:
d p = pda. tan a = r. tan (x. d a cos a (1) The joint 1 a according to the invention shown perfectly aligned in Figs. 3 and 4, only differs essentially from the joint 1 of Fig.'1 in two respects. On one hand, the raceways 7a of the tulip element 2a each have as the central axis Y'-Y' an arc of a circle so that this imparts thereto a torus shape. The radius R of each torus is distinctly larger than the maximum value r of the distance botween the a,.-.is 20 X-X and the arc Y-Y'. As a result of this construction, the free axial sliding of the tripod element 3a in the tulip element is accompanied by, irrespective of the angle between the axis Z-Z and the axis X-X, a sliding of the rollers on their arms. In order to permit this sliding of the rollers on their arms which is increased relative to the known construction of Fig. 1, the needles 12a have a length which exceeds the length of the rollers and this constitutes the second difference between the joints 1 and 1 a. 25 It may also be noted that, in the illustrated arrangement, the gaiter 16a is fixed to a cylindrical hood 1 6b which surrounds the petal portions 6a of the tulip element 3a at the open end of the latter.
Fig. 5 shows diagrammatically a position of a roller 10 when the centre 0 of the tripod element is in its mean axial position, at the point 0" of the axis X-X which corresponds to the maximum distance r defined above, as is the case in Fig. 3, and when the joint 1 a operates at an an angle. 30 Fig. 6 is a similar diagram but which corresponds to an offset h along the axis X-X between the points 0 and-O".
The angle 0 made b - y the plane.P of the roller with the tangent to the circular axis Y'-Y' of the torus raceway 7a is smaller than a. This angle 0 may be defined simply with good approximation, by the following relation:
I r h tan 0= (1 --).tana-- R R The elementary sliding corresponding to an increase d a of the angle a, is given by an expression of similar form to the relation (l):
r r hj dp, = p. d a. tan 0 d tan a - cos a R (3) It will be observed that we have again exactly the ret@tion (1) if R is made equal to oo, which is 40 correct, since the rectilinear raceways 7 may be considered to be tori having an infinite radius of curvature.
If h = 0 (Fig. 5), the ratio of the elementary sliding dp, of the joint according to the invention to the i 3 GB 2 045 397 A 3 elementary sliding dp of the known joint of Fig. 1 is written:
r r -. (1 - -). tan cr. d (v cipt C6S a R r (4) d r R cos a -. tan a. d a When h:P 0, and assuming the roller to be at an angle a and at an angle (v, only the mean 0,', of the absolute values of the corresponding angles 01 and 02 is significant for the losses by sliding. It can be shown that:
r tan 0 = (1 - -). tan a R 1 By comparing this relation with the relations (2) and (3), it can be seen that the mechanical losses have the same value as for h = 0, i.e. that the relation (4) remains variable. Thus the mechanical loss is improved in the ratio r R In other words, the elementary sliding work, and consequently also the elementary mechanical loss, which is proportional to this work, may be, for any angle a, very much smaller with the joint 1 a of the invention. Consequently, there is an easy sliding of each roller when the joint operates at an angle, and consequently an improved isolation of the compartment of the vehicle from the engine unit, which generates vibrations, and less sensitivity to friction and, consequently, a much improved comfort, in 15 particular for large operating angles.
For example, in respect of a ratio r 1 R 2 there is obtained cip, 1 dp 2 The opposition to the displacement of the roller in its raceway is then reduced by about 50% with as a direct consequence, a very important gain in respect of the freedom of sliding under torque, and therefore a much improved comfort. The ratio r R could theoretically be increased to 1 and, under this condition, the mechanical loss would be practically 25 zero. However, beyond a certain value, the opposition to the sliding has no longer any harmful effect and, moreover, by increasing the ratio r R to 1, the possibility of an axial sliding of the proposed joint would be reduced considerably. This is why, 4 GB 2 045 397 A 4 according to the applications, and bearing in mind the value of the working angle which is the most frequent and of the required axial sliding length for the tripod element, the ratio r R mould generally be between 1/4 and 3/4.
Other advantages result from this improvement of the slidable tripod joint.
When two slidable tripod joints of known type shown in Fig. 1 are mounted at the ends of a floating transmission shaft, the shaft naturally reaches an end-of-travel contact inside one of the tripod joints and creates axial shocks due to the vibrations of the driving and driven elements. In contrast to this, with one of two joints 1 a having torus raceways, the floating shaft has a tendency to Centre itself axially and to conserve equal clearances at each of its ends and avoids abutment.
Further, when the tripod element becomes axially off Centre, the rollers 10 move toward the Centre of the tripod element, at the same time as the distance h increases, until they abut against the shoulder 19 of the arms 9 which limit the sliding of these rollers in the inner direction. This feature may be employed advantageously for acting as a safety axial retention; the release of the rollers from the end of the petal portions of the tulip element can thus be avoided without any additional retaining means being required, and consequently simply and cheaply. It is sufficient for this purpose that the length of the raceway 7a be such that, when the joint 1 a extends, the rollers 10 abut against the shoulders 9 before reaching the open end of these raceways.
In this case, in order to avoid a sound producing contact of the rollers against the sholders 19 of the tripod element, an elastically yieldable washer of the corrugated Belleville type, or an elastomeric 20 ring, may be interposed between each roller and the associated shoulder. Also, there may be placed in this region a corrugated circlip which may be mounted inside the tulip element after assembly of the tripod element. Such a shock absorbing means has not been shown in the drawings.

Claims (7)

1. A slidable homokinetic tripod jointof the type comprising a tulip element which defines three raceways having a part-circular cross-sectional shape and a tripod element which is adapted to be fixed to a shaft by means of a cylindrical skirt portion from which radially extend three arms on each of which arms a part-spherical roller is freely rotatably and slidably mounted by means of a needle bearing, each roller being received in a raceway and the tripod element being axially free inside the tulip element, wherein the raceway of the tulip element have the shape of a torus, the ratio of the maximum distance 30 between the axis of the tulip element and the axis of the tori defining the raceways to the radius of-said tori being between 1/4 and 3/4.
2. A joint as claimed in claim 1, wherein said ratio is equal to 1/2.
3. A joint as claimed in claim 1 or 2, wherein the needles of the bearing of the rollers have a length exceeding the length of the rollers.
4. A joint as claimed in claim 1, 2 or 3, wherein the length of the raceways is such that upon the extension of the joint, the rollers abut against a shoulder of the corresponding arms so that their sliding travel is inwardly limited before reaching the open end of said raceways.
5. A joint as claimed in c:aim 4, wherein a shock absorbing means is disposed on each shoulder,
6. A slidable homokinetic tripod joint, substantially as hereinbefore described with reference to Figs. 3 to 6 of the accompanying drawings.
7. A transmission having a floating shaft interposed between two slidable homokinetic joints, wherein at least one of the joints is in accordance with any one of the claims 1 to 6.
Printed for Her Majesty's Stationery Office by the Courier Press, Leamington Spa, 1980. Published by the Patent Office.
Southampton Buildings, London, WC2A 1 AY, from which copies may be obtained.
li 11
GB8011076A 1979-04-04 1980-04-02 Slidable homokinetic tripod joints Expired GB2045397B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR7908452A FR2453313A1 (en) 1979-04-04 1979-04-04 TRIPOD SLIDING HOMOCINETIC JOINT AND CORRESPONDING FLOATING SHAFT TRANSMISSION

Publications (2)

Publication Number Publication Date
GB2045397A true GB2045397A (en) 1980-10-29
GB2045397B GB2045397B (en) 1982-11-24

Family

ID=9223934

Family Applications (1)

Application Number Title Priority Date Filing Date
GB8011076A Expired GB2045397B (en) 1979-04-04 1980-04-02 Slidable homokinetic tripod joints

Country Status (9)

Country Link
US (1) US4338796A (en)
JP (1) JPS55135230A (en)
BR (1) BR8002001A (en)
DE (1) DE3013182C2 (en)
ES (1) ES8101214A1 (en)
FR (1) FR2453313A1 (en)
GB (1) GB2045397B (en)
IT (1) IT1128390B (en)
SU (1) SU1075962A3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4512750A (en) * 1982-04-20 1985-04-23 Glaenzer Spicer Transmission joint and in particular an articulated constant-speed joint for a motor vehicle

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2523236B1 (en) * 1982-03-15 1987-03-20 Glaenzer Spicer Sa HOMOCINETIC JOINT WITH AXIAL RETAINED TRIPOD
FR2538057A1 (en) * 1982-12-16 1984-06-22 Ouest Cie SAFETY BELLOW, IN PARTICULAR FOR TRANSMISSION BEFORE MOTOR VEHICLE
DE3641393C1 (en) * 1986-12-04 1988-03-17 Daimler Benz Ag Bellows
DE3832002A1 (en) * 1987-10-01 1989-04-13 Glaenzer Spicer Sa TRIPODE WIDE-ANGLE FIXED JOINT
JPH01142511A (en) * 1987-11-27 1989-06-05 Mitsubishi Cable Ind Ltd Method for assembling connector for multi-fiber optical cable
DE19819615C2 (en) * 1998-05-04 2001-03-29 Gkn Loebro Gmbh Constant velocity sliding joint with disassembly protection
EP1016801B1 (en) * 1998-07-22 2003-09-10 Ntn Corporation Power transmission mechanism

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE7120705U (en) * 1971-12-16 Automobiles Peugeot Universal joint coupling
US1834906A (en) * 1929-02-27 1931-12-01 Cleveland Steel Products Corp Universal joint
FR1175941A (en) * 1957-06-11 1959-04-02 Rech S Ind Soc Et Constant velocity joint
US3125870A (en) * 1960-07-04 1964-03-24 Universal joint for transmission of rotational movements
US3593541A (en) * 1968-04-23 1971-07-20 Toyo Bearing Mfg Co Constant velocity universal joint
FR2050826A6 (en) * 1969-06-26 1971-04-02 Peugeot & Renault Universal drive coupling
US3818721A (en) * 1972-09-15 1974-06-25 Wahlmark Systems Constant velocity universal drive
FR2207554A5 (en) * 1972-11-17 1974-06-14 Glaenzer Spicer Sa
US3877251A (en) * 1973-06-15 1975-04-15 Wahlmark Systems Universal joint system
FR2271444B1 (en) * 1974-05-13 1977-10-28 Glaenzer Spicer Sa
FR2286312A1 (en) * 1974-09-27 1976-04-23 Glaenzer Spicer Sa PERFECTED HOMOCINETIC SLIDING JOINT
GB1536885A (en) * 1976-04-03 1978-12-29 Rolls Royce Motors Ltd Constant velocity ratio shaft coupling
FR2394711A1 (en) * 1977-03-04 1979-01-12 Glaenzer Spicer Sa IMPROVEMENTS TO "TRIPOD" TYPE HOMOCINETIC JOINTS
FR2382614A1 (en) * 1977-03-04 1978-09-29 Glaenzer Spicer Sa WIDE WORKING ANGLE TRIPOD HOMOKINETIC JOINT

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4512750A (en) * 1982-04-20 1985-04-23 Glaenzer Spicer Transmission joint and in particular an articulated constant-speed joint for a motor vehicle

Also Published As

Publication number Publication date
JPS55135230A (en) 1980-10-21
DE3013182C2 (en) 1984-04-19
FR2453313A1 (en) 1980-10-31
US4338796A (en) 1982-07-13
SU1075962A3 (en) 1984-02-23
IT8067521A0 (en) 1980-04-03
GB2045397B (en) 1982-11-24
DE3013182A1 (en) 1980-10-09
IT1128390B (en) 1986-05-28
BR8002001A (en) 1980-11-25
FR2453313B1 (en) 1982-10-29
JPS6258403B2 (en) 1987-12-05
ES490127A0 (en) 1980-12-01
ES8101214A1 (en) 1980-12-01

Similar Documents

Publication Publication Date Title
CA1097935A (en) Telescoping universal joints
US3613396A (en) Universal joint
US5224899A (en) Constant velocity universal joint inner member with three arms each arm having a roller assembly with an outer roller constrained against tilting in the groove
US4773890A (en) Slidable-type homokinetic (universal) tripod joint
US4257243A (en) Homokinetic double joint for wide bending angles
US3106077A (en) Universal joint
GB2195167A (en) Universal joints
GB2115520A (en) Universal joints
US4689035A (en) Homokinetic very freely sliding joint in particular for operating at high speed
US4178778A (en) Homokinetic joint of the tripod type
GB2115522A (en) Universal joints
US4338796A (en) Slidable homokinetic tripod joint and a corresponding transmission having a floating shaft
US3017756A (en) Universal joint
GB2037943A (en) Shaft assembly with homokinetic joints
CA1125330A (en) Sealing arrangement for a universal joint
US3204429A (en) Centering device
GB2091381A (en) Telescopic coupling employing rollers and application thereof
GB2052016A (en) Roll drive shaft comprising a universal joint
US3359757A (en) Universal joint
US4275799A (en) Wheel hub and homokinetic joint assembly
KR20020013754A (en) Tripod type constant velocity universal joint
US3008311A (en) Universal joint
GB2089471A (en) Universal joint
US2255762A (en) Constant velocity universal joint
US5522771A (en) Axially fixed transmission joint

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee

Effective date: 19940402