Nothing Special   »   [go: up one dir, main page]

FR2911566A1 - Hybrid powertrain controlling system for e.g. four-door sedan, has calculating unit determining setpoints for heat and electric engine units, starter-alternator and clutch, from battery charge state of battery, speed and torque request - Google Patents

Hybrid powertrain controlling system for e.g. four-door sedan, has calculating unit determining setpoints for heat and electric engine units, starter-alternator and clutch, from battery charge state of battery, speed and torque request Download PDF

Info

Publication number
FR2911566A1
FR2911566A1 FR0752772A FR0752772A FR2911566A1 FR 2911566 A1 FR2911566 A1 FR 2911566A1 FR 0752772 A FR0752772 A FR 0752772A FR 0752772 A FR0752772 A FR 0752772A FR 2911566 A1 FR2911566 A1 FR 2911566A1
Authority
FR
France
Prior art keywords
torque
speed
vehicle
battery
driver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR0752772A
Other languages
French (fr)
Other versions
FR2911566B1 (en
Inventor
Emmanuel Devaud
Francois Fauvel
Gros Philippe Pognant
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Priority to FR0752772A priority Critical patent/FR2911566B1/en
Publication of FR2911566A1 publication Critical patent/FR2911566A1/en
Application granted granted Critical
Publication of FR2911566B1 publication Critical patent/FR2911566B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/119Conjoint control of vehicle sub-units of different type or different function including control of all-wheel-driveline means, e.g. transfer gears or clutches for dividing torque between front and rear axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18027Drive off, accelerating from standstill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • B60K2006/268Electric drive motor starts the engine, i.e. used as starter motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/104Output speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

The system has a powertrain (2) including a heat engine unit (2a) and an electric engine unit (2e). A calculating unit (8) determines operating setpoints for the heat engine unit, electric engine unit, starter-alternator (2b) and clutch (2c) from a charge state of a battery (5), speed of a motor vehicle and total torque request from a driver during starting phases. An interface (6) between the driver and vehicle is connected to the calculating unit and transmits information to the calculating unit on the request of the driver. An independent claim is also included for a method for controlling a hybrid powertrain unit.

Description

Système et procédé de commande d'un groupe motopropulseur hybride pour unA system and method for controlling a hybrid powertrain for a

véhicule quatre roues motricesfour-wheel drive vehicle

L'invention concerne les systèmes de commande de groupe motopropulseur d'un véhicule quatre roues motrices et de gestion d'un système de propulsion hybride. L'augmentation du prix du pétrole a rendu la réduction de la consommation de carburant des véhicules automobiles à la fois nécessaire et économiquement viable. Les techniques associées à la réduction de consommation de carburant ont d'abord été appliquées à des véhicules susceptibles de toucher un large public, généralement des automobiles de type berline ou citadine. Devant le durcissement prévu des législations envers les véhicules affichant une consommation de carburant élevée, en particulier envers les véhicules dits quatre roues motrices, il est devenu intéressant de faire bénéficier ces véhicules des techniques de réduction de consommation de carburant et de pollution, comme les propulsions hybrides. Cependant, peu de recherches ont été menées pour concilier réduction de la consommation de carburant et gestion de la motricité d'un véhicule à quatre roues motrices. La demande de brevet FR 2654682 décrit un système de commande permettant de piloter un véhicule à quatre roues motrices en répartissant le couple du moteur à combustion interne sur les deux trains avant et arrière à l'aide d'un système de transmission de couple mécanique. Cependant, il n'intègre ni l'utilisation de plusieurs sources de puissance motrice, ni l'utilisation de sources motrices différentes. L'invention a pour objet un système de commande de groupe motopropulseur d'un véhicule hybride à quatre roues motrices pouvant optimiser le fonctionnement du groupe motopropulseur dans les phases transitoires de décollage afin de minimiser la consommation d'énergie tout en garantissant l'agrément de conduite. Par décollage d'un véhicule hybride, on entend la phase comprise entre un premier et un deuxième état du véhicule. Dans le premier état, le véhicule est à l'arrêt, sans transmission de couple à la roue. Dans le deuxième état, le véhicule est en mouvement avec la transmission dans un état stable, ouverte ou fermée. Dans un mode de réalisation, on définit un système de commande d'un groupe motopropulseur hybride pour un véhicule automobile à quatre roues motrices, comprenant un groupe motopropulseur et une batterie. Le groupe motopropulseur comprend à son tour un organe moteur thermique, un organe moteur électrique, un alternodémarreur et un embrayage. Le système de commande comprend également un moyen de calcul apte à déterminer des consignes de fonctionnement pour l'organe moteur thermique, l'organe moteur électrique, l'alternodémarreur et l'embrayage, à partir de l'état de charge de la batterie, de la vitesse du véhicule et de la requête de couple global du conducteur. En d'autres termes, le système de commande reçoit la requête de couple total du conducteur ainsi que les informations concernant l'état de charge de la batterie, et la vitesse du véhicule. Ces données sont analysées par le système de commande qui émet sur ses sorties des commandes destinées à l'organe moteur thermique, l'organe moteur électrique, l'alternodémarreur et l'embrayage. Il est tenu compte dans ces consignes, de la requête du conducteur mais aussi de la réduction de la consommation d'énergie et de l'agrément de conduite. Un tel système de commande peut comprendre une interface entre le conducteur et le véhicule reliée au moyen de calcul et capable d'envoyer au moyen de calcul des informations sur la requête de couple global du conducteur. Le moyen de calcul comprend un moyen de détermination des consignes du groupe motopropulseur et un moyen de traduction des consignes en commandes, le moyen de calcul recevant sur ses entrées des informations sur la vitesse du véhicule, la requête de couple global du conducteur, et l'état de charge de la batterie, et émettant sur ses sorties des signaux de commande vers l'organe moteur thermique, l'organe moteur électrique, alternodémarreur et l'embrayage.  The invention relates to powertrain control systems of a four-wheel drive vehicle and management of a hybrid propulsion system. Rising oil prices have made reducing motor vehicle fuel consumption both necessary and economically viable. The techniques associated with reducing fuel consumption were first applied to vehicles likely to reach a wide audience, usually sedans or city cars. In view of the expected tightening of legislation for vehicles with high fuel consumption, particularly for so-called four-wheel drive vehicles, it has become advantageous to provide these vehicles with techniques for reducing fuel consumption and pollution, such as propulsion. hybrids. However, little research has been done to reconcile reduced fuel consumption and drivability management of a four-wheel drive vehicle. The patent application FR 2654682 describes a control system for driving a four-wheel drive vehicle by distributing the torque of the internal combustion engine on the two front and rear trains using a mechanical torque transmission system. However, it does not integrate the use of several sources of motive power, nor the use of different motor sources. The invention relates to a powertrain control system of a hybrid four-wheel drive vehicle that can optimize the operation of the powertrain in the transitional takeoff phases to minimize energy consumption while ensuring the approval of conduct. By takeoff of a hybrid vehicle is meant the phase between a first and a second state of the vehicle. In the first state, the vehicle is stopped, without transmission of torque to the wheel. In the second state, the vehicle is in motion with the transmission in a stable state, open or closed. In one embodiment, a hybrid powertrain control system is defined for a four-wheel drive motor vehicle, comprising a powertrain and a battery. The powertrain in turn comprises a heat engine member, an electric drive member, an alternator and a clutch. The control system also comprises a calculation means able to determine operating instructions for the thermal engine unit, the electric motor unit, the alternator and the clutch, from the state of charge of the battery, the speed of the vehicle and the driver's overall torque request. In other words, the control system receives the driver's total torque request as well as information about the state of charge of the battery, and the speed of the vehicle. These data are analyzed by the control system which emits on its outputs commands for the thermal engine member, the electric motor unit, the alternator and the clutch. These instructions take into account the driver's request and also the reduction of energy consumption and driving pleasure. Such a control system may comprise an interface between the driver and the vehicle connected to the calculation means and capable of sending to the calculation means information on the overall torque request of the driver. The calculating means comprises a means for determining the setpoints of the powertrain and a means for translating the commands into commands, the calculation means receiving on its inputs information on the speed of the vehicle, the overall torque request of the driver, and the state of charge of the battery, and emitting on its outputs control signals to the thermal engine member, the electric motor unit, alternator starter and the clutch.

Le moyen de détermination des consignes reçoit sur ses entrées des informations concernant la vitesse du véhicule, l'état de charge de la batterie et la consigne de couple global demandée par le conducteur provenant de l'interface entre le conducteur et le véhicule. Le moyen de détermination des consignes comprend un organe de détection d'une phase de décollage, un organe de calcul du régime moteur optimal et un organe de détermination des couples de transmission. Le moyen de détermination des consignes émettant sur ses sorties une consigne de couple sur le train avant, une consigne de couple sur le train arrière, une consigne de couple de l'alternodémarreur, et une consigne de régime du moteur thermique vers le moyen de traduction des consignes en commandes. Le moyen de traduction des consignes en commandes reçoit sur ses entrées les consignes issues du moyen de détermination des consignes. Le moyen de traduction des consignes en commandes comprend un organe de bascule de couple, un organe de filtrage et un organe de correction. Le moyen de traduction des consignes en commandes émet sur ses sorties des commandes de couple vers l'organe moteur thermique, l'organe moteur électrique, l'alternodémarreur et l'embrayage. Selon un autre aspect de l'invention, on définit une procédé de commande d'un groupe motopropulseur hybride pour un véhicule automobile à quatre roues motrices, comprenant une batterie, un organe moteur thermique, un organe moteur électrique, un alternodémarreur et un embrayage. Le procédé de commande détermine les consignes de fonctionnement pour l'organe moteur thermique, l'organe moteur électrique, l'alternodémarreur et l'embrayage, à partir de l'état de charge de la batterie, de la vitesse du véhicule et de la requête de couple global du conducteur.  The setpoint determination means receives on its inputs information concerning the speed of the vehicle, the state of charge of the battery and the overall torque setpoint demanded by the driver coming from the interface between the driver and the vehicle. The means for determining the setpoints comprises a take-off phase detecting member, an optimal engine speed calculating member and a transmission torque determining member. The means for determining the setpoints emitting on its outputs a torque setpoint on the front axle, a torque setpoint on the rear axle, a torque setpoint of the alternator, and a speed setpoint of the engine to the translation means instructions on orders. The means for translating the commands into commands receives on its inputs the instructions from the means for determining the instructions. The means for translating the commands into commands comprises a torque rocker member, a filter member and a correction member. The means of translation of the commands commands emits on its outputs torque commands to the engine member, the electric motor unit, the alternator and the clutch. According to another aspect of the invention, there is defined a method of controlling a hybrid powertrain for a four-wheel drive motor vehicle, comprising a battery, a heat engine member, an electric motor unit, an alternator and a clutch. The control method determines the operating instructions for the heat engine member, the electric motor unit, the alternator starter and the clutch, from the state of charge of the battery, the speed of the vehicle and the driver's global torque request.

On détecte ensuite une phase de décollage, on calcule un régime moteur optimal et on détermine une consigne de couple sur le train avant, une consigne de couple sur le train arrière, une consigne de couple de l'alternodémarreur, et une consigne de régime du moteur thermique, à partir de la situation du véhicule et de la requête de couple global du conducteur. On détermine les consignes de fonctionnement du groupe motopropulseur à partir des consignes de couple et en tenant compte de l'agrément de conduite. D'autres buts, caractéristiques et avantages de l'invention apparaîtront à la lecture de la description suivante, donnée uniquement à titre d'exemple non limitatif et faite en référence aux dessins annexés sur lesquels : - la figure 1 montre le les principaux éléments constituant un système de commande tel que décrit dans l'invention ; - la figure 2 montre les principaux éléments constituant un moyen de détermination des consignes ; - la figure 3 montre les principaux éléments constituant un moyen de traduction des consignes en commandes. La figure 1 montre un véhicule 1 comprenant un groupe motopropulseur 2, un train 3 de roues avant, un train 4 de roues arrières, une batterie 5 et une interface 6 entre le conducteur et le véhicule. Le groupe motopropulseur 2 comprend un organe moteur thermique 2a, un alternodémarreur 2b tous les deux reliés par un embrayage 2c et une boite de vitesses 2d au train 3 de roues avant. Le groupe motopropulseur 2 comprend également un organe moteur électrique 2e entraînant le train 4 de roues arrières et étant relié à une batterie 5. Le groupe motopropulseur 2 est commandé par le moyen 8 de calcul. Le moyen 8 de calcul comprend un moyen 7a de détermination des consignes et un moyen 7b de traduction des consignes en commandes. Le moyen 7a de détermination des consignes est relié par ses entrées à l'interface 6 entre le conducteur et le véhicule par la connexion 9, à la batterie 5 par la connexion 10 et au véhicule par la connexion 11. Le moyen 7a de détermination des consignes est relié par ses sorties au moyen 7b de traduction des consignes en commandes, la connexion 12 portant les signaux de consigne de couple sur le train avant Cons_av, la connexion 13 portant les signaux de consigne de couple sur le train arrière Cons_ar, la connexion 14 portant les signaux de consigne de couple de l'alternodémarreur Cons_ad, et la connexion 15 portant les signaux de consigne de régime de l'organe moteur thermique Cons_Mth. Le moyen 7b de traduction des consignes en commandes reçoit sur ses entrées des signaux provenant du moyen 7a de détermination des consignes, la connexion 12 portant les signaux de consigne de couple sur le train avant Cons_av, la connexion 13 portant les signaux de consigne de couple sur le train arrière Cons_ar, la connexion 14 portant les signaux de consigne de couple de l'alternodémarreur Cons_ad, et la connexion 15 portant les signaux de consigne de régime de l'organe moteur thermique Cons_Mth. Le moyen 7b de traduction des consignes en commandes est également relié par une de ses entrées à l'organe moteur thermique 2a par la connexion 16 portant les signaux de régime de l'organe moteur thermique Cons_Mth. Le moyen 7b de traduction des consignes en commandes est relié par ses sorties à l'organe moteur thermique 2a par la connexion 17, à l'organe moteur électrique 2e par la connexion 18, à l'alternodémarreur 2b par la connexion 19 et à l'embrayage 2c pas la connexion 20. La figure 2 montre les principaux organes composant le moyen 7a de détermination des consignes. La connexion 9 porte la requête de couple global du conducteur Req_C, la connexion 10 porte l'état de charge de la batterie EBT et la connexion 11 porte la vitesse du véhicule Vveh. Les connexions 9, 10 et 11 sont reliées à l'organe 21 de calcul du régime moteur optimal. Une des sorties de l'organe 21 de calcul du régime moteur optimal est reliée à la connexion 15. Une connexion 1lb portant l'information de la vitesse du véhicule Vveh et une connexion 25 portant les signaux de consigne de régime de l'organe moteur thermique Cons_Mth sont reliées à l'organe 22 de détection d'une phase de décollage. Une des sorties de l'organe 22 de détection d'une phase de décollage est reliée par la connexion 24 à l'organe 23 de détermination des couples de transmission.  A take-off phase is then detected, an optimum engine speed is calculated and a torque setpoint is determined on the front axle, a torque setpoint on the rear axle, a torque setpoint of the alternator starter, and an engine speed reference. engine, from the vehicle situation and the driver's overall torque request. The operating instructions of the powertrain are determined from the torque setpoints and taking into account driving pleasure. Other objects, features and advantages of the invention will become apparent on reading the following description, given solely by way of nonlimiting example and with reference to the appended drawings in which: FIG. 1 shows the main constituent elements a control system as described in the invention; FIG. 2 shows the main elements constituting a means for determining the instructions; FIG. 3 shows the main elements constituting a means of translation of the instructions into commands. Figure 1 shows a vehicle 1 comprising a powertrain 2, a train 3 front wheels, a train 4 rear wheels, a battery 5 and an interface 6 between the driver and the vehicle. The powertrain 2 comprises a thermal engine member 2a, an alternator 2b both connected by a clutch 2c and a gearbox 2d to the train 3 front wheels. The powertrain 2 also comprises a second electric drive member driving the train 4 rear wheels and being connected to a battery 5. The powertrain 2 is controlled by the means 8 of calculation. The means 8 for calculating comprises a means 7a for determining the instructions and a means 7b for translating the instructions into commands. The means 7a for determining the setpoints is connected via its inputs to the interface 6 between the driver and the vehicle via the connection 9, to the battery 5 via the connection 10 and to the vehicle via the connection 11. The means 7a for determining the setpoints is connected by its outputs by means of translation 7b of the instructions in commands, the connection 12 carrying the torque setpoint signals on the front train Cons_av, the connection 13 carrying the torque setpoint signals on the rear train Cons_ar, the connection 14 carrying the torque reference signals of the alternator Starter Cons_ad, and the connection 15 bearing the speed reference signals of the thermal engine member Cons_Mth. The means 7b for translating the commands into commands receives on its inputs signals from the means 7a for determining the setpoints, the connection 12 carrying the torque setpoint signals on the forward gear Cons_av, the connection 13 carrying the torque command signals. on the rear train Cons_ar, the connection 14 carrying the torque reference signals of the alternator Starter Cons_ad, and the connection 15 bearing the speed reference signals of the thermal engine member Cons_Mth. The means 7b for converting the commands into commands is also connected by one of its inputs to the thermal engine member 2a through the connection 16 carrying the speed signals of the thermal engine member Cons_Mth. The means 7b for converting the commands into commands is connected via its outputs to the thermal engine unit 2a via the connection 17, to the second electric motor unit via the connection 18, to the alternator starter 2b via the connection 19 and to the clutch 2c not the connection 20. Figure 2 shows the main components of the means 7a for determining the instructions. The connection 9 carries the request for overall torque of the driver Req_C, the connection 10 carries the state of charge of the battery EBT and the connection 11 carries the speed of the vehicle Vveh. The connections 9, 10 and 11 are connected to the member 21 for calculating the optimum engine speed. One of the outputs of the organ 21 for calculating the optimum engine speed is connected to the connection 15. A connection 1b carrying the information of the vehicle speed Vveh and a connection 25 carrying the engine speed reference signals. Thermal Cons_Mth are connected to the body 22 for detecting a take-off phase. One of the outputs of the body 22 for detecting a take-off phase is connected by the connection 24 to the transmission torque determining member 23.

La connexion 9a porte la requête de couple global du conducteur Req_C, la connexion 10a porte l'état de charge de la batterie EBT et la connexion 1 la porte la vitesse du véhicule Vveh, et sont connectées en entrée de l'organe 23 de détermination des couples de transmission. L'organe 23 de détermination des couples de transmission est connecté par ses sorties aux connexions 12, 13 et 14. L'organe 21 de calcul du régime moteur optimal détermine une consigne de régime moteur optimal pour l'organe moteur thermique Cons_Mth en fonction de la requête de couple total du conducteur Req_C, de l'état de charge de la batterie EBT et de la vitesse du véhicule Vveh. La détermination est réalisée de façon à minimiser la consommation de carburant. Cette information est transmise au moyen 7b de traduction des consignes en commandes et à l'organe 22 de détection d'une phase de décollage.  The connection 9a carries the global torque request of the driver Req_C, the connection 10a carries the charge state of the battery EBT and the connection 1 carries the speed of the vehicle Vveh, and are connected to the input of the determination member 23 transmission couples. The transmission torque determining member 23 is connected via its outputs to the connections 12, 13 and 14. The optimum engine speed calculating member 21 determines an optimum engine speed setpoint for the heat engine member Cons_Mth as a function of the total torque request of the driver Req_C, the state of charge of the battery EBT and the speed of the vehicle Vveh. The determination is made in order to minimize fuel consumption. This information is transmitted by means 7b of translation of the instructions in commands and the body 22 for detecting a take-off phase.

L'organe 22 de détection d'une phase de décollage compare la consigne de régime moteur optimal pour l'organe moteur thermique Cons_Mth avec le régime de l'arbre primaire de la boite de vitesses 2d déduit de la vitesse du véhicule Vveh. Cette comparaison permet de déterminer si le véhicule est dans une phase de décollage ou non.  The body 22 for detecting a take-off phase compares the optimal engine speed setpoint for the heat engine member Cons_Mth with the speed of the primary shaft of the gearbox 2d deduced from the vehicle speed Vveh. This comparison makes it possible to determine whether the vehicle is in a take-off phase or not.

Si l'organe 22 de détection d'une phase de décollage détecte une phase décollage, il émet un signal à destination de l'organe 23 de détermination des couples de transmission. L'organe 23 de détermination des couples de transmission détermine des consignes de couples pour l'alternodémarreur Cons_ad, pour le train avant Cons_av et le train arrière Cons_ar de façon à satisfaire la requête de couple global du conducteur Req_C et de minimiser la consommation de carburant et d'énergie. L'organe 23 de détermination des couples de transmission émet la consigne Cons_av sur la connexion 12, la consigne Cons_ar sur la connexion 13 et la consigne Cons_ad sur la connexion 14. Cette détermination des couples de transmission est activée par la réception d'un signal provenant de l'organe 22 de détection d'une phase de décollage. La figure 3 décrit les principaux organes du moyen 7b de traduction des consignes en commandes.  If the body 22 for detecting a takeoff phase detects a take-off phase, it sends a signal to the member 23 for determining the transmission torques. The transmission torque determining member 23 determines torque setpoints for the inter-starter Cons_ad, for the front train Cons_av and the rear train Cons_ar so as to satisfy the overall torque request of the driver Req_C and to minimize the fuel consumption. and energy. The transmission torque determining member 23 transmits the setpoint Cons_av on the connection 12, the setpoint Cons_ar on the connection 13 and the setpoint Cons_ad on the connection 14. This determination of the transmission torques is activated by the reception of a signal from the body 22 for detecting a take-off phase. FIG. 3 describes the main organs of the means 7b for translation of the instructions into commands.

La connexion 12 porte les signaux de consigne de couple sur le train avant Cons_av, la connexion 13 porte les signaux de consigne de couple sur le train arrière Cons_ar et la connexion 14 porte les signaux de consigne de couple de l'alternodémarreur Cons_ad. Les connexions 12, 13 et 14 sont connectées à l'organe 26 de bascule de couple. L'organe 26 de bascule de couple répartit une partie du couple entre le train avant et le train arrière afin d'optimiser l'application de la consigne de couple global du conducteur au niveau de la roue en tenant compte des limitations instantanées du moteur électrique 2e, de l'embrayage 2c et de l'alternodémarreur 2b. L'organe 26 de bascule de couple transmet la consigne de couple du train avant après bascule Cav par la connexion 27, la consigne de couple du train arrière après bascule Car par la connexion 28 et la consigne de couple de l'alternodémarreur après bascule Cad par la connexion 29 à l'organe 30 de filtrage. L'organe 30 de filtrage permet de limiter les à-coups, oscillations ou vibrations mécaniques, du groupe motopropulseur 2, afin d'améliorer l'agrément de conduite. L'organe 30 de filtrage émet par la connexion 17 une commande de l'embrayage Com_Emb, par la connexion 18 une commande de l'organe moteur électrique Com_ME et par la connexion 19 une commande de l'alternodémarreur Com_ad. La connexion 15 en entrée du moyen 7b de traduction des consignes en commandes portant la consigne de régime moteur optimal pour l'organe moteur thermique Cons_Mth et la connexion 16 provenant de l'organe moteur thermique 2a portant la mesure du régime de l'organe moteur thermique C_Mth sont reliées à un premier additionneur 31. La sortie du premier additionneur 31 est reliée au correcteur 32 par la connexion 33. La sortie du correcteur 32 et la connexion 19a portant l'information de la commande de l'alternodémarreur Com ad sont reliées au deuxième additionneur 34.  The connection 12 carries the torque reference signals on the front train Cons_av, the connection 13 carries the torque setpoint signals on the rear train Cons_ar and the connection 14 carries the torque command signals of the alternator Starter Cons_ad. The connections 12, 13 and 14 are connected to the torque rocker member 26. The torque rocker member 26 distributes a portion of the torque between the front axle and the rear axle in order to optimize the application of the overall torque regulation of the driver at the wheel, taking into account the instantaneous limitations of the electric motor. 2nd, clutch 2c and alternator starter 2b. The torque rocker member 26 transmits the torque setpoint of the front axle after flip-flop Cav via the connection 27, the torque setpoint of the rear axle after flip-flop by the connection 28 and the torque setpoint of the alternator after the rocker Cad through the connection 29 to the filter member 30. The filtering member 30 makes it possible to limit jolts, oscillations or mechanical vibrations of the powertrain 2, in order to improve driveability. The filtering member 30 transmits via the connection 17 a control of the clutch Com_Emb, by the connection 18 a control of the electric drive member Com_ME and by the connection 19 a command of the alternator Starter Com_ad. The connection 15 at the input of the means 7b for converting the setpoints into commands carrying the optimal engine speed setpoint for the heat engine element Cons_Mth and the connection 16 coming from the heat engine element 2a bearing the measurement of the speed of the drive member thermal C_Mth are connected to a first adder 31. The output of the first adder 31 is connected to the corrector 32 by the connection 33. The output of the corrector 32 and the connection 19a bearing the information of the control of the alternator Starter Com ad are connected to the second adder 34.

La sortie du deuxième additionneur 34 et la connexion 17a portant l'information de la commande de l'embrayage Com_Emb sont reliées au troisième additionneur 36. La sortie de l'additionneur 36 est reliée à la connexion 20.  The output of the second adder 34 and the connection 17a bearing the information of the control of the clutch Com_Emb are connected to the third adder 36. The output of the adder 36 is connected to the connection 20.

Le premier additionneur 31 réalise la différence entre la consigne de régime moteur optimal pour l'organe moteur thermique Cons Mth et la mesure du régime de l'organe moteur thermique _ CMth. Cette différence de régime est transmise au correcteur 32 qui _ traduit la différence de régime en commande de couple à destination de l'organe moteur thermique 2a. L'additionneur 34 soustrait à cette commande la commande de couple destinée à l'alternodémarreur Com_ad reçue par l'intermédiaire de la connexion 19a. La commande intermédiaire issue de l'additionneur 34 est envoyée à l'additionneur 36 qui ajoute à la commande intermédiaire la commande de couple destinée à l'embrayage Com_Emb reçue de la connexion 17a afin d'obtenir la commande de couple de l'organe moteur thermique Com_Mth. Cette commande est émise par la connexion 20. L'invention permet de commander un groupe motopropulseur hybride dans un véhicule quatre roues motrices afin de minimiser la consommation d'énergie pendant la phase de décollage. La réduction d'énergie prend en compte à la fois l'énergie électrique contenue dans la batterie que l'énergie sous forme de carburant, et permet de réaliser des économies globales quel que soit le type d'énergie pris en compte.  The first adder 31 realizes the difference between the optimum engine speed setpoint for the heat engine element Cons Mth and the measurement of the speed of the thermal engine element CMth. This difference in speed is transmitted to the corrector 32 which translates the speed difference in torque control to the heat engine member 2a. The adder 34 subtracts from this command the torque command for the alternator Starter Com_ad received via the connection 19a. The intermediate command from the adder 34 is sent to the adder 36 which adds to the intermediate command the torque command for the clutch Com_Emb received from the connection 17a in order to obtain the torque control of the motor unit thermal Com_Mth. This control is emitted by the connection 20. The invention makes it possible to control a hybrid powertrain in a four-wheel drive vehicle in order to minimize the energy consumption during the take-off phase. The energy reduction takes into account both the electrical energy contained in the battery and the energy in the form of fuel, and allows for global savings regardless of the type of energy taken into account.

A ce titre, l'invention est applicable à d'autres combinaisons d'organes moteurs. De plus, l'invention prend en compte l'agrément de conduite afin de limiter à-coups du groupe motopropulseur 2 qui peuvent dégrader le ressenti du conducteur. En conclusion, le moyen 7a de détermination des consignes détermine une consigne de régime de l'organe moteur thermique et détecte une phase de décollage d'après la comparaison du régime de l'organe moteur thermique Cons_Mth et détecte une phase de décollage avec la vitesse du véhicule Vveh. Lorsque une phase de décollage est détectée, les consignes de couples pour l'alternodémarreur Cons_ad, pour le train avant Cons_av et le train arrière Cons_ar sont déterminées. Les consignes de couples pour l'alternodémarreur Cons_ad, pour le train avant Cons_av et le train arrière Cons_ar subissent ensuite une répartition du couple entre les trains avant et arrière afin d'optimiser la consommation. Une dernière optimisation consiste à lisser les variations de couple afin d'améliorer l'agrément de conduite. Une commande de l'embrayage Com_Emb, une commande de l'organe moteur électrique Com_ME et une commande de l'alternodémarreur Com_ad sont alors émises. Parallèlement, la consigne de régime moteur optimal pour l'organe moteur thermique Cons_Mth et la mesure du régime de l'organe moteur thermique C_Mth sont comparées, leur différence traduite en une commande et modifiée de façon à tenir compte de la commande de l'alternodémarreur Com_ad et de la commande de l'embrayage Com_Emb. Une commande Com_Mth est alors émise vers l'organe moteur thermique. L'invention est également complémentaire d'un grand nombre de systèmes destinés au contrôle de la consommation de carburant par le fait qu'elle est particulièrement destinée à limiter la consommation de carburant dans la phase initiale de mise en mouvement du véhicule, phase rarement abordée par les systèmes de commande. Enfin, on peut concevoir que l'organe de détermination des couples de transmission prenne en compte les consignes de rapport de boite de vitesse afin d'étendre le domaine d'optimisation du point de fonctionnement du groupe motopropulseur.  As such, the invention is applicable to other combinations of driving members. In addition, the invention takes into account the pleasure of driving to limit jolts powertrain 2 which can degrade the feeling of the driver. In conclusion, the means 7a for determining the setpoints determines a speed reference of the thermal engine member and detects a take-off phase according to the comparison of the speed of the thermal engine member Cons_Mth and detects a takeoff phase with the speed of the Vveh vehicle. When a takeoff phase is detected, the torque setpoints for the alternator Starter Cons_ad, for the front train Cons_av and the rear train Cons_ar are determined. The torque setpoints for the Cons_ad alternator, for the Cons_av front axle and the Cons_ar rear axle are then split into a pair between the front and rear axles in order to optimize consumption. One last optimization is to smooth out torque variations to improve driveability. A control of the Com_Emb clutch, a command of the electric motor unit Com_ME and a command of the alternator Starter Com_ad are then issued. At the same time, the optimum engine speed setpoint for the heat engine unit Cons_Mth and the measurement of the speed of the thermal engine element C_Mth are compared, their difference translated into a control and modified so as to take account of the control of the alternator starter. Com_ad and Com_Emb clutch control. A Com_Mth command is then sent to the thermal engine unit. The invention is also complementary to a large number of systems intended to control the fuel consumption by the fact that it is particularly intended to limit the fuel consumption in the initial phase of setting the vehicle in motion, a phase rarely discussed. by the control systems. Finally, it is conceivable that the transmission torque determining member takes into account the speed gear ratio instructions in order to extend the optimization area of the operating point of the power unit.

Claims (8)

REVENDICATIONS 1. Système de commande d'un groupe motopropulseur hybride pour un véhicule automobile à quatre roues motrices, comprenant un groupe motopropulseur (2) comprenant un organe moteur thermique (2a), une batterie (5), un organe moteur électrique (2e), un alternodémarreur (2b) et un embrayage (2c), caractérisé par le fait que le système de commande comprend un moyen (8) de calcul apte à déterminer des consignes de fonctionnement pour l'organe moteur thermique (2a), l'organe moteur électrique (2e), l'alternodémarreur (2b) et l'embrayage (2c), à partir de l'état de charge de la batterie (5), de la vitesse du véhicule et de la requête de couple global du conducteur lors des phases de décollage.  A control system of a hybrid power train for a four-wheel drive motor vehicle, comprising a power train (2) comprising a heat engine member (2a), a battery (5), an electric drive member (2e), an alternator starter (2b) and a clutch (2c), characterized in that the control system comprises a means (8) for calculating able to determine operating instructions for the thermal engine member (2a), the drive member (2e), the alternator (2b) and the clutch (2c), from the state of charge of the battery (5), the speed of the vehicle and the overall torque request of the driver during the takeoff phases. 2. Système de commande selon la revendication 1 comprenant une interface (6) entre le conducteur et le véhicule reliée au moyen (8) de calcul et capable d'envoyer au moyen (8) de calcul des informations sur la requête de couple global du conducteur.  2. A control system according to claim 1 comprising an interface (6) between the driver and the vehicle connected to the means (8) of calculation and capable of sending to the means (8) calculation of information on the global torque request of the driver. 3. Système de commande selon la revendication 1 ou 2 dans lequel le moyen (8) de calcul comprend un moyen (7a) de détermination des consignes du groupe motopropulseur (2) et un moyen (7b) de traduction des consignes en commandes, le moyen (8) de calcul recevant sur ses entrées des informations sur la vitesse du véhicule, la requête de couple global du conducteur, et l'état de charge de la batterie (5), et émettant sur ses sorties des signaux de commande vers l'organe moteur thermique (2a), l'organe moteur électrique (2e), alternodémarreur (2b) et l'embrayage (2c).  3. Control system according to claim 1 or 2 wherein the means (8) for calculating comprises means (7a) for determining the setpoints of the powertrain (2) and means (7b) for translating orders into commands, the calculation means (8) receiving on its inputs information on the speed of the vehicle, the overall torque request of the driver, and the state of charge of the battery (5), and emitting on its outputs control signals to the thermal engine member (2a), the electric motor unit (2e), alternator starter (2b) and the clutch (2c). 4. Système de commande selon la revendication 3 dans lequel le moyen (7a) de détermination des consignes reçoit sur ses entrées des informations concernant la vitesse du véhicule, l'état de charge de la batterie (5) et la consigne de couple global demandé par le conducteur provenant de l'interface (6) entre le conducteur et le véhicule, le moyen (7a) de détermination des consignes comprend un organe (22) de détection d'une phase de décollage, un organe (21) decalcul du régime moteur optimal et un organe (23) de détermination des couples de transmission, le moyen (7a) de détermination des consignes émettant sur ses sorties une consigne de couple sur le train avant, une consigne de couple sur le train arrière, une consigne de couple de l'alternodémarreur (2b), et une consigne de régime de l'organe moteur thermique (2a) vers le moyen (7b) de traduction des consignes en commandes.  4. Control system according to claim 3 wherein the means (7a) for determining the setpoints receives on its inputs information on the speed of the vehicle, the state of charge of the battery (5) and the global torque setpoint requested by the driver coming from the interface (6) between the driver and the vehicle, the means (7a) for determining the setpoints comprises a member (22) for detecting a take-off phase, a member (21) for calculating the speed optimum motor and a member (23) for determining the transmission torques, the means (7a) for determining the setpoints emitting at its outputs a torque setpoint on the front axle, a torque setpoint on the rear axle, a torque setpoint of the alternator (2b), and a speed reference of the thermal engine member (2a) to the means (7b) for translating the instructions into commands. 5. Système de commande selon la revendication 4 dans lequel le moyen (7b) de traduction des consignes en commandes reçoit sur ses entrées les consignes issues du moyen (7a) de détermination des consignes et comprend un organe (26) de bascule de couple, un organe (30) de filtrage et un organe de correction, le moyen (7b) de traduction des consignes en commandes étant capable d'émettre sur ses sorties des commandes de couple vers l'organe moteur thermique (2a), l'organe moteur électrique (2e), l'alternodémarreur (2b) et l'embrayage (2c).  5. Control system according to claim 4 wherein the means (7b) for translating the commands into commands receives on its inputs the instructions from the means (7a) for determining the instructions and comprises a member (26) of torque rocker, a filtering member (30) and a correction member, the means (7b) for translating the commands into commands being able to transmit on its outputs torque commands to the thermal engine member (2a), the driving member electrical (2nd), the alternator (2b) and the clutch (2c). 6. Procédé de commande d'un groupe motopropulseur hybride pour un véhicule automobile à quatre roues motrices, comprenant un organe moteur thermique (2a), une batterie (5), un organe moteur électrique (2e), un alternodémarreur (2b) et un embrayage (2c), caractérisé par le fait que l'on détermine les consignes de fonctionnement pour l'organe moteur thermique (2a), l'organe moteur électrique (2e), l'alternodémarreur (2b) et l'embrayage (2c), à partir de l'état de charge de la batterie, de la vitesse du véhicule et de la requête de couple global du conducteur.  A method of controlling a hybrid power train for a four-wheel drive motor vehicle, comprising a heat engine member (2a), a battery (5), an electric motor member (2e), an alternator starter (2b) and a clutch (2c), characterized in that the operating instructions for the heat engine element (2a), the electric motor unit (2e), the starter motor (2b) and the clutch (2c) are determined. , from the state of charge of the battery, the speed of the vehicle and the request for overall torque of the driver. 7. Procédé de commande selon la revendication 6 dans lequel on détecte une phase de décollage, on calcule un régime moteur optimal et on détermine une consigne de couple sur le train avant, une consigne de couple sur le train arrière, une consigne de couple de l'alternodémarreur (2b), et une consigne de régime de l'organe moteur thermique (2a), à partir de la situation du véhicule et de la requête de couple global du conducteur.  7. A control method according to claim 6 wherein detects a take-off phase, calculates an optimum engine speed and determines a torque setpoint on the front axle, a torque setpoint on the rear axle, a torque setpoint of the alternator starter (2b), and a speed reference of the thermal engine member (2a), from the vehicle situation and the overall torque request of the driver. 8. Procédé de commande selon la revendication 7 dans lequel on détermine les consignes de fonctionnement du groupemotopropulseur (2) à partir des consignes de couple et en tenant compte de l'agrément de conduite.  8. Control method according to claim 7 wherein the operating instructions of the powertrain group (2) are determined from the torque setpoints and taking into account the driving pleasure.
FR0752772A 2007-01-19 2007-01-19 SYSTEM AND METHOD FOR CONTROLLING A HYBRID POWER PACKAGE FOR A FOUR WHEEL DRIVE VEHICLE Expired - Fee Related FR2911566B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FR0752772A FR2911566B1 (en) 2007-01-19 2007-01-19 SYSTEM AND METHOD FOR CONTROLLING A HYBRID POWER PACKAGE FOR A FOUR WHEEL DRIVE VEHICLE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0752772A FR2911566B1 (en) 2007-01-19 2007-01-19 SYSTEM AND METHOD FOR CONTROLLING A HYBRID POWER PACKAGE FOR A FOUR WHEEL DRIVE VEHICLE

Publications (2)

Publication Number Publication Date
FR2911566A1 true FR2911566A1 (en) 2008-07-25
FR2911566B1 FR2911566B1 (en) 2009-02-27

Family

ID=38294045

Family Applications (1)

Application Number Title Priority Date Filing Date
FR0752772A Expired - Fee Related FR2911566B1 (en) 2007-01-19 2007-01-19 SYSTEM AND METHOD FOR CONTROLLING A HYBRID POWER PACKAGE FOR A FOUR WHEEL DRIVE VEHICLE

Country Status (1)

Country Link
FR (1) FR2911566B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013002824A1 (en) * 2011-06-30 2013-01-03 Ford Global Technologies, Llc Method for controlling vehicle launch
US8727067B2 (en) 2011-06-30 2014-05-20 Ford Global Technologies, Llc Method for supplying power to an electrically assisted steering system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5495906A (en) * 1993-01-25 1996-03-05 Toyota Jidosha Kabushiki Kaisha Controller of hybrid electric vehicle
FR2799417A1 (en) * 1999-10-08 2001-04-13 Toyota Motor Co Ltd Vehicle traction control system having separate power sources for front and rear wheels controlled according to static and dynamic state
US20020094908A1 (en) * 2001-01-16 2002-07-18 Nissan Motor Co., Ltd. Four-wheel drive hybrid vehicle
EP1400386A2 (en) * 2002-09-20 2004-03-24 Honda Giken Kogyo Kabushiki Kaisha Hybrid vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5495906A (en) * 1993-01-25 1996-03-05 Toyota Jidosha Kabushiki Kaisha Controller of hybrid electric vehicle
FR2799417A1 (en) * 1999-10-08 2001-04-13 Toyota Motor Co Ltd Vehicle traction control system having separate power sources for front and rear wheels controlled according to static and dynamic state
US20020094908A1 (en) * 2001-01-16 2002-07-18 Nissan Motor Co., Ltd. Four-wheel drive hybrid vehicle
EP1400386A2 (en) * 2002-09-20 2004-03-24 Honda Giken Kogyo Kabushiki Kaisha Hybrid vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013002824A1 (en) * 2011-06-30 2013-01-03 Ford Global Technologies, Llc Method for controlling vehicle launch
US8612113B2 (en) 2011-06-30 2013-12-17 Ford Global Technologies, Llc Method for controlling vehicle launch
US8727067B2 (en) 2011-06-30 2014-05-20 Ford Global Technologies, Llc Method for supplying power to an electrically assisted steering system
US9650031B2 (en) 2011-06-30 2017-05-16 Ford Global Technologies, Llc Method for supplying power to an electrically assisted steering system

Also Published As

Publication number Publication date
FR2911566B1 (en) 2009-02-27

Similar Documents

Publication Publication Date Title
EP2109562B1 (en) System and method for controlling a hybrid power propulsion unit for a permanent four wheel drive mode operation
FR2935660A1 (en) METHOD AND DEVICE FOR COMPENSATION FOR TORQUE BREAKAGE PROVIDED BY THE POWER PLANT OF A HYBRID VEHICLE DURING A CHANGE IN SPEED
EP2116412A2 (en) Device for electric propulsion or traction of a vehicle
FR2910198A1 (en) Electric motor controlling method for e.g. electric vehicle, involves correcting torque set point by subtracting corrective signal resulting from application to signal representative of instantaneous rotational speed of transmission shaft
EP2285637B1 (en) System and method for controlling a four wheel drive vehicle
FR2958583A1 (en) SYSTEM AND METHOD FOR LIMITING THE MOTOR TORQUE OF A FOUR-WHEELED VEHICLE
FR2881381A1 (en) Drive for motor vehicle, has electric machine installed between internal combustion engine and twin-clutch manual transmission and connected to combustion engine by utilizing additional clutch
EP3589519B1 (en) Method for calculating a control setpoint of a hybrid powertrain of a motor vehicle
FR2911566A1 (en) Hybrid powertrain controlling system for e.g. four-door sedan, has calculating unit determining setpoints for heat and electric engine units, starter-alternator and clutch, from battery charge state of battery, speed and torque request
EP3166828B1 (en) Method for selecting the target state of a drive train
FR2911568A1 (en) Hybrid propulsion controlling system for motor vehicle, has determination unit determining total torque set from demand of driver, and optimization unit optimizing operating point to determine torque to be applied to each of powered axle
FR3100194A1 (en) VEHICLE TAKE-OFF MANAGEMENT PROCESS WITH IMPROVEMENT OF ACOUSTIC AND VIBRATORY PERFORMANCE
EP1791743A1 (en) Method for producing a control instruction adaptable to a brake situation for a transmission device of a motor vehicle power train and corresponding device
FR3048939B1 (en) SYSTEM AND METHOD FOR CORRECTING TORQUE OSCILLATIONS IN A TRANSMISSION OF A HYBRID PROPULSION MOTOR VEHICLE
FR2895941A1 (en) Bi-engine propulsion system for high performance motor vehicle e.g. car, has booster and urban engines comprising booster and urban clutches selectively actuated by control and command unit for controlling linking of engines to gearbox
EP3850203B1 (en) Method for controlling engine torque of a propulsion unit, making it possible to deactivate the compensation for inertial torque
FR3001771A1 (en) Monitoring system for use in power unit of hybrid vehicle, has processing unit comprising parameterizing unit that parameterizes filtered instruction for configuring couple gradient according to motorization mode instruction
FR2911567A1 (en) Hybrid propulsion controlling system for hybrid vehicle, has working point determining and optimizing units determining speed ratio of gear box and working state and torque of heat and electrical engines based on conditions of drivability
WO2006030142A1 (en) Method for producing a setpoint adapted to a cornering situation for a motor vehicle engine-transmission unit transmission device and corresponding device
FR3100195A1 (en) PROCESS FOR DETERMINING A TAKE-OFF ENGINE SPEED FOR AN IMPROVEMENT OF ACOUSTIC AND VIBRATORY PERFORMANCE IN VEHICLES
FR2927041A1 (en) Hybrid powertrain's operating point controlling method for vehicle, involves optimizing operating point of powertrain that determines speed set-point of heat engine, torque to wheels, and power delivered or stored by energy storage element
WO2024156943A1 (en) Precise parametric control of the torque setpoint of a clutch of a vehicle
WO2007138222A1 (en) System for steering a hybrid vehicle comprising four driving wheels
WO2024133206A1 (en) Method for controlling an electrical assembly of a motor vehicle having an internal combustion engine with hybridised manual transmission
FR2929910A3 (en) Hybrid drive train controlling method for motor vehicle, involves calculating torque set values from control data and rules by considering torque set values of chassis to determine torque set values transmitted to engine controllers

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 10

PLFP Fee payment

Year of fee payment: 11

ST Notification of lapse

Effective date: 20180928