FR2803034A1 - Verifying impermeability of underground liquefied gas storage cavern uses measurements of pressure, volume and temperature - Google Patents
Verifying impermeability of underground liquefied gas storage cavern uses measurements of pressure, volume and temperature Download PDFInfo
- Publication number
- FR2803034A1 FR2803034A1 FR9916613A FR9916613A FR2803034A1 FR 2803034 A1 FR2803034 A1 FR 2803034A1 FR 9916613 A FR9916613 A FR 9916613A FR 9916613 A FR9916613 A FR 9916613A FR 2803034 A1 FR2803034 A1 FR 2803034A1
- Authority
- FR
- France
- Prior art keywords
- cavern
- pressure
- measurements
- during
- observation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M3/00—Investigating fluid-tightness of structures
- G01M3/02—Investigating fluid-tightness of structures by using fluid or vacuum
- G01M3/26—Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
- G01M3/32—Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators
- G01M3/3236—Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators by monitoring the interior space of the containers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M3/00—Investigating fluid-tightness of structures
- G01M3/02—Investigating fluid-tightness of structures by using fluid or vacuum
- G01M3/26—Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
- G01M3/28—Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds
- G01M3/2892—Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds for underground fuel dispensing systems
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Examining Or Testing Airtightness (AREA)
Abstract
Description
La présente invention a pour objet un procédé de vérification de l'étanchéité d'une caverne de stockage souterrain de gaz liquéfié sous pression. The present invention relates to a method of checking the tightness of an underground storage cavern of liquefied gas under pressure.
Selon des procédés connus, il est possible de stocker un gaz liquéfié sous pression dans un terrain saturé d'eau, à condition que le produit stocké ne soit pas miscible avec l'eau. Avant la mise en produit du stockage, il est nécessaire de vérifier l'étanchéité de la caverne. Pour ce faire, on injecte dans la caverne un gaz tel que de l'air à une pression dite d'épreuve, sensiblement supérieure à la pression de service, et on observe les variations de pression et de températures dans la caverne ainsi que du volume de la caverne pendant une période d'observation qui suit, d'une durée prédéterminée de stabilisation, la mise en pression de la caverne à la pression d'épreuve, afin de déceler une éventuelle baisse de pression dans la caverne qui, si elle était significative, traduirait une fuite de ladite caverne. Dans l'art antérieur, on procédait à des mesures des paramètres indiqués ci-dessus au début et à la fin de la période d'observation, et la différence entre les pressions initiales et finale, corrigées des éventuelles variations de températures et de volume, donnait une indication sur l'étanchéité de la caverne, à la précision des mesures près. According to known methods, it is possible to store a liquefied gas under pressure in a water-saturated soil, provided that the stored product is not miscible with water. Before putting the storage product into production, it is necessary to check the tightness of the cavern. To do this, a gas is injected into the cavern such as air at a so-called test pressure, substantially greater than the operating pressure, and the variations in pressure and temperatures in the cavern and the volume are observed. of the cave during a period of observation which follows, of a predetermined duration of stabilization, the pressurization of the cavern at the test pressure, in order to detect a possible pressure drop in the cavern which, if it were significant, would translate a leak of said cave. In the prior art, measurements of the parameters indicated above at the beginning and at the end of the observation period were carried out, and the difference between the initial and final pressures, corrected for any variations in temperature and volume, gave an indication of the tightness of the cavern, to the precision of the measurements.
Un des buts de la présente invention est de proposer un procédé de vérification de l'étanchéité d'une caverne de stockage souterrain d'un gaz liquéfié sous pression permettant de déceler une fuite avec une meilleure précision qu'avec les procédés de l'art antérieur, sans prolonger la durée d'observation. One of the aims of the present invention is to propose a method for verifying the leaktightness of an underground storage cavern of a pressurized liquefied gas which makes it possible to detect a leak with a better precision than with the methods of the art previous, without extending the duration of observation.
Selon la présente invention, un procédé de vérification de l'étanchéité d'une caverne de stockage souterrain de gaz liquéfié sous pression non miscible avec l'eau, dans un terrain saturé d'eau, comprenant pendant une durée prédéterminée d'observation suivant, d'une durée prédéterminée de stabilisation, la mise en pression de ladite caverne à une pression dite d'épreuve, des mesures périodiques d'au moins les paramètres physiques suivants - pression totale dans la caverne, - volume de la caverne, - températures dans la caverne, afin de déceler une éventuelle baisse de pression dans le temps dans la caverne, qui, si elle était significative, traduirait une fuite de ladite caverne, comprend en outre un traitement statistique qu'on fait subir aux résultats des mesures comprenant l'association desdites mesures périodiques par couples de mesures périodiques également espacées dans le temps d'une certaine durée et l'optimisation de cette dernière durée, partant de la durée prédéterminée d'observation et de la fréquence des mesures, dans le but d'obtenir une meilleure précision sur la mesure de la baisse de pression susceptible de se produire dans la caverne pendant ladite durée d'observation. According to the present invention, a method of verifying the tightness of an underground storage cavern of liquefied gas under water-immiscible pressure, in a water-saturated terrain, comprising for a following predetermined duration of observation, a predetermined duration of stabilization, the pressurization of said cavern at a so-called test pressure, periodic measurements of at least the following physical parameters - total pressure in the cavern, - volume of the cavern, - temperatures in the cavern, the cavern, in order to detect a possible pressure drop over time in the cavern, which, if it were significant, would translate a leak of said cavern, furthermore comprises a statistical treatment that is subjected to the results of the measurements comprising the association of said periodic measurements by pairs of periodic measurements equally spaced over a period of time and optimization of the latter urea, starting from the predetermined duration of observation and the frequency of the measurements, in order to obtain a better precision on the measurement of the pressure drop that may occur in the cavern during said observation period.
D'autres caractéristiques et avantages de la présente invention apparaitront mieux à la lecture de la description suivante donnée à titre d'exemple non limitatif des formes possibles de réalisation de l'invention, en regard du dessin ci-joint et qui fera bien comprendre comment l'invention peut être réalisée.Other features and advantages of the present invention will appear better on reading the following description given by way of non-limiting example of the possible embodiments of the invention, with reference to the attached drawing and which will explain how the invention can be realized.
La Figure unique est un diagramme de temps illustrant la périodicité des mesures et comportant les différents symboles utilisés dans la description. The single Figure is a timing diagram illustrating the periodicity of the measurements and including the different symbols used in the description.
Partant d'une durée totale d'observation To et d'une période Te entre deux séries de mesures successives, chaque série de mesures comportant au moins des relevés de pressions et de températures et une mesure du volume de la caverne, on recherche par le calcul un intervalle de temps Tm tel que le calcul de la moyenne arithmétique Apm des différences de pressions relevées avec un intervalle de temps Tm, corrigées des variations de température et de volume suivant la loi de Mariotte, permette d'obtenir une estimation de la véritable variation de pression dans la caverne dans un intervalle d'un niveau de confiance égal à 95% qui soit aussi petit que possible. Cet intervalle de temps Tm permet de déduire le nombre n de couples de mesures à prendre en compte dans les calculs. Starting from a total duration of observation To and a period Te between two series of successive measurements, each series of measurements including at least pressure and temperature readings and a measurement of the volume of the cavern, we search by the calculates a time interval Tm such that the calculation of the arithmetic mean Apm of the differences in pressures recorded with a time interval Tm, corrected for variations in temperature and volume according to Mariotte's law, makes it possible to obtain an estimate of the true pressure variation in the cavern within a 95% confidence interval that is as small as possible. This time interval Tm makes it possible to deduce the number n of pairs of measurements to be taken into account in the calculations.
Sur la Figure, on a représenté sur un axe de temps Ot la succession temporelle des différentes phases des mesures â effectuer pour mettre en oeuvre le procédé de l'invention. Après une durée de stabilisation Ts, on effectue des séries de mesures espacées dans le temps de la période Te pendant une durée d'observation To. On associe ensuite les résultats d'une série de mesures effectuée à l'instant t avec ceux de la série de mesures effectuée à l'instant t +Tm. On obtient ainsi n couples supposés indépendants de séries de mesures pendant la durée d'observation To et on a
Ainsi, le couple de séries de mesures numéro j est constitué des mesures initiales numéro j de pression (pij), de températures (Tij) et de volume (Vij) relevées â l'instant tij, et des mesures finales numéro j de pression (pfj), de température (Tfj) et de volume (Vfj) relevées à l'instant tfj. On calcule ensuite les variations de pression Apj Opj = pfj - pij x (Tfj = Tij) x (Vij = Vfj) Le calcul de la moyenne arithmétique Apm des n variations de pression Apj permet d'obtenir une estimation de la véritable variation de pression dans la caverne entre la première et la dernière série de mesures, c'est-à-dire pendant la durée d'observation To. Avec le procédé de l'invention, la vérification de l'étanchéité d'une caverne est effectuée avec une incertitude qui, pour une même durée d'observation To, est divisée par
par rapport aux procédés de l'art antérieur mentionnés ci-dessus, n étant le nombre de couples de séries de mesures indépendantes.In the figure, there is shown on a time axis Ot the temporal succession of the different phases of the measurements to be carried out in order to implement the method of the invention. After a stabilization period Ts, time-spaced series of measurements of the period Te are carried out during a period of observation To. The results of a series of measurements carried out at time t are then combined with those of the series of measurements taken at time t + Tm. We thus obtain n couples supposed to be independent of series of measurements during the duration of observation To and we have
Thus, the pair of series of measurements number j consists of the initial measurements number j of pressure (pij), temperatures (Tij) and volume (Vij) taken at time tij, and final measurements number j of pressure ( pfj), temperature (Tfj) and volume (Vfj) recorded at instant tfj. The pressure variations Apj Opj = pfj - pij x (Tfj = Tij) x (Vij = Vfj) are then calculated. The calculation of the arithmetic mean Apm of the n pressure variations Apj makes it possible to obtain an estimate of the true variation of pressure. in the cavern between the first and the last series of measurements, that is to say during the observation period To. With the method of the invention, the verification of the leaktightness of a cavern is carried out with a uncertainty which, for the same duration of observation To, is divided by
compared to the methods of the prior art mentioned above, where n is the number of pairs of independent measurement series.
A titre d'exemple, le calcul optimisé de n et Te donne, pour To =<B>101</B> heures et Te = 1 heure : n = 34 couples de mesures et Tm = 68 heures. For example, the optimized calculation of n and Te gives, for To = <B> 101 </ B> hours and Te = 1 hour: n = 34 pairs of measurements and Tm = 68 hours.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9916613A FR2803034A1 (en) | 1999-12-28 | 1999-12-28 | Verifying impermeability of underground liquefied gas storage cavern uses measurements of pressure, volume and temperature |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9916613A FR2803034A1 (en) | 1999-12-28 | 1999-12-28 | Verifying impermeability of underground liquefied gas storage cavern uses measurements of pressure, volume and temperature |
Publications (1)
Publication Number | Publication Date |
---|---|
FR2803034A1 true FR2803034A1 (en) | 2001-06-29 |
Family
ID=9553942
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR9916613A Pending FR2803034A1 (en) | 1999-12-28 | 1999-12-28 | Verifying impermeability of underground liquefied gas storage cavern uses measurements of pressure, volume and temperature |
Country Status (1)
Country | Link |
---|---|
FR (1) | FR2803034A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1666864A1 (en) * | 2003-09-12 | 2006-06-07 | Olympus Corporation | Leak tester |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4715214A (en) * | 1986-10-03 | 1987-12-29 | S. Himmelstein And Company | Leak tester |
EP0284262A2 (en) * | 1987-03-26 | 1988-09-28 | Analytical Instruments Limited | Temperature compensation in differential pressure leak detection |
US4896530A (en) * | 1985-04-12 | 1990-01-30 | Martin Lehmann | Method of leak testing, leak testing device, and temperature measuring device as well as a method for measuring a temperature value |
US5201212A (en) * | 1991-02-13 | 1993-04-13 | Tanknology Corporation International | Line leak detector and method |
US5231868A (en) * | 1990-11-09 | 1993-08-03 | Atomic Energy Of Canada Limited/Energie Atomique Du Canada Limitee | Continuous containment monitoring with containment pressure fluctuation |
US5526679A (en) * | 1995-01-05 | 1996-06-18 | Campo/Miller | Automatically calibrated pressurized piping leak detector |
-
1999
- 1999-12-28 FR FR9916613A patent/FR2803034A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4896530A (en) * | 1985-04-12 | 1990-01-30 | Martin Lehmann | Method of leak testing, leak testing device, and temperature measuring device as well as a method for measuring a temperature value |
US4715214A (en) * | 1986-10-03 | 1987-12-29 | S. Himmelstein And Company | Leak tester |
EP0284262A2 (en) * | 1987-03-26 | 1988-09-28 | Analytical Instruments Limited | Temperature compensation in differential pressure leak detection |
US5231868A (en) * | 1990-11-09 | 1993-08-03 | Atomic Energy Of Canada Limited/Energie Atomique Du Canada Limitee | Continuous containment monitoring with containment pressure fluctuation |
US5201212A (en) * | 1991-02-13 | 1993-04-13 | Tanknology Corporation International | Line leak detector and method |
US5526679A (en) * | 1995-01-05 | 1996-06-18 | Campo/Miller | Automatically calibrated pressurized piping leak detector |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1666864A1 (en) * | 2003-09-12 | 2006-06-07 | Olympus Corporation | Leak tester |
EP1666864A4 (en) * | 2003-09-12 | 2007-08-08 | Olympus Corp | Leak tester |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4776206A (en) | Leak testing by gas flow signature analysis | |
EP2325461A1 (en) | Method of detecting abnormal combustion for internal combustion engines based on modelled distributions of combustion indicators | |
EP0184521B1 (en) | Method and device for the detection of leaks in a heat exchanger in operation | |
WO2013092792A1 (en) | Self-calibrated flow meter | |
FR2952678A1 (en) | ABNORMAL COMBUSTION DETECTION METHOD FOR INTERNAL COMBUSTION ENGINES FROM MULTIPLE COMBUSTION INDICATORS | |
EP3658763B1 (en) | Method and device for detecting ignition in a combustion chamber of a rocket motor, method for starting a rocket motor, computer program, recording medium and rocket motor | |
FR2803034A1 (en) | Verifying impermeability of underground liquefied gas storage cavern uses measurements of pressure, volume and temperature | |
EP3241008B1 (en) | Device for verifying leak tightness | |
EP1643230B1 (en) | Process and device for the tightness control of an enclosure comprising pressurized gas | |
FR2569762A1 (en) | HYDROCARBON WELL TEST PROCESS | |
CA1159923A (en) | Slag level indicator for metallurgic vessels | |
FR3075669A1 (en) | PROCESS FOR UNLOADING A CONDUCT INTENDED FOR TRANSPORTING HYDROCARBON FLUID OBTAINED BY HYDRATES | |
EP1920144B1 (en) | Device for detecting in real time the beginning of the combustion phase and corresponding method | |
WO2008080861A1 (en) | Method for estimating the torque of an internal combustion engine | |
FR2990046A1 (en) | SPACE MEASURING TOOL AND METHOD OF USE | |
FR2904660A1 (en) | DETERMINING A COMBUSTION START IN AN INTERNAL COMBUSTION ENGINE | |
FR2976074A1 (en) | METHOD OF ESTIMATING THE INTENSITY OF THE CLICKS OF AN INTERNAL COMBUSTION ENGINE BY INVERTING A WAVE EQUATION | |
FR2532048A1 (en) | METHOD AND APPARATUS FOR MEASURING THE PRESSURE OF A FLUID IN A CELL | |
FR2949511A1 (en) | Knock intensity estimating method for internal combustion engine, involves determining coefficients of Fourier decomposition of signal in real-time, and deducing parameter correlated with knock intensity from coefficients in real-time | |
EP0126692B1 (en) | Method and device for detecting reactivity variations in a pwr's core | |
FR2978209A1 (en) | METHOD FOR DETECTION AND ABNORMAL COMBUSTION CHARACTERIZATION FOR INTERNAL COMBUSTION ENGINES | |
WO2019122718A1 (en) | Method for detecting the presence of gas hydrate in a pipe intended for transporting hydrocarbon fluid | |
EP2585796A2 (en) | Method of detecting a fault with the means for de-icing a probe for measuring a physical parameter | |
WO2014095047A1 (en) | Method for determining the amount of fuel injected into an engine, in particular a diesel engine | |
FR2656693A1 (en) | Method for testing the leaktightness of an object, for determining the leakage flow rate from this object and apparatus for implementing this method |