FR3112537A1 - Dispositif et procédé de production hybride de dihydrogène de synthèse et/ou de méthane de synthèse - Google Patents
Dispositif et procédé de production hybride de dihydrogène de synthèse et/ou de méthane de synthèse Download PDFInfo
- Publication number
- FR3112537A1 FR3112537A1 FR2008307A FR2008307A FR3112537A1 FR 3112537 A1 FR3112537 A1 FR 3112537A1 FR 2008307 A FR2008307 A FR 2008307A FR 2008307 A FR2008307 A FR 2008307A FR 3112537 A1 FR3112537 A1 FR 3112537A1
- Authority
- FR
- France
- Prior art keywords
- reactor
- methane
- dihydrogen
- configuration
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims abstract description 182
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 106
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 83
- 238000000034 method Methods 0.000 title claims abstract description 40
- 238000006243 chemical reaction Methods 0.000 claims abstract description 188
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 67
- 230000003197 catalytic effect Effects 0.000 claims abstract description 36
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 14
- 238000003786 synthesis reaction Methods 0.000 claims abstract description 11
- 230000005540 biological transmission Effects 0.000 claims abstract description 5
- 239000003054 catalyst Substances 0.000 claims description 45
- 230000008569 process Effects 0.000 claims description 24
- 238000007906 compression Methods 0.000 claims description 8
- 230000006835 compression Effects 0.000 claims description 8
- 230000001588 bifunctional effect Effects 0.000 claims description 4
- 239000007789 gas Substances 0.000 description 70
- 229910052739 hydrogen Inorganic materials 0.000 description 57
- 239000001257 hydrogen Substances 0.000 description 54
- 239000000047 product Substances 0.000 description 16
- 238000000926 separation method Methods 0.000 description 16
- 238000002309 gasification Methods 0.000 description 15
- 239000000203 mixture Substances 0.000 description 14
- 229910002091 carbon monoxide Inorganic materials 0.000 description 12
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 11
- 239000002028 Biomass Substances 0.000 description 10
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 10
- 238000001816 cooling Methods 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- 239000007788 liquid Substances 0.000 description 8
- 238000013459 approach Methods 0.000 description 7
- 238000011144 upstream manufacturing Methods 0.000 description 7
- 239000002699 waste material Substances 0.000 description 7
- 150000002431 hydrogen Chemical class 0.000 description 6
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 5
- 229910002092 carbon dioxide Inorganic materials 0.000 description 5
- 239000001569 carbon dioxide Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000008030 elimination Effects 0.000 description 5
- 238000003379 elimination reaction Methods 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 239000003345 natural gas Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 238000009835 boiling Methods 0.000 description 4
- 239000011651 chromium Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 239000003245 coal Substances 0.000 description 3
- 239000000571 coke Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- 230000009257 reactivity Effects 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 238000010079 rubber tapping Methods 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000011269 tar Substances 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- -1 biomethane Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 230000009849 deactivation Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000005868 electrolysis reaction Methods 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 238000005984 hydrogenation reaction Methods 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 238000006386 neutralization reaction Methods 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 229910017390 Au—Fe Inorganic materials 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910017773 Cu-Zn-Al Inorganic materials 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 239000002551 biofuel Substances 0.000 description 1
- 230000000035 biogenic effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- UBAZGMLMVVQSCD-UHFFFAOYSA-N carbon dioxide;molecular oxygen Chemical compound O=O.O=C=O UBAZGMLMVVQSCD-UHFFFAOYSA-N 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000013626 chemical specie Substances 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000012809 cooling fluid Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005243 fluidization Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 229910001872 inorganic gas Inorganic materials 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 230000003134 recirculating effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 150000003464 sulfur compounds Chemical group 0.000 description 1
- 231100000167 toxic agent Toxicity 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K3/00—Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
- C10K3/02—Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
- C10K3/04—Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment reducing the carbon monoxide content, e.g. water-gas shift [WGS]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/18—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
- B01J8/1809—Controlling processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/18—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
- B01J8/24—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/06—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
- C01B3/12—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
- C01B3/16—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide using catalysts
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C1/00—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
- C07C1/02—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
- C07C1/04—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
- C07C1/0405—Apparatus
- C07C1/041—Reactors
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L3/00—Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
- C10L3/06—Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
- C10L3/08—Production of synthetic natural gas
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/0405—Purification by membrane separation
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/0415—Purification by absorption in liquids
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/042—Purification by adsorption on solids
- C01B2203/043—Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/046—Purification by cryogenic separation
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/0465—Composition of the impurity
- C01B2203/0475—Composition of the impurity the impurity being carbon dioxide
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/06—Integration with other chemical processes
- C01B2203/062—Hydrocarbon production, e.g. Fischer-Tropsch process
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/16—Controlling the process
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2521/00—Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
- C07C2521/02—Boron or aluminium; Oxides or hydroxides thereof
- C07C2521/04—Alumina
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2523/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
- C07C2523/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
- C07C2523/74—Iron group metals
- C07C2523/755—Nickel
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2290/00—Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
- C10L2290/06—Heat exchange, direct or indirect
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2290/00—Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
- C10L2290/10—Recycling of a stream within the process or apparatus to reuse elsewhere therein
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2290/00—Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
- C10L2290/46—Compressors or pumps
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Inorganic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
TITRE DE L’INVENTION : DISPOSITIF ET PROCÉDÉ DE PRODUCTION HYBRIDE DE DIHYDROGÈNE DE SYNTHÈSE ET/OU DE MÉTHANE DE SYNTHÈSE Le dispositif (100) de production hybride de dihydrogène de synthèse et/ou de méthane de synthèse, comporte :- une entrée (105) pour un flux de gaz de synthèse (dit « syngas ») comportant au moins du CO et préférentiellement au moins du CO et du H2,- un réacteur (110) de conversion catalytique, configuré pour opérer selon l’une des deux configurations alternatives suivantes :- une première configuration, dans laquelle les conditions opératoires du réacteur favorisent la réalisation d’une réaction de Sabatier, de manière à produire un gaz de sortie comportant principalement du méthane, - une deuxième configuration, dans laquelle les conditions opératoires du réacteur favorisent la réalisation d’une réaction du gaz à l’eau, de manière à produire un gaz de sortie comportant principalement du dihydrogène,- une sortie (115) pour un flux de dihydrogène de synthèse et/ou de méthane de synthèse et- un système (120) de commande comportant un moyen (121) de sélection d’une configuration d’opération du réacteur et un moyen (122) d’émission d’une commande représentative de la configuration sélectionnée, le réacteur étant configuré pour opérer selon une configuration donnée en fonction de la commande émise par le moyen d’émission. Figure pour l’abrégé : Figure 1
Description
Domaine technique de l’invention
La présente invention vise un dispositif de production hybride de dihydrogène de synthèse et/ou de gaz naturel de synthèse, ici appelé également méthane de synthèse, et un procédé de production hybride de dihydrogène de synthèse et/ou de méthane de synthèse. Elle s’applique, notamment, au domaine de la valorisation des déchets et de la biomasse. Cette invention peut également être appliquée à un gaz de synthèse issu de conversion de charbon ou toutes autres matières hydrocarbonées ou tout gaz contenant au moins H2et CO.
Etat de la technique
Dans la lutte contre le changement climatique et la baisse des émissions de gaz à effet de serre, la production d’énergie à partir de biomasse et de déchets ou d’un gaz de synthèse issu de conversion de charbon ou toutes autres matières hydrocarbonées ou tout gaz contenant au moins H2et CO. est une alternative incontournable.
Neutres ou partiellement neutres (pour les déchets qui n’ont souvent pas une part biogénique à 100% car on y retrouve très généralement des plastiques par exemple) en carbone, ces solutions permettent de produire de nombreux vecteurs énergétiques (électricité, chaleur, biocarburants liquides, produits chimiques, biométhane, hydrogène…) en s’intégrant dans une approche d’économie circulaire. De faible (2 MWth) à forte capacité (>100 MWth), ces procédés peuvent également apporter des solutions délocalisées de valorisation des déchets.
Le biométhane et le bio-hydrogène (ci-après alternativement « bio-hydrogène » ou « hydrogène » ou dihydrogène) sont appelés à jouer un rôle majeur dans le mix énergétique mondial, le biométhane se substituant au gaz naturel, et le bio hydrogène remplaçant l’hydrogène produit majoritairement aujourd’hui par reformage du gaz naturel. De plus, l’émergence attendue de moyens de mobilité utilisant ces deux vecteurs énergétiques pourrait entrainer une hausse significative de la demande. À ce jour, le marché du biométhane est clairement établi. En revanche, la demande en bio-hydrogène dans les années à venir est incertaine car dépendante de nombreux éléments, dont la création de réseaux de distribution et le développement par exemple de la mobilité hydrogène.
De nombreux procédés et systèmes ont été développés pour produire indépendamment soit du méthane ou de l’hydrogène à partir de matières carbonées. Toutefois, aucun de ces systèmes ne permet :
- d’adapter sa production (biométhane ou bio hydrogène) en fonction des besoins du marché, et donc favoriser l’implantation de ces usines de production qui auront l’assurance de pouvoir s’adapter avec réactivité,
- -de produire majoritairement du biométhane tout en produisant ponctuellement de l’hydrogène pour alimenter les petites stations hydrogène,
-de produire majoritairement de l’hydrogène et de produire ponctuellement du biométhane au gré des fluctuations de la demande en hydrogène et
- de rapidement basculer d’une production de méthane vers une production d’hydrogène et inversement.
- d’adapter sa production (biométhane ou bio hydrogène) en fonction des besoins du marché, et donc favoriser l’implantation de ces usines de production qui auront l’assurance de pouvoir s’adapter avec réactivité,
- -de produire majoritairement du biométhane tout en produisant ponctuellement de l’hydrogène pour alimenter les petites stations hydrogène,
-de produire majoritairement de l’hydrogène et de produire ponctuellement du biométhane au gré des fluctuations de la demande en hydrogène et
- de rapidement basculer d’une production de méthane vers une production d’hydrogène et inversement.
La méthanation consiste à convertir le monoxyde ou le dioxyde de carbone en présence d'hydrogène et d'un catalyseur ou d’une souche biologique pour produire du méthane. Elle est régie par les réactions compétitives d'hydrogénation suivantes :
[Formule 1]
Dans les conditions généralement utilisées pour produire du SNG (pour « Synthesis Natural Gas », traduit par gaz naturel de synthèse) à partir du syngas issu de gazéification, la réaction de méthanation du CO (R2) est très largement favorisée du fait le plus souvent de la sous-stœchiométrie en hydrogène.
La réaction de méthanation catalytique est une réaction fortement exothermique avec diminution du nombre de moles ; conformément au principe de Le Chatelier, la réaction est favorisée par la pression et défavorisée par la température.
La production de méthane par hydrogénation du monoxyde de carbone est maximale pour un gaz de composition proche de la composition stœchiométrique, c’est à dire dont le rapport H2/CO est proche de 3. Le syngas produit par gazéification à la vapeur, en particulier de biomasse, est caractérisé par un rapport H2/CO plus faible, de l’ordre de 1,5 à 2. Aussi, pour maximiser la production de méthane, ce rapport doit être ajusté en produisant de l’hydrogène par réaction entre le monoxyde de carbone et l’eau par la réaction de Water Gas Shift (R1), dite « WGS » et traduite par « réaction du gaz à l’eau » :
[Formule 2]
La réaction de WGS peut être réalisée dans un réacteur spécifique placé en amont de la méthanation. Cependant dans le cas de certains procédés, par exemple en lit fluidisé, les deux réactions de méthanation et de WGS peuvent être effectuées au sein du même réacteur ; la vapeur nécessaire pour la réaction de WGS est mélangée au gaz de synthèse ou directement injectée dans le réacteur.
A des températures inférieures à 170°C, le nickel (constituant du catalyseur ou présent dans le matériau constituant les parois du réacteur) est susceptible de réagir avec le monoxyde de carbone pour former du Tétra-carbonyle de nickel (Ni(CO)4), composé très fortement toxique. C’est pourquoi il est indispensable que toutes les parties du réacteur soient toujours à une température supérieure à 170°C et de préférence à une température supérieure à 230°C.
La chaleur dégagée lors de la conversion du CO est d’environ 2,7 kWh lors de la production de 1 Nm3de méthane. Le contrôle de la température du réacteur, et donc l’élimination de la chaleur produite par la réaction, est un des points clés pour minimiser la désactivation du catalyseur (frittage, …) et maximiser les conversions en méthane. Si la température du réacteur augmente, la production en méthane diminue fortement.
La composition du SNG brut en sortie de réacteur est intimement liée aux conditions de fonctionnement du réacteur (pression, température, nature adiabatique ou isotherme, stœchiométrie, catalyseur, etc.) qui gouvernent les équilibres et les cinétiques chimiques des réactions R1, R2 et R3. Ces réactions forment globalement de l’eau et sa séparation est par conséquent requise. Concernant les autres espèces (CO, CO2et H2), leurs teneurs respectives dépendent du mode de fonctionnement du réacteur (adiabatique ou isotherme) et d’autre part de la température et/ou de la pression. Une pression élevée et une faible température vont réduire considérablement les teneurs de CO et H2. Lorsque l’opération est réalisée en réacteur « adiabatique », une succession d’étapes est par ailleurs nécessaire pour atteindre une qualité de conversion équivalente au réacteur isotherme. En tout état de cause, la composition du gaz produit est généralement incompatible vis-à-vis des spécifications d’injection dans les réseaux de gaz naturel, et des étapes de mise aux spécifications (« upgrading », en anglais) sont nécessaires pour éliminer l’eau, le CO2et/ou le H2résiduel. Ainsi, le mode opératoire constitue un verrou pour la simplification de la chaîne des procédés.
Plusieurs approches technologiques sont possibles pour la maîtrise thermique et réactionnelle d’un système de production de SNG :
Approche n°1 : Réacteur limité par la cinétique
Dans le cas du réacteur à lit fixe adiabatique (c'est-à-dire sans refroidissement interne), la chaleur de réaction entraîne une augmentation de la température du milieu réactionnel le long du réacteur avec l’avancement de la conversion. En limitant la taille de l’équipement, la conversion est aussi limitée et le mélange réactionnel quitte le réacteur avant d’atteindre l’équilibre. La température est ainsi maintenue en-deçà des limites usuelles pour les catalyseurs. Après refroidissement, le mélange est ensuite injecté dans un second réacteur, etc… Un procédé industriel basé sur ce principe, prend ainsi la forme d’une succession de réacteurs avec des refroidissements intermédiaires entre chaque étage jusqu’à atteindre une conversion conforme aux attentes.
Les principaux désavantages de cette solution sont :
- un fonctionnement multi-étagé de réacteurs et d’échangeurs (impact sur le coût en capital et l’encombrement) ;
- un fonctionnement à haute pression (impact sur le coût d’opération) ;
- un risque de dégradation prématurée du catalyseur par frittage (pics de température).
- un fonctionnement multi-étagé de réacteurs et d’échangeurs (impact sur le coût en capital et l’encombrement) ;
- un fonctionnement à haute pression (impact sur le coût d’opération) ;
- un risque de dégradation prématurée du catalyseur par frittage (pics de température).
Approche n°2 : Réacteur équilibré
Lorsque la quantité de catalyseur présente dans le réacteur est suffisante, la réaction est limitée par l’équilibre thermodynamique. La température induite peut cependant dépasser la température maximale admissible du catalyseur.
Diluer le mélange réactionnel avec un gaz tel que de la vapeur d’eau, du CO2, ou un ballast thermique permet de limiter la température. Une méthode consiste par exemple à recycler du gaz humide, refroidi autour de 250°C, issu du premier réacteur, vers son entrée. Pratiquement, les procédés industriels mettant en œuvre des réacteurs à l’équilibre sont constitués d’un agencement de plusieurs réacteurs avec recyclage d’une partie du gaz pour certains d’entre eux.
Ce type de système de méthanation requiert souvent un ajustement préalable du ratio H2/CO à 3 par WGS en amont pour éviter par exemple le dépôt de coke. Moyennant 3 ou 4 étages de conversion à haute pression (souvent supérieure à 20 bars), l’atteinte des spécifications d’injection peut être assurée après mise aux spécifications.
Approche n°3 : Réacteur refroidi par les parois
L’évacuation de la chaleur de réaction par les parois du réacteur, elles-mêmes refroidies par un fluide de refroidissement, est une technique classique de contrôle de la température des réacteurs dans le cas de réactions exothermiques.
En cas de forte exothermicité, les surfaces d’échanges requises sont parfois très importantes. Dans le cas de réacteur à lit fixe refroidi, afin de maximiser le rapport surfaces d’échanges/volume, le réacteur prend généralement la forme d’un réacteur multitubulaire, le catalyseur étant disposé à l’intérieur des tubes, dit « TWR » (pour « Throughwall Cooled Reactor », traduit par réacteur refroidi à travers les parois). Le liquide de refroidissement peut être de l’eau, un liquide organique ou un mélange de liquides organiques. Le contrôle de la température de sortie est facile et peut par exemple être assuré par l’ébullition du liquide de refroidissement (US 2662911, US 2740803). Selon une variante, le catalyseur est directement imprégné aux parois des tubes refroidis pour maximiser les échanges thermiques.
Une autre forme de réacteur refroidi par les parois consiste non pas à disposer le catalyseur dans les tubes, mais au contraire à intégrer un faisceau dense de tubes refroidis au sein d’un lit catalytique (US4636365, US6958153, US4339413).
Même si globalement le réacteur peut être considéré isotherme, les risques de formation de points chauds au sein de la couche catalytique ne sont cependant pas à exclure du fait des transferts thermiques limités.
Comme pour la technologie de réacteur équilibré ou de réacteur limité en température, une étape préalable de WGS est généralement requise dans ce type de technologie pour éviter la désactivation du catalyseur par dépôt de coke.
Lors de la méthanation d’un syngas de gazéification, une pression importante (P > 20 bar) est nécessaire pour s’affranchir de l’étape de séparation du H2.
Approche n°4 : Le « Boiling Water Reactor » (dit « BWR », pour Réacteur à eau bouillante).
Le concept BWR récemment adapté pour la méthanation du CO2est probablement applicable à la méthanation d’un syngas de gazéification moyennant un pré-WGS. Il se base sur un réacteur tubulaire double passes refroidi par les parois. Dans ce réacteur, plusieurs tubes contenant le catalyseur sont dédiés à une première passe permettant de convertir le gaz de synthèse en méthane. En sortie directe de cette passe, une partie du SNG est recomprimée avant d’être mélangée au flux de syngas d’alimentation. L’autre partie du SNG de première passe est refroidie pour condenser l’eau formée par les réactions. Ensuite, la méthanation est achevée dans une seconde passe au travers d’autres tubes disposés dans le même réacteur. L’avantage principal de prévoir une seconde passe est de conserver un SNG de qualité relativement constante même si le catalyseur de première passe est dégradé progressivement par déplacement de front.
Approche n°5 : Réacteur à lit fluidisé
La mise en œuvre d’un réacteur à lit fluidisé est une solution simple et efficace pour limiter la température de réaction. La fluidisation du catalyseur par le mélange réactionnel permet une homogénéisation des températures et donc l’isothermicité de la couche catalytique. L’élimination de la chaleur produite par la réaction s’effectue par l’intermédiaire d’échangeurs immergés au sein de la couche fluidisée avec des coefficients de transfert thermique de 400 à 600 W/K.m2.
Du point de vue réactionnel, et contrairement aux technologies décrites précédemment, la méthanation du syngas en lit fluidisé ne requiert pas systématiquement de pré-WGS. Une co-injection de vapeur avec le syngas permet d’assurer les réactions R2 (méthanation du CO) et R1 (WGS) dans le même dispositif.
Les solutions actuellement proposées pour cette famille technologique ne se distinguent pas entre elles sur l’efficacité de conversion mais principalement sur la méthodologie mise en œuvre pour refroidir le réacteur.
On connaît, par exemple, le procédé de méthanation COMFLUX pour la production de SNG à partir du syngas issu d’un réacteur de gazéification de charbon. Il est basé sur l’utilisation d’un lit fluidisé dans lequel sont disposés des tubes échangeurs verticaux suspendus depuis le ciel de la zone de désengagement (US4539016). Le refroidissement est assuré par l’ébullition d’un liquide, lequel peut être de l’eau.
On connaît également le lit fluidisé de méthanation PSI (EP1568674A1, WO2009/007061A1). Cette invention met en œuvre un système de refroidissement constitué, de façon similaire au dispositif COMFLUX, par un faisceau de tubes disposés dans le lit. Les brevets de PSI revendiquent un procédé pour la production de SNG à partir de la gazéification de biomasse. Ce procédé revendique une solution de méthanation en lit fluidisé sans traitement préalable du syngas sur des lits d’adsorption constitués de charbon actif.
On connaît également les réacteurs à lit fluidisé de méthanation ENGIE. Ces technologies proposent essentiellement des solutions techniques de maîtrise de l’isothermicité du réacteur (par vapeur surchauffée ou par injection d’eau liquide dans le réacteur par exemple).
On connaît également des procédés de méthanation et de méthanolisation développés par ENGIE ayant pour objet la valorisation d’un flux issu d’éléctrolyse ou de co-électrolyse de l’eau.
Enfin, on connaît également des procédés de production de gaz de synthèse développés par ENGIE, tel les demandes de brevet français n°1650494, n°1650498 et n°1650497, dont une partie des produits est recirculée pour refroidir la réaction de méthanation se produisant dans un réacteur.
Généralités sur la réaction Water-Gas Shift
La réaction WGS est réversible et faiblement exothermique, et consiste à convertir CO et H2O en H2et CO2:
[Formule 3]
Bien que l’équilibre thermodynamique soit favorisé par les basses températures, la cinétique de cette réaction est néanmoins limitée dans ces conditions.
Ainsi, les hautes températures (350-600°C) peuvent être mises en œuvre pour accélérer la cinétique de cette réaction, alors que les basses températures (190-250°C) favorisent la production d’hydrogène mais entrainent une cinétique réactionnelle plus lente et par conséquent un volume de catalyseur très important. Classiquement, des vitesses spatiales de très élevées doivent être mises en œuvre. Le nombre de moles étant constant au cours de la réaction, la pression n’exerce aucun rôle sur l’équilibre thermodynamique de cette réaction. Une présence d’eau sur-stœchiométrique favorise quant à elle la réaction.
Industriellement, la plupart des solutions mettent en œuvre une série de réacteurs catalytiques adiabatiques fonctionnant en ordre décroissant de température. Au-delà de l’intérêt pour la conversion, cette série de réacteurs permet également de limiter l’élévation de température du catalyseur liée à l’exothermicité de la réaction. Un échangeur de chaleur est placé entre chaque réacteur pour refroidir le mélange gazeux avant injection dans le réacteur suivant. Généralement, les catalyseurs de WGS hautes températures sont à base de fer et de chrome, et sont mis en œuvre entre 310 et 450°C, et sous une pression de 25 à 35 bar. Le chrome permet de limiter le frittage du catalyseur, bien qu’un remplacement tous les 2-5 ans soit nécessaire. Les catalyseurs à base de cérium montrent également des performances intéressantes pour la conversion WGS à haute température. Les catalyseurs de WGS basses températures sont principalement composés de cuivre/zinc déposés sur un oxyde d’aluminium.
Certains procédés connus, tels que ceux décrits dans la demande de brevet WO 2019/234208, visent une série de réacteurs adiabatiques. Le syngas entre dans le réacteur catalytique WGS hautes températures. En sortie, le gaz est refroidi et divisé en deux flux alimentant chacun un réacteur catalytique WGS basses températures.
Dans le brevet de Johnson Matthey (US 2014/0264178), un syngas contenant au moins un composé soufré et de la vapeur entre dans un réacteur-échangeur et passe dans un distributeur puis dans des tubes verticaux immergés dans un lit fixe de catalyseurs (Co/Mo sulfuré) favorisant la réaction WGS. Du syngas circulant en dehors des tubes en co-courant est converti en hydrogène par la réaction WGS au contact du catalyseur. Dans le cas d’un syngas à faible ratio H2/CO, de la vapeur produite par un boiler est ajoutée au syngas. Les flux de syngas dans les tubes et en dehors des tubes circulent à contre-courant, contrairement au cas précédent.
Dans un brevet de 2018 (GB2556665), Linde propose une méthode permettant de produire de l’hydrogène à partir de gazéification de biomasse. La biomasse est gazéifiée à l’air, à pression atmosphérique jusqu’à 600°C, le syngas est refroidi puis introduit dans un réacteur WGS, les produits de cette réaction sont refroidis puis introduits dans un appareil de séparation et compression électrochimique (7-14 bar) permettant de séparer l’hydrogène sortant à 150-350 bar.
Une demande de brevet déposée en 2009 par Haldor Topsoe (US7618558) décrit une chaine d’épuration du syngas issu de gazéification.
Une demande de brevet déposée en 2017 par Haldor Topsoe (WO 2017/186526) permet d’enrichir en hydrogène un syngas composé au moins à 25%, 40% ou 70% sur base sèche de CO et de H2.
Les réacteurs membranaires sont particulièrement efficaces pour la réaction de WGS. Les membranes intégrées au réacteur permettent d’extraire continuellement l’hydrogène produit par la réaction déplaçant ainsi l’équilibre vers la conversion de CO. Ainsi, des taux de conversion très élevés peuvent être atteints. Même s’il est très performant pour la production d’hydrogène, de par son principe de fonctionnement, ce réacteur peut difficilement permettre de produire du méthane de synthèse car le H2du syngaz ou celui produit par WGS serait séparé continuellement dès sa formation. Un exemple de ce type de procédé en application gazéification de la biomasse est donné sur le brevet US201783721 de l’Université Nationale de Singapour.
Des solutions technologiques variées généralement dédiées soit à la production de méthane ou bien à celle d’hydrogène sont nombreuses. Toutefois, aucune des solutions évoquées ci-dessus ne répondent aux problèmes techniques suivants :
- adapter sa production (biométhane ou bio hydrogène) en fonction des besoins du marché, et donc favoriser l’implantation des usines de production qui auront l’assurance de pouvoir s’adapter avec réactivité,
- produire majoritairement du biométhane tout en produisant ponctuellement de l’hydrogène pour alimenter les petites stations hydrogène appelées à voir le jour dans un premier temps,
- produire majoritairement de l’hydrogène (usage industriel ou mobilité) et produire ponctuellement du biométhane (lorsque la consommation de l’industriel est réduite (arrêt technique, arrêt d’activité) ou si les besoins hydrogène mobilité fluctuent dans le temps) et
- basculer rapidement d’une production de méthane vers une production d’hydrogène et inversement.
- adapter sa production (biométhane ou bio hydrogène) en fonction des besoins du marché, et donc favoriser l’implantation des usines de production qui auront l’assurance de pouvoir s’adapter avec réactivité,
- produire majoritairement du biométhane tout en produisant ponctuellement de l’hydrogène pour alimenter les petites stations hydrogène appelées à voir le jour dans un premier temps,
- produire majoritairement de l’hydrogène (usage industriel ou mobilité) et produire ponctuellement du biométhane (lorsque la consommation de l’industriel est réduite (arrêt technique, arrêt d’activité) ou si les besoins hydrogène mobilité fluctuent dans le temps) et
- basculer rapidement d’une production de méthane vers une production d’hydrogène et inversement.
Objet de l’invention
La présente invention vise à remédier à tout ou partie de ces inconvénients.
À cet effet, selon un premier aspect, la présente invention vise un dispositif de production hybride de dihydrogène de synthèse et/ou de méthane de synthèse, qui comporte :
- une entrée pour un flux de gaz de synthèse (dit « syngas ») comportant au moins du CO (pour « monoxyde de carbone ») et préférentiellement au moins du H2,
- un réacteur de conversion catalytique, configuré pour opérer selon l’une des deux configurations alternatives suivantes :
- une première configuration, dans laquelle les conditions opératoires du réacteur favorisent la réalisation d’une réaction de Sabatier, de manière à produire un gaz de sortie comportant principalement du méthane ou
- une deuxième configuration, dans laquelle les conditions opératoires du réacteur favorisent la réalisation d’une réaction du gaz à l’eau, de manière à produire un gaz de sortie comportant principalement du dihydrogène,
- une sortie pour un flux de dihydrogène de synthèse et/ou de méthane de synthèse et
- un système de commande comportant un moyen de sélection d’une configuration d’opération du réacteur et un moyen d’émission d’une commande représentative de la configuration sélectionnée, le réacteur étant configuré pour opérer selon une configuration donnée en fonction de la commande émise par le moyen d’émission.
- une entrée pour un flux de gaz de synthèse (dit « syngas ») comportant au moins du CO (pour « monoxyde de carbone ») et préférentiellement au moins du H2,
- un réacteur de conversion catalytique, configuré pour opérer selon l’une des deux configurations alternatives suivantes :
- une première configuration, dans laquelle les conditions opératoires du réacteur favorisent la réalisation d’une réaction de Sabatier, de manière à produire un gaz de sortie comportant principalement du méthane ou
- une deuxième configuration, dans laquelle les conditions opératoires du réacteur favorisent la réalisation d’une réaction du gaz à l’eau, de manière à produire un gaz de sortie comportant principalement du dihydrogène,
- une sortie pour un flux de dihydrogène de synthèse et/ou de méthane de synthèse et
- un système de commande comportant un moyen de sélection d’une configuration d’opération du réacteur et un moyen d’émission d’une commande représentative de la configuration sélectionnée, le réacteur étant configuré pour opérer selon une configuration donnée en fonction de la commande émise par le moyen d’émission.
Ces dispositions permettent :
- d’adapter la production (biométhane et/ou bio hydrogène) en fonction des besoins du marché, et donc favoriser l’implantation de ces usines de production qui auront l’assurance de pouvoir s’adapter avec réactivité,
- de produire majoritairement du biométhane tout en produisant ponctuellement de l’hydrogène pour alimenter les petites stations hydrogène appelées à voir le jour dans un premier temps,
- de produire majoritairement de l’hydrogène (usage industriel ou mobilité) et de produire ponctuellement du biométhane (lorsque la consommation de l’industriel est réduite (arrêt technique, arrêt d’activité) ou si les besoins hydrogène mobilité fluctuent dans le temps) et
- de basculer rapidement d’une production de méthane vers une production d’hydrogène et inversement.
- d’adapter la production (biométhane et/ou bio hydrogène) en fonction des besoins du marché, et donc favoriser l’implantation de ces usines de production qui auront l’assurance de pouvoir s’adapter avec réactivité,
- de produire majoritairement du biométhane tout en produisant ponctuellement de l’hydrogène pour alimenter les petites stations hydrogène appelées à voir le jour dans un premier temps,
- de produire majoritairement de l’hydrogène (usage industriel ou mobilité) et de produire ponctuellement du biométhane (lorsque la consommation de l’industriel est réduite (arrêt technique, arrêt d’activité) ou si les besoins hydrogène mobilité fluctuent dans le temps) et
- de basculer rapidement d’une production de méthane vers une production d’hydrogène et inversement.
Ces dispositions permettent la réalisation d’un dispositif flexible, capable de produire de l’hydrogène ou du méthane avec une installation unique et sans changer la chaine de procédé mise en œuvre pour la production de méthane.
Dans des modes de réalisation, le réacteur de conversion comporte un lit catalytique comportant deux catalyseurs distincts, un premier catalyseur étant configuré pour favoriser une réaction de Sabatier à basse température et un deuxième catalyseur étant configuré pour favoriser une réaction du gaz à l’eau à haute température.
Dans des modes de réalisation, le réacteur de conversion comporte un lit catalytique comportant un catalyseur bifonctionnel, configuré pour favoriser une réaction de Sabatier à basse température dans la première configuration du réacteur et pour favoriser une réaction du gaz à l’eau à haute température dans la deuxième configuration du réacteur.
Dans des modes de réalisation, le réacteur de conversion comporte un lit catalytique comportant un catalyseur unique, configuré pour favoriser une réaction de Sabatier à basse température dans la première configuration du réacteur et pour favoriser une réaction du gaz à l’eau à haute température dans la deuxième configuration du réacteur. Dans des modes de réalisation, le dispositif objet de la présente invention comporte un injecteur de vapeur dans le flux de syngas ou directement dans le réacteur et/ou un injecteur d’eau directement dans le réacteur catalytique, une quantité d’eau et/ou de vapeur injectée par au moins un injecteur étant réalisée en fonction de la commande émise par le système de commande.
Ces modes de réalisation permettent de réaliser une réaction de WGS directement dans le réacteur de conversion soit pour refroidir le réacteur et équilibrer le ratio H2/CO vers la stœchiométrie de méthanation du CO lorsque ce réacteur est en configuration de production de méthane, soit pour produire du dihydrogène par conversion du CO lorsque le réacteur est en configuration de production de dihydrogène.
Dans des modes de réalisation, le dispositif objet de la présente invention comporte, en aval du réacteur de conversion, un séparateur d’eau configuré pour fournir l’eau séparée à une évacuation ou une valorisation d’eau (exemple production de vapeur) ou à un injecteur pour alimenter le réacteur de conversion.
Ces modes de réalisation permettent de recycler de l’eau en sortie du réacteur de conversion vers l’entrée dudit réacteur de conversion.
Dans des modes de réalisation, le dispositif objet de la présente invention comporte un moyen de compression du syngas à une pression déterminée, la pression de sortie du moyen de compression étant déterminée en fonction de la commande émise par le système de commande.
Dans des modes de réalisation, le dispositif objet de la présente invention comporte un moyen de détente du syngas à une pression déterminée, la pression de sortie du moyen de détente étant déterminée en fonction de la commande émise par le système de commande.
Ces modes de réalisation permettent un ajustement de la pression en entrée du réacteur de conversion pour maximiser la production du produit correspondant à la configuration opératoire visée du réacteur.
Dans des modes de réalisation, le dispositif objet de la présente invention comporte un échangeur de chaleur immergé dans le réacteur de conversion, ledit échangeur de chaleur étant configuré pour refroidir ou chauffer le réacteur à une température déterminée en fonction de la commande émise par le système de commande.
Ces modes de réalisation permettent un ajustement de la température du réacteur de conversion pour maximiser la production du produit correspondant à la configuration opératoire visée du réacteur.
Dans des modes de réalisation, le dispositif objet de la présente invention comporte un recirculateur d’au moins une partie du gaz de sortie vers l’entrée pour syngas, une quantité de gaz recirculée étant déterminée en fonction de la commande émise par le système de commande.
Ces modes de réalisation permettent de recycler des produits du réacteur de conversion pour augmenter le rendement du dispositif.
Dans des modes de réalisation, le dispositif objet de la présente invention comporte, en aval du réacteur de conversion :
- un sélecteur de sortie pour le méthane relié à un recirculateur de méthane vers l’entrée pour syngas et à une sortie de méthane,
- un sélecteur de sortie pour le dihydrogène relié à un recirculateur de dihydrogène vers l’entrée pour syngas et à une sortie de dihydrogène,
dispositif dans lequel :
- lorsque la commande émise correspond à une configuration du réacteur pour favoriser une réaction du gaz à l’eau, le sélecteur de sortie pour le dihydrogène est configuré pour diriger le dihydrogène vers la sortie de dihydrogène, le sélecteur de sortie de méthane est configuré pour diriger le méthane vers le recirculateur de méthane et
- lorsque la commande émise correspond à une configuration du réacteur pour favoriser une réaction de Sabatier, le sélecteur de sortie pour le dihydrogène est configuré pour diriger le dihydrogène vers le recirculateur de dihydrogène et le sélecteur de sortie pour le méthane est configuré pour diriger le méthane vers la sortie de méthane.
- un sélecteur de sortie pour le méthane relié à un recirculateur de méthane vers l’entrée pour syngas et à une sortie de méthane,
- un sélecteur de sortie pour le dihydrogène relié à un recirculateur de dihydrogène vers l’entrée pour syngas et à une sortie de dihydrogène,
dispositif dans lequel :
- lorsque la commande émise correspond à une configuration du réacteur pour favoriser une réaction du gaz à l’eau, le sélecteur de sortie pour le dihydrogène est configuré pour diriger le dihydrogène vers la sortie de dihydrogène, le sélecteur de sortie de méthane est configuré pour diriger le méthane vers le recirculateur de méthane et
- lorsque la commande émise correspond à une configuration du réacteur pour favoriser une réaction de Sabatier, le sélecteur de sortie pour le dihydrogène est configuré pour diriger le dihydrogène vers le recirculateur de dihydrogène et le sélecteur de sortie pour le méthane est configuré pour diriger le méthane vers la sortie de méthane.
Ces modes de réalisation permettent de réaliser une recirculation sélective en fonction des objectifs de la configuration sélectionnée.
Selon un deuxième aspect, la présente invention vise un procédé de production hybride de dihydrogène de synthèse et/ou de méthane de synthèse, qui comporte :
- une étape de sélection d’une configuration d’opération d’un réacteur de conversion,
- une étape d’émission d’une commande représentative de la configuration sélectionnée,
- une étape de mise en configuration du réacteur de conversion en fonction de la commande émise selon l’une des deux configurations suivantes :
- une première configuration, dans laquelle les conditions opératoires du réacteur favorisent la réalisation d’une réaction de Sabatier, de manière à produire un gaz de sortie comportant principalement du méthane ou
- une deuxième configuration, dans laquelle les conditions opératoires du réacteur favorisent la réalisation d’une réaction du gaz à l’eau, de manière à produire un gaz de sortie comportant principalement du dihydrogène,
- une étape d’entrée d’un flux de gaz de synthèse (dit « syngas ») comportant au moins du CO et préférentiellement du H2,
- une étape de réaction de conversion catalytique selon la configuration sélectionnée et
- une étape de sortie pour un flux de dihydrogène de synthèse et/ou de méthane de synthèse.
- une étape de sélection d’une configuration d’opération d’un réacteur de conversion,
- une étape d’émission d’une commande représentative de la configuration sélectionnée,
- une étape de mise en configuration du réacteur de conversion en fonction de la commande émise selon l’une des deux configurations suivantes :
- une première configuration, dans laquelle les conditions opératoires du réacteur favorisent la réalisation d’une réaction de Sabatier, de manière à produire un gaz de sortie comportant principalement du méthane ou
- une deuxième configuration, dans laquelle les conditions opératoires du réacteur favorisent la réalisation d’une réaction du gaz à l’eau, de manière à produire un gaz de sortie comportant principalement du dihydrogène,
- une étape d’entrée d’un flux de gaz de synthèse (dit « syngas ») comportant au moins du CO et préférentiellement du H2,
- une étape de réaction de conversion catalytique selon la configuration sélectionnée et
- une étape de sortie pour un flux de dihydrogène de synthèse et/ou de méthane de synthèse.
Les buts et avantages du procédé étant identiques à ceux du dispositif objet de la présente invention, ils ne sont pas décrits ici.
Brève description des figures
D’autres avantages, buts et caractéristiques particulières de l’invention ressortiront de la description non limitative qui suit d’au moins un mode de réalisation particulier du dispositif et du procédé objets de la présente invention, en regard des dessins annexés, dans lesquels :
La présente description est donnée à titre non limitatif, chaque caractéristique d’un mode de réalisation pouvant être combinée à toute autre caractéristique de tout autre mode de réalisation de manière avantageuse.
On note dès à présent que les figures ne sont pas à l’échelle.
On note que les termes « méthane de synthèse » désignent, plus généralement, le gaz naturel de synthèse qui peut comporter d’autres espèces chimiques en plus du méthane produit.
On observe, sur la , qui n’est pas à l’échelle, une vue schématique d’un mode de réalisation du dispositif 100 objet de la présente invention. Ce dispositif 100 de production hybride de dihydrogène de synthèse et/ou de méthane de synthèse comporte :
- une entrée 105 pour un flux de gaz de synthèse dit « syngas » comportant au moins du CO et préférentiellement au moins du H2,
- un réacteur 110 de conversion catalytique, configuré pour opérer selon l’une des deux configurations alternatives suivantes :
- une première configuration, dans laquelle les conditions opératoires du réacteur favorisent la réalisation d’une réaction de Sabatier à basse température, de manière à produire un gaz de sortie comportant principalement du méthane ou
- une deuxième configuration, dans laquelle les conditions opératoires du réacteur favorisent la réalisation d’une réaction du gaz à l’eau à haute température, de manière à produire un gaz de sortie comportant principalement du dihydrogène,
- une sortie 115 pour un flux de dihydrogène de synthèse et/ou de méthane de synthèse et
- un système 120 de commande comportant un moyen 121 de sélection d’une configuration d’opération du réacteur et un moyen 122 d’émission d’une commande représentative de la configuration sélectionnée, le réacteur étant configuré pour opérer selon une configuration donnée en fonction de la commande émise par le moyen d’émission.
- une entrée 105 pour un flux de gaz de synthèse dit « syngas » comportant au moins du CO et préférentiellement au moins du H2,
- un réacteur 110 de conversion catalytique, configuré pour opérer selon l’une des deux configurations alternatives suivantes :
- une première configuration, dans laquelle les conditions opératoires du réacteur favorisent la réalisation d’une réaction de Sabatier à basse température, de manière à produire un gaz de sortie comportant principalement du méthane ou
- une deuxième configuration, dans laquelle les conditions opératoires du réacteur favorisent la réalisation d’une réaction du gaz à l’eau à haute température, de manière à produire un gaz de sortie comportant principalement du dihydrogène,
- une sortie 115 pour un flux de dihydrogène de synthèse et/ou de méthane de synthèse et
- un système 120 de commande comportant un moyen 121 de sélection d’une configuration d’opération du réacteur et un moyen 122 d’émission d’une commande représentative de la configuration sélectionnée, le réacteur étant configuré pour opérer selon une configuration donnée en fonction de la commande émise par le moyen d’émission.
L’entrée 105 pour un flux de gaz désigne généralement tout conduit permettant le cheminement du syngas vers une entrée pour syngas (non référencée) du réacteur 110 de conversion. La nature exacte de l’entrée 105 dépend des conditions opératoires déterminées en termes de débit, notamment, et de la nature du syngas à transporter.
Dans un mode de réalisation particulier, tel que celui représenté en , l’entrée 105 est alimentée en syngas par un gazéificateur 505 de déchets, de biomasse et/ou de résidus carbonés. On note que les termes « gazéificateur » et « réacteur de gazéification » sont équivalents ici.
La gazéification correspond à une dégradation thermique de la biomasse ou des déchets ou des résidus carbonés qui subissent successivement un séchage puis une dé-volatilisation de la matière organique pour produire un résidu carboné (le « char »), un gaz de synthèse (appelé « syngas »), et des composés condensables (goudrons). Le résidu carboné peut ensuite être oxydé par l’agent de gazéification (vapeur d’eau, air, oxygène, dioxyde de carbone) pour produire un gaz majoritairement composé de H2et de CO. En fonction de sa nature, cet agent de gazéification pourra également réagir avec les goudrons ou les gaz majoritaires. Ainsi, s’il s’agit de vapeur d’eau (H2O), une réaction de WGS (Water Gas Shift) se produit dans le réacteur 505 de gazéification.
La pression du réacteur 505 de gazéification a peu d’effet sur cette réaction. Par contre, l’équilibre est fortement lié à la température du réacteur et à la composition « initiale » des réactifs. Le syngas obtenu consiste en un mélange de gaz majoritaires (H2, CO, CO2, CH4, Cx), de composés condensables (goudrons), de particules (char, coke, matériau de lit élutrié), et de gaz inorganiques (alcalins, métaux lourds, H2S, HCl, NH3…). Après élimination des impuretés, les gaz majoritaires peuvent être transformés en de nombreux vecteurs énergétiques, dont le biométhane et le bio hydrogène. Pour la production de ces deux composés, le ratio H2/CO dans le syngas est un facteur déterminant. En sortie du réacteur 505 de gazéification, ce ratio n’excède généralement pas 2.
Dans un mode de réalisation particulier, tel que celui représenté en , le dispositif 100 comporte un moyen 510 de refroidissement des produits du gazéificateur 505.
Ces modes de réalisation permettent d’adapter les températures du gaz produit au fonctionnement des équipements du dispositif 100.
Dans un mode de réalisation particulier, tel que celui représenté en , le dispositif 100 comporte un moyen 515 d’élimination des impuretés des produits du gazéificateur 505. Ce moyen 515 d’élimination peut être positionné en amont ou en aval du moyen 510 de refroidissement si le dispositif 100 comporte un tel moyen 510 de refroidissement.
Ces modes de réalisation permettent d’adapter la qualité du gaz produit au fonctionnement des équipements du dispositif 100.
La nature exacte du moyen 515 d’élimination dépend de la nature des impuretés à éliminer. De tels moyens 515 d’élimination sont bien connus de l’Homme du Métier. Par exemple, un tel moyen 515 d’élimination est un « scrubber » (traduit par « absorbeur-neutralisateur »). Un tel scrubber peut mettre en œuvre une neutralisation humide, une neutralisation ou une adsorption à sec selon l’usage déterminé.
Dans des variantes, le dispositif 100 comporte une pluralité de moyens 515 d’élimination en cascade. Dans des variantes, entre deux étages d’élimination d’impuretés, le dispositif 100 comporte un moyen (non représenté) de refroidissement du syngas et/ou un compresseur (non représenté) du syngas.
Dans des variantes, le dispositif 100 comporte un moyen (non représenté) de dépoussiérage du syngas. Un tel moyen de dépoussiérage est par exemple, de type venturi, multi-cyclone ou filtre.
Dans un mode de réalisation particulier, tel que celui représenté en , le dispositif 100 comporte un moyen 145 de compression du syngas à une pression déterminée, la pression de sortie du moyen 145 de compression étant déterminée en fonction de la commande émise par le système 120 de commande.
Ce moyen 145 de compression est, par exemple, un compresseur centrifuge, axial, à palettes, à vis, à lobes, à piston ou de type « scroll ». Ce moyen 145 de compression est configuré, par exemple, pour porter le syngas à une pression comprise entre 1 et 40 bar et préférentiellement entre 1 et 10 bar.
Dans un mode de réalisation particulier, non représenté en , le dispositif 100 comporte un moyen 146 de détente du syngas à une pression déterminée, la pression de sortie du moyen de détente étant déterminée en fonction de la commande émise par le système 120 de commande.
Ce moyen 146 de détente peut être de tout type connu de la Personne du Métier et adapté à l’usage considéré. Dans un mode de réalisation particulier, tel que celui représenté en , le dispositif 100 comporte, en amont de l’entrée du syngas dans le réacteur 110 de conversion, un échangeur 535 thermique. Cet échangeur thermique, qui peut être un échangeur à plaques par exemple, est configuré pour échauffer le syngas à une température compatible avec la configuration particulière du réacteur 110 de conversion.
Préférentiellement, cet échangeur 535 peut permettre d’assurer une température minimale d’entrée du réacteur entre 170 et 230°C et de préférence au-dessus de 200°C pour éviter la formation de tétra-carbonyles de nickel (si catalyseur ou réacteur à base nickel) qui est un poison dans le gaz produit.
Le réacteur 110 de conversion catalytique est, préférentiellement, un réacteur isotherme. Préférentiellement, ce réacteur 110 de conversion est un réacteur isotherme à lit fluidisé. Préférentiellement, ce réacteur 110 de conversion est un réacteur isotherme à lit fluidisé dense. On appelle « réacteur isotherme à lit fluidisé dense un réacteur configuré pour opérer selon une température comprise entre 230°C et 600°C et selon une pression comprise entre 1 et 50 bar. Ce réacteur 110 est configuré pour opérer selon deux configurations, ou régimes, d’équilibres thermodynamiques :
- une première configuration, dans laquelle les conditions opératoires du réacteur favorisent la réalisation d’une réaction de Sabatier à basse température (préférentiellement entre 230°C et 350°C), de manière à produire un gaz de sortie comportant principalement du méthane ou
- une deuxième configuration, dans laquelle les conditions opératoires du réacteur favorisent la réalisation d’une réaction du gaz à l’eau à haute température (préférentiellement entre 350°C et 600°C), de manière à produire un gaz de sortie comportant principalement du dihydrogène. Cette configuration implique des amplitudes opératoires importantes en termes de pression et de température notamment.
- une première configuration, dans laquelle les conditions opératoires du réacteur favorisent la réalisation d’une réaction de Sabatier à basse température (préférentiellement entre 230°C et 350°C), de manière à produire un gaz de sortie comportant principalement du méthane ou
- une deuxième configuration, dans laquelle les conditions opératoires du réacteur favorisent la réalisation d’une réaction du gaz à l’eau à haute température (préférentiellement entre 350°C et 600°C), de manière à produire un gaz de sortie comportant principalement du dihydrogène. Cette configuration implique des amplitudes opératoires importantes en termes de pression et de température notamment.
On note que l’invention n’est pas réduite à l’usage d’un seul réacteur et que celle-ci peut mettre en œuvre une pluralité de réacteurs, de types identiques ou distincts, en parallèle ou en série pour obtenir le produit de réaction visé.
Pour être en mesure de réaliser les deux réactions selon les deux configurations en question, le réacteur 110 met en œuvre un lit 111 catalytique. Un tel lit 111 catalytique peut être formé :
- soit d’un mélange de deux catalyseurs, 112 et 113, distincts configurés pour, chacun, favoriser l’une des deux configurations, chaque catalyseur pouvant mettre en œuvre des métaux différents par exemple,
- soit un catalyseur 114 unique bifonctionnel configuré pour, en fonction d’autres paramètres de réaction (température ou pression par exemple), favoriser l’une ou l’autre des configurations.
- soit d’un mélange de deux catalyseurs, 112 et 113, distincts configurés pour, chacun, favoriser l’une des deux configurations, chaque catalyseur pouvant mettre en œuvre des métaux différents par exemple,
- soit un catalyseur 114 unique bifonctionnel configuré pour, en fonction d’autres paramètres de réaction (température ou pression par exemple), favoriser l’une ou l’autre des configurations.
Dans le cas des catalyseurs distincts :
- le catalyseur favorisant la réaction de Sabatier peut être à base Ni/Al2O3, Ni/Pr/Al2O3, Ruthenium, par exemple et
- le catalyseur favorisant la réaction de WGS peut être à base de Fe2O3/Cr2O3, Au-Fe2O3, Au-CeO2, Au-TiO2, Ru-ZrO2, Rh-CeO2, Pt-CeO2ou Pd-CeO2, par exemple.
- le catalyseur favorisant la réaction de Sabatier peut être à base Ni/Al2O3, Ni/Pr/Al2O3, Ruthenium, par exemple et
- le catalyseur favorisant la réaction de WGS peut être à base de Fe2O3/Cr2O3, Au-Fe2O3, Au-CeO2, Au-TiO2, Ru-ZrO2, Rh-CeO2, Pt-CeO2ou Pd-CeO2, par exemple.
Dans la première configuration, l’objectif du réacteur 110 est de maximiser la production de méthane (CH4) de synthèse. Le syngas peut être converti en biométhane par la réaction catalytique de méthanation du CO, également appelée « réaction de Sabatier ». Cette réaction dont la cinétique est rapide aux températures mises en œuvre, se caractérise par une très forte exothermicité.
Pour maximiser la production de CH4, il convient que H2et CO soient dans un rapport stœchiométrique de 3:1. Ce rapport peut-être obtenu en réalisant une réaction de WGS complémentaire positionnée en amont de 110.
Dans des variantes (non représentées), le dispositif 100 comporte un réacteur de WGS dédié comportant des catalyseurs spécifiques. Un tel catalyseur spécifique est, par exemple, à base de Cu-Zn-Al2O3, Fe2O3/Cr2O3.Dans d’autres variantes, telle que celle représentée en , la réaction de WGS complémentaire est réalisée directement dans le réacteur 110 de conversion.
Quelle que soit la variante retenue, un apport d’eau (vapeur ou liquide) est alors nécessaire.
Dans des modes de réalisation particuliers, tel que celui représenté en , le dispositif 100 comporte un injecteur 125 de vapeur dans le flux de syngas et/ou un injecteur 130 d’eau liquide ou de vapeur dans le réacteur catalytique, une quantité d’eau et/ou de vapeur injectée par au moins un injecteur étant réalisée en fonction de la commande émise par le système 120 de commande.
L’injecteur 125 de vapeur est, par exemple, un piquage dans la conduite d’entrée 105 associé à un moyen (non représenté) de production pour porter de l’eau à une température correspondant à l’état de vapeur aux conditions opératoires de l’entrée 105 pour syngas.
L’injecteur 130 d’eau dans le réacteur 110 de conversion est, par exemple, un piquage d’alimentation en eau liquide ou vapeur dans le réacteur 110 de conversion. Ce piquage peut être alimenté en eau externe ou bien en eau recyclée au sein du dispositif 100.
Dans des modes de réalisation particuliers, tel que celui représenté en , le dispositif 100 comporte, en aval du réacteur 110 de conversion, un séparateur 135 d’eau configuré pour fournir l’eau séparée à une évacuation 140 d’eau ou à un injecteur, 125 et/ou 130. Le séparateur 135 peut être de type condenseur, par exemple. Le séparateur 135 d’eau est configuré pour déshydrater le flux produit en sortie du réacteur 110 de conversion, par refroidissement par exemple.
Dans des modes de réalisation particuliers, tel que celui représenté en , le dispositif 100 comporte, en amont du séparateur 135 d’eau, au moins un échangeur 540 thermique. Au moins un échangeur 540 thermique, du type échangeur à plaques ou à tubes et calandre par exemple, est configuré pour refroidir les produits du réacteur 110 de conversion à une température correspondant à une température inférieure ou égale à la température de rosée de l’eau dans les conditions opératoires du dispositif 100.
Au sein du réacteur 110 de conversion, le CO2également présent dans le syngas produit du CH4par réaction de méthanation du CO2.
Dans la deuxième configuration, l’objectif du réacteur 110, ou de la pluralité de réacteurs 110, est de maximiser la production d’hydrogène de synthèse. Pour cela, la réaction de WGS peut être mise en œuvre de manière spécifique dans le même réacteur 110 de conversion ou dans une pluralité de réacteurs 110 de conversion. Pour cela, de l’eau est injectée en quantité supérieure à celle évoqué dans le cas de méthanation, afin de maximiser la production d’hydrogène.
Quelle que soit la configuration, les produits du réacteur 110 de conversion comportent de l’eau en excès ou en produits, du dioxyde de carbone, de l’hydrogène et du méthane dans des proportions qui varient selon la configuration mise en œuvre.
La sortie 115 pour un flux de dihydrogène de synthèse et/ou de méthane de synthèse désigne toute conduite permettant aux produits du réacteur 110 de conversion d’être transportés à partir du réacteur 110 de conversion.
Les produits traversant la sortie 115 sont préférentiellement mis aux spécifications d’utilisation en aval du réacteur 110 de conversion comme décrit ci-après.
Ces spécifications correspondent, par exemple, pour du méthane de synthèse injectable dans les réseaux de gaz naturel, à :
- un pouvoir calorifique supérieur compris entre 9,5 et 12,8 kWh/Nm3,
- un indice de Wobbe compris entre 12,01 et 15,70 kWh/Nm3,
- une densité par rapport à l’air comprise entre 0,555 et 0,7,
- une teneur en CO2inférieure à 2,5 % et
- une teneur en dihydrogène inférieure à 6 % ou à 2 % selon le cas d’usage.
- un pouvoir calorifique supérieur compris entre 9,5 et 12,8 kWh/Nm3,
- un indice de Wobbe compris entre 12,01 et 15,70 kWh/Nm3,
- une densité par rapport à l’air comprise entre 0,555 et 0,7,
- une teneur en CO2inférieure à 2,5 % et
- une teneur en dihydrogène inférieure à 6 % ou à 2 % selon le cas d’usage.
Dans des modes de réalisation particuliers, tel que celui représenté en , le dispositif 100 comporte un séparateur 520 de dioxyde de carbone du flux en sortie du réacteur 110 de conversion.
Ce séparateur 520 est, par exemple, un dispositif configuré pour réaliser l’absorption (physique ou chimique) ou l’adsorption modulée en pression, la perméation membranaire ou la cryogénie du dioxyde de carbone du flux et le diriger vers une évacuation 530 de dioxyde de carbone.
Dans des modes de réalisation particuliers, tel que celui représenté en , le dispositif 100 comporte au moins un recirculateur, 155 et/ou 160, d’au moins une partie du gaz de sortie vers l’entrée 105 pour syngas, une quantité de gaz recirculée étant déterminée en fonction de la commande émise par le système 120 de commande.
On appelle « recirculateur », 155 et 160, une conduite de transport d’un flux de gaz vers l’entrée 105 pour syngas. Ce flux de gaz peut être un flux d’hydrogène ou de méthane de synthèse, en fonction de la commande émise par le système 120 de commande. Par exemple, si le système 120 de commande a configuré le dispositif 100 pour produire de l’hydrogène, le méthane résiduel est recirculé par le « recirculateur » 155 tandis que si le système 120 de commande a configuré le dispositif 100 pour produire du méthane, c’est le dihydrogène qui est recirculé par le « recirculateur » 160. Alternativement, le produit dont la production est maximisée par la configuration du dispositif 100 peut également être recirculé de manière à maintenir constant le débit traversant le réacteur 110 de conversion.
Dans des modes de réalisation particuliers, tel que celui représenté en , le dispositif 100 comporte, en aval du réacteur 110 de conversion :
- un sélecteur 165 de sortie pour le méthane relié à un recirculateur 155 de méthane vers l’entrée 105 pour syngas et à une sortie 170 de méthane,
- un sélecteur 175 de sortie pour le dihydrogène relié à un recirculateur 160 de dihydrogène vers l’entrée 105 pour syngas et à une sortie 180 de dihydrogène,
- un sélecteur 165 de sortie pour le méthane relié à un recirculateur 155 de méthane vers l’entrée 105 pour syngas et à une sortie 170 de méthane,
- un sélecteur 175 de sortie pour le dihydrogène relié à un recirculateur 160 de dihydrogène vers l’entrée 105 pour syngas et à une sortie 180 de dihydrogène,
dispositif dans lequel :
- lorsque la commande émise correspond à une configuration du réacteur pour favoriser une réaction du gaz à l’eau, le sélecteur de sortie pour le dihydrogène est configuré pour diriger le dihydrogène vers la sortie de dihydrogène, le sélecteur de sortie de méthane est configuré pour diriger le méthane vers le recirculateur de méthane et
- lorsque la commande émise correspond à une configuration du réacteur pour favoriser une réaction de Sabatier, le sélecteur de sortie pour le dihydrogène est configuré pour diriger le dihydrogène vers le recirculateur de dihydrogène et le sélecteur de sortie pour le méthane est configuré pour diriger le méthane vers la sortie de méthane.
- lorsque la commande émise correspond à une configuration du réacteur pour favoriser une réaction du gaz à l’eau, le sélecteur de sortie pour le dihydrogène est configuré pour diriger le dihydrogène vers la sortie de dihydrogène, le sélecteur de sortie de méthane est configuré pour diriger le méthane vers le recirculateur de méthane et
- lorsque la commande émise correspond à une configuration du réacteur pour favoriser une réaction de Sabatier, le sélecteur de sortie pour le dihydrogène est configuré pour diriger le dihydrogène vers le recirculateur de dihydrogène et le sélecteur de sortie pour le méthane est configuré pour diriger le méthane vers la sortie de méthane.
Dans des modes de réalisation particuliers, tel que celui représenté en , le dispositif 100 comporte, en amont du sélecteur 175 de sortie pour dihydrogène, un séparateur 525 de dihydrogène.
Un tel séparateur 525 de dihydrogène est, par exemple, un dispositif de réalisation d’une perméation membranaire, d’une adsorption modulée en pression et/ou un électrocompresseur.
En sortie de cette séparation de l’hydrogène :
- dans le cas de production de biométhane : la faible quantité d’hydrogène présente dans le gaz en sortie du réacteur de conversion du syngas est majoritairement séparée du biométhane, ce dernier pouvant ainsi être valorisé dans les réseaux de transport ou de distribution, ou dans une station mobilité ; la faible quantité d’hydrogène séparée peut être recirculée tout ou partie vers le flux 105 alimentant le réacteur 110 de conversion catalytique du syngas et
- dans le cas de production de bio-hydrogène : la forte quantité d’hydrogène présente dans le gaz en sortie du réacteur de conversion du syngas est séparée du reste du gaz, produisant ainsi un bio-hydrogène à la pureté suffisante pour être valorisé dans un réseau industriel ou dans une station mobilité ; le reste du gaz peut être tout ou partie recirculé vers le flux 105 alimentant le réacteur 110 de conversion catalytique du syngas.
- dans le cas de production de biométhane : la faible quantité d’hydrogène présente dans le gaz en sortie du réacteur de conversion du syngas est majoritairement séparée du biométhane, ce dernier pouvant ainsi être valorisé dans les réseaux de transport ou de distribution, ou dans une station mobilité ; la faible quantité d’hydrogène séparée peut être recirculée tout ou partie vers le flux 105 alimentant le réacteur 110 de conversion catalytique du syngas et
- dans le cas de production de bio-hydrogène : la forte quantité d’hydrogène présente dans le gaz en sortie du réacteur de conversion du syngas est séparée du reste du gaz, produisant ainsi un bio-hydrogène à la pureté suffisante pour être valorisé dans un réseau industriel ou dans une station mobilité ; le reste du gaz peut être tout ou partie recirculé vers le flux 105 alimentant le réacteur 110 de conversion catalytique du syngas.
Dans un mode de réalisation particulier, tel que celui représenté en , le dispositif 100 comporte un moyen 545 de compression des produits du réacteur 110 de conversion à une pression déterminée, cette pression correspondant à une pression nominale d’usage desdits produits ou à une pression opératoire du réacteur 110 de conversion en vue de la recirculation d’une partie des produits de réaction.
Ce moyen 545 de compression est, par exemple, un compresseur centrifuge, axial, à palettes, à vis, à lobes ou de type « scroll ». En sortie de ce moyen de compression, les produits de réaction présentent préférentiellement une pression comprise entre 10 et 80 bar.
Les moyens, 135, 520 et 525, 545 peuvent être intervertis.
Dans des modes de réalisation particuliers, tel que celui représenté en , le dispositif 100 comporte, un échangeur 150 de chaleur immergé dans le réacteur de conversion, ledit échangeur de chaleur étant configuré pour refroidir ou chauffer le réacteur 110 à une température déterminée en fonction de la commande émise par le système 120 de commande.
Un tel échangeur 150 de chaleur est, par exemple, constitué de tubes horizontaux, verticaux ou inclinés ou d’un échangeur à plaques.
Le système 120 de commande est, par exemple, un circuit électronique de calcul configuré pour :
- recevoir une sélection de configuration, manuelle ou automatique, via le moyen 121 de sélection et
- émettre une commande de mise en configuration via le moyen 122 d’émission.
- recevoir une sélection de configuration, manuelle ou automatique, via le moyen 121 de sélection et
- émettre une commande de mise en configuration via le moyen 122 d’émission.
Le moyen 121 de sélection est, par exemple, une interface mécanique, électrique ou électronique permettant la sélection d’une configuration parmi les deux configurations disponibles.
Le moyen 122 d’émission est, par exemple, un circuit électronique de commande, configuré pour adapter des variables opératoires du dispositif 100 pour correspondre aux configurations disponibles.
Ces variables opératoires sont au moins l’une des suivantes :
- la pression du réacteur 110 de conversion : la pression est une variable qui impacte fortement la réaction de méthanation. Pour favoriser la production de biométhane, la pression du réacteur est élevée (de préférence supérieure à 3 bar), tandis qu’elle est diminuée (de préférence inférieure à 3 bar) pour la production de biohydrogène par Water-Gas Shift,
- la température du réacteur 110 de conversion : les deux réactions (méthanation et Water-Gas Shift) sont exothermiques, donc favorisées par les basses températures. Cependant, le catalyseur Water-Gas Shift présent dans le réacteur 110 est actif à haute température. Ainsi, la température du réacteur est de 230-350°C pour la production de biométhane, et de 350-600°C pour la production de biohydrogène,
- le débit de vapeur ajouté : le débit de vapeur impacte l’équilibre thermodynamique, et donc la production de biométhane ou de biohydrogène. Pour la production de biométhane, la concentration en vapeur en entrée du réacteur de conversion du syngas sera de 0-30%vol et préférentiellement entre 10 et 30% vol, contre 20-80%vol et préférentiellement entre 30 et 50% vol pour la production de biohydrogène. Cette forte teneur en vapeur d’eau ajoutée dans le cas de la production de biohydrogène permet limiter la réaction de méthanation,
- la fraction de gaz recirculé : en mode production de biométhane ou de biohydrogène, le dispositif 100 génère un gaz résiduel. Dans le cas de la production de biométhane, l’hydrogène séparé du biométhane peut être recyclé vers le réacteur 110 de conversion du syngas afin d’être transformé en biométhane par méthanation ou valorisé comme petite production de bio hydrogène. Dans le cas de la production de biohydrogène, le gaz résiduel (principalement composé de CH4et CO) peut être recyclé vers le réacteur 110 de conversion du syngas afin d’augmenter le rendement en biohydrogène. La fraction de gaz recirculé vers le réacteur 110 de conversion du syngas peut varier de 0 à 100% selon les modes de fonctionnement.
- la pression du réacteur 110 de conversion : la pression est une variable qui impacte fortement la réaction de méthanation. Pour favoriser la production de biométhane, la pression du réacteur est élevée (de préférence supérieure à 3 bar), tandis qu’elle est diminuée (de préférence inférieure à 3 bar) pour la production de biohydrogène par Water-Gas Shift,
- la température du réacteur 110 de conversion : les deux réactions (méthanation et Water-Gas Shift) sont exothermiques, donc favorisées par les basses températures. Cependant, le catalyseur Water-Gas Shift présent dans le réacteur 110 est actif à haute température. Ainsi, la température du réacteur est de 230-350°C pour la production de biométhane, et de 350-600°C pour la production de biohydrogène,
- le débit de vapeur ajouté : le débit de vapeur impacte l’équilibre thermodynamique, et donc la production de biométhane ou de biohydrogène. Pour la production de biométhane, la concentration en vapeur en entrée du réacteur de conversion du syngas sera de 0-30%vol et préférentiellement entre 10 et 30% vol, contre 20-80%vol et préférentiellement entre 30 et 50% vol pour la production de biohydrogène. Cette forte teneur en vapeur d’eau ajoutée dans le cas de la production de biohydrogène permet limiter la réaction de méthanation,
- la fraction de gaz recirculé : en mode production de biométhane ou de biohydrogène, le dispositif 100 génère un gaz résiduel. Dans le cas de la production de biométhane, l’hydrogène séparé du biométhane peut être recyclé vers le réacteur 110 de conversion du syngas afin d’être transformé en biométhane par méthanation ou valorisé comme petite production de bio hydrogène. Dans le cas de la production de biohydrogène, le gaz résiduel (principalement composé de CH4et CO) peut être recyclé vers le réacteur 110 de conversion du syngas afin d’augmenter le rendement en biohydrogène. La fraction de gaz recirculé vers le réacteur 110 de conversion du syngas peut varier de 0 à 100% selon les modes de fonctionnement.
Pour maximiser la production d’hydrogène, des conditions opératoires particulières doivent être mises en œuvre :
- une hausse de la température favorise la production de biohydrogène,
- la production de biohydrogène augmente significativement lorsque la teneur en vapeur du syngas augmente,
- une baisse de la pression du réacteur de conversion catalytique favorise la production de biohydrogène,
- la production de biohydrogène augmente lorsque la recirculation du méthane résiduel augmente.
- une hausse de la température favorise la production de biohydrogène,
- la production de biohydrogène augmente significativement lorsque la teneur en vapeur du syngas augmente,
- une baisse de la pression du réacteur de conversion catalytique favorise la production de biohydrogène,
- la production de biohydrogène augmente lorsque la recirculation du méthane résiduel augmente.
Sur la base des effets décrits ci-dessus, et en prenant en compte l’impact énergétique du réglage des différents paramètres cités ci-dessus, les conditions « nominales » du procédé pour une production de biohydrogène par Water-Gas Shift peuvent être les suivantes :
Pression du réacteur | 1.5 | bar |
Température du réacteur | 450 | °C |
Teneur en vapeur du syngas | 70 | %mol |
Taux de Recirculation du flux | 70 | % |
Dans ces conditions opératoires, la composition des différents flux clés du procédé est la suivante :
Paramètres | Flux – Entrée réacteur méthanation | Flux – Sortie réacteur catalytique | Flux – Biohydrogène valorisable | Flux – gaz résiduel sortie procédé |
Pression (bara) | 1.5 | 1.5 | 10 | 10 |
Température (°C) | 341.3 | 450.0 | 286.3 | 286.3 |
Débit molaire (kmol/h) | 27.95 | 28.27 | 5.18 | 1.21 |
Teneur CO2(%mol) | 7.58% | 14.14% | 0.00% | 2.98% |
Teneur H2O (%mol) | 65.07% | 56.71% | 0.00% | 21.13% |
Teneur CO (%mol) | 6.39% | 0.64% | 0.00% | 4.50% |
Teneur CH4(%mol) | 8.68% | 9.21% | 0.00% | 64.62% |
Teneur H2(%mol) | 11.47% | 19.29% | 100.00% | 6.77% |
Teneur C2H4(%mol) | 0.81% | 0.00% | 0.00% | 0.00% |
Concernant le biométhane :
- une faible température favorise la production de biométhane - préférentiellement une température de réaction inférieure à 350°C et préférentiellement inférieure à 320°C et encore préférentiellement inférieure à 300°C est mise en œuvre en mode méthanation afin de limiter la production de biohydrogène,
- à l’instar de la température, une plus faible teneur en vapeur d’eau dans le syngas alimentant le réacteur de conversion catalytique favorise la production de biométhane,
- une plus forte pression du réacteur de conversion catalytique favorise la production de biométhane dans la chaine de procédé proposée,
- la recirculation du flux d’hydrogène vers le syngas alimentant le réacteur 110 de conversion catalytique n’impacte pas de manière significative la production de biométhane – cela s’explique par le fait que la quantité d’hydrogène résiduel présent dans le flux en sortie du réacteur de conversion catalytique en mode méthanation est très faible du fait de sa consommation par la réaction de méthanation.
- une faible température favorise la production de biométhane - préférentiellement une température de réaction inférieure à 350°C et préférentiellement inférieure à 320°C et encore préférentiellement inférieure à 300°C est mise en œuvre en mode méthanation afin de limiter la production de biohydrogène,
- à l’instar de la température, une plus faible teneur en vapeur d’eau dans le syngas alimentant le réacteur de conversion catalytique favorise la production de biométhane,
- une plus forte pression du réacteur de conversion catalytique favorise la production de biométhane dans la chaine de procédé proposée,
- la recirculation du flux d’hydrogène vers le syngas alimentant le réacteur 110 de conversion catalytique n’impacte pas de manière significative la production de biométhane – cela s’explique par le fait que la quantité d’hydrogène résiduel présent dans le flux en sortie du réacteur de conversion catalytique en mode méthanation est très faible du fait de sa consommation par la réaction de méthanation.
Sur la base des effets décrits ci-dessus, et en prenant en compte l’impact énergétique du réglage des différents paramètres cités ci-dessus, les conditions « nominales » du procédé pour une production de biométhane par méthanation sont, par exemple, les suivantes :
Pression du réacteur | 5 | bar |
Température du réacteur | 250 | °C |
Teneur en vapeur du syngas | 15 | % |
Taux de Recirculation | 50 | % |
Dans ces conditions opératoires, la composition des différents flux clés du procédé est la suivante :
Paramètres | Flux – Entrée réacteur méthanation | Flux – Sortie réacteur catalytique | Flux - Biométhane |
Pression (bara) | 5 | 5 | 10 |
Température (°C) | 399 | 250 | 87 |
Débit molaire (kmol/h) | 8.88 | 6.55 | 2.25 |
Teneur CO2(%mol) | 22.9% | 40.3% | 3.5% |
Teneur H2O (%mol) | 15.0% | 27.1% | 2.9% |
Teneur CO (%mol) | 18.7% | 0.0% | 0.0% |
Teneur CH4(%mol) | 6.8% | 32.2% | 93.5% |
Teneur H2(%mol) | 34.1% | 0.4% | 0.1% |
Teneur C2H4(%mol) | 2.5% | 0.0% | 0.0% |
Comme on le comprend, la présente invention a pour objectif de convertir le syngas, par exemple issu de biomasse/déchets/résidus, en biométhane ou en biohydrogène de manière flexible par la simple modification de certaines conditions opératoires tout en conservant les mêmes équipements et la même chaine procédé. Un réacteur hybride de conversion catalytique du syngas en lit fluidisé mettant en œuvre un mélange de catalyseurs, un catalyseur unique à faible rendement ou un catalyseur bifonctionnel, permet de réaliser ces conversions en fonctionnant soit à basse température, haute pression, et faible teneur en vapeur d’eau (220-350°C / 4-5 bar / 0-30%vol) pour la production de biométhane, soit à haute température, basse pression, et forte teneur en eau (350-600°C / 1-1,5 bar / 30-80 %vol) pour la production de biohydrogène. Alternativement, une pluralité de réacteurs peut être mise en œuvre, en série ou en parallèle. Alors qu’un excès de vapeur est classiquement utilisé pour éviter la réaction de méthanation lors de la conversion du syngas en biohydrogène par la réaction Water-Gas shift, la présente invention permet de limiter la réaction de méthanation en maitrisant la pression, la température, la teneur en vapeur d’eau, mais également la teneur en méthane dans le réacteur de conversion du syngas. En effet, en recirculant plus ou moins le flux de gaz résiduel riche en CH4 vers le réacteur de conversion du syngas en mode WGS, l’équilibre thermodynamique et les cinétiques réactionnelles poussant à la production de biométhane sont défavorisés, ce qui limite encore la réaction de méthanation.
On observe, en , schématiquement, un mode de réalisation du procédé 200 objet de la présente invention. Ce procédé 200 de production hybride de dihydrogène de synthèse et/ou de méthane de synthèse, comporte :
- une étape 205 de sélection d’une configuration d’opération d’un réacteur de conversion,
- une étape 210 d’émission d’une commande représentative de la configuration sélectionnée,
- une étape 215 de mise en configuration du réacteur de conversion en fonction de la commande émise selon l’une des deux configurations suivantes :
- une première configuration, dans laquelle les conditions opératoires du réacteur favorisent la réalisation d’une réaction de Sabatier, de manière à produire un gaz de sortie comportant principalement du méthane ou
- une deuxième configuration, dans laquelle les conditions opératoires du réacteur favorisent la réalisation d’une réaction du gaz à l’eau, de manière à produire un gaz de sortie comportant principalement du dihydrogène,
- une étape 220 d’entrée d’un flux de gaz de synthèse dit « syngas »,
- une étape 225 de réaction de conversion catalytique selon la configuration sélectionnée et
- une étape 230 de sortie pour un flux de dihydrogène de synthèse et/ou de méthane de synthèse.
- une étape 205 de sélection d’une configuration d’opération d’un réacteur de conversion,
- une étape 210 d’émission d’une commande représentative de la configuration sélectionnée,
- une étape 215 de mise en configuration du réacteur de conversion en fonction de la commande émise selon l’une des deux configurations suivantes :
- une première configuration, dans laquelle les conditions opératoires du réacteur favorisent la réalisation d’une réaction de Sabatier, de manière à produire un gaz de sortie comportant principalement du méthane ou
- une deuxième configuration, dans laquelle les conditions opératoires du réacteur favorisent la réalisation d’une réaction du gaz à l’eau, de manière à produire un gaz de sortie comportant principalement du dihydrogène,
- une étape 220 d’entrée d’un flux de gaz de synthèse dit « syngas »,
- une étape 225 de réaction de conversion catalytique selon la configuration sélectionnée et
- une étape 230 de sortie pour un flux de dihydrogène de synthèse et/ou de méthane de synthèse.
La réalisation des étapes :
- de sélection 205,
- d’émission 210,
- d’entrée 220 d’un flux de syngas,
- de réaction 225 et
- de sortie 230,
est décrite en regard de la et en particulier respectivement :
- du moyen de sélection 121,
- du moyen d’émission 122,
- de l’entrée 105 d’un flux de syngas,
- du réacteur réaction 110 et
- de la sortie 115 pour produits de réaction.
- de sélection 205,
- d’émission 210,
- d’entrée 220 d’un flux de syngas,
- de réaction 225 et
- de sortie 230,
est décrite en regard de la
- du moyen de sélection 121,
- du moyen d’émission 122,
- de l’entrée 105 d’un flux de syngas,
- du réacteur réaction 110 et
- de la sortie 115 pour produits de réaction.
L’étape 215 de mise en configuration est réalisée par l’ensemble des ajustements opératoires décrits en regard de la en ce qui concerne la mise en configuration de production de méthane ou de dihydrogène de synthèse.
On observe, en , schématiquement, un mode de réalisation du procédé 300 objet de la présente invention lorsque le procédé 200 est en configuration de production de méthane. Dans ce mode de réalisation, le procédé 300 comporte :
- une étape 315 de conversion d’un flux de syngas par la mise en œuvre d’un réacteur 110 de conversion, pouvant inclure une étape (non référencée) d’apport en eau directement dans le réacteur 110 ou dans le flux (non référencé) d’entrée,
- une première 320, deuxième 325 et troisième 330 étapes de séparation, chacune de ces étapes, 320, 325 et 330, de séparation étant d’un type distinct parmi :
- une séparation d’eau,
- une séparation de CO2et
- une séparation de dihydrogène,
- optionnellement, une étape (non référencée) de recirculation du dihydrogène résiduel en sortie de la troisième étape 330 de séparation et
- une étape 335 de fourniture du méthane pour un usage ou un stockage dédié.
- une étape 315 de conversion d’un flux de syngas par la mise en œuvre d’un réacteur 110 de conversion, pouvant inclure une étape (non référencée) d’apport en eau directement dans le réacteur 110 ou dans le flux (non référencé) d’entrée,
- une première 320, deuxième 325 et troisième 330 étapes de séparation, chacune de ces étapes, 320, 325 et 330, de séparation étant d’un type distinct parmi :
- une séparation d’eau,
- une séparation de CO2et
- une séparation de dihydrogène,
- optionnellement, une étape (non référencée) de recirculation du dihydrogène résiduel en sortie de la troisième étape 330 de séparation et
- une étape 335 de fourniture du méthane pour un usage ou un stockage dédié.
On observe, en , schématiquement, un mode de réalisation du procédé 400 objet de la présente invention lorsque le procédé 200 est en configuration de production de dihydrogène. Dans ce mode de réalisation, le procédé 400 comporte :
- une étape 315 de conversion d’un flux de syngas par la mise en œuvre d’un réacteur 110 de conversion, pouvant inclure une étape (non référencée) d’apport en eau directement dans le réacteur 110 et/ou dans le flux (non référencé) d’entrée,
- une première 320, deuxième 325 et troisième 330 étapes de séparation, chacune de ces étapes, 320, 325 et 330, de séparation étant d’un type distinct parmi :
- une séparation d’eau,
- une séparation de CO2et
- une séparation de dihydrogène,
- optionnellement, une étape (non référencée) de recirculation du méthane résiduel en sortie de la troisième étape 330 de séparation et
- une étape 405 de fourniture du dihydrogène pour un usage ou un stockage dédié.
- une étape 315 de conversion d’un flux de syngas par la mise en œuvre d’un réacteur 110 de conversion, pouvant inclure une étape (non référencée) d’apport en eau directement dans le réacteur 110 et/ou dans le flux (non référencé) d’entrée,
- une première 320, deuxième 325 et troisième 330 étapes de séparation, chacune de ces étapes, 320, 325 et 330, de séparation étant d’un type distinct parmi :
- une séparation d’eau,
- une séparation de CO2et
- une séparation de dihydrogène,
- optionnellement, une étape (non référencée) de recirculation du méthane résiduel en sortie de la troisième étape 330 de séparation et
- une étape 405 de fourniture du dihydrogène pour un usage ou un stockage dédié.
Claims (10)
- Dispositif (100) de production hybride de dihydrogène de synthèse et/ou de méthane de synthèse, caractérisé en ce qu’il comporte :
- une entrée (105) pour un flux de gaz de synthèse (dit « syngas ») comportant au moins du CO,
- au moins un réacteur (110) de conversion catalytique, configuré pour opérer selon l’une des deux configurations alternatives suivantes :
- une première configuration, dans laquelle les conditions opératoires du réacteur favorisent la réalisation d’une réaction de Sabatier, de manière à produire un gaz de sortie comportant principalement du méthane ou
- une deuxième configuration, dans laquelle les conditions opératoires du réacteur favorisent la réalisation d’une réaction du gaz à l’eau, de manière à produire un gaz de sortie comportant principalement du dihydrogène,
- une sortie (115) pour un flux de dihydrogène de synthèse et/ou de méthane de synthèse et
- un système (120) de commande comportant un moyen (121) de sélection d’une configuration d’opération du réacteur et un moyen (122) d’émission d’une commande représentative de la configuration sélectionnée, le réacteur étant configuré pour opérer selon une configuration donnée en fonction de la commande émise par le moyen d’émission. - Dispositif (100) selon la revendication 1, dans lequel le réacteur (110) de conversion comporte un lit (111) catalytique comportant deux catalyseurs (112, 113) distincts, un premier catalyseur étant configuré pour favoriser une réaction de Sabatier à basse température et un deuxième catalyseur étant configuré pour favoriser une réaction du gaz à l’eau à haute température.
- Dispositif (100) selon la revendication 1, dans lequel le réacteur de conversion comporte un lit (111) catalytique comportant un catalyseur (114) bifonctionnel, configuré pour favoriser une réaction de Sabatier à basse température dans la première configuration du réacteur et pour favoriser une réaction du gaz à l’eau à haute température dans la deuxième configuration du réacteur.
- Dispositif (100) selon l’une des revendications 1 à 3, qui comporte un injecteur (125) de vapeur dans le flux de syngas ou directement dans le réacteur et/ou un injecteur (130) d’eau dans le réacteur catalytique, une quantité d’eau et/ou de vapeur injectée par au moins un injecteur étant réalisée en fonction de la commande émise par le système (120) de commande.
- Dispositif (100) selon la revendication 4, qui comporte, en aval du réacteur (110) de conversion, un séparateur (135) d’eau configuré pour fournir l’eau séparée à une évacuation (140) d’eau ou à un injecteur (125, 130).
- Dispositif (100) selon l’une des revendications 1 à 5, qui comporte un moyen (145) de compression du syngas à une pression déterminée, la pression de sortie du moyen de compression étant déterminée en fonction de la commande émise par le système (120) de commande.
- Dispositif (100) selon l’une des revendications 1 à 6, qui comporte un échangeur (150) de chaleur immergé dans le réacteur de conversion, ledit échangeur de chaleur étant configuré pour refroidir ou chauffer le réacteur (110) à une température déterminée en fonction de la commande émise par le système (120) de commande.
- Dispositif (100) selon l’une des revendications 1 à 7, qui comporte un recirculateur (155, 160) d’au moins une partie du gaz de sortie vers l’entrée (105) pour syngas, une quantité de gaz recirculée étant déterminée en fonction de la commande émise par le système (120) de commande.
- Dispositif (100) selon la revendication 8, qui comporte, en aval du réacteur (110) de conversion :
- un sélecteur (165) de sortie pour le méthane relié à un recirculateur (155) de méthane vers l’entrée (105) pour syngas et à une sortie (170) de méthane,
- un sélecteur (175) de sortie pour le dihydrogène relié à un recirculateur (160) de dihydrogène vers l’entrée (105) pour syngas et à une sortie (180) de dihydrogène,
dispositif dans lequel :
- lorsque la commande émise correspond à une configuration du réacteur pour favoriser une réaction du gaz à l’eau, le sélecteur de sortie pour le dihydrogène est configuré pour diriger le dihydrogène vers la sortie de dihydrogène, le sélecteur de sortie de méthane est configuré pour diriger le méthane vers le recirculateur de méthane et
- lorsque la commande émise correspond à une configuration du réacteur pour favoriser une réaction de Sabatier, le sélecteur de sortie pour le dihydrogène est configuré pour diriger le dihydrogène vers le recirculateur de dihydrogène et le sélecteur de sortie pour le méthane est configuré pour diriger le méthane vers la sortie de méthane. - Procédé (200) de production hybride de dihydrogène de synthèse et/ou de méthane de synthèse, caractérisé en ce qu’il comporte :
- une étape (205) de sélection d’une configuration d’opération d’un réacteur de conversion,
- une étape (210) d’émission d’une commande représentative de la configuration sélectionnée,
- une étape (215) de mise en configuration du réacteur de conversion en fonction de la commande émise selon l’une des deux configurations suivantes :
- une première configuration, dans laquelle les conditions opératoires du réacteur favorisent la réalisation d’une réaction de Sabatier, de manière à produire un gaz de sortie comportant principalement du méthane ou
- une deuxième configuration, dans laquelle les conditions opératoires du réacteur favorisent la réalisation d’une réaction du gaz à l’eau, de manière à produire un gaz de sortie comportant principalement du dihydrogène,
- une étape (220) d’entrée d’un flux de gaz de synthèse (dit « syngas »),
- une étape (225) de réaction de conversion catalytique selon la configuration sélectionnée et
- une étape (230) de sortie pour un flux de dihydrogène de synthèse et/ou de méthane de synthèse.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/EP2021/069502 WO2022013239A1 (fr) | 2020-07-14 | 2021-07-13 | Dispositif et procédé de production hybride de dihydrogène de synthèse et/ou de méthane de synthèse |
AU2021308293A AU2021308293A1 (en) | 2020-07-14 | 2021-07-13 | Device and method for hybrid production of synthetic dihydrogen and/or synthetic methane |
US18/005,607 US20230264950A1 (en) | 2020-07-14 | 2021-07-13 | Device and method for hybrid production of synthetic dihydrogen and/or synthetic methan |
CA3185723A CA3185723A1 (fr) | 2020-07-14 | 2021-07-13 | Dispositif et procede de production hybride de dihydrogene de synthese et/ou de methane de synthese |
EP21749522.5A EP4182421A1 (fr) | 2020-07-14 | 2021-07-13 | Dispositif et procédé de production hybride de dihydrogène de synthèse et/ou de méthane de synthèse |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR2020051265 | 2020-07-14 | ||
WOPCT/2020/051265 | 2020-07-14 |
Publications (2)
Publication Number | Publication Date |
---|---|
FR3112537A1 true FR3112537A1 (fr) | 2022-01-21 |
FR3112537B1 FR3112537B1 (fr) | 2023-03-31 |
Family
ID=72046928
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR2008307A Active FR3112537B1 (fr) | 2020-07-14 | 2020-08-05 | Dispositif et procédé de production hybride de dihydrogène de synthèse et/ou de méthane de synthèse |
FR2104177A Pending FR3112538A1 (fr) | 2020-07-14 | 2021-04-21 | Dispositif et procédé de production hybride de dihydrogène de synthèse et/ou de méthane de synthèse |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR2104177A Pending FR3112538A1 (fr) | 2020-07-14 | 2021-04-21 | Dispositif et procédé de production hybride de dihydrogène de synthèse et/ou de méthane de synthèse |
Country Status (6)
Country | Link |
---|---|
US (1) | US20230264950A1 (fr) |
EP (1) | EP4182421A1 (fr) |
AU (1) | AU2021308293A1 (fr) |
CA (1) | CA3185723A1 (fr) |
FR (2) | FR3112537B1 (fr) |
WO (1) | WO2022013239A1 (fr) |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2662911A (en) | 1948-10-01 | 1953-12-15 | Metallgesellschaft Ag | Temperature control in the catalytic hydrogenation of carbon monoxide |
US2740803A (en) | 1950-01-19 | 1956-04-03 | Ruhrchemie Ag | Catalytic hydrogenation of carbon monoxide with indirect heat exchange cooling |
DE2651567A1 (de) | 1976-11-12 | 1978-05-24 | Didier Eng | Verfahren und vorrichtung zum einstellen und konstanthalten der temperatur beim methanisieren |
DE3007202A1 (de) | 1980-02-26 | 1981-09-10 | Linde Ag, 6200 Wiesbaden | Methanol-reaktor |
DE3217066A1 (de) | 1982-05-06 | 1983-11-10 | Linde Ag, 6200 Wiesbaden | Reaktor zur durchfuehrung katalytischer reaktion |
GB9723669D0 (en) | 1997-11-07 | 1998-01-07 | Univ Aberdeen | Skin penetration enhancing components |
EP1568674A1 (fr) | 2004-02-12 | 2005-08-31 | Paul Scherrer Institut | Procédé de préparation de méthane |
US7618558B2 (en) | 2005-04-15 | 2009-11-17 | Haldor Topsoe A/S | Process for cleaning gases from gasification units |
US20100205863A1 (en) * | 2007-07-10 | 2010-08-19 | Paul Scherrer Institut | Process to Produce a Methane Rich Gas Mixture From Gasification Derived Sulphur Containing Synthesis Gases |
WO2012037164A1 (fr) * | 2010-09-13 | 2012-03-22 | Conocophillips Company | Élimination de goudron tolérant au soufre à basse température avec conditionnement concomitant de gaz de synthèse |
GB201119960D0 (en) | 2011-11-18 | 2012-01-04 | Johnson Matthey Plc | Process |
CN104152199B (zh) * | 2014-08-19 | 2017-01-25 | 赛鼎工程有限公司 | 一种煤制合成气进行耐硫甲烷化制备天然气的工艺 |
FR3038909A1 (fr) * | 2015-07-16 | 2017-01-20 | Gdf Suez | Dispositif et procede de production de methane de synthese |
WO2017186526A1 (fr) | 2016-04-25 | 2017-11-02 | Haldor Topsøe A/S | Procédé de production d'un gaz riche en hydrogène |
GB2556665A (en) | 2016-10-14 | 2018-06-06 | Linde Ag | Methods for hydrogen production |
DE102018113743A1 (de) | 2018-06-08 | 2019-12-12 | Thyssenkrupp Ag | Verfahren und Vorrichtungen zur Durchführung einer Wassergas-Shift-Reaktion sowie die Verwendung mindestens zweier seriell oder parallel geschalteter Einheiten zur Niedertemperatur-CO-Konvertierung |
-
2020
- 2020-08-05 FR FR2008307A patent/FR3112537B1/fr active Active
-
2021
- 2021-04-21 FR FR2104177A patent/FR3112538A1/fr active Pending
- 2021-07-13 EP EP21749522.5A patent/EP4182421A1/fr active Pending
- 2021-07-13 CA CA3185723A patent/CA3185723A1/fr active Pending
- 2021-07-13 US US18/005,607 patent/US20230264950A1/en active Pending
- 2021-07-13 AU AU2021308293A patent/AU2021308293A1/en active Pending
- 2021-07-13 WO PCT/EP2021/069502 patent/WO2022013239A1/fr unknown
Also Published As
Publication number | Publication date |
---|---|
US20230264950A1 (en) | 2023-08-24 |
CA3185723A1 (fr) | 2022-01-20 |
FR3112538A1 (fr) | 2022-01-21 |
EP4182421A1 (fr) | 2023-05-24 |
FR3112537B1 (fr) | 2023-03-31 |
WO2022013239A1 (fr) | 2022-01-20 |
AU2021308293A1 (en) | 2023-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2142622B1 (fr) | Procede de production d'un gaz de synthese purifie a partir de biomasse incluant une etape de purification en amont de l'oxydation partielle | |
WO2008017741A1 (fr) | Procédé de production de gaz de synthèse avec oxydation partielle et vaporeformage | |
CA2565936A1 (fr) | Procede de production de gaz de synthese a partir de matiere carbonee et d'energie electrique | |
FR2895747A1 (fr) | Procede pour produire des hydrocarbures a partir de gaz naturel. | |
FR2851570A1 (fr) | Installation et procede de gazeification multi-etapes d'une charge comprenant de la matiere organique | |
EP3322777B1 (fr) | Dispositif et procédé de production de gaz de synthèse | |
FR2904832A1 (fr) | Procede de production de gaz de synthese avec conversion de co2 a l'hydrogene | |
US11267767B2 (en) | Integrated gasification and electrolysis process | |
EP2706103B1 (fr) | Procédé de gazéification de charge de matière carbonée à rendement amélioré | |
EP2782984B1 (fr) | Procede de production de biomethane | |
FR3053033A1 (fr) | Procede de vaporeformage de gaz naturel presentant deux chambres de combustion generant les fumees chaudes apportant les calories necessaires au procede et connectees en serie ou en parallele. | |
FR3112537A1 (fr) | Dispositif et procédé de production hybride de dihydrogène de synthèse et/ou de méthane de synthèse | |
FR2956656A1 (fr) | Procede de production de gaz de synthese | |
FR2969998A1 (fr) | Procede de synthese d'hydrocarbones avec rejets de co2 minimum | |
CA2316730C (fr) | Installation et procede de production de gaz de synthese comprenant au moins une turbine a gaz | |
EP3322778B1 (fr) | Dispositif et procédé de production de gaz de synthèse | |
WO2011148066A2 (fr) | Procédé de production anaérobie d'hydrogène | |
EP3031884B1 (fr) | Procédé de gazéification de charge de matière carbonée à rendement matière et coût de production optimisés | |
WO2017178769A1 (fr) | Dispositif et procede de cogeneration de methanol et de methane de synthese | |
KR20240125929A (ko) | 바이오매스 가스화로에서 메탄올 생산 | |
FR3074158A1 (fr) | Nouveau procede de production d'hydrogene par vaporeformage de gaz naturel utilisant une seule chambre de combustion | |
BE494451A (fr) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PLFP | Fee payment |
Year of fee payment: 2 |
|
PLSC | Publication of the preliminary search report |
Effective date: 20220506 |
|
PLFP | Fee payment |
Year of fee payment: 3 |
|
PLFP | Fee payment |
Year of fee payment: 4 |
|
PLFP | Fee payment |
Year of fee payment: 5 |