DERIVADOS DE ACIDO SULFONICO PARA SINTESIS DE BIODIESEL La presente invencion se refiere a un catalizador acid° y a su uso en las reacciones de esterificacion y de transesterificacion que tienen lugar en la 5 sintesis de biodiesel (ester alquilico de acid° graso) a partir de aceites y grasas naturales. ESTADO DE LA TECNICA 10 La sustitucion de las fuentes energeticas tradicionales tales como el carbon, petroleo o gas natural por fuentes de tipo renovable es algo deseable e inevitable, tanto por razones de estrategias nacionales de suministro como por razones economicas y ambientales. 15 Dentro de las fuentes energeticas de tipo renovable se encuentran los biocombustibles y, dentro de estos, estan los derivados de los trigliceridos que se conocen con el nombre de biodiesel. El biodiesel (un ester de un acid° graso) es un combustible producido a partir de la transesterificacion de trigliceridos con un alcohol de cadena corta, generalmente metanol. 20 Actualmente, el biodiesel tiene el problema de que su coste de produccion, con los procedimientos comerciales actuales, es todavia mucho mas alto que el coste del diesel procedente del petroleo y por ello es ineludible la transicion al uso de materias primas mas baratas, como grasas o aceites no 25 comestibles, o de procedimientos alternativos que hagan el proceso mas economic°. Los distintos metodos de sintesis de biodiesel, tanto comerciales como de laboratorio, pueden clasificarse de acuerdo al tipo de catalizadores utilizados 30 en los procesos de preparacion. Asi, pueden encontrarse antecedentes en los que se utilizan catalizadores homogeneos y heterogeneos y, dentro de
cada uno de estos grupos de catalizadores, existen catalizadores basicos, acidos, enzimaticos y organocatalizadores (tanto basicos como acidos). La catalisis homogenea con hidr6xidos alcalinos es el procedimiento 5 predominante a escala industrial pero los problemas inherentes a este procedimiento son importantes, siendo el principal, desde el punto de vista economic°, su no aplicabilidad para materias primas de bajo coste ya que estas contienen porcentajes significativos de acidos grasos libres (FFA) y de agua. Las condiciones de operaci6n ya estan establecidas a nivel industrial y 10 no son esperables innovaciones significativas de esta tecnologia. La catalisis acida homogenea con acidos minerales tiene problemas como: la corrosion de equipos, condiciones de reaccion mas drasticas que en el caso de los catalizadores basicos y la necesidad de eliminar grandes 15 volumenes de materiales residuales procedentes de la neutralizacion de los acidos. La investigacion sobre la aplicacion de la catalisis enzimatica homogenea prosigue, y se estudia la utilizacion de enzimas de diversas procedencias, 20 con un coste que se pretende reducir, pero, en cualquier caso, parece un procedimiento que no podra competir con la utilizacion de enzimas inmovilizadas. El empleo de los actuales organocatalizadores basicos podria disminuir los 25 tiempos de reacci6n con respecto a la catalisis con hidr6xidos alcalinos pero no han constituido una alternativa eficaz, probablemente por factores como el precio de los catalizadores, la necesidad de su recuperacion para generar un biodiesel de pureza adecuada y el necesitar materias primas relativamente caras. 30 El uso de organocatalizadores acidos, al igual que con los acidos minerales, produce una cinetica lenta, excepto en el caso de que su estructura
molecular sea adecuada para ser miscible en la fase oleosa de la mezcla reaccionante, como es el caso de la presente invencion. El uso de catalizadores heterogeneos podria resolver muchos de los 5 problemas asociados a la fabricacion de biodiesel. Asi, el empleo de catalizadores heterogeneos podria solventar los problemas de recuperaci6n que presentan los catalizadores homogeneos, con lo que se elimina el inconveniente de los vertidos. Sin embargo, el uso de estos catalizadores es limitado debido su coste, a la baja velocidad de reaccion y a la existencia de 10 reacciones no deseadas. A la vista de la tecnologia existente, parece conveniente desarrollar nuevos tipos de catalizadores mas versatiles que los hidr6xidos alcalinos y mas estables que los enzimaticos de tal manera que permitan obtener biodiesel a 15 partir de trigliceridos de bajo coste y por un procedimiento mas simple que el procedimiento del hidroxido alcalino. Por ello, la presente invencion consiste en un nuevo tipo de catalizador acid°, soluble en la fase oleosa de la mezcla reaccionante, capaz de catalizar la reaccion de transesterificacion de los trigliceridos con alcoholes de cadena corta, tanto en fase homogenea como 20 heterogenea, en cortos tiempos de reaccion y a bajas temperaturas. Con un catalizador de este tipo es posible no solo rebajar los costes de producci6n actuales, sino tambien el de las instalaciones, ya que se pueden utilizar materiales mas economicos para su fabricacion, prescindiendo de calentadores o de materiales resistentes a la corrosion por acidos a 25 temperaturas elevadas. El proceso de transesterificacion para la obtenci6n de glicerina a partir de aceites, con hidroxidos de metales alcalinos como catalizador, se desarrollo en los afios 40 (Trent, W. R. Process of treating fatty glycerides. U.S. Patent 30 No. 2,383,632). Este procedimiento solo es factible si los trigliceridos presentan una cantidad pequefia de acidos grasos libres (menor del 4%) ya que, en caso contrario, se produce la neutralizacion del hidroxido por el
acid° graso. Se generaria asi un jabon, que actuaria de tensioactivo, que favoreceria la formaci6n de emulsiones que pueden inhibir la separaci6n de los productos de reaccion. Con este procedimiento el exceso de hidroxido debe ser neutralizado (produciendose un consumo adicional de acido) y la 5 glicerina se obtiene en presencia de sales que dificultan su purificacion. Esto encarece el proceso, puesto que la yenta de la glicerina es un requisito para que el proceso sea econ6micamente rentable. Por otra parte, la catalisis acida de todo el proceso con acido sulfuric°, o con 10 otros acidos minerales, no parecia viable debido a que la esterificacion de los FFA genera agua dificultando la transesterificacion, ya que se reduce la solubilidad de la grasa en la fase polar del metanol y se forman clusters de iones hidronio. La transesterificacion en estas condiciones es 4000 veces mas lenta que la reacci6n catalizada por un catalizador basic°. 15 Considerando los problemas de las catalisis alcalina y acida, la investigacion de otros catalizadores o procedimientos se hizo altamente necesaria dada la trascendencia economica del proceso, a causa de los grandes volumenes de producci6n que se preveia que Ilegarian a alcanzar. 20 En la bibliografia se describen muchos procedimientos que permiten transformar directamente aceites con elevados contenidos en acidos grasos libres en sus esteres metilicos: reacci6n con metanol en condiciones supercriticas, utilizacion de catalizadores acidos de Lewis, etc., pero, en 25 general, se requieren temperaturas elevadas, presiones por encima de la atmosferica, tiempos de reaccion largos y cantidades grandes de metanol, lo que les hace ser poco atractivos para un proceso industrial. Parece evidente, que para mejorar la eficiencia de los catalizadores se hace 30 necesario conocer los detalles del mecanismo de la reaccion de transesterificacion.
Aunque en la bibliografia apenas se encuentra informaci6n sobre los mecanismos de las reacciones de transesterificacion, se puede conseguir alguna informaci6n relacionada con este proceso comparando con las reacciones de hidrolisis de las grasas. Estas reacciones fueron muy 5 estudiadas antes de los afios 50, debido al interes que habia entonces por obtener jabones. Aunque la aparici6n de los detergentes hizo perder atractivo a este tema, las conclusiones a las que se Ilegaron, resumidas a continuacion, son un buen punto de partida para el desarrollo de catalizadores para la transesterificacion de grasas con metanol: 10 -La reacci6n de hidrolisis de esteres que presentan solubilidad parcial en agua puede transcurrir tanto en la fase acuosa como en la fase organica. -Si la solubilidad del ester en agua es relativamente elevada y el catalizador 15 acid° es hidrosoluble, la reacci6n transcurre en la fase acuosa. Se obtienen cineticas de orden cero en el ester, debido a que su concentracion en el agua es constante. Las moleculas de ester consumidas en el proceso de hidrolisis se reponen rapidamente con otras provenientes de la fase organica. 20 -Si la solubilidad del ester en agua es muy pequefia (este es el caso de los trigliceridos, que son muy insolubles tanto en agua como en metanol), la velocidad de reaccion en la fase acuosa es muy lenta. En este caso, resulta preferible utilizar un catalizador acid° que sea soluble en la grasa. Se 25 obtienen asi cineticas que son de orden uno en el triglicerido y velocidades de reaccion razonablemente altas. Los catalizadores que se han utilizado para Ilevar a cabo la reacci6n de esterificacion en la fase organica son acidos sulfonicos con una cadena 30 alquilica larga (Twitchell, E. J. Ind. Eng. Chem. 1917, 194) la cual les da un caracter hidrof6bico y favorece su solubilidad en la fase apolar. Pueden ser de dos tipos: acidos sulfonicos alifaticos, obtenidos por sulfonacion directa
de la grasa con acid° sulfuric°, o bien, acidos arilsulfonicos obtenidos por alquilacion de compuestos aromaticos con acidos grasos insaturados (oleico es el mas popular) en medio acid°, seguida de sulfonacion (reactivo de Twitchell). Este tipo de reactivo fue muy popular en los afios cuarenta, 5 comercializandose bajo los nombres de Divuslon, Pfeilring (se obtiene por alquilacion de naftaleno con aceite de ricino y sulfonacion) y Neokontakt. Aunque en las publicaciones originales se sugiere que la funci6n del acid° sulfonico es disolver la grasa en la fase acuosa (o en la interfase), donde sufriria la hidrolisis, se ha demostrado para los reactivos de Twitchell que la 10 reaccion de hidrolisis transcurre en la grasa, gracias a la pequefia cantidad de moleculas de agua que se encuentran en su seno. No se conoce con exactitud la estructura de estos catalizadores, tratandose de mezclas complejas de acidos sulfonicos debido a la aparicion de carbocationes. 15 Las conclusiones extraidas de los estudios de las reacciones de hidrolisis de grasas son extrapolables para la reacci6n de transesterificacion de trigliceridos con metanol. En las reacciones de transesterificacion existen tambien dos fases y la reacci6n puede transcurrir en cualquiera de las dos. En cualquier caso, la falta de miscibilidad de los reactivos conduce a 20 concentraciones efectivas de reactivos en cada una de las fases menores que las teoricas. Por ello, teniendo en cuenta que la concentracion de trigliceridos en el seno del metanol (1:300 mol/mol) es mas pequefia que la concentracion de metanol en los trigliceridos (0,8:1,0 mol/mol), resulta apropiado buscar catalizadores que promuevan la reacci6n en la fase apolar. 25 Por esto, parece logic° pensar que los catalizadores tipo Twitchell puedan jugar un papel importante en este tipo de reacciones. Estos reactivos tienen la ventaja de que el agua que se genera en la esterificacion de los acidos grasos libres apenas perjudica la transesterificacion debido a que no se disuelve en el triglicerido, que es donde transcurre la reaccion. 30 Por todo ello, esta invencion se refiere a un compuesto quimico de caracter acid° capaz de disolverse en trigliceridos, que tiene actividad catalitica para
la reaccion de transesterificacion de los trigliceridos, y de esterificacion de los acidos grasos libres, con alcoholes de cadena corta para producir biodiesel 5 DESCRIPCION DE LA INVENCION 10 Para la sintesis de biodiesel, los compuestos de la presente invencion presentan una serie de ventajas respecto a los conocidos en el estado de la tecnica: Ventajas por ser catalizador acido: -En el caso de que en la materia prima (aceites o grasas naturales) existan acidos grasos libres, no se producen jabones y con ello no se forman 15 emulsiones que dificulten la separaci6n de los componentes de la mezcla resultante. -En el caso de que en la materia prima (aceites o grasas naturales) haya agua, como se trata de un catalizador acid°, la hidrolisis de los esteres se 20 puede producir y esto podria afectar a la composici6n de la mezcla reaccionante en el punto de equilibrio de la reacci6n reversible de transesterificacion, pero este problema esta mitigado ya que el agua pasa a la fase polar. Por otra parte, este problema se puede minimizar afiadiendo un mayor porcentaje de catalizador o de metanol. 25 30 -La glicerina se obtiene en ausencia de sales. Ventajas por ser un catalizador soluble en la fase oleosa de la mezcla reaccionante: -La velocidad de transesterificacion se incrementa sustancialmente con respecto a la conseguida con acidos minerales, ya que la reaccion transcurre
en la fase oleosa de la mezcla de transesterificacion, en donde la concentracion de metanol es siempre suficiente por tener este una solubilidad significativa en la fase oleosa. Se evita asi el problema de la limitacion de velocidad de la reaccion, que ocurre cuando se utilizan 5 catalizadores no solubles en la fase oleosa, debido a la lenta velocidad de la transferencia de materia desde la fase oleosa a la alcoholica. -La presencia de acidos grasos libres no tiene mucho efecto en la velocidad de transesterificacion porque estos catalizadores catalizan la esterificacion y 10 la transesterificacion y, ademas, no se forman jabones. -En el caso de haber agua en la mezcla reaccionante, esta estara en la fase polar por lo que su influencia en la composicion de la mezcla reaccionante, en el punto de equilibrio de la reaccion reversible de transesterificacion, sera 15 mucho menor que en el caso de los acidos minerales. -No se forman sales por lo que la separaci6n de la glicerina se simplifica. Asi pues, un aspecto de la presente invencion se refiere a un compuesto de 20 formula I: (RA I ,cyi HO3S (Ri 6 1 donde: 25 Cyi representa benceno, naftaleno, antraceno o fenantreno; cada R1 independientemente representa (C10-050)alquilo, donde C50)alquilo esta opcionalmente sustituido por uno o mas R3; cada R2 independientemente representa -S03H; cada R3 independientemente representa halogeno; 30 n representa un valor entre 0 y 4; y (C10-
m representa un valor entre 1 y 5, con la condicion de que cuando Cyi representa benceno, n representa 0, m representa 1 y R1 esta situado en 4- respecto al grupo -S03H, entonces R1 representa (C10-C60)alquilo de cadena ramificada, donde (C10-C60)alquilo 5 esta opcionalmente sustituido por uno o mas R3 . Otro aspecto de la presente invencion se refiere al uso de un compuesto de formula III como catalizador, preferiblemente como catalizador en reacciones de esterificacion o de transesterificacion, y mas preferiblemente como 10 catalizador en reacciones de esterificacion o de transesterificacion en procesos de transformaci6n de aceites o grasas en biodiesel: (RA Ho3s `(Ri)m III 15 donde: Cyi representa benceno, naftaleno, antraceno o fenantreno; cada R1 independientemente representa (Cio-C60)alquilo, donde (Cio-C60)alquilo esta opcionalmente sustituido por uno o mas R3; cada R2 independientemente representa -S03H; 20 cada R3 independientemente representa halogeno; n representa un valor entre 0 y 4; y m representa un valor entre 1 y 5. Otro aspecto de la presente invencion se refiere a un procedimiento para la 25 obtenci6n de biodiesel mediante la transesterificacion de un aceite o grasa con un alcohol de cadena corta (C1-C6) caracterizado porque el catalizador utilizado es un compuesto de formula I tal y como se ha descrito anteriormente.
En una realized& preferida la presente invencion se refiere a un procedimiento tal y como se ha definido anteriormente, caracterizado porque el aceite o grasa es de origen natural. 5 En una realized& preferida la presente invencion se refiere a un procedimiento tal y como se ha definido anteriormente, caracterizado porque el aceite o grasa se puede seleccionar entre un aceite comestible, un aceite no comestible, un aceite residual, una grasa animal, o mezclas de los mismos. 10 15 En una realized& preferida la presente invencion se refiere a un procedimiento tal y como se ha definido anteriormente, caracterizado porque el proceso de transesterificacion transcurre a temperaturas mayores que 10 °C y menores que 150 °C. En una realized& preferida la presente invencion se refiere a un procedimiento tal y como se ha definido anteriormente, caracterizado porque el alcohol es butanol o metanol. 20 En una realized& preferida la presente invencion se refiere a un procedimiento tal y como se ha definido anteriormente, caracterizado porque el alcohol es metanol. En una realized& preferida la presente invencion se refiere a un 25 procedimiento tal y como se ha definido anteriormente, caracterizado porque en el proceso la proporcion molar inicial de alcohol a aceite o grasa es mayor que 2 y menor que 50. En una realized& preferida la presente invencion se refiere a un 30 procedimiento tal y como se ha definido anteriormente, caracterizado porque el porcentaje inicial en moles de catalizador a aceite o grasa es mayor que 1 y menor que 20.
A lo largo de la presente invencion, un radical halogen° o su abreviatura halo significa fluoro, cloro, bromo o yodo. 5 El termino quot;(Cio-05o)alquiloquot;, como grupo o parte de un grupo, significa un grupo alquilo de cadena lineal o ramificada, saturada o insaturada, es decir, que opcionalmente puede contener uno o mas dobles enlaces, que contiene de 10 a 50 atomos de carbono. Preferiblemente, la cadena es ramificada. Ejemplos incluyen, entre otros, los grupos 2-decenilo, undecanilo, 2,3- 10 diundecenilo, 2-metildecenilo, 2,3-dimetildecenilo, 2-metilun-5-decenilo, -CH(C17H35)(C16H33) o -CH(C16H33)(C16H33)• El termino quot;biodieselquot; se refiere a un biocombustible liquido que se obtiene a partir de lipidos naturales como aceites vegetales o grasas animales, 15 mediante procesos industriales de esterificacion y transesterificacion. La expresi6n quot;opcionalmente sustituido por uno o masquot; significa la posibilidad de un grupo de estar sustituido por uno o mas, preferiblemente por 1, 2, 3 6 4 sustituyentes, mas preferiblemente por 1, 2 6 3 sustituyentes y 20 aun mas preferiblemente por 1 6 2 sustituyentes, siempre que dicho grupo disponga de suficientes posiciones disponibles susceptibles de ser sustituidas. Si estan presentes, dichos sustituyentes pueden ser iguales o diferentes y pueden estar situados sobre cualquier posici6n disponible. 25 A lo largo de la descripci6n y las reivindicaciones la palabra quot;comprendequot; y sus variantes no pretenden excluir otras caracteristicas tecnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y caracteristicas de la invencion se desprenderan en parte de la descripci6n y en parte de la practica de la invencion. 30 La invencion se refiere pues a los compuestos de formula I segun se han definido anteriormente.
En otra realizacion la invencion se refiere a un compuesto de formula I, donde cada R1 independientemente representa (Cio-050)alquilo, preferiblemente cada R1 independientemente representa (C15-C40)alquilo, y 5 mas preferiblemente cada R1 independientemente representa -CH(C17H35)(C16H33) o -CH(C16H33)(C16H33)• 10 En otra realizacion la invencion se refiere a un compuesto de formula I, donde Cyi se selecciona de benceno. En otra realizacion la invencion se refiere a un compuesto de formula I, donde n representa un valor de 0 0 1, y preferiblemente n representa un valor de 0. 15 En otra realizacion la invencion se refiere a un compuesto de formula I, donde m representa un valor de 1 0 2, y preferiblemente m representa un valor de 1. En otra realizacion la invencion se refiere a un compuesto de formula I, 20 donde: cada R1 independientemente representa (Cio-050)alquilo, preferiblemente cada R1 independientemente representa (C15-C40)alquilo, y mas preferiblemente cada R1 independientemente representa -CH(C17H35)(C16H33) o -CH(C16H33)(C16H33); y 25 Cyi se selecciona de benceno. En otra realizacion la invencion se refiere a un compuesto de formula I, donde: cada R1 independientemente representa (Cio-050)alquilo, preferiblemente 30 cada R1 independientemente representa (C15-C40)alquilo, y mas preferiblemente cada R1 independientemente representa -CH(C17H35)(C16H33) o -CH(C16H33)(C16H33); y
n representa un valor de 0 6 1, y preferiblemente n representa un valor de 0. En otra realizacion la invencion se refiere a un compuesto de formula I, donde: 5 cada R1 independientemente representa (Cio-050)alquilo, preferiblemente cada R1 independientemente representa (C15-C40)alquilo, y mas preferiblemente cada R1 independientemente representa -cH(c17H35)(c16H33) o -cH(c16H33)(c16H33); y m representa un valor de 1 6 2, y preferiblemente m representa un valor de 10 1. En otra realizacion la invencion se refiere a un compuesto de formula I, donde: Cyi se selecciona de benceno; Y 15 n representa un valor de 0 0 1, y preferiblemente n representa un valor de 0. En otra realizacion la invencion se refiere a un compuesto de formula I, donde: Cyi se selecciona de benceno; Y 20 m representa un valor de 1 6 2, y preferiblemente m representa un valor de 1. En otra realizacion la invencion se refiere a un compuesto de formula I, donde: 25 n representa un valor de 0 0 1, y preferiblemente n representa un valor de 0; y m representa un valor de 1 6 2, y preferiblemente m representa un valor de 1. 30 En otra realizacion la invencion se refiere a un compuesto de formula I, donde:
cada R1 independientemente representa (C10-050)alquilo, preferiblemente cada R1 independientemente representa (C15-C40)alquilo, y mas preferiblemente cada R1 independientemente representa -CH(C17H35)(C16H33) o -CH(C16H33)(C16H33); 5 Cyi se selecciona de bencen0; Y n representa un valor de 0 6 1, y preferiblemente n representa un valor de 0. En otra realizacion la invencion se refiere a un compuesto de formula I, donde: 10 cada R1 independientemente representa (Cio-050)alquilo, preferiblemente cada R1 independientemente representa (C15-C40)alquilo, y mas preferiblemente cada R1 independientemente representa -CH(C17H35)(C16H33) o -CH(C16H33)(C16H33); n representa un valor de 0 0 1, y preferiblemente n representa un valor de 0; 15 y m representa un valor de 1 6 2, y preferiblemente m representa un valor de 1. En otra realizacion la invencion se refiere a un compuesto de formula I, 20 donde: cada R1 independientemente representa (Cio-050)alquilo, preferiblemente cada R1 independientemente representa (C15-C40)alquilo, Y mas preferiblemente cada R1 independientemente representa -CH(C17H35)(C16H33) o -CH(C16H33)(C16H33); 25 Cyi se selecciona de bencen0; Y m representa un valor de 1 6 2, y preferiblemente m representa un valor de 1. En otra realizacion la invencion se refiere a un compuesto de formula I, 30 donde: Cyi se selecciona de benceno;
n representa un valor de 0 6 1, y preferiblemente n representa un valor de 0; y m representa un valor de 1 6 2, y preferiblemente m representa un valor de 1. 5 En otra realizacion la invencion se refiere a un compuesto de formula I, donde: cada R1 independientemente representa (C10-050)alquilo, preferiblemente cada R1 independientemente representa (C15-C40)alquilo, y mas 10 preferiblemente cada R1 independientemente representa -CH(C17H35)(C16H33) o -CH(C16H33)(C16H33); Cyi se selecciona de benceno; n representa un valor de 0 6 1, y preferiblemente n representa un valor de 0; y 15 m representa un valor de 1 6 2, y preferiblemente m representa un valor de 1. En otra realizacion la invencion se refiere a un compuesto de formula I, donde: 20 Cyi representa benceno; y es de formula ha: HO3S (R2)n R1 ha donde: 25 cada R1 independientemente representa (C10-050)alquilo, donde (Cio-050)alquilo esta opcionalmente sustituido por uno o mas R3; cada R2 independientemente representa -S03H;
cada R3 independientemente representa halogeno; y n representa un valor entre 0 y 1, preferiblemente n representa un valor de 0. En otra realizacion la invencion se refiere a un compuesto de formula I, 5 donde: Cyi representa benceno; y es de formula ha: HO3S (R2)n R1 ha 10 donde: cada R1 independientemente representa (Cio-050)alquilo; cada R2 independientemente representa -S03H; y n representa un valor entre 0 y 1, preferiblemente n representa un valor de 0. 15 En otra realizacion la invencion se refiere a un compuesto de formula I, donde: Cyi representa benceno; y es de formula ha: (R2)n \Ri 1 HO3S R1 20 ha donde:
cada R1 independientemente representa (C15-C40)alquilo, preferiblemente cada R1 independientemente representa -CH(C17H35)(C16F133) -CH(C16H33)(C16H33); cada R2 independientemente representa -S03H; y 5 n representa un valor entre 0 y 1, preferiblemente n representa un valor de 0. o En otra realizacion la invencion se refiere a un compuesto de formula I, donde: Cyi representa benceno; y 10 es de formula lib: (R2)n \Ri 1 HO3S lib donde: R1 representa (C10-050)alquilo, donde (C10-050)alquilo esta opcionalmente 15 sustituido por uno o mas R3; cada R2 independientemente representa -S03H; cada R3 independientemente representa halogeno; y n representa un valor entre 0 y 1, preferiblemente n representa un valor de 0. 20 En otra realizacion la invencion se refiere a un compuesto de formula I, donde: Cyi representa benceno; y es de formula lib:
(R2)n \Ri 1 HO3S lib donde: R1 representa (C10-050)alquilo; 5 cada R2 independientemente representa -S03H; y n representa un valor entre 0 y 1, preferiblemente n representa un valor de 0. En otra realizacion la invencion se refiere a un compuesto de formula I, donde: 10 Cyi representa benceno; y es de formula lib: (R2)n HO3S donde: lib 15 R1 representa (C15-C40)alquilo, preferiblemente R1 representa -CH(C17H35)(C16H33) o -CH(C16H33)(C16H33); cada R2 independientemente representa -S03H; y n representa un valor entre 0 y 1, preferiblemente n representa un valor de 0. 20 Asimismo, la presente invencion cubre todas las combinaciones posibles de las realizaciones particulares y preferidas descritas aqui arriba.
En otra realizacion, la invencion se refiere a un compuesto de formula I seleccionado de: Ci7H35 HO3S Cl6H33 ;y C16H33 C16H33 C16H33 Cl6H33 HO S 5 Los compuestos de la presente invencion pueden formar complejos con disolventes en los que se hacen reaccionar o desde los que se hacen precipitar o cristalizar. Estos complejos se conocen como solvatos. Tal como se utiliza aqui, el termino solvato se refiere a un complejo de estequiometria 10 variable formado por un soluto (un compuesto de formula I) y un disolvente. Ejemplos de disolventes incluyen los disolventes farmaceuticamente aceptables como agua, etanol y similares. Un complejo con agua se conoce como hidrato. Los solvatos de los compuestos de la invencion (o sus sales), incluyendo hidratos, quedan incluidos dentro del ambito de la invencion. 15 Los compuestos de formula I pueden existir en diferentes formas fisicas, es decir en forma amorfa y formas cristalinas. Asimismo, los compuestos de la presente invencion pueden tener la capacidad de cristalizar de mas de una forma, una caracteristica que se conoce como polimorfismo. Los polimorfos 20 se pueden diferenciar por varias propiedades fisicas bien conocidas por los entendidos en la materia como por ejemplo sus difractogramas de rayos X, puntos de fusion o solubilidad. Todas las formas fisicas de los compuestos de formula I, incluyendo todas sus formas polimorficas (quot;polimorfosquot;), quedan incluidas dentro del ambito de la presente invencion. 25 Los compuestos de formula I pueden obtenerse siguiendo los procedimientos descritos a continuaci6n. Como sera evidente para un
expert° en la materia, el metodo preciso utilizado para la preparacion de un compuesto dado puede variar en funci6n de su estructura quimica. Asimismo, en alguno de los procedimientos que se detallan a continuacion puede ser necesario o conveniente proteger los grupos reactivos o labiles 5 mediante grupos protectores convencionales. Tanto la naturaleza de dichos grupos protectores como los procedimientos para su introducci6n y eliminacion son bien conocidos y forman parte del estado de la tecnica (vease por ejemplo, Wuts P.G.M y Greene T.W., quot;Greene's Protective Groups in Organic Synthesisquot;, John Wiley & Sons, 4th edition, 2006). 10 Siempre que este presente algun grupo protector, sera necesaria una posterior etapa de desproteccion, que se realiza en las condiciones habituales en sintesis organica, como las descritas en la referencia mencionada mas arriba. 15 Excepto que se indique lo contrario, en los metodos que se describen a continuaci6n los significados de los distintos sustituyentes son los significados descritos anteriormente en relacion con un compuesto de formula I. 20 En general, los compuestos de formula I se pueden obtener por el metodo descrito en el esquema 1: 0 (Ri)ml-cyi !( ± R5x a R4 OH (R1)m-i—CYl*R5 R4 IV v VI R5 C (Ri )m-i—CY1— R4 VII R5 (R1 )m-i—CY1—( R4 VIII 25 Esquema 1 b d (R2)n 6Y I-103S 1---(R1)m i
donde R1, R2, n y m tienen el significado descrito anteriormente en relacion con un compuesto de formula I, X representa un grupo halogen° y R4 y R5 independientemente representan (C10-050)alquilo opcionalmente sustituido 5 por uno o mas R3 (donde R3 tiene el significado descrito anteriormente en relacion con un compuesto de formula I). En una primera etapa (etapa a), un compuesto de formula IV reacciona con un compuesto de formula V en presencia de magnesio y yodo en un 10 disolvente, preferiblemente eter dietilico para obtener un compuesto de formula VI. En una etapa b, un compuesto de formula VI se transforma en un compuesto de formula VII en presencia de un acid°, tal como pTs0H calentando, 15 preferiblemente a reflujo, y en presencia de un disolvente, tal como tolueno. En la etapa c, se produce una reduccion de un compuesto de formula VII en presencia de un agente reductor, tal como H2, Pd/C, en un disolvente, tal como etanol o tetrahidrofurano, preferiblemente a una temperatura de entre 20 20 °C y 40 °C obteniendose un compuesto de formula VIII. En la etapa d, un compuesto de formula VIII reacciona en presencia de un acid°, tal como acid° sulfuric° fumante al 20%, en un disolvente, tal como diclorometano, para obtener un compuesto de formula I. 25 Como se ha mencionado anteriormente, la invencion describe derivados de acid° sulfonico activos en reacciones de esterificacion y de transesterificacion que, en consecuencia, pueden catalizar la transformacion de aceites y grasas naturales en biodiesel. Particularmente, la invencion se 30 refiere a un compuesto de un tamano y estructura molecular adecuada para ser miscible con los aceites o grasas que forman la fase oleosa en la mezcla reaccionante en las reacciones de transesterificacion. Como consecuencia
de que el compuesto sea soluble en la fase oleosa de la mezcla reaccionante, la reaccion de transesterificacion transcurre mayoritariamente en esta fase y la velocidad de reacci6n es mucho mayor que en el caso de las transesterificaciones catalizadas con acidos minerales en las que la 5 reaccion transcurre en la fase alcoholica, en cuyo caso la velocidad de reacci6n esta limitada por la velocidad de transferencia de materia del aceite desde la fase oleosa a la fase alcoholica. Este catalizador es capaz de catalizar esta transesterificacion a 10 temperaturas de 60 °C, con un rendimiento proximo al 100%, en menos de 6 horas. El caracter acid° de este catalizador le permite trabajar con materias primas de bajo coste conteniendo un significativo porcentaje de acidos grasos libres y de agua. 15 Las siguientes figuras y ejemplos se proporcionan a modo de ilustracion, y no se pretende que sean limitativos de la presente invencion. BREVE DESCRIPCION DE LAS FIGURAS 20 Figura 1.- En la Figura 1 se muestra una comparativa de las conversiones a FAME conseguida con los tres catalizadores de los ejemplos 1, 2 y 3. EJEMPLOS 25 Ejemplo 1: Sintesis de acid° 4-(tetratriacontano-17-il)bencenosulfonico Ci7F135 HO3S Cl6H33 Una solucion de 1-feniloctadecano-1-ona (26,5 g, 77 mmol) en dietileter (100 mL) se afiadio gota agota a un reactivo de Grignard preparado a partir de
una mezcla de 1-iodohexadecano (2,0 g, 5,7 mmol) y 1-clorohexadecano (27,6 g, 106 mmol) con virutas de magnesio (7,5 g) y un pequefio cristal de iodo en eter (80 mL). Despues de la adicion, la mezcla reaccionante se agito a temperatura ambiente durante 12 h. A continuacion la mezcla se trato con 5 hielo y se acidifico con HCI 2M. Se descarto la fase acuosa y la fase organica se sec6 con Na2SO4 y el disolvente se evapor6 a sequedad. El residuo se purifico mediante cromatografia en columna con gel de silice utilizando cloruro de metileno como eluyente, produciendo el correspondiente alcohol 17-feniltetratriacontan-17-ol, como un solid° blanco 10 (37,4 g, 85 % de rendimiento). Este alcohol (13,7 g, 24 mmol) y una cantidad catalitica de acid° p-toluensulf onico (162 mg, 0,94 mmol) se sometieron a reflujo con tolueno (280 mL) hasta que se elimino todo el agua. La mezcla se lavo con NaHCO3 15 acuoso y el tolueno se evapor6 a presi6n reducida. El residuo crudo se purifico mediante cromatografia en columna con hexano como eluyente para producir 11,0 g (83 % yield) del compuesto deshidratado. Este compuesto insaturado (11,0 g, 19,9 mmol) se disolvio en THF (40 mL) y se hidrogen6 (4 bar) en presencia de Pd/C (5%) (450 mg) a temperatura ambiente. Despues 20 de 12 horas, el catalizador se filtro y se retiro el solvente. La percolacion con gel de silice produjo el esperado hidrocarburo saturado, tetratriacontan-17- ilbenceno (9,40 g, 85%). Finalmente se afiadio acid° sulfuric° fumante (20% SO3, 6,8 g) a una 25 solucion de tetratriacontan-17-ilbenceno (9,40 g, 17 mmol) en CH2Cl2 (100 mL) seco. Despues de agitar 5 minutos, el analisis 1H NMR de una alicuota revelo que la reaccion habia finalizado. Se afiadio entonces hielo a la mezcla de reacci6n y se separaron las fases. La capa organica se sec6 sobre celulosa y el solvente se separ6 a presion reducida para conseguir 10,5 g 30 (98%) del compuesto deseado, como un solid° blanco.
p.f. 33-35°C. 1H NMR (200 MHz, CDCI3): 6 = 7,74 (d, J = 8,0 Hz, 2H); 7,16 (d, J = 8,0 Hz, 2H); 2,50 (m, 1H); 1,50 (m, 4H); 1,25 (s, 58H); 0,88 (t, J = 6,6 Hz, 6H); 13C NMR (50 MHz, CDCI3): 6 = 151,1; 138,7; 128,2; 126,3; 46,3; 36,9; 32,2; 30,0; 29,8; 29,6; 27,8; 22,9; 14,3; IR (nujol): v= 3409, 2916, 2851, 5 1735, 1469, 1378, 1150, 1041, 1002 cm-1; HR-MS: miz=679,5065, calculada para C40H73Na203S [M-H+Na]+Na+: 679,5070. 10 Ejemplo 2: Sintesis de acid° 4-octadecilbencenosulfonico HO3S Cl8H37 En primer lugar se prepara el cloruro de acid° del acid° estearico para lo cual se refluye acid° estearico (13,0 g, 45,6 mmol) en cloruro de tionilo (30 mL) hasta que dejen de salir burbujas. Evaporar a presion reducida para 15 obtener el cloruro de acid° (13,8 g, 100%), el cual se hace reaccionar con benceno (30 mL) y AlC13 (8,0 g, 60 mmol) a 0 °C. Despues se afiade sobre una disolucion 1:1 HCl/H20. El compuesto, 1-feniloctadecano-1-ona, se purifica por cromatografia sobre gel de silice con hexano y cloruro de metileno. 20 En el siguiente paso, se refluyen durante 10 minutos la cetona obtenida (2,0 g, 5,8 mmol) con Zn (6,0 g, 91,7 mmol), en presencia de acid° metanosulfonico (10 mL) y acid° acetic° (10 mL). A continuaci6n, si quedan restos del doble enlace, puede ser necesario afiadir acid° 25 metacloroperbenzoico en cloruro de metileno para generar el ep6xido, y Ilevar a cabo la purificacion por cromatografia en gel de silice con hexano. Se obtiene asi octadecilbenceno (1.5 g, 70 %). En el ultimo paso, se afiade acid° sulfuric° fumante (20 % SO3, 6,7 g) sobre 30 una disolucion de octadecilbenceno (5.6 g, 16.9 mmol) en cloruro de
metileno seco (50 mL). Posteriormente se afiade hielo, se separa la fase organica y se seca con papel. Por ultimo se evapora a presi6n reducida la fase organica obteniendo el compuesto deseado (6,8 g, 98 %). 5 Ejemplo 3: Sintesis de acid° 2,4-di(tritriacontan-17-Mbencenosulfonico C16H33 C16H33 C16H33 C 6H33 HO3S Una disolucion de isoftalato de dimetilo (3,9 g, 20,2 mmol) en dietileter (30 10 mL) se afiadio gota a gota a un reactivo de Grignard preparado a partir de una mezcla de 1-iodohexadecano (2,1 g, 6 mmol) y 1-clorohexadecano (28,4, 109 mmol), virutas de magnesio (8.0 g) y un pequefio cristal de iodo en eter (80 mL). Despues de la adicion, la mezcla resultante se agito durante 12 horas a temperatura ambiente. A continuacion, la mezcla de reaccion se 15 trabajo de la misma manera que en el caso del ejemplo 1, produciendo el correspondiente diol 17, 17-(1,3-fenilen)ditriatriacontan-17-ol (19,0 g, 89 %). Este diol (17,0 g, 16,5 mmol) se deshidrato con acid° p-toluensulfonico a reflujo en tolueno, siguiendo el mismo procedimiento que en el ejemplo 1, 20 generando el hidrocarburo insaturado (16,0 g, 96 %). La hidrogenacion de este compuesto (7,0 g, 7,0 mmol) se Ilevo a cabo en THF (40 mL) con una presi6n de hidr6geno de 4 bares a 40 °C con Pd/C (5 %) (500 mg) en 12 horas. El catalizador se separ6 por filtracion, el disolvente se evapor6 y el residuo se purifico por percolacion a traves de una columna de silica gel 25 (hexano como eluyente) para producir el hidrocarburo saturado, 1,3- di(tritriacontan-17-il)benceno (6,1 g, 86 %).
La sulfonacion de este compuesto (6,1 g, 6 mmol) se Ilevo a cabo en las condiciones descritas previamente en el ejemplo 1, produciendo el cornpuesto esperado (6,2 g, 96 %) como un solid° blanco. 5 p.f. 79-80°C. 1H NMR (200 MHz, CDCI3): 6= 7,85 (d, J = 8,4 Hz, 2H); 7,14 (s, 1H); 7,00 (d, J= 8,4 Hz, 2H); 2,51 (m, 2H); 1,60 (m, 8H); 1,25 (s, 112H); 0,88 (t, J = 6,4 Hz, 12H); 13C NMR (50 MHz, CDCI3): 6 = 151,8; 146,5; 135,7; 128,2; 127,7; 124,9; 50,9; 46,2; 40,6; 37,1; 36,9; 32,2; 30,4; 30,0; 29,9; 29,6; 27,8; 27,6; 22,9; 14,3; IR (nujol): v= 3403, 2916, 2365, 1599, 1456, 1378, 10 1314, 1164, 1074, 1002, 892, 710 cm-1; HR-MS: miz=1128,0108, calculado para C72H13803S [M-H-FNa]Na+: 1128,0078. Ejemplo 4: Aplicacion del catalizador en la sintesis de biodiesel 15 Se ha estudiado el efecto de algunas variables de operacion en el rendimiento de la reaccion. Se ha utilizado como triglicerido aceite de girasol comestible comercial y como alcohol metanol con una pureza superior al 99,8%. El catalizador empleado corresponde al compuesto sintetizado en el ejemplo 1. 20 Los experimentos se han realizado con diferentes valores de las siguientes condiciones de operaci6n: temperaturas desde 40 a 80 °C, la relacion molar inicial entre metanol y triglicerido ha variado desde 1,24 al 24,76 y el porcentaje en moles de catalizador del 1 al 11% con respecto al triglicerido. 25 Las reacciones de transesterificacion se han realizado en viales cerrados de 20 ml agitados y termostatados en los que siempre se partio de 5 gramos de aceite y las proporciones correspondientes de catalizador y metanol fueron segun la tabla de experimentos (Tabla 1) en la que se recoge tambien en la 30 ultima columna la conversion a ester metilico de acid° graso (Fat acid methyl esther, FAME)
Valores codificados Valores Reales Metanol (mol Catalizador Conversion Tempe-Tempe- Meta- Catali- por (% molar FAME, % ratura ratura nol zador cada respecto al 7 horas °C mol de aceite) aceite) 0 1,68 0 50 24,76 6 60 -1 1 1 40 20 9 48 0 0 0 50 13 6 64 1 1 -1 60 20 3 79 -1,68 0 0 33,2 13 6 25 -1 -1 -1 40 6 3 20 0 0 0 50 13 6 60 1 1 1 60 20 9 89 1 -1 -1 60 6 3 62 0 0 1,68 50 13 11,04 86 -1 1 -1 40 20 3 19 0 -1,68 0 50 1,24 6 39 0 0 -1,68 50 13 0,96 11 0 0 0 50 13 6 66 1 -1 1 60 6 9 88 1,68 0 0 66,8 13 6 94 0 0 0 50 13 6 61 -1 -1 1 40 6 9 60 0 0 0 50 13 6 61 Tabla 1
5 En la tabla 1 se puede comprobar que con el catalizador del ejemplo 1 se pueden alcanzar rendimientos superiores al 90% a aproximadamente 67 °C en 7 horas. Las muestras se han analizado mediante 1H RMN. Se han sometido estos resultados a regresi6n lineal multiple y se ha obtenido el siguiente modelo que permite predecir la conversion en funcion de los valores codificados de las variables de operaci6n. 10 FAME = 33,1 + 16,3.T + 12,13.Cat + 4,0.T.Cat 15 Siendo FAME el porcentaje de conversion a biodiesel, y T y Cat los valores, en unidades codificadas segun la Tabla 1, de la temperatura y del porcentaje en moles de catalizador con respecto al aceite respectivamente. Ejemplo 5: Conversiones a FAME En la Figura 1 se muestra una comparativa de las conversiones a FAME conseguida con los tres catalizadores de los ejemplos 1, 2 y 3 cuya sintesis 20 se ha descrito anteriormente. La proporci6n de metanol a triglicerido fue 6/1 y la temperatura 60 °C.
DERIVATIVES OF SULPHONIC ACID FOR BIODIESEL SYNTHESIS The present invention relates to an acid catalyst and its use in the esterification and transesterification reactions that take place in the synthesis of biodiesel (fatty acid alkyl ester) from oils and natural fats. STATE OF THE ART 10 The substitution of traditional energy sources such as coal, oil or natural gas by sources of renewable type is something desirable and inevitable, both for reasons of national supply strategies and for economic and environmental reasons. 15 Within the renewable energy sources are biofuels and, within these, are derived from triglycerides that are known by the name of biodiesel. Biodiesel (a fatty acid ester) is a fuel produced from the transesterification of triglycerides with a short chain alcohol, usually methanol. 20 Currently, biodiesel has the problem that its production cost, with the current commercial procedures, is still much higher than the cost of diesel oil and that is why the transition to the use of cheaper raw materials is unavoidable, such as fats or oils not edible, or of alternative procedures that make the process more economic °. The different methods of synthesis of biodiesel, both commercial and laboratory, can be classified according to the type of catalysts used in the preparation processes. Thus, a history can be found in which homogeneous and heterogeneous catalysts are used and, within
each of these groups of catalysts, there are basic catalysts, acids, enzymes and organocatalysts (both basic and acid). The homogeneous catalysis with alkaline hydroxides is the predominant procedure on an industrial scale but the problems inherent to this procedure are important, being the main one, from the economic point of view, its non-applicability for low cost raw materials since these contain percentages significant amounts of free fatty acids (FFA) and water. The operating conditions are already established at the industrial level and 10 significant innovations of this technology are not expected. The homogeneous acid catalysis with mineral acids has problems such as: the corrosion of equipment, reaction conditions more drastic than in the case of the basic catalysts and the need to eliminate large volumes of residual materials from the neutralization of the acids. Research on the application of homogeneous enzymatic catalysis continues, and the use of enzymes from various sources is studied, 20 at a cost that is intended to reduce, but in any case, it seems a procedure that can not compete with the use of enzymes immobilized. The use of the current basic organocatalysts could decrease the reaction times with respect to the alkali metal hydride but they have not been an effective alternative, probably due to factors such as the price of the catalysts, the need for their recovery to generate a biodiesel from adequate purity and the need for relatively expensive raw materials. 30 The use of acidic organocatalysts, as with mineral acids, produces slow kinetics, except in the case that their structure
Molecular is suitable to be miscible in the oil phase of the reaction mixture, as is the case of the present invention. The use of heterogeneous catalysts could solve many of the 5 problems associated with the manufacture of biodiesel. Thus, the use of heterogeneous catalysts could solve the recovery problems presented by the homogeneous catalysts, thereby eliminating the drawback of spillages. However, the use of these catalysts is limited due to their cost, the low reaction rate and the existence of 10 unwanted reactions. In view of the existing technology, it seems convenient to develop new types of catalysts more versatile than alkali hydroxides and more stable than enzymatic ones in such a way that they allow to obtain biodiesel from low cost triglycerides and by a simpler procedure than alkaline hydroxide process. Therefore, the present invention consists of a new type of acid catalyst, soluble in the oil phase of the reaction mixture, capable of catalyzing the transesterification reaction of the triglycerides with short-chain alcohols, both in homogeneous and heterogeneous phases, in short reaction times and at low temperatures. With a catalyst of this type, it is possible not only to lower the current production costs, but also that of the facilities, since more economical materials can be used for their manufacture, without heaters or materials resistant to corrosion by acids. high temperatures. The transesterification process for obtaining glycerin from oils, with alkali metal hydroxides as a catalyst, was developed in the 40's (Trent, W. R. Process of treating fatty glycerides. OR. S. Patent 30 No. 2,383,632). This procedure is only feasible if the triglycerides present a small amount of free fatty acids (less than 4%) since, otherwise, the neutralization of the hydroxide takes place by the
fatty acid. A soap would thus be generated, which would act as a surfactant, which would favor the formation of emulsions that can inhibit the separation of the reaction products. With this procedure the excess of hydroxide must be neutralized (producing an additional consumption of acid) and the glycerin is obtained in the presence of salts that hinder its purification. This makes the process more expensive, since the glycerin diet is a prerequisite for the process to be economically profitable. On the other hand, the acid catalysis of the whole process with sulfuric acid, or with other mineral acids, did not seem feasible because the esterification of the FFA generates water making transesterification difficult, since the solubility of the fat in the body is reduced. the polar phase of methanol and hydronium ion clusters are formed. The transesterification under these conditions is 4000 times slower than the reaction catalyzed by a basic catalyst. 15 Considering the problems of alkali and acid catalysis, the investigation of other catalysts or processes became highly necessary given the economic importance of the process, because of the large volumes of production that were expected to reach it. The literature describes many processes that allow directly transforming oils with high contents of free fatty acids in their methyl esters: reaction with methanol under supercritical conditions, use of Lewis acid catalysts, etc. , but, in general, high temperatures, pressures above atmospheric, long reaction times and large quantities of methanol are required, which makes them unattractive for an industrial process. It seems evident that to improve the efficiency of the catalysts it is necessary to know the details of the mechanism of the transesterification reaction.
Although little information is found on the mechanisms of transesterification reactions in the literature, some information related to this process can be obtained by comparing fat hydrolysis reactions. These reactions were very studied before the 1950s, due to the interest that there was then in obtaining soaps. Although the appearance of detergents made this topic less attractive, the conclusions reached, summarized below, are a good starting point for the development of catalysts for the transesterification of fats with methanol: 10 -The hydrolysis reaction of esters that have partial solubility in water can occur both in the aqueous phase and in the organic phase. -If the solubility of the ester in water is relatively high and the acid catalyst is water-soluble, the reaction proceeds in the aqueous phase. Kinetics of zero order are obtained in the ester, because their concentration in water is constant. The ester molecules consumed in the hydrolysis process are rapidly replenished with others from the organic phase. 20 -If the solubility of the ester in water is very small (this is the case of triglycerides, which are very insoluble in both water and methanol), the reaction rate in the aqueous phase is very slow. In this case, it is preferable to use an acid catalyst which is soluble in the fat. They thus obtain kinetics that are of order one in the triglyceride and reasonably high reaction rates. The catalysts that have been used to carry out the esterification reaction in the organic phase are sulfonic acids with a long alkyl chain (Twitchell, E. J. Ind. Eng. Chem. 1917, 194) which gives them a hydrophobic character and favors their solubility in the apolar phase. They can be of two types: aliphatic sulfonic acids, obtained by direct sulfonation
of the fat with acid ° sulfuric °, or, arylsulfonic acids obtained by alkylation of aromatic compounds with unsaturated fatty acids (oleic is the most popular) in acid medium, followed by sulphonation (Twitchell reagent). This type of reagent was very popular in the forties, 5 being marketed under the names of Divuslon, Pfeilring (obtained by alkylation of naphthalene with castor oil and sulphonation) and Neokontakt. Although in the original publications it is suggested that the function of sulfonic acid is to dissolve the fat in the aqueous phase (or at the interface), where hydrolysis would suffer, it has been demonstrated for the Twitchell reagents that the hydrolysis reaction takes place in the fat, thanks to the small amount of water molecules that are in its breast. It is not known exactly the structure of these catalysts, dealing with complex mixtures of sulfonic acids due to the appearance of carbocations. 15 The conclusions drawn from the studies of the hydrolysis reactions of fats are extrapolated for the transesterification reaction of triglycerides with methanol. In the transesterification reactions there are also two phases and the reaction can take place in either of them. In any case, the lack of miscibility of the reagents leads to 20 effective concentrations of reagents in each of the phases smaller than the theoretical ones. Therefore, taking into account that the concentration of triglycerides in methanol (1: 300 mol / mol) is smaller than the concentration of methanol in triglycerides (0.8: 1.0 mol / mol), it is appropriate look for catalysts that promote reaction in the apolar phase. 25 Therefore, it seems logical to think that Twitchell type catalysts can play an important role in this type of reactions. These reagents have the advantage that the water that is generated in the esterification of the free fatty acids hardly harms the transesterification because it does not dissolve in the triglyceride, which is where the reaction takes place. For all these reasons, this invention relates to a chemical compound of acid character capable of dissolving in triglycerides, which has catalytic activity for
the transesterification reaction of the triglycerides, and of esterification of the free fatty acids, with short chain alcohols to produce biodiesel. DESCRIPTION OF THE INVENTION For the synthesis of biodiesel, the compounds of the present invention present a series of advantages with respect to those known in the state of the art: Advantages for being acid catalyst: -In the case that in the raw material (oils or natural fats) there are free fatty acids, soaps are not produced and thus do not form 15 emulsions that make it difficult the separation of the components of the resulting mixture. -In the case that there is water in the raw material (natural oils or fats), as it is an acid catalyst, hydrolysis of the esters can occur and this could affect the composition of the reaction mixture in the equilibrium point of the reversible reaction of transesterification, but this problem is mitigated since the water passes to the polar phase. On the other hand, this problem can be minimized by adding a higher percentage of catalyst or methanol. 25 30 -Glycerin is obtained in the absence of salts. Advantages for being a soluble catalyst in the oil phase of the reaction mixture: - The transesterification rate increases substantially with respect to that achieved with mineral acids, since the reaction takes place
in the oil phase of the transesterification mixture, wherein the concentration of methanol is always sufficient because it has a significant solubility in the oil phase. This avoids the problem of the speed limitation of the reaction, which occurs when 5 catalysts not soluble in the oil phase are used, due to the slow speed of the transfer of matter from the oil phase to the alcoholic phase. The presence of free fatty acids does not have much effect on the rate of transesterification because these catalysts catalyze the esterification and transesterification and, furthermore, no soaps are formed. -If there is water in the reaction mixture, it will be in the polar phase so its influence on the composition of the reaction mixture, at the equilibrium point of the transesterification reversible reaction, will be much lower than in the case of mineral acids. - No salts are formed so the separation of glycerin is simplified. Thus, one aspect of the present invention relates to a compound of formula I: (RA I, cyi HO3S (Ri 6 1 where: 25 Cyi represents benzene, naphthalene, anthracene or phenanthrene; each R1 independently represents (C10-050 ) alkyl, where C50) alkyl is optionally substituted by one or more R3, each R2 independently represents -S03H, each R3 independently represents halogen, 30 n represents a value between 0 and 4, and (C10-)
m represents a value between 1 and 5, with the proviso that when Cyi represents benzene, n represents 0, m represents 1 and R1 is located in 4- with respect to the group -S03H, then R1 represents (C10-C60) chain alkyl branched, wherein (C10-C60) alkyl is optionally substituted by one or more R3. Another aspect of the present invention relates to the use of a compound of formula III as a catalyst, preferably as a catalyst in esterification or transesterification reactions, and more preferably as a catalyst in esterification or transesterification reactions in oil transformation processes or fats in biodiesel: (RA Ho3s `(Ri) m III 15 where: Cyi represents benzene, naphthalene, anthracene or phenanthrene, each R1 independently represents (Cio-C60) alkyl, where (Cio-C60) alkyl is optionally substituted by one or plus R3, each R2 independently represents -S03H, each R3 independently represents halogen, n represents a value between 0 and 4, and m represents a value between 1 and 5. Another aspect of the present invention relates to a process for obtaining biodiesel by transesterifying an oil or fat with a short chain alcohol (C1-C6) characterized in that the catalyst used is a compound of formula I as has been described above.
In a preferred embodiment, the present invention relates to a method as defined above, characterized in that the oil or fat is of natural origin. In a preferred embodiment the present invention relates to a method as defined above, characterized in that the oil or fat can be selected from an edible oil, a non-edible oil, a residual oil, an animal fat, or mixtures thereof. In a preferred embodiment, the present invention relates to a method as defined above, characterized in that the transesterification process proceeds at temperatures greater than 10 ° C and lower than 150 ° C. In a preferred embodiment, the present invention relates to a process as defined above, characterized in that the alcohol is butanol or methanol. In a preferred embodiment, the present invention relates to a process as defined above, characterized in that the alcohol is methanol. In a preferred embodiment the present invention relates to a process as defined above, characterized in that in the process the initial molar ratio of alcohol to oil or fat is greater than 2 and less than 50. In a preferred embodiment, the present invention relates to a process as defined above, characterized in that the initial percentage in moles of catalyst to oil or fat is greater than 1 and less than 20.
Throughout the present invention, a halogen radical or its abbreviation halo means fluoro, chloro, bromo or iodo. The term "(Cio-05o) alkyl", as a group or part of a group, means a straight or branched chain alkyl group, saturated or unsaturated, ie, which may optionally contain one or more double bonds, containing from 10 to 50 carbon atoms. Preferably, the chain is branched. Examples include, but are not limited to, the 2-decenyl, undecanyl, 2,3-10-diundecenyl, 2-methyldecenyl, 2,3-dimethyldecyl, 2-methylun-5-decenyl, -CH (C17H35) (C16H33) or -CH groups. (C16H33) (C16H33) • The term "biodiesel"; refers to a liquid biofuel that is obtained from natural lipids such as vegetable oils or animal fats, through industrial processes of esterification and transesterification. The expression "optionally substituted by one or more"; means the possibility of a group being substituted by one or more, preferably by 1, 2, 3 or 4 substituents, more preferably by 1, 2 or 3 substituents and even more preferably by 1 or 2 substituents, provided said group has of enough available positions that can be replaced. If present, said substituents may be the same or different and may be located at any available position. Throughout the description and claims the word "comprises"; and its variants do not intend to exclude other technical characteristics, additives, components or steps. For those skilled in the art, other objects, advantages and features of the invention will be apparent in part from the description and in part from the practice of the invention. The invention thus relates to the compounds of formula I as defined above.
In another embodiment the invention relates to a compound of formula I, wherein each R1 independently represents (Cio-050) alkyl, preferably each R1 independently represents (C15-C40) alkyl, and most preferably each R1 independently represents -CH (C17H35 ) (C16H33) or -CH (C16H33) (C16H33) • In another embodiment the invention relates to a compound of formula I, wherein Cyi is selected from benzene. In another embodiment the invention relates to a compound of formula I, wherein n represents a value of 0 0 1, and preferably n represents a value of 0. In another embodiment, the invention relates to a compound of formula I, wherein m represents a value of 1 0 2, and preferably m represents a value of 1. In another embodiment the invention relates to a compound of formula I, wherein: each R1 independently represents (Cio-050) alkyl, preferably each R1 independently represents (C15-C40) alkyl, and more preferably each R1 independently represents -CH ( C17H35) (C16H33) or -CH (C16H33) (C16H33); and 25 Cyi is selected from benzene. In another embodiment the invention relates to a compound of formula I, wherein: each R1 independently represents (Cio-050) alkyl, preferably each R1 independently represents (C15-C40) alkyl, and more preferably each R1 independently represents -CH ( C17H35) (C16H33) or -CH (C16H33) (C16H33); Y
n represents a value of 0 6 1, and preferably n represents a value of 0. In another embodiment the invention relates to a compound of formula I, wherein: each R1 independently represents (Cio-050) alkyl, preferably each R1 independently represents (C15-C40) alkyl, and more preferably each R1 independently represents -cH ( c17H35) (c16H33) or -cH (c16H33) (c16H33); and m represents a value of 1 6 2, and preferably m represents a value of 10 1. In another embodiment the invention relates to a compound of formula I, wherein: Cyi is selected from benzene; And 15 n represents a value of 0 0 1, and preferably n represents a value of 0. In another embodiment the invention relates to a compound of formula I, wherein: Cyi is selected from benzene; And 20 m represents a value of 1 6 2, and preferably m represents a value of 1. In another embodiment the invention relates to a compound of formula I, wherein: n represents a value of 0 0 1, and preferably n represents a value of 0; and m represents a value of 1 6 2, and preferably m represents a value of 1. In another embodiment, the invention relates to a compound of formula I, wherein:
each R1 independently represents (C10-050) alkyl, preferably each R1 independently represents (C15-C40) alkyl, and more preferably each R1 independently represents -CH (C17H35) (C16H33) or -CH (C16H33) (C16H33); 5 Cyi is selected from benzene; And n represents a value of 0 6 1, and preferably n represents a value of 0. In another embodiment the invention relates to a compound of formula I, wherein: each R1 independently represents (Cio-050) alkyl, preferably each R1 independently represents (C15-C40) alkyl, and more preferably each R1 independently represents -CH ( C17H35) (C16H33) or -CH (C16H33) (C16H33); n represents a value of 0 0 1, and preferably n represents a value of 0; 15 and m represents a value of 1 6 2, and preferably m represents a value of 1. In another embodiment the invention relates to a compound of formula I, wherein: each R1 independently represents (Cio-050) alkyl, preferably each R1 independently represents (C15-C40) alkyl, and more preferably each R1 independently represents -CH ( C17H35) (C16H33) or -CH (C16H33) (C16H33); 25 Cyi is selected from benzene; And m represents a value of 1 6 2, and preferably m represents a value of 1. In another embodiment, the invention relates to a compound of formula I, wherein: Cyi is selected from benzene;
n represents a value of 0 6 1, and preferably n represents a value of 0; and m represents a value of 1 6 2, and preferably m represents a value of 1. In another embodiment the invention relates to a compound of formula I, wherein: each R1 independently represents (C10-050) alkyl, preferably each R1 independently represents (C15-C40) alkyl, and most preferably each R1 independently represents -CH (C17H35) (C16H33) or -CH (C16H33) (C16H33); Cyi is selected from benzene; n represents a value of 0 6 1, and preferably n represents a value of 0; and 15 m represents a value of 1 6 2, and preferably m represents a value of 1. In another embodiment, the invention relates to a compound of formula I, wherein: Cyi represents benzene; and is of formula ha: HO3S (R2) n R1 ha where: each R1 independently represents (C10-050) alkyl, wherein (Cio-050) alkyl is optionally substituted by one or more R3; each R2 independently represents -S03H;
each R3 independently represents halogen; and n represents a value between 0 and 1, preferably n represents a value of 0. In another embodiment, the invention relates to a compound of formula I, wherein: Cyi represents benzene; and is of formula ha: HO3S (R2) n R1 ha 10 where: each R1 independently represents (Cio-050) alkyl; each R2 independently represents -S03H; and n represents a value between 0 and 1, preferably n represents a value of 0. In another embodiment, the invention relates to a compound of formula I, wherein: Cyi represents benzene; and it is of formula ha: (R2) n \ Ri 1 HO3S R1 20 ha where:
each R1 independently represents (C15-C40) alkyl, preferably each R1 independently represents -CH (C17H35) (C16F133) -CH (C16H33) (C16H33); each R2 independently represents -S03H; and 5 n represents a value between 0 and 1, preferably n represents a value of 0. In another embodiment, the invention relates to a compound of formula I, wherein: Cyi represents benzene; and 10 is formula lib: (R2) n \ Ri 1 HO3S lib where: R1 represents (C10-050) alkyl, where (C10-050) alkyl is optionally substituted by one or more R3; each R2 independently represents -S03H; each R3 independently represents halogen; and n represents a value between 0 and 1, preferably n represents a value of 0. In another embodiment, the invention relates to a compound of formula I, wherein: Cyi represents benzene; and it is formula lib:
(R2) n \ Ri 1 HO3S lib where: R1 represents (C10-050) alkyl; Each R2 independently represents -S03H; and n represents a value between 0 and 1, preferably n represents a value of 0. In another embodiment, the invention relates to a compound of formula I, wherein: Cyi represents benzene; and is formula lib: (R2) n HO3S where: lib 15 R1 represents (C15-C40) alkyl, preferably R1 represents -CH (C17H35) (C16H33) or -CH (C16H33) (C16H33); each R2 independently represents -S03H; and n represents a value between 0 and 1, preferably n represents a value of 0. Also, the present invention covers all possible combinations of the particular and preferred embodiments described above.
In another embodiment, the invention relates to a compound of formula I selected from: Ci7H35 HO3S Cl6H33; and C16H33 C16H33 C16H33 Cl6H33 HO S 5 Compounds of the present invention can complex with solvents in which they are reacted or from which they are precipitated or crystallized. These complexes are known as solvates. As used herein, the term "solvate" refers to a complex of variable stoichiometry formed by a solute (a compound of formula I) and a solvent. Examples of solvents include pharmaceutically acceptable solvents such as water, ethanol and the like. A complex with water is known as a hydrate. The solvates of the compounds of the invention (or their salts), including hydrates, are included within the scope of the invention. The compounds of formula I can exist in different physical forms, ie in amorphous form and crystalline forms. Also, the compounds of the present invention may have the ability to crystallize in more than one way, a feature known as a polymorphism. The polymorphs 20 can be differentiated by various physical properties well known to those skilled in the art such as, for example, X-ray diffractograms, melting points or solubility. All physical forms of the compounds of formula I, including all their polymorphic forms ("polymorphs"), are included within the scope of the present invention. The compounds of formula I can be obtained by following the procedures described below. As will be evident for a
Expert in the field, the precise method used for the preparation of a given compound may vary depending on its chemical structure. Likewise, in some of the procedures detailed below it may be necessary or convenient to protect the reactive or labile groups 5 by conventional protecting groups. Both the nature of said protecting groups and the methods for their introduction and removal are well known and form part of the state of the art (see, for example, Wuts P. G. M and Greene T. W. , "Greene's Protective Groups in Organic Synthesis", John Wiley & Sons, 4th edition, 2006). 10 Whenever a protective group is present, a subsequent deprotection stage will be necessary, which is carried out under the usual conditions in organic synthesis, such as those described in the reference mentioned above. Unless otherwise indicated, in the methods described below the meanings of the various substituents are the meanings described above in relation to a compound of formula I. In general, the compounds of formula I can be obtained by the method described in the scheme 1: 0 (Ri) ml-cyi! (± R5x to R4 OH (R1) mi-CYl * R5 R4 IV v VI R5 C ( Ri) mi-CY1- R4 VII R5 (R1) mi-CY1- (R4 VIII 25 Scheme 1 bd (R2) n 6Y I-103S 1 --- (R1) mi
where R1, R2, n and m have the meaning described above in relation to a compound of formula I, X represents a halogen group and R4 and R5 independently represent (C10-050) alkyl optionally substituted by one or more R3 (where R3 has the meaning described above in relation to a compound of formula I). In a first step (step a), a compound of formula IV reacts with a compound of formula V in the presence of magnesium and iodine in a solvent, preferably diethyl ether to obtain a compound of formula VI. In a step b, a compound of formula VI is transformed into a compound of formula VII in the presence of an acid, such as pTs0H by heating, preferably under reflux, and in the presence of a solvent, such as toluene. In step c, a reduction of a compound of formula VII occurs in the presence of a reducing agent, such as H2, Pd / C, in a solvent, such as ethanol or tetrahydrofuran, preferably at a temperature of 20-20 ° C. and 40 ° C obtaining a compound of formula VIII. In step d, a compound of formula VIII reacts in the presence of an acid, such as 20% fumed sulfuric acid, in a solvent, such as dichloromethane, to obtain a compound of formula I. As mentioned above, the invention describes active sulfonic acid derivatives in esterification and transesterification reactions which, consequently, can catalyze the transformation of natural oils and fats into biodiesel. Particularly, the invention relates to a compound of a suitable molecular size and structure to be miscible with the oils or fats that form the oil phase in the reaction mixture in the transesterification reactions. Due
if the compound is soluble in the oil phase of the reaction mixture, the transesterification reaction takes place mostly in this phase and the reaction rate is much higher than in the case of transesterifications catalyzed with mineral acids in which the reaction takes place in the alcohol phase, in which case the reaction rate is limited by the rate of transfer of the oil material from the oil phase to the alcohol phase. This catalyst is able to catalyze this transesterification at 10 temperatures of 60 ° C, with a yield close to 100%, in less than 6 hours. The acid character of this catalyst allows it to work with low cost raw materials containing a significant percentage of free fatty acids and water. The following figures and examples are provided by way of illustration, and are not intended to be limiting of the present invention. BRIEF DESCRIPTION OF THE FIGURES 20 Figure 1. - Figure 1 shows a comparison of the conversions to FAME achieved with the three catalysts of examples 1, 2 and 3. EXAMPLES Example 1: Synthesis of acid 4- (tetratriacontane-17-yl) benzenesulfonic Ci7F135 HO3S Cl6H33 A solution of 1-phenyloctadecane-1-one (26.5 g, 77 mmol) in diethylether (100 mL) was added drop Exhausts a Grignard reagent prepared from
a mixture of 1-iodohexadecane (2.0 g, 5.7 mmol) and 1-chlorohexadecane (27.6 g, 106 mmol) with magnesium swarf (7.5 g) and a small crystal of iodine in ether (80 mL). After the addition, the reaction mixture was stirred at room temperature for 12 h. The mixture was then treated with ice and acidified with 2M HCl. The aqueous phase was discarded and the organic phase was dried with Na 2 SO 4 and the solvent was evaporated to dryness. The residue was purified by silica gel column chromatography using methylene chloride as eluent, yielding the corresponding alcohol 17-phenyltetratriacontan-17-ol, as a white solid 10 (37.4 g, 85% yield). This alcohol (13.7 g, 24 mmol) and a catalytic amount of p-toluenesulfonic acid (162 mg, 0.94 mmol) were refluxed with toluene (280 mL) until all the water was removed. The mixture was washed with aqueous NaHCO3 and the toluene was evaporated under reduced pressure. The crude residue was purified by column chromatography with hexane as eluent to yield 11.0 g (83% yield) of the dehydrated compound. This unsaturated compound (11.0 g, 19.9 mmol) was dissolved in THF (40 mL) and hydrogenated (4 bar) in the presence of Pd / C (5%) (450 mg) at room temperature. After 20 to 12 hours, the catalyst was filtered and the solvent was removed. Percolation with silica gel produced the expected saturated hydrocarbon, tetratriacontan-17-ylbenzene (9.40 g, 85%). Finally sulfuric acid was added (20% SO3, 6.8 g) to a solution of tetratriacontan-17-ylbenzene (9.40 g, 17 mmol) in dry CH2Cl2 (100 mL). After stirring for 5 minutes, the 1H NMR analysis of an aliquot revealed that the reaction had ended. Ice was then added to the reaction mixture and the phases were separated. The organic layer was dried over cellulose and the solvent was removed under reduced pressure to obtain 10.5 g (98%) of the desired compound as a white solid.
p. F. 33-35 ° C. 1 H NMR (200 MHz, CDCl 3): 6 = 7.74 (d, J = 8.0 Hz, 2H); 7.16 (d, J = 8.0 Hz, 2H); 2.50 (m, 1H); 1.50 (m, 4H); 1.25 (s, 58H); 0.88 (t, J = 6.6 Hz, 6H); 13 C NMR (50 MHz, CDCl 3): 6 = 151.1; 138.7; 128.2; 126.3; 46.3; 36.9; 32.2; 30.0; 29.8; 29.6; 27.8; 22.9; 14,3; IR (nujol): v = 3409, 2916, 2851, 5 1735, 1469, 1378, 1150, 1041, 1002 cm-1; HR-MS: m / z = 679.5065, calculated for C40H73Na203S [M-H + Na] + Na +: 679.5070. Example 2: Synthesis of acid-4-octadecylbenzenesulfonic acid HO3S Cl8H37 The acid chloride of stearic acid is first prepared, for which stearic acid (13.0 g, 45.6 mmol) in thionyl chloride is refluxed. (30 mL) until bubbles stop coming out. Evaporate at reduced pressure to obtain the acid chloride (13.8 g, 100%), which is reacted with benzene (30 mL) and AlC13 (8.0 g, 60 mmol) at 0 ° C. Then add on a 1: 1 HCl / H20 solution. The compound, 1-phenyloctadecane-1-one, is purified by chromatography on silica gel with hexane and methylene chloride. In the next step, the obtained ketone (2.0 g, 5.8 mmol) is refluxed for 10 minutes with Zn (6.0 g, 91.7 mmol), in the presence of methanesulfonic acid (10 mL) and acid ° acetic ° (10 mL). Then, if there remain traces of the double bond, it may be necessary to add 25 methachloroperbenzoic acid in methylene chloride to generate the epoxide, and carry out the purification by chromatography on silica gel with hexane. Octadecylbenzene (1. 5 g, 70%). In the last step, sulfuric acid smoker (20% SO3, 6.7 g) was added to a solution of octadecylbenzene (5. 6 g, 16 9 mmol) in chloride
dry methylene (50 mL). Subsequently, ice is added, the organic phase is separated and dried with paper. Finally, the organic phase is evaporated off under reduced pressure to obtain the desired compound (6.8 g, 98%). Example 3: Synthesis of acid 2,4-di (tritriacontan-17-M-benzenesulfonic C 16 H 33 C 16 H 33 C 16 H 33 C 6 H 33 HO 3 S A solution of dimethyl isophthalate (3.9 g, 20.2 mmol) in diethylether (30 mL) added dropwise to a Grignard reagent prepared from a mixture of 1-iodohexadecane (2.1 g, 6 mmol) and 1-chlorohexadecane (28.4, 109 mmol), magnesium (8. 0 g) and a small crystal of iodine in ether (80 mL). After the addition, the resulting mixture was stirred for 12 hours at room temperature. Then, the reaction mixture was worked in the same manner as in the case of Example 1, yielding the corresponding diol 17, 17- (1,3-phenylene) dithriatriacontan-17-ol (19.0 g, 89% ). This diol (17.0 g, 16.5 mmol) was dehydrated with acid-p-toluenesulphonic acid under reflux in toluene, following the same procedure as in Example 1, generating the unsaturated hydrocarbon (16.0 g, 96%) . Hydrogenation of this compound (7.0 g, 7.0 mmol) was carried out in THF (40 mL) with a hydrogen pressure of 4 bar at 40 ° C with Pd / C (5%) (500 mg). in 12 hours. The catalyst was removed by filtration, the solvent was evaporated and the residue was purified by percolating through a silica gel column (hexane as eluent) to yield the saturated hydrocarbon, 1,3-di (tritriacontan-17-yl) benzene (6.1 g, 86%).
The sulfonation of this compound (6.1 g, 6 mmol) was carried out under the conditions previously described in example 1, yielding the expected compound (6.2 g, 96%) as a white solid. 5 p. F. 79-80 ° C. 1 H NMR (200 MHz, CDCl 3): 6 = 7.85 (d, J = 8.4 Hz, 2H); 7.14 (s, 1H); 7.00 (d, J = 8.4 Hz, 2H); 2.51 (m, 2H); 1.60 (m, 8H); 1.25 (s, 112H); 0.88 (t, J = 6.4 Hz, 12H); 13 C NMR (50 MHz, CDCl 3): 6 = 151.8; 146.5; 135.7; 128.2; 127.7; 124.9; 50.9; 46.2; 40.6; 37.1; 36.9; 32.2; 30.4; 30.0; 29.9; 29.6; 27.8; 27.6; 22.9; 14,3; IR (nujol): v = 3403, 2916, 2365, 1599, 1456, 1378, 10 1314, 1164, 1074, 1002, 892, 710 cm-1; HR-MS: m / z = 1128.0108, calculated for C72H13803S [M-H-FNa] Na +: 1128.0078. Example 4: Application of the catalyst in the synthesis of biodiesel 15 The effect of some operating variables on the performance of the reaction has been studied. Commercial edible sunflower oil has been used as triglyceride and as alcohol methanol with a purity greater than 99.8%. The catalyst used corresponds to the compound synthesized in Example 1. The experiments have been carried out with different values of the following operating conditions: temperatures from 40 to 80 ° C, the initial molar ratio between methanol and triglyceride has varied from 1.24 to 24.76 and the molar percentage of the 1 to 11% with respect to triglyceride. The transesterification reactions were carried out in closed vials of stirred and thermostated 20 ml, in which 5 grams of oil were always split and the corresponding proportions of catalyst and methanol were according to the table of experiments (Table 1) in which also collects in the last 30 column the conversion to fatty acid methyl ester (Fat acid methyl esther, FAME)
Coded values Real Values Methanol (mol Catalyst Conversion Tempe-Tempe- Meta- Catalytic (% molar FAME,% g rater ratio nol zador each respect to 7 hours ° C mol oil) 0 1,68 0 50 24,76 6 60 -1 1 1 40 20 9 48 0 0 0 50 13 6 64 1 1 -1 60 20 3 79 -1.68 0 0 33.2 13 6 25 -1 -1 -1 40 6 3 20 0 0 0 50 13 6 60 1 1 1 60 20 9 89 1 -1 -1 60 6 3 62 0 0 1.68 50 13 11.04 86 -1 1 -1 40 20 3 19 0 -1.68 0 50 1.24 6 39 0 0 -1.68 50 13 0.96 11 0 0 0 50 13 6 66 1 -1 1 60 6 9 88 1.68 0 0 66.8 13 6 94 0 0 0 50 13 6 61 -1 - 1 1 40 6 9 60 0 0 0 50 13 6 61 Table 1
5 In table 1 it can be seen that with the catalyst of example 1, yields higher than 90% can be reached at approximately 67 ° C in 7 hours. The samples were analyzed by 1 H NMR. These results have been subjected to multiple linear regression and the following model has been obtained that allows predicting the conversion as a function of the coded values of the operation variables. 10 FAME = 33.1 + 16.3. T + 12.13. Cat + 4.0. T. Cat 15 Being FAME the conversion percentage to biodiesel, and T and Cat the values, in units coded according to Table 1, of the temperature and the percentage in moles of catalyst with respect to the oil respectively. Example 5: Conversions to FAME Figure 1 shows a comparison of the conversions to FAME achieved with the three catalysts of examples 1, 2 and 3 whose synthesis 20 has been described above. The ratio of methanol to triglyceride was 6/1 and the temperature 60 ° C.