Nothing Special   »   [go: up one dir, main page]

FR2690982A1 - Impure oxygen@ large amt. prodn. avoiding large dia. low pressure column - by distn. of air using a double distn. column with medium and low pressure columns, avoiding extra distn. column mfr., utilising purificn. device, compressor and turbine - Google Patents

Impure oxygen@ large amt. prodn. avoiding large dia. low pressure column - by distn. of air using a double distn. column with medium and low pressure columns, avoiding extra distn. column mfr., utilising purificn. device, compressor and turbine Download PDF

Info

Publication number
FR2690982A1
FR2690982A1 FR9205683A FR9205683A FR2690982A1 FR 2690982 A1 FR2690982 A1 FR 2690982A1 FR 9205683 A FR9205683 A FR 9205683A FR 9205683 A FR9205683 A FR 9205683A FR 2690982 A1 FR2690982 A1 FR 2690982A1
Authority
FR
France
Prior art keywords
turbine
air
column
pressure column
distn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
FR9205683A
Other languages
French (fr)
Inventor
Chretien Denis
Girault Jean-Louis
Tranier Jean-Pierre
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
Original Assignee
Air Liquide SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA filed Critical Air Liquide SA
Priority to FR9205683A priority Critical patent/FR2690982A1/en
Publication of FR2690982A1 publication Critical patent/FR2690982A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/042Division of the main heat exchange line in consecutive sections having different functions having an intermediate feed connection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04024Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of purified feed air, so-called boosted air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/04054Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04115Arrangements of compressors and /or their drivers characterised by the type of prime driver, e.g. hot gas expander
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04115Arrangements of compressors and /or their drivers characterised by the type of prime driver, e.g. hot gas expander
    • F25J3/04133Electrical motor as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04157Afterstage cooling and so-called "pre-cooling" of the feed air upstream the air purification unit and main heat exchange line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • F25J3/04181Regenerating the adsorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04309Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04381Details relating to the work expansion, e.g. process parameter etc. using work extraction by mechanical coupling of compression and expansion so-called companders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04563Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
    • F25J3/04575Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating for a gas expansion plant, e.g. dilution of the combustion gas in a gas turbine
    • F25J3/04581Hot gas expansion of indirect heated nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04612Heat exchange integration with process streams, e.g. from the air gas consuming unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/12Particular process parameters like pressure, temperature, ratios

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

The prodn. comprises the distn. of air in an installation comprising a principal air compressor (1), a device (2) for purifying air by adsorption, a heat exchanger (3) and a double distn. column (4) with a medium pressure column is released into a turbine (11), using at least part of the mechanical energy generated by the turbine to compress (in 10) at least part of the air from the principal air compressor and the gas is used to regenerate the adsorbent in the purifn. device. Installation for producing oxygen at a purity of less than ca. 97% comprises a principal air compressor (1), a device (2) for purifying air by adsorption, a thermal exchanger (3) and a double distn. column (4) with a medium pressure column (5) and a low pressure column (6). The installation also has first a turbine (11) for the release of gas, with the inlet connected to the medium pressure column and the outlet is connected to the purifcn. device, and second an air compressor (10) which is driven by the mechanical energy developed by the turbine. The turbine is pref. fed at a temp. close to or significantly below ambient, and part of the cold produced by the turbine is used to chill the air fed into the compressor (9,10) and/or the purificn. device (2). Or the regeneration gas is reheated (in 22) at the hot end of the thermal exchanger before introducing into the turbine and the temp. of the installation is ensured by the expansion of a circulating fluid in a second turbine (24). The compression (in 10) raises the air to the pressure in the medium pressure column. Oxygen is produced in liq. form in the low pressure column, taken by pump to a high pressure and vaporised in the thermal exchanger at the high pressure by heat exchange with the compressed air. The regeneration gas is nitrogen from the top of the medium pressure column or a gas extracted at an intermediate level from the column. The input to the turbine is at ca. ambient temp. or a temp. significantly below ambient and the thermal exchanger includes tubes for cooling the air fed to the air compressor (10) and/or the purificn. device. The tubes exchange heat with the tubes for reheating the gas from the turbine. There is a heating device (22) for the regeneration gas before it enters the turbine at the hot end of the thermal exchanger. The output from the compressor is connected to the medium pressure column. The installation also comprises a pump for oxygen (12) connected to the bottom of the low pressure column and to the oxygen vaporisation tubes in the thermal exchanger, so the treated air is compressed before entering the thermal exchanger. ADVANTAGE - The system ovecomes the problem of producing large amts. of oxygen without having to make large dia. low pressure columns or an extra distn. column.

Description

La présente invention est relative à un procédé de production d'oxygène gazeux à pureté inférieure à 97% environ par distillation d'air dans une installation comprenant un compresseur d'air principal, un appareil d'épuration d'air par adsorption, une ligne d'échange thermique et une double colonne de distillation comportant une colonne moyenne pression et une colonne basse pression. The present invention relates to a process for the production of gaseous oxygen with a purity of less than approximately 97% by air distillation in an installation comprising a main air compressor, an apparatus for purifying air by adsorption, a line heat exchange and a double distillation column comprising a medium pressure column and a low pressure column.

Les pressions dont il est question ici sont des pressions absolues. The pressures we are talking about here are absolute pressures.

La production de très grandes quantités d'oxygène, typiquement de l'ordre de 3000 à 5000 tonnes par jour, présente un problème particulier dû au diamètre de la colonne basse pression, qui rend sa fabrication et son transport très difficiles. The production of very large quantities of oxygen, typically of the order of 3000 to 5000 tonnes per day, presents a particular problem due to the diameter of the low pressure column, which makes its manufacture and its transport very difficult.

Pour résoudre ce problème, on a proposé d'adjoindre à la double colonne une colonne de remélange alimentée en tête par de l'oxygène liquide et en cuve par de l'air, cette colonne produisant en tête l'oxygène gazeux impur désiré et en cuve un liquide de composition voisine de celle de l'air, qui est renvoyé dans la colonne basse pression. L'inconvénient de ce procédé réside essentiellement dans l'investissement élevé résultant de la présence de trois colonnes. To solve this problem, it has been proposed to add to the double column a remixing column supplied at the head with liquid oxygen and at the bottom with air, this column producing at the head the desired impure gaseous oxygen and tank a liquid with a composition close to that of air, which is returned to the low pressure column. The drawback of this process essentially lies in the high investment resulting from the presence of three columns.

Une autre solution consiste à augmenter jusqu'à 10 ou 12 bars la pression de marche de l'installation, puisque, pour un diamètre de colonne donné, le débit traité augmente avec la pression. Cependant, on accroît en même temps l'énergie de compression de l'air, et, en outre, l'augmentation de pression est défavorable au processus de distillation. Another solution consists in increasing the operating pressure of the installation up to 10 or 12 bars, since, for a given column diameter, the flow treated increases with pressure. However, the compression energy of the air is increased at the same time, and furthermore the increase in pressure is unfavorable to the distillation process.

L'invention a pour but de permettre de produire de très grandes quantités d'oxygène gazeux avec une installation ne comportant que deux colonnes d'encombrement modéré et avec une énergie spécifique relativement faible. The object of the invention is to make it possible to produce very large quantities of gaseous oxygen with an installation comprising only two columns of moderate size and with a relatively low specific energy.

A cet effet, l'invention a pour objet un procédé du type précité, caractérisé en ce qu'on détend dans une turbine un débit d'un gaz prélevé dans la colonne moyenne pression on utilise une partie au moins de l'énergie mécanique développée par cette turbine pour surpresser une partie au moins de l'air issu du compresseur d'air principal, et on utilise ledit gaz détendu pour régénérer l'adsorbant de l'appareil d'épuration. To this end, the subject of the invention is a process of the aforementioned type, characterized in that a flow rate of a gas taken from the medium pressure column is expanded in a turbine at least part of the developed mechanical energy is used by this turbine to overpress at least part of the air from the main air compressor, and said expanded gas is used to regenerate the adsorbent of the purification device.

Suivant d'autres caractéristiques :
- on alimente la turbine au voisinage de la température ambiante ou à une température nettement inférieure à la température ambiante, et on utilise une partie du froid produit par cette turbine pour refroidir l'air alimentant un surpresseur et/ou l'appareil d'épuration;
- on réchauffe ledit gaz au bout chaud de la ligne d'échange thermique avant de l'introduire dans la turbine, et on assure le maintien en froid de l'installation par détente dans une seconde turbine d'un fluide circulant dans l'installation;
- ladite surpression amène l'air à la pression de la colonne moyenne pression;
- l'oxygène à produire est soutiré sous forme liquide de la colonne basse pression, amené par une pompe à une haute pression, et vaporisé dans la ligne d'échange thermique sous cette haute pression par échange de chaleur avec de l'air surpressé;;
- ledit gaz est de l'azote de tête de la colonne moyenne pression ou un gaz soutiré à un niveau intermédiaire de cette colonne.
According to other characteristics:
- the turbine is supplied in the vicinity of room temperature or at a temperature significantly lower than room temperature, and part of the cold produced by this turbine is used to cool the air supplying a booster and / or the purification device ;
- Said gas is heated at the hot end of the heat exchange line before introducing it into the turbine, and the installation is kept cold by expansion in a second turbine of a fluid circulating in the installation ;
- Said overpressure brings the air to the pressure of the medium pressure column;
- The oxygen to be produced is withdrawn in liquid form from the low pressure column, brought by a pump to a high pressure, and vaporized in the heat exchange line under this high pressure by heat exchange with pressurized air; ;
- Said gas is nitrogen from the top of the medium pressure column or a gas drawn off at an intermediate level of this column.

L'invention a également pour objet une installation destinée à la mise en oeuvre d'un tel procédé. Cette installation, du type comprenant un compresseur d'air principal, un appareil d'épuration d'air par adsorption, une ligne d'échange thermique et une double colonne de distillation comportant une colonne moyenne pression et une colonne basse pression, est caractérisée en ce qu'elle comprend d'une part une turbine de détente d'un gaz dont l'admission est reliée à la colonne moyenne pression et dont l'échappement est relié à l'appareil d'épuration, et d'autre part un surpresseur d'air entraîné à partir de l'énergie mécanique développée par la turbine de détente. The invention also relates to an installation intended for the implementation of such a method. This installation, of the type comprising a main air compressor, an air purification device by adsorption, a heat exchange line and a double distillation column comprising a medium pressure column and a low pressure column, is characterized in what it includes on the one hand a gas expansion turbine whose inlet is connected to the medium pressure column and whose exhaust is connected to the purification device, and on the other hand a booster of air driven from the mechanical energy developed by the expansion turbine.

Des exemples de mise en oeuvre de l'invention vont maintenant être décrits en regard des dessins annexés, sur lesquels
- la Figure 1 représente schématiquement une installation de production d'oxygène conforme à l'invention; et
- les Figures 2 à 4 représentent schématiquement trois variantes.
Examples of implementation of the invention will now be described with reference to the accompanying drawings, in which
- Figure 1 schematically shows an oxygen production installation according to the invention; and
- Figures 2 to 4 schematically represent three variants.

L'installation de production d'oxygène représentée à la Figure 1 est destinée à produire sous pression et en très grandes quantités, typiquement de l'ordre de 3000 à 5000 tonnes par jour, de l'oxygène à pureté relativement faible, typiquement comprise entre 95 et 97% environ. La pression de l'oxygène produit est de l'ordre de 12 bars. The oxygen production installation shown in Figure 1 is intended to produce under pressure and in very large quantities, typically of the order of 3000 to 5000 tonnes per day, oxygen of relatively low purity, typically between 95 and 97% approximately. The pressure of the oxygen produced is of the order of 12 bars.

L'installation comprend essentiellement: un compresseur d'air principal 1; un appareil 2 d'épuration d'air en eau et en anydhride carbonique par adsorption sur tamis moléculaire ou sur alumine; une ligne d'échange thermique 3 destinée à refroidir l'air à traiter par échange de chaleur indirect à contre-courant avec des produits froids; un appareil de distillation d'air 4 du type à double colonne, constitué essentiellement d'une colonne moyenne pression 5 surmontée d'une colonne basse pression 6, avec un vaporiseur-condenseur 7 mettant en relation d'échange thermique indirect la vapeur de tête (azote) de la colonne 5 et le liquide de cuve (oxygène) de la colonne 6; un sous-refroidisseur 8; deux surpresseurs d'air 9 et 10; une turbine de détente 11 dont la roue est accouplée rigidement à celle du second surpresseur 10; et une pompe d'oxygène liquide 12. The installation essentially comprises: a main air compressor 1; an apparatus 2 for purifying air with water and any carbon dioxide by adsorption on a molecular sieve or on alumina; a heat exchange line 3 intended to cool the air to be treated by indirect heat exchange against the current with cold products; an air distillation apparatus 4 of the double column type, essentially consisting of a medium pressure column 5 surmounted by a low pressure column 6, with a vaporizer-condenser 7 bringing the head vapor into indirect heat exchange relationship (nitrogen) from column 5 and the tank liquid (oxygen) from column 6; a sub-cooler 8; two air blowers 9 and 10; an expansion turbine 11 whose wheel is rigidly coupled to that of the second booster 10; and a liquid oxygen pump 12.

L'air à traiter est comprimé dans le compresseur 1 jusqu'à une pression comprise entre 4 et 7 bars environ. Il est ensuite séché et décarboné sur tamis moléculaire ou alumine dans l'appareil 2. La majeure partie de l'air entre dans la ligne d'échange 3 et est refroidie jusqu a environ sa température de rosée. Cet air entre alors dans la colonne moyenne pression 5, où il est séparé en un "liquide riche" (air enrichi en oxygène) et en azote. Le liquide riche et de l'azote liquide soutiré en tête de la colonne 5 sont sousrefroidis dans le sous-refroidisseur 8 par l'azote impur basse pression produit en tête de la colonne 6, puis, après détente dans des vannes de détente 13 et 14, alimentent cette colonne basse pression 6. The air to be treated is compressed in compressor 1 to a pressure of between 4 and 7 bars approximately. It is then dried and decarbonized on a molecular sieve or alumina in the apparatus 2. Most of the air enters the exchange line 3 and is cooled to approximately its dew point temperature. This air then enters the medium pressure column 5, where it is separated into a "rich liquid" (air enriched in oxygen) and nitrogen. The rich liquid and liquid nitrogen withdrawn at the top of column 5 are sub-cooled in the sub-cooler 8 by impure low pressure nitrogen produced at the top of column 6, then, after expansion in expansion valves 13 and 14, feed this low pressure column 6.

Le reste de l'air épuré est surpressé par le surpresseur 9, refroidi jusqu'à une température modérée de l'ordre de -20 à -30 C dans la ligne d'échange 3, surpressé à nouveau par le surpresseur 10, jusqu'à la pression de l'ordre de 25 à 30 bars nécessaire pour vaporiser l'oxygène, puis refroidi et liquéfié dans la ligne d'échange et divisé en deux courants qui sont envoyés respectivement, après détente dans des vannes de détente 15 et 16, dans les colonnes 5 et 6. The rest of the purified air is boosted by the booster 9, cooled to a moderate temperature of the order of -20 to -30 C in the exchange line 3, again boosted by the booster 10, up to at the pressure of the order of 25 to 30 bars necessary to vaporize the oxygen, then cooled and liquefied in the exchange line and divided into two streams which are sent respectively, after expansion in expansion valves 15 and 16, in columns 5 and 6.

De l'azote gazeux soutiré en tête de la colonne moyenne pression, avec un débit au plus égal, dans cet exemple, à 23% environ du débit d'air entrant, est réchauffé à la température ambiante dans la ligne d'échange, détendu à une pression légèrement supérieure à la pression atmosphérique dans la turbine 11, réchauffé jusqu'à la température ambiante dans la ligne d'échange puis envoyé via une conduite 17 à l'appareil 2, où il est utilisé pour régénérer l'adsorbant de cet appareil avant d'être évacué de l'installation. Nitrogen gas withdrawn at the head of the medium pressure column, with a flow rate at most equal, in this example, to approximately 23% of the incoming air flow rate, is warmed up to ambient temperature in the exchange line, expanded at a pressure slightly higher than atmospheric pressure in the turbine 11, warmed up to ambient temperature in the exchange line and then sent via a line 17 to the device 2, where it is used to regenerate the adsorbent of this device before being evacuated from the installation.

L'oxygène à produire est soutiré sous forme liquide en cuve de la colonne 6 via une conduite 18, pompé à la pression désirée de 12 bars environ par la pompe 12, vaporisé et réchauffé à la température ambiante dans la ligne d'échange, et évacué de l'installation vers l'utilisation via une conduite 19. The oxygen to be produced is withdrawn in liquid form from the bottom of the column 6 via a pipe 18, pumped to the desired pressure of approximately 12 bars by the pump 12, vaporized and warmed to ambient temperature in the exchange line, and evacuated from the installation to use via a pipe 19.

Du fait du soutirage d'azote gazeux de la colonne 5, le débit gazeux qui monte dans la colonne 6 est réduit, ce qui permet, pour un débit d'air entrant donné, de réduire le diamètre de cette colonne. Due to the withdrawal of nitrogen gas from column 5, the gas flow which rises in column 6 is reduced, which makes it possible, for a given incoming air flow, to reduce the diameter of this column.

De plus, la détente d'azote moyenne pression fournit en quantité suffisante le gaz nécessaire à la régénération de l'adsorbant de l'appareil 2. Par suite, il n'est pas nécessaire d'utiliser pour cette régénération l'azote impur issu du sommet de la colonne 6, et cet azote impur peut donc être directement évacué, après réchauffement à la température ambiante, via une conduite 20, c'est-à-dire suivant un trajet ayant une perte de charge minimale. La colonne 6 peut donc fonctionner sous une pression minimale, légèrement supérieure à la pression atmosphérique, et par conséquent la colonne 5 peut elle aussi fonctionner sous la pression minimale correspondante, typiquement de l'ordre de 5 bars avec des colonnes à garnissage et un vaporiseur-condenseur 7 à hautes performances, par exemple tel que décrit dans le
EP-A-0 130 122 au nom de la Demanderesse.
In addition, the expansion of medium pressure nitrogen supplies in sufficient quantity the gas necessary for the regeneration of the adsorbent of the apparatus 2. Consequently, it is not necessary to use for this regeneration the impure nitrogen from from the top of column 6, and this impure nitrogen can therefore be directly removed, after warming to room temperature, via a line 20, that is to say along a path having a minimum pressure drop. Column 6 can therefore operate under a minimum pressure, slightly higher than atmospheric pressure, and consequently column 5 can also operate under the corresponding minimum pressure, typically of the order of 5 bars with packed columns and a vaporizer. -high performance condenser 7, for example as described in
EP-A-0 130 122 in the name of the Applicant.

Par ailleurs, l'énergie mécanique fournie par la turbine 11 permet d'entraîner le surpresseur 10, et le froid fourni par cette turbine non seulement permet d'assurer le maintien en froid de l'installation, mais encore présente un excédent que l'on peut mettre à profit pour réduire l'énergie de compression restant à développer : comme représenté à la Figure 1, ce froid excédentaire peut servir à refroidir l'air issu du surpresseur 9, pour diminuer la puissance de compression du surpresseur 10, ou bien, en variante, il peut servir à refroidir l'air aspiré par le surpresseur 9, ou encore l'air refoulé par le compresseur 1, en amont de l'appareil d'épuration 2, afin de réduire d'une part la puissance de compression du surpresseur 9, d'autre part les dimensions de l'appareil d'épuration. Furthermore, the mechanical energy supplied by the turbine 11 makes it possible to drive the booster 10, and the cold supplied by this turbine not only makes it possible to keep the installation cold, but also has a surplus that the we can take advantage to reduce the compression energy remaining to develop: as shown in Figure 1, this excess cold can be used to cool the air from the booster 9, to reduce the compression power of the booster 10, or alternatively, it can be used to cool the air sucked in by the booster 9, or else the air discharged by the compressor 1, upstream of the purification device 2, in order to reduce on the one hand the power of compression of the booster 9, on the other hand the dimensions of the purification device.

Au total, on peut de cette manière produire de très grandes quantités d'oxygène à pureté moyenne avec un investissement réduit, des colonnes de distillation relativement peu encombrantes et une dépense d'énergie modérée. In total, this means that very large quantities of medium purity oxygen can be produced with reduced investment, relatively space-saving distillation columns and moderate energy expenditure.

Ainsi, dans l'exemple qui suit, on se propose de produire 84000 Nm3/h (environ 3000 t/j) d'oxygène à 95% de pureté, sous 12 bars, avec une installation telle que représentée à la Figure 1. Thus, in the example which follows, it is proposed to produce 84,000 Nm3 / h (approximately 3000 t / d) of oxygen at 95% purity, at 12 bars, with an installation as shown in Figure 1.

L'air est comprimé dans le compresseur 1 et épuré dans l'appareil 2, d'où il sort à la pression de 5,1 bars. Il est alors séparé en deux parties : 32% est surpressé dans les surpresseurs 9 et 10 jusqu'à la pression de 26,5 bars, et le reste entre dans la ligne d'échange 3 puis, après refroidissement, entre dans la colonne moyenne pression 5 sous une pression d'environ 4,9 bars. L'azote liquide soutiré de cette colonne est sous-refroidi jusqu'à -191"C, et le liquide riche jusqu'à - 178"C, avant détente et introduction dans la colonne basse pression 6. L'azote impur résiduaire en sort à 1,2 bar, et l'oxygène liquide soutiré de la cuve est pompé jusqu'à 12,2 bars et se vaporise dans la ligne d'échange. The air is compressed in compressor 1 and purified in device 2, from where it exits at a pressure of 5.1 bars. It is then separated into two parts: 32% is boosted in the boosters 9 and 10 up to the pressure of 26.5 bars, and the rest enters the exchange line 3 then, after cooling, enters the middle column pressure 5 under a pressure of approximately 4.9 bars. The liquid nitrogen withdrawn from this column is sub-cooled to -191 "C, and the rich liquid to -178" C, before expansion and introduction into the low pressure column 6. The residual impure nitrogen leaves it at 1.2 bar, and the liquid oxygen withdrawn from the tank is pumped up to 12.2 bar and vaporizes in the exchange line.

Un débit d'azote moyenne pression égal à environ 20% du débit d'air est détendu dans la turbine 11 jusqu a 1,3 bar et échappe à une température de -60 C environ.A medium pressure nitrogen flow equal to approximately 20% of the air flow is expanded in the turbine 11 to 1.3 bar and escapes at a temperature of approximately -60 C.

L'azote détendu est réintroduit dans la ligne d'échange pour la tenue en froid de l'appareil. Comme le froid est excédentaire, l'aspiration du surpresseur attelé 10 est refroidi dans la ligne d'échange jusqu'à environ -25 C afin de diminuer la puissance de compression. La pression entre les surpresseurs 9 et 10 est d'environ 16,5 bars.The expanded nitrogen is reintroduced into the exchange line to keep the device cold. As the cold is excessive, the suction of the coupled booster 10 is cooled in the exchange line to around -25 C in order to reduce the compression power. The pressure between the blowers 9 and 10 is approximately 16.5 bars.

Il est possible d'utiliser l'installation pour produire directement de l'oxygène sous une pression nettement supérieure à 12 bars, en pompant l'oxygène à cette pression. Dans ce cas, comme représenté en trait mixte sur la Figure 1, il peut être nécessaire d'adjoindre une turbine Claude 21 qui détend de la haute pression à la moyenne pression de la colonne 5 une fraction de l'air issu du surpresseur 10 et partiellement refroidi. It is possible to use the installation to directly produce oxygen at a pressure well above 12 bar, by pumping oxygen at this pressure. In this case, as shown in phantom in Figure 1, it may be necessary to add a Claude 21 turbine which expands from the high pressure to the medium pressure of the column 5 a fraction of the air from the booster 10 and partially cooled.

Dans la description ci-dessus, l'admission de la turbine 11 est à la température ambiante, au bout chaud de la ligne d'échange. En variante, la position de cette turbine peut être différente, suivant l'optimisation du procédé que l'on recherche. In the description above, the intake of the turbine 11 is at room temperature, at the hot end of the exchange line. As a variant, the position of this turbine may be different, depending on the optimization of the process that is sought.

Ainsi, comme représenté sur la Figure 2, si l'on veut obtenir davantage de travail extérieur, on peut chauffer l'azote en amont de la turbine au moyen d'un échangeur de chaleur 22 disposé entre le bout chaud de la ligne d'échange et l'entrée de la turbine. Cet échangeur peut être alimenté par un fluide externe (vapeur d'eau par exemple) ou interne au procédé (air chaud issu d'un compresseur de l'installation par exemple). Thus, as shown in Figure 2, if you want to get more outside work, you can heat the nitrogen upstream of the turbine by means of a heat exchanger 22 disposed between the hot end of the line exchange and entry of the turbine. This exchanger can be supplied by an external fluid (water vapor for example) or internal to the process (hot air coming from a compressor of the installation for example).

Dans ce cas, l'échappement de la turbine 11 s'effectue à une température trop élevée pour assurer le maintien en froid de l'installation, et un autre moyen de production frigorifique est nécessaire, par exemple, comme représenté, un ensemble attelé surpresseur 23turbine 24 alimenté par de l'air prélevé entre les surpresseurs 9 et 10 et échappant à la pression de la colonne 5. Le refoulement du premier surpresseur (qui, dans l'exemple représenté, est le surpresseur 10) est alors directement relié à l'aspiration du second surpresseur, sans refroidissement intermédiaire comme à la
Figure 1.
In this case, the turbine 11 is exhausted at a temperature that is too high to keep the installation cold, and another means of refrigeration production is necessary, for example, as shown, a supercharged coupled assembly 23turbine 24 supplied with air taken between blowers 9 and 10 and escaping from the pressure of column 5. The discharge of the first blower (which, in the example shown, is blower 10) is then directly connected to the suction of the second booster, without intermediate cooling as at
Figure 1.

Dans la variante de la Figure 3, au contraire, la turbine 11 est alimentée à une température froide, à laquelle l'azote à détendre est sorti de la ligne d'échange. Dans ce cas, l'azote turbiné est réintroduit au bout froid de la ligne d'échange, et on peut de nouveau, comme représenté, refroidir l'air issu du premier surpresseur avant son entrée dans le second surpresseur. In the variant of FIG. 3, on the contrary, the turbine 11 is supplied at a cold temperature, at which the nitrogen to be expanded has left the exchange line. In this case, the turbinated nitrogen is reintroduced at the cold end of the exchange line, and it is again possible, as shown, to cool the air coming from the first booster before it enters the second booster.

Cette variante peut être intéressante pour modifier le diagramme d'échange thermique ou pour produire de l'azote et/ou de l'oxygène sous forme liquide. C'est ainsi qu'on a illustré à la Figure 3 un réservoir 25 de stockage d'oxygène liquide relié à la cuve de la colonne 6. Sur cette même figure, on a également indiqué une conduite 26 de production d'azote gazeux sous la moyenne pression, qui peut également être utilisée dans les installations des Figures 1 et 2. This variant may be advantageous for modifying the heat exchange diagram or for producing nitrogen and / or oxygen in liquid form. Thus, in FIG. 3, a liquid oxygen storage tank 25 connected to the tank of the column 6 has been illustrated. In this same figure, a pipe 26 for producing nitrogen gas is also indicated. medium pressure, which can also be used in the installations of Figures 1 and 2.

On retrouve sur la Figure 4 l'agencement de la turbine 11 décrit ci-dessus en regard de la Figure 3. FIG. 4 shows the arrangement of the turbine 11 described above with reference to FIG. 3.

Toutefois, cette turbine n'est pas couplée directement au surpresseur 10 mais est freinée par un alternateur 27.However, this turbine is not directly coupled to the booster 10 but is braked by an alternator 27.

De plus, l'air épuré est divisé en deux fractions dont l'une est surpressée à la pression nécessaire pour vaporiser l'oxygène liquide par le seul surpresseur 9, lequel est entraîné par une source d'énergie extérieure comme précédemment, puis est envoyée dans la ligne d'échange. A une température intermédiaire de refroidissement, une partie de cet air est sortie de la ligne d'échange et détendue à la moyenne pression dans une turbine Claude 28 freinée par un alternateur 29 avant d'être envoyée dans la colonne 5, le reste étant refroidi et liquéfié jusqu'au bout froid de la ligne d'échange puis réparti entre les colonnes 5 et 6 via les vannes de détente 15 et 16.In addition, the purified air is divided into two fractions, one of which is boosted to the pressure necessary to vaporize the liquid oxygen by the only booster 9, which is driven by an external energy source as previously, then is sent in the exchange line. At an intermediate cooling temperature, part of this air is removed from the exchange line and expanded at medium pressure in a Claude turbine 28 braked by an alternator 29 before being sent to column 5, the rest being cooled and liquefied until the cold end of the exchange line and then distributed between columns 5 and 6 via the expansion valves 15 and 16.

L'air non envoyé vers le surpresseur 9 est surpressé par le surpresseur 10, puis refroidi jusqu'au bout froid de la ligne d'échange et envoyé dans la colonne 5. Le surpresseur 10 est entraîné par un moteur électrique 30 alimenté par le courant produit par les deux alternateurs 27 et 29, via des lignes électriques 31. The air not sent to the booster 9 is boosted by the booster 10, then cooled to the cold end of the exchange line and sent to column 5. The booster 10 is driven by an electric motor 30 powered by the current produced by the two alternators 27 and 29, via power lines 31.

Ainsi, c'est l'air surpressé en 10 qui est à la moyenne pression de l'ordre de 5 bars, de sorte que le compresseur 1 doit amener l'air atmosphérique à une pression nettement inférieure à 5 bars, par exemple de l'ordre de 3 bars, et peut donc être constitué par un appareil très simple tel qu'une soufflante de hautfourneau. Une importante économie d'investissement est obtenue de cette manière. Thus, it is the air supercharged at 10 which is at the medium pressure of the order of 5 bars, so that the compressor 1 must bring the atmospheric air to a pressure much lower than 5 bars, for example from 1 'order of 3 bars, and can therefore be constituted by a very simple device such as a blast furnace blower. A significant investment saving is obtained in this way.

On a également représenté sur la Figure 4 une conduite 32 de production d'azote liquide reliée au sommet de la colonne moyenne pression 5. FIG. 4 also shows a pipe 32 for producing liquid nitrogen connected to the top of the medium pressure column 5.

Il est à noter que le principe de la Figure 4 est utilisable sans pompage d'oxygène liquide, c'est-àdire avec l'oxygène soutiré sous forme gazeuse en cuve de la colonne 6, réchauffé à la température ambiante dans la ligne d'échange puis amené à la pression désirée par un compresseur d'oxygène. Dans ce cas, le circuit de surpression d'air (organes 9, 15, 16, 28, 29) est supprimé, et le surpresseur 10 est de préférence disposé entre le compresseur 1 et l'appareil d'épuration 2. It should be noted that the principle of FIG. 4 can be used without pumping liquid oxygen, that is to say with the oxygen withdrawn in gaseous form in the tank of column 6, warmed to ambient temperature in the line of exchange then brought to the desired pressure by an oxygen compressor. In this case, the air overpressure circuit (organs 9, 15, 16, 28, 29) is eliminated, and the booster 10 is preferably placed between the compressor 1 and the purification device 2.

En variante, en fonction de l'optimisation du procédé, le gaz turbiné en 11 peut être soutiré en un point intermédiaire de la colonne 5 et, par conséquent, contenir une certaine proportion d'oxygène. En effet, la composition de ce gaz n'est pas critique, puisqu'il est utilisé seulement pour entraîner la turbine et pour régénérer l'adsorbant.  Alternatively, depending on the optimization of the process, the turbined gas at 11 can be drawn off at an intermediate point of the column 5 and, consequently, contain a certain proportion of oxygen. Indeed, the composition of this gas is not critical, since it is used only to drive the turbine and to regenerate the adsorbent.

Claims (11)

REVENDICATIONS 1 - Procédé de production d'oxygène gazeux à pureté inférieure à 97% environ par distillation d'air dans une installation comprenant un compresseur d'air principal (1), un appareil (2) d'épuration d'air par adsorption, une ligne d'échange thermique (3) et une double colonne de distillation (4) comportant une colonne moyenne pression (5) et une colonne basse pression (6), caractérisé en ce qu'on détend dans une turbine (11) un débit d'un gaz prélevé dans la colonne moyenne pression (5), on utilise une partie au moins de l'énergie mécanique développée par cette turbine pour surpresser (en 10) une partie au moins de l'air issu du compresseur d'air principal (1), et on utilise ledit gaz détendu pour régénérer l'adsorbant de l'appareil d'épuration (2). 1 - Process for the production of gaseous oxygen with a purity of less than approximately 97% by air distillation in an installation comprising a main air compressor (1), an apparatus (2) for purifying air by adsorption, a heat exchange line (3) and a double distillation column (4) comprising a medium pressure column (5) and a low pressure column (6), characterized in that a flow rate d in a turbine (11) '' a gas taken from the medium pressure column (5), at least part of the mechanical energy developed by this turbine is used to boost (at 10) at least part of the air coming from the main air compressor ( 1), and said expanded gas is used to regenerate the adsorbent of the purification device (2). 2 - Procédé suivant la revendication 1, caractérisée en ce qu'on alimente la turbine (11) au voisinage de la température ambiante ou à une température nettement inférieure à la température ambiante, et on utilise une partie du froid produit par cette turbine pour refroidir l'air alimentant un surpresseur (9, 10) et/ou l'appareil d'épuration (2). 2 - Process according to claim 1, characterized in that the turbine (11) is supplied in the vicinity of ambient temperature or at a temperature markedly lower than ambient temperature, and part of the cold produced by this turbine is used to cool the air supplying a booster (9, 10) and / or the purification device (2). 3 - Procédé suivant la revendication 1, caractérisé en ce qu'on réchauffe ledit gaz (en 22) au bout chaud de la ligne d'échange thermique (3) avant de l'introduire dans la turbine (11), et on assure le maintien en froid de l'installation par détente dans une seconde turbine (24) d'un fluide circulant dans l'installation. 3 - Process according to claim 1, characterized in that the said gas is heated (at 22) at the hot end of the heat exchange line (3) before introducing it into the turbine (11), and the keeping the installation cold by expansion in a second turbine (24) of a fluid circulating in the installation. 4 - Procédé suivant l'une quelconque des revendications 1 à 3, caractérisé en ce que ladite surpression (en 10, Figure 4) amène l'air à la pression de la colonne moyenne pression (5). 4 - Method according to any one of claims 1 to 3, characterized in that said overpressure (at 10, Figure 4) brings the air to the pressure of the medium pressure column (5). 5 - Procédé suivant l'une quelconque des revendications 1 à 4, caractérisé en ce que l'oxygène à produire est soutiré sous forme liquide de la colonne basse pression (6), amené par une pompe (12) à une haute pression, et vaporisé dans la ligne d'échange thermique (3) sous cette haute pression par échange de chaleur avec de l'air surpressé. 5 - Process according to any one of claims 1 to 4, characterized in that the oxygen to be produced is withdrawn in liquid form from the low pressure column (6), brought by a pump (12) to a high pressure, and vaporized in the heat exchange line (3) under this high pressure by heat exchange with pressurized air. 6 - Procédé suivant l'une quelconque des revendications 1 à 5, caractérisé en ce que ledit gaz est de l'azote de tête de la colonne moyenne pression (5) ou un gaz soutiré à un niveau intermédiaire de cette colonne. 6 - Method according to any one of claims 1 to 5, characterized in that said gas is nitrogen from the top of the medium pressure column (5) or a gas withdrawn at an intermediate level of this column. 7 - Installation de production d'oxygène à pureté inférieure à 97% environ, du type comprenant un compresseur d'air principal (1), un appareil (2) d'épuration d' air par adsorption, une ligne d'échange thermique (3) et une double colonne de distillation (4) comportant une colonne moyenne pression (5) et une colonne basse pression (6), caractérisée en ce qu'elle comprend d'une part une turbine (11) de détente d'un gaz dont l'admission est reliée à la colonne moyenne pression (5) et dont l'échappement est relié à l'appareil d'épuration (2), et d'autre part un surpresseur d'air (10) entraîné à partir de l'énergie mécanique développée par la turbine de détente. 7 - Installation for producing oxygen with a purity of less than approximately 97%, of the type comprising a main air compressor (1), an apparatus (2) for purifying air by adsorption, a heat exchange line ( 3) and a double distillation column (4) comprising a medium pressure column (5) and a low pressure column (6), characterized in that it comprises on the one hand a gas expansion turbine (11) whose inlet is connected to the medium pressure column (5) and whose exhaust is connected to the purification device (2), and on the other hand an air blower (10) driven from the mechanical energy developed by the expansion turbine. 8 - Installation suivant la revendication 7, caractérisée en ce que l'admission de la turbine est au voisinage de la température ambiante ou à une température nettement inférieure à la température ambiante, et en ce que la ligne d'échange thermique (3) comporte des passages de refroidissement de l'air alimentant un surpresseur d'air (9, 10) et/ou l'appareil d'épuration (2), ces passages étant en relation d'échange thermique avec des passages de réchauffement du gaz issu de la turbine (11). 8 - Installation according to claim 7, characterized in that the intake of the turbine is near ambient temperature or at a temperature significantly lower than ambient temperature, and in that the heat exchange line (3) comprises air cooling passages supplying an air booster (9, 10) and / or the purification device (2), these passages being in heat exchange relationship with passages for heating the gas from the turbine (11). 9 - Installation suivant la revendication 7, caractérisée en ce qu'elle comprend au bout chaud de la ligne d'échange (3) un dispositif (22) de chauffage dudit gaz avant son entrée dans la turbine (11). 9 - Installation according to claim 7, characterized in that it comprises at the hot end of the exchange line (3) a device (22) for heating said gas before entering the turbine (11). 10 - Installation suivant l'une quelconque des revendications 7 à 9, caractérisée en ce que le refoulement du surpresseur (10) est relié à la colonne moyenne pression (5). 10 - Installation according to any one of claims 7 to 9, characterized in that the discharge of the booster (10) is connected to the medium pressure column (5). 11 - Installation suivant l'une quelconque des revendications 7 à 10, caractérisée en ce qu'elle comprend une pompe d'oxygène liquide (12) reliée à la cuve de la colonne basse pression (6) et à des passages de vaporisation d'oxygène de la ligne d'échange thermique (3), ainsi qu'un circuit de surpression d'une partie de l'air traité avant son entrée dans la ligne d'échange thermique.  11 - Installation according to any one of claims 7 to 10, characterized in that it comprises a liquid oxygen pump (12) connected to the tank of the low pressure column (6) and to vaporization passages of oxygen from the heat exchange line (3), as well as a circuit for overpressure of part of the air treated before it enters the heat exchange line.
FR9205683A 1992-05-11 1992-05-11 Impure oxygen@ large amt. prodn. avoiding large dia. low pressure column - by distn. of air using a double distn. column with medium and low pressure columns, avoiding extra distn. column mfr., utilising purificn. device, compressor and turbine Withdrawn FR2690982A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FR9205683A FR2690982A1 (en) 1992-05-11 1992-05-11 Impure oxygen@ large amt. prodn. avoiding large dia. low pressure column - by distn. of air using a double distn. column with medium and low pressure columns, avoiding extra distn. column mfr., utilising purificn. device, compressor and turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR9205683A FR2690982A1 (en) 1992-05-11 1992-05-11 Impure oxygen@ large amt. prodn. avoiding large dia. low pressure column - by distn. of air using a double distn. column with medium and low pressure columns, avoiding extra distn. column mfr., utilising purificn. device, compressor and turbine

Publications (1)

Publication Number Publication Date
FR2690982A1 true FR2690982A1 (en) 1993-11-12

Family

ID=9429663

Family Applications (1)

Application Number Title Priority Date Filing Date
FR9205683A Withdrawn FR2690982A1 (en) 1992-05-11 1992-05-11 Impure oxygen@ large amt. prodn. avoiding large dia. low pressure column - by distn. of air using a double distn. column with medium and low pressure columns, avoiding extra distn. column mfr., utilising purificn. device, compressor and turbine

Country Status (1)

Country Link
FR (1) FR2690982A1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2711778A1 (en) * 1993-10-26 1995-05-05 Air Liquide Method and installation for producing oxygen and/or nitrogen under pressure
FR2726046A1 (en) * 1994-10-25 1996-04-26 Air Liquide METHOD AND INSTALLATION FOR EXPANSION AND COMPRESSION OF AT LEAST ONE GAS STREAM
EP0866292A1 (en) * 1997-03-19 1998-09-23 Praxair Technology, Inc. Cryogenic rectification system for producing high pressure nitrogen and high pressure oxygen
EP0909931A2 (en) * 1997-10-14 1999-04-21 Praxair Technology, Inc. Cryogenic rectification system for producing high pressure oxygen
WO1999041557A1 (en) * 1998-02-12 1999-08-19 Shell Internationale Research Maatschappij B.V. Air prepurification for a large scale cryogenic air separation plant
WO2009024672A2 (en) * 2007-07-12 2009-02-26 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Integration of several separation units
FR2930326A1 (en) * 2008-04-22 2009-10-23 Air Liquide Air e.g. low pressure low purity oxygen, separating method, involves dividing fluid issued from cryogenic distillation into two parts, and utilizing part of refrigerating capacity of turbines by cooling compressor
FR2930329A1 (en) * 2008-04-22 2009-10-23 Air Liquide Air separating method, involves sending residual oxygen directly to atmosphere through tower in direct contact with water at hot end of exchange line and cold compressor that uses part of refrigerated power of turbine
FR2930330A1 (en) * 2008-04-22 2009-10-23 Air Liquide Air separating method, involves sending gaseous flow to intermediate vaporizer, where flow is constituted of cold, purified and compressed air or air drawn from column of double column and compressed in cold compressor
WO2010017968A2 (en) * 2008-08-14 2010-02-18 Linde Aktiengesellschaft Process and device for cryogenic air fractionation
FR2945111A1 (en) * 2009-05-04 2010-11-05 Air Liquide Method for performing cryogenic distillation of air to produce gaseous oxygen, involves compressing part of air in cold compressor and sending air to exchange line and to column of double column
FR2973485A1 (en) * 2011-03-29 2012-10-05 Air Liquide Method for separating air by cryogenic distillation in column system, involves withdrawing liquid containing specific mol percent of oxygen from bottom of low pressure column, where liquid is pressurized and vaporized to form gaseous oxygen
FR2974890A1 (en) * 2009-05-13 2012-11-09 Air Liquide Method for separating air by cryogenic distillation in installation, involves condensing part of nitrogen enriched gas flow before being sent to average pressure column and/or low pressure column, and heating gas flow rich in oxygen
EP2863156A1 (en) * 2013-10-17 2015-04-22 Linde Aktiengesellschaft Method for obtaining at least one air product in an air processing system and air processing system
EP2369280A3 (en) * 2010-03-25 2015-05-06 Messer Group GmbH Method and device for producing cold gaseous or liquid air
FR3014180A1 (en) * 2013-11-29 2015-06-05 Air Liquide METHOD AND APPARATUS FOR AIR SEPARATION BY LOW TEMPERATURE DISTILLATION
FR3014181A1 (en) * 2013-11-29 2015-06-05 Air Liquide METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION
EP3343158A1 (en) * 2016-12-28 2018-07-04 Linde Aktiengesellschaft Method for producing one or more air products, and air separation system
WO2023051946A1 (en) * 2021-09-29 2023-04-06 Linde Gmbh Method for the cryogenic separation of air, and air separation plant

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2335809A1 (en) * 1975-12-19 1977-07-15 Linde Ag AIR SEPARATION PROCESS
US4410343A (en) * 1981-12-24 1983-10-18 Union Carbide Corporation Air boiling process to produce low purity oxygen
DE3643359A1 (en) * 1986-12-18 1988-06-23 Linde Ag Method and device for air separation by two-stage rectification

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2335809A1 (en) * 1975-12-19 1977-07-15 Linde Ag AIR SEPARATION PROCESS
US4410343A (en) * 1981-12-24 1983-10-18 Union Carbide Corporation Air boiling process to produce low purity oxygen
DE3643359A1 (en) * 1986-12-18 1988-06-23 Linde Ag Method and device for air separation by two-stage rectification

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2711778A1 (en) * 1993-10-26 1995-05-05 Air Liquide Method and installation for producing oxygen and/or nitrogen under pressure
US5515687A (en) * 1993-10-26 1996-05-14 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and installation for the production of oxygen and/or nitrogen under pressure
FR2726046A1 (en) * 1994-10-25 1996-04-26 Air Liquide METHOD AND INSTALLATION FOR EXPANSION AND COMPRESSION OF AT LEAST ONE GAS STREAM
EP0710809A1 (en) * 1994-10-25 1996-05-08 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for expanding and compressing at least one gaseous stream
EP0866292A1 (en) * 1997-03-19 1998-09-23 Praxair Technology, Inc. Cryogenic rectification system for producing high pressure nitrogen and high pressure oxygen
EP0909931A2 (en) * 1997-10-14 1999-04-21 Praxair Technology, Inc. Cryogenic rectification system for producing high pressure oxygen
EP0909931A3 (en) * 1997-10-14 1999-08-25 Praxair Technology, Inc. Cryogenic rectification system for producing high pressure oxygen
WO1999041557A1 (en) * 1998-02-12 1999-08-19 Shell Internationale Research Maatschappij B.V. Air prepurification for a large scale cryogenic air separation plant
WO2009024672A2 (en) * 2007-07-12 2009-02-26 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Integration of several separation units
WO2009024672A3 (en) * 2007-07-12 2013-02-28 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Integration of several separation units
FR2930326A1 (en) * 2008-04-22 2009-10-23 Air Liquide Air e.g. low pressure low purity oxygen, separating method, involves dividing fluid issued from cryogenic distillation into two parts, and utilizing part of refrigerating capacity of turbines by cooling compressor
FR2930329A1 (en) * 2008-04-22 2009-10-23 Air Liquide Air separating method, involves sending residual oxygen directly to atmosphere through tower in direct contact with water at hot end of exchange line and cold compressor that uses part of refrigerated power of turbine
FR2930330A1 (en) * 2008-04-22 2009-10-23 Air Liquide Air separating method, involves sending gaseous flow to intermediate vaporizer, where flow is constituted of cold, purified and compressed air or air drawn from column of double column and compressed in cold compressor
WO2009136076A2 (en) * 2008-04-22 2009-11-12 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Method and apparatus for separating air by cryogenic distillation
WO2009136075A2 (en) * 2008-04-22 2009-11-12 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Method and apparatus for separating air by cryogenic distillation
WO2009136076A3 (en) * 2008-04-22 2010-09-30 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Method and apparatus for separating air by cryogenic distillation
WO2009136075A3 (en) * 2008-04-22 2010-10-07 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Method and apparatus for producing oxygen by separating air by cryogenic distillation
AU2009245592B2 (en) * 2008-04-22 2013-09-19 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and apparatus for producing oxygen by separating air by cryogenic distillation
US20110067445A1 (en) * 2008-04-22 2011-03-24 L'air Liquide Societe Anonyme Pour L'etude Et L'ex Method And Apparatus For Separating Air By Cryogenic Distillation
WO2010017968A2 (en) * 2008-08-14 2010-02-18 Linde Aktiengesellschaft Process and device for cryogenic air fractionation
WO2010017968A3 (en) * 2008-08-14 2012-11-22 Linde Aktiengesellschaft Process and device for cryogenic air fractionation
FR2945111A1 (en) * 2009-05-04 2010-11-05 Air Liquide Method for performing cryogenic distillation of air to produce gaseous oxygen, involves compressing part of air in cold compressor and sending air to exchange line and to column of double column
FR2974890A1 (en) * 2009-05-13 2012-11-09 Air Liquide Method for separating air by cryogenic distillation in installation, involves condensing part of nitrogen enriched gas flow before being sent to average pressure column and/or low pressure column, and heating gas flow rich in oxygen
EP2369280A3 (en) * 2010-03-25 2015-05-06 Messer Group GmbH Method and device for producing cold gaseous or liquid air
FR2973485A1 (en) * 2011-03-29 2012-10-05 Air Liquide Method for separating air by cryogenic distillation in column system, involves withdrawing liquid containing specific mol percent of oxygen from bottom of low pressure column, where liquid is pressurized and vaporized to form gaseous oxygen
EP2863156A1 (en) * 2013-10-17 2015-04-22 Linde Aktiengesellschaft Method for obtaining at least one air product in an air processing system and air processing system
FR3014180A1 (en) * 2013-11-29 2015-06-05 Air Liquide METHOD AND APPARATUS FOR AIR SEPARATION BY LOW TEMPERATURE DISTILLATION
FR3014181A1 (en) * 2013-11-29 2015-06-05 Air Liquide METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION
EP3343158A1 (en) * 2016-12-28 2018-07-04 Linde Aktiengesellschaft Method for producing one or more air products, and air separation system
WO2023051946A1 (en) * 2021-09-29 2023-04-06 Linde Gmbh Method for the cryogenic separation of air, and air separation plant

Similar Documents

Publication Publication Date Title
EP0689019B1 (en) Process and apparatus for producing gaseous oxygen under pressure
FR2690982A1 (en) Impure oxygen@ large amt. prodn. avoiding large dia. low pressure column - by distn. of air using a double distn. column with medium and low pressure columns, avoiding extra distn. column mfr., utilising purificn. device, compressor and turbine
EP0576314B2 (en) Process and installation for the production of gaseous oxygen under pressure
CA2062506C (en) Process and apparatus for producing pressurized oxygen gas
EP0606027B1 (en) Air distillation process and plant for producing at least a high pressure gaseous product and at least a liquid
JP4417954B2 (en) Cryogenic distillation method and system for air separation
EP0789208A1 (en) Process and installation for the production of gaseous oxygen under high pressure
EP1014020B1 (en) Cryogenic process for separating air gases
EP2938413B1 (en) Method and apparatus for purifying a carbon dioxide-rich mixture at a low temperature
FR2711778A1 (en) Method and installation for producing oxygen and/or nitrogen under pressure
EP0413631A1 (en) Nitrogen production process
CA2119597A1 (en) Process and production facility for producing gaseous oxygen and/or gaseous nitrogen under pressure and by air distillation
CA2154984A1 (en) Method and apparatus for producing gaseous oxygen under pressure and variable flow
EP0661505B1 (en) Process and installation for the liquefaction of a gas
WO2020128205A1 (en) Apparatus and method for separating air by cryogenic distillation
FR2688052A1 (en) Method and installation for producing pressurised gaseous oxygen and/or nitrogen by distillation of air
CA2146831A1 (en) Process and unit for producing oxygen by air distillation
CA2115399C (en) Process and plant for oxygen pressure generation
EP2938414B1 (en) Method and apparatus for separating a carbon dioxide-rich gas
FR2837564A1 (en) Distillation of air to produce oxygen, nitrogen and pure argon, extracts oxygen of specified purity and subjects argon to catalytic de-oxygenation
FR2919717A1 (en) Air separating method, involves separating purified air in air separation unit to form nitrogen and oxygen flow, which are heated to form heated product, where product is compressed in thermokinetic compressors

Legal Events

Date Code Title Description
ST Notification of lapse