ES2558978T3 - Generador de formas de ondas de radiofrecuencia programable para un sincrociclotrón - Google Patents
Generador de formas de ondas de radiofrecuencia programable para un sincrociclotrón Download PDFInfo
- Publication number
- ES2558978T3 ES2558978T3 ES05776532.3T ES05776532T ES2558978T3 ES 2558978 T3 ES2558978 T3 ES 2558978T3 ES 05776532 T ES05776532 T ES 05776532T ES 2558978 T3 ES2558978 T3 ES 2558978T3
- Authority
- ES
- Spain
- Prior art keywords
- frequency
- voltage input
- synchrocyclotron
- resonant circuit
- acceleration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H13/00—Magnetic resonance accelerators; Cyclotrons
- H05H13/02—Synchrocyclotrons, i.e. frequency modulated cyclotrons
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Particle Accelerators (AREA)
- Hall/Mr Elements (AREA)
Abstract
Un sincrociclotrón (300) que comprende: polos magnéticos (4a, 4b) que tienen una separación (13) entre los mismos un generador de campo magnético para generar el campo magnético en la separación; una fuente de iones (18) para inyectar partículas cargadas en el sincrociclotrón; un generador de forma de onda programable (319) proporcionado para generar una entrada de tensión, estando la entrada de tensión en una frecuencia oscilante; un circuito resonante dispuesto para recibir la entrada de tensión, comprendiendo el circuito resonante: unos electrodos de aceleración (10 y 12), dispuestos entre los polos magnéticos (4a y 4b); y un elemento reactivo variable (28) en circuito con los electrodos (10 y 12) para variar la frecuencia de resonancia (602 y 604) del circuito resonante; estando el sincrociclotrón caracterizado por que el generador de forma de onda programable (319) es digital y está dispuesto para proporcionar la entrada de tensión a una frecuencia que varía a lo largo del tiempo de la aceleración de las partículas cargadas.
Description
5
10
15
20
25
30
35
40
45
50
55
60
65
DESCRIPCION
Generador de formas de ondas de radiofrecuencia programable para un sincrociclotron Solicitudes relacionadas
Esta solicitud reivindica la prioridad de la solicitud provisional de los EE.UU n.°. 60/590.089, presentada el 21 de julio de 2004.
Antecedentes de la invencion
Para acelerar partfculas cargadas a altas energfas, se han desarrollado muchos tipos de aceleradores de partfculas desde la decada de 1930. Un tipo de acelerador de partfculas es un ciclotron. Un ciclotron acelera partroulas cargadas en un campo magnetico axial mediante la aplicacion de una tension alterna a una o mas "des" en una camara de vado. El nombre "de" es descriptivo de la forma de los electrodos en los primeros ciclotrones, aunque no pueden parecerse a la letra D en algunos ciclotrones. El recorrido en espiral producido por las partfculas de aceleracion es normal al campo magnetico. Cuando las partroulas en espiral salen, se aplica un campo electrico de aceleracion en la separacion entre las des. La tension de la radiofrecuencia (RF) crea un campo electrico alterno a traves de la separacion entre las des. La tension de RF y, por lo tanto, el campo, se sincroniza con el perrodo orbital de las partfculas cargadas en el campo magnetico, de modo que las partfculas son aceleradas por la forma de onda de radiofrecuencia a medida que cruzan repetidamente la separacion. La energfa de las partfculas aumenta a un nivel de energfa muy por encima de la tension de pico de la tension aplicada de radiofrecuencia (RF). A medida que las partfculas cargadas se aceleran, sus masas crecen debido a los efectos relativistas. En consecuencia, la aceleracion de las partroulas se convierte en no uniforme y las partroulas llegan a la separacion de forma asrncrona con los picos de la tension aplicada.
Dos tipos de ciclotrones actualmente empleados, un ciclotron isocrono y sincrociclotron, superan el desafro de aumento de la masa relativista de las partroulas aceleradas de diferentes maneras. El ciclotron isocrono utiliza una frecuencia constante de la tension con un campo magnetico que aumenta con el radio para mantener la aceleracion adecuada. El sincrociclotron utiliza un campo magnetico decreciente al aumentar el radio y vana la frecuencia de la tension de aceleracion para coincidir con el aumento de la masa causada por la velocidad relativista de las partroulas cargadas. Por ejemplo, la patente US 4.641.057 divulga paneles de ajuste de accionamiento mecanico que vanan la frecuencia del campo de conduccion para compensar los efectos relativistas.
En un sincrociclotron, "haces" discretos de partroulas cargadas son acelerados a la energfa final antes de iniciar de nuevo el ciclo. En ciclotrones isocronos, las partroulas cargadas se pueden acelerar de forma continua, en lugar de en haces, permitiendo alcanzar una energfa del haz superior.
En un sincrociclotron, capaz de acelerar un proton, por ejemplo, a la energfa de 250 MeV, la velocidad final de los protones es de 0,61c, donde c es la velocidad de la luz, y el aumento de la masa es del 27% por encima de la masa en reposo. La frecuencia tiene que disminuir en una cantidad correspondiente, ademas de reducir la frecuencia para tener en cuenta la intensidad de campo magnetico radialmente decreciente. La dependencia de la frecuencia en el tiempo no sera lineal, y un perfil optimo de la funcion que describe esta dependencia dependera de un gran numero de detalles.
R. Schneider y J. Rainwater, IEEE Transactions on Nuclear Science, 16 (3): 430-433, 1969, divulga diversas tecnicas para corregir el comportamiento indeseable del circuito resonante, incluyendo la reduccion de la frecuencia y el factor de calidad de los modos no deseados. Estas soluciones, sin embargo, cambian en lugar de eliminar las restricciones a los parametros de funcionamiento del sincrociclotron, tales como el tipo de partroula, el rango de velocidades de partroulas, y la frecuencia de oscilacion del campo electrico. Alternativamente, la tension de aceleracion puede ser pulsada, tal como se divulga en I.B. Enchevich y T.N. Tomilina, traducido del Atomnaya Energiya, 26 (3): 285-287, 1969.
De acuerdo con un aspecto, se proporciona un sincrociclotron acuerdo con la reivindicacion 1.
Segun otro aspecto, se proporciona un metodo para producir un haz de partroulas en un sincrociclotron acuerdo con la reivindicacion 10.
El control preciso y reproducible de la frecuencia en el rango requerido por una energfa final deseada que compensa el aumento de la masa relativista y la dependencia del campo magnetico en la distancia desde el centro de la de ha sido historicamente un reto. Ademas, puede necesitar variarse la amplitud de la tension de aceleracion a lo largo del ciclo de aceleracion para mantener el enfoque y aumentar la estabilidad del haz. Por otra parte, las des y otros equipos que comprenden un ciclotron definen un circuito resonante, donde las des pueden considerarse los electrodos de un condensador. Este circuito resonante se describe mediante el factor Q, que contribuye al perfil de la tension a traves de la separacion.
5
10
15
20
25
30
35
40
45
50
55
60
65
Un sincrociclotron para acelerar las partfculas cargadas, tales como protones, puede comprender un generador de campo magnetico y un circuito resonante que comprende electrodos, dispuesto entre los polos magneticos. Un espacio entre los electrodos se puede disponer a traves del campo magnetico. Una entrada de tension oscilante impulsa un campo electrico oscilante a traves de la separacion. La entrada de tension oscilante puede controlarse para variar en el tiempo la aceleracion de las partfculas cargadas. Cualquiera o ambas de la amplitud y la frecuencia de la entrada de tension oscilante se pueden variar. La entrada de tension oscilante puede generarse mediante un generador de forma de onda digital programable.
El circuito resonante incluye ademas un elemento reactivo variable en circuito con la entrada de tension y los electrodos para variar la frecuencia de resonancia del circuito resonante. El elemento reactivo variable puede ser un elemento de capacitancia variable tal como un condensador giratorio o una lamina vibrante. Mediante la variacion de la reactancia de este elemento reactivo y el ajuste de la frecuencia de resonancia del circuito resonante, las condiciones de resonancia se pueden mantener en el rango de frecuencia de funcionamiento del sincrociclotron.
El sincrociclotron puede incluir ademas un sensor de tension para medir el campo electrico oscilante a traves de la separacion. Al medir el campo electrico oscilante a traves de la separacion y compararlo con la entrada de tension oscilante, pueden detectarse condiciones de resonancia en el circuito resonante. El generador de forma de onda programable puede ser el ajuste de la entrada de tension y la frecuencia para mantener las condiciones de resonancia.
El sincrociclotron puede incluir ademas un electrodo de inyeccion, dispuesto entre los polos magneticos, bajo una tension controlada por el generador de forma de onda digital programable. El electrodo de inyeccion se utiliza para la inyeccion de partfculas cargadas en el sincrociclotron. El sincrociclotron puede incluir ademas un electrodo de extraccion, dispuesto entre los polos magneticos, bajo una tension controlada por el generador de forma de onda digital programable. El electrodo de extraccion se utiliza para extraer un haz de partfculas del sincrociclotron.
El sincrociclotron puede incluir ademas un monitor de haz para medir las propiedades del haz de partfculas. Por ejemplo, el monitor del haz puede medir la intensidad del haz de partfculas, el tiempo del haz de partfculas o la distribucion espacial del haz de partfculas. El generador de forma de onda programable puede ajustar al menos una de la entrada de tension, la tension en el electrodo de inyeccion y la tension en el electrodo de extraccion para compensar las variaciones en las propiedades del haz de partfculas.
Esta invencion tiene como objetivo tratar la generacion de las senales moduladas de la frecuencia y la amplitud variable adecuada para la inyeccion eficiente, mediante aceleracion, y la extraccion de partfculas cargadas desde un acelerador.
Breve descripcion de los dibujos
Los anteriores y otros objetos, caractensticas y ventajas de la invencion seran evidentes a partir de la siguiente descripcion mas particular de realizaciones preferidas de la invencion, como se ilustra en los dibujos adjuntos en los que caracteres de referencia similares se refieren a las mismas partes en todas las diferentes vistas. Los dibujos no estan necesariamente a escala, poniendose enfasis en su lugar en ilustrar los principios de la invencion.
La figura 1A es una vista en seccion transversal en planta de un sincrociclotron de la presente invencion.
La figura 1B es una vista en seccion transversal lateral del sincrociclotron que se muestra en la figura 1A.
La figura 2 es una ilustracion de una forma de onda idealizada que se puede utilizar para acelerar partfculas cargadas en un sincrociclotron que se muestra en las figuras 1A y 1B.
La figura 3 representa un diagrama de bloques de un sincrociclotron de la presente invencion que incluye un sistema generador de forma de onda.
La figura 4 es un diagrama de flujo que ilustra los principios de operacion de un generador de forma de onda digital y un sistema de retroalimentacion adaptativo (optimizador) de la presente invencion.
La figura 5A muestra el efecto de la demora de propagacion finita de la senal a traves de diferentes trayectorias en una estructura de electrodo acelerador ("de").
La figura 5B muestra la temporizacion de forma de onda de entrada ajustada para corregir la variacion en el retardo de propagacion a traves de la estructura de "de".
La figura 6A muestra una respuesta de frecuencia, ilustrativa del sistema resonante con variaciones debido a los efectos de circuito parasitarios.
La figura 6B muestra una forma de onda calculada para corregir las variaciones en la respuesta de frecuencia debida a los efectos del circuito parasitarios.
La figura 6C muestra la respuesta de frecuencia "plana" resultante del sistema cuando la forma de onda mostrada en la figura 6B se utiliza como tension de entrada.
La figura 7A muestra una tension de entrada de amplitud constante aplicada a los electrodos de aceleracion que se muestran en la figura 7B.
La figura 7B muestra un ejemplo de la geometna del electrodo de aceleracion en la que la distancia entre los electrodos se reduce hacia el centro.
La figura 7C muestra la intensidad de campo electrico deseada y resultante en la separacion de los electrodos
5
10
15
20
25
30
35
40
45
50
55
60
65
como una funcion del radio que logra una aceleracion estable y eficiente de las partfculas cargadas mediante la aplicacion de tension de entrada como se muestra en la figura 7A a la geometna del electrodo que se muestra en la figura 7B.
La figura 7D muestra amplitudes de tension de entrada como una funcion del radio que se corresponde directamente con la intensidad de campo electrico deseado y puede producirse utilizando un generador de forma de onda digital.
La figura 7E muestra una geometna paralela de los electrodos de aceleracion que da una proporcionalidad directa entre la tension aplicada y la intensidad de campo electrico.
La figura 7F muestra la intensidad de campo electrico deseada y resultante en la separacion de los electrodos como una funcion del radio que logra una aceleracion estable y eficiente de partfculas cargadas mediante la aplicacion de una tension de entrada como se muestra en la figura 7D a la geometna del electrodo se muestra en la figura 7E.
La figura 8A muestra un ejemplo de una forma de onda de la tension de aceleracion generada por el generador de forma de onda programable.
La figura 8B muestra un ejemplo de una senal de inyector de iones temporizado.
La figura 8C muestra otro ejemplo de una senal de inyector de iones temporizado.
Descripcion detallada de la invencion
Esta invencion se refiere a los dispositivos y metodos para generar las tensiones de aceleracion complejas temporizadas precisamente a traves de la separacion "de" en un sincrociclotron. Esta invencion comprende un aparato y un metodo para conducir la tension a traves de la separacion "de" mediante la generacion de una forma de onda espedfica, donde la amplitud, la frecuencia y la fase se controlan de una manera tal como para crear la aceleracion de partfculas mas eficaz dada la configuracion ffsica del acelerador individual, el perfil de campo magnetico, y otras variables que pueden o no pueden ser conocidas a priori. Un sincrociclotron necesita un campo magnetico decreciente para mantener el enfoque del haz de partfculas, modificando asf la forma deseada de la frecuencia de barrido. Hay finitos retardos de propagacion predecibles de la senal electrica aplicada al punto efectivo en la de, donde el haz de partfculas experimenta la aceleracion del campo electrico que conduce a la aceleracion continua. El amplificador se utiliza para amplificar la senal de radiofrecuencia (RF) que conduce a que la tension a traves de la separacion de tambien puede tener un desplazamiento de fase que vana con la frecuencia. Algunos de los efectos pueden no conocerse a priori, y puede solamente observarse despues de la integracion de todo el sincrociclotron. Ademas, la sincronizacion de la inyeccion de partfculas y la extraccion en una escala de tiempo de nanosegundos puede aumentar la eficacia de la extraccion del acelerador, reduciendo asf la radiacion parasita debido a las partfculas perdidas en las fases de aceleracion y de extraccion de la operacion.
Haciendo referencia a las figuras 1A y 1B, un sincrociclotron de la presente invencion comprende unas bobinas electricas 2a y 2b alrededor de dos polos magneticos 4a y 4b de metal separados configurados para generar un campo magnetico. Los polos magneticos 4a y 4b se definen mediante dos porciones opuestas de yugo 6a y 6b (mostradas en seccion transversal). El espacio entre los polos 4a y 4b define una camara de vado 8 o una camara de vado separada se puede instalar entre los polos 4a y 4b. La intensidad del campo magnetico es generalmente una funcion de la distancia desde el centro de la camara de vado 8 y esta determinada en gran medida por la eleccion de la geometna de las bobinas 2a y 2b y la forma y el material de los polos magneticos 4a y 4b.
Los electrodos de aceleracion comprenden "de" 10 y "de" 12, que tiene una separacion 13 entre los mismos. La de 10 esta conectado a un potencial de tension alterna cuya frecuencia se cambia de alta a baja durante el ciclo de aceleracion para tener en cuenta la masa relativista cada vez mayor de una partfcula cargada y campo magnetico radialmente decreciente (medido desde el centro de la camara de vado 8) producido por las bobinas 2a y 2b y las porciones polares 4a y 4b. El perfil caractenstico de la tension alterna en des 10 y 12 se muestran en la figura 2, y se describira en detalle a continuacion. La de 10 es una estructura de medio cilindro de interior hueca. La de 12, tambien conocida como la "de ficticia", no tiene por que ser una estructura cilmdrica hueca, ya que se basa en las paredes de la camara de vado 14. La de 12 como se muestra en las figuras 1A y 1B comprende una tira de metal, por ejemplo, cobre, que tiene una ranura cuya forma coincide con una ranura sustancialmente similar en la de 10. La de 12 puede conformarse para formar una imagen de espejo de la superficie 16 de la de 10.
La fuente de iones 18 que incluye un electrodo de fuente de iones 20, situado en el centro de la camara de vado 8, se proporciona para la inyeccion de partfculas cargadas. Unos electrodos de extraccion 22 se proporcionan para dirigir las partfculas de carga en el canal de extraccion 24, formando de este modo el haz 26 de las partfculas cargadas. La fuente de iones tambien puede montarse en el exterior e inyectar los iones de manera sustancialmente axial en la region de aceleracion.
Las des 10 y 12 y otras piezas de hardware que comprenden un ciclotron, definen un circuito resonante sintonizable en virtud de una entrada de tension oscilante que crea un campo electrico oscilante a traves de la separacion 13. Este circuito resonante puede sintonizarse para mantener el factor Q alto durante el barrido de frecuencias mediante el uso de unos medios de ajuste.
5
10
15
20
25
30
35
40
45
50
55
60
65
Como se usa aqm, el factor Q es una medida de la "calidad" de un sistema resonante en su respuesta a las frecuencias cercanas a la frecuencia de resonancia. El factor Q se define como
donde R es la resistencia activa de un circuito resonante, L es la inductancia y C es la capacitancia de este circuito.
Los medios de ajuste pueden ser una bobina de inductancia variable o una capacitancia variable. Un dispositivo de capacitancia variable puede ser una lengueta vibrante o un condensador giratorio. En el ejemplo mostrado en las figuras 1A y 1B, los medios de ajuste son un condensador giratorio 28. El condensador giratorio 28 comprende unas cuchillas giratorias 30 accionadas mediante un motor 31. Durante cada cuarto de ciclo del motor 31, cuando las cuchillas 30 engranan con las cuchillas 32, la capacitancia del circuito resonante que incluye las "des" 10 y 12 y el condensador 28 giratorio aumenta y la frecuencia de resonancia disminuye. El proceso se invierte cuando las cuchillas se desengranan. Por lo tanto, la frecuencia resonante se cambia cambiando la capacitancia del circuito resonante. Esto sirve al proposito de reducir mediante un factor grande la potencia requerida para generar la alta tension aplicada a las "des" y necesaria para acelerar el haz. La forma de las cuchillas 3o y 32 puede mecanizarse para crear la dependencia de la frecuencia de resonancia requerida a tiempo.
La rotacion de la cuchilla se puede sincronizar con la generacion de frecuencia RF, de modo que variando el factor Q de la cavidad de RF, la frecuencia de resonancia del circuito resonante, definida por el ciclotron, se mantiene cerca de la frecuencia del potencial de tension alterna aplicada a las "des" 10 y 12.
La rotacion de las cuchillas puede controlarse mediante el generador de forma de onda digital, que se describe a continuacion con referencia a la figura 3 y a la figura 4, de una manera que mantiene la frecuencia de resonancia del circuito resonante proxima a la frecuencia de corriente generada por el generador de forma de onda digital. Alternativamente, el generador de forma de onda digital puede controlarse mediante un sensor de posicion angular (no mostrado) en el eje de rotacion del condensador 33 para controlar la frecuencia de reloj del generador de forma de onda para mantener la condicion resonante optima. Este metodo se puede emplear si el perfil de las cuchillas de engranaje del condensador giratorio esta precisamente relacionado con la posicion angular del eje.
Un sensor que detecta la condicion del pico de resonancia (no mostrada) se puede emplear tambien para proporcionar retroalimentacion al reloj del generador de forma de onda digital para mantener la mas alta coincidencia con la frecuencia de resonancia. Los sensores para detectar las condiciones de resonancia pueden medir la tension oscilante y la corriente en el circuito resonante. En otro ejemplo, el sensor puede ser un sensor de capacitancia. Este metodo puede acomodar pequenas irregularidades en la relacion entre el perfil de las cuchillas de engranaje del condensador de rotacion y la posicion angular del eje.
Un sistema de bombeo de vado 40 mantiene la camara de vado 8 a una presion muy baja para no dispersar el haz de aceleracion.
Para lograr la aceleracion uniforme en un sincrociclotron, la frecuencia y la amplitud del campo electrico a traves de la separacion "de" necesita variarse para tener en cuenta el aumento de masa relativista y la variacion radial (medido como la distancia desde el centro de la trayectoria en espiral de las particulas cargadas) del campo magnetico, asi como para mantener el foco del haz de particulas.
La figura 2 es una ilustracion de una forma de onda idealizada que puede ser necesaria para acelerar particulas cargadas en un sincrociclotron. Muestra solo unos pocos ciclos de la forma de onda y no representa necesariamente la frecuencia ideal y los perfiles de modulacion de amplitud. La figura 2 ilustra el tiempo que varia las propiedades amplitud y frecuencia de la forma de onda utilizada en un sincrociclotron dado. La frecuencia cambia de alta a baja cuando la masa relativista de las particulas aumenta, mientras que la velocidad de las particulas se acerca a una fraccion significativa de la velocidad de la luz.
La presente invencion utiliza un conjunto de convertidores de digital a analogico (DAC) de alta velocidad que pueden generar, a partir de una memoria de alta velocidad, las senales necesarias en una escala de tiempo de nanosegundos. Refiriendonos a la figura 1A, una senal de radiofrecuencia (RF) que acciona la tension a traves de la separacion de 13 y las senales que conducen a la tension en el electrodo inyector 20 y el electrodo extractor 22 puede generarse a partir de la memoria mediante los DACs. La senal del acelerador es una forma de onda de amplitud y frecuencia variable. Las senales de los inyectores y extractores pueden ser cualquiera de al menos tres tipos: continuas; senales discretas, tales como pulsos, que pueden operar en uno o mas periodos de la forma de onda del acelerador en sincronismo con la forma de onda del acelerador; o senales discretas, tales como los pulsos, que pueden operar en casos precisamente temporizados durante el barrido de frecuencia de forma de onda del acelerador en sincronismo con la forma de onda del acelerador. (Vease a continuacion con referencia a las figuras 8A-C).
La figura 3 representa un diagrama de bloques de un sincrociclotron 300 de la presente invencion que incluye un
5
10
15
20
25
30
35
40
45
50
55
60
65
acelerador de parffculas 302, un sistema generador de forma de onda 319 y el sistema de amplificacion 330. La figura 3 muestra tambien un sistema de retroalimentacion adaptativo que incluye un optimizador 350. El condensador variable 28 opcional y el subsistema de accionamiento al motor 31 no se muestran.
Con referencia a la figura 3, el acelerador de parffculas 302 es sustancialmente similar al representado en las figuras 1A y 1B, e incluye una "de ficticia" (de conectada a tierra) 304, una "de" 306 y una horquilla 308, un electrodo de inyeccion 310, conectado a la fuente de iones 312, y unos electrodos de extraccion 314. Un monitor de haz 316 monitoriza la intensidad del haz 318.
El sincrociclotron 300 incluye un generador de forma de onda digital 319. El generador de forma de onda digital 319 comprende uno o mas convertidores de digital a analogico (DAC) 320 que convierten las representaciones digitales de formas de onda almacenadas en la memoria 322 en senales analogicas. El controlador 324 controla el direccionamiento de la memoria 322 a la salida de los datos apropiados y controla los DACs 320 a los que se aplican los datos en cualquier punto en el tiempo. El controlador 324 tambien escribe datos en la memoria 322. La interfaz 326 proporciona un enlace de datos a un ordenador externo (no mostrado). La interfaz 326 puede ser una interfaz de fibra optica.
La senal de reloj que controla la temporizacion del proceso de conversion "de analogico a digital" puede estar disponible como una entrada al generador de forma de onda digital. Esta senal se puede utilizar en conjuncion con un codificador de posicion del eje (no mostrado) en el condensador de rotacion (ver las figuras 1A y 1B) o un detector de condicion resonante para afinar la frecuencia generada.
La figura 3 ilustra tres DACs 320a, 320b y 320C. En este ejemplo, las senales desde los DACs 320a y 320b son amplificadas mediante unos amplificadores 328a y 328b, respectivamente. La senal amplificada desde el DAC 320a acciona la fuente de iones 312 y/o el electrodo de inyeccion 310, mientras que la senal amplificada desde el DAC 320b acciona los electrodos de extraccion 314.
La senal generada por el DAC 320c pasa al sistema de amplificacion 330, operado bajo el control del sistema de control del amplificador de RF 332. En el sistema de amplificacion 330, la senal del DAC 320c se aplica mediante el accionador de RF 334 al divisor de RF 336, que envfa la senal de RF para amplificarse mediante un amplificador de potencia de RF 338. En el ejemplo mostrado en la figura 3, se utilizan cuatro amplificadores de potencia, 338a, b, c y d. Cualquier numero de amplificadores 338 puede ser utilizado dependiendo del grado deseado de amplificacion. La senal amplificada, combinada mediante el combinador de RF 340 y filtrada por el filtro 342, sale del sistema de amplificacion 330 a traves del acoplador direccional 344, lo que garantiza que las ondas de RF no se reflejan de nuevo en el sistema de amplificacion 330. La potencia para el sistema de amplificacion de operacion 330 se suministra mediante la fuente de alimentacion 346.
A su salida del sistema de amplificacion 330, la senal desde el DAC 320c se pasa al acelerador de parffculas 302 a traves de red de adaptacion 348. La red de adaptacion 348 de la impedancia adapta una carga (acelerador de parffculas 302) y una fuente (sistema de amplificacion 330). La red de adaptacion 348 incluye un conjunto de elementos reactivos variables.
El sincrociclotron 300 puede incluir ademas un optimizador 350. Usando la medicion de la intensidad del haz 318 mediante el monitor de haz 316, el optimizador 350, bajo el control de un procesador programable puede ajustar las formas de onda producidas por los DACs 320a, b y c y su temporizacion para optimizar el funcionamiento del sincrociclotron 300 y lograr una optima aceleracion de las parffculas cargadas.
Los principios de funcionamiento del generador de forma de onda digital 319 y el sistema de retroalimentacion adaptativo 350 se describiran ahora con referencia a la figura 4.
Las condiciones iniciales para las formas de onda pueden calcularse a partir de principios ffsicos que gobiernan el movimiento de parffculas cargadas en el campo magnetico, a partir de la mecanica relativista que describe el comportamiento de una masa de parffculas cargadas, asf como de la descripcion teorica de campo magnetico como una funcion del radio en una camara de vacfo. Estos calculos se realizan en la etapa 402. La forma de onda teorica de la tension en la separacion de, RF (w, t), donde w es la frecuencia del campo electrico a traves de la separacion de y t es el tiempo, se calcula basandose en los principios ffsicos de un ciclotron, la mecanica relativista de un movimiento de parffculas cargadas, y la dependencia radial teorica del campo magnetico.
Las salidas de la practica de la teoffa pueden ser medidas y la forma de onda se puede corregir cuando el sincrociclotron opera bajo estas condiciones iniciales. Por ejemplo, como se describira a continuacion con referencia a las figuras 8A-C, la temporizacion del inyector de iones con respecto a la forma de onda de aceleracion puede variarse para maximizar la captura de las parffculas inyectadas en el haz acelerado de las parffculas.
La temporizacion de la forma de onda del acelerador se puede ajustar y optimizar, tal como se describe a continuacion, sobre una base de ciclo por ciclo para corregir los retardos de propagacion presentes en la disposicion ffsica del cableado de radiofrecuencia; la asimetffa en la colocacion o en la fabricacion de las des se puede corregir
5
10
15
20
25
30
35
40
45
50
55
60
65
mediante la colocacion de la tension positiva pico mas cerca en el tiempo de la tension de pico negativa posterior o viceversa, creando en efecto una onda senoidal asimetrica.
En general, la distorsion de la forma de onda debida a las caractensticas del hardware puede corregirse mediante distorsion previa de la forma de onda teorica RF (w, t) utilizando una funcion de transferencia dependiente del dispositivo A, resultando asf en la forma de onda deseada que aparece en el punto espedfico en el electrodo de aceleracion, donde los protones estan en el ciclo de aceleracion. En consecuencia, y haciendo referencia de nuevo a la figura 4, en la etapa 404, se calcula una funcion de transferencia A (w, t) basandose en la respuesta medida experimentalmente del dispositivo para la tension de entrada.
En la etapa 405, una forma de onda que corresponde a una expresion RF (w, t)/A (w, t) se calcula y se almacena en la memoria 322. En la etapa 406, el generador de forma de onda digital 319 genera la forma de onda RF/A de la memoria. La senal de excitacion RF (w, t)/A (w, t) se amplifica en la etapa 408, y la senal amplificada se propaga a traves de todo el dispositivo 300 en la etapa 410 para generar una tension a traves de la separacion de en la etapa 412. Se dara una descripcion mas detallada de una funcion de transferencia representativa A (w, t) a continuacion con referencia a las figuras 6A-C.
Despues de que el haz haya alcanzado la energfa deseada, una tension precisamente temporizada se puede aplicar a un electrodo o dispositivo de extraccion para crear la trayectoria deseada del haz para extraer el haz del acelerador, donde se mide mediante el monitor del haz en la etapa 414a. La tension de RF y la frecuencia se miden mediante sensores de tension en la etapa 414b. La informacion sobre la intensidad del haz y la frecuencia RF se transmite de vuelta al generador de forma de onda digital 319, que ahora puede ajustar la forma de la senal de RF (w, t)/A (w, t) en la etapa 406.
Todo el proceso se puede controlar en la etapa 416 mediante el optimizador 350. El optimizador 350 puede ejecutar un algoritmo semi o totalmente automatico disenado para optimizar las formas de onda y el tiempo relativo de las formas de onda. El recocido simulado es un ejemplo de una clase de algoritmos de optimizacion que puede emplearse. Instrumentos de diagnostico en lmea pueden sondear el haz en diferentes etapas de aceleracion para proporcionar informacion para el algoritmo de optimizacion. Cuando se han encontrado las condiciones optimas, la memoria que contiene las formas de onda optimizadas puede fijarse y realizar una copia de seguridad para la operacion continua estable durante un cierto periodo de tiempo. Esta capacidad de ajustar la forma de onda exacta de las propiedades del acelerador individual disminuye la variabilidad de unidad a unidad en funcionamiento y puede compensar las tolerancias y las variaciones de fabricacion en las propiedades de los materiales utilizados en la construccion del ciclotron.
El concepto del condensador giratorio (tales como el condensador 28 que se muestra en las figuras 1A y 1B) se puede integrar en este esquema de control digital mediante la medicion de la tension y la corriente de la forma de onda de RF para detectar el pico de la condicion resonante. La desviacion de la condicion resonante puede alimentarse de vuelta al generador de forma de onda digital 319 (vease la figura 3) para ajustar la frecuencia de la forma de onda almacenada para mantener la condicion del pico de resonancia en todo el ciclo de aceleracion. La amplitud todavfa puede controlarse con precision, mientras se emplea este metodo.
La estructura del condensador de rotacion 28 (ver las figuras 1A y 1B) opcionalmente puede estar integrada con una bomba de vado turbomolecular, tal como la bomba de vado 40 que se muestra en las figuras 1A y 1B, que proporciona bombeo de vado a la cavidad del acelerador. Esta integracion se traducina en una estructura muy integrada y en ahorro de costes. El motor y el accionamiento para la bomba turbo pueden estar provistos de un elemento de retroalimentacion, tal como un codificador giratorio para proporcionar un control preciso sobre la velocidad y la posicion angular de las cuchillas giratorias 30, y el control de la unidad de motor se integrana con el generador de forma de onda 319 que controla el circuito para asegurar la correcta sincronizacion de la forma de onda de aceleracion.
Como se menciono anteriormente, la sincronizacion de la forma de onda de la entrada de tension oscilante puede ajustarse para corregir los retardos de propagacion que surgen en el dispositivo. La figura 5A ilustra un ejemplo de los errores de propagacion de la onda debido a la diferencia en las distancias R1 y R2 desde el punto 504 de entrada de RF a los puntos 506 y 508, respectivamente, en la superficie de aceleracion 502 del electrodo de aceleracion 500. La diferencia en las distancias R1 y R2 resulta en el retardo de la propagacion de la senal, que afecta a las partfculas a medida que aceleran a lo largo de una trayectoria en espiral (no mostrada) centrada en el punto 506. Si la forma de onda de entrada, representada por la curva 510, no tiene en cuenta el retardo de propagacion adicional causado por la distancia cada vez mayor, las partfculas pueden salir de sincronizacion con la forma de onda de aceleracion. La forma de onda de entrada 510 en el punto 504 sobre el electrodo de aceleracion 500 experimenta un retardo variable cuando las partfculas se aceleran hacia fuera desde el centro en el punto 506. Este retraso resulta en una tension de entrada que tiene una forma de onda 512 en el punto 506, pero una forma de onda 514 temporizada de manera diferente en el punto 508. La forma de onda 514 muestra un desplazamiento de fase con respecto a la forma de onda 512 y esto puede afectar al proceso de aceleracion. Como el tamano ffsico de la estructura de aceleracion (alrededor de 0,6 metros) es una fraccion significativa de la longitud de onda de la frecuencia de aceleracion (aproximadamente 2 metros), se experimenta un desplazamiento de fase significativo
5
10
15
20
25
30
35
40
45
50
55
60
65
entre diferentes partes de la estructura de aceleracion.
En la figura 5B, la tension de entrada que tiene la forma de onda 516 se ajusta previamente con respecto a la tension de entrada descrita por la forma de onda 510 para tener la misma magnitud, pero de signo opuesto de retardo de tiempo. Como resultado, se corrige el retardo de fase causado por las diferentes longitudes de la trayectoria a traves del electrodo de aceleracion 500. Las formas de onda 518 y 520 resultantes estan ahora alineadas correctamente para aumentar la eficiencia del proceso de aceleracion de partfculas. Este ejemplo ilustra un simple caso de retardo de propagacion causado por uno efecto geometrico facilmente predecible. Puede haber otros efectos de temporizacion de formas de onda que se generan mediante la geometna mas compleja utilizada en el acelerador real, y estos efectos, si es que se pueden predecir o medir, pueden compensarse mediante el uso de los mismos principios ilustrados en este ejemplo.
Como se describio anteriormente, el generador de forma de onda digital produce una tension oscilante de entrada de la forma RF (w, t)/A (w, t), donde RF (w, t) es una tension deseada a traves de la separacion de y A (w, t) es una funcion de transferencia. Una funcion de transferencia A espedfica del dispositivo representativo se ilustra mediante la curva 600 en la figura 6A. La curva 600 muestra el factor Q como una funcion de la frecuencia. La curva 600 tiene dos desviaciones no deseadas a partir de una funcion de transferencia ideal, a saber, las depresiones 602 y 604. Estas desviaciones pueden ser causadas por efectos debido a la longitud ffsica de los componentes del circuito resonante, caractensticas auto-resonantes no deseadas de los componentes, u otros efectos. Esta funcion de transferencia puede ser medida y una tension de entrada de compensacion puede ser calculada y almacenada en la memoria del generador de forma de onda. Una representacion de esta funcion de compensacion 610 se muestra en la figura 6B. Cuando la tension de entrada compensada 610 se aplica al dispositivo 300, la tension resultante 620 es uniforme con respecto al perfil de tension deseado calculado para dar una aceleracion eficiente.
Otro ejemplo del tipo de efectos que pueden ser controlados con el generador de forma de onda programable se muestra en la figura 7. En algunos sincrociclotrones, la intensidad de campo electrico utilizado para la aceleracion puede seleccionarse para ser algo reducida, ya que las partfculas se aceleran hacia el exterior a lo largo de una trayectoria en espiral 705. Esta reduccion de la intensidad de campo electrico se realiza aplicando tension de aceleracion 700, que se mantiene relativamente constante, como se muestra en la figura 7A, en el electrodo de aceleracion 702. El electrodo 704 esta usualmente en el potencial de tierra. La intensidad de campo electrico en la separacion es la tension aplicada dividida por la longitud de la separacion. Como se muestra en la figura 7B, la distancia entre los electrodos de aceleracion 702 y 704 aumenta con el radio R. La intensidad de campo electrico resultante como una funcion o radio R se muestra como la curva 706 en la figura 7C.
Con el uso del generador de forma de onda programable, la amplitud de la tension de aceleracion 708 puede modularse de la manera deseada, como se muestra en la figura 7D. Esta modulacion permite mantener la distancia entre los electrodos de aceleracion 710 y 712, que se mantiene constante, como se muestra en la figura 7E. Como resultado, la misma intensidad de campo electrico resultante como una funcion del radio 714, que se muestra en la figura 7F, se produce como se muestra en la figura 7C. Aunque esto es un simple ejemplo de otro tipo de control sobre los efectos del sistema de sincrociclotron, la forma real de los electrodos y el perfil de la tension de aceleracion en comparacion con radio pueden no seguir este sencillo ejemplo.
Como se menciono anteriormente, el generador de forma de onda programable puede ser utilizado para controlar el inyector de iones (fuente de iones) para lograr la aceleracion optima de las partfculas cargadas mediante la temporizacion precisa de las inyecciones de partfculas. La figura 8A muestra la forma de onda de RF de aceleracion generada por el generador de forma de onda programable. La figura 8B muestra una senal del inyector temporizada de manera precisa ciclo por ciclo que puede accionar la fuente de iones de una manera precisa para inyectar un pequeno haz de iones en la cavidad del acelerador a intervalos controlados con precision para sincronizarse con el angulo de fase de aceptacion del proceso de aceleracion. Las senales se muestran en aproximadamente la alineacion correcta, ya que los haces de partfculas por lo general se desplazan a traves del acelerador en un angulo de desfase de 30 grados en comparacion con la forma de onda de campo electrico de RF para la estabilidad del haz. El momento actual de las senales en algun punto externo, como la salida de los convertidores de digital a analogico, puede no tener esta relacion exacta, ya que los retardos de propagacion de las dos senales es probable que sea diferente. Con el generador de forma de onda programable, la temporizacion de los pulsos de inyeccion puede variarse continuamente con respecto a la forma de onda de RF para optimizar el acoplamiento de los impulsos inyectados en el proceso de aceleracion. Esta senal puede activarse o desactivarse para activar el encendido y el apagado del haz. La senal tambien puede ser modulada a traves de tecnicas de cafda de pulsos para mantener una corriente de haz media requerida. Esta regulacion de corriente del haz se logra mediante la eleccion de un intervalo de tiempo macroscopico que contiene un numero de pulsos relativamente grande, del orden de 1000, y el cambio de la fraccion de pulsos que se habilitan durante este intervalo.
La figura 8C muestra un pulso de control de la inyeccion mas largo que corresponde a un numero multiple de ciclos de RF. Este pulso se genera cuando un haz de protones debe ser acelerado. El proceso de aceleracion periodica capta solo un numero limitado de partfculas que se aceleran a la energfa final y se extraen. El control de la sincronizacion de la inyeccion de iones puede resultar en una menor carga de gas y, en consecuencia, mejores condiciones de vacfo, lo que reduce los requisitos de bombeo de vacfo y mejora la alta tension y las propiedades de
perdida de haz durante el ciclo de aceleracion. Esto puede ser utilizado donde la temporizacion precisa de la inyeccion que se muestra en la figura 8B no se requiere para el acoplamiento aceptable de la fuente de iones para el angulo de fase de forma de onda de RF. Este enfoque inyecta iones para un numero de ciclos de RF que corresponde aproximadamente a la cantidad de "vueltas", que son aceptadas por el proceso de aceleracion en el 5 sincrociclotron. Esta senal tambien se activa o desactiva para activar el encendido y apagado del haz o modular la corriente de haz promedio.
Aunque esta invencion se ha mostrado y descrito particularmente con referencia a realizaciones preferidas de la misma, se entendera por los expertos en la tecnica que diversos cambios en forma y detalles pueden hacerse en la 10 misma sin apartarse del alcance de la invencion, abarcado por las reivindicaciones adjuntas.
Claims (14)
- 5101520253035404550556065REIVINDICACIONES1. Un sincrociclotron (300) que comprende:polos magneticos (4a, 4b) que tienen una separacion (13) entre los mismos un generador de campo magnetico para generar el campo magnetico en la separacion; una fuente de iones (18) para inyectar partfculas cargadas en el sincrociclotron;un generador de forma de onda programable (319) proporcionado para generar una entrada de tension, estando la entrada de tension en una frecuencia oscilante;un circuito resonante dispuesto para recibir la entrada de tension, comprendiendo el circuito resonante:unos electrodos de aceleracion (10 y 12), dispuestos entre los polos magneticos (4a y 4b); yun elemento reactivo variable (28) en circuito con los electrodos (10 y 12) para variar la frecuencia deresonancia (602 y 604) del circuito resonante;estando el sincrociclotron caracterizado por que el generador de forma de onda programable (319) es digital y esta dispuesto para proporcionar la entrada de tension a una frecuencia que vana a lo largo del tiempo de la aceleracion de las partfculas cargadas.
- 2. El sincrociclotron de la reivindicacion 1, donde la frecuencia de la entrada de tension se ajusta para mantener condiciones de resonancia en el circuito resonante.
- 3. El sincrociclotron (300) de acuerdo con la reivindicacion 1, caracterizado por que la amplitud de la tension es variada.
- 4. El sincrociclotron (300) de acuerdo con la reivindicacion 3, caracterizado por que incluye ademas uno o mas sensores para detectar condiciones de resonancia en el circuito resonante.
- 5. El sincrociclotron (300) de la reivindicacion 3, caracterizado por que incluye ademas:medios para controlar la reactancia del elemento reactivo variable (28) y ajustar la frecuencia de resonancia (602 y 604) del circuito resonante para mantener las condiciones resonantes.
- 6. El sincrociclotron (300) de acuerdo con la reivindicacion 1, caracterizado por que incluye ademas un electrodo de extraccion (22) dispuesto entre los polos magneticos (4a y 4b) para extraer un haz de partfculas del sincrociclotron (300).
- 7. El sincrociclotron (300) de la reivindicacion 6, caracterizado por que incluye ademas un monitor de haz (316) para medir al menos una de la intensidad del haz de partfculas, la temporizacion del haz de partfculas, o la distribucion espacial del haz de partfculas; ydonde ademas al menos uno de la entrada de tension, la fuente de iones (18) y el electrodo de extraccion (22) se controlan para compensar las variaciones en el haz de partfculas.
- 8. El sincrociclotron (300) de acuerdo con la reivindicacion 7, caracterizado por que el generador de forma de onda programable (319) controla al menos uno de la fuente de iones (18) y el electrodo de extraccion (22) para compensar las variaciones en el haz de partfculas.
- 9. Un metodo para producir un haz de partfculas en un sincrociclotron (300) de acuerdo con la reivindicacion 1, que comprende:inyectar partfculas cargadas en el sincrociclotron (300) mediante la fuente de iones (18); aplicar una entrada de tension oscilante al circuito resonante; acelerar las partfculas cargadas;extraer las partfculas cargadas aceleradas (26) mediante un electrodo de extraccion (22) para formar un haz de partfculas; ycaracterizado por que la entrada de tension se hace variar en frecuencia mediante el generador de forma de onda digital programable a lo largo del tiempo de la aceleracion de las partfculas cargadas.
- 10. El metodo de la reivindicacion 9, caracterizado por que incluye ademas el ajuste de la frecuencia de la entrada de tension para mantener las condiciones de resonancia en el circuito resonante.
- 11. El metodo de la reivindicacion 9, caracterizado por que la amplitud de la tension de entrada es variada.
- 12. El metodo de la reivindicacion 9, caracterizado por que incluye ademas la deteccion de condiciones de resonancia en el circuito resonante.
- 13. El metodo de la reivindicacion 9, caracterizado por que incluye ademas el ajuste de la reactancia de un elemento reactivo variable (28) en circuito con la entrada de tension oscilante y los electrodos de aceleracion (10 y 12) para mantener las condiciones de resonancia en el circuito resonante.5 14. El metodo de la reivindicacion 9, caracterizado por que incluye, ademas, medir al menos una de la intensidaddel haz de partfculas, la temporizacion del haz, o la distribucion espacial del haz de partfculas mediante un monitor de haz; ycontrolar al menos uno de la entrada de tension oscilante, la fuente de iones (18) y el electrodo de extraccion (22) para compensar las variaciones en el haz de partfculas.10
- 15. El metodo de la reivindicacion 9, caracterizado por que el generador de forma de onda programable (319) controla al menos uno de la fuente de iones (18) y el electrodo de extraccion (22) para compensar las variaciones en el haz de partfculas.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US59008904P | 2004-07-21 | 2004-07-21 | |
US590089P | 2004-07-21 | ||
PCT/US2005/025965 WO2006012467A2 (en) | 2004-07-21 | 2005-07-21 | A programmable radio frequency waveform generator for a synchrocyclotron |
Publications (1)
Publication Number | Publication Date |
---|---|
ES2558978T3 true ES2558978T3 (es) | 2016-02-09 |
Family
ID=35311846
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ES10175727.6T Active ES2654328T3 (es) | 2004-07-21 | 2005-07-21 | Generador en forma de onda de radio frecuencia programable para un sincrociclotrón |
ES17191182T Active ES2720574T3 (es) | 2004-07-21 | 2005-07-21 | Generador de forma de onda de radio frecuencia programable para un sincrociclotrón |
ES05776532.3T Active ES2558978T3 (es) | 2004-07-21 | 2005-07-21 | Generador de formas de ondas de radiofrecuencia programable para un sincrociclotrón |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ES10175727.6T Active ES2654328T3 (es) | 2004-07-21 | 2005-07-21 | Generador en forma de onda de radio frecuencia programable para un sincrociclotrón |
ES17191182T Active ES2720574T3 (es) | 2004-07-21 | 2005-07-21 | Generador de forma de onda de radio frecuencia programable para un sincrociclotrón |
Country Status (8)
Country | Link |
---|---|
US (5) | US7402963B2 (es) |
EP (4) | EP2259664B1 (es) |
JP (1) | JP5046928B2 (es) |
CN (2) | CN102036461B (es) |
AU (1) | AU2005267078B8 (es) |
CA (1) | CA2574122A1 (es) |
ES (3) | ES2654328T3 (es) |
WO (1) | WO2006012467A2 (es) |
Families Citing this family (171)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2654328T3 (es) | 2004-07-21 | 2018-02-13 | Mevion Medical Systems, Inc. | Generador en forma de onda de radio frecuencia programable para un sincrociclotrón |
US7586097B2 (en) | 2006-01-05 | 2009-09-08 | Virgin Islands Microsystems, Inc. | Switching micro-resonant structures using at least one director |
US7791290B2 (en) | 2005-09-30 | 2010-09-07 | Virgin Islands Microsystems, Inc. | Ultra-small resonating charged particle beam modulator |
US7626179B2 (en) | 2005-09-30 | 2009-12-01 | Virgin Island Microsystems, Inc. | Electron beam induced resonance |
US9077022B2 (en) * | 2004-10-29 | 2015-07-07 | Medtronic, Inc. | Lithium-ion battery |
US7315140B2 (en) * | 2005-01-27 | 2008-01-01 | Matsushita Electric Industrial Co., Ltd. | Cyclotron with beam phase selector |
EP2389977A3 (en) | 2005-11-18 | 2012-01-25 | Still River Systems, Inc. | Charged particle radiation therapy |
US7876793B2 (en) | 2006-04-26 | 2011-01-25 | Virgin Islands Microsystems, Inc. | Micro free electron laser (FEL) |
US8188431B2 (en) | 2006-05-05 | 2012-05-29 | Jonathan Gorrell | Integration of vacuum microelectronic device with integrated circuit |
US7728702B2 (en) | 2006-05-05 | 2010-06-01 | Virgin Islands Microsystems, Inc. | Shielding of integrated circuit package with high-permeability magnetic material |
US7728397B2 (en) | 2006-05-05 | 2010-06-01 | Virgin Islands Microsystems, Inc. | Coupled nano-resonating energy emitting structures |
US7986113B2 (en) | 2006-05-05 | 2011-07-26 | Virgin Islands Microsystems, Inc. | Selectable frequency light emitter |
US7732786B2 (en) | 2006-05-05 | 2010-06-08 | Virgin Islands Microsystems, Inc. | Coupling energy in a plasmon wave to an electron beam |
US7990336B2 (en) | 2007-06-19 | 2011-08-02 | Virgin Islands Microsystems, Inc. | Microwave coupled excitation of solid state resonant arrays |
US8003964B2 (en) | 2007-10-11 | 2011-08-23 | Still River Systems Incorporated | Applying a particle beam to a patient |
EP2213147B1 (en) | 2007-10-29 | 2015-01-21 | Ion Beam Applications S.A. | Device and method for fast beam current modulation in a particle accelerator |
US8581523B2 (en) * | 2007-11-30 | 2013-11-12 | Mevion Medical Systems, Inc. | Interrupted particle source |
US8933650B2 (en) | 2007-11-30 | 2015-01-13 | Mevion Medical Systems, Inc. | Matching a resonant frequency of a resonant cavity to a frequency of an input voltage |
US8280684B2 (en) * | 2008-01-09 | 2012-10-02 | Passport Systems, Inc. | Diagnostic methods and apparatus for an accelerator using induction to generate an electric field with a localized curl |
US8169167B2 (en) * | 2008-01-09 | 2012-05-01 | Passport Systems, Inc. | Methods for diagnosing and automatically controlling the operation of a particle accelerator |
CN101940069B (zh) * | 2008-01-09 | 2012-10-10 | 护照系统公司 | 通过将电感用于产生具有局部旋度的电场来加速粒子的方法和系统 |
US8188688B2 (en) | 2008-05-22 | 2012-05-29 | Vladimir Balakin | Magnetic field control method and apparatus used in conjunction with a charged particle cancer therapy system |
AU2009249863B2 (en) | 2008-05-22 | 2013-12-12 | Vladimir Yegorovich Balakin | Multi-field charged particle cancer therapy method and apparatus |
US9498649B2 (en) | 2008-05-22 | 2016-11-22 | Vladimir Balakin | Charged particle cancer therapy patient constraint apparatus and method of use thereof |
US7939809B2 (en) | 2008-05-22 | 2011-05-10 | Vladimir Balakin | Charged particle beam extraction method and apparatus used in conjunction with a charged particle cancer therapy system |
US9095040B2 (en) | 2008-05-22 | 2015-07-28 | Vladimir Balakin | Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system |
US8373145B2 (en) * | 2008-05-22 | 2013-02-12 | Vladimir Balakin | Charged particle cancer therapy system magnet control method and apparatus |
US9579525B2 (en) | 2008-05-22 | 2017-02-28 | Vladimir Balakin | Multi-axis charged particle cancer therapy method and apparatus |
US8975600B2 (en) | 2008-05-22 | 2015-03-10 | Vladimir Balakin | Treatment delivery control system and method of operation thereof |
US8373143B2 (en) | 2008-05-22 | 2013-02-12 | Vladimir Balakin | Patient immobilization and repositioning method and apparatus used in conjunction with charged particle cancer therapy |
US9155911B1 (en) | 2008-05-22 | 2015-10-13 | Vladimir Balakin | Ion source method and apparatus used in conjunction with a charged particle cancer therapy system |
US8598543B2 (en) | 2008-05-22 | 2013-12-03 | Vladimir Balakin | Multi-axis/multi-field charged particle cancer therapy method and apparatus |
US8907309B2 (en) | 2009-04-17 | 2014-12-09 | Stephen L. Spotts | Treatment delivery control system and method of operation thereof |
US8144832B2 (en) | 2008-05-22 | 2012-03-27 | Vladimir Balakin | X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system |
US8373146B2 (en) | 2008-05-22 | 2013-02-12 | Vladimir Balakin | RF accelerator method and apparatus used in conjunction with a charged particle cancer therapy system |
US8374314B2 (en) | 2008-05-22 | 2013-02-12 | Vladimir Balakin | Synchronized X-ray / breathing method and apparatus used in conjunction with a charged particle cancer therapy system |
MX2010012716A (es) | 2008-05-22 | 2011-07-01 | Vladimir Yegorovich Balakin | Metodo y aparato de rayos x usados en conjunto con un sistema de terapia contra el cancer mediante particulas cargadas. |
US8969834B2 (en) | 2008-05-22 | 2015-03-03 | Vladimir Balakin | Charged particle therapy patient constraint apparatus and method of use thereof |
US8436327B2 (en) | 2008-05-22 | 2013-05-07 | Vladimir Balakin | Multi-field charged particle cancer therapy method and apparatus |
US10070831B2 (en) | 2008-05-22 | 2018-09-11 | James P. Bennett | Integrated cancer therapy—imaging apparatus and method of use thereof |
US9744380B2 (en) | 2008-05-22 | 2017-08-29 | Susan L. Michaud | Patient specific beam control assembly of a cancer therapy apparatus and method of use thereof |
US10092776B2 (en) | 2008-05-22 | 2018-10-09 | Susan L. Michaud | Integrated translation/rotation charged particle imaging/treatment apparatus and method of use thereof |
US9044600B2 (en) | 2008-05-22 | 2015-06-02 | Vladimir Balakin | Proton tomography apparatus and method of operation therefor |
US10029122B2 (en) | 2008-05-22 | 2018-07-24 | Susan L. Michaud | Charged particle—patient motion control system apparatus and method of use thereof |
US9737272B2 (en) | 2008-05-22 | 2017-08-22 | W. Davis Lee | Charged particle cancer therapy beam state determination apparatus and method of use thereof |
US9737733B2 (en) | 2008-05-22 | 2017-08-22 | W. Davis Lee | Charged particle state determination apparatus and method of use thereof |
US9937362B2 (en) | 2008-05-22 | 2018-04-10 | W. Davis Lee | Dynamic energy control of a charged particle imaging/treatment apparatus and method of use thereof |
US8288742B2 (en) | 2008-05-22 | 2012-10-16 | Vladimir Balakin | Charged particle cancer therapy patient positioning method and apparatus |
US8637833B2 (en) | 2008-05-22 | 2014-01-28 | Vladimir Balakin | Synchrotron power supply apparatus and method of use thereof |
US9974978B2 (en) | 2008-05-22 | 2018-05-22 | W. Davis Lee | Scintillation array apparatus and method of use thereof |
US8957396B2 (en) | 2008-05-22 | 2015-02-17 | Vladimir Yegorovich Balakin | Charged particle cancer therapy beam path control method and apparatus |
US9855444B2 (en) | 2008-05-22 | 2018-01-02 | Scott Penfold | X-ray detector for proton transit detection apparatus and method of use thereof |
US9782140B2 (en) | 2008-05-22 | 2017-10-10 | Susan L. Michaud | Hybrid charged particle / X-ray-imaging / treatment apparatus and method of use thereof |
US8688197B2 (en) | 2008-05-22 | 2014-04-01 | Vladimir Yegorovich Balakin | Charged particle cancer therapy patient positioning method and apparatus |
US8198607B2 (en) | 2008-05-22 | 2012-06-12 | Vladimir Balakin | Tandem accelerator method and apparatus used in conjunction with a charged particle cancer therapy system |
US9981147B2 (en) | 2008-05-22 | 2018-05-29 | W. Davis Lee | Ion beam extraction apparatus and method of use thereof |
US8089054B2 (en) | 2008-05-22 | 2012-01-03 | Vladimir Balakin | Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system |
US10143854B2 (en) | 2008-05-22 | 2018-12-04 | Susan L. Michaud | Dual rotation charged particle imaging / treatment apparatus and method of use thereof |
US20090314960A1 (en) * | 2008-05-22 | 2009-12-24 | Vladimir Balakin | Patient positioning method and apparatus used in conjunction with a charged particle cancer therapy system |
US9616252B2 (en) | 2008-05-22 | 2017-04-11 | Vladimir Balakin | Multi-field cancer therapy apparatus and method of use thereof |
US8569717B2 (en) | 2008-05-22 | 2013-10-29 | Vladimir Balakin | Intensity modulated three-dimensional radiation scanning method and apparatus |
US8642978B2 (en) | 2008-05-22 | 2014-02-04 | Vladimir Balakin | Charged particle cancer therapy dose distribution method and apparatus |
US8399866B2 (en) | 2008-05-22 | 2013-03-19 | Vladimir Balakin | Charged particle extraction apparatus and method of use thereof |
US8129699B2 (en) | 2008-05-22 | 2012-03-06 | Vladimir Balakin | Multi-field charged particle cancer therapy method and apparatus coordinated with patient respiration |
US8718231B2 (en) | 2008-05-22 | 2014-05-06 | Vladimir Balakin | X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system |
US9910166B2 (en) | 2008-05-22 | 2018-03-06 | Stephen L. Spotts | Redundant charged particle state determination apparatus and method of use thereof |
US8093564B2 (en) | 2008-05-22 | 2012-01-10 | Vladimir Balakin | Ion beam focusing lens method and apparatus used in conjunction with a charged particle cancer therapy system |
US9168392B1 (en) | 2008-05-22 | 2015-10-27 | Vladimir Balakin | Charged particle cancer therapy system X-ray apparatus and method of use thereof |
US8309941B2 (en) | 2008-05-22 | 2012-11-13 | Vladimir Balakin | Charged particle cancer therapy and patient breath monitoring method and apparatus |
US10684380B2 (en) | 2008-05-22 | 2020-06-16 | W. Davis Lee | Multiple scintillation detector array imaging apparatus and method of use thereof |
EP2283713B1 (en) | 2008-05-22 | 2018-03-28 | Vladimir Yegorovich Balakin | Multi-axis charged particle cancer therapy apparatus |
US9058910B2 (en) | 2008-05-22 | 2015-06-16 | Vladimir Yegorovich Balakin | Charged particle beam acceleration method and apparatus as part of a charged particle cancer therapy system |
US8129694B2 (en) | 2008-05-22 | 2012-03-06 | Vladimir Balakin | Negative ion beam source vacuum method and apparatus used in conjunction with a charged particle cancer therapy system |
AU2009249867B2 (en) | 2008-05-22 | 2013-05-02 | Vladimir Yegorovich Balakin | Charged particle beam extraction method and apparatus used in conjunction with a charged particle cancer therapy system |
US8368038B2 (en) | 2008-05-22 | 2013-02-05 | Vladimir Balakin | Method and apparatus for intensity control of a charged particle beam extracted from a synchrotron |
US9737734B2 (en) | 2008-05-22 | 2017-08-22 | Susan L. Michaud | Charged particle translation slide control apparatus and method of use thereof |
US9056199B2 (en) | 2008-05-22 | 2015-06-16 | Vladimir Balakin | Charged particle treatment, rapid patient positioning apparatus and method of use thereof |
US8710462B2 (en) | 2008-05-22 | 2014-04-29 | Vladimir Balakin | Charged particle cancer therapy beam path control method and apparatus |
US8378321B2 (en) | 2008-05-22 | 2013-02-19 | Vladimir Balakin | Charged particle cancer therapy and patient positioning method and apparatus |
US9682254B2 (en) | 2008-05-22 | 2017-06-20 | Vladimir Balakin | Cancer surface searing apparatus and method of use thereof |
US8896239B2 (en) | 2008-05-22 | 2014-11-25 | Vladimir Yegorovich Balakin | Charged particle beam injection method and apparatus used in conjunction with a charged particle cancer therapy system |
US9177751B2 (en) | 2008-05-22 | 2015-11-03 | Vladimir Balakin | Carbon ion beam injector apparatus and method of use thereof |
US8378311B2 (en) | 2008-05-22 | 2013-02-19 | Vladimir Balakin | Synchrotron power cycling apparatus and method of use thereof |
US8178859B2 (en) | 2008-05-22 | 2012-05-15 | Vladimir Balakin | Proton beam positioning verification method and apparatus used in conjunction with a charged particle cancer therapy system |
US8519365B2 (en) | 2008-05-22 | 2013-08-27 | Vladimir Balakin | Charged particle cancer therapy imaging method and apparatus |
US10548551B2 (en) | 2008-05-22 | 2020-02-04 | W. Davis Lee | Depth resolved scintillation detector array imaging apparatus and method of use thereof |
US8624528B2 (en) | 2008-05-22 | 2014-01-07 | Vladimir Balakin | Method and apparatus coordinating synchrotron acceleration periods with patient respiration periods |
US10566169B1 (en) * | 2008-06-30 | 2020-02-18 | Nexgen Semi Holding, Inc. | Method and device for spatial charged particle bunching |
US8229072B2 (en) * | 2008-07-14 | 2012-07-24 | Vladimir Balakin | Elongated lifetime X-ray method and apparatus used in conjunction with a charged particle cancer therapy system |
US8627822B2 (en) | 2008-07-14 | 2014-01-14 | Vladimir Balakin | Semi-vertical positioning method and apparatus used in conjunction with a charged particle cancer therapy system |
US8625739B2 (en) | 2008-07-14 | 2014-01-07 | Vladimir Balakin | Charged particle cancer therapy x-ray method and apparatus |
SG173879A1 (en) | 2009-03-04 | 2011-10-28 | Protom Aozt | Multi-field charged particle cancer therapy method and apparatus |
US8106370B2 (en) | 2009-05-05 | 2012-01-31 | General Electric Company | Isotope production system and cyclotron having a magnet yoke with a pump acceptance cavity |
US8153997B2 (en) | 2009-05-05 | 2012-04-10 | General Electric Company | Isotope production system and cyclotron |
US8106570B2 (en) | 2009-05-05 | 2012-01-31 | General Electric Company | Isotope production system and cyclotron having reduced magnetic stray fields |
JP5868849B2 (ja) * | 2009-06-24 | 2016-02-24 | イオン・ビーム・アプリケーションズ・エス・アー | 粒子加速器、粒子放射線治療システム、粒子数を制御するための方法、及び一連のスポット照射を実施するための方法 |
US8374306B2 (en) | 2009-06-26 | 2013-02-12 | General Electric Company | Isotope production system with separated shielding |
DE102009048063A1 (de) * | 2009-09-30 | 2011-03-31 | Eads Deutschland Gmbh | Ionisationsverfahren, Ionenerzeugungsvorrichtung sowie Verwendung derselben bei der Ionenmobilitätsspektronomie |
DE102009048150A1 (de) * | 2009-10-02 | 2011-04-07 | Siemens Aktiengesellschaft | Beschleuniger und Verfahren zur Ansteuerung eines Beschleunigers |
US11648420B2 (en) | 2010-04-16 | 2023-05-16 | Vladimir Balakin | Imaging assisted integrated tomography—cancer treatment apparatus and method of use thereof |
US10086214B2 (en) | 2010-04-16 | 2018-10-02 | Vladimir Balakin | Integrated tomography—cancer treatment apparatus and method of use thereof |
US10555710B2 (en) | 2010-04-16 | 2020-02-11 | James P. Bennett | Simultaneous multi-axes imaging apparatus and method of use thereof |
US10589128B2 (en) | 2010-04-16 | 2020-03-17 | Susan L. Michaud | Treatment beam path verification in a cancer therapy apparatus and method of use thereof |
US10376717B2 (en) | 2010-04-16 | 2019-08-13 | James P. Bennett | Intervening object compensating automated radiation treatment plan development apparatus and method of use thereof |
US10518109B2 (en) | 2010-04-16 | 2019-12-31 | Jillian Reno | Transformable charged particle beam path cancer therapy apparatus and method of use thereof |
US10625097B2 (en) | 2010-04-16 | 2020-04-21 | Jillian Reno | Semi-automated cancer therapy treatment apparatus and method of use thereof |
US10556126B2 (en) | 2010-04-16 | 2020-02-11 | Mark R. Amato | Automated radiation treatment plan development apparatus and method of use thereof |
US10188877B2 (en) | 2010-04-16 | 2019-01-29 | W. Davis Lee | Fiducial marker/cancer imaging and treatment apparatus and method of use thereof |
US10638988B2 (en) | 2010-04-16 | 2020-05-05 | Scott Penfold | Simultaneous/single patient position X-ray and proton imaging apparatus and method of use thereof |
US10751551B2 (en) | 2010-04-16 | 2020-08-25 | James P. Bennett | Integrated imaging-cancer treatment apparatus and method of use thereof |
US9737731B2 (en) | 2010-04-16 | 2017-08-22 | Vladimir Balakin | Synchrotron energy control apparatus and method of use thereof |
US10349906B2 (en) | 2010-04-16 | 2019-07-16 | James P. Bennett | Multiplexed proton tomography imaging apparatus and method of use thereof |
US10179250B2 (en) | 2010-04-16 | 2019-01-15 | Nick Ruebel | Auto-updated and implemented radiation treatment plan apparatus and method of use thereof |
JP5606793B2 (ja) * | 2010-05-26 | 2014-10-15 | 住友重機械工業株式会社 | 加速器及びサイクロトロン |
EP2410823B1 (fr) * | 2010-07-22 | 2012-11-28 | Ion Beam Applications | Cyclotron apte à accélérer au moins deux types de particules |
JP5665721B2 (ja) | 2011-02-28 | 2015-02-04 | 三菱電機株式会社 | 円形加速器および円形加速器の運転方法 |
JP5638457B2 (ja) * | 2011-05-09 | 2014-12-10 | 住友重機械工業株式会社 | シンクロサイクロトロン及びそれを備えた荷電粒子線照射装置 |
WO2012159212A1 (en) * | 2011-05-23 | 2012-11-29 | Schmor Particle Accelerator Consulting Inc. | Particle accelerator and method of reducing beam divergence in the particle accelerator |
US8963112B1 (en) | 2011-05-25 | 2015-02-24 | Vladimir Balakin | Charged particle cancer therapy patient positioning method and apparatus |
US8639853B2 (en) | 2011-07-28 | 2014-01-28 | National Intruments Corporation | Programmable waveform technology for interfacing to disparate devices |
WO2013111292A1 (ja) * | 2012-01-26 | 2013-08-01 | 三菱電機株式会社 | 荷電粒子加速器及び粒子線治療装置 |
JP5844169B2 (ja) * | 2012-01-31 | 2016-01-13 | 住友重機械工業株式会社 | シンクロサイクロトロン |
US9603235B2 (en) | 2012-07-27 | 2017-03-21 | Massachusetts Institute Of Technology | Phase-lock loop synchronization between beam orbit and RF drive in synchrocyclotrons |
US8878432B2 (en) * | 2012-08-20 | 2014-11-04 | Varian Medical Systems, Inc. | On board diagnosis of RF spectra in accelerators |
CN102869185B (zh) * | 2012-09-12 | 2015-03-11 | 中国原子能科学研究院 | 一种强流紧凑型回旋加速器腔体锻炼方法 |
US9545528B2 (en) | 2012-09-28 | 2017-01-17 | Mevion Medical Systems, Inc. | Controlling particle therapy |
EP3342462B1 (en) | 2012-09-28 | 2019-05-01 | Mevion Medical Systems, Inc. | Adjusting energy of a particle beam |
CN108770178B (zh) | 2012-09-28 | 2021-04-16 | 迈胜医疗设备有限公司 | 磁场再生器 |
EP2901824B1 (en) | 2012-09-28 | 2020-04-15 | Mevion Medical Systems, Inc. | Magnetic shims to adjust a position of a main coil and corresponding method |
EP2901820B1 (en) * | 2012-09-28 | 2021-02-17 | Mevion Medical Systems, Inc. | Focusing a particle beam using magnetic field flutter |
WO2014052718A2 (en) | 2012-09-28 | 2014-04-03 | Mevion Medical Systems, Inc. | Focusing a particle beam |
JP6121546B2 (ja) | 2012-09-28 | 2017-04-26 | メビオン・メディカル・システムズ・インコーポレーテッド | 粒子加速器用の制御システム |
US10254739B2 (en) | 2012-09-28 | 2019-04-09 | Mevion Medical Systems, Inc. | Coil positioning system |
WO2014052709A2 (en) | 2012-09-28 | 2014-04-03 | Mevion Medical Systems, Inc. | Controlling intensity of a particle beam |
US8933651B2 (en) | 2012-11-16 | 2015-01-13 | Vladimir Balakin | Charged particle accelerator magnet apparatus and method of use thereof |
JP2014102990A (ja) * | 2012-11-20 | 2014-06-05 | Sumitomo Heavy Ind Ltd | サイクロトロン |
US9119281B2 (en) | 2012-12-03 | 2015-08-25 | Varian Medical Systems, Inc. | Charged particle accelerator systems including beam dose and energy compensation and methods therefor |
US8791656B1 (en) | 2013-05-31 | 2014-07-29 | Mevion Medical Systems, Inc. | Active return system |
US9730308B2 (en) | 2013-06-12 | 2017-08-08 | Mevion Medical Systems, Inc. | Particle accelerator that produces charged particles having variable energies |
US9550077B2 (en) * | 2013-06-27 | 2017-01-24 | Brookhaven Science Associates, Llc | Multi turn beam extraction from synchrotron |
CN110237447B (zh) | 2013-09-27 | 2021-11-02 | 梅维昂医疗系统股份有限公司 | 粒子治疗系统 |
US10675487B2 (en) | 2013-12-20 | 2020-06-09 | Mevion Medical Systems, Inc. | Energy degrader enabling high-speed energy switching |
US9962560B2 (en) | 2013-12-20 | 2018-05-08 | Mevion Medical Systems, Inc. | Collimator and energy degrader |
US9661736B2 (en) | 2014-02-20 | 2017-05-23 | Mevion Medical Systems, Inc. | Scanning system for a particle therapy system |
DE102014003536A1 (de) * | 2014-03-13 | 2015-09-17 | Forschungszentrum Jülich GmbH Fachbereich Patente | Supraleitender Magnetfeldstabilisator |
US9950194B2 (en) | 2014-09-09 | 2018-04-24 | Mevion Medical Systems, Inc. | Patient positioning system |
CN105282956B (zh) * | 2015-10-09 | 2018-08-07 | 中国原子能科学研究院 | 一种强流回旋加速器高频系统智能自启动方法 |
US10786689B2 (en) | 2015-11-10 | 2020-09-29 | Mevion Medical Systems, Inc. | Adaptive aperture |
CN105376925B (zh) * | 2015-12-09 | 2017-11-21 | 中国原子能科学研究院 | 同步回旋加速器腔体频率调制方法 |
US9907981B2 (en) | 2016-03-07 | 2018-03-06 | Susan L. Michaud | Charged particle translation slide control apparatus and method of use thereof |
US10037863B2 (en) | 2016-05-27 | 2018-07-31 | Mark R. Amato | Continuous ion beam kinetic energy dissipater apparatus and method of use thereof |
CN105848403B (zh) * | 2016-06-15 | 2018-01-30 | 中国工程物理研究院流体物理研究所 | 内离子源回旋加速器 |
WO2018009779A1 (en) | 2016-07-08 | 2018-01-11 | Mevion Medical Systems, Inc. | Treatment planning |
EP3488668B1 (en) * | 2016-07-22 | 2021-09-29 | Bhosale, Devesh Suryabhan | An apparatus for generating electromagnetic waves |
US10339148B2 (en) | 2016-07-27 | 2019-07-02 | Microsoft Technology Licensing, Llc | Cross-platform computer application query categories |
EP3307031B1 (en) * | 2016-10-05 | 2019-04-17 | Ion Beam Applications S.A. | Method and system for controlling ion beam pulses extraction |
US10568196B1 (en) * | 2016-11-21 | 2020-02-18 | Triad National Security, Llc | Compact, high-efficiency accelerators driven by low-voltage solid-state amplifiers |
WO2018127990A1 (ja) * | 2017-01-05 | 2018-07-12 | 三菱電機株式会社 | 円形加速器の高周波加速装置及び円形加速器 |
US11103730B2 (en) | 2017-02-23 | 2021-08-31 | Mevion Medical Systems, Inc. | Automated treatment in particle therapy |
CN107134399B (zh) * | 2017-04-06 | 2019-06-25 | 中国电子科技集团公司第四十八研究所 | 用于高能离子注入机的射频加速调谐装置及控制方法 |
US10653892B2 (en) | 2017-06-30 | 2020-05-19 | Mevion Medical Systems, Inc. | Configurable collimator controlled using linear motors |
US10404210B1 (en) * | 2018-05-02 | 2019-09-03 | United States Of America As Represented By The Secretary Of The Navy | Superconductive cavity oscillator |
JP2020038797A (ja) * | 2018-09-04 | 2020-03-12 | 株式会社日立製作所 | 加速器、およびそれを備えた粒子線治療システム |
RU2689297C1 (ru) * | 2018-09-27 | 2019-05-27 | Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" | Способ синхронизации устройств в накопительных электронных синхротронах источников синхротронного излучения |
CN113811355B (zh) | 2019-03-08 | 2024-07-23 | 美国迈胜医疗系统有限公司 | 穿过柱体输送辐射并为其产生治疗计划 |
JP7319144B2 (ja) * | 2019-08-30 | 2023-08-01 | 株式会社日立製作所 | 円形加速器および粒子線治療システム、円形加速器の作動方法 |
US11187745B2 (en) | 2019-10-30 | 2021-11-30 | Teradyne, Inc. | Stabilizing a voltage at a device under test |
US11576252B2 (en) * | 2020-03-24 | 2023-02-07 | Applied Materials, Inc. | Controller and control techniques for linear accelerator and ion implanter having linear accelerator |
CN111417251B (zh) * | 2020-04-07 | 2022-08-09 | 哈尔滨工业大学 | 一种高温超导无磁扼多离子变能量回旋加速器高频腔体 |
EP4451810A1 (en) * | 2021-12-13 | 2024-10-23 | Hitachi High-Tech Corporation | Accelerator, particle beam therapy system, and control method |
JP2023122453A (ja) * | 2022-02-22 | 2023-09-01 | 株式会社日立製作所 | 加速器および加速器を備える粒子線治療システム。 |
Family Cites Families (629)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2280606A (en) | 1940-01-26 | 1942-04-21 | Rca Corp | Electronic reactance circuits |
US2615129A (en) * | 1947-05-16 | 1952-10-21 | Edwin M Mcmillan | Synchro-cyclotron |
US2492324A (en) * | 1947-12-24 | 1949-12-27 | Collins Radio Co | Cyclotron oscillator system |
US2616042A (en) * | 1950-05-17 | 1952-10-28 | Weeks Robert Ray | Stabilizer arrangement for cyclotrons and the like |
US2659000A (en) * | 1951-04-27 | 1953-11-10 | Collins Radio Co | Variable frequency cyclotron |
US2701304A (en) * | 1951-05-31 | 1955-02-01 | Gen Electric | Cyclotron |
US2789222A (en) * | 1954-07-21 | 1957-04-16 | Marvin D Martin | Frequency modulation system |
US2958327A (en) | 1957-03-29 | 1960-11-01 | Gladys W Geissmann | Foundation garment |
US3360647A (en) | 1964-09-14 | 1967-12-26 | Varian Associates | Electron accelerator with specific deflecting magnet structure and x-ray target |
GB957342A (en) | 1960-08-01 | 1964-05-06 | Varian Associates | Apparatus for directing ionising radiation in the form of or produced by beams from particle accelerators |
US3175131A (en) | 1961-02-08 | 1965-03-23 | Richard J Burleigh | Magnet construction for a variable energy cyclotron |
FR1409412A (fr) | 1964-07-16 | 1965-08-27 | Comp Generale Electricite | Perfectionnements aux bobines de réactance |
US3432721A (en) | 1966-01-17 | 1969-03-11 | Gen Electric | Beam plasma high frequency wave generating system |
JPS4323267Y1 (es) | 1966-10-11 | 1968-10-01 | ||
NL7007871A (es) * | 1970-05-29 | 1971-12-01 | ||
FR2109273A5 (es) | 1970-10-09 | 1972-05-26 | Thomson Csf | |
US3679899A (en) | 1971-04-16 | 1972-07-25 | Nasa | Nondispersive gas analyzing method and apparatus wherein radiation is serially passed through a reference and unknown gas |
US3757118A (en) | 1972-02-22 | 1973-09-04 | Ca Atomic Energy Ltd | Electron beam therapy unit |
JPS5036158Y2 (es) | 1972-03-09 | 1975-10-21 | ||
CA966893A (en) | 1973-06-19 | 1975-04-29 | Her Majesty In Right Of Canada As Represented By Atomic Energy Of Canada Limited | Superconducting cyclotron |
US4047068A (en) * | 1973-11-26 | 1977-09-06 | Kreidl Chemico Physical K.G. | Synchronous plasma packet accelerator |
US3992625A (en) | 1973-12-27 | 1976-11-16 | Jersey Nuclear-Avco Isotopes, Inc. | Method and apparatus for extracting ions from a partially ionized plasma using a magnetic field gradient |
US3886367A (en) | 1974-01-18 | 1975-05-27 | Us Energy | Ion-beam mask for cancer patient therapy |
US3958327A (en) | 1974-05-01 | 1976-05-25 | Airco, Inc. | Stabilized high-field superconductor |
US4129784A (en) | 1974-06-14 | 1978-12-12 | Siemens Aktiengesellschaft | Gamma camera |
US3925676A (en) | 1974-07-31 | 1975-12-09 | Ca Atomic Energy Ltd | Superconducting cyclotron neutron source for therapy |
US3955089A (en) | 1974-10-21 | 1976-05-04 | Varian Associates | Automatic steering of a high velocity beam of charged particles |
CA1008125A (en) | 1975-03-07 | 1977-04-05 | Her Majesty In Right Of Canada As Represented By Atomic Energy Of Canada Limited | Method and apparatus for magnetic field shimming in an isochronous cyclotron |
US4230129A (en) | 1975-07-11 | 1980-10-28 | Leveen Harry H | Radio frequency, electromagnetic radiation device having orbital mount |
ZA757266B (en) * | 1975-11-19 | 1977-09-28 | W Rautenbach | Cyclotron and neutron therapy installation incorporating such a cyclotron |
SU569635A1 (ru) | 1976-03-01 | 1977-08-25 | Предприятие П/Я М-5649 | Магнитный сплав |
US4038622A (en) | 1976-04-13 | 1977-07-26 | The United States Of America As Represented By The United States Energy Research And Development Administration | Superconducting dipole electromagnet |
US4112306A (en) | 1976-12-06 | 1978-09-05 | Varian Associates, Inc. | Neutron irradiation therapy machine |
DE2754791A1 (de) | 1976-12-13 | 1978-10-26 | Varian Associates | Rennbahn-mikrotron |
DE2759073C3 (de) | 1977-12-30 | 1981-10-22 | Siemens AG, 1000 Berlin und 8000 München | Elektronentubus |
GB2015821B (en) | 1978-02-28 | 1982-03-31 | Radiation Dynamics Ltd | Racetrack linear accelerators |
US4197510A (en) | 1978-06-23 | 1980-04-08 | The United States Of America As Represented By The Secretary Of The Navy | Isochronous cyclotron |
JPS5924520B2 (ja) | 1979-03-07 | 1984-06-09 | 理化学研究所 | 等時性サイクロトロンの磁極の構造とそれの使用方法 |
FR2458201A1 (fr) * | 1979-05-31 | 1980-12-26 | Cgr Mev | Systeme resonnant micro-onde a double frequence de resonance et cyclotron muni d'un tel systeme |
DE2926873A1 (de) | 1979-07-03 | 1981-01-22 | Siemens Ag | Strahlentherapiegeraet mit zwei lichtvisieren |
US4293772A (en) | 1980-03-31 | 1981-10-06 | Siemens Medical Laboratories, Inc. | Wobbling device for a charged particle accelerator |
US4342060A (en) | 1980-05-22 | 1982-07-27 | Siemens Medical Laboratories, Inc. | Energy interlock system for a linear accelerator |
US4336505A (en) | 1980-07-14 | 1982-06-22 | John Fluke Mfg. Co., Inc. | Controlled frequency signal source apparatus including a feedback path for the reduction of phase noise |
JPS57162527A (en) | 1981-03-31 | 1982-10-06 | Fujitsu Ltd | Setting device for preset voltage of frequency synthesizer |
JPS57162527U (es) | 1981-04-07 | 1982-10-13 | ||
US4425506A (en) | 1981-11-19 | 1984-01-10 | Varian Associates, Inc. | Stepped gap achromatic bending magnet |
DE3148100A1 (de) | 1981-12-04 | 1983-06-09 | Uwe Hanno Dr. 8050 Freising Trinks | "synchrotron-roentgenstrahlungsquelle" |
JPS58141000A (ja) | 1982-02-16 | 1983-08-20 | 住友重機械工業株式会社 | サイクロトロン |
US4507616A (en) | 1982-03-08 | 1985-03-26 | Board Of Trustees Operating Michigan State University | Rotatable superconducting cyclotron adapted for medical use |
JPS58141000U (ja) | 1982-03-15 | 1983-09-22 | 和泉鉄工株式会社 | 上下反転積込排出装置 |
US4490616A (en) | 1982-09-30 | 1984-12-25 | Cipollina John J | Cephalometric shield |
JPS5964069A (ja) | 1982-10-04 | 1984-04-11 | バリアン・アソシエイツ・インコ−ポレイテツド | 電子アーク治療用視準装置のための遮蔽物保持装置 |
US4507614A (en) | 1983-03-21 | 1985-03-26 | The United States Of America As Represented By The United States Department Of Energy | Electrostatic wire for stabilizing a charged particle beam |
US4736173A (en) | 1983-06-30 | 1988-04-05 | Hughes Aircraft Company | Thermally-compensated microwave resonator utilizing current-null segmentation |
SE462013B (sv) | 1984-01-26 | 1990-04-30 | Kjell Olov Torgny Lindstroem | Behandlingsbord foer radioterapi av patienter |
FR2560421B1 (fr) | 1984-02-28 | 1988-06-17 | Commissariat Energie Atomique | Dispositif de refroidissement de bobinages supraconducteurs |
US4865284A (en) | 1984-03-13 | 1989-09-12 | Siemens Gammasonics, Inc. | Collimator storage device in particular a collimator cart |
US4641104A (en) * | 1984-04-26 | 1987-02-03 | Board Of Trustees Operating Michigan State University | Superconducting medical cyclotron |
GB8421867D0 (en) | 1984-08-29 | 1984-10-03 | Oxford Instr Ltd | Devices for accelerating electrons |
US4651007A (en) | 1984-09-13 | 1987-03-17 | Technicare Corporation | Medical diagnostic mechanical positioner |
JPS6180800A (ja) | 1984-09-28 | 1986-04-24 | 株式会社日立製作所 | 放射光照射装置 |
JPS6180800U (es) | 1984-10-30 | 1986-05-29 | ||
US4641057A (en) * | 1985-01-23 | 1987-02-03 | Board Of Trustees Operating Michigan State University | Superconducting synchrocyclotron |
DE3506562A1 (de) | 1985-02-25 | 1986-08-28 | Siemens AG, 1000 Berlin und 8000 München | Magnetfeldeinrichtung fuer eine teilchenbeschleuniger-anlage |
EP0193837B1 (de) | 1985-03-08 | 1990-05-02 | Siemens Aktiengesellschaft | Magnetfelderzeugende Einrichtung für eine Teilchenbeschleuniger-Anlage |
NL8500748A (nl) | 1985-03-15 | 1986-10-01 | Philips Nv | Collimator wisselsysteem. |
DE3511282C1 (de) * | 1985-03-28 | 1986-08-21 | Brown, Boveri & Cie Ag, 6800 Mannheim | Supraleitendes Magnetsystem fuer Teilchenbeschleuniger einer Synchrotron-Strahlungsquelle |
JPS61225798A (ja) | 1985-03-29 | 1986-10-07 | 三菱電機株式会社 | プラズマ発生装置 |
US4705955A (en) | 1985-04-02 | 1987-11-10 | Curt Mileikowsky | Radiation therapy for cancer patients |
US4633125A (en) | 1985-05-09 | 1986-12-30 | Board Of Trustees Operating Michigan State University | Vented 360 degree rotatable vessel for containing liquids |
LU85895A1 (fr) | 1985-05-10 | 1986-12-05 | Univ Louvain | Cyclotron |
US4628523A (en) | 1985-05-13 | 1986-12-09 | B.V. Optische Industrie De Oude Delft | Direction control for radiographic therapy apparatus |
GB8512804D0 (en) | 1985-05-21 | 1985-06-26 | Oxford Instr Ltd | Cyclotrons |
DE3661672D1 (en) | 1985-06-24 | 1989-02-09 | Siemens Ag | Magnetic-field device for an apparatus for accelerating and/or storing electrically charged particles |
US4726046A (en) | 1985-11-05 | 1988-02-16 | Varian Associates, Inc. | X-ray and electron radiotherapy clinical treatment machine |
JPS62150804A (ja) | 1985-12-25 | 1987-07-04 | Sumitomo Electric Ind Ltd | シンクロトロン軌道放射システムの荷電粒子偏向装置 |
DE3704442A1 (de) | 1986-02-12 | 1987-08-13 | Mitsubishi Electric Corp | Ladungstraegerstrahlvorrichtung |
JPS62186500A (ja) | 1986-02-12 | 1987-08-14 | 三菱電機株式会社 | 荷電ビ−ム装置 |
US4783634A (en) | 1986-02-27 | 1988-11-08 | Mitsubishi Denki Kabushiki Kaisha | Superconducting synchrotron orbital radiation apparatus |
JPS62150804U (es) | 1986-03-14 | 1987-09-24 | ||
US4754147A (en) | 1986-04-11 | 1988-06-28 | Michigan State University | Variable radiation collimator |
US4739173A (en) | 1986-04-11 | 1988-04-19 | Board Of Trustees Operating Michigan State University | Collimator apparatus and method |
JPS62186500U (es) | 1986-05-20 | 1987-11-27 | ||
US4763483A (en) | 1986-07-17 | 1988-08-16 | Helix Technology Corporation | Cryopump and method of starting the cryopump |
US4868843A (en) | 1986-09-10 | 1989-09-19 | Varian Associates, Inc. | Multileaf collimator and compensator for radiotherapy machines |
US4808941A (en) | 1986-10-29 | 1989-02-28 | Siemens Aktiengesellschaft | Synchrotron with radiation absorber |
JP2670670B2 (ja) | 1986-12-12 | 1997-10-29 | 日鉱金属 株式会社 | 高力高導電性銅合金 |
DE3644536C1 (de) | 1986-12-24 | 1987-11-19 | Basf Lacke & Farben | Vorrichtung fuer eine Wasserlackapplikation mit Hochrotationszerstaeubern ueber Direktaufladung oder Kontaktaufladung |
GB8701363D0 (en) | 1987-01-22 | 1987-02-25 | Oxford Instr Ltd | Magnetic field generating assembly |
EP0277521B1 (de) | 1987-01-28 | 1991-11-06 | Siemens Aktiengesellschaft | Synchrotronstrahlungsquelle mit einer Fixierung ihrer gekrümmten Spulenwicklungen |
DE3786158D1 (de) | 1987-01-28 | 1993-07-15 | Siemens Ag | Magneteinrichtung mit gekruemmten spulenwicklungen. |
DE3705294A1 (de) | 1987-02-19 | 1988-09-01 | Kernforschungsz Karlsruhe | Magnetisches ablenksystem fuer geladene teilchen |
JPS63218200A (ja) | 1987-03-05 | 1988-09-12 | Furukawa Electric Co Ltd:The | 超伝導sor発生装置 |
JPS63226899A (ja) | 1987-03-16 | 1988-09-21 | Ishikawajima Harima Heavy Ind Co Ltd | 超電導ウイグラ− |
JPH0517318Y2 (es) | 1987-03-24 | 1993-05-10 | ||
US4767930A (en) | 1987-03-31 | 1988-08-30 | Siemens Medical Laboratories, Inc. | Method and apparatus for enlarging a charged particle beam |
JPH0546928Y2 (es) | 1987-04-01 | 1993-12-09 | ||
US4812658A (en) | 1987-07-23 | 1989-03-14 | President And Fellows Of Harvard College | Beam Redirecting |
JPS6435838A (en) | 1987-07-31 | 1989-02-06 | Jeol Ltd | Charged particle beam device |
DE3844716C2 (de) | 1987-08-24 | 2001-02-22 | Mitsubishi Electric Corp | Partikelstrahlmonitorvorrichtung |
JP2667832B2 (ja) | 1987-09-11 | 1997-10-27 | 株式会社日立製作所 | 偏向マグネット |
JPS6489621A (en) | 1987-09-30 | 1989-04-04 | Nec Corp | Frequency synthesizer |
GB8725459D0 (en) | 1987-10-30 | 1987-12-02 | Nat Research Dev Corpn | Generating particle beams |
US4945478A (en) | 1987-11-06 | 1990-07-31 | Center For Innovative Technology | Noninvasive medical imaging system and method for the identification and 3-D display of atherosclerosis and the like |
EP0395711B1 (en) | 1987-12-03 | 1995-03-08 | The University Of Florida | Apparatus for stereotactic radiosurgery |
US4896206A (en) | 1987-12-14 | 1990-01-23 | Electro Science Industries, Inc. | Video detection system |
US4870287A (en) | 1988-03-03 | 1989-09-26 | Loma Linda University Medical Center | Multi-station proton beam therapy system |
US4845371A (en) | 1988-03-29 | 1989-07-04 | Siemens Medical Laboratories, Inc. | Apparatus for generating and transporting a charged particle beam |
US4917344A (en) | 1988-04-07 | 1990-04-17 | Loma Linda University Medical Center | Roller-supported, modular, isocentric gantry and method of assembly |
JP2645314B2 (ja) | 1988-04-28 | 1997-08-25 | 清水建設株式会社 | 磁気遮蔽器 |
US4905267A (en) | 1988-04-29 | 1990-02-27 | Loma Linda University Medical Center | Method of assembly and whole body, patient positioning and repositioning support for use in radiation beam therapy systems |
US5006759A (en) | 1988-05-09 | 1991-04-09 | Siemens Medical Laboratories, Inc. | Two piece apparatus for accelerating and transporting a charged particle beam |
JPH079839B2 (ja) | 1988-05-30 | 1995-02-01 | 株式会社島津製作所 | 高周波多重極線型加速器 |
JPH078300B2 (ja) | 1988-06-21 | 1995-02-01 | 三菱電機株式会社 | 荷電粒子ビームの照射装置 |
GB2223350B (en) | 1988-08-26 | 1992-12-23 | Mitsubishi Electric Corp | Device for accelerating and storing charged particles |
GB8820628D0 (en) | 1988-09-01 | 1988-10-26 | Amersham Int Plc | Proton source |
US4880985A (en) | 1988-10-05 | 1989-11-14 | Douglas Jones | Detached collimator apparatus for radiation therapy |
DE58907575D1 (de) | 1988-11-29 | 1994-06-01 | Varian International Ag Zug | Strahlentherapiegerät. |
DE4000666C2 (de) | 1989-01-12 | 1996-10-17 | Mitsubishi Electric Corp | Elektromagnetanordnung für einen Teilchenbeschleuniger |
JPH0834130B2 (ja) | 1989-03-15 | 1996-03-29 | 株式会社日立製作所 | シンクロトロン放射光発生装置 |
US5117829A (en) | 1989-03-31 | 1992-06-02 | Loma Linda University Medical Center | Patient alignment system and procedure for radiation treatment |
US5017789A (en) | 1989-03-31 | 1991-05-21 | Loma Linda University Medical Center | Raster scan control system for a charged-particle beam |
US5010562A (en) | 1989-08-31 | 1991-04-23 | Siemens Medical Laboratories, Inc. | Apparatus and method for inhibiting the generation of excessive radiation |
US5046078A (en) | 1989-08-31 | 1991-09-03 | Siemens Medical Laboratories, Inc. | Apparatus and method for inhibiting the generation of excessive radiation |
JP2896188B2 (ja) | 1990-03-27 | 1999-05-31 | 三菱電機株式会社 | 荷電粒子装置用偏向電磁石 |
US5072123A (en) | 1990-05-03 | 1991-12-10 | Varian Associates, Inc. | Method of measuring total ionization current in a segmented ionization chamber |
JP2593576B2 (ja) | 1990-07-31 | 1997-03-26 | 株式会社東芝 | 放射線位置決め装置 |
WO1992003028A1 (de) | 1990-08-06 | 1992-02-20 | Siemens Aktiengesellschaft | Synchrotronstrahlungsquelle |
JPH0494198A (ja) | 1990-08-09 | 1992-03-26 | Nippon Steel Corp | 電磁気シールド用材料 |
JP2896217B2 (ja) | 1990-09-21 | 1999-05-31 | キヤノン株式会社 | 記録装置 |
JP2529492B2 (ja) | 1990-08-31 | 1996-08-28 | 三菱電機株式会社 | 荷電粒子偏向電磁石用コイルおよびその製造方法 |
JP3215409B2 (ja) | 1990-09-19 | 2001-10-09 | セイコーインスツルメンツ株式会社 | 光弁装置 |
JP2786330B2 (ja) | 1990-11-30 | 1998-08-13 | 株式会社日立製作所 | 超電導マグネットコイル、及び該マグネットコイルに用いる硬化性樹脂組成物 |
DE4101094C1 (en) | 1991-01-16 | 1992-05-27 | Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe, De | Superconducting micro-undulator for particle accelerator synchrotron source - has superconductor which produces strong magnetic field along track and allows intensity and wavelength of radiation to be varied by conrolling current |
IT1244689B (it) | 1991-01-25 | 1994-08-08 | Getters Spa | Dispositivo per eliminare l'idrogeno da una camera a vuoto, a temperature criogeniche,specialmente in acceleratori di particelle ad alta energia |
JPH04258781A (ja) | 1991-02-14 | 1992-09-14 | Toshiba Corp | ガンマカメラ |
JPH04273409A (ja) | 1991-02-28 | 1992-09-29 | Hitachi Ltd | 超電導マグネツト装置及び該超電導マグネツト装置を使用した粒子加速器 |
EP0508151B1 (en) | 1991-03-13 | 1998-08-12 | Fujitsu Limited | Charged particle beam exposure system and charged particle beam exposure method |
JPH04337300A (ja) | 1991-05-15 | 1992-11-25 | Res Dev Corp Of Japan | 超電導偏向マグネット |
JP2540900Y2 (ja) | 1991-05-16 | 1997-07-09 | 株式会社シマノ | スピニングリールのストッパ装置 |
JPH05154210A (ja) | 1991-12-06 | 1993-06-22 | Mitsubishi Electric Corp | 放射線治療装置 |
US5148032A (en) | 1991-06-28 | 1992-09-15 | Siemens Medical Laboratories, Inc. | Radiation emitting device with moveable aperture plate |
US5191706A (en) | 1991-07-15 | 1993-03-09 | Delmarva Sash & Door Company Of Maryland, Inc. | Machine and method for attaching casing to a structural frame assembly |
WO1993002537A1 (en) | 1991-07-16 | 1993-02-04 | Sergei Nikolaevich Lapitsky | Superconducting electromagnet for charged-particle accelerator |
FR2679509B1 (fr) | 1991-07-26 | 1993-11-05 | Lebre Charles | Dispositif de serrage automatique, sur le mat d'un diable a fut, de l'element de prise en suspension du fut. |
US5166531A (en) | 1991-08-05 | 1992-11-24 | Varian Associates, Inc. | Leaf-end configuration for multileaf collimator |
JP2501261B2 (ja) | 1991-08-13 | 1996-05-29 | ティーディーケイ株式会社 | 薄膜磁気ヘッド |
JP3125805B2 (ja) | 1991-10-16 | 2001-01-22 | 株式会社日立製作所 | 円形加速器 |
US5240218A (en) | 1991-10-23 | 1993-08-31 | Loma Linda University Medical Center | Retractable support assembly |
BE1005530A4 (fr) * | 1991-11-22 | 1993-09-28 | Ion Beam Applic Sa | Cyclotron isochrone |
US5374913A (en) | 1991-12-13 | 1994-12-20 | Houston Advanced Research Center | Twin-bore flux pipe dipole magnet |
US5260581A (en) | 1992-03-04 | 1993-11-09 | Loma Linda University Medical Center | Method of treatment room selection verification in a radiation beam therapy system |
US5382914A (en) | 1992-05-05 | 1995-01-17 | Accsys Technology, Inc. | Proton-beam therapy linac |
JPH05341352A (ja) | 1992-06-08 | 1993-12-24 | Minolta Camera Co Ltd | カメラ及び交換レンズのバヨネットマウント用キャップ |
JPH0636893A (ja) | 1992-06-11 | 1994-02-10 | Ishikawajima Harima Heavy Ind Co Ltd | 粒子加速器 |
US5336891A (en) * | 1992-06-16 | 1994-08-09 | Arch Development Corporation | Aberration free lens system for electron microscope |
JP2824363B2 (ja) | 1992-07-15 | 1998-11-11 | 三菱電機株式会社 | ビーム供給装置 |
US5401973A (en) | 1992-12-04 | 1995-03-28 | Atomic Energy Of Canada Limited | Industrial material processing electron linear accelerator |
JP3121157B2 (ja) | 1992-12-15 | 2000-12-25 | 株式会社日立メディコ | マイクロトロン電子加速器 |
JPH06233831A (ja) | 1993-02-10 | 1994-08-23 | Hitachi Medical Corp | 定位的放射線治療装置 |
US5440133A (en) | 1993-07-02 | 1995-08-08 | Loma Linda University Medical Center | Charged particle beam scattering system |
US5549616A (en) | 1993-11-02 | 1996-08-27 | Loma Linda University Medical Center | Vacuum-assisted stereotactic fixation system with patient-activated switch |
US5464411A (en) | 1993-11-02 | 1995-11-07 | Loma Linda University Medical Center | Vacuum-assisted fixation apparatus |
US5463291A (en) | 1993-12-23 | 1995-10-31 | Carroll; Lewis | Cyclotron and associated magnet coil and coil fabricating process |
JPH07191199A (ja) | 1993-12-27 | 1995-07-28 | Fujitsu Ltd | 荷電粒子ビーム露光システム及び露光方法 |
JP3307059B2 (ja) | 1994-03-17 | 2002-07-24 | 株式会社日立製作所 | 加速器及び医療用装置並びに出射方法 |
JPH07260939A (ja) | 1994-03-17 | 1995-10-13 | Hitachi Medical Corp | シンチレーションカメラのコリメータ交換台車 |
JPH07263196A (ja) | 1994-03-18 | 1995-10-13 | Toshiba Corp | 高周波加速空洞 |
DE4411171A1 (de) | 1994-03-30 | 1995-10-05 | Siemens Ag | Vorrichtung zur Bereitstellung eines Strahls aus geladenen Teilchen, der eine Achse auf einer diese schneidenden Zielgeraden anfliegt, sowie ihre Verwendung |
CA2197428A1 (en) | 1994-08-19 | 1996-02-29 | Amersham International Plc | Superconducting cyclotron and target for use in the production of heavy isotopes |
IT1281184B1 (it) | 1994-09-19 | 1998-02-17 | Giorgio Trozzi Amministratore | Apparecchiatura per la radioterapia intraoperatoria mediante acceleratori lineari utilizzabili direttamente in sala operatoria |
DE69528509T2 (de) | 1994-10-27 | 2003-06-26 | General Electric Co., Schenectady | Stromzuleitung von supraleitender Keramik |
US5633747A (en) | 1994-12-21 | 1997-05-27 | Tencor Instruments | Variable spot-size scanning apparatus |
JP3629054B2 (ja) | 1994-12-22 | 2005-03-16 | 北海製罐株式会社 | 溶接缶サイドシームの外面補正塗装方法 |
US5511549A (en) | 1995-02-13 | 1996-04-30 | Loma Linda Medical Center | Normalizing and calibrating therapeutic radiation delivery systems |
US5585642A (en) | 1995-02-15 | 1996-12-17 | Loma Linda University Medical Center | Beamline control and security system for a radiation treatment facility |
US5510357A (en) | 1995-02-28 | 1996-04-23 | Eli Lilly And Company | Benzothiophene compounds as anti-estrogenic agents |
JP3023533B2 (ja) | 1995-03-23 | 2000-03-21 | 住友重機械工業株式会社 | サイクロトロン |
WO1996032987A1 (en) | 1995-04-18 | 1996-10-24 | Loma Linda University Medical Center | System and method for multiple particle therapy |
US5668371A (en) | 1995-06-06 | 1997-09-16 | Wisconsin Alumni Research Foundation | Method and apparatus for proton therapy |
BE1009669A3 (fr) * | 1995-10-06 | 1997-06-03 | Ion Beam Applic Sa | Methode d'extraction de particules chargees hors d'un cyclotron isochrone et dispositif appliquant cette methode. |
GB9520564D0 (en) | 1995-10-07 | 1995-12-13 | Philips Electronics Nv | Apparatus for treating a patient |
JPH09162585A (ja) | 1995-12-05 | 1997-06-20 | Kanazawa Kogyo Univ | 磁気シールドルーム及びその組立方法 |
JP2867933B2 (ja) * | 1995-12-14 | 1999-03-10 | 株式会社日立製作所 | 高周波加速装置及び環状加速器 |
JP3472657B2 (ja) | 1996-01-18 | 2003-12-02 | 三菱電機株式会社 | 粒子線照射装置 |
JP3121265B2 (ja) | 1996-05-07 | 2000-12-25 | 株式会社日立製作所 | 放射線遮蔽体 |
US5811944A (en) | 1996-06-25 | 1998-09-22 | The United States Of America As Represented By The Department Of Energy | Enhanced dielectric-wall linear accelerator |
US5821705A (en) | 1996-06-25 | 1998-10-13 | The United States Of America As Represented By The United States Department Of Energy | Dielectric-wall linear accelerator with a high voltage fast rise time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators |
US5726448A (en) * | 1996-08-09 | 1998-03-10 | California Institute Of Technology | Rotating field mass and velocity analyzer |
DE69737270T2 (de) | 1996-08-30 | 2008-03-06 | Hitachi, Ltd. | Vorrichtung zum Bestrahlen mit geladenen Teilchen |
JPH1071213A (ja) | 1996-08-30 | 1998-03-17 | Hitachi Ltd | 陽子線治療システム |
US5851182A (en) | 1996-09-11 | 1998-12-22 | Sahadevan; Velayudhan | Megavoltage radiation therapy machine combined to diagnostic imaging devices for cost efficient conventional and 3D conformal radiation therapy with on-line Isodose port and diagnostic radiology |
US5727554A (en) | 1996-09-19 | 1998-03-17 | University Of Pittsburgh Of The Commonwealth System Of Higher Education | Apparatus responsive to movement of a patient during treatment/diagnosis |
US5778047A (en) | 1996-10-24 | 1998-07-07 | Varian Associates, Inc. | Radiotherapy couch top |
US5672878A (en) | 1996-10-24 | 1997-09-30 | Siemens Medical Systems Inc. | Ionization chamber having off-passageway measuring electrodes |
US5920601A (en) | 1996-10-25 | 1999-07-06 | Lockheed Martin Idaho Technologies Company | System and method for delivery of neutron beams for medical therapy |
US5825845A (en) | 1996-10-28 | 1998-10-20 | Loma Linda University Medical Center | Proton beam digital imaging system |
US5784431A (en) | 1996-10-29 | 1998-07-21 | University Of Pittsburgh Of The Commonwealth System Of Higher Education | Apparatus for matching X-ray images with reference images |
JP3841898B2 (ja) | 1996-11-21 | 2006-11-08 | 三菱電機株式会社 | 深部線量測定装置 |
JP3784419B2 (ja) | 1996-11-26 | 2006-06-14 | 三菱電機株式会社 | エネルギー分布を形成する方法 |
JP3246364B2 (ja) | 1996-12-03 | 2002-01-15 | 株式会社日立製作所 | シンクロトロン型加速器及びそれを用いた医療用装置 |
US5744919A (en) * | 1996-12-12 | 1998-04-28 | Mishin; Andrey V. | CW particle accelerator with low particle injection velocity |
JPH10247600A (ja) | 1997-03-04 | 1998-09-14 | Toshiba Corp | 陽子加速器 |
EP0864337A3 (en) | 1997-03-15 | 1999-03-10 | Shenzhen OUR International Technology & Science Co., Ltd. | Three-dimensional irradiation technique with charged particles of Bragg peak properties and its device |
JPH10270200A (ja) | 1997-03-27 | 1998-10-09 | Mitsubishi Electric Corp | 出射ビーム強度制御装置及び制御方法 |
US5841237A (en) | 1997-07-14 | 1998-11-24 | Lockheed Martin Energy Research Corporation | Production of large resonant plasma volumes in microwave electron cyclotron resonance ion sources |
US6094760A (en) | 1997-08-04 | 2000-08-01 | Sumitomo Heavy Industries, Ltd. | Bed system for radiation therapy |
US5846043A (en) | 1997-08-05 | 1998-12-08 | Spath; John J. | Cart and caddie system for storing and delivering water bottles |
JP3532739B2 (ja) | 1997-08-07 | 2004-05-31 | 住友重機械工業株式会社 | 放射線の照射野形成部材固定装置 |
JP3519248B2 (ja) | 1997-08-08 | 2004-04-12 | 住友重機械工業株式会社 | 放射線治療用回転照射室 |
US5963615A (en) | 1997-08-08 | 1999-10-05 | Siemens Medical Systems, Inc. | Rotational flatness improvement |
JP3203211B2 (ja) | 1997-08-11 | 2001-08-27 | 住友重機械工業株式会社 | 水ファントム型線量分布測定装置及び放射線治療装置 |
CN1209037A (zh) * | 1997-08-14 | 1999-02-24 | 深圳奥沃国际科技发展有限公司 | 大跨度回旋加速器 |
JPH11102800A (ja) | 1997-09-29 | 1999-04-13 | Toshiba Corp | 超電導高周波加速空胴および粒子加速器 |
EP0943148A1 (en) | 1997-10-06 | 1999-09-22 | Koninklijke Philips Electronics N.V. | X-ray examination apparatus including adjustable x-ray filter and collimator |
JP3577201B2 (ja) | 1997-10-20 | 2004-10-13 | 三菱電機株式会社 | 荷電粒子線照射装置、荷電粒子線回転照射装置、および荷電粒子線照射方法 |
JPH11142600A (ja) | 1997-11-12 | 1999-05-28 | Mitsubishi Electric Corp | 荷電粒子線照射装置及び照射方法 |
JP3528583B2 (ja) | 1997-12-25 | 2004-05-17 | 三菱電機株式会社 | 荷電粒子ビーム照射装置および磁界発生装置 |
US6118848A (en) | 1998-01-14 | 2000-09-12 | Reiffel; Leonard | System to stabilize an irradiated internal target |
AUPP156698A0 (en) | 1998-01-30 | 1998-02-19 | Pacific Solar Pty Limited | New method for hydrogen passivation |
JPH11243295A (ja) | 1998-02-26 | 1999-09-07 | Shimizu Corp | 磁気シールド方法及び磁気シールド構造 |
JPH11253563A (ja) | 1998-03-10 | 1999-09-21 | Hitachi Ltd | 荷電粒子ビーム照射方法及び装置 |
JP3053389B1 (ja) | 1998-12-03 | 2000-06-19 | 三菱電機株式会社 | 動体追跡照射装置 |
US6576916B2 (en) * | 1998-03-23 | 2003-06-10 | Penn State Research Foundation | Container for transporting antiprotons and reaction trap |
GB2361523B (en) | 1998-03-31 | 2002-05-01 | Toshiba Kk | Superconducting magnet apparatus |
JPH11329945A (ja) | 1998-05-08 | 1999-11-30 | Nikon Corp | 荷電粒子ビーム転写方法及び荷電粒子ビーム転写装置 |
JP2000070389A (ja) | 1998-08-27 | 2000-03-07 | Mitsubishi Electric Corp | 照射線量値計算装置、照射線量値計算方法および記録媒体 |
DE69841746D1 (de) | 1998-09-11 | 2010-08-12 | Gsi Helmholtzzentrum Schwerionenforschung Gmbh | Ionenstrahl-Therapieanlage und Verfahren zum Betrieb der Anlage |
SE513192C2 (sv) | 1998-09-29 | 2000-07-24 | Gems Pet Systems Ab | Förfarande och system för HF-styrning |
US6369585B2 (en) | 1998-10-02 | 2002-04-09 | Siemens Medical Solutions Usa, Inc. | System and method for tuning a resonant structure |
US6279579B1 (en) | 1998-10-23 | 2001-08-28 | Varian Medical Systems, Inc. | Method and system for positioning patients for medical treatment procedures |
US6621889B1 (en) | 1998-10-23 | 2003-09-16 | Varian Medical Systems, Inc. | Method and system for predictive physiological gating of radiation therapy |
US6241671B1 (en) | 1998-11-03 | 2001-06-05 | Stereotaxis, Inc. | Open field system for magnetic surgery |
US6441569B1 (en) * | 1998-12-09 | 2002-08-27 | Edward F. Janzow | Particle accelerator for inducing contained particle collisions |
BE1012358A5 (fr) | 1998-12-21 | 2000-10-03 | Ion Beam Applic Sa | Procede de variation de l'energie d'un faisceau de particules extraites d'un accelerateur et dispositif a cet effet. |
BE1012371A5 (fr) | 1998-12-24 | 2000-10-03 | Ion Beam Applic Sa | Procede de traitement d'un faisceau de protons et dispositif appliquant ce procede. |
JP2000237335A (ja) | 1999-02-17 | 2000-09-05 | Mitsubishi Electric Corp | 放射線治療方法及びそのシステム |
JP3464406B2 (ja) | 1999-02-18 | 2003-11-10 | 高エネルギー加速器研究機構長 | サイクロトロン用内部負イオン源 |
DE19907098A1 (de) | 1999-02-19 | 2000-08-24 | Schwerionenforsch Gmbh | Ionenstrahl-Abtastsystem und Verfahren zum Betrieb des Systems |
DE19907138A1 (de) | 1999-02-19 | 2000-08-31 | Schwerionenforsch Gmbh | Verfahren zur Überprüfung der Strahlerzeugungsmittel und der Strahlbeschleunigungsmittel eines Ionenstrahl-Therapiesystems |
DE19907121A1 (de) | 1999-02-19 | 2000-08-31 | Schwerionenforsch Gmbh | Verfahren zur Überprüfung der Strahlführung eines Ionenstrahl-Therapiesystems |
DE19907065A1 (de) | 1999-02-19 | 2000-08-31 | Schwerionenforsch Gmbh | Verfahren zur Überprüfung eines Isozentrums und einer Patientenpositionierungseinrichtung eines Ionenstrahl-Therapiesystems |
DE19907097A1 (de) | 1999-02-19 | 2000-08-31 | Schwerionenforsch Gmbh | Verfahren zum Betreiben eines Ionenstrahl-Therapiesystems unter Überwachung der Bestrahlungsdosisverteilung |
DE19907774A1 (de) | 1999-02-19 | 2000-08-31 | Schwerionenforsch Gmbh | Verfahren zum Verifizieren der berechneten Bestrahlungsdosis eines Ionenstrahl-Therapiesystems |
DE19907205A1 (de) | 1999-02-19 | 2000-08-31 | Schwerionenforsch Gmbh | Verfahren zum Betreiben eines Ionenstrahl-Therapiesystems unter Überwachung der Strahlposition |
US6414614B1 (en) * | 1999-02-23 | 2002-07-02 | Cirrus Logic, Inc. | Power output stage compensation for digital output amplifiers |
US6501981B1 (en) | 1999-03-16 | 2002-12-31 | Accuray, Inc. | Apparatus and method for compensating for respiratory and patient motions during treatment |
US6144875A (en) | 1999-03-16 | 2000-11-07 | Accuray Incorporated | Apparatus and method for compensating for respiratory and patient motion during treatment |
EP1041579A1 (en) | 1999-04-01 | 2000-10-04 | GSI Gesellschaft für Schwerionenforschung mbH | Gantry with an ion-optical system |
CA2365838C (en) | 1999-04-07 | 2011-01-18 | Loma Linda University Medical Center | Patient motion monitoring system for proton therapy |
JP2000294399A (ja) | 1999-04-12 | 2000-10-20 | Toshiba Corp | 超電導高周波加速空胴及び粒子加速器 |
US6433494B1 (en) * | 1999-04-22 | 2002-08-13 | Victor V. Kulish | Inductional undulative EH-accelerator |
JP3530072B2 (ja) | 1999-05-13 | 2004-05-24 | 三菱電機株式会社 | 放射線治療用の放射線照射装置の制御装置 |
SE9902163D0 (sv) | 1999-06-09 | 1999-06-09 | Scanditronix Medical Ab | Stable rotable radiation gantry |
JP2001006900A (ja) | 1999-06-18 | 2001-01-12 | Toshiba Corp | 放射光発生装置 |
JP4920845B2 (ja) | 1999-06-25 | 2012-04-18 | パウル・シェラー・インスティトゥート | 陽子療法を実施する装置 |
JP2001009050A (ja) | 1999-06-29 | 2001-01-16 | Hitachi Medical Corp | 放射線治療装置 |
EP1069809A1 (en) | 1999-07-13 | 2001-01-17 | Ion Beam Applications S.A. | Isochronous cyclotron and method of extraction of charged particles from such cyclotron |
JP2001029490A (ja) | 1999-07-19 | 2001-02-06 | Hitachi Ltd | 混合照射評価支援システム |
NL1012677C2 (nl) | 1999-07-22 | 2001-01-23 | William Van Der Burg | Inrichting en werkwijze voor het plaatsen van een informatiedrager. |
US6380545B1 (en) | 1999-08-30 | 2002-04-30 | Southeastern Universities Research Association, Inc. | Uniform raster pattern generating system |
US6420917B1 (en) | 1999-10-01 | 2002-07-16 | Ericsson Inc. | PLL loop filter with switched-capacitor resistor |
US6713773B1 (en) | 1999-10-07 | 2004-03-30 | Mitec, Inc. | Irradiation system and method |
WO2001026569A1 (en) | 1999-10-08 | 2001-04-19 | Advanced Research & Technology Institute | Apparatus and method for non-invasive myocardial revascularization |
JP4185637B2 (ja) | 1999-11-01 | 2008-11-26 | 株式会社神鋼エンジニアリング&メンテナンス | 粒子線治療用回転照射室 |
US6803585B2 (en) | 2000-01-03 | 2004-10-12 | Yuri Glukhoy | Electron-cyclotron resonance type ion beam source for ion implanter |
CA2320597A1 (en) | 2000-01-06 | 2001-07-06 | Blacklight Power, Inc. | Ion cyclotron power converter and radio and microwave generator |
US6366021B1 (en) | 2000-01-06 | 2002-04-02 | Varian Medical Systems, Inc. | Standing wave particle beam accelerator with switchable beam energy |
US6498444B1 (en) | 2000-04-10 | 2002-12-24 | Siemens Medical Solutions Usa, Inc. | Computer-aided tuning of charged particle accelerators |
AU2001274814B2 (en) | 2000-04-27 | 2004-04-01 | Loma Linda University | Nanodosimeter based on single ion detection |
JP2001346893A (ja) | 2000-06-06 | 2001-12-18 | Ishikawajima Harima Heavy Ind Co Ltd | 放射線治療装置 |
DE10031074A1 (de) | 2000-06-30 | 2002-01-31 | Schwerionenforsch Gmbh | Vorrichtung zur Bestrahlung eines Tumorgewebes |
JP3705091B2 (ja) | 2000-07-27 | 2005-10-12 | 株式会社日立製作所 | 医療用加速器システム及びその運転方法 |
US6914396B1 (en) | 2000-07-31 | 2005-07-05 | Yale University | Multi-stage cavity cyclotron resonance accelerator |
US7041479B2 (en) | 2000-09-06 | 2006-05-09 | The Board Of Trustess Of The Leland Stanford Junior University | Enhanced in vitro synthesis of active proteins containing disulfide bonds |
CA2325362A1 (en) | 2000-11-08 | 2002-05-08 | Kirk Flippo | Method and apparatus for high-energy generation and for inducing nuclear reactions |
EP1209720A3 (en) * | 2000-11-21 | 2006-11-15 | Hitachi High-Technologies Corporation | Energy spectrum measurement |
JP3633475B2 (ja) | 2000-11-27 | 2005-03-30 | 鹿島建設株式会社 | すだれ型磁気シールド方法及びパネル並びに磁気暗室 |
EP2320431A3 (en) | 2000-12-08 | 2012-09-05 | Loma Linda University Medical Center | Proton beam therapy control system |
US6492922B1 (en) | 2000-12-14 | 2002-12-10 | Xilinx Inc. | Anti-aliasing filter with automatic cutoff frequency adaptation |
JP2002210028A (ja) | 2001-01-23 | 2002-07-30 | Mitsubishi Electric Corp | 放射線照射システム及び放射線照射方法 |
US6407505B1 (en) | 2001-02-01 | 2002-06-18 | Siemens Medical Solutions Usa, Inc. | Variable energy linear accelerator |
US6855942B2 (en) | 2001-02-05 | 2005-02-15 | Gesellschaft Fuer Schwerionenforschung Mbh | Apparatus for pre-acceleration of ion beams used in a heavy ion beam applications system |
WO2002069350A1 (en) | 2001-02-06 | 2002-09-06 | Gesellschaft für Schwerionenforschung mbH | Beam scanning system for a heavy ion gantry |
US6493424B2 (en) | 2001-03-05 | 2002-12-10 | Siemens Medical Solutions Usa, Inc. | Multi-mode operation of a standing wave linear accelerator |
JP4115675B2 (ja) | 2001-03-14 | 2008-07-09 | 三菱電機株式会社 | 強度変調療法用吸収線量測定装置 |
US6646383B2 (en) | 2001-03-15 | 2003-11-11 | Siemens Medical Solutions Usa, Inc. | Monolithic structure with asymmetric coupling |
US6627875B2 (en) * | 2001-04-23 | 2003-09-30 | Beyond Genomics, Inc. | Tailored waveform/charge reduction mass spectrometry |
US6465957B1 (en) | 2001-05-25 | 2002-10-15 | Siemens Medical Solutions Usa, Inc. | Standing wave linear accelerator with integral prebunching section |
EP1265462A1 (fr) | 2001-06-08 | 2002-12-11 | Ion Beam Applications S.A. | Dispositif et méthode de régulation de l'intensité d'un faisceau extrait d'un accélérateur de particules |
US6853703B2 (en) | 2001-07-20 | 2005-02-08 | Siemens Medical Solutions Usa, Inc. | Automated delivery of treatment fields |
AU2002324775A1 (en) | 2001-08-23 | 2003-03-10 | Sciperio, Inc. | Architecture tool and methods of use |
JP2003086400A (ja) | 2001-09-11 | 2003-03-20 | Hitachi Ltd | 加速器システム及び医療用加速器施設 |
CA2465511C (en) | 2001-10-30 | 2007-12-18 | Loma Linda University Medical Center | Method and device for delivering radiotherapy |
US6519316B1 (en) | 2001-11-02 | 2003-02-11 | Siemens Medical Solutions Usa, Inc.. | Integrated control of portal imaging device |
US6777689B2 (en) | 2001-11-16 | 2004-08-17 | Ion Beam Application, S.A. | Article irradiation system shielding |
US7221733B1 (en) | 2002-01-02 | 2007-05-22 | Varian Medical Systems Technologies, Inc. | Method and apparatus for irradiating a target |
US6593696B2 (en) | 2002-01-04 | 2003-07-15 | Siemens Medical Solutions Usa, Inc. | Low dark current linear accelerator |
US6819117B2 (en) * | 2002-01-30 | 2004-11-16 | Credence Systems Corporation | PICA system timing measurement & calibration |
DE10205949B4 (de) | 2002-02-12 | 2013-04-25 | Gsi Helmholtzzentrum Für Schwerionenforschung Gmbh | Verfahren und Vorrichtung zum Steuern einer nach dem Rasterscanverfahren arbeitenden Bestrahlungseinrichtung für schwere Ionen oder Protonen mit Strahlextraktion |
JP4072359B2 (ja) | 2002-02-28 | 2008-04-09 | 株式会社日立製作所 | 荷電粒子ビーム照射装置 |
JP3691020B2 (ja) | 2002-02-28 | 2005-08-31 | 株式会社日立製作所 | 医療用荷電粒子照射装置 |
AU2002302415A1 (en) | 2002-03-12 | 2003-09-22 | Deutsches Krebsforschungszentrum Stiftung Des Offentlichen Rechts | Device for performing and verifying a therapeutic treatment and corresponding computer program and control method |
JP3801938B2 (ja) * | 2002-03-26 | 2006-07-26 | 株式会社日立製作所 | 粒子線治療システム及び荷電粒子ビーム軌道の調整方法 |
WO2003092340A1 (fr) | 2002-04-25 | 2003-11-06 | Accelerators For Industrial & Medical Applications. Engineering Promotion Society. Aima. Eps | Accelerateur de particules |
EP1358908A1 (en) | 2002-05-03 | 2003-11-05 | Ion Beam Applications S.A. | Device for irradiation therapy with charged particles |
DE10221180A1 (de) | 2002-05-13 | 2003-12-24 | Siemens Ag | Patientenlagerungsvorrichtung für eine Strahlentherapie |
US6735277B2 (en) | 2002-05-23 | 2004-05-11 | Koninklijke Philips Electronics N.V. | Inverse planning for intensity-modulated radiotherapy |
US7307264B2 (en) | 2002-05-31 | 2007-12-11 | Ion Beam Applications S.A. | Apparatus for irradiating a target volume |
US6777700B2 (en) | 2002-06-12 | 2004-08-17 | Hitachi, Ltd. | Particle beam irradiation system and method of adjusting irradiation apparatus |
US6865254B2 (en) | 2002-07-02 | 2005-03-08 | Pencilbeam Technologies Ab | Radiation system with inner and outer gantry parts |
US7162005B2 (en) | 2002-07-19 | 2007-01-09 | Varian Medical Systems Technologies, Inc. | Radiation sources and compact radiation scanning systems |
US7103137B2 (en) | 2002-07-24 | 2006-09-05 | Varian Medical Systems Technology, Inc. | Radiation scanning of objects for contraband |
DE10241178B4 (de) | 2002-09-05 | 2007-03-29 | Mt Aerospace Ag | Isokinetische Gantry-Anordnung zur isozentrischen Führung eines Teilchenstrahls und Verfahren zu deren Auslegung |
WO2004026401A1 (de) | 2002-09-18 | 2004-04-01 | Paul Scherrer Institut | Anordnung zur durchführung einer protonentherapie |
JP3748426B2 (ja) | 2002-09-30 | 2006-02-22 | 株式会社日立製作所 | 医療用粒子線照射装置 |
JP3961925B2 (ja) | 2002-10-17 | 2007-08-22 | 三菱電機株式会社 | ビーム加速装置 |
JP2004139944A (ja) | 2002-10-21 | 2004-05-13 | Applied Materials Inc | イオン注入装置及び方法 |
US6853142B2 (en) | 2002-11-04 | 2005-02-08 | Zond, Inc. | Methods and apparatus for generating high-density plasma |
EP1566082B1 (fr) | 2002-11-25 | 2012-05-30 | Ion Beam Applications S.A. | Cyclotron |
EP1429345A1 (fr) | 2002-12-10 | 2004-06-16 | Ion Beam Applications S.A. | Dispositif et procédé de production de radio-isotopes |
DE10261099B4 (de) | 2002-12-20 | 2005-12-08 | Siemens Ag | Ionenstrahlanlage |
JP4486507B2 (ja) | 2003-01-02 | 2010-06-23 | ローマ リンダ ユニヴァーシティ メディカル センター | 陽子線治療システムのための構成管理及び読み出しシステム |
EP1439566B1 (en) | 2003-01-17 | 2019-08-28 | ICT, Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH | Charged particle beam apparatus and method for operating the same |
US7814937B2 (en) | 2005-10-26 | 2010-10-19 | University Of Southern California | Deployable contour crafting |
JP4186636B2 (ja) | 2003-01-30 | 2008-11-26 | 株式会社日立製作所 | 超電導磁石 |
JP4174508B2 (ja) | 2003-02-17 | 2008-11-05 | 三菱電機株式会社 | 荷電粒子加速器 |
JP3748433B2 (ja) | 2003-03-05 | 2006-02-22 | 株式会社日立製作所 | ベッド位置決め装置及びその位置決め方法 |
JP3859605B2 (ja) | 2003-03-07 | 2006-12-20 | 株式会社日立製作所 | 粒子線治療システム及び粒子線出射方法 |
US7964803B2 (en) | 2003-03-17 | 2011-06-21 | Nippon Steel Corporation | Magnetic shield structure having openings and a magnetic material frame therefor |
JP3655292B2 (ja) | 2003-04-14 | 2005-06-02 | 株式会社日立製作所 | 粒子線照射装置及び荷電粒子ビーム照射装置の調整方法 |
JP2004321408A (ja) | 2003-04-23 | 2004-11-18 | Mitsubishi Electric Corp | 放射線照射装置および放射線照射方法 |
KR101106981B1 (ko) | 2003-05-13 | 2012-01-20 | 이온빔 어플리케이션스 에스.에이. | 멀티-룸 입자 빔 처치 설비에서의 자동 빔 할당 방법 및시스템 |
US7102144B2 (en) | 2003-05-13 | 2006-09-05 | Hitachi, Ltd. | Particle beam irradiation apparatus, treatment planning unit, and particle beam irradiation method |
CN100462864C (zh) | 2003-05-22 | 2009-02-18 | 三菱化学株式会社 | 感光体鼓、组装其的方法和设备以及使用其的成像设备 |
AU2004246641B2 (en) | 2003-06-02 | 2009-03-12 | Fox Chase Cancer Center | High energy polyenergetic ion beam systems |
JP2005027681A (ja) | 2003-07-07 | 2005-02-03 | Hitachi Ltd | 荷電粒子治療装置及び荷電粒子治療システム |
US7038403B2 (en) * | 2003-07-31 | 2006-05-02 | Ge Medical Technology Services, Inc. | Method and apparatus for maintaining alignment of a cyclotron dee |
WO2005018734A2 (en) | 2003-08-12 | 2005-03-03 | Loma Linda University Medical Center | Patient positioning system for radiation therapy system |
CN1960780B (zh) | 2003-08-12 | 2010-11-17 | 洛马林达大学医学中心 | 模块化的患者支撑系统 |
US6902646B2 (en) * | 2003-08-14 | 2005-06-07 | Advanced Energy Industries, Inc. | Sensor array for measuring plasma characteristics in plasma processing environments |
JP3685194B2 (ja) | 2003-09-10 | 2005-08-17 | 株式会社日立製作所 | 粒子線治療装置,レンジモジュレーション回転装置及びレンジモジュレーション回転装置の取り付け方法 |
US20050058245A1 (en) | 2003-09-11 | 2005-03-17 | Moshe Ein-Gal | Intensity-modulated radiation therapy with a multilayer multileaf collimator |
US7557360B2 (en) | 2003-10-16 | 2009-07-07 | Alis Corporation | Ion sources, systems and methods |
US7557358B2 (en) | 2003-10-16 | 2009-07-07 | Alis Corporation | Ion sources, systems and methods |
US7557359B2 (en) | 2003-10-16 | 2009-07-07 | Alis Corporation | Ion sources, systems and methods |
US7557361B2 (en) | 2003-10-16 | 2009-07-07 | Alis Corporation | Ion sources, systems and methods |
US7786452B2 (en) | 2003-10-16 | 2010-08-31 | Alis Corporation | Ion sources, systems and methods |
US7554096B2 (en) | 2003-10-16 | 2009-06-30 | Alis Corporation | Ion sources, systems and methods |
US7786451B2 (en) | 2003-10-16 | 2010-08-31 | Alis Corporation | Ion sources, systems and methods |
US7554097B2 (en) | 2003-10-16 | 2009-06-30 | Alis Corporation | Ion sources, systems and methods |
US7154991B2 (en) | 2003-10-17 | 2006-12-26 | Accuray, Inc. | Patient positioning assembly for therapeutic radiation system |
CN1537657A (zh) | 2003-10-22 | 2004-10-20 | 高春平 | 手术中放射治疗装置 |
US7295648B2 (en) | 2003-10-23 | 2007-11-13 | Elektra Ab (Publ) | Method and apparatus for treatment by ionizing radiation |
JP4114590B2 (ja) | 2003-10-24 | 2008-07-09 | 株式会社日立製作所 | 粒子線治療装置 |
JP3912364B2 (ja) | 2003-11-07 | 2007-05-09 | 株式会社日立製作所 | 粒子線治療装置 |
DK1690113T3 (da) | 2003-12-04 | 2012-08-06 | Scherrer Inst Paul | En uorganisk scintillerende blanding og en sensorenhed til dosimetri af ladede partikler |
JP3643371B1 (ja) | 2003-12-10 | 2005-04-27 | 株式会社日立製作所 | 粒子線照射装置及び照射野形成装置の調整方法 |
JP4443917B2 (ja) | 2003-12-26 | 2010-03-31 | 株式会社日立製作所 | 粒子線治療装置 |
US7173385B2 (en) | 2004-01-15 | 2007-02-06 | The Regents Of The University Of California | Compact accelerator |
US7710051B2 (en) | 2004-01-15 | 2010-05-04 | Lawrence Livermore National Security, Llc | Compact accelerator for medical therapy |
US20050184028A1 (en) | 2004-02-23 | 2005-08-25 | Zyvex Corporation | Probe tip processing |
EP1584353A1 (en) | 2004-04-05 | 2005-10-12 | Paul Scherrer Institut | A system for delivery of proton therapy |
US7860550B2 (en) | 2004-04-06 | 2010-12-28 | Accuray, Inc. | Patient positioning assembly |
US8160205B2 (en) | 2004-04-06 | 2012-04-17 | Accuray Incorporated | Robotic arm for patient positioning assembly |
JP4257741B2 (ja) | 2004-04-19 | 2009-04-22 | 三菱電機株式会社 | 荷電粒子ビーム加速器、荷電粒子ビーム加速器を用いた粒子線照射医療システムおよび、粒子線照射医療システムの運転方法 |
DE102004027071A1 (de) | 2004-05-19 | 2006-01-05 | Gesellschaft für Schwerionenforschung mbH | Strahlzuteilungsvorrichtung und Strahlzuteilungsverfahren für medizinische Teilchenbeschleuniger |
DE102004028035A1 (de) | 2004-06-09 | 2005-12-29 | Gesellschaft für Schwerionenforschung mbH | Vorrichtung und Verfahren zur Kompensation von Bewegungen eines Zielvolumens während einer Ionenstrahl-Bestrahlung |
DE202004009421U1 (de) | 2004-06-16 | 2005-11-03 | Gesellschaft für Schwerionenforschung mbH | Teilchenbeschleuniger für die Strahlentherapie mit Ionenstrahlen |
US7073508B2 (en) | 2004-06-25 | 2006-07-11 | Loma Linda University Medical Center | Method and device for registration and immobilization |
US7323682B2 (en) * | 2004-07-02 | 2008-01-29 | Thermo Finnigan Llc | Pulsed ion source for quadrupole mass spectrometer and method |
US7135678B2 (en) | 2004-07-09 | 2006-11-14 | Credence Systems Corporation | Charged particle guide |
US7208748B2 (en) | 2004-07-21 | 2007-04-24 | Still River Systems, Inc. | Programmable particle scatterer for radiation therapy beam formation |
ES2654328T3 (es) | 2004-07-21 | 2018-02-13 | Mevion Medical Systems, Inc. | Generador en forma de onda de radio frecuencia programable para un sincrociclotrón |
JP4104008B2 (ja) | 2004-07-21 | 2008-06-18 | 独立行政法人放射線医学総合研究所 | 螺旋軌道型荷電粒子加速器及びその加速方法 |
US6965116B1 (en) | 2004-07-23 | 2005-11-15 | Applied Materials, Inc. | Method of determining dose uniformity of a scanning ion implanter |
JP4489529B2 (ja) | 2004-07-28 | 2010-06-23 | 株式会社日立製作所 | 粒子線治療システム及び粒子線治療システムの制御システム |
GB2418061B (en) | 2004-09-03 | 2006-10-18 | Zeiss Carl Smt Ltd | Scanning particle beam instrument |
DE102004048212B4 (de) | 2004-09-30 | 2007-02-01 | Siemens Ag | Strahlentherapieanlage mit Bildgebungsvorrichtung |
JP2006128087A (ja) | 2004-09-30 | 2006-05-18 | Hitachi Ltd | 荷電粒子ビーム出射装置及び荷電粒子ビーム出射方法 |
JP3806723B2 (ja) | 2004-11-16 | 2006-08-09 | 株式会社日立製作所 | 粒子線照射システム |
DE102004057726B4 (de) | 2004-11-30 | 2010-03-18 | Siemens Ag | Medizinische Untersuchungs- und Behandlungseinrichtung |
CN100561332C (zh) | 2004-12-09 | 2009-11-18 | Ge医疗系统环球技术有限公司 | X射线辐照器和x射线成像设备 |
US7122966B2 (en) | 2004-12-16 | 2006-10-17 | General Electric Company | Ion source apparatus and method |
US7349730B2 (en) | 2005-01-11 | 2008-03-25 | Moshe Ein-Gal | Radiation modulator positioner |
US7997553B2 (en) | 2005-01-14 | 2011-08-16 | Indiana University Research & Technology Corporati | Automatic retractable floor system for a rotating gantry |
US7193227B2 (en) | 2005-01-24 | 2007-03-20 | Hitachi, Ltd. | Ion beam therapy system and its couch positioning method |
US7468506B2 (en) | 2005-01-26 | 2008-12-23 | Applied Materials, Israel, Ltd. | Spot grid array scanning system |
ITCO20050007A1 (it) | 2005-02-02 | 2006-08-03 | Fond Per Adroterapia Oncologia | Sistema di accelerazione di ioni per adroterapia |
DE112005002171B4 (de) | 2005-02-04 | 2009-11-12 | Mitsubishi Denki K.K. | Teilchenstrahl-Bestrahlungsverfahren und dafür verwendete Teilchenstrahl-Bestrahlungsvorrichtung |
JP4679567B2 (ja) | 2005-02-04 | 2011-04-27 | 三菱電機株式会社 | 粒子線照射装置 |
GB2422958B (en) | 2005-02-04 | 2008-07-09 | Siemens Magnet Technology Ltd | Quench protection circuit for a superconducting magnet |
JP4345688B2 (ja) | 2005-02-24 | 2009-10-14 | 株式会社日立製作所 | 内燃機関の診断装置および制御装置 |
JP4219905B2 (ja) | 2005-02-25 | 2009-02-04 | 株式会社日立製作所 | 放射線治療装置の回転ガントリー |
US7659521B2 (en) | 2005-03-09 | 2010-02-09 | Paul Scherrer Institute | System for taking wide-field beam-eye-view (BEV) x-ray-images simultaneously to the proton therapy delivery |
JP4363344B2 (ja) | 2005-03-15 | 2009-11-11 | 三菱電機株式会社 | 粒子線加速器 |
JP2006280457A (ja) | 2005-03-31 | 2006-10-19 | Hitachi Ltd | 荷電粒子ビーム出射装置及び荷電粒子ビーム出射方法 |
JP4751635B2 (ja) | 2005-04-13 | 2011-08-17 | 株式会社日立ハイテクノロジーズ | 磁界重畳型電子銃 |
JP4158931B2 (ja) | 2005-04-13 | 2008-10-01 | 三菱電機株式会社 | 粒子線治療装置 |
US7420182B2 (en) | 2005-04-27 | 2008-09-02 | Busek Company | Combined radio frequency and hall effect ion source and plasma accelerator system |
US7014361B1 (en) | 2005-05-11 | 2006-03-21 | Moshe Ein-Gal | Adaptive rotator for gantry |
US7476867B2 (en) | 2005-05-27 | 2009-01-13 | Iba | Device and method for quality assurance and online verification of radiation therapy |
US7385203B2 (en) | 2005-06-07 | 2008-06-10 | Hitachi, Ltd. | Charged particle beam extraction system and method |
US7575242B2 (en) | 2005-06-16 | 2009-08-18 | Siemens Medical Solutions Usa, Inc. | Collimator change cart |
GB2427478B (en) | 2005-06-22 | 2008-02-20 | Siemens Magnet Technology Ltd | Particle radiation therapy equipment and method for simultaneous application of magnetic resonance imaging and particle radiation |
US7436932B2 (en) | 2005-06-24 | 2008-10-14 | Varian Medical Systems Technologies, Inc. | X-ray radiation sources with low neutron emissions for radiation scanning |
JP3882843B2 (ja) | 2005-06-30 | 2007-02-21 | 株式会社日立製作所 | 回転照射装置 |
WO2007009084A1 (en) | 2005-07-13 | 2007-01-18 | Crown Equipment Corporation | Pallet clamping device |
KR20080044252A (ko) | 2005-07-22 | 2008-05-20 | 토모테라피 인코포레이티드 | 방사선 요법 치료 계획에 관한 데이터의 처리 방법 및시스템 |
EP1907058B1 (en) | 2005-07-22 | 2015-06-24 | TomoTherapy, Inc. | Method of placing constraints on a deformation map and system for implementing same |
JP2009506800A (ja) | 2005-07-22 | 2009-02-19 | トモセラピー・インコーポレーテッド | 線量デリバリを予測する方法およびシステム |
US7609809B2 (en) | 2005-07-22 | 2009-10-27 | Tomo Therapy Incorporated | System and method of generating contour structures using a dose volume histogram |
JP2009502252A (ja) | 2005-07-22 | 2009-01-29 | トモセラピー・インコーポレーテッド | 生物学的モデルに基づいて放射線療法治療プランを適合させるための方法およびシステム |
CA2616292A1 (en) | 2005-07-22 | 2007-02-01 | Tomotherapy Incorporated | Method and system for evaluating quality assurance criteria in delivery of a treament plan |
CN101268474A (zh) | 2005-07-22 | 2008-09-17 | 断层放疗公司 | 用于估算实施剂量的方法和系统 |
US7839972B2 (en) | 2005-07-22 | 2010-11-23 | Tomotherapy Incorporated | System and method of evaluating dose delivered by a radiation therapy system |
DE102006033501A1 (de) | 2005-08-05 | 2007-02-15 | Siemens Ag | Gantry-System für eine Partikeltherapieanlage |
EP1752992A1 (de) | 2005-08-12 | 2007-02-14 | Siemens Aktiengesellschaft | Vorrichtung zur Anpassung mindestens eines Partikelstrahlparameters eines Partikelstrahls einer Partikelbeschleunigeranlage und Partikelbeschleunigeranlage mit einer derartigen Vorrichtung |
DE102005038242B3 (de) | 2005-08-12 | 2007-04-12 | Siemens Ag | Vorrichtung zur Aufweitung einer Partikelenergieverteilung eines Partikelstrahls einer Partikeltherapieanlage, Strahlüberwachungs- und Strahlanpassungseinheit und Verfahren |
DE102005041122B3 (de) | 2005-08-30 | 2007-05-31 | Siemens Ag | Gantry-System für eine Partikeltherapieanlage, Partikeltherapieanlage und Bestrahlungsverfahren für eine Partikeltherapieanlage mit einem derartigen Gantry-System |
US20070061937A1 (en) | 2005-09-06 | 2007-03-22 | Curle Dennis W | Method and apparatus for aerodynamic hat brim and hat |
JP5245193B2 (ja) | 2005-09-07 | 2013-07-24 | 株式会社日立製作所 | 荷電粒子ビーム照射システム及び荷電粒子ビーム出射方法 |
DE102005044409B4 (de) | 2005-09-16 | 2007-11-29 | Siemens Ag | Partikeltherapieanlage und Verfahren zur Ausbildung eines Strahlpfads für einen Bestrahlungsvorgang in einer Partikeltherapieanlage |
DE102005044408B4 (de) | 2005-09-16 | 2008-03-27 | Siemens Ag | Partikeltherapieanlage, Verfahren und Vorrichtung zur Anforderung eines Partikelstrahls |
US7295649B2 (en) | 2005-10-13 | 2007-11-13 | Varian Medical Systems Technologies, Inc. | Radiation therapy system and method of using the same |
US7658901B2 (en) | 2005-10-14 | 2010-02-09 | The Trustees Of Princeton University | Thermally exfoliated graphite oxide |
EP1941552A2 (en) | 2005-10-24 | 2008-07-09 | Lawrence Livermore National Security, LLC | Optically- initiated silicon carbide high voltage switch |
WO2007051313A1 (en) | 2005-11-07 | 2007-05-10 | Fibics Incorporated | Methods for performing circuit edit operations with low landing energy electron beams |
US7518108B2 (en) | 2005-11-10 | 2009-04-14 | Wisconsin Alumni Research Foundation | Electrospray ionization ion source with tunable charge reduction |
DE102005053719B3 (de) | 2005-11-10 | 2007-07-05 | Siemens Ag | Partikeltherapieanlage, Therapieplan und Bestrahlungsverfahren für eine derartige Partikeltherapieanlage |
CA2632193A1 (en) | 2005-11-14 | 2007-10-25 | Lawrence Livermore National Security, Llc | Cast dielectric composite linear accelerator |
EP2389977A3 (en) | 2005-11-18 | 2012-01-25 | Still River Systems, Inc. | Charged particle radiation therapy |
US7459899B2 (en) | 2005-11-21 | 2008-12-02 | Thermo Fisher Scientific Inc. | Inductively-coupled RF power source |
EP1795229A1 (en) | 2005-12-12 | 2007-06-13 | Ion Beam Applications S.A. | Device and method for positioning a patient in a radiation therapy apparatus |
US7298821B2 (en) | 2005-12-12 | 2007-11-20 | Moshe Ein-Gal | Imaging and treatment system |
DE102005063220A1 (de) | 2005-12-22 | 2007-06-28 | GSI Gesellschaft für Schwerionenforschung mbH | Vorrichtung zum Bestrahlen von Tumorgewebe eines Patienten mit einem Teilchenstrahl |
US7656258B1 (en) | 2006-01-19 | 2010-02-02 | Massachusetts Institute Of Technology | Magnet structure for particle acceleration |
WO2007084701A1 (en) | 2006-01-19 | 2007-07-26 | Massachusetts Institute Of Technology | Magnet structure for particle acceleration |
US7432516B2 (en) | 2006-01-24 | 2008-10-07 | Brookhaven Science Associates, Llc | Rapid cycling medical synchrotron and beam delivery system |
JP4696965B2 (ja) | 2006-02-24 | 2011-06-08 | 株式会社日立製作所 | 荷電粒子ビーム照射システム及び荷電粒子ビーム出射方法 |
JP4310319B2 (ja) | 2006-03-10 | 2009-08-05 | 三菱重工業株式会社 | 放射線治療装置制御装置および放射線照射方法 |
DE102006011828A1 (de) | 2006-03-13 | 2007-09-20 | Gesellschaft für Schwerionenforschung mbH | Bestrahlungsverifikationsvorrichtung für Strahlentherapieanlagen und Verfahren zur Handhabung derselben |
DE102006012680B3 (de) | 2006-03-20 | 2007-08-02 | Siemens Ag | Partikeltherapie-Anlage und Verfahren zum Ausgleichen einer axialen Abweichung in der Position eines Partikelstrahls einer Partikeltherapie-Anlage |
JP4644617B2 (ja) | 2006-03-23 | 2011-03-02 | 株式会社日立ハイテクノロジーズ | 荷電粒子線装置 |
JP4762020B2 (ja) | 2006-03-27 | 2011-08-31 | 株式会社小松製作所 | 成形方法及び成形品 |
JP4730167B2 (ja) | 2006-03-29 | 2011-07-20 | 株式会社日立製作所 | 粒子線照射システム |
US7507975B2 (en) | 2006-04-21 | 2009-03-24 | Varian Medical Systems, Inc. | System and method for high resolution radiation field shaping |
US7394082B2 (en) | 2006-05-01 | 2008-07-01 | Hitachi, Ltd. | Ion beam delivery equipment and an ion beam delivery method |
US8426833B2 (en) | 2006-05-12 | 2013-04-23 | Brookhaven Science Associates, Llc | Gantry for medical particle therapy facility |
US7582886B2 (en) | 2006-05-12 | 2009-09-01 | Brookhaven Science Associates, Llc | Gantry for medical particle therapy facility |
US8173981B2 (en) | 2006-05-12 | 2012-05-08 | Brookhaven Science Associates, Llc | Gantry for medical particle therapy facility |
US7476883B2 (en) | 2006-05-26 | 2009-01-13 | Advanced Biomarker Technologies, Llc | Biomarker generator system |
US7466085B2 (en) | 2007-04-17 | 2008-12-16 | Advanced Biomarker Technologies, Llc | Cyclotron having permanent magnets |
JP4495112B2 (ja) | 2006-06-01 | 2010-06-30 | 三菱重工業株式会社 | 放射線治療装置制御装置および放射線照射方法 |
US7627267B2 (en) | 2006-06-01 | 2009-12-01 | Fuji Xerox Co., Ltd. | Image formation apparatus, image formation unit, methods of assembling and disassembling image formation apparatus, and temporarily tacking member used for image formation apparatus |
US7817836B2 (en) | 2006-06-05 | 2010-10-19 | Varian Medical Systems, Inc. | Methods for volumetric contouring with expert guidance |
US7402822B2 (en) | 2006-06-05 | 2008-07-22 | Varian Medical Systems Technologies, Inc. | Particle beam nozzle transport system |
JP5116996B2 (ja) | 2006-06-20 | 2013-01-09 | キヤノン株式会社 | 荷電粒子線描画方法、露光装置、及びデバイス製造方法 |
US7990524B2 (en) | 2006-06-30 | 2011-08-02 | The University Of Chicago | Stochastic scanning apparatus using multiphoton multifocal source |
JP4206414B2 (ja) | 2006-07-07 | 2009-01-14 | 株式会社日立製作所 | 荷電粒子ビーム出射装置及び荷電粒子ビーム出射方法 |
EP1967228A3 (en) | 2006-07-28 | 2009-10-21 | TomoTherapy, Inc. | Method and apparatus for calibrating a radiation therapy treatment system |
JP4881677B2 (ja) | 2006-08-31 | 2012-02-22 | 株式会社日立ハイテクノロジーズ | 荷電粒子線走査方法及び荷電粒子線装置 |
JP4872540B2 (ja) | 2006-08-31 | 2012-02-08 | 株式会社日立製作所 | 回転照射治療装置 |
US7701677B2 (en) | 2006-09-07 | 2010-04-20 | Massachusetts Institute Of Technology | Inductive quench for magnet protection |
JP4365844B2 (ja) | 2006-09-08 | 2009-11-18 | 三菱電機株式会社 | 荷電粒子線の線量分布測定装置 |
US7950587B2 (en) | 2006-09-22 | 2011-05-31 | The Board of Regents of the Nevada System of Higher Education on behalf of the University of Reno, Nevada | Devices and methods for storing data |
JP4250180B2 (ja) | 2006-09-29 | 2009-04-08 | 株式会社日立製作所 | 放射線撮像装置およびそれを用いた核医学診断装置 |
US8069675B2 (en) | 2006-10-10 | 2011-12-06 | Massachusetts Institute Of Technology | Cryogenic vacuum break thermal coupler |
DE102006048426B3 (de) | 2006-10-12 | 2008-05-21 | Siemens Ag | Verfahren zur Bestimmung der Reichweite von Strahlung |
DE202006019307U1 (de) | 2006-12-21 | 2008-04-24 | Accel Instruments Gmbh | Bestrahlungsvorrichtung |
JP4948382B2 (ja) | 2006-12-22 | 2012-06-06 | キヤノン株式会社 | 感光ドラム取り付け用カップリング部材 |
DK2106678T3 (da) | 2006-12-28 | 2010-09-20 | Fond Per Adroterapia Oncologic | Ionaccelerationssystem til medicinske og/eller andre anvendelser |
JP4655046B2 (ja) | 2007-01-10 | 2011-03-23 | 三菱電機株式会社 | 線形イオン加速器 |
FR2911843B1 (fr) | 2007-01-30 | 2009-04-10 | Peugeot Citroen Automobiles Sa | Systeme de chariots pour le transport et la manipulation de bacs destines a l'approvisionnement en pieces d'une ligne de montage de vehicules |
JP4228018B2 (ja) | 2007-02-16 | 2009-02-25 | 三菱重工業株式会社 | 医療装置 |
JP4936924B2 (ja) | 2007-02-20 | 2012-05-23 | 稔 植松 | 粒子線照射システム |
US8093568B2 (en) | 2007-02-27 | 2012-01-10 | Wisconsin Alumni Research Foundation | Ion radiation therapy system with rocking gantry motion |
US7977648B2 (en) | 2007-02-27 | 2011-07-12 | Wisconsin Alumni Research Foundation | Scanning aperture ion beam modulator |
WO2008106483A1 (en) | 2007-02-27 | 2008-09-04 | Wisconsin Alumni Research Foundation | Ion radiation therapy system with distal gradient tracking |
US7397901B1 (en) | 2007-02-28 | 2008-07-08 | Varian Medical Systems Technologies, Inc. | Multi-leaf collimator with leaves formed of different materials |
US7778488B2 (en) | 2007-03-23 | 2010-08-17 | Varian Medical Systems International Ag | Image deformation using multiple image regions |
US7453076B2 (en) | 2007-03-23 | 2008-11-18 | Nanolife Sciences, Inc. | Bi-polar treatment facility for treating target cells with both positive and negative ions |
US8041006B2 (en) | 2007-04-11 | 2011-10-18 | The Invention Science Fund I Llc | Aspects of compton scattered X-ray visualization, imaging, or information providing |
JP5055011B2 (ja) | 2007-04-23 | 2012-10-24 | 株式会社日立ハイテクノロジーズ | イオン源 |
DE102008064781B3 (de) | 2007-04-23 | 2016-01-07 | Hitachi High-Technologies Corporation | lonenstrahlbearbeitungs-/Betrachtungsvorrichtung |
DE102007020599A1 (de) | 2007-05-02 | 2008-11-06 | Siemens Ag | Partikeltherapieanlage |
DE102007021033B3 (de) | 2007-05-04 | 2009-03-05 | Siemens Ag | Strahlführungsmagnet zur Ablenkung eines Strahls elektrisch geladener Teilchen längs einer gekrümmten Teilchenbahn und Bestrahlungsanlage mit einem solchen Magneten |
US7668291B2 (en) | 2007-05-18 | 2010-02-23 | Varian Medical Systems International Ag | Leaf sequencing |
JP5004659B2 (ja) | 2007-05-22 | 2012-08-22 | 株式会社日立ハイテクノロジーズ | 荷電粒子線装置 |
US7947969B2 (en) | 2007-06-27 | 2011-05-24 | Mitsubishi Electric Corporation | Stacked conformation radiotherapy system and particle beam therapy apparatus employing the same |
DE102007036035A1 (de) | 2007-08-01 | 2009-02-05 | Siemens Ag | Steuervorrichtung zur Steuerung eines Bestrahlungsvorgangs, Partikeltherapieanlage sowie Verfahren zur Bestrahlung eines Zielvolumens |
US7770231B2 (en) | 2007-08-02 | 2010-08-03 | Veeco Instruments, Inc. | Fast-scanning SPM and method of operating same |
US20090038318A1 (en) | 2007-08-10 | 2009-02-12 | Telsa Engineering Ltd. | Cooling methods |
DE102007037896A1 (de) | 2007-08-10 | 2009-02-26 | Enocean Gmbh | System mit Anwesenheitsmelder, Verfahren mit Anwesenheitsmelder, Anwesenheitsmelder, Funkempfänger |
JP4339904B2 (ja) | 2007-08-17 | 2009-10-07 | 株式会社日立製作所 | 粒子線治療システム |
US8122542B2 (en) | 2007-09-04 | 2012-02-28 | Tomotherapy Incorporated | Patient support device |
DE102007042340C5 (de) | 2007-09-06 | 2011-09-22 | Mt Mechatronics Gmbh | Partikeltherapie-Anlage mit verfahrbarem C-Bogen |
US7848488B2 (en) | 2007-09-10 | 2010-12-07 | Varian Medical Systems, Inc. | Radiation systems having tiltable gantry |
US8436323B2 (en) | 2007-09-12 | 2013-05-07 | Kabushiki Kaisha Toshiba | Particle beam irradiation apparatus and particle beam irradiation method |
US7582866B2 (en) | 2007-10-03 | 2009-09-01 | Shimadzu Corporation | Ion trap mass spectrometry |
US8003964B2 (en) | 2007-10-11 | 2011-08-23 | Still River Systems Incorporated | Applying a particle beam to a patient |
DE102007050035B4 (de) | 2007-10-17 | 2015-10-08 | Siemens Aktiengesellschaft | Vorrichtung und Verfahren zur Ablenkung eines Strahls elektrisch geladener Teilchen auf eine gekrümmte Teilchenbahn |
DE102007050168B3 (de) | 2007-10-19 | 2009-04-30 | Siemens Ag | Gantry, Partikeltherapieanlage sowie Verfahren zum Betreiben einer Gantry mit beweglichem Stellelement |
EP2213147B1 (en) | 2007-10-29 | 2015-01-21 | Ion Beam Applications S.A. | Device and method for fast beam current modulation in a particle accelerator |
ES2546676T3 (es) | 2007-11-30 | 2015-09-25 | Mevion Medical Systems, Inc. | Pórtico interior |
TWI448313B (zh) | 2007-11-30 | 2014-08-11 | Mevion Medical Systems Inc | 具有一內部起重機龍門架之系統 |
US8581523B2 (en) | 2007-11-30 | 2013-11-12 | Mevion Medical Systems, Inc. | Interrupted particle source |
US8933650B2 (en) | 2007-11-30 | 2015-01-13 | Mevion Medical Systems, Inc. | Matching a resonant frequency of a resonant cavity to a frequency of an input voltage |
US8193508B2 (en) | 2007-12-05 | 2012-06-05 | Navotek Medical Ltd. | Detecting photons in the presence of a pulsed radiation beam |
US8085899B2 (en) | 2007-12-12 | 2011-12-27 | Varian Medical Systems International Ag | Treatment planning system and method for radiotherapy |
WO2009077450A2 (en) | 2007-12-17 | 2009-06-25 | Carl Zeiss Nts Gmbh | Scanning charged particle beams |
CA2709217C (en) | 2007-12-19 | 2021-01-05 | Singulex, Inc. | Scanning analyzer for single molecule detection and methods of use |
JP5074915B2 (ja) | 2007-12-21 | 2012-11-14 | 株式会社日立製作所 | 荷電粒子ビーム照射システム |
CN101978795B (zh) | 2007-12-21 | 2013-04-24 | 伊利克塔股份有限公司 | X射线装置 |
DE102008005069B4 (de) | 2008-01-18 | 2017-06-08 | Siemens Healthcare Gmbh | Positioniervorrichtung zum Positionieren eines Patienten, Partikeltherapieanlage sowie Verfahren zum Betreiben einer Positioniervorrichtung |
DE102008014406A1 (de) | 2008-03-14 | 2009-09-24 | Siemens Aktiengesellschaft | Partikeltherapieanlage und Verfahren zur Modulation eines in einem Beschleuniger erzeugten Partikelstrahls |
US7919765B2 (en) | 2008-03-20 | 2011-04-05 | Varian Medical Systems Particle Therapy Gmbh | Non-continuous particle beam irradiation method and apparatus |
JP5143606B2 (ja) | 2008-03-28 | 2013-02-13 | 住友重機械工業株式会社 | 荷電粒子線照射装置 |
JP5107113B2 (ja) | 2008-03-28 | 2012-12-26 | 住友重機械工業株式会社 | 荷電粒子線照射装置 |
DE102008018417A1 (de) | 2008-04-10 | 2009-10-29 | Siemens Aktiengesellschaft | Verfahren und Vorrichtung zum Erstellen eines Bestrahlungsplans |
JP4719241B2 (ja) | 2008-04-15 | 2011-07-06 | 三菱電機株式会社 | 円形加速器 |
US7759642B2 (en) | 2008-04-30 | 2010-07-20 | Applied Materials Israel, Ltd. | Pattern invariant focusing of a charged particle beam |
US8291717B2 (en) | 2008-05-02 | 2012-10-23 | Massachusetts Institute Of Technology | Cryogenic vacuum break thermal coupler with cross-axial actuation |
JP4691574B2 (ja) | 2008-05-14 | 2011-06-01 | 株式会社日立製作所 | 荷電粒子ビーム出射装置及び荷電粒子ビーム出射方法 |
US8144832B2 (en) | 2008-05-22 | 2012-03-27 | Vladimir Balakin | X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system |
US7943913B2 (en) | 2008-05-22 | 2011-05-17 | Vladimir Balakin | Negative ion source method and apparatus used in conjunction with a charged particle cancer therapy system |
US8378311B2 (en) | 2008-05-22 | 2013-02-19 | Vladimir Balakin | Synchrotron power cycling apparatus and method of use thereof |
US8089054B2 (en) | 2008-05-22 | 2012-01-03 | Vladimir Balakin | Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system |
US8378321B2 (en) | 2008-05-22 | 2013-02-19 | Vladimir Balakin | Charged particle cancer therapy and patient positioning method and apparatus |
US20090314960A1 (en) | 2008-05-22 | 2009-12-24 | Vladimir Balakin | Patient positioning method and apparatus used in conjunction with a charged particle cancer therapy system |
US8188688B2 (en) | 2008-05-22 | 2012-05-29 | Vladimir Balakin | Magnetic field control method and apparatus used in conjunction with a charged particle cancer therapy system |
US8957396B2 (en) | 2008-05-22 | 2015-02-17 | Vladimir Yegorovich Balakin | Charged particle cancer therapy beam path control method and apparatus |
US8178859B2 (en) | 2008-05-22 | 2012-05-15 | Vladimir Balakin | Proton beam positioning verification method and apparatus used in conjunction with a charged particle cancer therapy system |
US8368038B2 (en) | 2008-05-22 | 2013-02-05 | Vladimir Balakin | Method and apparatus for intensity control of a charged particle beam extracted from a synchrotron |
US8569717B2 (en) | 2008-05-22 | 2013-10-29 | Vladimir Balakin | Intensity modulated three-dimensional radiation scanning method and apparatus |
US8093564B2 (en) | 2008-05-22 | 2012-01-10 | Vladimir Balakin | Ion beam focusing lens method and apparatus used in conjunction with a charged particle cancer therapy system |
US9056199B2 (en) | 2008-05-22 | 2015-06-16 | Vladimir Balakin | Charged particle treatment, rapid patient positioning apparatus and method of use thereof |
US8373143B2 (en) | 2008-05-22 | 2013-02-12 | Vladimir Balakin | Patient immobilization and repositioning method and apparatus used in conjunction with charged particle cancer therapy |
US7940894B2 (en) | 2008-05-22 | 2011-05-10 | Vladimir Balakin | Elongated lifetime X-ray method and apparatus used in conjunction with a charged particle cancer therapy system |
US9044600B2 (en) | 2008-05-22 | 2015-06-02 | Vladimir Balakin | Proton tomography apparatus and method of operation therefor |
AU2009249863B2 (en) | 2008-05-22 | 2013-12-12 | Vladimir Yegorovich Balakin | Multi-field charged particle cancer therapy method and apparatus |
US8198607B2 (en) | 2008-05-22 | 2012-06-12 | Vladimir Balakin | Tandem accelerator method and apparatus used in conjunction with a charged particle cancer therapy system |
US8637833B2 (en) | 2008-05-22 | 2014-01-28 | Vladimir Balakin | Synchrotron power supply apparatus and method of use thereof |
EP2283713B1 (en) | 2008-05-22 | 2018-03-28 | Vladimir Yegorovich Balakin | Multi-axis charged particle cancer therapy apparatus |
US8373146B2 (en) | 2008-05-22 | 2013-02-12 | Vladimir Balakin | RF accelerator method and apparatus used in conjunction with a charged particle cancer therapy system |
US9058910B2 (en) | 2008-05-22 | 2015-06-16 | Vladimir Yegorovich Balakin | Charged particle beam acceleration method and apparatus as part of a charged particle cancer therapy system |
US8309941B2 (en) | 2008-05-22 | 2012-11-13 | Vladimir Balakin | Charged particle cancer therapy and patient breath monitoring method and apparatus |
US8288742B2 (en) | 2008-05-22 | 2012-10-16 | Vladimir Balakin | Charged particle cancer therapy patient positioning method and apparatus |
MX2010012716A (es) | 2008-05-22 | 2011-07-01 | Vladimir Yegorovich Balakin | Metodo y aparato de rayos x usados en conjunto con un sistema de terapia contra el cancer mediante particulas cargadas. |
US8373145B2 (en) | 2008-05-22 | 2013-02-12 | Vladimir Balakin | Charged particle cancer therapy system magnet control method and apparatus |
US8129699B2 (en) | 2008-05-22 | 2012-03-06 | Vladimir Balakin | Multi-field charged particle cancer therapy method and apparatus coordinated with patient respiration |
US8399866B2 (en) | 2008-05-22 | 2013-03-19 | Vladimir Balakin | Charged particle extraction apparatus and method of use thereof |
US7834336B2 (en) | 2008-05-28 | 2010-11-16 | Varian Medical Systems, Inc. | Treatment of patient tumors by charged particle therapy |
US7987053B2 (en) | 2008-05-30 | 2011-07-26 | Varian Medical Systems International Ag | Monitor units calculation method for proton fields |
US7801270B2 (en) | 2008-06-19 | 2010-09-21 | Varian Medical Systems International Ag | Treatment plan optimization method for radiation therapy |
DE102008029609A1 (de) | 2008-06-23 | 2009-12-31 | Siemens Aktiengesellschaft | Vorrichtung und Verfahren zur Vermessung eines Strahlflecks eines Partikelstrahls sowie Anlage zur Erzeugung eines Partikelstrahls |
US8227768B2 (en) | 2008-06-25 | 2012-07-24 | Axcelis Technologies, Inc. | Low-inertia multi-axis multi-directional mechanically scanned ion implantation system |
US7809107B2 (en) | 2008-06-30 | 2010-10-05 | Varian Medical Systems International Ag | Method for controlling modulation strength in radiation therapy |
JP4691587B2 (ja) | 2008-08-06 | 2011-06-01 | 三菱重工業株式会社 | 放射線治療装置および放射線照射方法 |
US7796731B2 (en) | 2008-08-22 | 2010-09-14 | Varian Medical Systems International Ag | Leaf sequencing algorithm for moving targets |
US8330132B2 (en) | 2008-08-27 | 2012-12-11 | Varian Medical Systems, Inc. | Energy modulator for modulating an energy of a particle beam |
US7835494B2 (en) | 2008-08-28 | 2010-11-16 | Varian Medical Systems International Ag | Trajectory optimization method |
US7817778B2 (en) | 2008-08-29 | 2010-10-19 | Varian Medical Systems International Ag | Interactive treatment plan optimization for radiation therapy |
JP5430115B2 (ja) | 2008-10-15 | 2014-02-26 | 三菱電機株式会社 | 荷電粒子線ビームのスキャニング照射装置 |
US8334520B2 (en) | 2008-10-24 | 2012-12-18 | Hitachi High-Technologies Corporation | Charged particle beam apparatus |
US7609811B1 (en) | 2008-11-07 | 2009-10-27 | Varian Medical Systems International Ag | Method for minimizing the tongue and groove effect in intensity modulated radiation delivery |
US8368043B2 (en) | 2008-12-31 | 2013-02-05 | Ion Beam Applications S.A. | Gantry rolling floor |
US7839973B2 (en) | 2009-01-14 | 2010-11-23 | Varian Medical Systems International Ag | Treatment planning using modulability and visibility factors |
WO2010082451A1 (ja) | 2009-01-15 | 2010-07-22 | 株式会社日立ハイテクノロジーズ | 荷電粒子線応用装置 |
GB2467595B (en) | 2009-02-09 | 2011-08-24 | Tesla Engineering Ltd | Cooling systems and methods |
US7835502B2 (en) | 2009-02-11 | 2010-11-16 | Tomotherapy Incorporated | Target pedestal assembly and method of preserving the target |
US7986768B2 (en) | 2009-02-19 | 2011-07-26 | Varian Medical Systems International Ag | Apparatus and method to facilitate generating a treatment plan for irradiating a patient's treatment volume |
US8053745B2 (en) | 2009-02-24 | 2011-11-08 | Moore John F | Device and method for administering particle beam therapy |
SG173879A1 (en) | 2009-03-04 | 2011-10-28 | Protom Aozt | Multi-field charged particle cancer therapy method and apparatus |
JP5627186B2 (ja) | 2009-03-05 | 2014-11-19 | 三菱電機株式会社 | 電気機器の異常監視装置及び加速器装置の異常監視装置 |
US8063381B2 (en) | 2009-03-13 | 2011-11-22 | Brookhaven Science Associates, Llc | Achromatic and uncoupled medical gantry |
US8975816B2 (en) | 2009-05-05 | 2015-03-10 | Varian Medical Systems, Inc. | Multiple output cavities in sheet beam klystron |
CN102292122B (zh) | 2009-06-09 | 2015-04-22 | 三菱电机株式会社 | 粒子射线治疗装置及粒子射线治疗装置的调整方法 |
JP5868849B2 (ja) | 2009-06-24 | 2016-02-24 | イオン・ビーム・アプリケーションズ・エス・アー | 粒子加速器、粒子放射線治療システム、粒子数を制御するための方法、及び一連のスポット照射を実施するための方法 |
US7934869B2 (en) | 2009-06-30 | 2011-05-03 | Mitsubishi Electric Research Labs, Inc. | Positioning an object based on aligned images of the object |
US7894574B1 (en) | 2009-09-22 | 2011-02-22 | Varian Medical Systems International Ag | Apparatus and method pertaining to dynamic use of a radiation therapy collimator |
US8009803B2 (en) | 2009-09-28 | 2011-08-30 | Varian Medical Systems International Ag | Treatment plan optimization method for radiosurgery |
EP2308561B1 (en) | 2009-09-28 | 2011-06-15 | Ion Beam Applications | Compact gantry for particle therapy |
US8009804B2 (en) | 2009-10-20 | 2011-08-30 | Varian Medical Systems International Ag | Dose calculation method for multiple fields |
US8382943B2 (en) | 2009-10-23 | 2013-02-26 | William George Clark | Method and apparatus for the selective separation of two layers of material using an ultrashort pulse source of electromagnetic radiation |
EP2497101A4 (en) | 2009-11-02 | 2013-05-15 | Procure Treat Ct S Inc | ISOCENTRIC PORTIC COMPACT |
CN102740929B (zh) | 2010-01-28 | 2015-07-01 | 三菱电机株式会社 | 粒子射线治疗装置 |
JP5463509B2 (ja) | 2010-02-10 | 2014-04-09 | 株式会社東芝 | 粒子線ビーム照射装置及びその制御方法 |
JP2011182987A (ja) | 2010-03-09 | 2011-09-22 | Sumitomo Heavy Ind Ltd | 加速粒子照射設備 |
EP2365514B1 (en) | 2010-03-10 | 2015-08-26 | ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH | Twin beam charged particle column and method of operating thereof |
JP5432028B2 (ja) | 2010-03-29 | 2014-03-05 | 株式会社日立ハイテクサイエンス | 集束イオンビーム装置、チップ先端構造検査方法及びチップ先端構造再生方法 |
JP5473727B2 (ja) | 2010-03-31 | 2014-04-16 | キヤノン株式会社 | 潤滑剤供給方法、支持部材及び回転体ユニット |
JP5646312B2 (ja) | 2010-04-02 | 2014-12-24 | 三菱電機株式会社 | 粒子線照射装置及び粒子線治療装置 |
EP2579265B1 (en) | 2010-05-27 | 2015-12-02 | Mitsubishi Electric Corporation | Particle beam irradiation system |
US9125570B2 (en) | 2010-07-16 | 2015-09-08 | The Board Of Trustees Of The Leland Stanford Junior University | Real-time tomosynthesis guidance for radiation therapy |
JPWO2012014705A1 (ja) | 2010-07-28 | 2013-09-12 | 住友重機械工業株式会社 | 荷電粒子線照射装置 |
US8416918B2 (en) | 2010-08-20 | 2013-04-09 | Varian Medical Systems International Ag | Apparatus and method pertaining to radiation-treatment planning optimization |
JP5670126B2 (ja) | 2010-08-26 | 2015-02-18 | 住友重機械工業株式会社 | 荷電粒子線照射装置、荷電粒子線照射方法及び荷電粒子線照射プログラム |
US8440987B2 (en) | 2010-09-03 | 2013-05-14 | Varian Medical Systems Particle Therapy Gmbh | System and method for automated cyclotron procedures |
US8472583B2 (en) | 2010-09-29 | 2013-06-25 | Varian Medical Systems, Inc. | Radiation scanning of objects for contraband |
US9258876B2 (en) | 2010-10-01 | 2016-02-09 | Accuray, Inc. | Traveling wave linear accelerator based x-ray source using pulse width to modulate pulse-to-pulse dosage |
DE102010048233B4 (de) | 2010-10-12 | 2014-04-30 | Gsi Helmholtzzentrum Für Schwerionenforschung Gmbh | Verfahren zur Erstellung einer Bestrahlungsplanung sowie Verfahren zur Applizierung einer ortsaufgelösten Strahlendosis |
US8525447B2 (en) | 2010-11-22 | 2013-09-03 | Massachusetts Institute Of Technology | Compact cold, weak-focusing, superconducting cyclotron |
US8466441B2 (en) | 2011-02-17 | 2013-06-18 | Mitsubishi Electric Corporation | Particle beam therapy system |
JP5665721B2 (ja) | 2011-02-28 | 2015-02-04 | 三菱電機株式会社 | 円形加速器および円形加速器の運転方法 |
US8653314B2 (en) | 2011-05-22 | 2014-02-18 | Fina Technology, Inc. | Method for providing a co-feed in the coupling of toluene with a carbon source |
US8963112B1 (en) | 2011-05-25 | 2015-02-24 | Vladimir Balakin | Charged particle cancer therapy patient positioning method and apparatus |
JP6009577B2 (ja) | 2011-11-29 | 2016-10-19 | イオン ビーム アプリケーションズIon Beam Applications | Rf装置及びrf装置を備えるシンクロサイクロトロン |
WO2013098089A1 (en) | 2011-12-28 | 2013-07-04 | Ion Beam Applications S.A. | Extraction device for a synchrocyclotron |
DK2637181T3 (en) | 2012-03-06 | 2018-06-14 | Tesla Engineering Ltd | Multi-orientable cryostats |
US8581525B2 (en) | 2012-03-23 | 2013-11-12 | Massachusetts Institute Of Technology | Compensated precessional beam extraction for cyclotrons |
JP5163824B1 (ja) | 2012-03-30 | 2013-03-13 | 富士ゼロックス株式会社 | 回転体および軸受 |
US8975836B2 (en) | 2012-07-27 | 2015-03-10 | Massachusetts Institute Of Technology | Ultra-light, magnetically shielded, high-current, compact cyclotron |
US9603235B2 (en) | 2012-07-27 | 2017-03-21 | Massachusetts Institute Of Technology | Phase-lock loop synchronization between beam orbit and RF drive in synchrocyclotrons |
JP2014038738A (ja) | 2012-08-13 | 2014-02-27 | Sumitomo Heavy Ind Ltd | サイクロトロン |
JP6121546B2 (ja) | 2012-09-28 | 2017-04-26 | メビオン・メディカル・システムズ・インコーポレーテッド | 粒子加速器用の制御システム |
EP2901820B1 (en) | 2012-09-28 | 2021-02-17 | Mevion Medical Systems, Inc. | Focusing a particle beam using magnetic field flutter |
WO2014052718A2 (en) | 2012-09-28 | 2014-04-03 | Mevion Medical Systems, Inc. | Focusing a particle beam |
US9545528B2 (en) | 2012-09-28 | 2017-01-17 | Mevion Medical Systems, Inc. | Controlling particle therapy |
EP2901824B1 (en) | 2012-09-28 | 2020-04-15 | Mevion Medical Systems, Inc. | Magnetic shims to adjust a position of a main coil and corresponding method |
WO2014052709A2 (en) | 2012-09-28 | 2014-04-03 | Mevion Medical Systems, Inc. | Controlling intensity of a particle beam |
EP3342462B1 (en) | 2012-09-28 | 2019-05-01 | Mevion Medical Systems, Inc. | Adjusting energy of a particle beam |
CN108770178B (zh) | 2012-09-28 | 2021-04-16 | 迈胜医疗设备有限公司 | 磁场再生器 |
GB201217782D0 (en) | 2012-10-04 | 2012-11-14 | Tesla Engineering Ltd | Magnet apparatus |
CN104768612A (zh) | 2012-11-05 | 2015-07-08 | 三菱电机株式会社 | 三维图像拍摄系统及粒子射线治疗装置 |
US9012866B2 (en) | 2013-03-15 | 2015-04-21 | Varian Medical Systems, Inc. | Compact proton therapy system with energy selection onboard a rotatable gantry |
US9730308B2 (en) | 2013-06-12 | 2017-08-08 | Mevion Medical Systems, Inc. | Particle accelerator that produces charged particles having variable energies |
US9955510B2 (en) | 2013-07-08 | 2018-04-24 | Electronics And Telecommunications Research Institute | Method and terminal for distributed access |
KR102043641B1 (ko) | 2013-07-08 | 2019-11-13 | 삼성전자 주식회사 | 통신 기능 처리 방법 및 이를 지원하는 전자 장치 |
-
2005
- 2005-07-21 ES ES10175727.6T patent/ES2654328T3/es active Active
- 2005-07-21 EP EP10175727.6A patent/EP2259664B1/en active Active
- 2005-07-21 EP EP19165255.1A patent/EP3557956A1/en active Pending
- 2005-07-21 WO PCT/US2005/025965 patent/WO2006012467A2/en active Application Filing
- 2005-07-21 CN CN2010105813842A patent/CN102036461B/zh active Active
- 2005-07-21 CA CA002574122A patent/CA2574122A1/en not_active Abandoned
- 2005-07-21 ES ES17191182T patent/ES2720574T3/es active Active
- 2005-07-21 CN CN2005800245224A patent/CN101061759B/zh active Active
- 2005-07-21 JP JP2007522777A patent/JP5046928B2/ja active Active
- 2005-07-21 AU AU2005267078A patent/AU2005267078B8/en not_active Ceased
- 2005-07-21 EP EP17191182.9A patent/EP3294045B1/en not_active Not-in-force
- 2005-07-21 EP EP05776532.3A patent/EP1790203B1/en active Active
- 2005-07-21 ES ES05776532.3T patent/ES2558978T3/es active Active
-
2006
- 2006-03-09 US US11/371,622 patent/US7402963B2/en active Active
-
2008
- 2008-01-25 US US12/011,466 patent/US7626347B2/en active Active
-
2009
- 2009-10-22 US US12/603,934 patent/US8952634B2/en not_active Ceased
-
2012
- 2012-09-14 US US13/618,939 patent/US20130127375A1/en not_active Abandoned
-
2017
- 2017-02-09 US US15/429,078 patent/USRE48047E1/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN102036461A (zh) | 2011-04-27 |
AU2005267078B2 (en) | 2009-03-26 |
EP3294045A1 (en) | 2018-03-14 |
EP2259664A2 (en) | 2010-12-08 |
ES2654328T3 (es) | 2018-02-13 |
JP5046928B2 (ja) | 2012-10-10 |
CN101061759B (zh) | 2011-05-25 |
CN101061759A (zh) | 2007-10-24 |
US8952634B2 (en) | 2015-02-10 |
JP2008507826A (ja) | 2008-03-13 |
EP1790203B1 (en) | 2015-12-30 |
US20080218102A1 (en) | 2008-09-11 |
US7402963B2 (en) | 2008-07-22 |
AU2005267078B8 (en) | 2009-05-07 |
WO2006012467A3 (en) | 2007-02-08 |
EP2259664B1 (en) | 2017-10-18 |
CN102036461B (zh) | 2012-11-14 |
US20070001128A1 (en) | 2007-01-04 |
EP2259664A3 (en) | 2016-01-06 |
EP3294045B1 (en) | 2019-03-27 |
USRE48047E1 (en) | 2020-06-09 |
US20100045213A1 (en) | 2010-02-25 |
AU2005267078A1 (en) | 2006-02-02 |
WO2006012467A2 (en) | 2006-02-02 |
EP3557956A1 (en) | 2019-10-23 |
CA2574122A1 (en) | 2006-02-02 |
ES2720574T3 (es) | 2019-07-23 |
US20130127375A1 (en) | 2013-05-23 |
US7626347B2 (en) | 2009-12-01 |
EP1790203A2 (en) | 2007-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2558978T3 (es) | Generador de formas de ondas de radiofrecuencia programable para un sincrociclotrón | |
US20230105721A1 (en) | Circular accelerator, particle therapy system with circular accelerator, and method of operating circular accelerator | |
CN104663003B (zh) | 同步回旋加速器射束轨道和rf驱动同步回旋加速器 | |
ES2606220T3 (es) | Concordancia de una frecuencia resonante de una cavidad resonante con una frecuencia de un voltaje de entrada | |
JP2008535260A5 (es) | ||
US20100001212A1 (en) | Charged particle beam irradiation system and charged particle beam extraction method | |
CA2629567A1 (en) | Inductively-coupled rf power source | |
JP2013543249A (ja) | サブナノ秒イオンビームパルス高周波四重極(rfq)線形加速器システム及びそのための方法 | |
CN101604815A (zh) | 一种控制脉冲激光建立时间的激光稳频方法 | |
CN101598882A (zh) | 和频不同超短激光脉冲产生新波长激光的装置 | |
Karsli et al. | Implementation of high power microwave pulse compressor | |
US6437517B1 (en) | Method and system for exciting an azimuthal acoustic and longitudinal acoustic combination mode | |
WO2019206967A1 (en) | A variable-energy proton linear accelerator system and a method of operating a proton beam suitable for irradiating tissue | |
CN207704153U (zh) | 间接泵浦铷原子激发态法拉第反常色散滤波器装置 | |
JP2010003538A (ja) | 高周波加速制御装置 | |
JP4939567B2 (ja) | 円形加速器 | |
RU2742719C1 (ru) | Способ управления ускорителем, устройство управления ускорителем и система облучения пучком частиц | |
KR20190047796A (ko) | 초음파 발생을 위한 주파수 최적화 방법 및 주파수 최적화 구조의 초음파 장치 | |
CN111490437A (zh) | 利用激光与天线靶作用诱导频率可控微波辐射的装置和方法 | |
Corsini et al. | CLIC Main Linac Beam-Loading Compensation by Drive Beam Phase Modulation |