ES2387791A1 - Method for capturing co2 - Google Patents
Method for capturing co2 Download PDFInfo
- Publication number
- ES2387791A1 ES2387791A1 ES201130296A ES201130296A ES2387791A1 ES 2387791 A1 ES2387791 A1 ES 2387791A1 ES 201130296 A ES201130296 A ES 201130296A ES 201130296 A ES201130296 A ES 201130296A ES 2387791 A1 ES2387791 A1 ES 2387791A1
- Authority
- ES
- Spain
- Prior art keywords
- sorbent
- page
- lines
- absorption
- carried out
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 66
- 239000002594 sorbent Substances 0.000 claims abstract description 58
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 12
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 152
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 76
- 238000010521 absorption reaction Methods 0.000 claims description 34
- 230000008569 process Effects 0.000 claims description 34
- 239000007787 solid Substances 0.000 claims description 22
- 239000012530 fluid Substances 0.000 claims description 19
- 238000003795 desorption Methods 0.000 claims description 18
- 230000008929 regeneration Effects 0.000 claims description 12
- 238000011069 regeneration method Methods 0.000 claims description 12
- 150000001414 amino alcohols Chemical class 0.000 claims description 11
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 claims description 9
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 claims description 8
- 239000001569 carbon dioxide Substances 0.000 claims description 6
- 238000005516 engineering process Methods 0.000 claims description 6
- 150000001412 amines Chemical class 0.000 claims description 5
- 239000011148 porous material Substances 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 4
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 claims description 3
- LVTYICIALWPMFW-UHFFFAOYSA-N diisopropanolamine Chemical compound CC(O)CNCC(C)O LVTYICIALWPMFW-UHFFFAOYSA-N 0.000 claims description 3
- 229940043276 diisopropanolamine Drugs 0.000 claims description 3
- CRVGTESFCCXCTH-UHFFFAOYSA-N methyl diethanolamine Chemical compound OCCN(C)CCO CRVGTESFCCXCTH-UHFFFAOYSA-N 0.000 claims description 3
- -1 diglylamine Chemical compound 0.000 claims description 2
- 230000009467 reduction Effects 0.000 claims description 2
- 239000000758 substrate Substances 0.000 claims description 2
- XILIYVSXLSWUAI-UHFFFAOYSA-N 2-(diethylamino)ethyl n'-phenylcarbamimidothioate;dihydrobromide Chemical compound Br.Br.CCN(CC)CCSC(N)=NC1=CC=CC=C1 XILIYVSXLSWUAI-UHFFFAOYSA-N 0.000 claims 1
- 238000010306 acid treatment Methods 0.000 claims 1
- 230000000694 effects Effects 0.000 claims 1
- 239000002086 nanomaterial Substances 0.000 claims 1
- 238000010926 purge Methods 0.000 claims 1
- 239000007789 gas Substances 0.000 description 20
- 239000000463 material Substances 0.000 description 8
- 238000002485 combustion reaction Methods 0.000 description 7
- 238000001179 sorption measurement Methods 0.000 description 5
- 239000008187 granular material Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000012621 metal-organic framework Substances 0.000 description 4
- 239000006096 absorbing agent Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000010355 oscillation Effects 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 239000013110 organic ligand Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920000768 polyamine Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000002144 chemical decomposition reaction Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000009533 lab test Methods 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009919 sequestration Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000002336 sorption--desorption measurement Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
- B01D53/04—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
- B01D53/0407—Constructional details of adsorbing systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/14—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
- B01D53/1456—Removing acid components
- B01D53/1475—Removing carbon dioxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/62—Carbon oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/81—Solid phase processes
- B01D53/82—Solid phase processes with stationary reactants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/06—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
- B01J20/08—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3202—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
- B01J20/3204—Inorganic carriers, supports or substrates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3231—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
- B01J20/3242—Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
- B01J20/3244—Non-macromolecular compounds
- B01J20/3246—Non-macromolecular compounds having a well defined chemical structure
- B01J20/3248—Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one type of heteroatom selected from a nitrogen, oxygen or sulfur, these atoms not being part of the carrier as such
- B01J20/3251—Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one type of heteroatom selected from a nitrogen, oxygen or sulfur, these atoms not being part of the carrier as such comprising at least two different types of heteroatoms selected from nitrogen, oxygen or sulphur
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/10—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/10—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
- F28D7/106—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/12—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
- F28F1/14—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
- F28F1/16—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally the means being integral with the element, e.g. formed by extrusion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/50—Carbon oxides
- B01D2257/504—Carbon dioxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2259/00—Type of treatment
- B01D2259/40—Further details for adsorption processes and devices
- B01D2259/403—Further details for adsorption processes and devices using three beds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
- B01D53/04—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
- B01D53/0462—Temperature swing adsorption
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Thermal Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Inorganic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Geometry (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Gas Separation By Absorption (AREA)
- Treating Waste Gases (AREA)
Abstract
Description
Procedimiento de captura de CO2.. CO2 capture procedure ..
La presente invención se refiere a un procedimiento para la captura de CO2, en un circuito de tratamiento de gases en reactores de lecho fijo con soportes de alúmina impregnada con aminoalcoholes, en condiciones de TSA, de PSA y arrastre de vapor combinadas. The present invention relates to a process for the capture of CO2, in a gas treatment circuit in fixed-bed reactors with alumina supports impregnated with amino alcohols, under conditions of TSA, PSA and steam entrainment combined.
Actualmente, todas las plantas de captura de CO2 post-combustión utilizan procedimientos basados en la absorción química con un disolvente acuoso de alcanolamina, monoetanolamina (MEA) y dietanolamina (DEA) son los disolventes más frecuentes. Sin embargo, tienen numerosos inconvenientes para tratar las corrientes gaseosas, entre los que se incluyen la gran cantidad de calor requerido para regenerar el disolvente y los problemas de funcionamiento producidos por la corrosión y la degradación química, que dan como resultado elevados costes de capital y funcionamiento. En total, un 75–80% del coste de captura y secuestro del 90% del CO2 procedente de una planta de producción de energía eléctrica es atribuible a la etapa de captura y compresión. Resulta por tanto crucial el desarrollo de unos medios de captura del CO2 a bajo coste para secuestrar emisiones de CO2 a escala industrial. Currently, all post-combustion CO2 capture plants use procedures based on chemical absorption with an aqueous solvent of alkanolamine, monoethanolamine (MEA) and diethanolamine (DEA) are the most frequent solvents. However, they have numerous drawbacks for treating gaseous streams, including the large amount of heat required to regenerate the solvent and the operating problems caused by corrosion and chemical degradation, which result in high capital costs and functioning. In total, 75–80% of the capture and sequestration cost of 90% of the CO2 from an electric power production plant is attributable to the capture and compression stage. It is therefore crucial to develop means of capturing CO2 at low cost to sequester CO2 emissions on an industrial scale.
Se considera que la absorción química en sorbentes sólidos regenerables es una de las tecnologías más prometedoras para capturar el CO2 procedente de corrientes gaseosas, debido a que permitiría una reducción del consumo de energía, se podrían disminuir la capacidad calorífica y la temperatura de regeneración del sorbente sólido. It is considered that chemical absorption in regenerable solid sorbents is one of the most promising technologies to capture CO2 from gaseous streams, because it would allow a reduction in energy consumption, the heat capacity and regeneration temperature of the sorbent could be reduced solid.
Recientemente, se ha descrito acerca de sorbentes regenerables basados en sustratos para la captura de CO2 postcombustión en corrientes gaseosas procedentes de plantas de energía eléctrica alimentadas con combustibles fósiles. Se han empleado varios procedimientos diferentes para sintetizar quimiosorbentes sólidos para la captura de CO2 [WO2009/061470]. También se describe el uso de aminas o poliaminas injertadas sobre un soporte sólido nanodimensionado para mejorar algunas características de los sorbentes gaseosos en la fase sólida. Por ejemplo, un procedimiento para crear quimiosorbentes de CO2 se basa en la inserción de grupos amina en soportes de sílice mesoporosa nanoestructurada [US 5087597]. Recently, it has been described about regenerable sorbents based on substrates for the capture of CO2 after combustion in gaseous streams from electric power plants fueled with fossil fuels. Several different methods have been used to synthesize solid chemosorbents for CO2 capture [WO2009 / 061470]. The use of grafted amines or polyamines on a nano-sized solid support to improve some characteristics of the gaseous sorbents in the solid phase is also described. For example, a procedure for creating CO2 chemosorbents is based on the insertion of amine groups into nanostructured mesoporous silica supports [US 5087597].
Se ha propuesto también una hipótesis adicional, denominada “envoltura molecular” (o en inglés “molecular basket”) en la que se emplean sílices mesoporosas nanoestructuradas, donde se utiliza como material de soporte nanosílice porosa, con un gran volumen de poro con el fin de obtener una elevada capacidad de adsorción mientras que para aumentar la selectividad y afinidad del adsorbente por el CO2, se introducen en los poros las poliaminas, las cuales presentan una gran afinidad por el CO2 [US 7795175]. An additional hypothesis has also been proposed, called "molecular envelope" (or "molecular basket" in English) in which nanostructured mesoporous silicas are used, where porous nanosilica support material is used, with a large pore volume for the purpose. to obtain a high adsorption capacity while to increase the selectivity and affinity of the adsorbent for CO2, polyamines are introduced into the pores, which have a high affinity for CO2 [US 7795175].
Otros materiales empleados recientemente para atrapar dióxido de carbono son los materiales reticulares metalorgánico (MOF). Los MOF son estructuras nanocristalinas compuestas por componentes orgánicos e inorgánicos dispuestos en una estructura de red cristalina. Estas estructuras se construyen utilizando un núcleo o eje metálico iónico, al cual se unen ligandos orgánicos. Las longitudes de los ligandos orgánicos definen el volumen de los huecos, el diámetro de los poros de la red cristalina, y la geometría del hueco. La capacidad de adsorción física y la selectividad del MOF dependen de estos parámetros. Los esqueletos organometálicos son más adecuados para la adsorción por oscilación de presión (PSA) con una presión de carga (15/40 bar, 1500/4000 kPa) y desorción a presión atmosférica. Se han preparado también MOF con funcionalidades amina no coordinadas en el interior de los poros en un esfuerzo por mejorar los rendimientos en la aplicación del procedimiento de quimiosorción y la adsorción por oscilación de temperatura (TSA). Other materials recently used to trap carbon dioxide are metalorganic reticular materials (MOF). MOFs are nanocrystalline structures composed of organic and inorganic components arranged in a crystalline network structure. These structures are constructed using an ionic metal core or axis, to which organic ligands bind. The lengths of the organic ligands define the volume of the gaps, the diameter of the pores of the crystalline lattice, and the geometry of the gap. The physical adsorption capacity and the selectivity of the MOF depend on these parameters. Organometallic skeletons are more suitable for pressure swing adsorption (PSA) with a loading pressure (15/40 bar, 1500/4000 kPa) and atmospheric pressure desorption. MOFs with uncoordinated amine functionalities inside the pores have also been prepared in an effort to improve yields in the application of the chemosorption process and temperature oscillation adsorption (TSA).
Todos los materiales anteriormente mencionados requieren síntesis complejas, y su producción a escala industrial resulta cara. Considerando que la aplicación para la captura de CO2 en una planta de energía eléctrica necesita grandes cantidades de materiales, serían necesarias metodologías de preparación baratas y simples para preparar sorbentes sólidos. All the aforementioned materials require complex syntheses, and their production on an industrial scale is expensive. Considering that the application for the capture of CO2 in an electric power plant requires large quantities of materials, cheap and simple preparation methodologies would be necessary to prepare solid sorbents.
Independientemente de la tipología de los materiales empleados, un aspecto crítico se refiere a la definición de un procedimiento adecuado para la captura del CO2 post-combustión mediante sorbentes sólidos en una planta de energía eléctrica. Para una eficaz recuperación del CO2 ha de emplearse una gran cantidad de sorbente sólido en un procedimiento que proporcione una caída de presión baja y una fácil regeneración del sorbente, debido a una elevada concentración de CO2 y del caudal de las corrientes gaseosas de la planta de energía eléctrica. Regardless of the typology of the materials used, a critical aspect refers to the definition of a suitable procedure for the capture of post-combustion CO2 by solid sorbents in an electric power plant. For an efficient recovery of CO2, a large amount of solid sorbent must be used in a process that provides a low pressure drop and easy regeneration of the sorbent, due to a high concentration of CO2 and the flow of the gaseous streams of the plant. electric power.
La tipología del procedimiento de captura del CO2 con sorbente sólido depende del tamaño de partículas del material empleado. En el caso de emplear sorbentes en forma de polvo se genera una caída de presión elevada lo que hace que se necesite un lecho fluidizado, en este caso, el procedimiento empleado normalmente es un equipo lavador de gases, de lecho fluidizado en circulación, con una parte del sorbente transportado por el mismo flujo de gas en un dispositivo separado donde el sorbente se regenera calentándolo y a continuación se enfría y se vuelve a recircular en el absorbedor. The typology of the CO2 capture procedure with solid sorbent depends on the particle size of the material used. In the case of using sorbents in the form of a powder, a high pressure drop is generated which means that a fluidized bed is needed, in this case, the procedure normally used is a gas washing equipment, of a fluidized bed in circulation, with a part of the sorbent transported by the same gas flow in a separate device where the sorbent is regenerated by heating it and then cooled and recirculated in the absorber.
Por otro lado, cuando se usa un sorbente en forma de gránulos se genera una caída de presión menor y en este caso se emplearía un procedimiento de lecho fijo. Sin embargo, con el fin de llevar a cabo la etapa de regeneración, se suele emplear un lecho móvil para el uso de gránulos, donde el sorbente se recircula continuamente entre el absorbedor y el desorbedor para proporcionar un suministro continuo de material regenerado. On the other hand, when a sorbent in the form of granules is used, a lower pressure drop is generated and in this case a fixed bed procedure would be employed. However, in order to carry out the regeneration step, a mobile bed is usually used for the use of granules, where the sorbent is continuously recirculated between the absorber and the desorber to provide a continuous supply of regenerated material.
Ambas soluciones de procedimiento, tanto de lecho fluidizado como lecho móvil, tienen inconvenientes respecto a un lecho fijo: el lecho fluidizado y el móvil presentan una menor eficacia de captura que el lecho fijo y producen una pérdida de masa de sorbente por rozamiento y/o abrasión. Además, la difusión hacia el exterior desde la porosidad del sólido del CO2 liberado, desde el sorbente durante la regeneración podría no producirse espontáneamente únicamente por aumento de la temperatura y habrían de aplicarse también a continuación arrastre de vapor y/o despresurización a vacío. La necesidad de arrastre de gas y/o empleo de vacío hacen más difícil trabajar con procedimientos basados en un lecho fluido o en movimiento. Both procedural solutions, both fluidized bed and mobile bed, have drawbacks with respect to a fixed bed: the fluidized bed and the mobile bed have a lower capture efficiency than the fixed bed and cause a loss of mass of friction sorbent and / or abrasion. In addition, diffusion outwards from the porosity of the solid of the CO2 released, from the sorbent during regeneration, could not occur spontaneously only due to the increase in temperature and then steam entrainment and / or vacuum depressurization should also be applied. The need for gas entrainment and / or use of vacuum makes it more difficult to work with procedures based on a fluid or moving bed.
La presente invención proporciona procedimiento para la captura de CO2 que comprende un circuito de tratamiento de corrientes gaseosas, empleando para ello reactores de lecho fijo en unas condiciones de TSA (absorción con oscilación de la temperatura), PSA (absorción con oscilación de la presión) y arrastre de vapor combinadas. The present invention provides a method for capturing CO2 comprising a gas stream treatment circuit, using fixed-bed reactors under conditions of TSA (temperature oscillation absorption), PSA (pressure oscillation absorption) and steam entrainment combined.
Un aspecto de la presente invención se refiere a un procedimiento de captura de CO2 en un circuito de tratamiento de una corriente gaseosa, en al menos dos reactores de lecho fijo (a partir de ahora procedimiento de la invención), que comprende las etapas: One aspect of the present invention relates to a CO2 capture process in a gas stream treatment circuit, in at least two fixed-bed reactors (from now on the process of the invention), which comprises the steps:
a) absorción del CO2 procedente de la corriente gaseosa, a una temperatura de entre 20 y 60ºC (condiciones TSA). Los reactores de lecho fijo poseen un sorbente en el cual se va a absorber el CO2. Esta etapa de absorción del CO2 es una quimio-absorción exotérmica, por lo que los reactores pueden enfriarse para conseguir una captura del CO2 más eficaz y alargar el tiempo de absorción, a) CO2 absorption from the gas stream, at a temperature between 20 and 60 ° C (TSA conditions). Fixed bed reactors have a sorbent in which CO2 is to be absorbed. This stage of CO2 absorption is an exothermic chemo-absorption, so the reactors can be cooled to achieve a more efficient CO2 capture and lengthen the absorption time,
b) desorción del CO2 a una temperatura de entre 60 y 120ºC, una presión de entre 0,08 y 0,8 atm y un caudal de arrastre de vapor de entre 5 y 25% en volumen de la desorbida CO2 (combinación de condiciones TSA, PSA y arrastre de gas). En esta etapa se produce la regeneración del sorbente cuando se alcanza la capacidad de saturación del CO2, y b) desorption of CO2 at a temperature between 60 and 120 ° C, a pressure between 0.08 and 0.8 atm and a steam flow rate of between 5 and 25% by volume of the desorbed CO2 (combination of TSA conditions , PSA and gas drag). At this stage the regeneration of the sorbent occurs when the saturation capacity of the CO2 is reached, and
c) reacondicionamiento del sorbente a una temperatura de entre 20 y 60ºC. c) reconditioning of the sorbent at a temperature between 20 and 60 ° C.
El procedimiento de la invención es un proceso discontinuo basado en un circuito de tratamiento de gases, sin embargo, al estar los reactores de lecho fijo funcionando alternativamente como dispositivo de absorción o de desorción, controlando la relación entre el caudal y las condiciones de cada etapa del procedimiento, se pueden acoplar temporalmente los tiempos de absorción y de desorción de forma que sean similares, obteniéndose un proceso de captura continua de CO2. Esta optimización de los tiempos reduce el número de reactores necesarios para la captura de CO2. En una realización preferida en el procedimiento de la invención se pueden igualar los tiempos de desorción a los de absorción gracias a la combinación de TSA, PSA y arrastre de vapor. The process of the invention is a discontinuous process based on a gas treatment circuit, however, since the fixed bed reactors are working alternately as an absorption or desorption device, controlling the relationship between the flow rate and the conditions of each stage. of the procedure, the absorption and desorption times can be temporarily coupled so that they are similar, obtaining a continuous CO2 capture process. This optimization of the times reduces the number of reactors necessary for the capture of CO2. In a preferred embodiment in the process of the invention, desorption times can be matched to absorption times thanks to the combination of TSA, PSA and steam entrainment.
El gas de arrastre puede ser cualquier gas conocido por un experto en la materia aunque preferiblemente se emplea vapor de agua o nitrógeno. The entrainment gas may be any gas known to a person skilled in the art, although water vapor or nitrogen is preferably used.
En otra realización el procedimiento de la invención comprende tres reactores de lecho fijo. In another embodiment the process of the invention comprises three fixed bed reactors.
Los reactores de lecho fijo presentan la ventaja de que son más eficaces, más fáciles de operar y de optimizar. Fixed bed reactors have the advantage that they are more efficient, easier to operate and optimize.
Preferiblemente, el lecho fijo de los reactores comprende un sorbente de alúmina pelletilizada impregnada con al menos un aminoalcohol. Más preferiblemente, el aminoalcohol se selecciona de entre dietanolamina (DEA), monoetanolamina (MEA), diglicolamina (DGA), diisopropanolamina (DIPA), metildietanolamina (MDEA), trietanolamina (TEA) o cualquiera de sus combinaciones. Más preferiblemente, el aminoalcohol es dietanolamina. Más preferiblemente el contenido en aminoalcohol es de entre el 30 al 40% en peso respecto al total de sorbente. Preferably, the fixed bed of the reactors comprises a pelletilized alumina sorbent impregnated with at least one amino alcohol. More preferably, the amino alcohol is selected from diethanolamine (DEA), monoethanolamine (MEA), diglylamine (DGA), diisopropanolamine (DIPA), methyldiethanolamine (MDEA), triethanolamine (TEA) or any combination thereof. More preferably, the amino alcohol is diethanolamine. More preferably, the amino alcohol content is between 30 and 40% by weight with respect to the total sorbent.
Por “alúmina pelletilizada” en la presente invención se entiende aquel sólido de alúmina finamente dividido en polvo, que se ha transformado en unas partículas más grandes y de naturaleza estable a la temperatura, humedad y presión mecánica. By "pelletilized alumina" in the present invention is meant that alumina solid finely divided into powder, which has been transformed into larger particles and of a stable nature at temperature, humidity and mechanical pressure.
En una realización preferida, el control de temperatura y presión de las etapas (a), (b) y (c) se realiza mediante intercambiadores de calor que contienen tubos dotados de aletas. En una realización más preferida los tubos dotados de aletas son de aluminio con geometría tubular. (Véase figuras 1 y 2). In a preferred embodiment, the temperature and pressure control of steps (a), (b) and (c) is carried out by heat exchangers containing finned tubes. In a more preferred embodiment the finned tubes are made of aluminum with tubular geometry. (See figures 1 and 2).
En una realización preferida el intercambiador de calor utilizado en el procedimiento de la invención, está caracterizado porque comprende: In a preferred embodiment the heat exchanger used in the process of the invention is characterized in that it comprises:
- --
- un tubo (1) para la circulación del fluido termal que comprende unas aletas radiales longitudinales (2) y una cavidad interna (4) por donde circula un fluido térmico, a tube (1) for the circulation of the thermal fluid comprising longitudinal radial fins (2) and an internal cavity (4) through which a thermal fluid circulates,
- --
- una pared que envuelve los extremos libres de las aletas radiales, comprendiendo la pared, una pared interna (6), una pared externa (5) y una camisa aislante entre ambas (7) a wall that wraps the free ends of the radial fins, comprising the wall, an internal wall (6), an external wall (5) and an insulating jacket between them (7)
estando configurado el tubo, las aletas y la pared interna de modo que entre ellos se localiza un sorbente sólido pelletizado (3) por el cual fluye el gas que contiene el CO2. Más preferiblemente el intercambiador de calor además comprende un termopar (8) para la medida de la temperatura del proceso. the tube, the fins and the inner wall being configured so that between them a solid pelletized sorbent (3) is located through which the gas containing the CO2 flows. More preferably, the heat exchanger further comprises a thermocouple (8) for measuring the process temperature.
De esta forma el diseño del intercambiador es tal que no se produce contacto directo entre el sorbente y los fluidos térmicos del intercambiador de calor (véase figura 3). Con ello se evita la degradación del sorbente, ya que tiene impregnados aminoalcoholes. Una posibilidad de realización del intercambiador de calor se ilustra a modo de ejemplo y sin carácter limitante de la invención en la figura 3. In this way the design of the exchanger is such that there is no direct contact between the sorbent and the thermal fluids of the heat exchanger (see Figure 3). This prevents degradation of the sorbent, since it has impregnated amino alcohols. An embodiment of the heat exchanger is illustrated by way of example and without limitation of the invention in Figure 3.
Con este sorbente de alúmina impregnada con aminoalcohol se consigue que el procedimiento de la invención presente una elevada selectividad y capacidad de absorción del CO2. With this alumina sorbent impregnated with amino alcohol, the process of the invention has a high selectivity and CO2 absorption capacity.
El fluido térmico que fluye en el interior del tubo dotado con aletas del intercambiador de calor, puede calentar (o enfriar) por conducción el sorbente colocado en las cavidades entre dichas aletas, como se ilustra en las figuras 2 y The thermal fluid that flows inside the tube provided with fins of the heat exchanger, can heat (or cool) by conduction the sorbent placed in the cavities between said fins, as illustrated in Figures 2 and
3 . También el haz de tubos puede tener una corriente de agua de enfriamiento en el modo de absorción, y por vapor de condensación en modo de desorción. También se puede emplear cualquier otro fluido térmico conocido por cualquier experto en la materia. 3 . Also the tube bundle can have a stream of cooling water in the absorption mode, and by condensation steam in desorption mode. Any other thermal fluid known to any person skilled in the art can also be used.
En una realización preferida la absorción de la etapa (a) se realiza a una temperatura de entre 35 y 45ºC. In a preferred embodiment the absorption of step (a) is carried out at a temperature between 35 and 45 ° C.
En otra realización preferida la desorción de la etapa (b) se realiza a una temperatura de entre 80 y 90ºC. In another preferred embodiment the desorption of step (b) is carried out at a temperature between 80 and 90 ° C.
Preferiblemente la desorción de la etapa (b) se realiza a una presión de 0,1 atm. Preferably the desorption of step (b) is carried out at a pressure of 0.1 atm.
En otra realización preferida la etapa (c) de reacondicionamiento se realiza a una temperatura de entre 35 a 45ºC. In another preferred embodiment the reconditioning step (c) is carried out at a temperature between 35 to 45 ° C.
En una realización preferida, el procedimiento de la invención posee una capacidad de absorción de CO2 mayor del 90%. In a preferred embodiment, the process of the invention has a CO2 absorption capacity greater than 90%.
El procedimiento de la presente invención se puede emplear en la captura de dióxido de carbono procedente de una planta eléctrica de carbón. The process of the present invention can be used to capture carbon dioxide from a coal power plant.
Otro aspecto de la invención se refiere al intercambiador de calor para la realización del procedimiento de la invención caracterizado porque comprende: Another aspect of the invention relates to the heat exchanger for carrying out the process of the invention characterized in that it comprises:
- --
- un tubo (1) para la circulación del fluido termal que comprende unas aletas radiales longitudinales (2) y una cavidad interna (4) por donde circula un fluido térmico, a tube (1) for the circulation of the thermal fluid comprising longitudinal radial fins (2) and an internal cavity (4) through which a thermal fluid circulates,
- --
- una pared que envuelve los extremos libres de las aletas radiales, comprendiendo la pared, una pared interna (6), una pared externa (5) y una camisa aislante entre ambas (7) a wall that wraps the free ends of the radial fins, comprising the wall, an internal wall (6), an external wall (5) and an insulating jacket between them (7)
estando configurado el tubo, las aletas y la pared interna de modo que entre ellos se localiza un sorbente sólido pelletizado (3) por el cual fluye el gas que contiene el CO2 the tube, the fins and the inner wall being configured so that between them a solid pelletized sorbent (3) is located through which the gas containing the CO2 flows
En una realización preferida, el intercambiador de calor además comprende un termopar (8) para la medida de la temperatura del proceso. In a preferred embodiment, the heat exchanger further comprises a thermocouple (8) for measuring the process temperature.
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Los siguientes ejemplos y dibujos se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención. Throughout the description and the claims the word "comprises" and its variants are not intended to exclude other technical characteristics, additives, components or steps. For those skilled in the art, other objects, advantages and features of the invention will be derived partly from the description and partly from the practice of the invention. The following examples and drawings are provided by way of illustration, and are not intended to be limiting of the present invention.
Fig. 1. Muestra la vista de la sección transversal (a) y de la superficie externa (b) del tubo dotado con aletas contenido en el intercambiador de calor. Fig. 1. Shows the view of the cross section (a) and the external surface (b) of the finned tube contained in the heat exchanger.
Fig. 2. Muestra la sección horizontal del intercambiador de calor que contiene el tubo dotado con aletas. Fig. 2. Shows the horizontal section of the heat exchanger that contains the finned tube.
Fig. 3.Muestra el esquema de la sección vertical del intercambiador de calor. Fig. 3. Shows the diagram of the vertical section of the heat exchanger.
Fig. 4. Muestra la curva de absorción del CO2 en el tiempo, con un sorbente de 630 g de alúmina impregnado con un 36% en peso de alúmina. Fig. 4. Shows the CO2 absorption curve over time, with a sorbent of 630 g of alumina impregnated with 36% by weight of alumina.
A continuación se ilustrará la invención mediante unos ensayos realizados por los inventores, que pone de manifiesto la especificidad y efectividad del procedimiento de la invención para la captura de CO2. The invention will now be illustrated by tests carried out by the inventors, which demonstrates the specificity and effectiveness of the process of the invention for the capture of CO2.
Con el fin de llevar a cabo ensayos de laboratorio que evalúen la eficacia del procedimiento de captura de CO2 postcombustión basado en sorbentes sólidos, se ha empleado un prototipo específicamente fabricado que simula un subreactor del equipo industrial. El reactor, que reproduce a escala laboratorio una geometría similar a la propuesta para la aplicación real, permite analizar el mecanismo de intercambio de calor y masa, así como los fenómenos de absorción/desorción en el interior del sorbente sólido. In order to carry out laboratory tests that evaluate the effectiveness of the post-combustion CO2 capture procedure based on solid sorbents, a specifically manufactured prototype has been used that simulates a sub-sector of industrial equipment. The reactor, which reproduces on a laboratory scale a geometry similar to that proposed for the actual application, allows to analyze the mechanism of heat and mass exchange, as well as the absorption / desorption phenomena inside the solid sorbent.
El dispositivo se diseñó de manera similar a un intercambiador de calor tubular (1000 mm long., D.I 50 mm, constituido por un recipiente cilindrico encamisado en cuyo interior se halla alojado un tubo dotado con aletas de aluminio extrudido con aletas externas que si extienden radialmente al ancho de toda sobre longitud con el hasta de proporcionar un intercambio de calor más eficaz. En la figura 1a y b, se puede observar respectivamente la sección y la superficie externa del tubo dotado con aletas empleado en la realización del reactor de lecho fijo. La figura 2 muestra con detalle la sección horizontal del intercambiador de calor constituida por un tubo de aluminio (1) dotado longitudinalmente con aletas (2) y recubierto por una pared interna (6) y una pared externa (5), entre las cuales existe una camisa (7). El fluido termal fluye tanto por la cavidad del tubo aleteado (4) como por la camisa externa del intercambiador de calor (7). El espacio libre existente entre las aletas longitudinales está rellenado por el sorbente sólido pelletizado (3) por el cual fluye el gas que contiene el CO2 The device was designed similarly to a tubular heat exchanger (1000 mm long, ID 50 mm, constituted by a jacketed cylindrical vessel inside which is housed a tube equipped with extruded aluminum fins with external fins that if extended radially along the length of the entire length with up to providing a more efficient heat exchange In Figure 1a and b, the section and the external surface of the finned tube used in the realization of the fixed bed reactor can be observed respectively. Figure 2 shows in detail the horizontal section of the heat exchanger constituted by an aluminum tube (1) longitudinally provided with fins (2) and covered by an internal wall (6) and an external wall (5), between which there is a jacket (7) The thermal fluid flows both through the cavity of the finned tube (4) and through the outer jacket of the heat exchanger (7) The free space between the fins Longitudinal is filled by the solid pelletized sorbent (3) through which the gas containing CO2 flows
La figura 3 describe la sección transversal vertical del intercambiador donde están presentes los mismos elementos descritos en la figura 2. En la figura 3 se muestran la entrada y la salida de la corriente de gas y del fluido térmico empleado como medio de intercambio de calor . El fluido empleado como medio de intercambio de calor es agua la cual fluye por el interior del tubo dotado con aletas y de la camisa externa, de este modo no está directamente en contacto con el sorbente. Figure 3 describes the vertical cross-section of the exchanger where the same elements described in Figure 2 are present. Figure 3 shows the inlet and outlet of the gas stream and the thermal fluid used as a heat exchange medium. The fluid used as a means of heat exchange is water which flows through the interior of the tube fitted with fins and the outer jacket, thus not directly in contact with the sorbent.
Dependiendo de si el fluido térmico está calentado o enfriando el lecho fijo, el dispositivo será capaz de funcionar alternativa y secuencialmente como absorbedor o desorbedor de CO2. El fluido térmico que fluye por el interior del tubo dotado con aletas, calienta (o enfría) por conducción el sorbente colocado en las cavidades entre las aletas y delimitadas externamente por la pared de la unidad interna que rodea el tubo dotado con aletas. Además, para garantizar la mejora del intercambio de calor por conducción con el sorbente, el reactor también va provisto de una camisa externa por la que se transporta el caudal del fluido térmico que sale del tubo dotado con aletas, de forma que es un intercambiador de calor. Depending on whether the thermal fluid is heated or cooling the fixed bed, the device will be able to function alternately and sequentially as a CO2 absorber or desorber. The thermal fluid that flows through the inside of the finned tube, heats (or cools) the conductive sorbent placed in the cavities between the fins and externally delimited by the wall of the internal unit surrounding the finned tube. In addition, to ensure the improvement of heat exchange by conduction with the sorbent, the reactor is also provided with an outer jacket through which the flow of the thermal fluid that leaves the tube provided with fins is transported, so that it is a heat exchanger. hot.
El control de la temperatura del fluido térmico se lleva a cabo mediante un baño de recirculación refrigerado/calentado para el control de la temperatura externa. La temperatura del lecho del sorbente se mide mediante termopares (8) directamente en contacto con los gránulos de sorbente y colocados en la parte superior, intermedia e inferior del reactor según se observa en la figura 3. The temperature control of the thermal fluid is carried out by means of a cooled / heated recirculation bath for the control of the external temperature. The temperature of the sorbent bed is measured by thermocouples (8) directly in contact with the sorbent granules and placed in the upper, intermediate and lower part of the reactor as seen in Figure 3.
Los reactores de lecho fijo se cargaron con un lecho de sorbente sólido (gránulos de alúmina de forma esférica impregnados con un 36% en peso de dietanolamina) y alimentado con corrientes gaseosas simuladas. The fixed bed reactors were loaded with a bed of solid sorbent (spherical alumina granules impregnated with 36% by weight of diethanolamine) and fed with simulated gas streams.
En el experimento de absorción de CO2, las condiciones del ensayo fueron las siguientes:In the CO2 absorption experiment, the test conditions were as follows:
Composición de la entrada de gas (v/v): CO2=10%; O2=3% v/v; H2O= 10% v/v; SO2=50 ppm; NO=50 ppm; N2= hasta 100%; Composition of the gas inlet (v / v): CO2 = 10%; O2 = 3% v / v; H2O = 10% v / v; SO2 = 50 ppm; NO = 50 ppm; N2 = up to 100%;
Cantidad de sorbentes: 630 g; Amount of sorbents: 630 g;
Caudal: 300 Nl/h; Flow rate: 300 Nl / h;
Temperatura de absorción: 40 °C Absorption temperature: 40 ° C
La etapa de desorción se llevó a cabo en las siguientes condiciones:The desorption stage was carried out under the following conditions:
Temperatura de desorción: 85 °C Desorption temperature: 85 ° C
Presión: 100 mbar (10.000 kPa) Pressure: 100 mbar (10,000 kPa)
Caudal del gas de arrastre (N2): 0,6 Nl/h; Drag gas flow (N2): 0.6 Nl / h;
Se ha evaluado el rendimiento del procedimiento mediante la medida de la “capacidad de captura del CO2 neto” y del “tiempo de absorción útil”, definidas respectivamente como la cantidad de CO2 absorbido por gramo de sorbente y el tiempo hasta que la concentración de CO2 en la salida del reactor permanece menor de 1 % en volumen durante un ciclo de absorción (es decir, hasta que el reactor de lecho fijo permite el 90% de eficacia de captura de CO2 en comparación con su contenido en la alimentación que es de un 10%). The performance of the procedure has been evaluated by measuring the “net CO2 capture capacity” and the “useful absorption time”, defined respectively as the amount of CO2 absorbed per gram of sorbent and the time until the CO2 concentration at the outlet of the reactor it remains less than 1% in volume during an absorption cycle (that is, until the fixed bed reactor allows 90% CO2 capture efficiency compared to its content in the feed which is of a 10%)
En la figura 4 se observa la curva correspondiente a la concentración de CO2 de salida registrada durante un ciclo de absorción. Figure 4 shows the curve corresponding to the concentration of CO2 output recorded during an absorption cycle.
En las condiciones ensayadas, se han medido una “capacidad de captura de CO2 neto” de 50 mg CO2/g de sorbente y un “tiempo de absorción útil” de más de 30 minutos. Se puede obtener una regeneración completa del sorbente en un tiempo igual a 30 minutos funcionando a 85 °C, 10.000 kPa y con 0,6 Nl/h de N2 caudal como gas de arrastre. Además, se repitieron ciclos de adsorción-desorción consecutivos cientos de veces usando el mismo sorbente sin ninguna pérdida en su capacidad de absorción. Under the conditions tested, a "net CO2 capture capacity" of 50 mg CO2 / g of sorbent and a "useful absorption time" of more than 30 minutes have been measured. A complete regeneration of the sorbent can be obtained in a time equal to 30 minutes operating at 85 ° C, 10,000 kPa and with 0.6 Nl / h of N2 flow as entrainment gas. In addition, consecutive adsorption-desorption cycles were repeated hundreds of times using the same sorbent without any loss in its absorption capacity.
Los resultados experimentales demostraron que el procedimiento de la invención basado en el intercambiador de calor de reactor de lecho fijo es adecuado para la aplicación a la captura del CO2 debido a que permite conseguir rápidamente las temperaturas a las que funciona el sorbente en las etapas de absorción y regeneración, una eficaz captura CO2 y una completa regenerabilidad del sorbente. Adicionalmente, gracias a la misma duración de tiempo de las etapas de absorción y regeneración, se puede llevar a cabo fácilmente el procedimiento continuo por medio de un número limitado de reactores funcionando alternativamente y por consiguiente como dispositivo de adsorción o desorción. The experimental results showed that the process of the invention based on the fixed bed reactor heat exchanger is suitable for application to the capture of CO2 because it allows to quickly achieve the temperatures at which the sorbent operates in the absorption stages and regeneration, an effective CO2 capture and a complete regenerability of the sorbent. Additionally, thanks to the same duration of the absorption and regeneration stages, the continuous process can be easily carried out by means of a limited number of reactors operating alternately and therefore as an adsorption or desorption device.
Evaluación de las ventajas del procedimiento propuesto Evaluation of the advantages of the proposed procedure
Sobre la base de los resultados obtenidos, se han evaluado el gasto de energía del procedimiento de captura de CO2 post-combustión propuesto que emplea sorbentes sólidos y se ha estimado también el posible ahorro de energía con respecto a la tecnología comercial basada en la disolución acuosa de aminas. Based on the results obtained, the energy expenditure of the proposed post-combustion CO2 capture procedure using solid sorbents has been evaluated and the possible energy savings with respect to commercial technology based on the aqueous solution have also been estimated. of amines
Con este fin, por medio de un programa informático de simulación de una planta de producción de energía eléctrica, se ha evaluado la incidencia de la captura de CO2 post-combustión sobre la eficacia eléctrica de la planta y sobre la energía neta producida para una planta de energía eléctrica típica de 660 MWe alimentada con carbón pulverizado. En todas las simulaciones llevadas a cabo se ha tomado como referencia un 90% de captura de CO2 procedente de la corriente gaseosa. To this end, the incidence of post-combustion CO2 capture on the electrical efficiency of the plant and on the net energy produced for a plant has been evaluated through a computer simulation program for an electric power production plant. of typical 660 MWe electric power powered by pulverized coal. In all the simulations carried out, a 90% CO2 capture from the gas stream has been taken as a reference.
Las simulaciones de la planta se realizaron en referencia a la planta convencional (sin captura de CO2), y para las siguientes configuraciones: The simulations of the plant were carried out in reference to the conventional plant (without CO2 capture), and for the following configurations:
la misma planta de producción de energía eléctrica asociada con una captura convencional de CO2 mediante MEA en disolución acuosa; the same electric power production plant associated with a conventional CO2 capture by MEA in aqueous solution;
la misma planta trabajando con un sistema de captura basado en el procedimiento de la invención con sorbente aminado sólido para CO2. the same plant working with a capture system based on the process of the invention with solid aminated sorbent for CO2.
En la tabla 1 siguiente se resumen los resultados principales. Table 1 below summarizes the main results.
Tabla 1-Resultados de la modelización: Table 1-Modeling results:
- Caso Case
- Arrastre devapor Tregen.(°C) Pregen.(kPa) Msorbente(Kg/kgCO2) Qregen.(kJ/kgCO2) Wvacío(MW) Wcompres(MW) Wneto(MW) C(LHV)(%) Drag evaporator Tregen. (° C) Pregen. (KPa) Msorbent (Kg / kgCO2) Qregen. (KJ / kgCO2) W vacuum (MW) Wcompres (MW) Wneto (MW) C (LHV) (%)
- Sin captura de CO2 No CO2 capture
- ---- ----- ----- ----- ----- ---- ----- 657,5 43,0 ---- ----- ----- ----- ----- ---- ----- 657.5 43.0
- Captura de CO2 con MEA en disolución CO2 capture with MEA in solution
- --- 120 ----- 17 3605 --- 48,5 475,6 31,1 --- 120 ----- 17 3605 --- 48.5 475.6 31.1
- Captura de CO2 con el procedimiento de la invención con sorbente sólido CO2 capture with the process of the invention with solid sorbent
- sí 85 10.000 20 2359 29,2 47,4 532,2 34,8 yes 85 10,000 twenty 2359 29.2 47.4 532.2 34.8
Según se muestra en la tabla 1, el procedimiento de captura de CO2 post-combustión propuesto por los inventores que emplea sorbente sólido ahorra más energía que uno que emplea disolución acuosa de monoetanolamina, siendo éste potencialmente capaz de ahorrar un 3,7 puntos porcentuales de eficacia neta de la planta. As shown in Table 1, the post-combustion CO2 capture procedure proposed by the inventors that uses solid sorbent saves more energy than one that uses aqueous monoethanolamine solution, which is potentially capable of saving 3.7 percentage points of net efficiency of the plant.
Claims (16)
- 1. one.
- Procedimiento de captura de CO2, en al menos dos reactores de lecho fijo, que comprende las etapas: a) absorción del CO2, procedente de una corriente gaseosa, a una temperatura de entre 20 y 60ºC, b) desorción del CO2 a una temperatura de entre 60 y 120ºC, una presión de entre 0,08 y 0,8 atm y un Procedure for capturing CO2, in at least two fixed-bed reactors, comprising the steps: a) CO2 absorption, from a gaseous stream, at a temperature between 20 and 60 ° C, b) CO2 desorption at a temperature of between 60 and 120 ° C, a pressure between 0.08 and 0.8 atm and a
- 2. 2.
- Procedimiento según la reivindicación 1 que comprende tres reactores de lecho fijo. Method according to claim 1 comprising three fixed bed reactors.
- 3. 3.
- Procedimiento según cualquiera de las reivindicaciones 1 ó 2, donde el lecho fijo de los reactores comprende un sorbente de alúmina pelletilizada impregnada con al menos un aminoalcohol. Method according to any one of claims 1 or 2, wherein the fixed bed of the reactors comprises a pelletilized alumina sorbent impregnated with at least one amino alcohol.
- 4. Four.
- Procedimiento según la reivindicación 3, donde el aminoalcohol se selecciona de entre dietanolamina, monoetanolamina, diglicolamina, diisopropanolamina, metildietanolamina, trietanolamina o cualquiera de sus combinaciones Process according to claim 3, wherein the amino alcohol is selected from diethanolamine, monoethanolamine, diglylamine, diisopropanolamine, methyldiethanolamine, triethanolamine or any combination thereof.
- 5. 5.
- Procedimiento según la reivindicación 4, donde el aminoalcohol es dietanolamina. Method according to claim 4, wherein the amino alcohol is diethanolamine.
- 6. 6.
- Procedimiento según cualquiera de las reivindicaciones 3 a 5, donde el contenido en aminoalcohol es de entre el 30 al 40% en peso respecto al total de sorbente. Process according to any of claims 3 to 5, wherein the amino alcohol content is between 30 to 40% by weight with respect to the total sorbent.
- 7. 7.
- Procedimiento según cualquiera de las reivindicaciones 1 a 6, donde el control de temperatura y presión de las etapas (a), (b) y (c) se realiza mediante intercambiadores de calor. Process according to any one of claims 1 to 6, wherein the temperature and pressure control of steps (a), (b) and (c) is carried out by heat exchangers.
- 8. 8.
- Procedimiento según la reivindicación 7, donde el intercambiador de calor es de aluminio con geometría tubular. Method according to claim 7, wherein the heat exchanger is made of aluminum with tubular geometry.
- 9. 9.
- Procedimiento según cualquiera de las reivindicaciones 1 a 8, donde el intercambiador de calor esta caracterizado porque comprende: Method according to any one of claims 1 to 8, wherein the heat exchanger is characterized in that it comprises:
- --
- un tubo (1) para la circulación del fluido termal que comprende unas aletas radiales longitudinales (2) y una cavidad interna (4) por donde circula un fluido térmico, a tube (1) for the circulation of the thermal fluid comprising longitudinal radial fins (2) and an internal cavity (4) through which a thermal fluid circulates,
- --
- una pared que envuelve los extremos libres de las aletas radiales, comprendiendo la pared, una pared interna (6), una pared externa (5) y una camisa aislante entre ambas (7) a wall that wraps the free ends of the radial fins, comprising the wall, an internal wall (6), an external wall (5) and an insulating jacket between them (7)
- 10.10.
- Procedimiento según la reivindicación 9, donde el intercambiador de calor además comprende un termopar (8). Method according to claim 9, wherein the heat exchanger further comprises a thermocouple (8).
- 11. eleven.
- Procedimiento según cualquiera de las reivindicaciones 1 a 10, donde la absorción de la etapa (a) se realiza a una temperatura de entre 35 y 45ºC. Process according to any one of claims 1 to 10, wherein the absorption of step (a) is carried out at a temperature between 35 and 45 ° C.
- 12. 12.
- Procedimiento según cualquiera de las reivindicaciones 1 a 11, donde la desorción de la etapa (b) se realiza a una temperatura de entre 80 y 90ºC, una presión de entre 0,1 y 0,3 atm y un caudal de arrastre de vapor de entre 5 y 15% en volumen respecto al caudal de CO2 desorbido. Process according to any one of claims 1 to 11, wherein the desorption of step (b) is carried out at a temperature between 80 and 90 ° C, a pressure between 0.1 and 0.3 atm and a steam flow rate of between 5 and 15% by volume with respect to the flow of desorbed CO2.
- 13. 13.
- Procedimiento según cualquiera de las reivindicaciones 1 a 12, donde la etapa (c) de reacondicionamiento se realiza a una temperatura de entre 35 a 45ºC. Process according to any one of claims 1 to 12, wherein the reconditioning step (c) is carried out at a temperature between 35 to 45 ° C.
- 14. 14.
- Intercambiador de calor para la realización del procedimiento según cualquiera de las anteriores reivindicaciones caracterizado porque comprende: Heat exchanger for carrying out the process according to any of the preceding claims characterized in that it comprises:
- --
- un tubo (1) para la circulación del fluido termal que comprende unas aletas radiales longitudinales (2) y una cavidad interna (4) por donde circula un fluido térmico, a tube (1) for the circulation of the thermal fluid comprising longitudinal radial fins (2) and an internal cavity (4) through which a thermal fluid circulates,
- --
- una pared que envuelve los extremos libres de las aletas radiales, comprendiendo la pared, una pared interna (6), una pared externa (5) y una camisa aislante entre ambas (7) a wall that wraps the free ends of the radial fins, comprising the wall, an internal wall (6), an external wall (5) and an insulating jacket between them (7)
- Categoria Category
- @ Documentos cita'os Rei>in'icaciones afecta'as @ Documents cited Rei> indications affect
- ATO
- WO 9817388 A1 (UNITED TECHNOLOGIES CORP) 30.04.1998, pág. 3, líneas 18-19; pág. 4, 1-15 WO 9817388 A1 (UNITED TECHNOLOGIES CORP) 30.04.1998, p. 3, lines 18-19; P. 4, 1-15
- líneas 3-5, 24-26; pág. 4, líneas 14, 18; pág. 8 lines 3-5, 24-26; P. 4, lines 14, 18; P. 8
- A TO
- US 2009145297 A1 (ALSTOM TECHNOLOGY LTD) 11.06.2009, párrafos [0031]-[0044]. 1-15 US 2009 145297 A1 (ALSTOM TECHNOLOGY LTD) 11.06.2009, paragraphs [0031] - [0044]. 1-15
- A TO
- WO 2010094923 A2 (ORIGO IND LTD; HOUSTON IAN) 26.08.2010, página 1-8, 11. 1-15 WO 2010094923 A2 (ORIGO IND LTD; HOUSTON IAN) 26.08.2010, page 1-8, 11. 1-15
- A TO
- WO 2008021700 A1 (UNIV SOUTHERN CALIFORNIA ET AL) 21.02.2008, pág. 5, líneas 10-20; 1-15 WO 2008021700 A1 (UNIV SOUTHERN CALIFORNIA ET AL) 21.02.2008, p. 5, lines 10-20; 1-15
- pág. 8, línea 6; pág. 10, línea 23. P. 8, line 6; P. 10, line 23.
- A TO
- EP 1332783 A1 (HAMILTON SUNDSTRAND CORP) 06.08.2003, párrafos [0007]-[0011], [0018] 1-15 EP 1332783 A1 (HAMILTON SUNDSTRAND CORP) 06.08.2003, paragraphs [0007] - [0011], [0018] 1-15
- [0023] [0023]
- A TO
- US 7288136 B1 (US OF AMERICA DEPT OF ENERGY) 30.10.2007, columna 3, líneas 30-55; 1-15 US 7288136 B1 (US OF AMERICA DEPT OF ENERGY) 30.10.2007, column 3, lines 30-55; 1-15
- columna 4, líneas 30-31; columna 6, líneas 5-8, 65-55; columna 7, líneas 5-28. column 4, lines 30-31; column 6, lines 5-8, 65-55; column 7, lines 5-28.
- Categoría de los documentos citados X: de particular relevancia Y: de particular relevancia combinado con otro/s de la misma categoría A: refleja el estado de la técnica O: referido a divulgación no escrita P: publicado entre la fecha de prioridad y la de presentación de la solicitud E: documento anterior, pero publicado después de la fecha de presentación de la solicitud Category of the documents cited X: of particular relevance Y: of particular relevance combined with other / s of the same category A: reflects the state of the art O: refers to unwritten disclosure P: published between the priority date and the date of priority submission of the application E: previous document, but published after the date of submission of the application
- El presente informe ha si'o realiza'o • para todas las reivindicaciones • para las reivindicaciones nº: This report has been carried out • for all claims • for claims no:
- Fecha 'e realizaci6n 'el informe 24.05.2012 Date 'and realization' the report 24.05.2012
- Examina'or I. González Balseyro Pagina 1/4 Examiner'or I. González Balseyro Page 1/4
- No>e'a' -Art. .1 LP 11"198 -No> e'a '-Art. .1 LP 11 "198 -
- Reivindicaciones Reivindicaciones 1-15 SI NO Claims Claims 1-15 IF NOT
- Acti>i'a' in>enti>a -Art. 8.1 LP11"198 -Acti> i'a 'in> enti> a -Art. 8.1 LP11 "198 -
- Reivindicaciones Reivindicaciones 1-15 SI NO Claims Claims 1-15 IF NOT
- Documento Document
- N�mero Publicaci6n o I'entificaci6n Fecha Publicaci6n Publication or Identification Number Publication Date
- D01 D01
- WO 9817388 A1 (UNITED TECHNOLOGIES CORP) 30.04.1998 WO 9817388 A1 (UNITED TECHNOLOGIES CORP) 04/30/1999
- D02 D02
- US 2009145297 A1 (ALSTOM TECHNOLOGY LTD) 11.06.2009 US 2009 145297 A1 (ALSTOM TECHNOLOGY LTD) 06.11.2009
- D03 D03
- WO 2010094923 A2 (ORIGO IND LTD; HOUSTON IAN) 26.08.2010 WO 2010094923 A2 (ORIGO IND LTD; HOUSTON IAN) 26.08.2010
- D04 D04
- WO 2008021700 A1 (UNIV SOUTHERN CALIFORNIA et al) 21.02.2008 WO 2008021700 A1 (UNIV SOUTHERN CALIFORNIA et al) 02.22.2008
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES201130296A ES2387791B1 (en) | 2011-03-04 | 2011-03-04 | CO2 CAPTURE PROCEDURE |
PCT/ES2012/070137 WO2012120173A1 (en) | 2011-03-04 | 2012-03-05 | Method for capturing co2 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES201130296A ES2387791B1 (en) | 2011-03-04 | 2011-03-04 | CO2 CAPTURE PROCEDURE |
Publications (2)
Publication Number | Publication Date |
---|---|
ES2387791A1 true ES2387791A1 (en) | 2012-10-01 |
ES2387791B1 ES2387791B1 (en) | 2013-09-02 |
Family
ID=46797531
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ES201130296A Expired - Fee Related ES2387791B1 (en) | 2011-03-04 | 2011-03-04 | CO2 CAPTURE PROCEDURE |
Country Status (2)
Country | Link |
---|---|
ES (1) | ES2387791B1 (en) |
WO (1) | WO2012120173A1 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015042150A1 (en) * | 2013-09-17 | 2015-03-26 | Enverid Systems, Inc. | Systems and methods for efficient heating of sorbents in an indoor air scrubber |
US9316410B2 (en) | 2011-11-17 | 2016-04-19 | Enverid Systems, Inc. | Method and system for conditioning air in an enclosed environment with distributed air circulation systems |
US9328936B2 (en) | 2012-01-10 | 2016-05-03 | Enverid Systems, Inc. | Methods and systems for managing air quality and energy use in air-conditioning systems |
US9375672B2 (en) | 2011-02-09 | 2016-06-28 | Enverid Systems, Inc. | Modular, high-throughput air treatment system |
US9399187B2 (en) | 2012-09-24 | 2016-07-26 | Enverid Systems, Inc. | Air handling system with integrated air treatment |
US9533250B2 (en) | 2011-08-23 | 2017-01-03 | Enverid Systems, Inc. | Sorbents for carbon dioxide reduction from indoor air |
US10086324B2 (en) | 2010-05-17 | 2018-10-02 | Enverid Systems, Inc. | Method and system for improve-efficiency air-conditioning |
US10675582B2 (en) | 2012-07-18 | 2020-06-09 | Enverid Systems, Inc. | Systems and methods for regenerating adsorbents for indoor air scrubbing |
US10792608B2 (en) | 2015-08-24 | 2020-10-06 | Enverid Systems, Inc. | Scrubber for HVAC system |
US10850224B2 (en) | 2012-11-15 | 2020-12-01 | Enverid Systems, Inc. | Method and system for reduction of unwanted gases in indoor air |
US10913026B2 (en) | 2015-05-11 | 2021-02-09 | Enverid Systems, Inc. | Method and system for reduction of unwanted gases in indoor air |
US11110387B2 (en) | 2016-11-10 | 2021-09-07 | Enverid Systems, Inc. | Low noise, ceiling mounted indoor air scrubber |
US11207633B2 (en) | 2016-04-19 | 2021-12-28 | Enverid Systems, Inc. | Systems and methods for closed-loop heating and regeneration of sorbents |
US11541346B2 (en) | 2012-05-22 | 2023-01-03 | Enverid Systems, Inc. | Efficient use of adsorbents for indoor air scrubbing |
DE102021130001A1 (en) | 2021-11-17 | 2023-05-17 | Audi Aktiengesellschaft | Utilization of carbon dioxide from the ambient air |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10118843B2 (en) | 2015-08-18 | 2018-11-06 | United Arab Emirates University | Process for capture of carbon dioxide and desalination |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998017388A1 (en) * | 1996-10-22 | 1998-04-30 | United Technologies Corporation | Regenerable solid amine sorbent |
EP1332783A1 (en) * | 2002-01-16 | 2003-08-06 | Hamilton Sundstrand Corporation | Carbon dioxide scrubber for fuel and gas emissions |
US7288136B1 (en) * | 2005-01-13 | 2007-10-30 | United States Of America Department Of Energy | High capacity immobilized amine sorbents |
WO2008021700A1 (en) * | 2006-08-10 | 2008-02-21 | University Of Southern California | Nano-structure supported solid regenerative polyamine and polyamine polyol absorbents for the separation of carbon dioxide from gas mixtures including the air |
US20090145297A1 (en) * | 2007-12-11 | 2009-06-11 | Alstom Technology Ltd | Co2 absorption by solid materials |
WO2010094923A2 (en) * | 2009-02-19 | 2010-08-26 | Origo Industries Limited | Methods of absorption and desorption of carbon dioxide, and apparatus for each, for beneficial re-use of carbon dioxide |
-
2011
- 2011-03-04 ES ES201130296A patent/ES2387791B1/en not_active Expired - Fee Related
-
2012
- 2012-03-05 WO PCT/ES2012/070137 patent/WO2012120173A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998017388A1 (en) * | 1996-10-22 | 1998-04-30 | United Technologies Corporation | Regenerable solid amine sorbent |
EP1332783A1 (en) * | 2002-01-16 | 2003-08-06 | Hamilton Sundstrand Corporation | Carbon dioxide scrubber for fuel and gas emissions |
US7288136B1 (en) * | 2005-01-13 | 2007-10-30 | United States Of America Department Of Energy | High capacity immobilized amine sorbents |
WO2008021700A1 (en) * | 2006-08-10 | 2008-02-21 | University Of Southern California | Nano-structure supported solid regenerative polyamine and polyamine polyol absorbents for the separation of carbon dioxide from gas mixtures including the air |
US20090145297A1 (en) * | 2007-12-11 | 2009-06-11 | Alstom Technology Ltd | Co2 absorption by solid materials |
WO2010094923A2 (en) * | 2009-02-19 | 2010-08-26 | Origo Industries Limited | Methods of absorption and desorption of carbon dioxide, and apparatus for each, for beneficial re-use of carbon dioxide |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10086324B2 (en) | 2010-05-17 | 2018-10-02 | Enverid Systems, Inc. | Method and system for improve-efficiency air-conditioning |
US9375672B2 (en) | 2011-02-09 | 2016-06-28 | Enverid Systems, Inc. | Modular, high-throughput air treatment system |
US9789436B2 (en) | 2011-05-17 | 2017-10-17 | Enverid Systems, Inc. | Sorbents for carbon dioxide reduction from indoor air |
US9533250B2 (en) | 2011-08-23 | 2017-01-03 | Enverid Systems, Inc. | Sorbents for carbon dioxide reduction from indoor air |
US10281168B2 (en) | 2011-11-17 | 2019-05-07 | Enverid Systems, Inc. | Method and system for conditioning air in an enclosed environment with distributed air circulation systems |
US9316410B2 (en) | 2011-11-17 | 2016-04-19 | Enverid Systems, Inc. | Method and system for conditioning air in an enclosed environment with distributed air circulation systems |
US9976760B2 (en) | 2011-11-17 | 2018-05-22 | Enverid Systems, Inc. | Method and system for conditioning air in an enclosed environment with distributed air circulation systems |
US9939163B2 (en) | 2012-01-10 | 2018-04-10 | Enverid Systems, Inc. | Systems and methods for air-conditioning systems with scrubbing systems including a scrubbing bypass mode |
US9328936B2 (en) | 2012-01-10 | 2016-05-03 | Enverid Systems, Inc. | Methods and systems for managing air quality and energy use in air-conditioning systems |
US11541346B2 (en) | 2012-05-22 | 2023-01-03 | Enverid Systems, Inc. | Efficient use of adsorbents for indoor air scrubbing |
US10675582B2 (en) | 2012-07-18 | 2020-06-09 | Enverid Systems, Inc. | Systems and methods for regenerating adsorbents for indoor air scrubbing |
US9399187B2 (en) | 2012-09-24 | 2016-07-26 | Enverid Systems, Inc. | Air handling system with integrated air treatment |
US11608998B2 (en) | 2012-09-24 | 2023-03-21 | Enverid Systems, Inc. | Air handling system with integrated air treatment |
US11890571B2 (en) | 2012-11-15 | 2024-02-06 | Enverid Systems, Inc. | Method and system for reduction of unwanted gases in indoor air |
US10850224B2 (en) | 2012-11-15 | 2020-12-01 | Enverid Systems, Inc. | Method and system for reduction of unwanted gases in indoor air |
CN105745004A (en) * | 2013-09-17 | 2016-07-06 | 恩弗里德系统公司 | Systems and methods for efficient heating of sorbents in an indoor air scrubber |
WO2015042150A1 (en) * | 2013-09-17 | 2015-03-26 | Enverid Systems, Inc. | Systems and methods for efficient heating of sorbents in an indoor air scrubber |
US10765990B2 (en) | 2013-09-17 | 2020-09-08 | Enverid Systems, Inc. | Systems and methods for efficient heating of sorbents in an indoor air scrubber |
US9919257B2 (en) | 2013-09-17 | 2018-03-20 | Enverid Systems, Inc. | Systems and methods for efficient heating of sorbents in an indoor air scrubber |
US10913026B2 (en) | 2015-05-11 | 2021-02-09 | Enverid Systems, Inc. | Method and system for reduction of unwanted gases in indoor air |
US10792608B2 (en) | 2015-08-24 | 2020-10-06 | Enverid Systems, Inc. | Scrubber for HVAC system |
US11207633B2 (en) | 2016-04-19 | 2021-12-28 | Enverid Systems, Inc. | Systems and methods for closed-loop heating and regeneration of sorbents |
US11110387B2 (en) | 2016-11-10 | 2021-09-07 | Enverid Systems, Inc. | Low noise, ceiling mounted indoor air scrubber |
US11673090B2 (en) | 2016-11-10 | 2023-06-13 | Enverid Systems, Inc. | Low noise, ceiling mounted indoor air scrubber |
WO2023088828A1 (en) | 2021-11-17 | 2023-05-25 | Audi Ag | Utilization of carbon dioxide from ambient air |
DE102021130001A1 (en) | 2021-11-17 | 2023-05-17 | Audi Aktiengesellschaft | Utilization of carbon dioxide from the ambient air |
Also Published As
Publication number | Publication date |
---|---|
ES2387791B1 (en) | 2013-09-02 |
WO2012120173A1 (en) | 2012-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2387791A1 (en) | Method for capturing co2 | |
ES2345933T3 (en) | REGENERATION OF A WATERPROOF DISSOLUTION FROM A GASES ABSORPTION PROCESS AID BY ULTRARRAPID EVAPORATION AND SEPARATION OF MULTIPLE PHASES. | |
ES2769047T3 (en) | Procedure and plant for CO2 capture | |
ES2427040T3 (en) | Improved procedure for CO2 absorption | |
JP5450540B2 (en) | Boiler heat recovery system with CO2 recovery device | |
ES2642797T3 (en) | Exhaust gas treatment system equipped with carbon dioxide chemical absorption equipment | |
Chowdhury et al. | A screening study of alcohol solvents for alkanolamine-based CO2 capture | |
WO2011152552A1 (en) | Exhaust gas treatment system and method | |
JP5506486B2 (en) | Aqueous solution that effectively absorbs and recovers carbon dioxide contained in gas | |
JP4773865B2 (en) | CO2 recovery device and CO2 recovery method | |
ES2659002T3 (en) | An aqueous CO2 absorbent comprising 2-amino-2-methyl-1-propanol and 3-aminopropanol or 2-amino-2-methyl-1-propanol and 4-aminobutanol | |
ES2768619T3 (en) | Carbon dioxide collection device | |
ES2689247T3 (en) | Method and processing device for exhaust gases containing carbon dioxide | |
WO2011152546A1 (en) | Exhaust gas treatment system and method | |
JP2008307520A (en) | Co2 or h2s removal system, co2 or h2s removal method | |
JP2012024718A (en) | Exhaust gas treatment system having co2 removal facility | |
JP2014042904A (en) | Co2 collection system including dispersed amine processor, and control method of the system | |
Chen et al. | Novel exchanger type vacuum temperature swing adsorption for post-combustion CO2 capture: Process design and plant demonstration | |
CN103801193A (en) | A method for regeneration of solid amine CO2 capture beds | |
Shi et al. | Temperature-vacuum swing adsorption for direct air capture by using low-grade heat | |
JP2012091130A (en) | Co2 recovery device, co2 recovery method, and co2 capturing material | |
Chen et al. | Influence of droplet mutual interaction on carbon dioxide capture process in sprays | |
Wilfong et al. | Big data analysis and technical review of regeneration for carbon capture processes | |
WO2012073552A1 (en) | Co2 recovery system | |
Malekli et al. | CO2 capture and sequestration from a mixture of direct air and industrial exhaust gases using MDEA/PZ: Optimal design by process integration with organic rankine cycle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FG2A | Definitive protection |
Ref document number: 2387791 Country of ref document: ES Kind code of ref document: B1 Effective date: 20130902 |
|
FD2A | Announcement of lapse in spain |
Effective date: 20181015 |