Nothing Special   »   [go: up one dir, main page]

FR3103961A1 - Procede de fabrication d’une structure composite comprenant une couche mince en sic monocristallin sur un substrat support en sic - Google Patents

Procede de fabrication d’une structure composite comprenant une couche mince en sic monocristallin sur un substrat support en sic Download PDF

Info

Publication number
FR3103961A1
FR3103961A1 FR2003025A FR2003025A FR3103961A1 FR 3103961 A1 FR3103961 A1 FR 3103961A1 FR 2003025 A FR2003025 A FR 2003025A FR 2003025 A FR2003025 A FR 2003025A FR 3103961 A1 FR3103961 A1 FR 3103961A1
Authority
FR
France
Prior art keywords
layer
donor
composite structure
substrate
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR2003025A
Other languages
English (en)
Other versions
FR3103961B1 (fr
Inventor
Hugo BIARD
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soitec SA
Original Assignee
Soitec SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Soitec SA filed Critical Soitec SA
Priority to TW109135222A priority Critical patent/TWI861253B/zh
Priority to US17/756,609 priority patent/US20220415653A1/en
Priority to KR1020227016777A priority patent/KR20220107174A/ko
Priority to JP2022523651A priority patent/JP2023502571A/ja
Priority to CN202080080496.1A priority patent/CN114730699A/zh
Priority to PCT/FR2020/051929 priority patent/WO2021105576A1/fr
Priority to EP20807826.1A priority patent/EP4066275B1/fr
Publication of FR3103961A1 publication Critical patent/FR3103961A1/fr
Application granted granted Critical
Publication of FR3103961B1 publication Critical patent/FR3103961B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/7806Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices involving the separation of the active layers from a substrate
    • H01L21/7813Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices involving the separation of the active layers from a substrate leaving a reusable substrate, e.g. epitaxial lift off
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/20Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B31/00Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor
    • C30B31/20Doping by irradiation with electromagnetic waves or by particle radiation
    • C30B31/22Doping by irradiation with electromagnetic waves or by particle radiation by ion-implantation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/08Etching
    • C30B33/10Etching in solutions or melts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02079Cleaning for reclaiming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/02447Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76254Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

L’invention concerne un procédé de fabrication d’une structure composite comprenant une couche mince en carbure de silicium monocristallin disposée sur un substrat support en carbure de silicium, le procédé comprenant : a) une étape de fourniture d’un substrat initial en carbure de silicium monocristallin, b) une étape de croissance par épitaxie d’une couche donneuse en carbure de silicium monocristallin sur le substrat initial, pour former un substrat donneur, c) une étape d’implantation ionique d’espèces légères dans la couche donneuse, pour former un plan fragile enterré délimitant la couche mince entre ledit plan fragile enterré et une surface libre de ladite couche donneuse, d) une étape de dépôt chimique en phase vapeur assisté par injection liquide directe, à une température inférieure à 1000°C, pour former une couche support directement sur la surface libre de la couche donneuse, ladite couche support étant formée par une matrice SiC au moins partiellement amorphe, e) une étape de séparation le long du plan fragile enterré, pour former d’une part une structure composite intermédiaire comprenant la couche mince sur la couche support, et d’autre part le reste du substrat donneur, f) une étape de traitement thermique à une température comprise entre 1000°C et 1800°C, appliquée à la structure composite intermédiaire, pour cristalliser la couche support et former le substrat support poly-cristallin, g) une étape de traitement(s) mécanique(s) et/ou chimique(s) de la structure composite. Figure à publier avec l’abrégé : Pas de figure

Description

PROCEDE DE FABRICATION D’UNE STRUCTURE COMPOSITE COMPRENANT UNE COUCHE MINCE EN SIC MONOCRISTALLIN SUR UN SUBSTRAT SUPPORT EN SIC
DOMAINE DE L’INVENTION
La présente invention concerne le domaine des matériaux semi-conducteurs pour composants microélectroniques. Elle concerne en particulier un procédé de fabrication d’une structure composite comprenant une couche mince en carbure de silicium monocristallin sur un substrat support en carbure de silicium.
ARRIERE PLAN TECHNOLOGIQUE DE L’INVENTION
L'intérêt pour le carbure de silicium (SiC) a considérablement augmenté au cours des dernières années, car ce matériau semi-conducteur peut accroître la capacité de traitement de l'énergie. Le SiC est de plus en plus largement utilisé pour la fabrication de dispositifs de puissance innovants, pour répondre aux besoins de domaines montants de l'électronique, comme notamment les véhicules électriques.
Les dispositifs de puissance et les systèmes intégrés d'alimentation basés sur du carbure de silicium monocristallin peuvent gérer une densité de puissance beaucoup plus élevée par rapport à leurs homologues traditionnels en silicium, et ce avec des dimensions de zone active inférieures. Pour limiter encore les dimensions des dispositifs de puissance sur SiC, il est avantageux de fabriquer des composants verticaux plutôt que latéraux. Pour cela, une conduction électrique verticale, entre une électrode disposée en face avant de la structure SiC et une électrode disposée en face arrière, doit être autorisée par ladite structure.
Les substrats en SiC monocristallin destinés à l’industrie microélectronique restent néanmoins chers et difficiles à approvisionner en grande taille. Il est donc avantageux de recourir à des solutions de transfert de couches minces, pour élaborer des structures composites comprenant typiquement une couche mince en SiC monocristallin sur un substrat support plus bas coût. Une solution de transfert de couche mince bien connu est le procédé Smart CutTM, basé sur une implantation d’ions légers et sur un assemblage par collage direct. Un tel procédé permet par exemple de fabriquer une structure composite comprenant une couche mince en SiC monocristallin (c-SiC), prélevée d’un substrat donneur en c-SiC, en contact direct avec un substrat support en SiC poly-cristallin (p-SiC), et autorisant une conduction électrique verticale. Il reste néanmoins difficile de réaliser un collage direct par adhésion moléculaire de bonne qualité entre deux substrats c-SiC et p-SiC, car la gestion de la rugosité et de l’état de surface desdits substrats est complexe.
Différentes méthodes dérivées de ce procédé sont également connues de l’état de la technique. Par exemple, F.Mu et al (ECS Transactions, 86 (5) 3-21, 2018) mettent en œuvre un collage direct, après activation des surfaces à assembler par bombardement d’argon (SAB pour «Surface Activation bonding»): un tel traitement préalable au collage génère une très forte densité de liaisons pendantes, lesquelles favorisent la formation de liaisons covalentes à l’interface d’assemblage, et donc une forte énergie de collage. Cette méthode présente néanmoins l’inconvénient de générer une couche amorphe, à la surface du substrat donneur en SiC monocristallin, qui impacte défavorablement la conduction électrique verticale entre la couche mince en c-SiC et le substrat support en p-SiC.
Des solutions ont été proposées pour résoudre ce problème, en particulier dans le document EP3168862, mettant en œuvre une implantation d’espèces dopantes dans ladite couche amorphe, pour restaurer ses propriétés électriques. L’inconvénient principal de cette approche est sa complexité et donc son coût.
On connaît par ailleurs le document US8436363, qui décrit un procédé de fabrication d’une structure composite comprenant une couche mince en c-SiC disposée sur un substrat support métallique dont le coefficient de dilatation thermique est apparié avec celui de la couche mince. Ce procédé de fabrication comprend les étapes suivantes:
- la formation d’un plan fragile enterré dans un substrat donneur de c-SiC, délimitant une couche mince entre ledit plan fragile enterré et une surface avant du substrat donneur,
- le dépôt d’une couche métallique, par exemple en tungstène ou en molybdène, sur la surface avant du substrat donneur pour former le substrat support d’une épaisseur suffisante pour remplir le rôle de raidisseur,
- la séparation le long du plan fragile enterré, pour former d’une part, la structure composite comprenant le substrat support métallique et la couche mince en c-SiC, et d’autre part, le reste du substrat donneur en c-SiC.
Un tel procédé de fabrication n’est cependant pas compatible lorsque le matériau formant le substrat support est du p-SiC requérant un dépôt à des températures supérieures à 1200°C (températures habituelles pour la fabrication de p-SiC). En effet, à ces températures élevées, la cinétique de croissance des cavités présentes dans le plan fragile enterré est plus rapide que la cinétique de croissance de la couche en p-SiC et l’épaisseur requise pour un effet raidisseur n’est pas atteinte avant l’apparition du phénomène de cloquage, lié à la déformation de la couche à l’aplomb des cavités.
Quelle que soit la technique de transfert de couche utilisée, se pose en outre le problème de fournir une structure composite comprenant une couche mince en c-SiC de très haute qualité, et en particulier dépourvue de défauts étendus (ou en présentant une très faible densité), susceptibles d’affecter les performances et la fiabilité des dispositifs de puissance destinés à être élaborés sur ladite couche mince.
OBJET DE L’INVENTION
La présente invention concerne une solution alternative à celles de l’état de la technique, et vise à remédier à tout ou partie des inconvénients précités. Elle concerne en particulier un procédé de fabrication d’une structure composite comprenant une couche mince en c-SiC de haute qualité disposée sur un substrat support en SiC.
BREVE DESCRIPTION DE L’INVENTION
L’invention concerne un procédé de fabrication d’une structure composite comprenant une couche mince en carbure de silicium monocristallin disposée sur un substrat support en carbure de silicium. Le procédé comprend :
a) une étape de fourniture d’un substrat initial en carbure de silicium monocristallin,
b) une étape de croissance par épitaxie d’une couche donneuse en carbure de silicium monocristallin sur le substrat initial, pour former un substrat donneur, la couche donneuse présentant une densité de défauts cristallins inférieure à celle du substrat initial,
c) une étape d’implantation ionique d’espèces légères dans la couche donneuse, pour former un plan fragile enterré délimitant la couche mince entre ledit plan fragile enterré et une surface libre de ladite couche donneuse,
d) une étape de dépôt chimique en phase vapeur assisté par injection liquide directe, à une température inférieure à 1000°C, pour former une couche support directement sur la surface libre de la couche donneuse, ladite couche support étant formée par une matrice SiC au moins partiellement amorphe,
e) une étape de séparation le long du plan fragile enterré, pour former d’une part une structure composite intermédiaire comprenant la couche mince sur la couche support, et d’autre part le reste du substrat donneur,
f) une étape de traitement thermique à une température comprise entre 1000°C et 1800°C, appliquée à la structure composite intermédiaire, pour cristalliser la couche support et former le substrat support poly-cristallin,
g) une étape de traitement(s) mécanique(s) et/ou chimique(s) de la structure composite, le (ou les) traitement(s) étant appliqué(s) à une face libre du substrat support, face arrière de la structure composite, et/ou à une face libre de la couche mince, face avant de la structure composite.
Selon d’autres caractéristiques avantageuses et non limitatives de l’invention, prises seules ou selon toute combinaisontechniquement réalisable :
  • le dépôt de l’étape d) est effectué à une température comprise entre 100°C et 700°C, voire préférentiellement entre 200°C et 600°C;
  • le dépôt de l’étape d) est effectué sous une pression comprise entre 1 Torr et 500 Torr;
  • les précurseurs utilisés lors du dépôt de l’étape d) sont choisis parmi le polysilyléthylène et le disilabutane;
  • à l’issue du dépôt de l’étape d), la couche support présente une épaisseur supérieure ou égale à 10 microns, voire une épaisseur supérieure ou égale à 50 microns, voire une épaisseur supérieure ou égale à 100 microns, voire encore une épaisseur supérieure ou égale à 200 microns;
  • une gravure chimique, un rodage mécanique et/ou un polissage mécano-chimique est(sont) appliqué(s) à une face libre de la couche support, entre l’étape d) et l’étape e);
  • l’étape a) comprend la formation, sur le substrat initial, d’une couche monocristalline de conversion, pour convertir des défauts de type dislocation du plan basal du substrat initial en défauts de type dislocations coin traversantes;
  • l’étape b) de croissance par épitaxie est effectuée à une température supérieure à 1200°C, préférentiellement comprise entre 1500°C et 1650°C;
  • l’étape e) de séparation est opérée à une température supérieure à la température du dépôt de l’étape d);
  • l’étape e) de séparation s’opère au cours de l’étape d) de dépôt, préférentiellement à la fin de l’étape d);
  • l’étape e) de séparation et l’étape f) de cristallisation sont opérées au cours d’un même traitement thermique;
  • l’étape g) comprend un polissage mécano-chimique simultané d’une face avant et d’une face arrière de la structure composite;
  • le procédé comprend une étape de reconditionnement du reste du substrat donneur en vue d’une réutilisation en tant que substrat initial ou en tant que substrat donneur.
BREVE DESCRIPTION DES FIGURES
D’autres caractéristiques et avantages de l’invention ressortiront de la description détaillée de l’invention qui va suivre en référence aux figures annexées sur lesquelles:
La figure 1 présente une structure composite élaborée selon un procédé de fabrication conforme à l’invention;
Les figures 2a à 2g présentent des étapes d’un procédé de fabrication conforme à l’invention;
Les figures 3a et 3b présentent des étapes d’un procédé de fabrication conforme à l’invention.
DESCRIPTION DETAILLEE DE L’INVENTION
Dans la partie descriptive, les mêmes références sur les figures pourront être utilisées pour des éléments de même type. Les figures sont des représentations schématiques qui, dans un objectif de lisibilité, ne sont pas à l’échelle. En particulier, les épaisseurs des couches selon l’axe z ne sont pas à l’échelle par rapport aux dimensions latérales selon les axes x et y ; et les épaisseurs relatives des couches entre elles ne sont pas nécessairement respectées sur les figures.
La présente invention concerne un procédé de fabrication d’une structure composite 1 comprenant une couche mince 10 en carbure de silicium monocristallin disposée sur un substrat support 20 en carbure de silicium (figure 1). Le substrat support 20 est avantageusement poly-cristallin («p-SiC» sera utilisé pour parler de SiC poly-cristallin).
Le procédé comprend en premier lieu une étape a) de fourniture d’un substrat initial 11 en carbure de silicium monocristallin (figure 2a). Dans la suite de la description, «c-SiC» sera utilisé pour parler de carbure de silicium monocristallin.
Le substrat initial 11 se présente préférentiellement sous la forme d’une plaquette de diamètre 100mm, 150mm ou 200mm, voire 300mm ou même 450mm, et d’épaisseur comprise typiquement entre 300 et 800 microns. Il présente une face avant 11a et une face arrière 11b. La rugosité de surface de la face avant 11a est avantageusement choisie inférieure à 1 nm Ra, rugosité moyenne («average roughness» selon la terminologie anglo-saxonne) mesurée par microscopie à force atomique (AFM) sur un scan de 20 microns x 20 microns.
Le procédé comprend ensuite une étape b) de croissance par épitaxie d’une couche donneuse 110 en carbure de silicium monocristallin sur le substrat initial 11, pour former un substrat donneur 111 (figure 2b). L’étape de croissance par épitaxie est réalisée de sorte que la couche donneuse 110 présente une densité de défauts cristallins inférieure à celle du substrat initial 11.
Typiquement, le substrat initial 11 en c-SiC est de polytype 4H ou 6H, présentant une désorientation (“offcut”) inférieure à 4.0˚ par rapport à l’axe cristallographique <11-20> ± 0.5˚, et une densité de dislocations traversantes («Micropipes») inférieure ou égale à 5/cm2, voire inférieure à 1/cm2. Par exemple dopé de type N (azote), il présente une résistivité préférentiellement comprise entre 0.015 ohm.cm et 0.030 ohm.cm. On pourra choisir un substrat initial 11 présentant une faible densité de défauts de type dislocation du plan basal ou BPD (pour «basal plane dislocation» selon la terminologie anglo-saxonne), typiquement inférieure ou égale à 3000/cm2. Des substrats de c-SiC présentant des densités de BPD de l’ordre de 1500/cm2sont raisonnablement disponibles, ce qui facilite leur approvisionnement.
Il est souhaitable que la couche donneuse 110, à partir de laquelle la couche mince 10 en c-SiC de la structure composite 1 sera formée à l’issue du procédé de la présente invention, présente une qualité cristalline supérieure à celle du substrat initial 11, pour répondre aux spécifications requises des composants verticaux destinés à être élaborés sur ladite couche mince 10. Différents types de défauts étendus sont présents dans une couche ou un substrat en c-SiC. Ces défauts étendus peuvent affecter les performances et la fiabilité des composants. En particulier, les défauts de type BPD sont tueurs pour des composants bipolaires: en effet, un défaut d'empilement de type Shockley ou SSF (pour «Shockley stacking fault») est étendu à partir de la dislocation lorsque l'énergie de recombinaison d’une paire électron-trou est disponible. L'expansion d'un défaut d’empilement SSF à l'intérieur de la région active du composant entraîne une augmentation de la résistance à l’état passant du composant.
La couche donneuse 110 en c-SiC est donc élaborée de manière à présenter une densité de défauts de type BPD inférieure ou égale à 1/cm2.
Pour cela, l’étape b) de croissance par épitaxie est effectuée à une température supérieure à 1200°C, préférentiellement comprise entre 1500°C et 1650°C. Les précurseurs utilisés sont le silane (SiH4), le propane (C3H8) ou l’éthylène (C2H4); le gaz porteur pourra être de l’hydrogène avec ou sans argon.
Le faible taux de défauts BPD dans la couche donneuse 110 est obtenu en privilégiant la conversion des défauts BPD présents dans le substrat initial 11 en dislocations coins traversantes ou TED (pour «Threading Edge Dislocations»).
Selon un mode de réalisation particulier, l’étape a) comprend la formation d’une couche monocristalline de conversion 13, préférentiellement basée sur du c-SiC, pour maximiser la conversion des défauts de type BPD du substrat initial 11 en défauts de type TED (figure 3a). Pour cela, il est avantageux de choisir un angle de découpe faible proche de 4° pour le substrat initial 11 en c-SiC, d’augmenter la gravure in situ réalisée avant la croissance épitaxiale, de viser de fortes vitesses de croissance (typiquement supérieures à 5µm/h) et enfin de choisir des conditions de croissance de la couche monocristalline de conversion 13, avec un ratio C/Si au niveau des flux de précurseurs proche de 1.
L’étape b) consiste ensuite à réaliser la croissance épitaxiale de la couche donneuse 110 sur ladite couche de conversion 13 (figure 3b). Selon ce mode particulier de réalisation, il est également possible d’obtenir une couche donneuse 110 en c-SiC présentant une densité de défauts de type BPD inférieure ou égale à 1/cm2voire inférieure à 0,1/cm². De plus, la probabilité de dégradation bipolaire (probabilité qu’un trou arrive sous le point de conversion BPD/TED) à l’issue du procédé selon la présente invention est négligeable (< 0.1%), la couche monocristalline de conversion 13 n’étant pas destinée à être transférée dans la structure composite 1. L’état de l’art visant à réduire les dégradations bipolaires consiste à intégrer entre la couche de conversion et la couche active, une couche de recombinaison (dopée azote au-delà 1E18 at/cm3). Cette couche peut, au prix d’une épaisseur de 10µm et d’une concentration supérieure à 5E18/cm3, réduire la probabilité de présence des trous à 0,1% par rapport à la structure de base ne comportant pas cette couche de recombinaison. Dans la présente invention, la couche monocristalline de conversion 13 n’étant pas transférée, la probabilité qu’un trou atteigne le point de nucléation de la dégradation bipolaire (point de conversion BPD – TED ou tout point de BPD) est a minima inférieure à 0,1%, voire très proche de 0%.
Notons que des séquences conventionnelles de nettoyage ou de gravure du substrat initial 11, visant à éliminer tout ou partie de contaminants particulaires, métalliques, organiques, ou une couche d’oxyde natif potentiellement présents sur sa face avant 11a, pourront être réalisées préalablement à l’étape b) de croissance par épitaxie.
Le procédé de fabrication selon l’invention comprend, en outre, une étape c) d’implantation ionique d’espèces légères dans la couche donneuse 110, jusqu’à une profondeur déterminée représentative de l’épaisseur de couche mince 10 souhaitée et dans tous les cas n’atteignant pas substrat initial 11 (et/ou la couche de conversion 13, lorsque celle-ci est présente). Cette implantation génère un plan fragile enterré 12 dans la couche donneuse 110 qui délimite la couche mince 10 entre ledit plan fragile enterré 12 et une surface libre 11a de ladite couche donneuse 110 (figure 2c).
Les espèces légères implantées sont préférentiellement de l’hydrogène, de l’hélium ou une co-implantation de ces deux espèces. Comme cela est bien connu en référence au procédé Smart CutTM, ces espèces légères vont former, autour de la profondeur déterminée, des microcavités distribuées dans une fine couche parallèle à la surface libre 11a de la couche donneuse 110, soit parallèle au plan (x,y) sur les figures. On appelle cette fine couche le plan fragile enterré 12, par souci de simplification.
L’énergie d’implantation des espèces légères est choisie de manière à atteindre la profondeur déterminée dans la couche donneuse 110.
Typiquement, des ions hydrogène seront implantés à une énergie comprise entre 10 keV et 250 keV, et à une dose comprise entre 5E16/cm2 et 1E17/cm2, pour délimiter une couche mince 10 présentant une épaisseur de l’ordre de 100 à 1500 nm.
Notons qu’une couche de protection pourra être déposée sur la face libre de la couche donneuse 110, préalablement à l’étape d’implantation ionique. Cette couche de protection peut être composée par un matériau tel que l’oxyde de silicium ou le nitrure de silicium par exemple.
Le procédé selon l’invention comprend ensuite une étape d) de dépôt chimique en phase vapeur assisté par injection liquide directe (DLI-CVD, pour «Direct Liquide Injection-CVD»), à une température inférieure à 1000°C et préférentiellement inférieure à 900°C, pour former une couche support 20’ directement sur la surface libre de la couche donneuse 110 (figure 2d). Le dépôt de l’étape d) peut être effectué à une température comprise entre 100°C et 800°C, entre 100°C et 700°C, voire avantageusement entre 200°C et 600°C. La pression dans la chambre de dépôt est préférentiellement définie entre 1 Torr et 500 Torr.
La technique de dépôt DLI-CVD procure de bons rendements entre les matières (précurseurs) apportés et les épaisseurs de dépôt atteintes, sans nécessité d’utiliser des précurseurs chlorés, ce qui limite les coûts et les contraintes environnementales.
Préférentiellement, le dépôt DLI-CVD met en œuvre un précurseur disilanebutane ou un précurseur polysilyléthylène, ledit précurseur étant pur ou dilué. D’autres précurseurs tels que le methyltrichlorosilane, l’ethylenetrichlorosilane, le dichloromethylvinylsilane, le tetraethylsilane, le tetramethylsilane, le diethylmethylsilane, le bistrimethylsilylmethane, l’hexamethyldisilane pourraient éventuellement être utilisés.
Une telle technique est décrite dans la thèse de Guilhaume Boisselier (2013, «Dépôt chimique en phase vapeur de carbures de chrome, de silicium et d'hafnium assisté par injection liquide pulsée»), pour des applications de dépôt de revêtements céramiques sur des pièces, pour les protéger lors de traitements à très hautes températures, par exemple des pièces métalliques en acier ou alliages.
La demanderesse a développé une étape d) de dépôt DLI-CVD pour une application tout à fait différente, à savoir la formation d’une couche support 20’ sur une couche donneuse 110 en c-SiC, pour obtenir, à l’issue du procédé de fabrication, une structure composite 1, destinée au domaine microélectronique.
La couche support 20’ déposée forme une matrice SiC comprenant du SiC amorphe, et des sous-produits de réaction issus des précurseurs utilisés lors du dépôt et formés de chaines carbonées. En outre, la matrice SiC peut éventuellement comprendre des grains cristallins de SiC.
La technique DLI-CVD peut procurer une vitesse de dépôt supérieure ou égale à 10 microns/heure, voire supérieure à 50 microns/heure, voire encore supérieure à 100 microns/heure. Compte tenu de la température moyenne de dépôt, la vitesse de dépôt ne nécessite pas d’être élevée (en dehors de raisons économiques évidentes), car la croissance activée thermiquement des cavités du plan fragile enterré 12 reste lente dans ces gammes de température, permettant aisément d’atteindre une épaisseur de couche support 20’ apte à assurer un effet raidisseur vis-à-vis du plan fragile enterré 12.
A l’issue de l’étape d), la couche support 20’ présente une épaisseur supérieure ou égale à 10 microns, à 50 microns, à 100 microns, voire supérieure ou égale à 200 microns. L’empilement 211 résultant de l’étape d) comprend la couche support 20’ disposée sur la couche donneuse 110, elle-même disposée sur le substrat initial 11.
Le procédé selon la présente invention comprend ensuite une étape e) de séparation le long du plan fragile enterré 12, pour former d’une part la structure composite intermédiaire 1’ et d’autre part le reste 111’ du substrat donneur (figure 2e).
Selon un mode avantageux de mise en œuvre, l’étape e) de séparation est opérée en appliquant un traitement thermique à l’empilement 211, à une température de séparation supérieure à la température du dépôt de l’étape d). En effet, les microcavités présentes dans le plan fragile enterré 12 suivent une cinétique de croissance jusqu’à l’initiation d’une onde de fracture qui va se propager sur toute l’étendue du plan fragile enterré 12 et provoquer la séparation entre la structure composite intermédiaire 1’, et le reste du substrat initial 111’. En pratique, la température pourra être comprise entre 950°C et 1200°C, et préférentiellement entre 1000°C et 1200°C, en fonction des conditions d’implantation de l’étape c).
Selon un mode alternatif de mise en œuvre, l’étape e) de séparation est opérée par application d’une contrainte mécanique à l’empilement 211, optionnellement précédée d’un traitement thermique de fragilisation du plan fragile enterré 12. La contrainte pourra par exemple être exercée par l’insertion d’un outil (ex: lame de rasoir) à proximité du plan fragile enterré 12. A titre d’exemple, la contrainte de séparation pourra être de l’ordre de quelques GPa, préférentiellement supérieure à 2GPa.
Selon encore un autre mode de mise en œuvre, l’étape e) de séparation le long du plan fragile enterré 12 s’opère pendant ou directement à la fin de l’étape d) de dépôt DLI-CVD, en particulier lorsque les températures de dépôt sont dans la gamme 900°C – 1000°C.
Le procédé de fabrication selon la présente invention comprend ensuite une étape f) de traitement thermique à une température comprise entre 1000°C et 1800°C, appliquée à la structure composite intermédiaire 1’, pour cristalliser la couche support 20’ et former le substrat support 20 poly-cristallin.
L’atmosphère de recuit peut notamment comprendre des gaz tels que l’argon, l’azote, l’hydrogène, l’hélium ou un mélange de ces gaz.
Un tel recuit a pour effet d’éliminer l’hydrogène de la couche support 20’ et de provoquer la cristallisation de la matrice SiC sous forme de SiC poly-cristallin.
Un four traditionnel, permettant le traitement d’une pluralité de structures simultanément (recuit en batch) peut être utilisé pour réaliser le traitement thermique de cristallisation. La durée typique du traitement est alors comprise entre quelques minutes et quelques heures.
Il est éventuellement envisageable de réaliser le traitement thermique de cristallisation in situ, dans la chambre de dépôt DLI, pendant une durée typique de l’ordre de quelques minutes.
Avantageusement, les rampes de montée et de descente en température seront limitées, par exemple inférieures à 20°/min, inférieures à 5°/min, voire inférieures à 1°/min, pour limiter l’apparition de fissures ou défauts structurels dans la couche cristallisée.
Après l’étape f), on obtient une structure composite 1 comprenant une couche mince 10 en carbure de silicium monocristallin disposée sur un substrat support 20 en carbure de silicium poly-cristallin.
Les paramètres de dépôt (étape d) et de recuit de cristallisation (étape f) sont déterminés pour que ledit substrat support 20 présente:
  • une bonne conductivité électrique, soit inférieure ou égale à 0,03 ohm.cm, voire inférieure ou égale à 0,01 ohm.cm,
  • une haute conductivité thermique, soit supérieure ou égale à 150 W.m-1.K-1, voire supérieure ou égale à 200 W.m-1.K-1,
  • et un coefficient de dilatation thermique proche de celui de la couche mince 10, soit typiquement entre 3,8E-6 /K et 4,2E-6 /K à température ambiante.
Pour obtenir ces propriétés, on vise préférentiellement pour le substrat support 20 les caractéristiques structurelles suivantes: structure poly-cristalline, grains de type 3C SiC, orientés [111], de taille moyenne 1 à 50µm dans le plan principal du substrat, dopage de type N pour une résistivité finale inférieure ou égale à 0,03 ohm.cm, voire inférieure ou égale à 0,01 ohm.cm.
De plus, on vise préférentiellement une interface non-isolante entre la couche donneuse 110 et le substrat support 20. Typiquement, il est attendu une résistance spécifique de l’interface typiquement inférieure à 1 mohm.cm2. Pour assurer la conductivité électrique de l’interface, un retrait de l’oxyde natif présent sur la face libre de la couche donneuse 110 est réalisé par désoxydation HF (acide fluorhydrique), par voie humide ou sèche, préalablement au dépôt de l’étape d). Alternativement, un surdopage au moins des premiers nanomètres déposés de la couche support 20’ pourra être opéré par l’introduction d’espèce dopantes lors du dépôt DLI-CVD de l’étape d). Notons que, de manière générale, des espèces dopantes pourront être introduites (à différents dosages) lors du dépôt de l’étape d) selon le niveau de dopage et la conductivité électrique visés du substrat support 20, laquelle conductivité sera effective à l’issue du recuit de cristallisation de l’étape f).
De manière également avantageuse, préalablement à la désoxydation et/ou à la formation la couche support 20’, des séquences de nettoyage sont appliquées au substrat donneur 111 pour éliminer tout ou partie de contaminants particulaires, métalliques ou organiques potentiellement présents sur ses faces libres.
Comme cela est connu en soi, à l’issue de l’étape e) de séparation, la face libre 10a de la couche mince 10 de la structure composite 1 présente une rugosité de surface comprise entre 5 et 100 nm RMS (par mesure au microscope à force atomique (AFM), sur des scans de 20 microns x 20 microns).
Une étape g) de traitement(s) mécanique(s) et/ou chimique(s) de la structure composite 1 est donc prévue pour lisser la surface libre 10a de la couche mince 10 et/ou pour corriger l’uniformité d’épaisseur de la structure composite 1 (figure 2f).
L’étape g) peut comprendre un polissage mécano-chimique (CMP) de la face libre 10a de la couche mince 10, typiquement avec un retrait de matière de l’ordre de 50 nm à 1000 nm, de manière à obtenir une rugosité finale inférieure à 0,5 nm Rms (sur un champ AFM de 20x20µm), voire inférieure à 0,3 nm. L’étape g) peut également comprendre un traitement chimique ou plasma (nettoyage ou gravure), par exemple un nettoyage de type SC1/SC2 (Standard Clean 1, Standard Clean 2) et/ou HF (acide fluorhydrique), ou un plasma N2, Ar, CF4, etc, pour améliorer encore la qualité de la face libre 10a de la couche mince 10.
Il est important de noter que la cristallisation de la couche support 20’ provoque souvent des fissures ou défauts structurels dans le couche cristallisée (qui forme le substrat support 20), ce qui impacte sa qualité mécanique et électrique.
Ainsi, l’étape g) peut comprendre un polissage mécano-chimique (CMP) et/ou un traitement chimique (gravure ou nettoyage) et/ou un traitement mécanique (rectification) de la face arrière 20b du substrat support 20; cela afin d’éliminer en tout ou partie les fissures et défauts structurels, d’améliorer l’uniformité d’épaisseur dudit substrat support 20 ainsi que sa rugosité en face arrière 20b. L’épaisseur retirée en face arrière pourra être comprise entre environ 100 microns et quelques microns.
Une rugosité inférieure à 0,5 nm RMS (par mesure au microscope à force atomique (AFM), sur des champs de 20 microns x 20 microns) est souhaitée pour élaborer des composants verticaux, pour lesquels au moins une électrode métallique sera présente sur la face arrière 20b du substrat composite 1.
On pourra également réaliser lors de cette étape g) un polissage ou une rectification des bords de la structure composite 1 pour rendre compatible la forme de son contour circulaire et de la tombée de bord avec les exigences des procédés de fabrication microélectronique.
Notons que les traitements appliqués à la face arrière 20b du substrat support 20 pourraient optionnellement être appliqués à la face libre de la couche support 20’, juste avant l’étape e) de séparation, c’est-à-dire avant que la face avant 10a de la structure composite 1 ne soit mise à nu, de manière à limiter sa contamination, notamment au cours de traitements polluants ou contraignants tels que la gravure chimique ou le rodage mécanique (rectification).
Selon un mode de réalisation avantageux, l’étape g) de traitement mécano-chimique comprend un polissage (CMP) simultané d’une face avant 10a et d’une face arrière 20b de la structure composite 1, pour lisser et améliorer l’uniformité d’épaisseur de ladite structure 1. Les paramètres de polissage pourront être différents entre la face avant et la face arrière, le lissage d’une surface de c-SiC et d’une surface de p-SiC requérant habituellement des consommables différents. On privilégie en particulier la composante mécanique du polissage pour la face arrière 20b lorsque le substrat support 20 est en p-SiC, pour limiter l’attaque préférentielle des joints de grains par la composante chimique du polissage. Au titre d’exemple, les paramètres de polissage, comme la vitesse de rotation (tête de polissage et plateau), la pression, la concentration et les propriétés physiques des abrasifs (i.e. diamètre de nanoparticules de diamant entre une dizaine de nm et 1µm), peuvent être modifiés pour accentuer la composante mécanique.
Optionnellement, une étape g’) de traitement thermique à une température comprise entre 1000°C et 1800°C, pendant environ une heure et jusqu’à quelques heures, est opérée après l’étape g). L’objectif de cette étape est de stabiliser la structure composite 1, en guérissant des défauts structurels ou de surface, encore présents dans et/ou sur la couche mince 10, et en faisant, le cas échéant, sensiblement évoluer la configuration cristalline du substrat support 20, de sorte que la structure 1 soit compatible avec des traitements thermiques ultérieurs à hautes températures, requis pour la fabrication de composants sur la couche mince 10.
Le procédé selon l’invention peut comprendre une deuxième étape h) de croissance par épitaxie d’une couche additionnelle 10’ de carbure de silicium monocristallin sur la couche mince 10 de la structure composite 1 (figure 2g). Une telle étape est appliquée lorsqu’une épaisseur relativement importante de couche utile 100 est nécessaire pour la fabrication de composants, typiquement, de l’ordre de 5 à 50 microns.
On pourra choisir de limiter les températures appliquées lors de cette étape h), de manière à restreindre les contraintes induites dans la couche utile 100 (correspondant à l’ensemble couche mince 10 et couche additionnelle 10’) du fait de la structure composite 1.
Enfin, le procédé de fabrication peut comprendre une étape de reconditionnement du reste 111’ du substrat donneur en vue d’une réutilisation en tant que substrat initial 1 ou en tant que substrat donneur 111. Une telle étape de reconditionnement est basée sur un ou plusieurs traitements de la face 110’a (figure 2e), par polissage mécano-chimique de surface ou de bords, et/ou par rectification mécanique, et/ou par gravure chimique sèche ou humide.
Préférentiellement, l’épaisseur de la couche donneuse 110 formée à l’étape b) est définie de sorte que le reste 111’ du substrat donneur 111 puisse être réutilisé au moins deux fois en tant que substrat donneur 111.
Préférentiellement, lorsque la couche de conversion 13 est présente, on prendra garde à conserver ladite couche intacte, c’est-à-dire à conserver toujours une part de couche donneuse 10 sur le reste 111’ du substrat donneur. Ainsi, lorsque la part de couche donneuse 10 est insuffisante pour l’élaboration d’une structure composite 1, seule l’étape de croissance par épitaxie de couche donneuse 10 est nécessaire et non l’étape préalable de croissance de la couche de conversion 13.
Selon un exemple non limitatif de mise en œuvre, le substrat initial 11 fourni à l’étape a) du procédé de fabrication est une plaquette de c-SiC, de polytype 4H, d’orientation 4.0˚ par rapport à l’axe <11-20> ± 0.5˚, de diamètre 150mm et d’épaisseur 350µm.
Une séquence classique de nettoyage de type RCA (Standard Clean 1 + Standard Clean 2), puis Caro (mélange d’acide sulfurique et d’eau oxygénée), puis HF (acide fluorhydrique), est opérée sur le substrat initial 11 préalablement à l’étape b) de croissance épitaxiale de la couche donneuse 110 en c-SiC.
La croissance est réalisée dans une chambre d’épitaxie, à une température de 1650°C, avec des précurseurs tels que le silane (SiH4) et le propane (C3H8) ou l’éthylène (C2H4), générant la couche donneuse 110 en c-SiC de 30 microns d’épaisseur (vitesse de croissance: 10 microns/h). La couche donneuse présente une densité de défauts BPD de l’ordre de 1/cm2.
L’implantation d’ions hydrogène est opérée à une énergie de 150 keV et une dose de 6E16 H+/cm2, à travers la surface libre de la couche donneuse 110. Un plan fragile enterré 12 est ainsi créé à une profondeur d’environ 800 nm dans le substrat initial 11.
Une séquence de nettoyage de type RCA + Caro est opérée sur le substrat donneur 111, de manière à éliminer les potentielles contaminations sur la face libre de la couche donneuse 110.
Un dépôt DLI-CVD est effectué sur la couche donneuse 110, à une température de 800°C, avec le précurseur disilanebutane (DSB), sous une pression de 50 Torr, pendant 60 minutes, de manière à atteindre une épaisseur d’au moins 150 microns pour la couche support 20’. Dans ces conditions, la couche support 20’ déposée forme une matrice SiC amorphe, comprenant des sous-produits de réaction issus des précurseurs de dépôt.
Un recuit à 1000°C est ensuite appliqué à l’empilement 211 pendant 50 minutes, et la séparation s’opère au niveau du plan fragile enterré 12 au cours dudit recuit. A l’issue de cette étape e) de séparation, la structure composite intermédiaire 1’ formée de la couche mince 10 et de la couche support 20’ est séparée du reste 111’ du substrat donneur.
Un traitement thermique de cristallisation à 1200°C, pendant 1h, sous atmosphère argon, est ensuite appliqué à ladite structure composite intermédiaire 1’, pour former le substrat support 20 en poly-SiC de la structure composite 1.
Alternativement, la séparation et la cristallisation peuvent être opérées lors d’un même traitement thermique, par exemple à 1200°C sous atmosphère neutre.
Une rectification mécanique de la face arrière du substrat support 20 éliminant environ 15 à 30 microns permet d’éliminer des fissures et défauts structurels générés par la cristallisation de la matrice SiC.
Un ou plusieurs polissage(s) mécano-chimiques est(sont) ensuite opéré(s) pour restaurer la rugosité de surface de la couche mince 10 et de la face arrière du substrat support 20, suivi(s) de séquences de nettoyage classiques.
Bien entendu, l’invention n’est pas limitée aux modes de réalisation et aux exemples décrits, et on peut y apporter des variantes de réalisation sans sortir du cadre de l’invention tel que défini par les revendications.

Claims (13)

  1. Procédé de fabrication d’une structure composite (1) comprenant une couche mince (10) en carbure de silicium monocristallin disposée sur un substrat support (20) en carbure de silicium, le procédé comprenant:
    a) une étape de fourniture d’un substrat initial (11) en carbure de silicium monocristallin,
    b) une étape de croissance par épitaxie d’une couche donneuse (110) en carbure de silicium monocristallin sur le substrat initial (11), pour former un substrat donneur (111), la couche donneuse (110) présentant une densité de défauts cristallins inférieure à celle du substrat initial (11),
    c) une étape d’implantation ionique d’espèces légères dans la couche donneuse (110), pour former un plan fragile enterré (12) délimitant la couche mince (10) entre ledit plan fragile enterré (12) et une surface libre de ladite couche donneuse (110),
    d) une étape de dépôt chimique en phase vapeur assisté par injection liquide directe, à une température inférieure à 1000°C, pour former une couche support (20’) directement sur la surface libre de la couche donneuse (110), ladite couche support (20’) étant formée par une matrice SiC au moins partiellement amorphe,
    e) une étape de séparation le long du plan fragile enterré (12), pour former d’une part une structure composite intermédiaire (1’) comprenant la couche mince (10) sur la couche support (20’), et d’autre part le reste (111’) du substrat donneur,
    f) une étape de traitement thermique à une température comprise entre 1000°C et 1800°C, appliquée à la structure composite intermédiaire (1’), pour cristalliser la couche support (20’) et former le substrat support (20) poly-cristallin,
    g) une étape de traitement(s) mécanique(s) et/ou chimique(s) de la structure composite (1), le (ou les) traitement(s) étant appliqué(s) à une face libre du substrat support (20), face arrière de la structure composite (1), et/ou à une face libre de la couche mince (10), face avant de la structure composite (1).
  2. Procédé de fabrication selon la revendication précédente, dans lequel le dépôt de l’étape d) est effectué à une température comprise entre 100°C et 700°C, voire préférentiellement entre 200°C et 600°C.
  3. Procédé de fabrication selon l’une des revendications précédentes, dans lequel le dépôt de l’étape d) est effectué sous une pression comprise entre 1 Torr et 500 Torr.
  4. Procédé de fabrication selon l’une des revendications précédentes, dans lequel les précurseurs utilisés lors du dépôt de l’étape d) sont choisis parmi le polysilyléthylène et le disilabutane.
  5. Procédé de fabrication selon l’une des revendications précédentes, dans lequel, à l’issue du dépôt de l’étape d), la couche support (20’) présente une épaisseur supérieure ou égale à 10 microns, voire une épaisseur supérieure ou égale à 50 microns, voire une épaisseur supérieure ou égale à 100 microns, voire encore une épaisseur supérieure ou égale à 200 microns.
  6. Procédé de fabrication selon l’une des revendications précédentes, dans lequel une gravure chimique, un rodage mécanique et/ou un polissage mécano-chimique est(sont) appliqué(s) à une face libre de la couche support (20’), entre l’étape d) et l’étape e).
  7. Procédé de fabrication selon l’une des revendications précédentes, dans lequel l’étape a) comprend la formation, sur le substrat initial (11), d’une couche monocristalline de conversion (13), pour convertir des défauts de type dislocation du plan basal du substrat initial (11) en défauts de type dislocations coin traversantes.
  8. Procédé de fabrication selon l’une des revendications précédentes, dans lequel l’étape b) de croissance par épitaxie est effectuée à une température supérieure à 1200°C, préférentiellement comprise entre 1500°C et 1650°C.
  9. Procédé de fabrication selon l’une des revendications précédentes, dans lequel l’étape e) de séparation est opérée à une température supérieure à la température du dépôt de l’étape d).
  10. Procédé de fabrication selon l’une des revendications de 1 à 8, dans lequel l’étape e) de séparation s’opère au cours de l’étape d) de dépôt, préférentiellement à la fin de l’étape d).
  11. Procédé de fabrication selon l’une des revendications de 1 à 9, dans lequel l’étape e) de séparation et l’étape f) de cristallisation sont opérées au cours d’un même traitement thermique.
  12. Procédé de fabrication selon l’une des revendications précédentes, dans lequel l’étape g) comprend un polissage mécano-chimique simultané d’une face avant et d’une face arrière de la structure composite (1).
  13. Procédé de fabrication selon l’une des revendications précédentes, comprenant une étape de reconditionnement du reste (111’) du substrat donneur en vue d’une réutilisation en tant que substrat initial ou en tant que substrat donneur.
FR2003025A 2019-11-29 2020-03-27 Procede de fabrication d’une structure composite comprenant une couche mince en sic monocristallin sur un substrat support en sic Active FR3103961B1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
TW109135222A TWI861253B (zh) 2020-03-27 2020-10-12 用於製作複合結構之方法,該複合結構包含一單晶SiC薄層在一SiC載體底材上
KR1020227016777A KR20220107174A (ko) 2019-11-29 2020-10-26 SiC 캐리어 기재 상에 단결정 SiC의 박층을 포함하는 복합 구조체를 제조하기 위한 방법
JP2022523651A JP2023502571A (ja) 2019-11-29 2020-10-26 SiCでできたキャリア基材上に単結晶SiCの薄層を備える複合構造を作成するプロセス
CN202080080496.1A CN114730699A (zh) 2019-11-29 2020-10-26 制造包括位于由SiC制成的载体基板上的单晶SiC薄层的复合结构的方法
US17/756,609 US20220415653A1 (en) 2019-11-29 2020-10-26 Method for manufacturing a composite structure comprising a thin layer of monocrystalline sic on an sic carrier substrate
PCT/FR2020/051929 WO2021105576A1 (fr) 2019-11-29 2020-10-26 Procede de fabrication d'une structure composite comprenant une couche mince en sic monocristallin sur un substrat support en sic
EP20807826.1A EP4066275B1 (fr) 2019-11-29 2020-10-26 Procede de fabrication d'une structure composite comprenant une couche mince en sic monocristallin sur un substrat support en sic

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1913553A FR3103962B1 (fr) 2019-11-29 2019-11-29 Procede de fabrication d’une structure composite comprenant une couche mince en sic monocristallin sur un substrat support en sic cristallin
FR1913553 2019-11-29

Publications (2)

Publication Number Publication Date
FR3103961A1 true FR3103961A1 (fr) 2021-06-04
FR3103961B1 FR3103961B1 (fr) 2021-10-29

Family

ID=69630512

Family Applications (2)

Application Number Title Priority Date Filing Date
FR1913553A Active FR3103962B1 (fr) 2019-11-29 2019-11-29 Procede de fabrication d’une structure composite comprenant une couche mince en sic monocristallin sur un substrat support en sic cristallin
FR2003025A Active FR3103961B1 (fr) 2019-11-29 2020-03-27 Procede de fabrication d’une structure composite comprenant une couche mince en sic monocristallin sur un substrat support en sic

Family Applications Before (1)

Application Number Title Priority Date Filing Date
FR1913553A Active FR3103962B1 (fr) 2019-11-29 2019-11-29 Procede de fabrication d’une structure composite comprenant une couche mince en sic monocristallin sur un substrat support en sic cristallin

Country Status (7)

Country Link
US (1) US20230260841A1 (fr)
EP (1) EP4066274A1 (fr)
JP (1) JP2023502572A (fr)
KR (1) KR20220107173A (fr)
CN (1) CN114746980A (fr)
FR (2) FR3103962B1 (fr)
WO (1) WO2021105575A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3127627B1 (fr) * 2021-09-29 2024-08-09 Soitec Silicon On Insulator Procédé de fabrication d’une structure composite comprenant une couche mince en sic monocristallin sur un substrat support en sic polycristallin
CN114075699B (zh) * 2021-11-21 2024-04-12 苏州晶瓴半导体有限公司 一种双层复合碳化硅衬底及其制备方法
CN115058765B (zh) * 2022-05-18 2024-06-28 北京青禾晶元半导体科技有限责任公司 一种碳化硅复合基板的制造方法
CN115595671B (zh) 2022-12-12 2023-08-15 青禾晶元(天津)半导体材料有限公司 一种复合衬底的制备方法
CN115910755A (zh) * 2023-01-09 2023-04-04 宁波合盛新材料有限公司 一种碳化硅外延片及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273524A (ja) * 2006-03-30 2007-10-18 Mitsui Eng & Shipbuild Co Ltd 複層構造炭化シリコン基板の製造方法
US8436363B2 (en) 2011-02-03 2013-05-07 Soitec Metallic carrier for layer transfer and methods for forming the same
DE102014103518A1 (de) * 2013-03-14 2014-09-18 Infineon Technologies Ag Ein verfahren zum herstellen eines siliziumkarbidsubstrats für eine elektrische siliziumkarbidvorrichtung, ein siliziumkarbidsubstrat und eine elektrische siliziumkarbidvorrichtung
EP3168862A1 (fr) 2014-07-10 2017-05-17 Kabushiki Kaisha Toyota Jidoshokki Substrat semi-conducteur et procédé de fabrication de substrat semi-conducteur
US20180251910A1 (en) * 2015-09-15 2018-09-06 Shin-Etsu Chemical Co., Ltd. MANUFACTURING METHOD OF SiC COMPOSITE SUBSTRATE

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013036376A2 (fr) * 2011-09-10 2013-03-14 Semisouth Laboratories, Inc. Procédés de croissance épitaxiale de carbure de silicium
JP6271309B2 (ja) * 2014-03-19 2018-01-31 株式会社東芝 半導体基板の製造方法、半導体基板および半導体装置
US20190013198A1 (en) * 2016-02-10 2019-01-10 Sumitomo Electric Industries, Ltd. Silicon carbide epitaxial substrate and method for manufacturing silicon carbide semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273524A (ja) * 2006-03-30 2007-10-18 Mitsui Eng & Shipbuild Co Ltd 複層構造炭化シリコン基板の製造方法
US8436363B2 (en) 2011-02-03 2013-05-07 Soitec Metallic carrier for layer transfer and methods for forming the same
DE102014103518A1 (de) * 2013-03-14 2014-09-18 Infineon Technologies Ag Ein verfahren zum herstellen eines siliziumkarbidsubstrats für eine elektrische siliziumkarbidvorrichtung, ein siliziumkarbidsubstrat und eine elektrische siliziumkarbidvorrichtung
EP3168862A1 (fr) 2014-07-10 2017-05-17 Kabushiki Kaisha Toyota Jidoshokki Substrat semi-conducteur et procédé de fabrication de substrat semi-conducteur
US20180251910A1 (en) * 2015-09-15 2018-09-06 Shin-Etsu Chemical Co., Ltd. MANUFACTURING METHOD OF SiC COMPOSITE SUBSTRATE

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Dépôt chimique en phase vapeur de carbures de chrome, de silicium et d'hafnium assisté par injection liquide pulsée", GUILHAUME BOISSELIER, 2013
F.MU ET AL., ECS TRANSACTIONS, vol. 86, no. 5, 2018, pages 3 - 21

Also Published As

Publication number Publication date
EP4066274A1 (fr) 2022-10-05
FR3103962B1 (fr) 2021-11-05
KR20220107173A (ko) 2022-08-02
WO2021105575A1 (fr) 2021-06-03
JP2023502572A (ja) 2023-01-25
CN114746980A (zh) 2022-07-12
FR3103961B1 (fr) 2021-10-29
TW202137284A (zh) 2021-10-01
FR3103962A1 (fr) 2021-06-04
US20230260841A1 (en) 2023-08-17

Similar Documents

Publication Publication Date Title
EP4128328B1 (fr) Procede de fabrication d&#39;une structure composite comprenant une couche mince en sic monocristallin sur un substrat support en sic
FR3103961A1 (fr) Procede de fabrication d’une structure composite comprenant une couche mince en sic monocristallin sur un substrat support en sic
EP4128329B1 (fr) Procede de fabrication d&#39;une structure composite comprenant une couche mince en sic monocristallin sur un substrat support en sic
FR2842650A1 (fr) Procede de fabrication de substrats notamment pour l&#39;optique, l&#39;electronique ou l&#39;opto-electronique
EP4008020B1 (fr) Procede de fabrication d&#39;une structure composite comprenant une couche mince en sic monocristallin sur un substrat support en sic polycristallin
EP4066275B1 (fr) Procede de fabrication d&#39;une structure composite comprenant une couche mince en sic monocristallin sur un substrat support en sic
EP4162522B1 (fr) Substrat temporaire demontable compatible avec de tres hautes temperatures et procede de transfert d&#39;une couche utile a partir dudit substrat
WO2023186498A1 (fr) Structure composite comprenant une couche mince monocristalline sur un substrat support en carbure de silicium poly-cristallin et procede de fabrication associe
EP4085478B1 (fr) Procede de fabrication d&#39;une structure composite comprenant une couche mince monocristalline sur un substrat support
EP4409621A1 (fr) Procédé de fabrication d&#39;une structure composite comprenant une couche mince en sic monocristallin sur un substrat support en sic polycristallin
WO2022200712A1 (fr) Procede de fabrication d&#39;une structure composite comprenant une couche mince en semi-conducteur monocristallin sur un substrat support
WO2023156193A1 (fr) Structure composite et procede de fabrication associe
FR3121275A1 (fr) Procede de fabrication d’une structure composite comprenant une couche mince en sic monocristallin sur un substrat support en sic poly-cristallin
WO2024200627A1 (fr) Procede de fabrication d&#39;un substrat en carbure de silicium
EP4413611A1 (fr) Structure composite comprenant une couche utile en sic monocristallin sur un substrat support en sic poly-cristallin et procede de fabrication de ladite structure
WO2023057700A1 (fr) Procede de fabrication d&#39;une structure composite comprenant une couche mince en sic monocristallin sur un substrat support en sic poly-cristallin
EP4226409A1 (fr) Procédé de fabrication d&#39;un substrat pour la croissance épitaxiale d&#39;une couche d&#39;un alliage iii-n à base de gallium
FR3139410A1 (fr) Procédé d’amincissement d’une structure composite portée par un substrat support SiC polycristallin, à gondolement réduit
FR2938373A1 (fr) Integration d&#39;une couche de diamant polycristallin, notamment dans une structure sod

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 2

PLSC Publication of the preliminary search report

Effective date: 20210604

PLFP Fee payment

Year of fee payment: 3

PLFP Fee payment

Year of fee payment: 4

PLFP Fee payment

Year of fee payment: 5