FR2920866A1 - MAIN EXCHANGE LINE AND CRYOGENIC DISTILLATION AIR SEPARATION APPARATUS INCORPORATING SUCH EXCHANGE LINE - Google Patents
MAIN EXCHANGE LINE AND CRYOGENIC DISTILLATION AIR SEPARATION APPARATUS INCORPORATING SUCH EXCHANGE LINE Download PDFInfo
- Publication number
- FR2920866A1 FR2920866A1 FR0757531A FR0757531A FR2920866A1 FR 2920866 A1 FR2920866 A1 FR 2920866A1 FR 0757531 A FR0757531 A FR 0757531A FR 0757531 A FR0757531 A FR 0757531A FR 2920866 A1 FR2920866 A1 FR 2920866A1
- Authority
- FR
- France
- Prior art keywords
- exchange
- assembly
- bodies
- exchange line
- assemblies
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D9/00—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D9/0031—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
- F28D9/0037—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the conduits for the other heat-exchange medium also being formed by paired plates touching each other
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04187—Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
- F25J3/04193—Division of the main heat exchange line in consecutive sections having different functions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04187—Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
- F25J3/04218—Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/044—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a single pressure main column system only
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04866—Construction and layout of air fractionation equipments, e.g. valves, machines
- F25J3/04872—Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J5/00—Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
- F25J5/002—Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/72—Refluxing the column with at least a part of the totally condensed overhead gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2290/00—Other details not covered by groups F25J2200/00 - F25J2280/00
- F25J2290/40—Vertical layout or arrangement of cold equipments within in the cold box, e.g. columns, condensers, heat exchangers etc.
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2290/00—Other details not covered by groups F25J2200/00 - F25J2280/00
- F25J2290/42—Modularity, pre-fabrication of modules, assembling and erection, horizontal layout, i.e. plot plan, and vertical arrangement of parts of the cryogenic unit, e.g. of the cold box
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D2021/0019—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
- F28D2021/0033—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cryogenic applications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2230/00—Sealing means
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
Une ligne d'échange, adaptée à être incorporée dans un appareil de séparation d'air, comprend au moins deux assemblées d'échange, les assemblées étant connectés en parallèle, chaque assemblée comprenant au moins deux corps d'échange (11 A, 11 B, 11 C, 13A, 13B, 13C), de préférence au moins trois corps d'échange, connectés en série entre eux.An exchange line, adapted to be incorporated in an air separation apparatus, comprises at least two exchange assemblies, the assemblies being connected in parallel, each assembly comprising at least two exchange bodies (11 A, 11 B, 11 C, 13A, 13B, 13C), preferably at least three exchange bodies, connected in series with each other.
Description
2920866 La présente invention est relative à un appareil de séparation d'air par distillation cryogénique. Il est classique d'utiliser des échangeurs à plaques brasées en aluminium pour des échangeurs cryogéniques. The present invention relates to an apparatus for separating air by cryogenic distillation. It is conventional to use brazed aluminum plate heat exchangers for cryogenic exchangers.
Pour les appareils de petites tailles, les coûts de fabrication sont élevés. Cette technologie est surtout adaptée pour du sur mesure , sur-mesure non justifié sur des appareils de petites tailles, où c'est le coût qui prime sur la performance de l'appareil. De même, le sur-mesure se traduit en général par des délais de io fabrication très longs. Ces échangeurs ont néanmoins l'avantage de permettre l'échange de chaleur entre plusieurs fluides. Selon l'invention, la ligne d'échange principale est constituée d'un ensemble d'échangeurs à plaques en acier inoxydable soudées standardisé, 15 qui peuvent être installés dans une boite froide contenant de la perlite sous vide ou conventionnelle. Chaque échangeur à plaque effectue un échange de chaleur entre au plus deux fluides. Les échangeurs de ce type (par exemple, fournis par les sociétés 20 Tranter Inc., Swep ou Alfa Laval) permettent l'échange de chaleur entre deux fluides, soit un fluide chaud et un fluide froid. Sur un générateur cryogénique d'azote, on a en général trois fluides : • un fluide chaud : air • deux fluides froids : azote et liquide riche vaporisé 25 Pour utiliser ces échangeurs, on va couper le flux d'air en deux (idéalement au prorata des débits de fluides froids ou encore de la charge thermique de chacun des fluides) de façon à faire l'échange global thermique dans deux échanges parallèles : • un échange Air / Azote 30 ^ un échange Air / Liquide riche vaporisé La répartition du débit d'air vers les deux échanges peut se faire à l'aide de vannes d'équilibrage, ou naturellement si les pertes de charges du circuit air dans les deux échanges sont équilibrées.For smaller devices, manufacturing costs are high. This technology is especially adapted for tailor-made, custom-made, unjustified on small devices, where it is the cost that overrides the performance of the device. In the same way, the customization generally results in very long manufacturing delays. These exchangers nevertheless have the advantage of allowing the exchange of heat between several fluids. According to the invention, the main exchange line consists of a set of standardized welded stainless steel plate heat exchangers which can be installed in a cold box containing vacuum or conventional perlite. Each plate heat exchanger exchances heat between two or more fluids. Exchangers of this type (for example, supplied by Tranter Inc., Swep or Alfa Laval) allow the exchange of heat between two fluids, a hot fluid and a cold fluid. On a cryogenic nitrogen generator, there are generally three fluids: • a hot fluid: air • two cold fluids: nitrogen and rich vaporized liquid 25 To use these exchangers, we will cut the air flow in two (ideally at prorata flow rates of cold fluids or the heat load of each of the fluids) so as to make the global heat exchange in two parallel exchanges: • an exchange Air / Nitrogen 30 ^ air exchange / rich liquid vaporized The distribution of the flow air to the two exchanges can be done using balancing valves, or naturally if the air circuit losses in both exchanges are balanced.
2 2920866 Ce découpage en deux du flux d'air n'a pas d'incidence sur les performances globales de l'échange, car le diagramme d'échange initial est quasiment parallèle, avec aucune sortie intermédiaire. Avec la bonne répartition du flux d'air, on peut faire deux échanges en parallèle qui ont 5 chacun un diagramme d'échange parallèle. Par ailleurs, la longueur de ces échangeurs est assez limitée (en général, inférieure à 1 m), ce qui est assez faible pour faire le gradient thermique d'environ 200°C entre le bout chaud et le bout froid de l'échange, sous un faible écart de température (AT moyen logarithmique entre 2 et io 10°C). Cela nécessite l'usage d'échangeurs multi-passes et/ou l'usage de plusieurs échangeurs en série pour assurer l'échange thermique. Selon un objet de l'invention, il est prévu une ligne d'échange, adaptée à être incorporée dans un appareil de séparation d'air, comprenant 15 au moins deux assemblées d'échange, les assemblées étant connectés en parallèle, chaque assemblée comprenant au moins deux corps d'échange, de préférence au moins trois corps d'échange, connectés en série entre eux. Selon d'autres aspects facultatifs : - la ligne comprend des moyens pour envoyer le même fluide à 20 refroidir à chaque assemblée, de sorte que le fluide à refroidir traverse en série chaque corps d'échange de l'assemblée respective ; - la ligne comprend des moyens pour envoyer un premier fluide à réchauffer à une première des assemblées d'échange, de sorte que le premier fluide se réchauffe dans chaque corps d'échange de la première 25 assemblée et des moyens pour envoyer un deuxième fluide à réchauffer à une deuxième des assemblées d'échange, de sorte que le premier fluide se réchauffe dans chaque corps d'échange de la deuxième assemblée ; - la ligne d'échange comprend deux assemblées d'échange ; - chaque assemblée d'échange est alimentée par au plus deux 30 fluides, un à réchauffer et un à refroidir ; - les corps d'une assemblée sont alignés dans le sens de leur longueur; 3 2920866 - les corps d'une assemblée sont disposés avec leur longueur parallèle à celle des corps adjacents ; - les corps d'une assemblée sont disposés avec leur longueur parallèle à celle des corps adjacents et en quinconce ; 5 - chaque corps d'échange est un empilage de plaques rectangulaires (avec éventuellement les coins arrondis) ; - chaque corps d'échange est un empilage de plaques hexagonales irrégulières, des éléments de liaison étant placés de part et d'autre de chaque corps pour le relier au corps adjacent ; io - au moins un des corps d'échange est un échangeur standardisé, de préférence au moins deux des corps d'échange sont du même modèle. Selon un autre objet de l'invention, il est prévu un appareil de séparation d'air comprenant une colonne de distillation ayant un condenseur de tête, une ligne d'échange telle que décrite ci-dessus, des moyens pour 15 envoyer de l'air comprimé et épuré à chacune des assemblées d'échange, des moyens pour soutirer de l'azote gazeux de la colonne, des moyens pour envoyer l'azote gazeux à une première assemblée d'échange, des moyens pour envoyer du liquide de cuve de la colonne au condenseur, des moyens pour prélever du liquide vaporisé du condenseur et des moyens pour 20 envoyer le liquide vaporisé à la deuxième assemblée. Selon d'autres objets de l'invention, il est prévu : - des moyens pour régler la quantité d'air envoyé aux assemblées d'échange ; - au moins deux corps d'échange, voire trois, d'une même 25 assemblée sont placés les uns au dessus des autres, de préférence sont tous les uns au dessus des autres. L'invention sera décrite en plus de détail en se référant aux figures. La Figure 1 représente une ligne d'échange selon l'invention, les Figures 2 à 5 représentent une assemblée d'échange adaptée à faire partie d'une ligne 30 d'échange selon l'invention et la Figure 6 représente un appareil de séparation d'air selon l'invention. Dans la Figure 1, une ligne d'échange thermique selon l'invention est constituée par deux assemblées d'échange, chacun comprenant trois corps 4 2920866 d'échange. De préférence, les six corps d'échange peuvent être identiques et sont des échangeurs standardisés du même modèle d'un seul fabricant. Chaque corps d'échange effectue un échange de chaleur entre seulement deux fluides. En usage, les corps d'échange 13A à 13C sont placés les uns 5 au dessus des autres, le 13C étant le plus bas et le 13A étant le plus haut. De même, en usage, les corps d'échange 11A à 11C sont placés les uns au dessus des autres, le 11C étant le plus bas et le 11A étant le plus haut. De l'air à refroidir 1 est divisé en deux à l'aide de deux vannes 7, 9 pour former deux débits 3, 5. Le débit 3 est envoyé à la première assemblée io constituée par les corps d'échange 11A, 11B, 11C connectés en série. Le débit 5 est envoyé à la première assemblée constituée par les corps d'échange 13A, 13B, 13C connectés en série. Un débit de liquide riche vaporisé 17 provenant du condenseur d'une simple colonne est envoyé aux corps 11C, 11B, 11A dans l'ordre pour être chauffé à la température 15 ambiante. Un débit d'azote 19 provenant de la même colonne est envoyé aux corps 13C, 13B, 13A. Une des assemblées ou les deux assemblées peuvent être remplacées par une assemblées telle qu'illustrées dans les Figures 2 à 5. Dans les Figures 2 et 3, l'entrée du corps d'échange est située sur la 20 longueur du corps. On peut donc envisager de disposer les corps avec leurs longueurs en quinconce telle qu'illustrée dans la Figure 2, reliés par des tubulures 31 perpendiculaires à l'axe de longueur des corps. En usage, le corps 13A est au dessus du corps 13C, et le corps 13B est au dessus du corps 13D. Sinon, comme dans la Figure 3, les longueurs sont parallèles les 25 unes aux autres, éventuellement avec des cales isolante 25, perpendiculaires à l'axe de longueur des corps, posée entre les corps 13. Les corps 13 sont reliés par des tubulures 31 perpendiculaires à l'axe de longueur des corps. Les corps sont placés, en usage, les uns au dessus des autres, le 13A étant le plus élevé et le 13 E le plus bas.2 2920866 This split in two of the airflow does not affect the overall performance of the exchange, because the initial exchange diagram is almost parallel, with no intermediate output. With the proper distribution of the airflow, two parallel exchanges can be made which each have a parallel exchange pattern. Moreover, the length of these exchangers is quite limited (generally less than 1 m), which is small enough to make the thermal gradient of about 200 ° C between the hot end and the cold end of the exchange, under a small difference in temperature (logarithmic average AT between 2 and 10 ° C). This requires the use of multi-pass exchangers and / or the use of several exchangers in series to ensure heat exchange. According to an object of the invention, there is provided an exchange line, adapted to be incorporated in an air separation apparatus, comprising at least two exchange assemblies, the assemblies being connected in parallel, each assembly comprising at least two exchange bodies, preferably at least three exchange bodies, connected in series with each other. According to other optional aspects: the line comprises means for sending the same fluid to be cooled at each assembly, so that the fluid to be cooled passes in series through each exchange body of the respective assembly; the line comprises means for sending a first fluid to be heated at a first of the exchange assemblies, so that the first fluid is heated in each exchange body of the first assembly and means for sending a second fluid to reheat at a second of the exchange assemblies, so that the first fluid is heated in each exchange body of the second assembly; - the exchange line includes two exchange meetings; each exchange assembly is fed with at most two fluids, one to be heated and one to cool; - the bodies of an assembly are aligned in the direction of their length; 2920866 - the bodies of an assembly are arranged with their length parallel to that of the adjacent bodies; - the bodies of an assembly are arranged with their length parallel to that of the adjacent bodies and staggered; 5 - each exchange body is a stack of rectangular plates (possibly with rounded corners); each exchange body is a stack of irregular hexagonal plates, connecting elements being placed on either side of each body to connect it to the adjacent body; at least one of the exchange bodies is a standardized exchanger, preferably at least two of the exchange bodies are of the same model. According to another object of the invention, there is provided an air separation apparatus comprising a distillation column having a head condenser, an exchange line as described above, means for sending the compressed and purified air at each of the exchange assemblies, means for withdrawing gaseous nitrogen from the column, means for sending the nitrogen gas to a first exchange assembly, means for sending liquid from the reactor vessel; the column to the condenser, means for withdrawing vaporized liquid from the condenser and means for sending the vaporized liquid to the second assembly. According to other objects of the invention, there are provided: means for regulating the quantity of air sent to the exchange assemblies; at least two exchange bodies, or even three, of the same assembly are placed one above the other, preferably all one above the other. The invention will be described in more detail with reference to the figures. 1 represents an exchange line according to the invention, FIGS. 2 to 5 represent an exchange assembly adapted to form part of an exchange line according to the invention, and FIG. of air according to the invention. In Figure 1, a heat exchange line according to the invention consists of two exchange assemblies, each comprising three exchange bodies 4 2920866. Preferably, the six exchange bodies can be identical and are standardized exchangers of the same model from a single manufacturer. Each exchange body carries out a heat exchange between only two fluids. In use, the exchange bodies 13A to 13C are placed one above the other, the 13C being the lowest and the 13A being the highest. Likewise, in use, the exchange bodies 11A to 11C are placed one above the other, the 11C being the lowest and the 11A being the highest. The air to be cooled 1 is divided in two by means of two valves 7, 9 to form two flow rates 3, 5. The flow 3 is sent to the first assembly 10 formed by the exchange bodies 11A, 11B, 11C connected in series. The flow 5 is sent to the first assembly constituted by the exchange bodies 13A, 13B, 13C connected in series. A vaporized rich liquid flow 17 from the condenser of a single column is fed to the bodies 11C, 11B, 11A in order to be heated to room temperature. A nitrogen flow 19 from the same column is sent to the bodies 13C, 13B, 13A. One or both assemblies may be replaced by assemblies as illustrated in Figures 2 to 5. In Figures 2 and 3, the inlet of the exchange body is located along the length of the body. It is therefore possible to envisage arranging the bodies with their staggered lengths as illustrated in FIG. 2, connected by pipes 31 perpendicular to the axis of length of the bodies. In use, the body 13A is above the body 13C, and the body 13B is above the body 13D. Otherwise, as in FIG. 3, the lengths are parallel to each other, possibly with insulating shims 25, perpendicular to the axis of length of the bodies, placed between the bodies 13. The bodies 13 are connected by tubings 31 perpendicular to the length axis of the bodies. The bodies are placed, in use, one above the other, the 13A being the highest and the 13 E the lowest.
30 Le corps du bas 13 E est penché car il y a un risque d'avoir des gouttes d'air liquide en sortie. Dans la Figure 4 les corps 11 sont disposés comme dans la Figure 1.The body of the bottom 13 E is leaning because there is a risk of having drops of liquid air output. In Figure 4 the bodies 11 are arranged as in Figure 1.
5 2920866 La Figure 5 montre une disposition particulière adaptée aux corps ayant une section hexagonale irrégulière, telle que les MAXCHANGER . Les corps 11A, 11B, 11C sont disposés les uns au-dessus des autres avec des éléments de liaison 21 qui comblent les vides de part et d'autre des 5 corps pour former un élément de section globalement rectangulaire coiffé de quatre entrée/sorties de fluides 23. Cet élément monolithique est particulièrement facile à installer et à supporter. Même si on a l'impression de compliquer l'arrangement avec ce type d'échangeurs, cela permet d'utiliser des échangeurs standards peu chers et io avec des délais de fabrication extrêmement courts : les échangeurs cryogéniques ne sont alors plus sur le chemin critique de réalisation de l'appareil de séparation d'air. La Figure 6 montre un appareil de séparation d'air pour produire de l'azote comprenant une ligne d'échange selon l'invention. La ligne illustrée 15 est celle des Figures 1 et 4 mais évidemment celles des Figures 2,3 et 5 auraient pu être incorporées de la même manière. L'air 3,5 provenant des deux groupes d'échangeurs est envoyé à la colonne 33. De l'azote 19 est soutiré en tête de colonne et envoyé au groupe13 et du liquide riche vaporisé 17 provenant du condenseur de tête 35 est envoyé au deuxième 20 groupe 11. 30 6 Figure 5 shows a particular arrangement adapted to bodies having an irregular hexagonal section, such as MAXCHANGER. The bodies 11A, 11B, 11C are arranged one above the other with connecting elements 21 which fill the voids on either side of the bodies to form a generally rectangular section element capped with four inlet / outlet openings. 23. This monolithic element is particularly easy to install and support. Even if one has the impression of complicating the arrangement with this type of exchangers, it makes it possible to use inexpensive standard exchangers and with extremely short manufacturing times: the cryogenic exchangers are then no longer on the critical path embodiment of the air separation apparatus. Figure 6 shows an air separation apparatus for producing nitrogen comprising an exchange line according to the invention. The line illustrated is that of Figures 1 and 4 but obviously those of Figures 2,3 and 5 could have been incorporated in the same manner. The air 3.5 from the two groups of exchangers is sent to the column 33. Nitrogen 19 is withdrawn at the top of the column and sent to the group 13 and the vaporized rich liquid 17 from the overhead condenser 35 is sent to second 20 group 11. 30 6
Claims (13)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0757531A FR2920866A1 (en) | 2007-09-12 | 2007-09-12 | MAIN EXCHANGE LINE AND CRYOGENIC DISTILLATION AIR SEPARATION APPARATUS INCORPORATING SUCH EXCHANGE LINE |
EP08835215A EP2191220A2 (en) | 2007-09-12 | 2008-09-09 | Main exchange line and cryogenic distillation air separation unit incorporating such an exchange line |
CN2008801064126A CN102216709A (en) | 2007-09-12 | 2008-09-09 | Main exchange line and cryogenic distillation air separation unit incorporating such an exchange line |
BRPI0816327 BRPI0816327A2 (en) | 2007-09-12 | 2008-09-09 | Main exchange line and cryogenic distillation air separation apparatus incorporating this exchange line |
JP2010524548A JP2011519006A (en) | 2007-09-12 | 2008-09-09 | Cryogenic distillation air separation unit incorporating main exchange line and such exchange line |
PCT/FR2008/051601 WO2009044065A2 (en) | 2007-09-12 | 2008-09-09 | Main exchange line and cryogenic distillation air separation unit incorporating such an exchange line |
US12/677,335 US20100206004A1 (en) | 2007-09-12 | 2008-09-09 | Main Exchange Line And Cryogenic Distillation Air Separation Unit Incorporating Such An Exchange Line |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0757531A FR2920866A1 (en) | 2007-09-12 | 2007-09-12 | MAIN EXCHANGE LINE AND CRYOGENIC DISTILLATION AIR SEPARATION APPARATUS INCORPORATING SUCH EXCHANGE LINE |
Publications (1)
Publication Number | Publication Date |
---|---|
FR2920866A1 true FR2920866A1 (en) | 2009-03-13 |
Family
ID=39472430
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR0757531A Withdrawn FR2920866A1 (en) | 2007-09-12 | 2007-09-12 | MAIN EXCHANGE LINE AND CRYOGENIC DISTILLATION AIR SEPARATION APPARATUS INCORPORATING SUCH EXCHANGE LINE |
Country Status (7)
Country | Link |
---|---|
US (1) | US20100206004A1 (en) |
EP (1) | EP2191220A2 (en) |
JP (1) | JP2011519006A (en) |
CN (1) | CN102216709A (en) |
BR (1) | BRPI0816327A2 (en) |
FR (1) | FR2920866A1 (en) |
WO (1) | WO2009044065A2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IN2014CN00681A (en) * | 2011-07-01 | 2015-04-03 | Brooks Automation Inc | |
CN106052431A (en) * | 2016-06-29 | 2016-10-26 | 刘洋豪 | Heat exchanger with 2-20 flow paths |
FR3087881B1 (en) | 2018-10-24 | 2020-09-25 | Air Liquide | PROCEDURE FOR THE MANUFACTURE OF A SERIES OF AT LEAST A FIRST AND A SECOND HEAT EXCHANGERS |
FR3087880B1 (en) | 2018-10-24 | 2020-09-25 | Air Liquide | PROCEDURE FOR THE MANUFACTURE OF A SERIES OF AT LEAST A FIRST AND A SECOND HEAT EXCHANGERS |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5497594A (en) * | 1978-01-20 | 1979-08-01 | Hitachi Ltd | Air separation equipment |
US4698079A (en) * | 1984-07-13 | 1987-10-06 | Daidousanso Co., Ltd. | High-purity nitrogen gas production equipment |
US5469914A (en) * | 1993-06-14 | 1995-11-28 | Tranter, Inc. | All-welded plate heat exchanger |
US20030019240A1 (en) * | 2000-02-10 | 2003-01-30 | Neeraas Bengt Olav | Method and device for small scale liquefaction of a product gas |
JP2007147113A (en) * | 2005-11-24 | 2007-06-14 | Taiyo Nippon Sanso Corp | Nitrogen manufacturing method and device |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2057660B (en) * | 1979-05-17 | 1983-03-16 | Union Carbide Corp | Process and apparatus for producing low purity oxygen |
JPS5864478A (en) * | 1981-10-15 | 1983-04-16 | 日本酸素株式会社 | Device for manufacturing nitrogen having high purity |
JPS6091177A (en) * | 1983-10-24 | 1985-05-22 | 新日本製鐵株式会社 | Whole low pressure type air deep separating method |
US4702757A (en) * | 1986-08-20 | 1987-10-27 | Air Products And Chemicals, Inc. | Dual air pressure cycle to produce low purity oxygen |
US4815534A (en) * | 1987-09-21 | 1989-03-28 | Itt Standard, Itt Corporation | Plate type heat exchanger |
JPH08110188A (en) * | 1994-10-06 | 1996-04-30 | Ishikawajima Harima Heavy Ind Co Ltd | Manufacture of plate type heat exchanger |
JP3527609B2 (en) * | 1997-03-13 | 2004-05-17 | 株式会社神戸製鋼所 | Air separation method and apparatus |
US5983668A (en) * | 1998-04-29 | 1999-11-16 | Air Products And Chemicals, Inc. | Air separation unit feed flow control in an IGCC power generation system |
US6298688B1 (en) * | 1999-10-12 | 2001-10-09 | Air Products And Chemicals, Inc. | Process for nitrogen liquefaction |
JP3715497B2 (en) * | 2000-02-23 | 2005-11-09 | 株式会社神戸製鋼所 | Method for producing oxygen |
CN1178038C (en) * | 2001-08-19 | 2004-12-01 | 中国科学技术大学 | Air separator by utilizing cold energy of liquefied natural gas |
JP2003222425A (en) * | 2002-02-01 | 2003-08-08 | Daikin Ind Ltd | Absorption type refrigeration unit |
US6568209B1 (en) * | 2002-09-06 | 2003-05-27 | Praxair Technology, Inc. | Cryogenic air separation system with dual section main heat exchanger |
FR2851330B1 (en) * | 2003-02-13 | 2006-01-06 | Air Liquide | PROCESS AND PLANT FOR THE PRODUCTION OF A GASEOUS AND HIGH PRESSURE PRODUCTION OF AT LEAST ONE FLUID SELECTED AMONG OXYGEN, ARGON AND NITROGEN BY CRYOGENIC DISTILLATION OF AIR |
WO2007057730A1 (en) * | 2005-11-17 | 2007-05-24 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Process and apparatus for the separation of air by cryogenic distillation |
GB0605802D0 (en) * | 2006-03-23 | 2006-05-03 | Rolls Royce Plc | A heat exchanger |
-
2007
- 2007-09-12 FR FR0757531A patent/FR2920866A1/en not_active Withdrawn
-
2008
- 2008-09-09 BR BRPI0816327 patent/BRPI0816327A2/en not_active Application Discontinuation
- 2008-09-09 EP EP08835215A patent/EP2191220A2/en not_active Withdrawn
- 2008-09-09 CN CN2008801064126A patent/CN102216709A/en active Pending
- 2008-09-09 WO PCT/FR2008/051601 patent/WO2009044065A2/en active Application Filing
- 2008-09-09 JP JP2010524548A patent/JP2011519006A/en active Pending
- 2008-09-09 US US12/677,335 patent/US20100206004A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5497594A (en) * | 1978-01-20 | 1979-08-01 | Hitachi Ltd | Air separation equipment |
US4698079A (en) * | 1984-07-13 | 1987-10-06 | Daidousanso Co., Ltd. | High-purity nitrogen gas production equipment |
US5469914A (en) * | 1993-06-14 | 1995-11-28 | Tranter, Inc. | All-welded plate heat exchanger |
US20030019240A1 (en) * | 2000-02-10 | 2003-01-30 | Neeraas Bengt Olav | Method and device for small scale liquefaction of a product gas |
JP2007147113A (en) * | 2005-11-24 | 2007-06-14 | Taiyo Nippon Sanso Corp | Nitrogen manufacturing method and device |
Also Published As
Publication number | Publication date |
---|---|
WO2009044065A3 (en) | 2011-12-08 |
WO2009044065A2 (en) | 2009-04-09 |
US20100206004A1 (en) | 2010-08-19 |
BRPI0816327A2 (en) | 2015-04-14 |
EP2191220A2 (en) | 2010-06-02 |
CN102216709A (en) | 2011-10-12 |
JP2011519006A (en) | 2011-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FR2732452A1 (en) | HEAT EXCHANGER WITH PLATES | |
CA2048432A1 (en) | Nitrogen production apparatus | |
FR2920866A1 (en) | MAIN EXCHANGE LINE AND CRYOGENIC DISTILLATION AIR SEPARATION APPARATUS INCORPORATING SUCH EXCHANGE LINE | |
US20140076528A1 (en) | Self cooling heat exchanger | |
EP0912868A1 (en) | Apparatus for exchanging heat between at least three fluids | |
US20080184890A1 (en) | Pressure swing adsorption modules with integrated features | |
EP1811256B1 (en) | Heat exchange installation | |
MA48471B1 (en) | Ice making and storage device | |
EP2580535B1 (en) | Modular solar receiver and solar power plant comprising at least one such receiver | |
AU2018275482A1 (en) | Method of using an indirect heat exchanger and facility for processing liquefied natural gas comprising such heat exchanger | |
EP2498309A1 (en) | Thermoelectric module and device, in particular intended for generating an electric current in an automobile | |
CA2612311A1 (en) | Cryogenic air separation | |
EP2268992B1 (en) | Method for repairing plate heat exchangers | |
EP1146300B1 (en) | Thermosiphon boiler-condenser | |
US7803216B2 (en) | Pressurized high-temperature gas cooler | |
Benhard et al. | Manufacturing of the Wendelstein 7-X divertor and wall protection | |
CN104990435A (en) | Plate-fin type heat exchanger with perforated separation plates | |
WO2014044979A2 (en) | Heat exchanger assembly | |
KR102184128B1 (en) | Instand cold water maker | |
Morsy et al. | A new multiple-effect distiller system with compact heat exchangers | |
FR3101141A1 (en) | HEAT EXCHANGER, LIQUEFACTION SYSTEM WITH DOUBLE COOLING CYCLE INCLUDING LEDIT HEAT EXCHANGER | |
WO2018206886A1 (en) | Heat exchange apparatus | |
FR2799277A1 (en) | Heat exchanger comprises multiple passages connected in groups, for cooling feed air into air distillation unit whilst withstanding pressure and flow variations | |
JP2005116593A (en) | Thermoelectric transducer | |
FR3032890A1 (en) | METHOD AND APPARATUS FOR SUBAMBIAN TEMPERATURE SEPARATION |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ST | Notification of lapse |
Effective date: 20140530 |