EP4435364A1 - Method for the low-temperature separation of air, and air separation plant - Google Patents
Method for the low-temperature separation of air, and air separation plant Download PDFInfo
- Publication number
- EP4435364A1 EP4435364A1 EP23020148.5A EP23020148A EP4435364A1 EP 4435364 A1 EP4435364 A1 EP 4435364A1 EP 23020148 A EP23020148 A EP 23020148A EP 4435364 A1 EP4435364 A1 EP 4435364A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- rectification column
- column
- turbine
- stream
- pressure level
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000926 separation method Methods 0.000 title claims abstract description 44
- 238000000034 method Methods 0.000 title claims abstract description 36
- 239000007788 liquid Substances 0.000 claims abstract description 40
- 230000006835 compression Effects 0.000 claims abstract description 23
- 238000007906 compression Methods 0.000 claims abstract description 23
- 238000010438 heat treatment Methods 0.000 claims abstract description 22
- 239000012530 fluid Substances 0.000 claims abstract description 17
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 13
- 238000001816 cooling Methods 0.000 claims abstract description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 92
- 239000007789 gas Substances 0.000 claims description 69
- 229910052786 argon Inorganic materials 0.000 claims description 46
- 230000008569 process Effects 0.000 claims description 26
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 16
- 239000000203 mixture Substances 0.000 claims description 16
- 239000001301 oxygen Substances 0.000 claims description 16
- 229910052760 oxygen Inorganic materials 0.000 claims description 16
- 229910052743 krypton Inorganic materials 0.000 claims description 10
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 claims description 10
- 229910052724 xenon Inorganic materials 0.000 claims description 10
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 claims description 10
- 239000001307 helium Substances 0.000 claims description 6
- 229910052734 helium Inorganic materials 0.000 claims description 6
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 6
- 229910052754 neon Inorganic materials 0.000 claims description 6
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 claims description 6
- 238000011084 recovery Methods 0.000 claims description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 32
- 239000000463 material Substances 0.000 description 28
- 229910052757 nitrogen Inorganic materials 0.000 description 16
- 239000000047 product Substances 0.000 description 12
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000001704 evaporation Methods 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000012263 liquid product Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000004781 supercooling Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- CYJRNFFLTBEQSQ-UHFFFAOYSA-N 8-(3-methyl-1-benzothiophen-5-yl)-N-(4-methylsulfonylpyridin-3-yl)quinoxalin-6-amine Chemical compound CS(=O)(=O)C1=C(C=NC=C1)NC=1C=C2N=CC=NC2=C(C=1)C=1C=CC2=C(C(=CS2)C)C=1 CYJRNFFLTBEQSQ-UHFFFAOYSA-N 0.000 description 1
- 210000001015 abdomen Anatomy 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04078—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
- F25J3/0409—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04078—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
- F25J3/04096—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of argon or argon enriched stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04187—Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
- F25J3/0423—Subcooling of liquid process streams
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04254—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/04321—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04333—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/04351—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
- F25J3/04357—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen and comprising a gas work expansion loop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04375—Details relating to the work expansion, e.g. process parameter etc.
- F25J3/04393—Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04642—Recovering noble gases from air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04642—Recovering noble gases from air
- F25J3/04648—Recovering noble gases from air argon
- F25J3/04654—Producing crude argon in a crude argon column
- F25J3/04666—Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
- F25J3/04672—Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
- F25J3/04678—Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04642—Recovering noble gases from air
- F25J3/04648—Recovering noble gases from air argon
- F25J3/04654—Producing crude argon in a crude argon column
- F25J3/04666—Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
- F25J3/04672—Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
- F25J3/04703—Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser being arranged in more than one vessel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04642—Recovering noble gases from air
- F25J3/04648—Recovering noble gases from air argon
- F25J3/04654—Producing crude argon in a crude argon column
- F25J3/04709—Producing crude argon in a crude argon column as an auxiliary column system in at least a dual pressure main column system
- F25J3/04715—The auxiliary column system simultaneously produces oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04642—Recovering noble gases from air
- F25J3/04648—Recovering noble gases from air argon
- F25J3/04721—Producing pure argon, e.g. recovered from a crude argon column
- F25J3/04727—Producing pure argon, e.g. recovered from a crude argon column using an auxiliary pure argon column for nitrogen rejection
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04642—Recovering noble gases from air
- F25J3/04745—Krypton and/or Xenon
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04769—Operation, control and regulation of the process; Instrumentation within the process
- F25J3/04854—Safety aspects of operation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04866—Construction and layout of air fractionation equipments, e.g. valves, machines
- F25J3/04872—Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/04—Processes or apparatus using separation by rectification in a dual pressure main column system
- F25J2200/06—Processes or apparatus using separation by rectification in a dual pressure main column system in a classical double column flow-sheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/20—Processes or apparatus using separation by rectification in an elevated pressure multiple column system wherein the lowest pressure column is at a pressure well above the minimum pressure needed to overcome pressure drop to reject the products to atmosphere
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/32—Processes or apparatus using separation by rectification using a side column fed by a stream from the high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/34—Processes or apparatus using separation by rectification using a side column fed by a stream from the low pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/90—Details relating to column internals, e.g. structured packing, gas or liquid distribution
- F25J2200/94—Details relating to the withdrawal point
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/30—Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/60—Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/42—Nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2215/00—Processes characterised by the type or other details of the product stream
- F25J2215/50—Oxygen or special cases, e.g. isotope-mixtures or low purity O2
- F25J2215/56—Ultra high purity oxygen, i.e. generally more than 99,9% O2
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2235/00—Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
- F25J2235/04—Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams using a pressure accumulator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2245/00—Processes or apparatus involving steps for recycling of process streams
- F25J2245/02—Recycle of a stream in general, e.g. a by-pass stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2245/00—Processes or apparatus involving steps for recycling of process streams
- F25J2245/40—Processes or apparatus involving steps for recycling of process streams the recycled stream being air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2245/00—Processes or apparatus involving steps for recycling of process streams
- F25J2245/42—Processes or apparatus involving steps for recycling of process streams the recycled stream being nitrogen
Definitions
- the invention relates to a process for the low-temperature separation of air and an air separation plant according to the respective preambles of the independent patent claims.
- such a process has proven to be particularly advantageous for a requirement profile that includes the production of gaseous pressure nitrogen at a certain pressure level and an additional production of argon.
- a double column system formed from the pressure column and the low-pressure column is operated at an increased pressure level.
- the low-pressure column is designed to provide a very nitrogen-rich top gas by using a suitable nitrogen section in the upper area.
- the present invention proposes a method for the low-temperature separation of air and an air separation plant with the features of the respective independent patent claims.
- Embodiments are the subject of the dependent patent claims and the following description.
- expansion turbine or “expansion machine”, which can be coupled to other expansion turbines or energy converters such as oil brakes, generators or compressors via a common shaft, is designed to expand a gaseous or at least partially liquid stream.
- expansion turbines for use in the present invention can be designed as turbo expanders. If a compressor is driven by one or more expansion turbines, but without externally supplied energy, for example by means of an electric motor, the term “turbine-driven” compressor or alternatively “booster” is used. Arrangements of turbine-driven compressors and expansion turbines are also referred to as “booster turbines” or alternatively as “turbine boosters”. If it is mentioned below that expansion takes place in a booster turbine, this is to mean the turbine part. The same applies to the compression, which then takes place in the compressor part of the booster turbine or the turbine booster.
- Liquids and gases may be rich or poor in one or more components, where “rich” may mean a content of at least 50%, 75%, 90%, 95%, 99%, 99.5%, 99.9% or 99.99% and “poor” may mean a content of at most 50%, 25%, 10%, 5%, 1%, 0.1% or 0.01% on a mole, weight or volume basis.
- the term “predominantly” may correspond to the definition of "rich”.
- Liquids and gases may also be enriched or depleted in one or more components, where these terms refer to a content in a starting liquid or gas from which the liquid or gas was derived.
- the A liquid or gas is "enriched” if it contains at least 1.1 times, 1.5 times, 2 times, 5 times, 10 times, 100 times or 1,000 times the content of a corresponding component, and “depleted” if it contains at most 0.9 times, 0.5 times, 0.1 times, 0.01 times or 0.001 times the content of a corresponding component, based on the original liquid or gas. If, for example, “oxygen” or “nitrogen” is mentioned here, this also includes a liquid or gas that is rich in oxygen or nitrogen, but does not necessarily have to consist exclusively of these.
- pressure level and "temperature level” to characterize pressures and temperatures, which is intended to express that corresponding pressures and temperatures in a corresponding system do not have to be used in the form of exact pressure or temperature values in order to implement the inventive concept.
- pressures and temperatures typically move in certain ranges that are, for example, 1%, 5%, 10%, 20% or even 50% around a mean value.
- Corresponding pressure levels and temperature levels can lie in disjoint ranges or in ranges that overlap one another.
- pressure levels for example, include unavoidable or expected pressure losses. The same applies to temperature levels.
- turbine cycle flow does not have to correspond to the state of the art, e.g. WO 2021/204424 A2 , material flow referred to as the circulating flow.
- turbine circulating flow refers to fluid that is cyclically compressed on the warm side of the main heat exchanger, boosted if necessary, cooled, expanded in the turbine, passed through a subcooling counterflow, heated in the main heat exchanger and then compressed again on the warm side of the main heat exchanger when the circuit is closed.
- a partial liquefaction of the process air flow i.e. at least part of the air fed into the pressure column, also referred to as “feed air” is typically required in order to close the enthalpy balance around the rectification system.
- This partial liquefaction is also referred to below as “pre-liquefaction”.
- pre-liquefaction the typically occurring removal of a comparatively large amount of liquid products from the air separation plant leads to a comparatively low enthalpy value of the incoming process air flow.
- this pre-liquefaction has negative effects on the rectification process and should advantageously be avoided or reduced in order to improve the efficiency of the air separation process.
- the negative effects conventionally arise from the fact that the liquefied portion bypasses the separation process in the pressure column and is not condensed in the main condenser. The resulting lack of power in the main condenser must be compensated for.
- this problem can be addressed by guiding a turbine cycle stream or a portion thereof after its expansion through a subcooling countercurrent device, which is part of the air separation plant and through which certain material streams are guided in the manner explained below.
- the turbine cycle stream is combined with top gas from the low-pressure column upstream of this subcooling countercurrent device. Since a temperature level of approx. 90 K is reached here, the enthalpy of the process air stream can be increased and the pre-liquefaction of the same at approx. 110 K can be avoided or significantly reduced.
- the present invention proposes a method for the low-temperature separation of air using an air separation plant with a main heat exchanger and a counter-current subcooling device and a rectification column system that has a first rectification column, a second rectification column and a third rectification column.
- the first and second rectification columns are in particular rectification columns that can be designed according to a pressure column and a low-pressure column of a known double column system and are basically connected in a comparable way. However, these are operated at an increased pressure level.
- the third rectification column is in particular a crude argon column or a single column for obtaining an argon product, which partially combines the functions of the crude and pure argon columns by having a further section intended for the separation of nitrogen.
- the first rectification column provided within the scope of the present invention is operated at a first pressure level, the first rectification column is fed using compressed air cooled in the main heat exchanger, and in the first rectification column, in particular, a bottom liquid enriched in oxygen and argon compared to the first feed stream and a nitrogen-rich top gas are formed.
- the first feed stream can be fed into the first rectification column in particular in a completely or essentially completely gaseous state, which can therefore represent a feature of embodiments of the invention, wherein an "essentially" completely gaseous state is intended to denote a gas content of more than 90%, 95% or 99% in the molar fraction.
- the bottom liquid of the first rectification column can in particular have a content of 28 to 38% oxygen as well as argon and nitrogen.
- the top gas of the first rectification column can in particular have a content of 0.1 to 100 ppb (billionths of a part), for example approx. 10 ppb, of oxygen, 1 to 100 ppm (millionths of a part), for example approx. 30 ppm, of argon, and otherwise essentially nitrogen and possibly lighter components.
- the second rectification column is operated in the context of the present invention at a second pressure level, and the second rectification column is (at least) using bottom liquid from the first rectification column.
- the bottom liquid from the first rectification column or a corresponding part thereof, can also be used in particular to cool one or more top condensers of the argon recovery column(s), ie in particular also of the third rectification column, whereby evaporated and unevaporated portions may be formed, which are then fed into the second rectification column as a feed stream or feed streams.
- an oxygen-rich bottom liquid and a nitrogen-rich top gas are formed in the second rectification column.
- the top gas of the second rectification column can be formed in particular with a content of 1 to 1000 ppb, for example about 100 ppb, of oxygen and 3 to 300 ppm, for example about 90 ppm, of argon.
- the top gas of the first and second rectification columns can also have essentially the same contents of the components mentioned.
- the third rectification column is operated at a third pressure level, which can in particular be slightly lower than the second pressure level, and is fed using fluid which in particular has a higher argon content than the second bottom liquid and the second top gas and is taken from the second rectification column, typically at the so-called argon belly or below.
- a third top gas enriched in argon compared to the third feed stream is formed.
- the feeding does not have to be carried out with the fluid from the second rectification column, but can also be carried out using fluid taken from another rectification column or another separation apparatus, which in turn is fed with the fluid taken from the second rectification column.
- the corresponding can be the case in particular if, in one embodiment of the invention, a fourth rectification column is used to obtain high-purity oxygen.
- the first rectification column can in particular have 80 to 110, for example 90, theoretical plates, the second rectification column with 90 to 150, for example 110, theoretical plates and the A third rectification column with 210 to 320, for example 250, theoretical plates can be formed.
- the first pressure level is 9 to 14.5 bar, for example about 11.6 bar, at the top of the first rectification column and the second pressure level is 2 to 5 bar, for example about 3.5 bar, at the top of the second rectification column.
- top gas from the second rectification column is combined with a turbine cycle stream, which is cyclically and successively subjected to a first heating in the countercurrent subcooling device, a second heating in the main heat exchanger, compression, cooling and expansion using an expansion turbine.
- turbine cycle stream For the meaning of the term "turbine cycle stream”, reference is also made to the above explanations. To avoid misunderstandings, it should be emphasized that the fact that we are talking about a combination of top gas with a turbine cycle stream says nothing about the quantitative ratios. In other words, the amount of top gas combined with the turbine cycle stream can also be significantly larger than the turbine cycle stream at the point of combination.
- a combination of top gas with the turbine cycle stream means that gas molecules of the top gas become part of the turbine cycle stream.
- Such a process is further improved within the scope of the present invention in that the top gas of the second rectification column, which is combined with the turbine cycle stream, is combined partially or completely with the turbine cycle stream downstream of the expansion and upstream of the first heating.
- the present invention thereby makes it possible to dispense with pre-liquefaction of the feed air which is fed to the first rectification column.
- the combination of the top gas with the turbine cycle stream can also take place at the top of the second rectification column, i.e. within the second rectification column and in an upper region thereof, the "upper region” being in particular a region above the uppermost separation section.
- This is particularly advantageous in the case when the expansion turbine used to expand the turbine cycle stream expands strongly into the pre-liquefaction, since in this case the second rectification column can practically serve as a liquid separator for the turbine cycle stream.
- liquid formed during the expansion is initially removed from the turbine cycle stream by remaining in the second rectification column. In this case, the turbine cycle stream is closed via the top of the second rectification column.
- a bypass of the turbine circuit stream around the subcooling countercurrent can also be provided, i.e. the top gas of the second rectification column combined with the turbine circuit stream can be combined partially or completely with the turbine circuit stream downstream of the expansion and then in particular adjustable proportions upstream and downstream of the first heating.
- the turbine circuit flow is brought to a temperature level of 80 to 100 K, in particular approximately 90 K, by cooling and relaxation.
- fluid is conducted together with the turbine cycle stream, which downstream of the second heating, upstream and/or downstream of the compression and upstream of the cooling in the form of one or several partial streams are branched off again and discharged from the air separation plant.
- gases can be advantageously provided for specific purposes and a rectification cycle stream can also be formed which is returned to the rectification column system.
- the one partial stream or at least one of the several partial streams can be used to provide a gaseous, pressurized air product with the desired specifications.
- the turbine cycle stream downstream of its turbine expansion can, for example, comprise a certain amount of fluid per unit of time, which is also referred to here as the turbine cycle flow amount.
- the overhead gas removed from the low-pressure column per unit of time also referred to below as the overhead gas amount, can be 1.2 to 3 times the turbine cycle flow amount.
- gas can also be fed back into the rectification column arrangement in a rectification cycle stream, the amount of which is also referred to here as the rectification cycle flow amount. This is typically no more than 0.6 times the turbine cycle flow amount.
- a residual gas discharged from the second rectification column is also heated and/or one or more liquids formed using top gas from the first rectification column and/or bottom liquid from the first rectification column and/or an argon product are subcooled.
- the heat balance can be balanced in a particularly advantageous manner.
- the compression of the turbine cycle stream may comprise a first compression step and a second compression step, wherein the second compression step is carried out using a booster which is mechanically coupled to an expansion turbine used to carry out the expansion.
- the first compression step can be carried out in particular using a single- or multi-stage compressor of any type.
- a further compression step can be inserted between the first and second compression steps, which can in particular also be carried out with a separate, in particular single-stage, nitrogen compressor. This makes it possible in particular to achieve a higher liquid production.
- a residual gas turbine can be used in particular.
- residual gas from the second rectification column which is taken from below an uppermost separation section thereof and is significantly richer in oxygen than the top gas of the second rectification column, can be withdrawn.
- the present invention can in particular comprise the third rectification column being operated alone or together with a pure argon column to produce argon.
- the third rectification column being operated alone or together with a pure argon column to produce argon.
- any other rectification columns can be used in embodiments of the present invention, in particular a further rectification column for obtaining an oxygen product and/or a further rectification column for obtaining a crude krypton/xenon mixture and/or a further rectification column for obtaining a crude helium/neon mixture, wherein reference is also made to the cited specialist literature for the formation of crude krypton/xenon mixtures or crude helium/neon mixtures.
- the turbine cycle stream or a part thereof can be used as a heating medium for the bottom evaporators of corresponding columns.
- the air fed into the first rectification column can be completely gaseous or more than 90%, 95% or 99% gaseous, thus pre-liquefaction can be dispensed with.
- argon from the second rectification column can be transferred to the argon recovery system, and thus the third rectification column, and used to recover an argon product.
- an argon yield of more than 85%, for example approximately 90% can also be achieved.
- a yield of more than 90% is also possible.
- compression of a nitrogen product can be dispensed with by operating the first rectification column at the first pressure level.
- a compressor that compresses the turbine cycle stream and possibly other gas a simple design, for example with only two compression stages, can be used.
- This compressor can also be designed in the form of a so-called combination compressor, which for example also comprises four stages that fulfill the function of the main air compressor.
- the compression of the compressed air and the second top gas used to form the turbine cycle stream or a corresponding part thereof can be carried out using a jointly driven compressor arrangement.
- the fluid taken from the second rectification column to feed the third rectification column can, as already mentioned, be fed into a further rectification column, and a corresponding feed stream can be formed using fluid taken from this further rectification column.
- the further rectification column is set up in particular to form a high-purity oxygen product and is operated as explained below.
- the further rectification column has in particular a first (upper) part and a second (lower) part, with a "barrier plate” rectification section, which serves in particular to retain hydrocarbons, being arranged between the first and the second part.
- the first part of the further rectification column can be functionally designed as the lowest part of a crude argon column and can be coupled accordingly to the actual crude argon column, i.e. the third rectification column.
- a corresponding design is carried out in particular for reasons of installation space in order to reduce the overall height of the air separation plant.
- the fluid which is taken from the second rectification column and used to feed the third rectification column is fed into a lower region of the first part. Gas is taken from an upper region of the first part and used to feed the third rectification column. Bottom liquid formed in the third rectification column is at least partially transferred to the upper region of the first part.
- Liquid is taken from an intermediate area of the first part and fed into an upper area of the second part, where the actual pure oxygen production takes place.
- Gas is taken from the upper area of the second part and fed into the intermediate area of the first part, and pure oxygen is formed in a lower area of the second part and discharged from the air separation plant.
- the pure oxygen can be formed in particular with a residual content of 5 to 500 ppb, for example approx. 10 ppb, of argon.
- the fluid from the second rectification column can also be fed directly into the third rectification column, i.e. a crude argon column.
- the lower region of the second part of the further rectification column just described can be heated in particular using a condenser evaporator in which part of the top gas of the first rectification column is used as heating fluid.
- the part of the top gas of the first rectification column used as heating fluid can then be fed into the first rectification column or into the second rectification column, in particular in a liquefied state.
- the bottom liquid of the first rectification column or at least the part thereof that is used to feed the second rectification column can, as mentioned several times, be used to condense top gas from at least the third rectification column.
- This top gas can in particular, as is known from the prior art, be purified to pure argon in a pure argon column.
- FIG. 1 to 3 illustrate air separation plants according to different embodiments of the present invention.
- FIG. 1 An air separation plant according to an embodiment of the present invention is illustrated in the form of a simplified process flow diagram and is designated overall by 100.
- air is sucked in by means of a main air compressor 1 through a filter 2 and compressed to a pressure level of, for example, approximately 12.5 bar.
- the correspondingly compressed air is cooled and separated from Water is freed from residual water and carbon dioxide in an adsorber station 3, which can be designed in a known manner.
- an adsorber station 3 which can be designed in a known manner.
- a correspondingly formed compressed air stream a is guided from the warm to the cold end through a main heat exchanger 4 and fed here in a substantially gaseous state into a pressure column 11 ("first rectification column") of a rectification column system 10.
- the rectification column system 10 has, in addition to the pressure column 11, a low-pressure column 12 ("second rectification column"), a two-part crude argon column 13 ("third rectification column”) with two column parts 13a (upper part) and 13b (lower part) and a pure argon column 14.
- a rectification column 15 for obtaining a crude krypton/xenon mixture and a rectification column 16 for obtaining a crude helium/neon mixture are provided.
- the pressure column 11 is connected to the low-pressure column 12 via a main condenser 11a in a heat-exchanging manner, which can be designed, for example, as a multi-level bath evaporator, and a bottom evaporator 15a is arranged in the bottom of the rectification column 15 for obtaining the krypton/xenon raw mixture.
- a subcooling countercurrent device 18 is also assigned to the rectification column system 10.
- a top gas is formed at the top of the pressure column 11. In the example shown, this is partly passed in the form of a material flow b through the main condenser 11a and another part in the form of a material flow c through the bottom evaporator 15a of the rectification column 15 to obtain the crude krypton/xenon mixture. Condensate formed in the main condenser 11a is returned to the pressure column 11. A non-condensed portion is fed into the rectification column 16 to obtain the crude helium/neon mixture.
- a bottom liquid is formed in the bottom of the pressure column 11 and is withdrawn from it in the form of a material stream e.
- the material stream e is first passed through the countercurrent subcooler 18 and then used in a manner known per se to cool top condensers (not separately designated) of the crude argon column 13 and the pure argon column 14. Vaporized and unvaporized portions are fed into the low-pressure column 12 in the form of material streams f or are used to form the material stream k explained below.
- bottom liquid (“second bottom liquid”) is formed, which is fed into an evaporation space of the main condenser 11a, and gas is fed from the main condenser 11a into the low-pressure column 11 at the bottom.
- liquid h is withdrawn from the low-pressure column 11. A first part of this is increased in pressure in a pump 5 in the form of a material flow h1, heated in the main heat exchanger 4 and discharged as an internally compressed oxygen product.
- a second part of the liquid h is fed into the rectification column 15 in the form of a material flow h2 to obtain the krypton/xenon raw mixture, and a third part is discharged in the form of a material flow h3, in particular as a liquid product from the air separation plant 100.
- gas is withdrawn from the low-pressure column 12 in the form of a material stream i, combined with material streams k and o explained below to form a collective stream I with a content of, for example, approx. 90% oxygen, partially heated in the main heat exchanger 4, expanded in a generator turbine or residual gas turbine 6, heated again in the main heat exchanger 4, and used, for example, as regeneration gas in the adsorber station 3.
- a gaseous pressurized nitrogen stream is withdrawn in the form of a material stream n from the top of the low-pressure column 12. This is present, for example, at a pressure level of approximately 3.5 bar and has a content of approximately 50 ppb oxygen, for example. It is used to form a turbine cycle stream, which is first heated in the subcooling counterflow 18 ("first heating”), then heated in the main heat exchanger 4 ("second heating"), compressed in a compressor 7 and then in a booster of a booster turbine arrangement 9, in the Main heat exchanger 4 is cooled again and expanded in an expansion turbine of the booster turbine arrangement 9. The circuit is closed by feeding into the subcooling counterflow 18.
- the mentioned material flow n is branched off downstream of the compressor 7 and cooled in the main heat exchanger 4.
- a rectification circuit flow is fed partly together with the turbine circuit flow, but this is not subjected to the second compression and expansion, but is cooled in the main heat exchanger 4 and then used as explained.
- Argon-enriched gas is withdrawn from the low-pressure column 11 in the form of a stream o and fed into the crude argon column 13. Bottom liquid is returned from the crude argon column 13 in the form of a stream p to the low-pressure column 11 by means of a pump not specifically designated.
- a pure argon stream v is withdrawn from the pure argon column 15, which, in particular after supercooling in the supercooling countercurrent 18, now designated w, is partly stored or temporarily stored in a tank T, for example, the pressure is increased by pressure build-up evaporation and after heating in the main heat exchanger 4 can be provided with a content of, for example, approx. 200 ppb oxygen.
- the mentioned material stream k is formed using gas which is taken from the top condenser of the crude argon column 13.
- the material stream o comes from the top of the rectification column 15 for obtaining the crude krypton/xenon mixture, from the bottom of which the crude krypton/xenon mixture is taken in the form of a material stream not separately designated.
- liquid is withdrawn and partly subcooled in the form of a stream x and provided as a liquid nitrogen product, and a further part y is fed into an evaporation chamber of the rectification column 16 to obtain the raw helium/neon mixture, which is withdrawn therefrom in the form of a material stream z.
- a dashed line illustrates a temperature-insulated area whose enthalpy balance is essentially closed by the use of the measures proposed according to the illustrated design.
- FIG. 2 an air separation plant according to a further embodiment of the present invention is illustrated in the form of a simplified process flow diagram and designated overall by 200.
- the air separation plant 200 illustrated has, in contrast to the air separation plant 100 according to Figure 1 a one-piece crude argon column 13.
- a pure oxygen column 7 is also present. This is operated with a bottom evaporator 17a and has an upper region and a lower region which are separated from one another by a partition wall 17b. The upper region is fed with the material flow o and the material flow p is taken from this. Functionally, it is a "separated oxygen section" of the low-pressure column.
- the bottom evaporator 17a is operated with the material flow d.
- a condensate u formed is treated like the material flow m.
- the upper and lower parts of the pure oxygen column 17 are operated with bottom liquid r from the crude argon column as reflux, and top gas s from the parts of the pure oxygen column 17 is fed into the crude argon column 13. Pure oxygen is withdrawn in the form of a material flow t from the pure oxygen column 17, for example by means of a pressure build-up evaporation using a tank system T2, and discharged from the plant.
- a liquid argon tank system T3 is also shown here.
- FIG. 3 an air separation plant according to a further embodiment of the present invention is illustrated in the form of a simplified process flow diagram and designated overall by 300.
- the air separation plant 300 illustrated in FIG. 1 has, in contrast to the air separation plant 200 according to Figure 2 a bypass around the subcooling counterflow 18, so that the material flow n after its Expansion can be fed back into portions n1 and/or n2 upstream or downstream of the subcooling countercurrent device 18.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
Die Erfindung betrifft ein Verfahren zur Tieftemperaturzerlegung von Luft unter Verwendung einer Luftzerlegungsanlage (100-300) mit einem Hauptwärmetauscher (4) und einen Unterkühlungsgegenströmer (18) sowie einem Rektifikationskolonnensystem (10), das eine erste Rektifikationskolonne (11), eine zweite Rektifikationskolonne (12) und eine dritte Rektifikationskolonne (13) aufweist, bei dem die erste Rektifikationskolonne (11) auf einem ersten Druckniveau betrieben und unter Verwendung von in dem Hauptwärmetauscher (4) abgekühlter, gasförmiger Druckluft gespeist wird, die zweite Rektifikationskolonne (12) auf einem zweiten Druckniveau betrieben und unter Verwendung von Sumpfflüssigkeit der ersten Rektifikationskolonne (11) gespeist wird, die dritte Rektifikationskolonne (13) auf einem dritten Druckniveau betrieben und unter Verwendung von Fluid gespeist wird, das aus der zweiten Rektifikationskolonne (12) entnommen wird, das erste Druckniveau bei 9 bis 14,5 bar am Kopf der ersten Rektifikationskolonne (11) liegt und das zweite Druckniveau bei 2 bis 5 bar am Kopf der zweiten Rektifikationskolonne (12) liegt, und Kopfgas der zweiten Rektifikationskolonne (12) zur Bildung eines Turbinenkreislaufstroms verwendet wird, der zyklisch und nacheinander einer ersten Erwärmung in dem Unterkühlungsgegenströmer (18), einer zweiten Erwärmung in dem Hauptwärmetauscher (4), einer Verdichtung, einer Abkühlung und einer Entspannung unterworfen wird. Es ist vorgesehen, dass das zur Bildung des Turbinenkreislaufstroms verwendete Kopfgas der zweiten Rektifikationskolonne (12) teilweise oder vollständig stromab der Entspannung und stromauf der ersten Erwärmung des Turbinenkreislaufstroms mit dem Turbinenkreislaufstrom vereinigt wird. Eine entsprechende Anlage (100-400) ist ebenfalls Gegenstand der vorliegenden Erfindung.The invention relates to a method for the low-temperature separation of air using an air separation plant (100-300) with a main heat exchanger (4) and a subcooling countercurrent device (18) and a rectification column system (10) which has a first rectification column (11), a second rectification column (12) and a third rectification column (13), in which the first rectification column (11) is operated at a first pressure level and is fed using gaseous compressed air cooled in the main heat exchanger (4), the second rectification column (12) is operated at a second pressure level and is fed using bottom liquid from the first rectification column (11), the third rectification column (13) is operated at a third pressure level and is fed using fluid which is taken from the second rectification column (12), the first pressure level is at 9 to 14.5 bar at the top of the first rectification column (11) and the second pressure level is 2 to 5 bar at the top of the second rectification column (12), and top gas from the second rectification column (12) is used to form a turbine cycle stream which is cyclically and successively subjected to a first heating in the countercurrent subcooling device (18), a second heating in the main heat exchanger (4), compression, cooling and expansion. It is provided that the top gas from the second rectification column (12) used to form the turbine cycle stream is partially or completely combined with the turbine cycle stream downstream of the expansion and upstream of the first heating of the turbine cycle stream. A corresponding system (100-400) is also the subject of the present invention.
Description
Die Erfindung betrifft ein Verfahren zur Tieftemperaturzerlegung von Luft und eine Luftzerlegungsanlage gemäß den jeweiligen Oberbegriffen der unabhängigen Patentansprüche.The invention relates to a process for the low-temperature separation of air and an air separation plant according to the respective preambles of the independent patent claims.
Die Herstellung von Luftprodukten in flüssigem oder gasförmigem Zustand durch Tieftemperaturzerlegung von Luft in Luftzerlegungsanlagen ist bekannt und beispielsweise bei
Aus der
Ein solches Verfahren hat sich gemäß dieser Druckschrift insbesondere für ein Anforderungsprofil als vorteilhaft erwiesen, das die Gewinnung von gasförmigem Druckstickstoff auf einem bestimmten Druckniveau und eine zusätzliche Gewinnung von Argon umfasst. Ein aus der Druckkolonne und der Niederdruckkolonne gebildetes Doppelkolonnensystem wird dabei auf einem erhöhten Druckniveau betrieben. Die Niederdruckkolonne ist durch die Verwendung eines geeigneten Stickstoffabschnitts im oberen Bereich dafür eingerichtet, ein sehr stickstoffreiches Kopfgas bereitzustellen.According to this publication, such a process has proven to be particularly advantageous for a requirement profile that includes the production of gaseous pressure nitrogen at a certain pressure level and an additional production of argon. A double column system formed from the pressure column and the low-pressure column is operated at an increased pressure level. The low-pressure column is designed to provide a very nitrogen-rich top gas by using a suitable nitrogen section in the upper area.
Es besteht weiterhin der Bedarf nach Verfahren, die es erlauben, die Bereitstellung von Luftprodukten, insbesondere unter Verwendung von Kopfgas der Niederdruckkolonne wie soeben erläutert, weiter zu verbessern und effizienter und einfacher zu gestalten.There is still a need for processes that allow the provision of air products, in particular using top gas from the low-pressure column as just explained, to be further improved and made more efficient and simpler.
Vor diesem Hintergrund schlägt die vorliegende Erfindung ein Verfahren zur Tieftemperaturzerlegung von Luft und eine Luftzerlegungsanlage mit den Merkmalen der jeweiligen unabhängigen Patentansprüche vor. Ausgestaltungen sind jeweils Gegenstand der abhängigen Patentansprüche und der nachfolgenden Beschreibung.Against this background, the present invention proposes a method for the low-temperature separation of air and an air separation plant with the features of the respective independent patent claims. Embodiments are the subject of the dependent patent claims and the following description.
Nachfolgend werden zunächst einige bei der Beschreibung der vorliegenden Erfindung und ihrer Vorteile verwendete Begriffe sowie der zugrunde liegende technische Hintergrund näher erläutert.In the following, some of the terms used to describe the present invention and its advantages as well as the underlying technical background are explained in more detail.
Eine "Entspannungsturbine" bzw. "Entspannungsmaschine", die über eine gemeinsame Welle mit weiteren Entspannungsturbinen oder Energiewandlern wie Ölbremsen, Generatoren oder Verdichtern gekoppelt sein kann, ist zur Entspannung eines gasförmigen oder zumindest teilweise flüssigen Stroms eingerichtet. Insbesondere können Entspannungsturbinen zum Einsatz in der vorliegenden Erfindung als Turboexpander ausgebildet sein. Wird ein Verdichter mit einer oder mehreren Entspannungsturbinen angetrieben, jedoch ohne extern, beispielsweise mittels eines Elektromotors, zugeführte Energie, wird der Begriff "turbinengetriebener" Verdichter oder alternativ "Booster" verwendet. Anordnungen aus turbinengetriebenen Verdichtern und Entspannungsturbinen werden auch als "Boosterturbinen" oder alternativ als "Turbinenbooster" bezeichnet. Ist nachfolgend davon die Rede, dass eine Entspannung in einer Boosterturbine erfolgt, soll damit der Turbinenteil gemeint sein. Entsprechendes gilt für die Verdichtung, die dann in dem Verdichterteil der Boosterturbine oder des Turbinenboosters erfolgt.An "expansion turbine" or "expansion machine", which can be coupled to other expansion turbines or energy converters such as oil brakes, generators or compressors via a common shaft, is designed to expand a gaseous or at least partially liquid stream. In particular, expansion turbines for use in the present invention can be designed as turbo expanders. If a compressor is driven by one or more expansion turbines, but without externally supplied energy, for example by means of an electric motor, the term "turbine-driven" compressor or alternatively "booster" is used. Arrangements of turbine-driven compressors and expansion turbines are also referred to as "booster turbines" or alternatively as "turbine boosters". If it is mentioned below that expansion takes place in a booster turbine, this is to mean the turbine part. The same applies to the compression, which then takes place in the compressor part of the booster turbine or the turbine booster.
Flüssigkeiten und Gase können im hier verwendeten Sprachgebrauch reich oder arm an einer oder an mehreren Komponenten sein, wobei "reich" für einen Gehalt von wenigstens 50%, 75%, 90%, 95%, 99%, 99,5%, 99,9% oder 99,99% und "arm" für einen Gehalt von höchstens 50%, 25%, 10%, 5%, 1%, 0,1% oder 0,01% auf Mol-, Gewichts- oder Volumenbasis stehen kann. Der Begriff "überwiegend" kann der Definition von "reich" entsprechen. Flüssigkeiten und Gase können ferner angereichert oder abgereichert an einer oder mehreren Komponenten sein, wobei sich diese Begriffe auf einen Gehalt in einer Ausgangsflüssigkeit oder einem Ausgangsgas beziehen, aus der oder dem die Flüssigkeit oder das Gas gewonnen wurde. Die Flüssigkeit oder das Gas ist "angereichert", wenn diese oder dieses zumindest den 1,1-fachen, 1,5-fachen, 2-fachen, 5-fachen, 10-fachen 100-fachen oder 1.000-fachen Gehalt, und "abgereichert", wenn diese oder dieses höchstens den 0,9-fachen, 0,5-fachen, 0,1-fachen, 0,01-fachen oder 0,001-fachen Gehalt einer entsprechenden Komponente, bezogen auf die Ausgangsflüssigkeit oder das Ausgangsgas enthält. Ist hier beispielsweise von "Sauerstoff" oder "Stickstoff" die Rede, sei hierunter auch eine Flüssigkeit oder ein Gas verstanden, der reich an Sauerstoff oder Stickstoff ist, jedoch nicht notwendigerweise ausschließlich hieraus bestehen muss.Liquids and gases, as used herein, may be rich or poor in one or more components, where "rich" may mean a content of at least 50%, 75%, 90%, 95%, 99%, 99.5%, 99.9% or 99.99% and "poor" may mean a content of at most 50%, 25%, 10%, 5%, 1%, 0.1% or 0.01% on a mole, weight or volume basis. The term "predominantly" may correspond to the definition of "rich". Liquids and gases may also be enriched or depleted in one or more components, where these terms refer to a content in a starting liquid or gas from which the liquid or gas was derived. The A liquid or gas is "enriched" if it contains at least 1.1 times, 1.5 times, 2 times, 5 times, 10 times, 100 times or 1,000 times the content of a corresponding component, and "depleted" if it contains at most 0.9 times, 0.5 times, 0.1 times, 0.01 times or 0.001 times the content of a corresponding component, based on the original liquid or gas. If, for example, "oxygen" or "nitrogen" is mentioned here, this also includes a liquid or gas that is rich in oxygen or nitrogen, but does not necessarily have to consist exclusively of these.
Die vorliegende Offenbarung verwendet zur Charakterisierung von Drücken und Temperaturen die Begriffe "Druckniveau" und "Temperaturniveau", wodurch zum Ausdruck gebracht werden soll, dass entsprechende Drücke und Temperaturen in einer entsprechenden Anlage nicht in Form exakter Druck- bzw. Temperaturwerte verwendet werden müssen, um das erfinderische Konzept zu verwirklichen. Jedoch bewegen sich derartige Drücke und Temperaturen typischerweise in bestimmten Bereichen, die beispielsweise 1%, 5%,10%, 20% oder sogar 50% um einen Mittelwert herum liegen. Entsprechende Druckniveaus und Temperaturniveaus können dabei in disjunkten Bereichen liegen oder in Bereichen, die einander überlappen. Insbesondere schließen beispielsweise Druckniveaus unvermeidliche oder zu erwartende Druckverluste ein. Entsprechendes gilt für Temperaturniveaus.The present disclosure uses the terms "pressure level" and "temperature level" to characterize pressures and temperatures, which is intended to express that corresponding pressures and temperatures in a corresponding system do not have to be used in the form of exact pressure or temperature values in order to implement the inventive concept. However, such pressures and temperatures typically move in certain ranges that are, for example, 1%, 5%, 10%, 20% or even 50% around a mean value. Corresponding pressure levels and temperature levels can lie in disjoint ranges or in ranges that overlap one another. In particular, pressure levels, for example, include unavoidable or expected pressure losses. The same applies to temperature levels.
Lediglich zur Vermeidung von Missverständnissen sei dabei betont, dass dann, wenn nachfolgend von einem Turbinenkreislaufstrom die Rede ist, ein zur Erzeugung von zusätzlicher Kälte verwendeter, im Kreislauf geführter Stoffstrom die Rede ist und nicht ein ebenfalls bekannter bzw. verwendeter Stoffstrom, der in einem Kreislauf geführt und zur Verbesserung der Rektifikation in der Niederdruckkolonne verwendet wird. Letzterer stellt im hier verwendeten Sprachgebrauch einen Rektifikationskreislaufstrom dar. Turbinen- und Rektifikationskreislaufstrom können aber in bestimmten Abschnitten gemeinsam geführt werden. Der Rektifikationskreislaufstrom wird aber nicht turbinenentspannt, sondern typischerweise nach einer Abkühlung im Hauptwärmetauscher in die Rektifikationskolonnenanordnung zurückgeführt.Just to avoid misunderstandings, it should be emphasized that when we talk about a turbine cycle stream below, we are talking about a material stream that is used to generate additional cold and is circulated, and not a material stream that is also known or used and is circulated and used to improve rectification in the low-pressure column. The latter represents a rectification cycle stream in the language used here. Turbine and rectification cycle streams can, however, be run together in certain sections. The rectification cycle stream is not expanded in the turbine, but is typically returned to the rectification column arrangement after cooling in the main heat exchanger.
Der nachfolgend als solcher bezeichnete Turbinenkreislaufstrom muss nicht dem im Stand der Technik, z.B. der
In herkömmlichen Verfahren der eingangs erläuterten Art ist typischerweise eine teilweise Verflüssigung des Prozessluftstroms, d.h. zumindest eines Teils der in die Druckkolonne eingespeisten Luft, auch als "Einsatzluft" bezeichnet, erforderlich, um die Enthalpiebilanz um das Rektifikationssystem herum zu schließen. Diese teilweise Verflüssigung wird nachfolgend auch als "Vorverflüssigung" bezeichnet. Der Grund hierfür liegt insbesondere darin, dass die typischerweise erfolgende Entnahme einer vergleichsweise großen Menge an flüssigen Produkten aus der Luftzerlegungsanlage zu einem vergleichsweise niedrigen Enthalpiewert des einströmenden Prozessluftstroms führt. Im Rahmen der vorliegenden Erfindung wurde nun erkannt, dass diese Vorverflüssigung negative Auswirkungen auf den Rektifikationsprozess hat und vorteilhafterweise vermieden oder verringert werden sollte, um den Wirkungsgrad des Luftzerlegungsprozesses zu verbessern. Die negativen Auswirkungen ergeben sich herkömmlicherweise daraus, dass der verflüssigte Anteil den Trennnprozess in der Drucksäule umgeht und am Hauptkondensator nicht kondensiert wird. Die daurch am Hauptkondensator fehlende Leistung muss kompensiert werden.In conventional processes of the type explained at the beginning, a partial liquefaction of the process air flow, i.e. at least part of the air fed into the pressure column, also referred to as "feed air", is typically required in order to close the enthalpy balance around the rectification system. This partial liquefaction is also referred to below as "pre-liquefaction". The reason for this is in particular that the typically occurring removal of a comparatively large amount of liquid products from the air separation plant leads to a comparatively low enthalpy value of the incoming process air flow. In the context of the present invention, it has now been recognized that this pre-liquefaction has negative effects on the rectification process and should advantageously be avoided or reduced in order to improve the efficiency of the air separation process. The negative effects conventionally arise from the fact that the liquefied portion bypasses the separation process in the pressure column and is not condensed in the main condenser. The resulting lack of power in the main condenser must be compensated for.
Wie nun im Rahmen der vorliegenden Erfindung erkannt wurde, kann dieses Problem durch eine Führung eines Turbinenkreislaufstroms oder eines Teils hiervon nach dessen Entspannung durch einen Unterkühlungsgegenströmer, der Teil der Luftzerlegungsanlage ist, und durch den bestimmte Stoffströme in der nachfolgend erläuterten Weise geführt werden, addressiert werden. Es erfolgt eine Vereinigung des Turbinenkreislaufstroms stromauf dieses Unterkühlungsgegenströmers mit Kopfgas der Niederdruckkolonne. Da hierbei ein Temperaturniveau von ca. 90 K erreicht wird, kann die Enthalpie des Prozessluftstroms erhöht und die Vorverflüssigung desselben bei ca. 110 K vermieden bzw. signifikant reduziert werden.As has now been recognized within the scope of the present invention, this problem can be addressed by guiding a turbine cycle stream or a portion thereof after its expansion through a subcooling countercurrent device, which is part of the air separation plant and through which certain material streams are guided in the manner explained below. The turbine cycle stream is combined with top gas from the low-pressure column upstream of this subcooling countercurrent device. Since a temperature level of approx. 90 K is reached here, the enthalpy of the process air stream can be increased and the pre-liquefaction of the same at approx. 110 K can be avoided or significantly reduced.
Die vorliegende Erfindung schlägt dabei ein Verfahren zur Tieftemperaturzerlegung von Luft unter Verwendung einer Luftzerlegungsanlage mit einem Hauptwärmetauscher und einen Unterkühlungsgegenströmer sowie einem Rektifikationskolonnensystem vor, das eine erste Rektifikationskolonne, eine zweite Rektifikationskolonne und eine dritte Rektifikationskolonne aufweist. Die erste und zweite Rektifikationskolonne stellen dabei insbesondere Rektifikationskolonnen dar, die gemäß einer Druckkolonne und einer Niederdruckkolonne eines bekannten Doppelkolonnensystems ausgebildet sein können und grundsätzlich vergleichbar verschaltet sind. Diese werden jedoch auf einem erhöhten Druckniveau betrieben. Die dritte Rektifikationskolonne ist insbesondere eine Rohargonkolonne oder eine Einzelkolonne zur Gewinnung eines Argonprodukts, die die Funktionen von Roh- und Reinargonkolonne teilweise miteinander vereint, indem sie einen zur Abtrennung von Stickstoff vorgesehenen weiteren Abschnitt aufweist.The present invention proposes a method for the low-temperature separation of air using an air separation plant with a main heat exchanger and a counter-current subcooling device and a rectification column system that has a first rectification column, a second rectification column and a third rectification column. The first and second rectification columns are in particular rectification columns that can be designed according to a pressure column and a low-pressure column of a known double column system and are basically connected in a comparable way. However, these are operated at an increased pressure level. The third rectification column is in particular a crude argon column or a single column for obtaining an argon product, which partially combines the functions of the crude and pure argon columns by having a further section intended for the separation of nitrogen.
Die im Rahmen der vorliegenden Erfindung vorgesehene erste Rektifikationskolonne wird auf einem ersten Druckniveau betrieben, die erste Rektifikationskolonne wird unter Verwendung von in dem Hauptwärmetauscher abgekühlter Druckluft gespeist, und in der ersten Rektifikationskolonne werden insbesondere eine gegenüber dem ersten Einsatzstrom an Sauerstoff und Argon angereicherte Sumpfflüssigkeit und ein stickstoffreiches Kopfgas gebildet. Durch die erfindungsgemäß vorgeschlagenen Maßnahmen kann der erste Einsatzstrom insbesondere in vollständig oder im Wesentlichen vollständig gasförmigem Zustand in die erste Rektifikationskolonne eingespeist werden, was daher ein Merkmal von Ausgestaltungen der Erfindung darstellen kann, wobei ein "im Wesentlichen" vollständig gasförmiger Zustand einen Gasanteil von mehr als 90%, 95% oder 99% im Stoffmengenanteil bezeichnen soll.The first rectification column provided within the scope of the present invention is operated at a first pressure level, the first rectification column is fed using compressed air cooled in the main heat exchanger, and in the first rectification column, in particular, a bottom liquid enriched in oxygen and argon compared to the first feed stream and a nitrogen-rich top gas are formed. By means of the measures proposed according to the invention, the first feed stream can be fed into the first rectification column in particular in a completely or essentially completely gaseous state, which can therefore represent a feature of embodiments of the invention, wherein an "essentially" completely gaseous state is intended to denote a gas content of more than 90%, 95% or 99% in the molar fraction.
Die Sumpfflüssigkeit der ersten Rektifikationskolonne kann insbesondere einen Gehalt von 28 bis 38% Sauerstoff sowie Argon und Stickstoff aufweisen. Das Kopfgas der ersten Rektifikationskolonne kann insbesondere einen Gehalt von 0,1 bis 100 ppb (Milliardstel Anteile), beispielsweise ca. 10 ppb, Sauerstoff, 1 bis 100 ppm (Millionstel Anteile), beispielsweise ca. 30 ppm, Argon, und ansonsten im Wesentlichen Stickstoff und ggf. leichtere Komponenten aufweisen.The bottom liquid of the first rectification column can in particular have a content of 28 to 38% oxygen as well as argon and nitrogen. The top gas of the first rectification column can in particular have a content of 0.1 to 100 ppb (billionths of a part), for example approx. 10 ppb, of oxygen, 1 to 100 ppm (millionths of a part), for example approx. 30 ppm, of argon, and otherwise essentially nitrogen and possibly lighter components.
Die zweite Rektifikationskolonne wird im Rahmen der vorliegenden Erfindung auf einem zweiten Druckniveau betrieben, und die zweite Rektifikationskolonne wird (zumindest) unter Verwendung von Sumpfflüssigkeit der ersten Rektifikationskolonne gespeist. Wie auch nachfolgend erläutert kann die Sumpfflüssigkeit der ersten Rektifikationskolonne, oder ein entsprechender Teil hiervon, dabei insbesondere auch zur Kühlung eines oder mehrerer Kopfkondensatoren der Argongewinnungskolonne(n), d.h. insbesondere auch der dritten Rektifikationskolonne, eingesetzt werden, wodurch ggf. verdampfte und unverdampfte Anteile entstehen, die anschließend als Einsatzstrom oder Einsatzströme in die zweite Rektifikationskolonne eingespeist werden. In der zweiten Rektifikationskolonne werden insbesondere eine sauerstoffreiche Sumpfflüssigkeit und ein stickstoffreiches Kopfgas gebildet.The second rectification column is operated in the context of the present invention at a second pressure level, and the second rectification column is (at least) using bottom liquid from the first rectification column. As also explained below, the bottom liquid from the first rectification column, or a corresponding part thereof, can also be used in particular to cool one or more top condensers of the argon recovery column(s), ie in particular also of the third rectification column, whereby evaporated and unevaporated portions may be formed, which are then fed into the second rectification column as a feed stream or feed streams. In the second rectification column, in particular an oxygen-rich bottom liquid and a nitrogen-rich top gas are formed.
Das Kopfgas der zweiten Rektifikationskolonne kann insbesondere mit einem Gehalt von 1 bis 1000 ppb, beispielsweise ca. 100 ppb, Sauerstoff und 3 bis 300 ppm, beispielsweise ca. 90 ppm, Argon gebildet werden. In bestimmten Fällen können das Kopfgas der ersten und der zweiten Rektifikationskolonne auch im Wesentlichen die gleichen Gehalte an den genannten Komponenten aufweisen.The top gas of the second rectification column can be formed in particular with a content of 1 to 1000 ppb, for example about 100 ppb, of oxygen and 3 to 300 ppm, for example about 90 ppm, of argon. In certain cases, the top gas of the first and second rectification columns can also have essentially the same contents of the components mentioned.
Die dritte Rektifikationskolonne wird auf einem dritten Druckniveau betrieben, das insbesondere geringfügig geringer als das zweite Druckniveau sein kann, und unter Verwendung von Fluid gespeist, das insbesondere einen höheren Argongehalt als die zweite Sumpfflüssigkeit und das zweite Kopfgas aufweist und aus der zweiten Rektifikationskolonne, typischerweise am sogenannten Argonbauch oder darunter, entnommen wird. In der dritten Rektifikationskolonne wird insbesondere ein gegenüber dem dritten Einsatzstrom an Argon angereichertes drittes Kopfgas gebildet. Die Speisung muss nicht mit dem Fluid aus der zweiten Rektifikationskolonne erfolgen, sondern kann auch unter Verwendung von Fluid erfolgen, das einer weiteren Rektifikationskolonne oder einem anderen Trennapparat entnommen wird, welche ihrerseits bzw. welcher seinerseits mit dem aus der zweiten Rektifikationskolonne entnommenen Fluid gespeist wird. Entsprechendes kann insbesondere dann der Fall sein, wenn in einer Ausgestaltung der Erfindung eine vierte Rektifikationskolonne zur Gewinnung von Hochreinsauerstoff eingesetzt wird.The third rectification column is operated at a third pressure level, which can in particular be slightly lower than the second pressure level, and is fed using fluid which in particular has a higher argon content than the second bottom liquid and the second top gas and is taken from the second rectification column, typically at the so-called argon belly or below. In the third rectification column, in particular, a third top gas enriched in argon compared to the third feed stream is formed. The feeding does not have to be carried out with the fluid from the second rectification column, but can also be carried out using fluid taken from another rectification column or another separation apparatus, which in turn is fed with the fluid taken from the second rectification column. The corresponding can be the case in particular if, in one embodiment of the invention, a fourth rectification column is used to obtain high-purity oxygen.
Die erste Rektifikationskolonne kann im Rahmen der vorliegenden Erfindung insbesondere mit 80 bis 110, beispielsweise 90, theoretischen Böden, die zweite Rektifikationskolonne mit 90 bis 150, beispielsweise 110, theoretischen Böden und die dritte Rektifikationskolonne mit 210 bis 320, beispielsweise 250, theoretischen Böden ausgebildet werden.In the context of the present invention, the first rectification column can in particular have 80 to 110, for example 90, theoretical plates, the second rectification column with 90 to 150, for example 110, theoretical plates and the A third rectification column with 210 to 320, for example 250, theoretical plates can be formed.
Im Rahmen der vorliegenden Erfindung liegt das erste Druckniveau bei 9 bis 14,5 bar, beispielsweise ca. 11,6 bar, am Kopf der ersten Rektifikationskolonne und das zweite Druckniveau bei 2 bis 5 bar, beispielsweise ca. 3,5 bar, am Kopf der zweiten Rektifikationskolonne.In the context of the present invention, the first pressure level is 9 to 14.5 bar, for example about 11.6 bar, at the top of the first rectification column and the second pressure level is 2 to 5 bar, for example about 3.5 bar, at the top of the second rectification column.
In dem vorgeschlagenen Verfahren wird Kopfgas der zweiten Rektifikationskolonne mit einem Turbinenkreislaufstrom vereinigt, der zyklisch und jeweils nacheinander einer ersten Erwärmung in dem Unterkühlungsgegenströmer, einer zweiten Erwärmung in dem Hauptwärmetauscher, einer Verdichtung, einer Abkühlung und einer Entspannung unter Verwendung einer Entspannungsturbine unterworfen wird. Zur Bedeutung des Begriffs "Turbinenkreislaufstrom" sei auch auf die obigen Erläuterungen verwiesen. Zur Vermeidung von Missverständnissen sei dabei betont, dass dadurch, dass von einer Vereinigung von Kopfgas mit einem Turbinenkreislaufstrom die Rede ist, nichts über die Mengenverhältnisse ausgesagt wird. Mit anderen Worten kann die Menge des mit dem Turbinenkreislaufstrom vereinigten Kopfgases auch deutlich größer sein als der Turbinenkreislaufstrom an der Stelle der Vereinigung. Eine Vereinigung von Kopfgas mit dem Turbinenkreislaufstrom bedeutet, dass Gasmoleküle des Kopfgases Teil des Turbinenkreislaufstroms werden.In the proposed process, top gas from the second rectification column is combined with a turbine cycle stream, which is cyclically and successively subjected to a first heating in the countercurrent subcooling device, a second heating in the main heat exchanger, compression, cooling and expansion using an expansion turbine. For the meaning of the term "turbine cycle stream", reference is also made to the above explanations. To avoid misunderstandings, it should be emphasized that the fact that we are talking about a combination of top gas with a turbine cycle stream says nothing about the quantitative ratios. In other words, the amount of top gas combined with the turbine cycle stream can also be significantly larger than the turbine cycle stream at the point of combination. A combination of top gas with the turbine cycle stream means that gas molecules of the top gas become part of the turbine cycle stream.
Unter der Angabe "zyklisch und jeweils nacheinander" soll dabei verstanden werden, dass der Turbinenkreislaufstrom in einem Kreislauf durch die entsprechend verwendeten Apparate geführt wird und dabei in jedem Zyklus die genannten Bearbeitungsschritte durchläuft. Ein Kreislaufstrom liegt dabei deshalb vor, weil ein Anteil der individuellen Gasmoleküle desselben mehrfach den genannten Bearbeitungsschritten unterworfen werden, wenngleich an bestimmten Stellen dem Turbinenkreislaufstrom Anteile entnommen werden bzw. weiteres Gas in den Turbinenkreislaufstrom eingespeist wird oder der Turbinenkreislaufstrom streckenweise zusammen mit anderen Kreislaufströmen geführt wird. Bereits durch die Bildung des erläuterten Turbinenkreislaufstroms an sich kann die Effizienz des vorgeschlagenen Luftzerlegungsverfahrens deutlich erhöht werden.The term "cyclically and one after the other" is to be understood as meaning that the turbine cycle stream is guided in a cycle through the corresponding equipment used and in each cycle undergoes the processing steps mentioned. A cycle stream is present because a portion of the individual gas molecules are subjected to the processing steps mentioned several times, even if portions are removed from the turbine cycle stream at certain points or additional gas is fed into the turbine cycle stream or the turbine cycle stream is guided in sections together with other cycle streams. The efficiency of the proposed air separation process can be significantly increased simply by forming the turbine cycle stream described above.
Ein solches Verfahren wird im Rahmen der vorliegenden Erfindung dadurch weiter verbessert, dass das mit dem Turbinenkreislaufstrom vereinigte Kopfgas der zweiten Rektifikationskolonne teilweise oder vollständig stromab der Entspannung und stromauf der ersten Erwärmung mit dem Turbinenkreislaufstrom vereinigt wird. Wie erwähnt, erlaubt die vorliegende Erfindung hierdurch einen Verzicht auf eine Vorverflüssigung der Einsatzluft, die der ersten Rektifikationskolonne zugeführt wird.Such a process is further improved within the scope of the present invention in that the top gas of the second rectification column, which is combined with the turbine cycle stream, is combined partially or completely with the turbine cycle stream downstream of the expansion and upstream of the first heating. As mentioned, the present invention thereby makes it possible to dispense with pre-liquefaction of the feed air which is fed to the first rectification column.
Das Vereinigen des Kopfgases mit dem Turbinenkreislaufstrom kann auch am Kopf der zweiten Rektifikationskolonne erfolgen, d.h. innerhalb der zweiten Rektifikationskolonne und in einem oberen Bereich derselben, wobei der "obere Bereich" insbesondere ein Bereich oberhalb des obersten Trennabschnitts ist. Dies ist insbesondere für den Fall vorteilhaft, wenn die zur Entspannung des Turbinenkreislaufstroms verwendete Entspannungsturbine stark in die Vorverflüssigung entspannt, da in diesem Fall die zweite Rektifikationskolonne praktisch als Flüssigkeitsabscheider für den Turbinenkreislaufstrom dienen kann. In einem solchen Fall versteht sich, dass bei der Entspannung gebildete Flüssigkeit dem Turbinenkreislaufstrom zunächst entzogen wird, indem es in der zweiten Rektifikationskolonne verbleibt. Der Turbinenkreislaufstrom wird in diesem Fall über den Kopf der zweiten Rektifikationskolonne geschlossen.The combination of the top gas with the turbine cycle stream can also take place at the top of the second rectification column, i.e. within the second rectification column and in an upper region thereof, the "upper region" being in particular a region above the uppermost separation section. This is particularly advantageous in the case when the expansion turbine used to expand the turbine cycle stream expands strongly into the pre-liquefaction, since in this case the second rectification column can practically serve as a liquid separator for the turbine cycle stream. In such a case, it is understood that liquid formed during the expansion is initially removed from the turbine cycle stream by remaining in the second rectification column. In this case, the turbine cycle stream is closed via the top of the second rectification column.
In Ausgestaltungen der Erfindung kann auch ein Bypass des Turbinenkreislaufstroms um den Unterkühlungsgegenströmer vorgesehen sein, d.h. das mit dem Turbinenkreislaufstrom vereinigte Kopfgas der zweiten Rektifikationskolonne kann teilweise oder vollständig stromab der Entspannung und anschließend jeweils zu insbesondere einstellbaren Anteilen stromauf und stromab der ersten Erwärmung mit dem Turbinenkreislaufstrom vereinigt werden.In embodiments of the invention, a bypass of the turbine circuit stream around the subcooling countercurrent can also be provided, i.e. the top gas of the second rectification column combined with the turbine circuit stream can be combined partially or completely with the turbine circuit stream downstream of the expansion and then in particular adjustable proportions upstream and downstream of the first heating.
Die Vorteile der vorliegenden Erfindung ergeben sich dabei, wie ebenfalls erwähnt, insbesondere dabei, wenn, wie in Ausgestaltungen der vorliegenden Erfindung der Fall, der Turbinenkreislaufstrom durch die Abkühlung und die Entspannung auf ein Temperaturniveau von 80 bis 100 K, insbesondere ca. 90 K, gebracht wird.The advantages of the present invention arise, as also mentioned, in particular when, as is the case in embodiments of the present invention, the turbine circuit flow is brought to a temperature level of 80 to 100 K, in particular approximately 90 K, by cooling and relaxation.
In Ausgestaltungen der vorliegenden Erfindung wird Fluid zusammen mit dem Turbinenkreislaufstrom geführt, das stromab der zweiten Erwärmung, stromauf und/oder stromab der Verdichtung und stromauf der Abkühlung in Form eines oder mehrer Teilströme wieder abgezweigt und aus der Luftzerlegungsanlage ausgeleitet. So können in vorteilhafter Weise Gase für bestimmte Zwecke bereitgestellt werden, und es kann auch ein Rektifikationskreislaufstrom gebildet werden, der in das Rektifikationskolonnensystem zurückgeführt wird.In embodiments of the present invention, fluid is conducted together with the turbine cycle stream, which downstream of the second heating, upstream and/or downstream of the compression and upstream of the cooling in the form of one or several partial streams are branched off again and discharged from the air separation plant. In this way, gases can be advantageously provided for specific purposes and a rectification cycle stream can also be formed which is returned to the rectification column system.
Insbesondere kann der eine Teilstrom oder kann zumindest einer der mehreren Teilströme dabei zur Bereitstellung eines gasförmigen, druckbeaufschlagten Luftprodukts mit den gewünschten Spezifikationen verwendet werden.In particular, the one partial stream or at least one of the several partial streams can be used to provide a gaseous, pressurized air product with the desired specifications.
In Ausgestaltungen der vorliegenden Erfindung kann der Turbinenkreislaufstrom stromab seiner Turbinenentspannung beispielsweise eine bestimmte Menge an Fluid pro Zeiteinheit umfassen, die hier auch als Turbinenkreislaufstrommenge bezeichnet wird. Das der Niederdruckkolonne pro Zeiteinheit entnommene Kopfgas, nachfolgend auch als Kopfgasmenge bezeichnet, kann beim 1,2-Fachen bis 3-Fachen der Turbinenkreislaufstrommege liegen. Wie erwähnt, kann auch im Rahmen der vorliegenden Erfindung in einem Rektifikationskreislaufstrom Gas in die Rektifikationskolonnenanordnung zurückgespeist werden, dessen Menge hier auch als Rektifikationskreislaufstrommenge bezeichnet wird. Diese liegt typischerweise bei nicht mehr als dem 0,6-Fachen der Turbinenkreislaufstrommenge.In embodiments of the present invention, the turbine cycle stream downstream of its turbine expansion can, for example, comprise a certain amount of fluid per unit of time, which is also referred to here as the turbine cycle flow amount. The overhead gas removed from the low-pressure column per unit of time, also referred to below as the overhead gas amount, can be 1.2 to 3 times the turbine cycle flow amount. As mentioned, within the scope of the present invention, gas can also be fed back into the rectification column arrangement in a rectification cycle stream, the amount of which is also referred to here as the rectification cycle flow amount. This is typically no more than 0.6 times the turbine cycle flow amount.
In dem Unterkühlungsgegenströmer wird im Rahmen der vorliegenden Erfindung insbesondere auch ein aus der zweiten Rektifikationskolonne ausgeleitetes Restgas erwärmt und/oder es werden eine oder mehrere, unter Verwendung von Kopfgas der ersten Rektifikationskolonne gebildete Flüssigkeiten und/oder Sumpfflüssigkeit der ersten Rektifikationskolonne und/oder ein Argonprodukt unterkühlt. Auf diese Weise kann die Wärmebilanz in besonders vorteilhafter Weise ausgeglichen werden.In the context of the present invention, in the countercurrent subcooling device, in particular a residual gas discharged from the second rectification column is also heated and/or one or more liquids formed using top gas from the first rectification column and/or bottom liquid from the first rectification column and/or an argon product are subcooled. In this way, the heat balance can be balanced in a particularly advantageous manner.
Es kann ferner eine deutliche Reduktion der Kreislaufmenge (aufgrund der erhöhten Dampfbeladung in der Druckkolonne) erzielt werden. Hierdurch ergeben sich deutliche Vorteile hinsichtlich des Energieverbrauchs, die beispielsweise bis zu 0,8% der gesamten Energieaufnahme der Anlage führen können.Furthermore, a significant reduction in the amount of recirculated gas can be achieved (due to the increased steam loading in the pressure column). This results in significant advantages in terms of energy consumption, which can, for example, lead to a reduction of up to 0.8% of the total energy consumption of the plant.
In einer Ausgestaltung der vorliegenden Erfindung kann die Verdichtung des Turbinenkreislaufstroms einen ersten Verdichtungsschritt und einen zweiten Verdichtungsschritt umfassen, wobei der zweite Verdichtungsschritt unter Verwendung eines Boosters durchgeführt der mit einer zur Durchführung der Entspannung verwendeten Entspannungsturbine mechanisch gekoppelt ist. Auf diese Weise kann die bei der Entspannung frei werdende mechanische Energie in besonders vorteilhafter Weise im Zuge der Verdichtung genutzt werden. Der erste Verdichtungsschritt kann insbesondere unter Verwendung eines ein- oder mehrstufigen Verdichters beliebiger Art durchgeführt werden.In one embodiment of the present invention, the compression of the turbine cycle stream may comprise a first compression step and a second compression step, wherein the second compression step is carried out using a booster which is mechanically coupled to an expansion turbine used to carry out the expansion. In this way, the mechanical energy released during the expansion can be used in a particularly advantageous manner during the compression. The first compression step can be carried out in particular using a single- or multi-stage compressor of any type.
In spezifischen Ausgestaltungen kann zwischen dem ersten und dem zweiten Verdichtungsschritt ein weiterer Verdichtungsschritt zwischengeschaltet sein, der insbesondere auch mit einem separaten, insbesondere einstufigen, Stickstoffverdichter durchgeführt werden kann. Hierdurch lässt sich insbesondere eine höhere Flüssigproduktion realisieren.In specific embodiments, a further compression step can be inserted between the first and second compression steps, which can in particular also be carried out with a separate, in particular single-stage, nitrogen compressor. This makes it possible in particular to achieve a higher liquid production.
In einem Verfahren gemäß einer Ausgestaltung der vorliegenden Erfindung kann insbesondere eine Restgasturbine verwendet werden. In dieser kann Restgas aus der zweiten Rektifikationskolonne, das unterhalb eines obersten Trennabschnitts derselben entnommen wird und gegenüber dem Kopfgas der zweiten Rektifikationskolonne deutlich sauerstoffreicher ist, abgezogen werden.In a process according to an embodiment of the present invention, a residual gas turbine can be used in particular. In this, residual gas from the second rectification column, which is taken from below an uppermost separation section thereof and is significantly richer in oxygen than the top gas of the second rectification column, can be withdrawn.
Die vorliegende Erfindung kann in bestimmten Ausgestaltungen, wie bereits angesprochen, insbesondere umfassen, dass die dritte Rektifikationskolonne alleine oder zusammen mit einer Reinargonkolonne zur Argongewinnung betrieben wird. Zur Argongewinnung sei auf die eingangs zitierte Fachliteratur verwiesen.In certain embodiments, as already mentioned, the present invention can in particular comprise the third rectification column being operated alone or together with a pure argon column to produce argon. For information on argon production, reference is made to the specialist literature cited at the beginning.
Beliebige weitere Rektifikationskolonnen können in Ausgestaltungen der vorliegenden Erfindung verwendet werden, insbesondere eine weitere Rektifikationskolonne zur Gewinnung eines Sauerstoffprodukts und/oder eine weitere Rektifikationskolonne zur Gewinnung eines eines Krypton/Xenon-Rohgemischs und/oder eine weitere Rektifikationskolonne zur Gewinnung eines Helium/Neon-Rohgemischs, wobei zur Bildung von Krypton/Xenon-Rohgemischen bzw. Helium/Neon-Rohgemischen ebenfalls auf die zitierte Fachliteratur verwiesen wird. In entsprechenden Ausgestaltungen kann der Turbinenkreislaufstrom oder ein Teil hiervon als Heizmedium für die Sumpfverdampfer entsprechender Kolonnen verwendet werden.Any other rectification columns can be used in embodiments of the present invention, in particular a further rectification column for obtaining an oxygen product and/or a further rectification column for obtaining a crude krypton/xenon mixture and/or a further rectification column for obtaining a crude helium/neon mixture, wherein reference is also made to the cited specialist literature for the formation of crude krypton/xenon mixtures or crude helium/neon mixtures. In corresponding embodiments, the turbine cycle stream or a part thereof can be used as a heating medium for the bottom evaporators of corresponding columns.
Durch die im Rahmen der vorliegenden Erfindung vorgeschlagenen Maßnahmen kann die in die erste Rektifikationskolonne eingespeiste Luft vollständig oder zu mehr als 90%, 95% oder 99% gasförmig sein, also auf eine Vorverflüssigung verzichtet werden.By means of the measures proposed within the scope of the present invention, the air fed into the first rectification column can be completely gaseous or more than 90%, 95% or 99% gaseous, thus pre-liquefaction can be dispensed with.
Nachfolgend werden noch weitere Merkmale von erfindungsgemäßen und nicht erfindungsgemäßen Ausgestaltungen erläutert.Further features of embodiments according to the invention and non-invention are explained below.
Im Rahmen der vorliegenden Erfindung kann insbesondere deutlich mehr als 85%, beispielsweise ca. 90%, des Argons aus der zweiten Rektifikationskolonne in das Argongewinnungssystem, und damit die dritte Rektifikationskolonne, überführt und zur Gewinnung eines Argonprodukts werden. Bei Gewinnung von Argon kann eine Argonausbeute von ebenfalls mehr als 85%, beispielsweise ca. 90%, erzielt werden. Eine Ausbeute von mehr als 90% ist ebenfalls möglich.Within the scope of the present invention, in particular significantly more than 85%, for example approximately 90%, of the argon from the second rectification column can be transferred to the argon recovery system, and thus the third rectification column, and used to recover an argon product. When recovering argon, an argon yield of more than 85%, for example approximately 90%, can also be achieved. A yield of more than 90% is also possible.
Im Rahmen der vorliegenden Erfindung kann in bestimmten Ausgestaltungen durch den Betrieb der ersten Rektifikationskolonne auf dem ersten Druckniveau auf eine Verdichtung eines Stickstoffprodukts verzichtet werden. Für einen Verdichter, der den Turbinenkreislaufstrom und ggf. weiteres Gas verdichtet, kann eine einfache Ausgestaltung, beispielsweise mit nur zwei Verdichtungsstufen, verwendet werden. Dieser Verdichter kann auch in Form eines sogenannten Kombiverdichters ausgestaltet werden, der beispielsweise auch vier Stufen umfasst, die die Funktion des Hauptluftverdichters erfüllen. Mit anderen Worten kann die Verdichtung der Druckluft und des des zur Bildung des Turbinenkreislaufstroms verwendeten zweiten Kopfgases oder eines entsprechenden Teils hiervon unter Verwendung einer gemeinsam angetriebenen Verdichteranordnung durchgeführt werden.Within the scope of the present invention, in certain embodiments, compression of a nitrogen product can be dispensed with by operating the first rectification column at the first pressure level. For a compressor that compresses the turbine cycle stream and possibly other gas, a simple design, for example with only two compression stages, can be used. This compressor can also be designed in the form of a so-called combination compressor, which for example also comprises four stages that fulfill the function of the main air compressor. In other words, the compression of the compressed air and the second top gas used to form the turbine cycle stream or a corresponding part thereof can be carried out using a jointly driven compressor arrangement.
Das Fluid, das zur Speisung der dritten Rektifikationskolonne aus der zweiten Rektifikationskolonne entnommen wird, kann in einer besonders bevorzugten Ausgestaltung der vorliegenden Erfindung, wie bereits erwähnt, in eine weitere, Rektifikationskolonne eingespeist werden, und ein entsprechender Einsatzstrom kann unter Verwendung von Fluid gebildet werden, das aus dieser weiteren Rektifikationskolonne entnommen wird. Die weitere Rektifikationskolonne ist insbesondere zur Bildung eines Hochreinsauerstoffprodukts eingerichtet und wird wie nachfolgend erläutert betrieben.In a particularly preferred embodiment of the present invention, the fluid taken from the second rectification column to feed the third rectification column can, as already mentioned, be fed into a further rectification column, and a corresponding feed stream can be formed using fluid taken from this further rectification column. The further rectification column is set up in particular to form a high-purity oxygen product and is operated as explained below.
Die weitere Rektifikationskolonne weist insbesondere einen ersten (oberen) Teil und einen zweiten (unteren) Teil auf, wobei zwischen dem ersten und dem zweiten Teil ein "Sperrböden"-Rektifikationsabschnitt, der insbesondere zur Zurückhaltung von Kohlenwasserstoffen dient, angeordnet ist. Insbesondere kann der erste Teil der weiteren Rektifikationskolonne funktional als unterster Teil einer Rohargonkolonne ausgebildet und entsprechend mit der eigentlichen Rohargonkolonne, also der dritten Rektifikationskolonne, gekoppelt sein. Eine entsprechende Ausgestaltung wird insbesondere aus Bauraumgründen vorgenommen, um die Gesamtbauhöhe der Luftzerlegungsanlage zu reduzieren. Das Fluid, das aus der zweiten Rektifikationskolonne entnommen und unter Verwendung dessen die dritte Rektifikationskolonne gespeist wird, wird in einen unteren Bereich des ersten Teils eingespeist. Gas wird aus einem oberen Bereich des ersten Teils entnommen und zur Speisung der dritten Rektifikationskolonne verwendet. In der dritten Rektifikationskolonne gebildete Sumpfflüssigkeit wird zumindest teilweise in den oberen Bereich des ersten Teils überführt.The further rectification column has in particular a first (upper) part and a second (lower) part, with a "barrier plate" rectification section, which serves in particular to retain hydrocarbons, being arranged between the first and the second part. In particular, the first part of the further rectification column can be functionally designed as the lowest part of a crude argon column and can be coupled accordingly to the actual crude argon column, i.e. the third rectification column. A corresponding design is carried out in particular for reasons of installation space in order to reduce the overall height of the air separation plant. The fluid which is taken from the second rectification column and used to feed the third rectification column is fed into a lower region of the first part. Gas is taken from an upper region of the first part and used to feed the third rectification column. Bottom liquid formed in the third rectification column is at least partially transferred to the upper region of the first part.
Flüssigkeit wird aus einem Zwischenbereich des ersten Teils entnommen und in einen oberen Bereich des zweiten Teils eingespeist, in dem die eigentliche Reinsauerstoffgewinnung stattfindet. Gas wird aus dem oberen Bereich des zweiten Teils entnommen und in den Zwischenbereich des ersten Teils eingespeist, und in einem unteren Bereich des zweiten Teils Reinsauerstoff gebildet und aus der Luftzerlegungsanlage ausgeleitet. Der Reinsauerstoff kann insbesondere mit einem Restgehalt von 5 bis 500 ppb, beispielsweise ca. 10 ppb, Argon gebildet werden.Liquid is taken from an intermediate area of the first part and fed into an upper area of the second part, where the actual pure oxygen production takes place. Gas is taken from the upper area of the second part and fed into the intermediate area of the first part, and pure oxygen is formed in a lower area of the second part and discharged from the air separation plant. The pure oxygen can be formed in particular with a residual content of 5 to 500 ppb, for example approx. 10 ppb, of argon.
Ist keine entsprechende weitere oder weitere zweigeteilte Kolonne vorhanden, kann das Fluid aus der zweiten Rektifikationskolonne auch direkt in die dritte Rektifikationskolonne, also eine Rohargonkolonne, eingespeist werden.If no corresponding additional or further two-part column is available, the fluid from the second rectification column can also be fed directly into the third rectification column, i.e. a crude argon column.
Im Rahmen der vorliegenden Erfindung kann der untere Bereich des zweiten Teils der soeben beschriebenen weiteren Rektifikationskolonne insbesondere unter Verwendung eines Kondensatorverdampfers beheizt werden, in dem den ein Teil des Kopfgases der ersten Rektifikationskolonne als Heizfluid verwendet wird. Der als Heizfluid verwendete Teil des Kopfgases der ersten Rektifikationskolonne kann danach insbesondere in verflüssigtem Zustand in die erste Rektifikationskolonne oder in die zweite Rektifikationskolonne eingespeist werden.In the context of the present invention, the lower region of the second part of the further rectification column just described can be heated in particular using a condenser evaporator in which part of the top gas of the first rectification column is used as heating fluid. The part of the top gas of the first rectification column used as heating fluid can then be fed into the first rectification column or into the second rectification column, in particular in a liquefied state.
Die Sumpfflüssigkeit der ersten Rektifikationskolonne oder zumindest deren Teil, der zur Speisung der zweiten Rektifikationskolonne verwendet wird, kann, wie mehrfach erwähnt, zur Kondensation von Kopfgas zumindest der dritten Rektifikationskolonne verwendet werden. Dieses Kopfgas kann insbesondere, wie an sich aus dem Stand der Technik bekannt, in einer Reinargonkolonne zu Reinargon aufgereinigt werden.The bottom liquid of the first rectification column or at least the part thereof that is used to feed the second rectification column can, as mentioned several times, be used to condense top gas from at least the third rectification column. This top gas can in particular, as is known from the prior art, be purified to pure argon in a pure argon column.
Zu den Merkmalen der erfindungsgemäß ebenfalls vorgeschlagenen Luftzerlegungsanlage sei auf den entsprechenden unabhängigen Patentanspruch ausdrücklich verwiesen. Die Luftzerlegungsanlage ist insbesondere zur Durchführung eines Verfahrens eingerichtet, wie es zuvor in Ausgestaltungen erläutert wurde. Auf die obigen Erläuterungen bezüglich des erfindungsgemäßen Verfahrens und seiner vorteilhaften Ausgestaltungen sei daher ausdrücklich verwiesen.With regard to the features of the air separation plant also proposed according to the invention, express reference is made to the corresponding independent patent claim. The air separation plant is set up in particular to carry out a process as previously explained in embodiments. Express reference is therefore made to the above explanations regarding the process according to the invention and its advantageous embodiments.
Die Erfindung wird nachfolgend unter Bezugnahme auf die beigefügten Zeichnungen näher erläutert, die die bevorzugten Ausgestaltungen der vorliegenden Erfindung veranschaulichen.The invention is explained in more detail below with reference to the accompanying drawings, which illustrate the preferred embodiments of the present invention.
Die
In den Figuren sind einander baulich oder funktional entsprechende Elemente mit identischen Bezugszeichen angegeben und werden der Übersichtlichkeit halber nicht wiederholt erläutert. Anlagen und Anlagenkomponenten betreffende Erläuterungen gelten für entsprechende Verfahren und Verfahrensschritte in gleicher Weise.In the figures, structurally or functionally corresponding elements are indicated with identical reference symbols and are not explained repeatedly for the sake of clarity. Explanations relating to systems and system components apply equally to corresponding processes and process steps.
In
In der Luftzerlegungsanlage 100 wird Luft mittels eines Hauptluftverdichters 1 über einen Filter 2 angesaugt und auf ein Druckniveau von beispielsweise ca. 12,5 bar verdichtet. Die entsprechend verdichtete Luft wird nach Kühlung und Abscheiden von Wasser in einer Adsorberstation 3, die in an sich bekannter Art ausgestaltet sein kann, von Restwasser und Kohlendioxid befreit. Zur Ausgestaltung der angesprochenen Komponenten sei auf die eingangs zitierte Fachliteratur verwiesen.In the
Ein entsprechend gebildeter Druckluftstrom a wird vom warmen zum kalten Ende durch einen Hauptwärmetauscher 4 geführt und hier in im Wesentlichen gasförmigem Zustand in eine Druckkolonne 11 ("erste Rektifikationskolonne") eines Rektifikationskolonnensystems 10 eingespeist. Das Rektifikationskolonnensystem 10 weist im dargestellten Beispiel neben der Druckkolonne 11 eine Niederdruckkolonne 12 ("zweite Rektifikationskolonne"), eine zweigeteilte Rohargonkolonne 13 ("dritte Rektifikationskolonne") mit zwei Kolonnenteilen 13a (oberer Teil) und 13b (unterer Teil) sowie eine Reinargonkolonne 14 auf. Ferner sind eine Rektifikationskolonne 15 zur Gewinnung eines Krypton/Xenon-Rohgemischs und eine Rektifikationskolonne 16 zur Gewinnung eines Helium/Neon-Rohgemischs bereitgestellt. Die Druckkolonne 11 ist mit der Niederdruckkolonne 12 über einen Hauptkondensator 11a wärmetauschend verbunden, der beispielsweise als mehrstöckiger Badverdampfer ausgebildet sein kann, und im Sumpf der Rektifikationskolonne 15 zur Gewinnung des Krypton/Xenon-Rohgemischs ist ein Sumpfverdampfer 15a angeordnet. Dem Rektifikationskolonnensystem 10 ist ferner im dargestellten Beispiel ein Unterkühlungsgegenströmer 18 zugeordnet.A correspondingly formed compressed air stream a is guided from the warm to the cold end through a main heat exchanger 4 and fed here in a substantially gaseous state into a pressure column 11 ("first rectification column") of a
Am Kopf der Druckkolonne 11 wird ein Kopfgas gebildet. Dieses wird im dargestellten Beispiel zu einem Teil in Form eines Stoffstroms b durch den Hauptkondensator 11a und zu einem weiteren Teil in Form eines Stoffstroms c durch den Sumpfverdampfer 15a der Rektifikationskolonne 15 zur Gewinnung des Krypton/Xenon-Rohgemischs geführt. In dem Hauptkondensator 11a gebildetes Kondensat wird in die Druckkolonne 11 zurückgeführt. Ein nicht kondensierter Anteil wird in die Rektifikationskolonne 16 zur Gewinnung des Helium/Neon-Rohgemischs eingespeist. Weiteres Kondensat, das sich in dem Sumpfverdampfer 15a der Rektifikationskolonne 15 zur Gewinnung eines Krypton/Xenon-Rohgemischs bildet, kann in Form eines Flüssigstickstoffstroms m durch den Unterkühlungsgegenströmer 18 geführt und am Kopf der Niederdruckkolonne 12 in diese eingespeist werden. Über eine Flüssigkeitsentnahme am Kopf der Druckkolonne entnommenes Kondensat b1 kann so behandelt werden. Zu dem Kopfgas der Druckkolonne 11 kann ein Stoffstrom d zugespeist werden, der im Hauptwärmetauscher 4 abgekühlt wurde. Dessen Herkunft wird unten erläutert.A top gas is formed at the top of the
Im Sumpf der Druckkolonne 11 wird eine Sumpfflüssigkeit gebildet und in Form eines Stoffstroms e aus dieser abgezogen. Der Stoffstrom e wird zunächst durch den Unterkühlungsgegenströmer 18 geführt und danach in an sich bekannter Weise zur Kühlung von nicht gesondert bezeichneten Kopfkondensatoren der Rohargonkolonne 13 und der Reinargonkolonne 14 verwendet. Verdampfte und unverdampfte Anteile werden in Form von Stoffströmen f in die Niederdruckkolonne 12 eingespeist bzw. zur Bildung des unten erläuterten Stoffstroms k verwendet.A bottom liquid is formed in the bottom of the
In der Niederdruckkolonne 12 wird Sumpfflüssigkeit ("zweite Sumpfflüssigkeit") gebildet, die in einen Verdampfungsraum des Hauptkondensators 11a eingespeist wird, und aus dem Hauptkondensator 11a wird Gas in die Niederdruckkolonne 11 am Sumpf eingespeist. Oberhalb des Sumpfs wird aus der Niederdruckkolonne 11 Flüssigkeit h abgezogen. Diese wird zu einem ersten Teil in Form eines Stoffstroms h1 in einer Pumpe 5 druckerhöht, im Hauptwärmetauscher 4 erwärmt und als innenverdichtetes Sauerstoffprodukt ausgeleitet. Zu einem zweiten Teil wird die Flüssigkeit h in Form eines Stoffstroms h2 in die Rektifikationskolonne 15 zur Gewinnung des Krypton/Xenon-Rohgemischs eingespeist, und zu einem dritten Teil in Form eines Stoffstroms h3 insbesondere als Flüssigprodukt aus der Luftzerlegungsanlage 100 ausgeführt.In the low-
Oberhalb des Sumpfs wird Gas aus der Niederdruckkolonne 12 in Form eines Stoffstroms i abgezogen, mit nachfolgend erläuterten Stoffströmen k und o zu einem Sammelstrom I mit einem Gehalt von beispielsweise ca. 90% Sauerstoff vereinigt, im Hauptwärmetauscher 4 teilerwärmt, in einer Generatorturbine bzw. Restgasturbine 6 entspannt, erneut im Hauptwärmetauscher 4 erwärmt, und beispielsweise als Regeneriergas in der Adsorberstation 3 eingesetzt.Above the sump, gas is withdrawn from the low-
Ein gasförmiger Druckstickstoffstrom wird in Form eines Stoffstroms n vom Kopf der Niederdruckkolonne 12 abgezogen. Dieser liegt beispielsweise auf einem Druckniveau von ca. 3,5 bar vor und weist einen Gehalt von beispielsweise ca. 50 ppb Sauerstoff auf. Er wird zur Bildung eines Turbinenkreislaufstroms verwendet, der zunächst in dem Unterkühlungsgegenströmer 18 erwärmt ("erste Erwärmung"), danach im Hauptwärmetauscher 4 erwärmt ("zweite Erwärmung"), in einem Verdichter 7 und danach in einem Booster einer Boosterturbinenanordnung 9 verdichtet, im Hauptwärmetauscher 4 wieder abgekühlt, und in einer Entspannungsturbine der Boosterturbinenanordnung 9, entspannt wird. Der Kreislauf wird durch die Einspeisung in den Unterkühlungsgegenströmer 18 geschlossen. Der erwähnte Stoffstrom n wird stromab des Verdichters 7 abgezweigt und in dem Hauptwärmetauscher 4 abgekühlt. Stromauf und stromab des Verdichters 7 können weitere Teilströme abgezweigt und unter z.B. als Druckstickstoffprodukt, Blow-Off-Gas und Dichtgas abgezweigt werden. Beliebige Kombinationen sind möglich. Teilweise zusammen mit dem Turbinenkreislaufstrom wird ein Rektifikationskreislaufstrom geführt, der aber nicht der zweiten Verdichtung und Entspannung unterworfen, sondern im Hauptwärmetauscher 4 abgekühlt und danach wie erläutert verwendet wird.A gaseous pressurized nitrogen stream is withdrawn in the form of a material stream n from the top of the low-
Aus der Niederdruckkolonne 11 wird in Form eines Stoffstroms o an Argon angereichertes Gas entnommen und in die Rohargonkolonne 13 eingespeist. Aus der Rohargonkolonne 13 wird Sumpfflüssigkeit in Form eines Stoffstroms p mittels einer nicht gesondert bezeichneten Pumpe in die Niederdruckkolonne 11 zurückgeführt.Argon-enriched gas is withdrawn from the low-
Der Betrieb der Rohargonkolonne 13 und der Reinargonkolonne 14 entspricht im Wesentlichen dem im Stand der Technik Bekannten und wird nicht gesondert erläutert. Aus der Reinargonkolonne 15 wird ein Reinargonstrom v abgezogen, der, insbesondere nach Unterkühlung in dem Unterkühlungsgegenströmer 18, nun mit w bezeichnet, teils in einem Tank T eingespeichert bzw. zwischengespeichert, beispielsweise durch Druckaufbauverdampfung druckerhöht und nach Erwärmung in dem Hauptwärmetauscher 4 mit einem Gehalt von beispielsweise ca. 200 ppb Sauerstoff bereitgestellt werden kann.The operation of the
Der erwähnte Stoffstrom k wird unter Verwendung von Gas gebildet, das dem Kopfkondensator der Rohargonkolonne 13 entnommen wird. Der Stoffstrom o stammt vom Kopf der Rektifikationskolonne 15 zur Gewinnnung des Krypton/Xenon-Rohgemischs, aus deren Sumpf das Krypton/Xenon-Rohgemisch in Form eines nicht gesondert bezeichneten Stoffstroms entnommen wird.The mentioned material stream k is formed using gas which is taken from the top condenser of the
Am Kopf der Niederdruckkolonne 12 wird Flüssigkeit entnommen und zu einem Teil in Form eines Stoffstroms x unterkühlt und als Flüssigstickstoffprodukt bereitgestellt, sowie zu einem weiteren Teil y in einen Verdampfungsraum der Rektifikationskolonne 16 zur Gewinnung des Helium/Neon-Rohgemischs eingespeist, welches in Form eines Stoffstroms z hieraus abgezogen wird.At the top of the low-
Mit einer gestrichelten Linie ist ein temperaturisolierter Bereich veranschaulicht, dessen Enthalpiebilanz durch den Einsatz der gemäß der veranschaulichten Ausgestaltung vorgeschlagenen Maßnahmen im Wesentlichen geschlossen ist.A dashed line illustrates a temperature-insulated area whose enthalpy balance is essentially closed by the use of the measures proposed according to the illustrated design.
In
Die in
In
Die in
Claims (14)
dadurch gekennzeichnet, dass
characterized in that
dadurch gekennzeichnet, dass
characterized in that
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP23020148.5A EP4435364A1 (en) | 2023-03-22 | 2023-03-22 | Method for the low-temperature separation of air, and air separation plant |
PCT/EP2024/025083 WO2024193848A1 (en) | 2023-03-22 | 2024-02-21 | Method for cryogenic separation of air, and air separation plant |
PCT/EP2024/025084 WO2024193849A1 (en) | 2023-03-22 | 2024-02-21 | Method for cryogenic separation of air, and air separation system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP23020148.5A EP4435364A1 (en) | 2023-03-22 | 2023-03-22 | Method for the low-temperature separation of air, and air separation plant |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4435364A1 true EP4435364A1 (en) | 2024-09-25 |
Family
ID=85726800
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP23020148.5A Pending EP4435364A1 (en) | 2023-03-22 | 2023-03-22 | Method for the low-temperature separation of air, and air separation plant |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP4435364A1 (en) |
WO (1) | WO2024193848A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100400995C (en) * | 2006-11-22 | 2008-07-09 | 苏州市兴鲁空分设备科技发展有限公司 | Method and device for air separation |
CN102141337A (en) * | 2011-03-30 | 2011-08-03 | 苏州市兴鲁空分设备科技发展有限公司 | Method for separating air |
WO2021204424A2 (en) | 2020-04-09 | 2021-10-14 | Linde Gmbh | Process for cryogenic fractionation of air, air fractionation plant and integrated system composed of at least two air fractionation plants |
US20210356206A1 (en) * | 2020-05-15 | 2021-11-18 | Brian R. Kromer | Integrated nitrogen liquefier for a nitrogen and argon producing cryogenic air separation unit |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2995694B2 (en) * | 1991-12-12 | 1999-12-27 | 株式会社神戸製鋼所 | Argon production equipment |
DE19803437A1 (en) * | 1998-01-29 | 1999-03-18 | Linde Ag | Oxygen and nitrogen extracted by low-temperature fractional distillation |
-
2023
- 2023-03-22 EP EP23020148.5A patent/EP4435364A1/en active Pending
-
2024
- 2024-02-21 WO PCT/EP2024/025083 patent/WO2024193848A1/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100400995C (en) * | 2006-11-22 | 2008-07-09 | 苏州市兴鲁空分设备科技发展有限公司 | Method and device for air separation |
CN102141337A (en) * | 2011-03-30 | 2011-08-03 | 苏州市兴鲁空分设备科技发展有限公司 | Method for separating air |
WO2021204424A2 (en) | 2020-04-09 | 2021-10-14 | Linde Gmbh | Process for cryogenic fractionation of air, air fractionation plant and integrated system composed of at least two air fractionation plants |
US20210356206A1 (en) * | 2020-05-15 | 2021-11-18 | Brian R. Kromer | Integrated nitrogen liquefier for a nitrogen and argon producing cryogenic air separation unit |
Non-Patent Citations (1)
Title |
---|
"Industrial Gases Processing", 2006, WILEY-VCH, article "Cryogenic Rectification" |
Also Published As
Publication number | Publication date |
---|---|
WO2024193848A1 (en) | 2024-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3179187B1 (en) | Method for obtaining a liquid and a gaseous oxygen-rich air product in an air breakdown apparatus and air breakdown apparatus | |
WO2021204424A2 (en) | Process for cryogenic fractionation of air, air fractionation plant and integrated system composed of at least two air fractionation plants | |
EP3410050B1 (en) | Method for producing one or more air products and air separation system | |
DE69209835T2 (en) | Single column air separation cycle and its integration into gas turbines | |
EP3924677A1 (en) | Method and system for providing one or more oxygen-rich, gaseous air products | |
WO2014154339A2 (en) | Method for air separation and air separation plant | |
DE19933558C5 (en) | Three-column process and apparatus for the cryogenic separation of air | |
EP4435364A1 (en) | Method for the low-temperature separation of air, and air separation plant | |
EP3557166A1 (en) | Method for the low-temperature decomposition of air and air separation plant | |
EP3870917B1 (en) | Method and installation for cryogenic separation of air | |
EP1189001B1 (en) | Process and apparatus for the production of high purity nitrogen through cryogenic air separation | |
EP3027988A2 (en) | Method and device for producing compressed nitrogen | |
EP4127583B1 (en) | Process and plant for low-temperature separation of air | |
EP1199532A1 (en) | Three-column system for the cryogenic separation of air | |
WO2019214847A9 (en) | Method for obtaining one or more air products and air separation system | |
EP4356052A1 (en) | Method and plant for providing a pressurized oxygen-rich, gaseous air product | |
WO2021204418A1 (en) | Method for producing a gaseous and a liquid nitrogen product by means of a low-temperature separation of air, and air separation system | |
WO2024217721A1 (en) | Method of cryogenic fractionation of air and air fractionation plant | |
EP3870916B1 (en) | Method for producing one or more air products and air separation unit | |
WO2022179748A1 (en) | Process and plant for providing compressed nitrogen | |
WO2023051946A1 (en) | Method for the cryogenic separation of air, and air separation plant | |
EP4450910A1 (en) | Method for the low-temperature separation of air, and air separation plant | |
EP4211409A1 (en) | Method for obtaining one or more air products, and air fractionation plant | |
EP4396507A1 (en) | Method for the low-temperature separation of air and air separation plant | |
WO2020048634A1 (en) | Method for the low-temperature separation of air and air separation plant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR |