Nothing Special   »   [go: up one dir, main page]

FR2911667A1 - Systeme d'injection de carburant a double injecteur. - Google Patents

Systeme d'injection de carburant a double injecteur. Download PDF

Info

Publication number
FR2911667A1
FR2911667A1 FR0752820A FR0752820A FR2911667A1 FR 2911667 A1 FR2911667 A1 FR 2911667A1 FR 0752820 A FR0752820 A FR 0752820A FR 0752820 A FR0752820 A FR 0752820A FR 2911667 A1 FR2911667 A1 FR 2911667A1
Authority
FR
France
Prior art keywords
injector
fuel
injection system
air intake
cloud
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR0752820A
Other languages
English (en)
Other versions
FR2911667B1 (fr
Inventor
Denis Sandelis
Michel Desaulty
Christophe Baudoin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SNECMA SAS filed Critical SNECMA SAS
Priority to FR0752820A priority Critical patent/FR2911667B1/fr
Priority to CA2619421A priority patent/CA2619421C/fr
Priority to RU2008102394/06A priority patent/RU2468297C2/ru
Priority to EP08150474.8A priority patent/EP1953455B1/fr
Priority to JP2008011192A priority patent/JP5142202B2/ja
Priority to US12/018,520 priority patent/US7942003B2/en
Publication of FR2911667A1 publication Critical patent/FR2911667A1/fr
Application granted granted Critical
Publication of FR2911667B1 publication Critical patent/FR2911667B1/fr
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones
    • F23R3/343Pilot flames, i.e. fuel nozzles or injectors using only a very small proportion of the total fuel to insure continuous combustion

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Système d'injection de carburant dans une chambre de combustion de turbomachine, comprenant des premier et deuxième injecteurs de carburant, caractérisé en ce que le premier injecteur (22) est positionné au centre du système d'injection (20), de manière à injecter un premier nuage de carburant (42), et en ce que le deuxième injecteur (28) entoure le premier injecteur de manière à injecter un deuxième nuage de carburant (48) de forme générale annulaire, autour du premier nuage de carburant.

Description

L'invention concerne un système d'injection de carburant dans une chambre
de combustion de turbomachine, et une chambre de combustion de turbomachine équipée d'un tel système. L'invention se destine à tout type de turbomachine, terrestre ou aéronautique, et plus particulièrement aux turboréacteurs d'avions. Une chambre de combustion de turboréacteur est généralement de forme annulaire, centrée sur un axe X correspondant à l'axe de rotation du turboréacteur. Elle comprend deux parois annulaires (ou viroles) coaxiales d'axe X, et un fond de chambre disposé entre lesdites parois, dans la région amont de ladite chambre, l'amont et l'aval étant définis par rapport au sens normal de circulation des gaz à l'intérieur de la chambre. Lesdites parois et le fond de chambre délimitent l'enceinte de combustion de la chambre. Une pluralité de systèmes d'injection de carburant dans la chambre sont fixés sur le fond de chambre et répartis régulièrement autour de l'axe X. Les systèmes d'injection les plus courants comprennent un seul injecteur de carburant. La conception (i.e. la forme, la structure, le choix des matériaux...) des chambres de combustion équipées de systèmes à un seul injecteur est aujourd'hui parfaitement maîtrisée et on parle ci-après de chambres de conception classique. Dans les chambres de conception classique, chaque système d'injection est fixé et positionné à l'intérieur d'un seul orifice prévu à cet effet dans le fond de chambre, de sorte que le montage du système d'injection est relativement simple. En outre, pendant la combustion, le profil des températures en sortie de chambre reste centré sur un cercle de diamètre déterminé autour de l'axe X, quel que soit le régime de fonctionnement du turboréacteur. Un tel profil de températures simplifie la conception des parties du turboréacteur situées en aval de la chambre. Cependant, avec les systèmes d'injection à un seul injecteur, il est difficile de contrôler la richesse du mélange air/carburant brûlé, en fonction du régime de fonctionnement du turboréacteur, i.e. régime ralenti ou plein gaz. Ainsi, pour certains régimes, la combustion s'accompagne d'une émission de gaz polluants (notamment des oxydes d'azote ou "NOx"), dangereux pour la santé et l'environnement.
Dans un souci de limiter l'émission de gaz polluants, des systèmes d'injection de carburant à double injecteur ont été développés.
Les deux injecteurs permettent de créer deux zones de combustion, une optimisée pour le régime ralenti du turboréacteur et l'autre pour le régime plein gaz. Le document FR 2 706 021 décrit une chambre de combustion annulaire de turboréacteur, équipée de plusieurs systèmes d'injection à double injecteur. La chambre est centrée sur un axe X et les systèmes d'injection sont répartis autour de l'axe X, chaque système comprenant deux injecteurs disposés l'un après l'autre suivant une direction radiale par rapport à l'axe X. Ainsi, pour une chambre équipée de N systèmes d'injection, une première rangée de N injecteurs est disposée suivant un cercle de diamètre d, autour de l'axe X, et une deuxième rangée de N injecteurs est disposée suivant un cercle de diamètre D, supérieur à d, autour de l'axe X. S'il présente l'avantage d'être peu polluant, le système d'injection à double injecteur de FR 2 706 021, a pour inconvénient d'être difficile à monter puisqu'il faut positionner et fixer chaque injecteur sur le fond de chambre. En outre, la conception de la chambre de combustion est plus complexe et bien moins maîtrisée que la conception classique précitée (ce qui se traduit notamment par des difficultés à assurer la tenue thermique et la durée de vie de certains éléments de la chambre). Enfin, lors de la combustion, le profil des températures en sortie de chambre varie significativement en fonction du régime de fonctionnement du turboréacteur et, en particulier, ce profil ne reste pas centré sur un cercle de diamètre déterminé autour de l'axe X. Ceci complique la conception des parties du turboréacteur situées en aval de la chambre de combustion. L'invention a pour but de proposer un système d'injection de carburant peu polluant qui puisse être utilisé avec une chambre de combustion de conception classique, c'est-à-dire une chambre du type de celles qui sont équipées de systèmes d'injection à un seul injecteur.
Ce but est atteint grâce à un système d'injection de carburant dans une chambre de combustion de turbomachine, comprenant des premier et deuxième injecteurs de carburant, caractérisé en ce que le premier injecteur est positionné au centre du système d'injection, de manière à injecter un premier nuage de carburant, et en ce que le deuxième injecteur entoure le premier injecteur de manière à injecter un deuxième nuage de carburant de forme annulaire, autour du premier nuage de carburant. Le système d'injection de l'invention comprend donc deux injecteurs, ce qui permet d'adapter la richesse du mélange air/carburant au régime de fonctionnement du turboréacteur et de limiter l'émission de gaz polluants. En outre, du fait du positionnement du deuxième injecteur autour du premier, ce type de système peut être adapté sur une chambre de conception classique avec, notamment, un seul orifice ménagé dans le fond de chambre pour chaque système d'injection. Selon un premier exemple de réalisation du deuxième injecteur, celui-ci présente une fente d'injection circulaire entourant le premier injecteur et, selon un deuxième exemple de réalisation, celui-ci présente plusieurs orifices d'injection disposés en cercle autour du premier injecteur. Avantageusement, le système d'injection de carburant comprend des premier et deuxième passages d'admission d'air associés respectivement aux premier et deuxième injecteurs, de manière à former, respectivement, des premier et deuxième mélanges air/carburant.
Avantageusement encore, le système d'injection de carburant comprend, en outre, un conduit d'admission d'air avec des orifices de sortie débouchant entre les premier et deuxième injecteurs, de manière à créer un film d'air séparateur entre les zones de combustion respectives des premier et deuxième mélanges air/carburant.
Selon un mode de réalisation particulier, le premier injecteur, le premier passage d'admission d'air et le deuxième injecteur appartiennent à un premier ensemble destiné à être monté sur un deuxième ensemble comprenant le deuxième passage d'admission d'air, ce deuxième ensemble étant destinée à être monté sur la chambre de combustion.
Grâce à un tel système, on peut d'abord positionner et monter le deuxième ensemble sur le fond de chambre, sans être gêné par les injecteurs, puis monter le premier ensemble sur le deuxième. Le deuxième ensemble sert alors de guide pour le montage du premier. On notera que la position relative des premier et deuxième 35 injecteurs est généralement imposée par la conformation du premier ensemble et n'a donc pas à être ajustée lors du montage.
Selon un mode de réalisation particulier, le deuxième ensemble est monté sur le fond de chambre en conservant une possibilité de déplacement radial autour de l'axe d'injection I du premier injecteur, et peut se déplacer suivant cet axe par rapport au premier ensemble, tout en restant centré vis-à-vis de ce dernier. L'invention et ses avantages seront bien compris à la lecture de la description détaillée qui suit, d'un exemple de système d'injection selon l'invention. Cette description fait référence aux figures annexées, sur lesquelles : - la figure 1 représente un exemple de chambre de combustion équipée d'un exemple de système d'injection selon l'invention, en demi-coupe axiale suivant l'axe de rotation du turboréacteur; - la figure 2 représente le système d'injection de la figure 1, seul, en perspective et en coupe axiale suivant l'axe d'injection du premier injecteur; - la figure 3 représente le système d'injection de la figure 1, seul, en coupe axiale suivant l'axe d'injection du premier injecteur; - la figure 4 est une vue de détail, en demi-coupe axiale suivant l'axe d'injection du premier injecteur, du système d'injection et d'une partie de la chambre de combustion de la figure 1. Sur cette figure sont représentées les zones d'écoulements des différents fluides traversant le système d'injection. L'exemple de chambre de combustion 10 de la figure 1 est représenté dans son environnement, à l'intérieur d'un turboréacteur. Cette chambre 10 est annulaire, centrée sur l'axe X qui est aussi l'axe de rotation du turboréacteur. Cette chambre de combustion est dite axiale, car elle est orientée sensiblement suivant l'axe X. L'invention pourrait s'appliquer à d'autres types de turbomachines et à d'autres types de chambres, notamment aux chambres de combustion dites radiales à retour, c'est-à-dire des chambres de combustion coudées dont une portion est orientée sensiblement radialement par rapport à l'axe de rotation du turboréacteur. La chambre de combustion 10 comprend deux parois annulaires (ou viroles) internes 12 et externes 14. Ces parois 12, 14 sont mutuellement écartées et positionnées coaxialement autour de l'axe X. Ces parois 12, 14 sont reliées entre elles par un fond de chambre 16 disposé entre celles-ci, dans la région amont de la chambre 10. Les parois 12, 14 et le fond 16 délimitent entre eux, l'enceinte de combustion de la chambre 10. Le fond de chambre 16 présente une pluralité d'ouvertures 18 réparties régulièrement autour de l'axe de rotation X. La chambre 10 comprend également des déflecteurs 19 montés sur le fond de chambre 16, à la périphérie des ouvertures 18, de manière à protéger le fond 16 des hautes températures atteintes lors de la combustion. A l'intérieur de chaque ouverture 18 est monté un système 10 d'injection de carburant 20 selon l'invention. Ce système 20 est représenté en détail sur les figures 2 et 3. On notera que la chambre de combustion 10 est de conception classique, c'est-à-dire que sa forme générale, sa structure, etc. sont comparables à celles d'une chambre de combustion équipée de systèmes 15 d'injection à un seul injecteur. Bien entendu, la chambre de combustion 10 a été conçue en tenant compte des particularités des systèmes d'injection 20 et, notamment, les orifices 18 sont de taille adaptée à celle des systèmes d'injection 20 (de diamètre plus grand que celui des systèmes d'injection classiques 20). 20 Chaque système d'injection 20 comprend, en son centre, un premier injecteur 22 de carburant (également appelé injecteur pilote) permettant d'injecter du carburant suivant un axe d'injection I. Le système d'injection 20 comprend, autour du premier injecteur 22 et dans cet ordre : un premier passage d'admission d'air 24, un conduit d'admission 25 d'air 26, un deuxième injecteur de carburant 28, et un deuxième passage d'admission d'air 30. Le système d'injection 20 présente une sensible symétrie de révolution autour de l'axe I, les éléments le constituant étant de forme générale annulaire, et répartis coaxialement autour de cet axe I. 30 Dans l'exemple, les premier et deuxième passages d'admission d'air 24, 30, sont des vrilles d'air, c'est-à-dire des passages annulaires permettant d'imprimer un mouvement de rotation (autour de l'axe I) à l'air qui les traverse. L'air comprimé traversant les passages d'admission 24 et 30 provient du diffuseur 17 du turboréacteur (voir fig. 1). 35 Les premier et deuxième injecteurs 22 et 28 sont respectivement alimentés en carburant par des conduites (ou rampes) d'alimentation 32 et 38. Dans l'exemple, le deuxième injecteur 28 est alimenté par une seule conduite de 38. Alternativement, le deuxième injecteur 28 peut être alimenté par plusieurs conduites connectées en différents points de la circonférence de l'injecteur 28.
Les premier et deuxième injecteurs 22 et 28 peuvent être alimentés avec des carburants identiques ou différents. En particulier, un arrangement spécifique à l'utilisation d'hydrogène peut être réalisé pour le deuxième injecteur 28. Le premier injecteur 22 permet d'injecter un premier nuage de carburant 42 (voir figure 3) au centre du système d'injection 20, via un orifice d'injection 23 centré sur l'axe I. Le nuage de carburant 42 est de forme générale conique, centrée sur l'axe I. Le deuxième injecteur 28 est de forme annulaire et permet d'injecter, via une fente d'injection circulaire 29 centrée sur l'axe I, un deuxième nuage de carburant 48 (voir figure 3). Ce deuxième nuage de carburant 48 est de forme générale annulaire, sensiblement centrée sur l'axe I, et entoure le premier nuage 42. Le carburant émis par les injecteurs 22 et 28 est mélangé à de l'air, cet air provenant des passages d'admission d'air 24 et 30. Ces passages 24 et 30 sont respectivement situés autour des injecteurs 22 et 28, en amont de l'orifice d'injection 23 et de la fente d'injection 29. Selon un exemple de réalisation, le deuxième injecteur 28 est également configuré de manière à imprimer un mouvement de rotation (autour de l'axe I) au nuage de carburant 48. Dans ce cas, le mouvement de rotation de l'air provenant du passage d'admission 30 peut être de même sens (co-rotatif) ou de sens opposé (contra-rotatif) à celui du nuage de carburant 48. Le premier passage d'admission d'air 24 est délimité entre des parois intérieure 43 et extérieure 44, de forme générale annulaire, centrées sur l'axe I. La paroi intérieure 43 enveloppe le premier injecteur 22. La paroi extérieure 44 se prolonge vers l'aval par une paroi divergente 45, c'est-à-dire une paroi définissant un conduit de forme générale tronconique, ou bol 61, dont la section augmente dans le sens d'écoulement du premier mélange air/carburant (i.e. de l'amont vers l'aval).
Le conduit d'admission d'air 26 est défini entre les parois 44 et 45, d'une part, et une paroi 46, d'autre part, la paroi 46 entourant les parois 44 et 45. Des bras structuraux radiaux 47 relient les parois 44 et 46 et les maintiennent mutuellement écartées. Pour que le conduit d'admission d'air 26 et le premier passage d'admission d'air 24 soient bien alimentés en air, le système d'injection 20 présente un évidement 49 en amont du conduit 26 et du passage 24. Dans l'exemple, cet évidement est cylindrique, de diamètre extérieur correspondant sensiblement à celui du conduit 26. Seul le conduit d'alimentation 32 du premier injecteur 22 traverse cet évidement 49. Le conduit d'admission d'air 26 comprend une première série d'orifices 62 de sortie traversant la paroi divergente 45, au niveau de l'extrémité aval de cette paroi, ces orifices 62 étant disposés en cercle autour du premier injecteur 22 (en aval de celui-ci). Il comprend, en outre, une deuxième série d'orifices 63 de sortie traversant la paroi divergente 45 en amont de ladite première série d'orifices 62, ces orifices 63 étant disposés en cercle autour du premier injecteur (en aval de celui-ci). Avantageusement, les orifices 62 et 63 sont régulièrement répartis autour du premier injecteur 22.
Le deuxième injecteur 28 est disposé autour de la paroi 46. Le premier injecteur 22, le passage d'admission d'air 24, le bol 61, le conduit 26 et le deuxième injecteur 28 sont tous réunis au sein d'un premier ensemble 51 délimité par une paroi extérieure 50. Cette paroi 50 est reliée aux extrémités aval des parois 45 et 46, de sorte qu'elle contribue à délimiter un logement pour le deuxième injecteur 28 avec la paroi 46, et à délimiter le conduit 26 avec les parois 44, 45 et 46. Le premier ensemble 51 est entouré par un deuxième ensemble 52. Ces ensembles 51 et 52 sont montés l'un après l'autre sur la paroi de fond 16 de la chambre de combustion 10 : d'abord on monte l'ensemble 52 sur cette paroi de fond, à l'intérieure de l'orifice 18, puis on monte l'ensemble 51 à l'intérieur de l'ensemble 52. Le deuxième ensemble 52 comprend deux parois annulaires intérieure 53 et extérieure 54, mutuellement écartées et délimitant entre elles le deuxième passage d'admission d'air 30. La paroi extérieure 54 et la paroi intérieure 53 sont évasées vers l'amont afin de ne pas gêner le montage de l'ensemble 51 sur l'ensemble 52, ce montage s'effectuant par l'arrière de l'ensemble 52 (i.e. de l'amont vers l'aval). La paroi extérieure 54 se prolongeant vers l'aval par une paroi cylindrique 55, puis par une paroi divergente 56.
La paroi cylindrique 55 forme avec la paroi extérieure 50 un canal annulaire 57 à l'intérieur duquel est injecté le nuage de carburant 48. Ce canal 57 se situe dans le prolongement du deuxième passage d'admission d'air 30, en aval de celui-ci. La paroi divergente 56 (à la manière de la paroi 45) forme un conduit tronconique évasé vers l'aval, ou bol 71. Cette paroi divergente 56 est traversée, au niveau de son extrémité aval, par une série d'orifices 72 disposés en cercle autour du deuxième injecteur 28, en aval de celui-ci. La structure du système d'injection 20 de la figure 1 étant bien comprise, on va maintenant s'intéresser aux fonctions et avantages d'un tel système. Ci-après, on désigne par module "ralenti", ou module pilote, l'ensemble comprenant le premier injecteur de carburant 22 et le premier passage d'admission d'air 24, et par module "plein gaz" l'ensemble comprenant le deuxième injecteur de carburant 28 et le deuxième passage d'admission d'air 30. On notera que ces modules ne correspondent pas avec les ensembles 51 et 52 précédemment décrits. On notera également que ces modules sont disposés coaxialement autour de l'axe d'injection I. De la même manière, on définit deux circuits de carburant : un circuit "ralenti" comprenant le conduit d'alimentation 32 et le premier injecteur 22, ce circuit débouchant au centre du système d'injection via l'orifice d'injection 23; et un circuit "plein gaz" comprenant le conduit d'alimentation 38 et le deuxième injecteur 28, ce circuit débouchant en périphérie du système d'injection, via la fente d'injection 29. La régulation du fonctionnement des modules ralenti et plein gaz et, notamment, l'évolution de la répartition du carburant entre les deux modules en fonction du régime de fonctionnement du turboréacteur, sont définies de manière à limiter les émissions de gaz toxiques sur l'ensemble de fonctionnement du moteur. Lors du démarrage ou du redémarrage du moteur (i.e. phases 35 d'allumage et de propagation de la flamme) les deux modules peuvent être utilisés.
Durant la phase d'enroulement et aux faibles régimes, le module ralenti fonctionne seul. Au-delà d'un régime correspondant à une poussée de 10 à 30 h de la poussée plein gaz, les deux modules fonctionnent avec une répartition de carburant adéquate pour limiter les émissions de gaz toxiques. En référence à la figure 3, on va maintenant s'intéresser aux écoulements d'air et de carburant traversant le module ralenti. Le premier injecteur 22 injecte le premier nuage de carburant 42. Le premier passage d'admission d'air 26 génère un écoulement d'air tourbillonnant qui reprend le carburant injecté et contribue à en assurer la pulvérisation et le mélange. Un film d'air f2 doté d'une composante giratoire, est généré par la deuxième série d'orifices 63 du conduit d'admission d'air 26. Ce film d'air f2 a pour fonctions : de protéger la paroi divergente 45 contre les risques de cokéfaction de contrôler les mouvements de précession du vortex généré par le premier passage d'admission d'air 24, ce mouvement pouvant être l'origine d'instabilité de combustion ; de piloter la position axiale de la zone de recirculation du module ralenti de manière à supprimer le risque de "flash-back", à contrôler le transfert thermique à l'extrémité de l'injecteur 22 et ainsi réduire les risques de cokéfaction du circuit de carburant au nez de l'injecteur 22, et améliorer la propagation de la flamme du module ralenti vers le module plein gaz, lors de la transition entre un régime ralenti et un régime plein gaz. Un film d'air fl est généré par la première série d'orifices 62 du conduit d'admission d'air 26. Ce film d'air f2 a pour fonctions : de piloter l'expansion radiale du nuage de carburant 42 issue du premier injecteur 22, et de l'isoler de l'air venant du deuxième passage d'admission d'air 30, ce qui permet de maintenir un niveau de richesse suffisant pour limiter la formation de CO/CHx au ralenti ; et d'amortir les instabilités de combustion entre les deux modules. On notera que les orifices 62 de la première série peuvent être tous de taille identique, ou de taille variable (par secteur) afin d'améliorer le compromis entre les performances en régime ralenti qui nécessitent d'isoler la zone de combustion du premier mélange air/carburant, et l'opérabilité qui est favorisée par une intercommunication entre la zone ralenti et la zone plein gaz afin d'assurer la propagation de la flamme.
On notera que d'autre film d'air peuvent être générés par d'autres séries d'orifices et, notamment, par des séries d'orifices 73 et 74 ménagée au niveau de l'extrémité du conduit d'admission d'air 26 et représentée en pointillés sur la figure 3. Ces séries d'orifices 73 et 74 génèrent des films d'air de refroidissement et, notamment, le film d'air des orifices 73 permet de refroidir le rebord aval du bol 61. On va maintenant s'intéresser aux écoulements d'air et de carburant traversant le module plein gaz. On rappelle que l'injection du deuxième nuage de carburant 48 peut se faire via une fente circulaire 29, comme dans l'exemple des figures, ou via une pluralité d'orifices répartis en cercle autour du premier injecteur 22. Par ailleurs, le nuage de carburant 48 peut être injecté de manière co- ou contra-rotative par rapport à l'écoulement giratoire issu du deuxième passage d'admission d'air 30. L'inclinaison axialo-radiale du deuxième passage d'admission d'air 30 permet de délivrer un écoulement d'air dont le champ de vitesse favorise la pénétration et un mélange homogène du carburant, ce qui permet de réaliser le deuxième mélange air/carburant dans le canal 57. Le bol 71 est attaché au fond de chambre 16 et est traversé, en amont de la série d'orifice 72, par une ou plusieurs autres séries d'orifices (non représentées) qui permettre de reprendre le carburant ruisselant en paroi 54 et d'améliorer ainsi les qualités du mélange réalisé dans le canal 57. Le film d'air f3, issu de la série d'orifices 72, permet de contrôler l'expansion radiale du deuxième mélange air/carburant, ce qui permet de limiter les interactions avec les parois de la chambre de combustion, préjudiciables à sa tenue thermique. On notera que les orifices 72, peuvent être tous de tailles identiques, ou de tailles variables (par secteur) pour assurer à la fois un contrôle de l'expansion du deuxième mélange air/carburant vers les parois de la chambre et favoriser la propagation de la flamme entre des modules plein gaz voisins, notamment lors d'une phase d'allumage. Le schéma de la figure 4 représente les différentes zones d'écoulement générées par le système d'injection des figures 1 à 3. Ainsi, le module ralenti génère une zone de recirculation A localisée autour de l'axe d'injection I. Les caractéristiques de cette zone de recirculation (volume, temps de séjour moyen de l'écoulement, richesse) sont déterminées par la taille du bol 61 et le débit d'air du module ralenti. Elles vont déterminer les performances de la chambre en terme de rallumage, de stabilité et d'émission au ralenti. Le deuxième passage d'admission d'air 30 qui appartient au module plein gaz, génère un écoulement tourbillonnant direct dans la zone d'écoulement B, isolé de la zone de recirculation A par le film d'air fi issu de la première série d'orifices 62 de sortie du conduit d'alimentation d'air 26, ce film d'air fl limitant le cisaillement et donc le mélange entre les zones A et B. Par ailleurs, la présence de la série d'orifices 72 du bol 71 du module plein gaz évite l'interaction des gaz de la zone d'écoulement B avec les parois de la chambre de combustion 10. Le module plein gaz génère une zone de recirculation C localisée de part et d'autre de chaque système d'injection 20, et entre les systèmes d'injection, en fond de chambre. Grâce à ces zones de recirculation C, le module plein gaz présente une large plage de stabilité autorisant une latitude de réglage importante en ce qui concerne la transition du régime ralenti au régime plein gaz. On notera que les écoulements ralentis et plein gaz se mélangent dans la partie aval de la chambre de combustion, dans la zone repérée D.
En régime ralenti, seul le module ralenti, donc seule la zone de recirculation A, est carburée. Les contraintes de dimensionnement relatives à la stabilité du foyer pour un débit de carburant donné correspondant à la butée de décélération imposent, de fait, un fonctionnement de type combustion riche dès le régime ralenti dit OACI (7 % de poussée). La présence de la zone de mélange D juste en aval de la zone de recirculation A fait du foyer du système d'injection, un foyer de type "Rich burn quick Quench Lean" dit RQL. La production de NOx reste donc faible même pour des moteurs dont les caractéristiques thermodynamiques au ralenti sont suffisamment sévères pour conduire potentiellement à la formation d'une quantité significative de NOx (par exemple un turbopropulseur de type TP400). En fonctionnement plein gaz, le module ralenti et le module plein gaz sont carburés, la répartition de carburant étant choisie de manière à réaliser une combustion pauvre, donc faiblement productrice de NOx et de fumée sur les deux modules.

Claims (14)

REVENDICATIONS
1. Système d'injection de carburant dans une chambre de combustion de turbomachine, comprenant des premier et deuxième injecteurs de carburant, caractérisé en ce que le premier injecteur (22) est positionné au centre du système d'injection (20), de manière à injecter un premier nuage de carburant (42), et en ce que le deuxième injecteur (28) entoure le premier injecteur de manière à injecter un deuxième nuage de carburant (48) de forme générale annulaire, autour du premier nuage de carburant.
2. Système d'injection de carburant selon la revendication 1, dans lequel le deuxième injecteur (28) présente une fente d'injection circulaire (29) entourant le premier injecteur.
3. Système d'injection de carburant selon la revendication 1, dans lequel le deuxième injecteur présente plusieurs orifices d'injection disposés en cercle autour du premier injecteur. 20
4. Système d'injection de carburant selon l'une quelconque des revendications 1 à 3, comprenant des premier et deuxième passages d'admission d'air (24, 30) associés respectivement aux premier et deuxième injecteurs (22, 28), de manière à former, respectivement, des premier et deuxième mélanges air/carburant. 25
5. Système d'injection selon la revendication 4, dans lequel le premier injecteur (22), le premier passage d'admission d'air (24) et le deuxième injecteur (28) appartiennent à un premier ensemble (51) destiné à être monté sur un deuxième ensemble (52) comprenant le deuxième passage 30 d'admission d'air (30), ce deuxième ensemble (52) étant destinée à être monté sur ladite chambre de combustion (10).
6. Système d'injection de carburant selon la revendication 4 ou 5 comprenant, en outre, un conduit d'admission d'air (26) avec des orifices15de sortie (62) débouchant entre les premier et deuxième injecteurs, de manière à créer un film d'air (f2) séparateur entre les zones de combustion respectives des premier et deuxième mélanges air/carburant.
7. Système d'injection selon la revendication 6 comprenant, autour du premier injecteur (22) et dans cet ordre : le premier passage d'admission d'air (24), le conduit d'admission d'air (26), le deuxième injecteur (28) et le deuxième passage d'admission d'air (30).
8. Système d'injection selon l'une quelconque des revendications 4 à 7, dans lequel le premier passage d'admission d'air (24) est délimité entre deux parois annulaires intérieure et extérieure (43, 44), la paroi extérieure (44) se prolongeant vers l'aval par une paroi divergente (45).
9. Système d'injection selon les revendications 6 et 8, dans lequel ledit conduit d'admission d'air (26) comprend une première série d'orifices de sortie (62) traversant ladite paroi divergente (45), au niveau de l'extrémité aval de cette paroi, ces orifices étant disposés en cercle autour du premier injecteur (22).
10. Système d'injection selon la revendication 9, dans lequel ledit conduit d'admission d'air (26) comprend une deuxième série d'orifices de sortie (63) traversant ladite paroi divergente (45) en amont de ladite première série d'orifices de sortie (62), ces orifices étant disposés en cercle autour du premier injecteur (22).
11. Système d'injection selon l'une quelconque des revendications 1 à 10, dans lequel le deuxième passage d'admission d'air (30) est délimité entre deux parois annulaires intérieure et extérieure (53, 54), la paroi extérieure (54) se prolongeant vers l'aval par une paroi divergente (56), cette paroi divergente étant traversée, au niveau de son extrémité aval, par une série d'orifices (72) disposés en cercle autour du deuxième injecteur (28).
12. Chambre de combustion de turbomachine équipée d'un système d'injection (20) selon l'une quelconque des revendications précédentes.
13. Chambre de combustion selon la revendication 12 comprenant des parois intérieure et extérieure annulaires (12,
14), mutuellement écartées, un fond de chambre (16) disposé entre lesdites parois, dans la région amont de ladite chambre, et un système d'injection (20) selon la revendication 5, ledit deuxième ensemble (52) étant fixé au fond de chambre (16). 14. Turbomachine comprenant une chambre de combustion selon la revendication 12 ou 13.
FR0752820A 2007-01-23 2007-01-23 Systeme d'injection de carburant a double injecteur. Expired - Fee Related FR2911667B1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
FR0752820A FR2911667B1 (fr) 2007-01-23 2007-01-23 Systeme d'injection de carburant a double injecteur.
CA2619421A CA2619421C (fr) 2007-01-23 2008-01-21 Systeme d'injection de carburant a double injecteur
RU2008102394/06A RU2468297C2 (ru) 2007-01-23 2008-01-22 Система впрыска топлива в камеру сгорания газотурбинного двигателя, камера сгорания, оснащенная такой системой, и газотурбинный двигатель
EP08150474.8A EP1953455B1 (fr) 2007-01-23 2008-01-22 Système d'injection de carburant à double injecteur
JP2008011192A JP5142202B2 (ja) 2007-01-23 2008-01-22 二重インジェクタ式燃料インジェクタシステム
US12/018,520 US7942003B2 (en) 2007-01-23 2008-01-23 Dual-injector fuel injector system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0752820A FR2911667B1 (fr) 2007-01-23 2007-01-23 Systeme d'injection de carburant a double injecteur.

Publications (2)

Publication Number Publication Date
FR2911667A1 true FR2911667A1 (fr) 2008-07-25
FR2911667B1 FR2911667B1 (fr) 2009-10-02

Family

ID=38474204

Family Applications (1)

Application Number Title Priority Date Filing Date
FR0752820A Expired - Fee Related FR2911667B1 (fr) 2007-01-23 2007-01-23 Systeme d'injection de carburant a double injecteur.

Country Status (6)

Country Link
US (1) US7942003B2 (fr)
EP (1) EP1953455B1 (fr)
JP (1) JP5142202B2 (fr)
CA (1) CA2619421C (fr)
FR (1) FR2911667B1 (fr)
RU (1) RU2468297C2 (fr)

Families Citing this family (120)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7878000B2 (en) * 2005-12-20 2011-02-01 General Electric Company Pilot fuel injector for mixer assembly of a high pressure gas turbine engine
JP5023526B2 (ja) * 2006-03-23 2012-09-12 株式会社Ihi 燃焼器用バーナ及び燃焼方法
GB0625016D0 (en) * 2006-12-15 2007-01-24 Rolls Royce Plc Fuel injector
JP4364911B2 (ja) * 2007-02-15 2009-11-18 川崎重工業株式会社 ガスタービンエンジンの燃焼器
EP2207951B1 (fr) * 2007-09-25 2014-03-12 Airbus SAS Procédé de fonctionnement d'un moteur à turbine à gaz et avion utilisant ce procédé
GB2456147B (en) * 2008-01-03 2010-07-14 Rolls Royce Plc Fuel Injector Assembly for Gas Turbine Engines
CA2715186C (fr) 2008-03-28 2016-09-06 Exxonmobil Upstream Research Company Production d'electricite a faible emission et systemes et procedes de recuperation d'hydrocarbures
MY153097A (en) 2008-03-28 2014-12-31 Exxonmobil Upstream Res Co Low emission power generation and hydrocarbon recovery systems and methods
MX2011002770A (es) 2008-10-14 2011-04-26 Exxonmobil Upstream Res Co Metodos y sistemas para controlar los productos de combustion.
US8281597B2 (en) * 2008-12-31 2012-10-09 General Electric Company Cooled flameholder swirl cup
US20100170253A1 (en) * 2009-01-07 2010-07-08 General Electric Company Method and apparatus for fuel injection in a turbine engine
FR2943119B1 (fr) * 2009-03-12 2011-03-25 Snecma Systemes d'injection de carburant dans une chambre de combustion de turbomachine
US20100300102A1 (en) * 2009-05-28 2010-12-02 General Electric Company Method and apparatus for air and fuel injection in a turbine
US20100307160A1 (en) * 2009-06-03 2010-12-09 Vinayak Barve Convex Pilot Cone
JP5896443B2 (ja) * 2009-06-05 2016-03-30 国立研究開発法人宇宙航空研究開発機構 燃料ノズル
BR112012010294A2 (pt) 2009-11-12 2017-11-07 Exxonmobil Upstream Res Co sistema integrado, e, método para a recuperação de hidrocarboneto de baixa emissão com produção de energia
FR2956897B1 (fr) * 2010-02-26 2012-07-20 Snecma Systeme d'injection pour chambre de combustion de turbomachine, comprenant des moyens d'injection d'air ameliorant le melange air-carburant
WO2012003080A1 (fr) 2010-07-02 2012-01-05 Exxonmobil Upstream Research Company Systèmes et procédés de production d'électricité à faible taux d'émission
JP5906555B2 (ja) 2010-07-02 2016-04-20 エクソンモービル アップストリーム リサーチ カンパニー 排ガス再循環方式によるリッチエアの化学量論的燃焼
PL2588727T3 (pl) 2010-07-02 2019-05-31 Exxonmobil Upstream Res Co Spalanie stechiometryczne z recyrkulacją gazów spalinowych i chłodnicą bezpośredniego kontaktu
US9903271B2 (en) 2010-07-02 2018-02-27 Exxonmobil Upstream Research Company Low emission triple-cycle power generation and CO2 separation systems and methods
US20120023951A1 (en) * 2010-07-29 2012-02-02 Nishant Govindbhai Parsania Fuel nozzle with air admission shroud
US8662408B2 (en) 2010-08-11 2014-03-04 General Electric Company Annular injector assembly and methods of assembling the same
US9003804B2 (en) * 2010-11-24 2015-04-14 Delavan Inc Multipoint injectors with auxiliary stage
US8899048B2 (en) * 2010-11-24 2014-12-02 Delavan Inc. Low calorific value fuel combustion systems for gas turbine engines
JP5546432B2 (ja) * 2010-11-30 2014-07-09 株式会社日立製作所 ガスタービン燃焼器及び燃料供給方法
US20120151928A1 (en) * 2010-12-17 2012-06-21 Nayan Vinodbhai Patel Cooling flowpath dirt deflector in fuel nozzle
US8312724B2 (en) * 2011-01-26 2012-11-20 United Technologies Corporation Mixer assembly for a gas turbine engine having a pilot mixer with a corner flame stabilizing recirculation zone
US9920932B2 (en) 2011-01-26 2018-03-20 United Technologies Corporation Mixer assembly for a gas turbine engine
FR2971039B1 (fr) * 2011-02-02 2013-01-11 Turbomeca Injecteur de chambre de combustion de turbine a gaz a double circuit de carburant et chambre de combustion equipee d'au moins un tel injecteur
US8925325B2 (en) 2011-03-18 2015-01-06 Delavan Inc. Recirculating product injection nozzle
TWI563166B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Integrated generation systems and methods for generating power
TWI563165B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Power generation system and method for generating power
TWI593872B (zh) 2011-03-22 2017-08-01 艾克頌美孚上游研究公司 整合系統及產生動力之方法
TWI564474B (zh) 2011-03-22 2017-01-01 艾克頌美孚上游研究公司 於渦輪系統中控制化學計量燃燒的整合系統和使用彼之產生動力的方法
US8893500B2 (en) * 2011-05-18 2014-11-25 Solar Turbines Inc. Lean direct fuel injector
US8919132B2 (en) * 2011-05-18 2014-12-30 Solar Turbines Inc. Method of operating a gas turbine engine
JP5772245B2 (ja) * 2011-06-03 2015-09-02 川崎重工業株式会社 燃料噴射装置
US9188063B2 (en) 2011-11-03 2015-11-17 Delavan Inc. Injectors for multipoint injection
WO2013095829A2 (fr) 2011-12-20 2013-06-27 Exxonmobil Upstream Research Company Production améliorée de méthane de houille
US9423137B2 (en) * 2011-12-29 2016-08-23 Rolls-Royce Corporation Fuel injector with first and second converging fuel-air passages
DE102012002664A1 (de) * 2012-02-10 2013-08-14 Rolls-Royce Deutschland Ltd & Co Kg Gasturbinenvormischbrenner
US9353682B2 (en) 2012-04-12 2016-05-31 General Electric Company Methods, systems and apparatus relating to combustion turbine power plants with exhaust gas recirculation
US10273880B2 (en) 2012-04-26 2019-04-30 General Electric Company System and method of recirculating exhaust gas for use in a plurality of flow paths in a gas turbine engine
US9784185B2 (en) 2012-04-26 2017-10-10 General Electric Company System and method for cooling a gas turbine with an exhaust gas provided by the gas turbine
US9212822B2 (en) * 2012-05-30 2015-12-15 General Electric Company Fuel injection assembly for use in turbine engines and method of assembling same
JP5924618B2 (ja) * 2012-06-07 2016-05-25 川崎重工業株式会社 燃料噴射装置
DE102012017065A1 (de) * 2012-08-28 2014-03-27 Rolls-Royce Deutschland Ltd & Co Kg Verfahren zum Betrieb eines Magervormischbrenners einer Fluggasturbine sowie Vorrichtung zur Durchführung des Verfahrens
FR2996287B1 (fr) * 2012-09-28 2018-03-02 Safran Aircraft Engines Dispositif d'injection pour une chambre de combustion de turbomachine
US9599070B2 (en) 2012-11-02 2017-03-21 General Electric Company System and method for oxidant compression in a stoichiometric exhaust gas recirculation gas turbine system
US9869279B2 (en) 2012-11-02 2018-01-16 General Electric Company System and method for a multi-wall turbine combustor
US10138815B2 (en) 2012-11-02 2018-11-27 General Electric Company System and method for diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system
US9631815B2 (en) 2012-12-28 2017-04-25 General Electric Company System and method for a turbine combustor
US9803865B2 (en) 2012-12-28 2017-10-31 General Electric Company System and method for a turbine combustor
US9708977B2 (en) 2012-12-28 2017-07-18 General Electric Company System and method for reheat in gas turbine with exhaust gas recirculation
US9611756B2 (en) 2012-11-02 2017-04-04 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US9574496B2 (en) 2012-12-28 2017-02-21 General Electric Company System and method for a turbine combustor
US10107495B2 (en) 2012-11-02 2018-10-23 General Electric Company Gas turbine combustor control system for stoichiometric combustion in the presence of a diluent
US10215412B2 (en) 2012-11-02 2019-02-26 General Electric Company System and method for load control with diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system
US10208677B2 (en) 2012-12-31 2019-02-19 General Electric Company Gas turbine load control system
US9581081B2 (en) 2013-01-13 2017-02-28 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US9512759B2 (en) 2013-02-06 2016-12-06 General Electric Company System and method for catalyst heat utilization for gas turbine with exhaust gas recirculation
TW201502356A (zh) 2013-02-21 2015-01-16 Exxonmobil Upstream Res Co 氣渦輪機排氣中氧之減少
US9938861B2 (en) 2013-02-21 2018-04-10 Exxonmobil Upstream Research Company Fuel combusting method
WO2014133406A1 (fr) 2013-02-28 2014-09-04 General Electric Company Système et procédé pour une chambre de combustion de turbine
US9618261B2 (en) 2013-03-08 2017-04-11 Exxonmobil Upstream Research Company Power generation and LNG production
US9784182B2 (en) 2013-03-08 2017-10-10 Exxonmobil Upstream Research Company Power generation and methane recovery from methane hydrates
US20140250945A1 (en) 2013-03-08 2014-09-11 Richard A. Huntington Carbon Dioxide Recovery
TW201500635A (zh) 2013-03-08 2015-01-01 Exxonmobil Upstream Res Co 處理廢氣以供用於提高油回收
US9631542B2 (en) 2013-06-28 2017-04-25 General Electric Company System and method for exhausting combustion gases from gas turbine engines
US9617914B2 (en) 2013-06-28 2017-04-11 General Electric Company Systems and methods for monitoring gas turbine systems having exhaust gas recirculation
US9835089B2 (en) 2013-06-28 2017-12-05 General Electric Company System and method for a fuel nozzle
TWI654368B (zh) 2013-06-28 2019-03-21 美商艾克頌美孚上游研究公司 用於控制在廢氣再循環氣渦輪機系統中的廢氣流之系統、方法與媒體
US9903588B2 (en) 2013-07-30 2018-02-27 General Electric Company System and method for barrier in passage of combustor of gas turbine engine with exhaust gas recirculation
US9587510B2 (en) 2013-07-30 2017-03-07 General Electric Company System and method for a gas turbine engine sensor
US9951658B2 (en) 2013-07-31 2018-04-24 General Electric Company System and method for an oxidant heating system
US10030588B2 (en) 2013-12-04 2018-07-24 General Electric Company Gas turbine combustor diagnostic system and method
US9752458B2 (en) 2013-12-04 2017-09-05 General Electric Company System and method for a gas turbine engine
US10227920B2 (en) 2014-01-15 2019-03-12 General Electric Company Gas turbine oxidant separation system
US9863267B2 (en) 2014-01-21 2018-01-09 General Electric Company System and method of control for a gas turbine engine
US9915200B2 (en) 2014-01-21 2018-03-13 General Electric Company System and method for controlling the combustion process in a gas turbine operating with exhaust gas recirculation
US10907833B2 (en) 2014-01-24 2021-02-02 Raytheon Technologies Corporation Axial staged combustor with restricted main fuel injector
US10079564B2 (en) 2014-01-27 2018-09-18 General Electric Company System and method for a stoichiometric exhaust gas recirculation gas turbine system
US20150285502A1 (en) * 2014-04-08 2015-10-08 General Electric Company Fuel nozzle shroud and method of manufacturing the shroud
US10047633B2 (en) 2014-05-16 2018-08-14 General Electric Company Bearing housing
US10655542B2 (en) 2014-06-30 2020-05-19 General Electric Company Method and system for startup of gas turbine system drive trains with exhaust gas recirculation
US10060359B2 (en) 2014-06-30 2018-08-28 General Electric Company Method and system for combustion control for gas turbine system with exhaust gas recirculation
US9885290B2 (en) 2014-06-30 2018-02-06 General Electric Company Erosion suppression system and method in an exhaust gas recirculation gas turbine system
US9869247B2 (en) 2014-12-31 2018-01-16 General Electric Company Systems and methods of estimating a combustion equivalence ratio in a gas turbine with exhaust gas recirculation
US9819292B2 (en) 2014-12-31 2017-11-14 General Electric Company Systems and methods to respond to grid overfrequency events for a stoichiometric exhaust recirculation gas turbine
US10788212B2 (en) 2015-01-12 2020-09-29 General Electric Company System and method for an oxidant passageway in a gas turbine system with exhaust gas recirculation
US10316746B2 (en) 2015-02-04 2019-06-11 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10253690B2 (en) 2015-02-04 2019-04-09 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10094566B2 (en) 2015-02-04 2018-10-09 General Electric Company Systems and methods for high volumetric oxidant flow in gas turbine engine with exhaust gas recirculation
US10267270B2 (en) 2015-02-06 2019-04-23 General Electric Company Systems and methods for carbon black production with a gas turbine engine having exhaust gas recirculation
US10145269B2 (en) 2015-03-04 2018-12-04 General Electric Company System and method for cooling discharge flow
US10480792B2 (en) 2015-03-06 2019-11-19 General Electric Company Fuel staging in a gas turbine engine
US10385809B2 (en) 2015-03-31 2019-08-20 Delavan Inc. Fuel nozzles
US9897321B2 (en) 2015-03-31 2018-02-20 Delavan Inc. Fuel nozzles
FR3042023B1 (fr) * 2015-10-06 2020-06-05 Safran Helicopter Engines Chambre de combustion annulaire pour turbomachine
EP3184898A1 (fr) * 2015-12-23 2017-06-28 Siemens Aktiengesellschaft Chambre de combustion pour turbine à gaz
US10047959B2 (en) * 2015-12-29 2018-08-14 Pratt & Whitney Canada Corp. Fuel injector for fuel spray nozzle
US10830445B2 (en) * 2015-12-30 2020-11-10 General Electric Company Liquid fuel nozzles for dual fuel combustors
ES2870975T3 (es) * 2016-01-15 2021-10-28 Siemens Energy Global Gmbh & Co Kg Cámara de combustión para una turbina de gas
US10502425B2 (en) * 2016-06-03 2019-12-10 General Electric Company Contoured shroud swirling pre-mix fuel injector assembly
US10801728B2 (en) * 2016-12-07 2020-10-13 Raytheon Technologies Corporation Gas turbine engine combustor main mixer with vane supported centerbody
US11149952B2 (en) * 2016-12-07 2021-10-19 Raytheon Technologies Corporation Main mixer in an axial staged combustor for a gas turbine engine
RU173301U1 (ru) * 2017-03-06 2017-08-21 Публичное акционерное общество "Научно-производственное объединение "Сатурн" Фронтовое устройство камеры сгорания газотурбинного двигателя
US11149948B2 (en) * 2017-08-21 2021-10-19 General Electric Company Fuel nozzle with angled main injection ports and radial main injection ports
US11561008B2 (en) * 2017-08-23 2023-01-24 General Electric Company Fuel nozzle assembly for high fuel/air ratio and reduced combustion dynamics
US11480338B2 (en) * 2017-08-23 2022-10-25 General Electric Company Combustor system for high fuel/air ratio and reduced combustion dynamics
EP3677839B1 (fr) * 2017-08-28 2023-05-03 Kawasaki Jukogyo Kabushiki Kaisha Injecteur de carburant
GB201820206D0 (en) * 2018-12-12 2019-01-23 Rolls Royce Plc A fuel spray nozzle
US11156360B2 (en) * 2019-02-18 2021-10-26 General Electric Company Fuel nozzle assembly
GB201909168D0 (en) 2019-06-26 2019-08-07 Rolls Royce Plc Fuel injector
EP3910238A1 (fr) * 2020-05-15 2021-11-17 Siemens Aktiengesellschaft Cône pilote
KR102322596B1 (ko) * 2020-07-17 2021-11-05 두산중공업 주식회사 연소기용 노즐 어셈블리 및 이를 포함하는 가스터빈 연소기
RU208130U1 (ru) * 2021-04-26 2021-12-06 Публичное Акционерное Общество "Одк-Сатурн" Стенка фронта жаровой трубы камеры сгорания
DE102022207492A1 (de) 2022-07-21 2024-02-01 Rolls-Royce Deutschland Ltd & Co Kg Düsenvorrichtung zur Zugabe zumindest eines gasförmigen Kraftstoffes und eines flüssigen Kraftstoffes, Set, Zuleitungssystem und Gasturbinenanordnung
US12111056B2 (en) * 2023-02-02 2024-10-08 Pratt & Whitney Canada Corp. Combustor with central fuel injection and downstream air mixing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1193450A1 (fr) * 2000-09-29 2002-04-03 General Electric Company Mélangeur comprenant plusieurs vrilles
EP1193449A2 (fr) * 2000-09-29 2002-04-03 General Electric Company Ensemble de vrilles annulaires
EP1314933A1 (fr) * 2001-11-21 2003-05-28 Hispano Suiza Système d'injection multi-étages d'un mélange air/carburant dans une chambre de combustion de turbomachine
EP1413830A2 (fr) * 2002-10-24 2004-04-28 ROLLS-ROYCE plc Injecteur de carburant à air comprimé avec répartiteur d' air modifié et injecteur pilote
EP1806536A1 (fr) * 2006-01-09 2007-07-11 Snecma Refroidissement d'un dispositif d'injection multimode pour chambre de combustion, notamment d'un turboréacteur

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2706021B1 (fr) 1993-06-03 1995-07-07 Snecma Chambre de combustion comprenant un ensemble séparateur de gaz.
FR2751731B1 (fr) * 1996-07-25 1998-09-04 Snecma Ensemble bol-deflecteur pour chambre de combustion de turbomachine
FR2753779B1 (fr) * 1996-09-26 1998-10-16 Systeme d'injection aerodynamique d'un melange air carburant
US5865024A (en) * 1997-01-14 1999-02-02 General Electric Company Dual fuel mixer for gas turbine combustor
DE69930455T2 (de) * 1998-11-12 2006-11-23 Mitsubishi Heavy Industries, Ltd. Gasturbinenbrennkammer
US6389815B1 (en) * 2000-09-08 2002-05-21 General Electric Company Fuel nozzle assembly for reduced exhaust emissions
US6381964B1 (en) * 2000-09-29 2002-05-07 General Electric Company Multiple annular combustion chamber swirler having atomizing pilot
US20020162333A1 (en) * 2001-05-02 2002-11-07 Honeywell International, Inc., Law Dept. Ab2 Partial premix dual circuit fuel injector
US6418726B1 (en) * 2001-05-31 2002-07-16 General Electric Company Method and apparatus for controlling combustor emissions
RU2226652C2 (ru) * 2002-05-28 2004-04-10 Открытое акционерное общество "Авиадвигатель" Камера сгорания газотурбинного двигателя
JP4065947B2 (ja) * 2003-08-05 2008-03-26 独立行政法人 宇宙航空研究開発機構 ガスタービン燃焼器用燃料・空気プレミキサー
FR2859272B1 (fr) * 2003-09-02 2005-10-14 Snecma Moteurs Systeme d'injection air/carburant, dans une chambre de combustion de turbomachine, ayant des moyens de generation de plasmas froids
RU38218U1 (ru) * 2003-12-23 2004-05-27 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения им. П.И. Баранова" Устройство для подготовки и подачи топливовоздушной смеси в камеру сгорания
US8511097B2 (en) * 2005-03-18 2013-08-20 Kawasaki Jukogyo Kabushiki Kaisha Gas turbine combustor and ignition method of igniting fuel mixture in the same
US7779636B2 (en) * 2005-05-04 2010-08-24 Delavan Inc Lean direct injection atomizer for gas turbine engines
US7878000B2 (en) * 2005-12-20 2011-02-01 General Electric Company Pilot fuel injector for mixer assembly of a high pressure gas turbine engine
US7762073B2 (en) * 2006-03-01 2010-07-27 General Electric Company Pilot mixer for mixer assembly of a gas turbine engine combustor having a primary fuel injector and a plurality of secondary fuel injection ports
JP4364911B2 (ja) * 2007-02-15 2009-11-18 川崎重工業株式会社 ガスタービンエンジンの燃焼器
JP4733195B2 (ja) * 2009-04-27 2011-07-27 川崎重工業株式会社 ガスタービンエンジンの燃料噴霧装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1193450A1 (fr) * 2000-09-29 2002-04-03 General Electric Company Mélangeur comprenant plusieurs vrilles
EP1193449A2 (fr) * 2000-09-29 2002-04-03 General Electric Company Ensemble de vrilles annulaires
EP1314933A1 (fr) * 2001-11-21 2003-05-28 Hispano Suiza Système d'injection multi-étages d'un mélange air/carburant dans une chambre de combustion de turbomachine
EP1413830A2 (fr) * 2002-10-24 2004-04-28 ROLLS-ROYCE plc Injecteur de carburant à air comprimé avec répartiteur d' air modifié et injecteur pilote
EP1806536A1 (fr) * 2006-01-09 2007-07-11 Snecma Refroidissement d'un dispositif d'injection multimode pour chambre de combustion, notamment d'un turboréacteur

Also Published As

Publication number Publication date
FR2911667B1 (fr) 2009-10-02
CA2619421A1 (fr) 2008-07-23
JP5142202B2 (ja) 2013-02-13
EP1953455A1 (fr) 2008-08-06
EP1953455B1 (fr) 2015-01-21
US20080236165A1 (en) 2008-10-02
RU2008102394A (ru) 2009-07-27
CA2619421C (fr) 2015-12-01
RU2468297C2 (ru) 2012-11-27
US7942003B2 (en) 2011-05-17
JP2008180495A (ja) 2008-08-07

Similar Documents

Publication Publication Date Title
EP1953455B1 (fr) Système d'injection de carburant à double injecteur
CA2588952C (fr) Chambre de combustion d'une turbomachine
CA2638223C (fr) Injecteur de carburant dans une chambre de combustion de turbomachine
CA2646959C (fr) Systeme d'injection d'un melange d'air et de carburant dans une chambre de combustion de turbomachine
CA2420313C (fr) Systeme d'injection multi-modes d'un melange air/carburant dans une chambre de combustion
EP0214003B1 (fr) Dispositif d'injection à bol elargi pour chambre de combustion de turbomachine
FR2970553A1 (fr) Systeme de regulation de debit dans un injecteur multitubulaire de combustible
FR2968064A1 (fr) Premelangeur pour systeme de combustion
FR2748088A1 (fr) Optimisation du melange de gaz brules dans une chambre de combustion annulaire
FR2906868A1 (fr) Injecteur de carburant pour chambre de combustion de moteur a turbine a gaz
WO2014118457A1 (fr) Ensemble de combustion de turbomachine comprenant un circuit d'alimentation de carburant améliore
FR3003632A1 (fr) Systeme d'injection pour chambre de combustion de turbomachine comportant une paroi annulaire a profil interne convergent
EP3784958B1 (fr) Système d'injection pour une chambre annulaire de combustion de turbomachine
FR3022986B1 (fr) Procede d'allumage d'une chambre de combustion de turbomachine
FR3105985A1 (fr) Circuit multipoint d’injecteur amélioré
EP4327023A1 (fr) Cone de diffusion pour partie arriere de turboreacteur integrant un anneau accroche-flamme en bord de fuite
EP3247945A1 (fr) Systeme d'injection de carburant pour turbomachine d'aeronef, comprenant un canal de traversee d'air a section variable
WO2024052611A1 (fr) Dispositif et procede d'injection de melange hydrogene-air pour bruleur de turbomachine
WO2024134072A1 (fr) Dispositif de combustion à hydrogène
FR3135114A1 (fr) Procede d’injection de melange hydrogene-air pour bruleur de turbomachine
FR3122695A1 (fr) Cône de diffusion à double paroi définissant un plenum de refroidissement pour partie arrière de turboréacteur
FR3122720A1 (fr) Cône de diffusion pour partie arrière de turboréacteur intégrant un système d'injection d'air et de carburant
FR3057648A1 (fr) Systeme d'injection pauvre de chambre de combustion de turbomachine
FR3040439A1 (fr) Turboreacteur double flux dote d'une paroi de confluence

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 9

ST Notification of lapse

Effective date: 20160930