EP4334412A1 - Optimized process for the hydrotreating and hydroconversion of feedstocks derived from renewable sources - Google Patents
Optimized process for the hydrotreating and hydroconversion of feedstocks derived from renewable sourcesInfo
- Publication number
- EP4334412A1 EP4334412A1 EP22723126.3A EP22723126A EP4334412A1 EP 4334412 A1 EP4334412 A1 EP 4334412A1 EP 22723126 A EP22723126 A EP 22723126A EP 4334412 A1 EP4334412 A1 EP 4334412A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- hydrogen
- catalyst
- hydroconversion
- charge
- stage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000013386 optimize process Methods 0.000 title description 2
- 239000003054 catalyst Substances 0.000 claims abstract description 154
- 239000001257 hydrogen Substances 0.000 claims abstract description 147
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 147
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 129
- 239000007788 liquid Substances 0.000 claims abstract description 94
- 238000000034 method Methods 0.000 claims abstract description 82
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 79
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 78
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 64
- 230000008569 process Effects 0.000 claims abstract description 50
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 claims abstract description 46
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 40
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 20
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 16
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000011733 molybdenum Substances 0.000 claims abstract description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 15
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 13
- 239000010941 cobalt Substances 0.000 claims abstract description 13
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 13
- 238000000926 separation method Methods 0.000 claims abstract description 12
- 230000001588 bifunctional effect Effects 0.000 claims abstract description 11
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 52
- 239000011593 sulfur Substances 0.000 claims description 50
- 229910052717 sulfur Inorganic materials 0.000 claims description 50
- 239000000203 mixture Substances 0.000 claims description 20
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 19
- 238000004821 distillation Methods 0.000 claims description 15
- 238000000746 purification Methods 0.000 claims description 11
- 239000000945 filler Substances 0.000 claims description 10
- 238000001179 sorption measurement Methods 0.000 claims description 9
- 229910052799 carbon Inorganic materials 0.000 claims description 7
- XCUPBHGRVHYPQC-UHFFFAOYSA-N sulfanylidenetungsten Chemical compound [W]=S XCUPBHGRVHYPQC-UHFFFAOYSA-N 0.000 claims description 7
- 241001465754 Metazoa Species 0.000 claims description 4
- 235000021588 free fatty acids Nutrition 0.000 claims description 4
- 150000001412 amines Chemical class 0.000 claims description 3
- 150000002148 esters Chemical class 0.000 claims description 3
- 230000003647 oxidation Effects 0.000 claims description 3
- 238000007254 oxidation reaction Methods 0.000 claims description 3
- 150000003626 triacylglycerols Chemical class 0.000 claims description 3
- 238000010908 decantation Methods 0.000 claims description 2
- 239000002274 desiccant Substances 0.000 claims description 2
- 238000001035 drying Methods 0.000 claims description 2
- 239000012528 membrane Substances 0.000 claims description 2
- 235000014593 oils and fats Nutrition 0.000 claims description 2
- 235000013311 vegetables Nutrition 0.000 claims description 2
- 238000005406 washing Methods 0.000 claims description 2
- 229910000037 hydrogen sulfide Inorganic materials 0.000 abstract description 14
- 238000011282 treatment Methods 0.000 abstract description 5
- ITRNXVSDJBHYNJ-UHFFFAOYSA-N tungsten disulfide Chemical compound S=[W]=S ITRNXVSDJBHYNJ-UHFFFAOYSA-N 0.000 abstract description 3
- 238000005194 fractionation Methods 0.000 abstract description 2
- 239000007789 gas Substances 0.000 description 33
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 27
- 230000009849 deactivation Effects 0.000 description 24
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 23
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical class [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 22
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 20
- 229910002091 carbon monoxide Inorganic materials 0.000 description 19
- 238000006243 chemical reaction Methods 0.000 description 16
- 230000000694 effects Effects 0.000 description 16
- WQOXQRCZOLPYPM-UHFFFAOYSA-N dimethyl disulfide Chemical compound CSSC WQOXQRCZOLPYPM-UHFFFAOYSA-N 0.000 description 15
- 238000005987 sulfurization reaction Methods 0.000 description 15
- 229910002092 carbon dioxide Inorganic materials 0.000 description 14
- 238000012360 testing method Methods 0.000 description 14
- -1 transition metal sulphides Chemical class 0.000 description 14
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 13
- 229910052751 metal Inorganic materials 0.000 description 13
- 239000002184 metal Substances 0.000 description 13
- 150000002431 hydrogen Chemical class 0.000 description 12
- 229910052723 transition metal Inorganic materials 0.000 description 11
- 239000002253 acid Substances 0.000 description 10
- 150000001875 compounds Chemical class 0.000 description 10
- 238000005259 measurement Methods 0.000 description 10
- 239000000047 product Substances 0.000 description 10
- 239000000377 silicon dioxide Substances 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 9
- 239000003350 kerosene Substances 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 229910052721 tungsten Inorganic materials 0.000 description 9
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 8
- 238000004517 catalytic hydrocracking Methods 0.000 description 8
- 150000004665 fatty acids Chemical class 0.000 description 8
- CBFCDTFDPHXCNY-UHFFFAOYSA-N icosane Chemical compound CCCCCCCCCCCCCCCCCCCC CBFCDTFDPHXCNY-UHFFFAOYSA-N 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 229910000480 nickel oxide Inorganic materials 0.000 description 8
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical group [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 8
- 238000009835 boiling Methods 0.000 description 7
- 235000014113 dietary fatty acids Nutrition 0.000 description 7
- 239000000194 fatty acid Substances 0.000 description 7
- 229930195729 fatty acid Natural products 0.000 description 7
- 239000000446 fuel Substances 0.000 description 7
- 239000012535 impurity Substances 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 229910000510 noble metal Inorganic materials 0.000 description 7
- 239000003921 oil Substances 0.000 description 7
- 235000019198 oils Nutrition 0.000 description 7
- 230000009467 reduction Effects 0.000 description 7
- 230000001105 regulatory effect Effects 0.000 description 7
- 150000003624 transition metals Chemical class 0.000 description 7
- 239000010937 tungsten Substances 0.000 description 7
- 239000011230 binding agent Substances 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 239000010457 zeolite Substances 0.000 description 6
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 5
- 125000004432 carbon atom Chemical group C* 0.000 description 5
- 239000001569 carbon dioxide Substances 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 5
- 229910052753 mercury Inorganic materials 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 5
- 239000012188 paraffin wax Substances 0.000 description 5
- 229910052698 phosphorus Inorganic materials 0.000 description 5
- 239000011574 phosphorus Substances 0.000 description 5
- SGVYKUFIHHTIFL-UHFFFAOYSA-N 2-methylnonane Chemical compound CCCCCCCC(C)C SGVYKUFIHHTIFL-UHFFFAOYSA-N 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 229910021536 Zeolite Inorganic materials 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 4
- 238000001833 catalytic reforming Methods 0.000 description 4
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 4
- 238000006317 isomerization reaction Methods 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 125000004430 oxygen atom Chemical group O* 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 150000004763 sulfides Chemical group 0.000 description 4
- DLYUQMMRRRQYAE-UHFFFAOYSA-N tetraphosphorus decaoxide Chemical compound O1P(O2)(=O)OP3(=O)OP1(=O)OP2(=O)O3 DLYUQMMRRRQYAE-UHFFFAOYSA-N 0.000 description 4
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 3
- 235000019484 Rapeseed oil Nutrition 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 150000001336 alkenes Chemical class 0.000 description 3
- 229910002090 carbon oxide Inorganic materials 0.000 description 3
- 238000004587 chromatography analysis Methods 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 230000008030 elimination Effects 0.000 description 3
- 238000003379 elimination reaction Methods 0.000 description 3
- 239000003925 fat Substances 0.000 description 3
- 238000005470 impregnation Methods 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 238000010348 incorporation Methods 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 3
- 229910017604 nitric acid Inorganic materials 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 238000002459 porosimetry Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000012429 reaction media Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 description 3
- 235000015112 vegetable and seed oil Nutrition 0.000 description 3
- 239000008158 vegetable oil Substances 0.000 description 3
- 241001133760 Acoelorraphe Species 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- 239000007848 Bronsted acid Chemical group 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 238000004523 catalytic cracking Methods 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 238000004939 coking Methods 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 2
- 239000002283 diesel fuel Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 125000001145 hydrido group Chemical group *[H] 0.000 description 2
- 238000005984 hydrogenation reaction Methods 0.000 description 2
- PLZDDPSCZHRBOY-UHFFFAOYSA-N inaktives 3-Methyl-nonan Natural products CCCCCCC(C)CC PLZDDPSCZHRBOY-UHFFFAOYSA-N 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- LQERIDTXQFOHKA-UHFFFAOYSA-N nonadecane Chemical compound CCCCCCCCCCCCCCCCCCC LQERIDTXQFOHKA-UHFFFAOYSA-N 0.000 description 2
- 229920001021 polysulfide Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 238000000629 steam reforming Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- ZETQPRVOENPFMI-UHFFFAOYSA-N 7-methyloctadecane Chemical compound CCCCCCCCCCCC(C)CCCCCC ZETQPRVOENPFMI-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 241001474374 Blennius Species 0.000 description 1
- 240000002791 Brassica napus Species 0.000 description 1
- 235000004977 Brassica sinapistrum Nutrition 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 244000020551 Helianthus annuus Species 0.000 description 1
- 235000003222 Helianthus annuus Nutrition 0.000 description 1
- 101000732354 Homo sapiens Transcription factor AP-2-epsilon Proteins 0.000 description 1
- 238000004566 IR spectroscopy Methods 0.000 description 1
- 241000221089 Jatropha Species 0.000 description 1
- 229910003294 NiMo Inorganic materials 0.000 description 1
- 240000007817 Olea europaea Species 0.000 description 1
- 239000005864 Sulphur Substances 0.000 description 1
- 102100033332 Transcription factor AP-2-epsilon Human genes 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- OGBUMNBNEWYMNJ-UHFFFAOYSA-N batilol Chemical class CCCCCCCCCCCCCCCCCCOCC(O)CO OGBUMNBNEWYMNJ-UHFFFAOYSA-N 0.000 description 1
- 238000010504 bond cleavage reaction Methods 0.000 description 1
- 229910052810 boron oxide Inorganic materials 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 230000006324 decarbonylation Effects 0.000 description 1
- 238000006606 decarbonylation reaction Methods 0.000 description 1
- 238000006114 decarboxylation reaction Methods 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000005595 deprotonation Effects 0.000 description 1
- 238000010537 deprotonation reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 229910001657 ferrierite group Inorganic materials 0.000 description 1
- 229940013317 fish oils Drugs 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000000302 molecular modelling Methods 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- 125000001741 organic sulfur group Chemical group 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 229910001392 phosphorus oxide Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000004230 steam cracking Methods 0.000 description 1
- PTISTKLWEJDJID-UHFFFAOYSA-N sulfanylidenemolybdenum Chemical compound [Mo]=S PTISTKLWEJDJID-UHFFFAOYSA-N 0.000 description 1
- WWNBZGLDODTKEM-UHFFFAOYSA-N sulfanylidenenickel Chemical compound [Ni]=S WWNBZGLDODTKEM-UHFFFAOYSA-N 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- VSAISIQCTGDGPU-UHFFFAOYSA-N tetraphosphorus hexaoxide Chemical compound O1P(O2)OP3OP1OP2O3 VSAISIQCTGDGPU-UHFFFAOYSA-N 0.000 description 1
- 125000000101 thioether group Chemical group 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 150000005691 triesters Chemical group 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 238000004876 x-ray fluorescence Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11C—FATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
- C11C3/00—Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
- C11C3/12—Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by hydrogenation
- C11C3/126—Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by hydrogenation using catalysts based principally on other metals or derivates
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G3/00—Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
- C10G3/42—Catalytic treatment
- C10G3/44—Catalytic treatment characterised by the catalyst used
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D3/00—Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
- B01D3/14—Fractional distillation or use of a fractionation or rectification column
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/12—Silica and alumina
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/85—Chromium, molybdenum or tungsten
- B01J23/888—Tungsten
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0201—Impregnation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/20—Sulfiding
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G3/00—Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
- C10G3/50—Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids in the presence of hydrogen, hydrogen donors or hydrogen generating compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G3/00—Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
- C10G3/54—Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids characterised by the catalytic bed
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
- C10G45/58—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
- C10G45/60—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G47/00—Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
- C10G47/02—Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G49/00—Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
- C10G49/002—Apparatus for fixed bed hydrotreatment processes
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11C—FATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
- C11C3/00—Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
- C11C3/12—Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by hydrogenation
- C11C3/123—Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by hydrogenation using catalysts based principally on nickel or derivates
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1011—Biomass
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P30/00—Technologies relating to oil refining and petrochemical industry
- Y02P30/20—Technologies relating to oil refining and petrochemical industry using bio-feedstock
Definitions
- fillers In this respect, the recovery of feedstocks from renewable sources into fuels has experienced a very strong resurgence of interest in recent years.
- these fillers mention may be made, for example, of vegetable oils, animal fats, raw or having undergone a prior treatment, as well as mixtures of such fillers.
- These fillers contain chemical structures of the triglyceride or ester or fatty acid type, the structure and the length of the hydrocarbon chain of the latter being compatible with the hydrocarbons present in gas oils and kerosene.
- the liquid effluent resulting from these hydrotreating processes after separation, essentially consists of n-paraffins and is substantially free of sulfur, nitrogen and oxygen impurities.
- the sulfur content is typically between 1 and 20 ppmw
- the nitrogen content is typically between 0.2 and 30 ppmw
- the oxygen content is typically less than 2000 ppm weight.
- Paraffins have a number of carbon atoms typically between 9 and 25, which is mainly dependent on the composition of the charge to be hydrotreated.
- this liquid effluent cannot generally be incorporated as such into the kerosene or diesel pool, in particular because of insufficient cold properties and/or too high boiling temperatures.
- the paraffins present lead to high pour points and therefore to congealing phenomena for uses at low temperatures.
- eicosane linear paraffin with 20 carbon atoms, C20H42
- C20H42 linear paraffin with 20 carbon atoms
- the boiling point of eicosane is thus compatible with incorporation into a diesel pool, but its melting point can cause freezing problems and limit its use.
- the filterability limit temperature for winter diesel is a maximum of -15°C.
- the boiling point of eicosane means that it cannot be incorporated into the kerosene pool, for which the final temperature of the distillation curve must be less than 300°C.
- hydroconversion step hydroisomerization and/or hydrocracking reactions
- hydroisomerization makes it possible to convert a linear paraffin into a branched paraffin with conservation of the number of carbon atoms in the molecule. This makes it possible to improve the cold properties of the effluent since branched paraffins have better cold properties than linear paraffins.
- nonadecane has a melting point of 32°C while one of its monobranched isomers, 7-methyl-octadecane has a melting point of -16°C.
- Hydrocracking makes it possible to convert a linear paraffin into linear or branched paraffins of lower molecular weight. This makes it possible to adjust the distillation curve of the effluent if necessary to make it compatible with the kerosene pool.
- the hydrocracking of one molecule of eicosane can lead to the production of two molecules of 2-methylnonane.
- the boiling point of 2-methylnonane is 167°C, which is compatible with incorporation into the kerosene pool.
- the hydroconversion step is carried out on a bifunctional catalyst having both a hydro/dehydrogenating function and a Bronsted acid function.
- the operating conditions can be adapted to promote the hydroisomerization or hydrocracking reactions as required.
- halogenated aluminas chlorinated or fluorinated in particular
- phosphorus-containing aluminas silica-aluminas or even siliceous aluminas
- siliceous aluminas can also be used.
- the olefins are hydrogenated to form the final reaction products. It is then necessary to have a hydro/dehydrogenating function that is sufficiently active with respect to the acid function in order, on the one hand, to quickly supply the acid phase with olefins and, on the other hand, to quickly hydrogenate the olefinic intermediates after their reaction on the acid phase. This makes it possible on the one hand to maximize the activity of the catalyst and on the other hand to promote hydroisomerization compared to hydrocracking when the first reaction is desired, or to limit the production of too light cracking products when the reaction hydrocracking is desired.
- a sufficiently active hydrogenating function is also desirable in order to limit the deactivation of the bifunctional catalyst by coking during the hydroconversion of n-paraffins (Alvarez et al., Journal of Catalysis, 162, 2, 179-189) for a range of fixed operating conditions.
- Noble metals Pt, Pd
- group VIA transition metals Mo, W
- group VIII transition metals Ni, Co
- Noble metals are used in their reduced form while transition metals are used in a sulphide form.
- Group VIA transition metals and Group VIII transition metals, generally attributed to decoration of Group VIA sulfide phases by Group VIII transition metals.
- CoMoS molybdenum or tungsten sulphide phase promoted by nickel or cobalt
- NiMoS nickel or cobalt
- the choice of the nature of the hydrogenating function, of the noble metal or sulphide type depends on various criteria, of an economic nature (the price of the noble metals is significantly higher than that of the transition metals of groups VIA and VIII) or of chemical nature (impact of the presence of contaminants).
- the hydrogenating activity of noble metals is higher than that of transition metal sulphides when the partial pressure of hydrogen sulphide (H 2 S) in the reaction medium is low or even zero.
- the hydrogenating activity of transition metal sulfides is higher than that of noble metals when the partial pressure of H 2 S in the reaction medium becomes high (C. Marcilly, Catalyse acido-basique, volume 2, 2003, editions Technip).
- transition metal sulphides requires the presence of H 2 S in the reaction medium to ensure their stability, and in particular the maintenance of the promotion of the molybdenum or tungsten sulphide phases by nickel. or cobalt under reaction conditions. Maintaining the promotion is desirable in order to retain the synergistic effect and to have maximum activity of the sulphide phase.
- a catalyst based on a nickel-promoted tungsten sulphide phase (“NiWS”) on silica-alumina exhibits an activity per tungsten atom 16 times greater than that of a catalyst based on non-nickel promoted tungsten sulfide (“WS”) on silica-alumina (M. Girleanu et al., ChemCatChem 2014, 6, 1594-1598). Maintaining the promotion depends on the operating conditions under which the catalyst works. Studies combining molecular modeling by DFT and thermodynamic model thus make it possible to propose diagrams of stability of the phases promoted according to a thermodynamic quantity called chemical potential in sulfur.
- the value of the chemical sulfur potential is itself calculated from the temperature of the medium and the ratio between the partial pressures of hydrogen sulphide (H 2 S) and hydrogen (H 2 ) and is available in the form of an abacus ( C. Arrouvel et al., Journal of Catalysis 2005, 232, 161-178).
- the chemical potential of sulfur decreases when the temperature increases, and when the ratio between the partial pressures of hydrogen sulphide and hydrogen decreases. It is thus possible to evaluate the thermodynamic stability of the promoted phases as a function of the operating conditions. Thus, it is reported that the NiWS phase is no longer thermodynamically stable (complete nickel segregation and loss of promotion) for sulfur chemical potential values below -1.27 eV.
- H 2 S content in the gas leaving the unit must be at least 100 ppm and preferably at least 200 ppm to maintain the catalyst in its sulfurized form.
- the composition of the exit gas is not specified. The values provided correspond to P(H2S)/P(H2) ratios at least greater than 1.10 -4 and preferably at least greater than 2.10 -4 in the case where it is assumed that the outlet gas consists only of 'hhS and hydrogen.
- Patent application FR2940144 A1 claims a process for the hydrodeoxygenation of feedstocks derived from renewables.
- the effluent resulting from the hydrodeoxygenation is subjected to a stage of separation and preferably a stage of gas/liquid separation and of separation of the water and of at least one liquid hydrocarbon base.
- said liquid hydrocarbon base is hydroisomerized on a bifunctional hydroisomerization catalyst. It is taught that it is possible to add a certain amount of sulfur compounds such as, for example, dimethyldisulfide to maintain the catalyst in its sulfurized form if necessary.
- the quantity of sulfur is such that the H 2 S content in the recycle gas which is sent to the hydroisomerization stage is at least 15 ppm by volume, preferably at least 0.1% by volume and preferably at least 0.2% volume.
- the composition of the recycle gas is not specified.
- the values provided correspond to P(H2S)/P(H2) ratios at least greater than 1.5.10 -5 , preferably at least greater than 1.10 -3 and preferably greater than 2.10 -3 in the case where it is assumed that the recycle gas consists only of h ⁇ S and hydrogen. No examples are provided.
- Patent application WO2009/156452 A1 claims a process for the production of paraffinic hydrocarbons from a feed containing triglycerides, diglycerides, monoglycerides and/or fatty acids.
- Said process comprises (a) a step of hydrodeoxygenation in the presence of hydrogen and a catalyst in order to obtain an effluent comprising water and paraffins, (b) a step of separating the effluent from ( a) to obtain a liquid effluent rich in paraffins and (c) a step of hydroisomerization of said effluent rich in paraffins in the presence of hydrogen and a catalyst comprising nickel sulphide and tungsten and/or molybdenum sulphide as hydrogenating phases and a support comprising silica-alumina and/or a zeolite.
- Step (c) of the example provided uses a hydroisomerization catalyst of the NiWS/silica-alumina type.
- Patent application U S2011/0219669 A1 claims a method for producing diesel fuel comprising mixing a feed of renewable origin and a fossil feed, said mixture then being transformed in contact with a dewaxing/isomerization catalyst putting a hydrogenating function and an acid function of the zeolite type are involved. It is taught that when the hydrogenating function of said catalyst is of the sulphide type, for example NiWS, the hydrocarbon feed must contain a minimum of sulfur to maintain the hydrogenating function in its sulphide form.
- the minimum recommended content of sulfur (present in sulfur molecules) in the feed is at least 50 ppm by weight, preferably at least 100 ppm by weight, more preferably at least 200 ppm by weight.
- the decomposition of these sulfur molecules in the deparaffinization/isomerization reactor makes it possible to generate a partial pressure of H 2 S necessary for maintaining the hydrogenating phase in its sulfide form.
- the sulfur can be supplied directly in the form of H 2 S, for example already present in the hydrogen-rich gas stream supplying the unit.
- the hydroconversion step can use hydrogen from different sources.
- the hydrogen used in the process according to the invention may or may not contain impurities.
- a catalytic reforming unit produces hydrogen during the dehydrogenation reactions of napthenes into aromatics and during the dehydrocyclization reactions.
- the hydrogen produced by a catalytic reforming unit is substantially free of CO and C0 2 .
- Hydrogen can also be produced by other methods such as, for example, by the steam reforming of light hydrocarbons or else by the partial oxidation of various hydrocarbons such as heavy residues.
- Steam reforming consists of transforming a light hydrocarbon charge into synthesis gas, that is to say into a mixture of hydrogen (H 2 ), carbon monoxide (CO), carbon dioxide (C0 2 ) , and water (H 2 0) by reaction with steam over a nickel-based catalyst.
- hydrogen H 2
- CO carbon monoxide
- C0 2 carbon dioxide
- H 2 0 water
- the production of hydrogen is also accompanied by the formation of carbon oxides which are substantially eliminated by the steam conversion of carbon monoxide (CO) to carbon dioxide (C0 2 ), then by elimination C0 2 by absorption for example by a solution of amines.
- CO residual carbon monoxide
- Other sources of hydrogen can also be used such as hydrogen from catalytic cracking gases which contains significant amounts of CO and CO2.
- the hydrogen used can also come from the outlet gas of a hydrotreating unit, in this case this hydrogen can undergo more or less extensive purification steps to eliminate impurities such as ammonia (NH 3 ) or hydrogen sulfur (H 2 S).
- An advantage of the method according to the present invention is therefore to provide a method for treating a feedstock from a renewable source which undergoes hydrotreatment before being sent to a hydroconversion step using a bifunctional catalyst comprising a phase molybdenum and/or tungsten sulfide promoted by nickel and/or cobalt, said catalyst operating under operating conditions such that the ratio between the H2S partial pressure and the hydrogen partial pressure entering said hydroconversion step is lower at 5.10 -5 .
- An advantage of the present invention is to provide a method making it possible to obtain a gain in activity and selectivity of the hydroconversion catalyst.
- the implementation of the operating conditions in accordance with the invention makes it possible, all other things being equal, to reduce the temperature necessary to obtain a cold property value targeted for the middle distillate cut (measured for example by a cloud point value ).
- the implementation of the operating conditions in accordance with the invention also makes it possible to improve the yield in the middle distillate cut for a targeted cold property value (measured for example by a cloud point value).
- an advantage of the process according to the invention is also to allow better resistance of the hydroconversion catalyst to deactivation when the operating conditions of the hydroconversion step, in particular in terms of total pressure and hydrogen ratio on load, promote deactivation.
- Another advantage of the process according to the invention is also to allow better resistance of the hydroconversion catalyst to the possible presence of oxygenated compounds.
- temporary operation of the hydroconversion unit under operating conditions not in accordance with the invention is not excluded. It may thus happen that the ratio between the hydrogen sulphide partial pressure and the hydrogen partial pressure is not in accordance with the invention during certain periods. For example due to occasional malfunctioning of any tools for purifying the hydrogen sent to the hydroconversion unit and/or the liquid hydrocarbon effluent from step c). In this case, the repair of any tools for purifying the hydrogen and/or the hydrocarbon effluent resulting from c) makes it possible to find an operating mode of the process in accordance with the invention.
- the present invention relates to a process for treating a feed from a renewable source comprising at least: a) a step of hydrotreating said feed in the presence of a fixed-bed catalyst, said catalyst comprising a function hydrogenating agent and an oxide support, at a temperature of between 200 and 450°C, at a pressure of between 1 MPa and 10 MPa, at an hourly space velocity of between 0.1 h 1 and 10 h -1 and in the presence of a total quantity of hydrogen mixed with the charge such that the hydrogen/charge ratio is between 70 and 1000 Nm 3 of hydrogen/m 3 of charge, b) a stage of separation of at least part of the effluent from step a) into at least one light fraction and at least one liquid hydrocarbon effluent, c) a step of removing at least part of the water from the liquid hydrocarbon effluent from step b ), d) a step of hydroconversion of at least a portion of the liquid hydrocarbon effluent from step c) in the presence of
- the present invention is particularly dedicated to the preparation of gas oil and/or kerosene fuel bases corresponding to the new environmental standards, from feedstocks originating from renewable sources.
- the fillers from renewable sources used in the process according to the present invention are advantageously chosen from oils and fats of vegetable or animal origin, or mixtures of such fillers, containing triglycerides and/or free fatty acids and/or esters.
- the vegetable oils can advantageously be crude or refined, totally or partly, and derived from the following plants: rapeseed, sunflower, soya, palm, palm kernel, olive, coconut, jatropha, this list not being exhaustive. Seaweed or fish oils are also relevant.
- the animal fats are advantageously chosen from lard or fats composed of residues from the food industry or from catering industries.
- fillers essentially contain chemical structures of the triglyceride type that those skilled in the art also know under the name fatty acid triester as well as free fatty acids.
- a fatty acid triester is thus composed of three chains of fatty acids. These fatty acid chains in triester form or in free fatty acid form have a number of unsaturations per chain, also called the number of carbon-carbon double bonds per chain, generally between 0 and 3 but which can be higher in particular for oils derived from algae which generally have a number of unsaturations per chain of 5 to 6.
- the molecules present in the fillers from renewable sources used in the present invention therefore have a number of unsaturations, expressed per molecule of triglyceride, advantageously between 0 and 18.
- the level of unsaturation, expressed as the number of unsaturation per hydrocarbon fatty chain is advantageously between 0 and 6.
- the feeds from renewable sources generally also contain various impurities and in particular heteroatoms such as nitrogen.
- Nitrogen contents in vegetable oils are generally between 1 ppm and 100 ppm by weight approximately, depending on their nature.
- the charge may undergo, prior to step a) of the process according to the invention, a pre-treatment or pre-refining step so as to eliminate, by an appropriate treatment, contaminants such as metals, such as alkaline compounds eg on ion exchange resins, alkaline earths and phosphorus.
- a pre-treatment or pre-refining step so as to eliminate, by an appropriate treatment, contaminants such as metals, such as alkaline compounds eg on ion exchange resins, alkaline earths and phosphorus.
- Appropriate treatments can for example be thermal and/or chemical treatments well known to those skilled in the art.
- the charge, optionally pretreated is brought into contact with a catalyst in a fixed bed at a temperature of between 200 and 450° C., preferably between 220 and 350° C. , preferably between 220 and 320°C, and even more preferably between 220 and 310°C.
- the pressure is between 1 MPa and 10 MPa, preferably between 1 MPa and 6 MPa and even more preferably between 1 MPa and 4 MPa.
- the hourly space velocity, ie the volume of charge per volume of catalyst and per hour is between 0.1 h 1 and 10 h 1 .
- the charge is brought into contact with the catalyst in the presence of hydrogen.
- the total quantity of hydrogen mixed with the charge is such that the hydrogen/charge ratio is between 70 and 1000 Nm 3 of hydrogen/m 3 of charge and preferably between 150 and 750 Nm 3 of hydrogen/m 3 load.
- the fixed-bed catalyst is advantageously a hydrotreating catalyst comprising a hydro-dehydrogenating function comprising at least one metal from group VIII and/or from group VI B, taken alone or as a mixture and a support chosen from the group formed by alumina, silica, silica-aluminas, magnesia, clays and mixtures of at least two of these minerals.
- This support can also advantageously contain other compounds and for example oxides chosen from the group formed by boron oxide, zirconia, titanium oxide, phosphoric anhydride.
- the preferred support is an alumina support and most preferably h, d or g alumina.
- Said catalyst is advantageously a catalyst comprising metals from group VIII preferably chosen from nickel and cobalt, taken alone or as a mixture, preferably in combination with at least one metal from group VI B preferably chosen from molybdenum and tungsten. , taken alone or in combination.
- the content of group VIII metal oxides and preferably of nickel oxide is advantageously between 0.5 and 10% by weight of nickel oxide (NiO) and preferably between 1 and 5% by weight of nickel oxide.
- nickel and the content of group VI B metal oxides and preferably of molybdenum trioxide is advantageously between 1 and 30% by weight of molybdenum oxide (MOO3), preferably from 5 to 25% by weight, the percentages being expressed in% by weight relative to the total mass of the catalyst.
- the total content of metal oxides of groups VI B and VIII in the catalyst used in step a) is advantageously between 5 and 40% by weight and preferably between 6 and 30% by weight relative to the mass. total catalyst.
- Said catalyst used in step a) of the process according to the invention must advantageously be characterized by a high hydrogenating power so as to direct the selectivity of the reaction as much as possible towards hydrogenation preserving the number of carbon atoms of the fatty chains. that is to say the hydrodeoxygenation route, in order to maximize the yield of hydrocarbons entering the field of distillation of kerosenes and/or gas oils. This is why it is preferred to operate at a relatively low temperature. Maximizing the hydrogenating function also makes it possible to limit the polymerization and/or condensation reactions leading to the formation of coke which would degrade the stability of the catalytic performances.
- a catalyst of the Ni or NiMo type is used.
- Said catalyst used in stage a) of hydrotreatment of the process according to the invention can also advantageously contain a doping element chosen from phosphorus and boron, taken alone or as a mixture.
- Said doping element can be introduced into the matrix or preferably be deposited on the support. It is also possible to deposit silicon on the support, alone or with phosphorus and/or boron and/or fluorine.
- the content by weight of oxide of said doping element is advantageously less than 20% and preferably less than 10% and it is advantageously at least 0.001%.
- Preferred catalysts are the catalysts described in patent application FR 2 943 071 describing catalysts having a high selectivity for hydrodeoxygenation reactions.
- catalysts described in patent application EP 2 210 663 describing supported or bulk catalysts comprising an active phase consisting of a sulphide element from group VI B, the element from group VI B being molybdenum.
- the metals of the catalysts used in stage a) of hydrotreatment of the process according to the invention are sulphide metals or metallic phases and preferably sulphide metals.
- step a) of the process according to the invention simultaneously or successively, a single catalyst or several different catalysts.
- This step can be carried out industrially in one or more reactors with one or more catalytic beds and preferably with a downflow of liquid.
- Said hydrotreatment step a) allows the hydrodeoxygenation, hydrodenitrogenation and hydrodesulphurization of said feed.
- stage b) of the process according to the invention a stage of separation of at least part and preferably all of the effluent resulting from stage a) is implemented. Said step b) makes it possible to separate at least one light fraction, at least one liquid hydrocarbon effluent.
- Said light fraction comprises at least one gaseous fraction which comprises the unconverted hydrogen and the gases containing at least one oxygen atom resulting from the decomposition of the oxygenated compounds during stage a) of hydrotreatment and the compounds C4, c ie the compounds C1 to C4 preferably exhibiting a final boiling point below 20°C.
- the purpose of this step is to separate the gases from the liquid, and in particular to recover the hydrogen-rich gases which may also contain gases such as CO and CO2 and at least one liquid hydrocarbon effluent.
- Said liquid hydrocarbon effluent preferably has a sulfur content of less than 10 ppm by weight, a nitrogen content of less than 2 ppm by weight.
- Separation step b) can advantageously be implemented by any method known to those skilled in the art such as for example the combination of one or more high and/or low pressure separators, and/or distillation and /or high and/or low pressure stripping.
- step c) of the process according to the invention at least a part and preferably all of the liquid hydrocarbon effluent resulting from step b) of separation undergoes a step of elimination of at least a part and preferably all of the water formed by the hydrodeoxygenation (HDO) reactions which take place during stage b) of hydrotreatment.
- the purpose of this water removal step is to separate the water from the liquid hydrocarbon effluent containing the paraffinic hydrocarbons.
- Step c) of eliminating at least part of the water and preferably all of the water can advantageously be carried out by all the methods and techniques known to those skilled in the art.
- said step c) is implemented by drying, by passing over a desiccant, by flash, by decantation or by a combination of at least two of these techniques.
- the atomic oxygen content of the liquid hydrocarbon effluent containing the paraffinic hydrocarbons resulting from step c) of the process according to the invention, expressed in part per million by weight (ppm) is preferably less than 500 ppm, more preferably less than 300 ppm, very preferably less than 100 ppm by weight.
- the content in ppm by weight of atomic oxygen in said liquid hydrocarbon effluent is measured by the infrared absorption technique such as for example the technique described in patent application US2009/0018374A1.
- step d) of the process according to the invention at least part and preferably all of the liquid hydrocarbon effluent resulting from step c) of the process according to the invention is converted in the presence of a catalyst bifunctional fixed bed hydroconversion, said catalyst comprising a molybdenum and/or tungsten sulphide phase in combination with at least nickel and/or cobalt, said hydroconversion step being carried out at a temperature between 250 and 500°C , at a pressure of between 1 MPa and 10 MPa, at an hourly space velocity of between 0.1 and 10 h 1 and in the presence of a total quantity of hydrogen mixed with the charge such that the hydrogen/charge ratio is comprised between 70 and 1000 Nm 3 /m 3 of charge, and in the presence of a total quantity of sulfur such that the ratio between the partial pressure of hydrogen sulphide and the partial pressure of hydrogen at the inlet of said hydroconversion stage is less than 5.10 -5 , preferably e less than 4.10 -5 , very preferably less than 3.10
- the sulfur present may come from the hydrocarbon effluent from stage c) and/or from the hydrogen flow mixed with the feed from stage d).
- the sulfur When the sulfur is provided by the hydrocarbon effluent, it is generally in the form of organic sulfur molecules, unconverted at the end of step a) of the process.
- sulfur When sulfur is supplied by hydrogen, it is generally in the form of hydrogen sulphide.
- sulfur can be provided by adding sulfur molecules to the charge and/or hydrogen to maintain the hydroconversion catalyst in sulfur form.
- the ratio of the partial pressures of hydrogen sulphide and hydrogen is calculated by considering the quantity of hydrogen and sulfur introduced at the inlet of the hydroconversion unit, and that all the hydrogen introduced is in the gas phase (the hydrogen possibly dissolved in the charge is not considered), that all the sulfur is in the form of hydrogen sulphide (the sulphur-containing molecules, if present, are transformed into hydrogen sulphide), and that all of the hydrogen sulfide is in the gas phase.
- said hydrogen stream undergoes a purification step in the case where the hydrogen sulphide content in said hydrogen stream entering step d) is greater than 50 ppm by volume.
- the hydrogen sulfide content in said hydrogen stream can be measured by any method known to those skilled in the art such as, for example, by gas phase chromatography or by laser infrared spectrometry, for example proposed by the company AP2E (ProCeas® analyzer H2 purity).
- the hydrogen content in said hydrogen flow can be measured by any method known to those skilled in the art such as for example measurement by thermal conductivity, for example proposed by the company WITT (Inline Gas Analyser).
- the presence of oxygenated compounds can induce a loss of activity of the hydroconversion catalyst.
- said hydrogen stream undergoes a purification step if the atomic oxygen content in said hydrogen stream entering the hydroconversion unit is greater than 250 ppm by volume.
- said hydrogen stream undergoes a purification step in the case where the atomic oxygen content in said hydrogen stream is greater than 50 ppm by volume.
- Said hydrogen flow used in the process according to the invention and preferably in step d) of the process according to the invention is advantageously generated by the processes known to those skilled in the art such as for example a catalytic reforming process or catalytic cracking of gases.
- the hydrogen used in the process according to the invention may or may not contain impurities.
- the atomic oxygen content in said hydrogen flow can be measured by any method known to those skilled in the art such as for example by gas phase chromatography.
- said hydrogen stream can be fresh hydrogen or a mixture of fresh hydrogen and recycled hydrogen, that is to say hydrogen not converted during step d) of hydroconversion and/or not converted during stage a) of hydrotreatment and recycled in said stage d).
- said hydrogen stream undergoes a purification step to eliminate the oxygenated compounds before being introduced into said step d). If said hydrogen stream contains a hydrogen sulphide content greater than 50 volume ppm, said hydrogen stream undergoes a purification step to remove the hydrogen sulphide before being introduced into said step d).
- Said hydrogen flow purification step can advantageously be carried out according to any method known to those skilled in the art (see for example Z. Du et al., Catalysts, 2021, 11, 393).
- said purification step is advantageously implemented according to the methods of pressure swing adsorption or PSA "Pressure Swing Adsorption” according to the English terminology, or temperature swing adsorption or TSA “Temperature Swing Adsorption” according to Anglo-Saxon terminology, washing with amines, methanation, preferential oxidation, membrane processes, cryogenic distillation, used alone or in combination.
- PSA Pressure Swing Adsorption
- TSA Temperatur swing adsorption
- a purge of the recycled hydrogen can also advantageously be carried out in order to limit the accumulation of molecules containing at least one oxygen atom such as carbon monoxide CO or carbon dioxide CO2 and thus to limit the atomic oxygen content in said hydrogen flow.
- the atomic oxygen content in said hydrogen stream used in the process according to the invention and preferably in step d) of the process according to the invention expressed in parts per million by volume (ppmv), must be less than 500 ppmv, preferably less than 250 ppmv and most preferably less than 50 ppmv.
- the atomic oxygen content in said hydrogen flow is calculated from the concentrations of molecules having at least one oxygen atom in said hydrogen flow, weighted by the number of oxygen atoms present in said oxygenated molecule.
- ppmv(O) ppmv (CO) + 2 * ppmv (CO2 ) with: ppmv (O) atomic oxygen content in the hydrogen stream in parts per million by volume, ppmv (CO) carbon monoxide content in the hydrogen stream in parts per million by volume, ppmv (CO2) carbon dioxide content in the hydrogen stream in parts per million by volume.
- step d) of hydroconversion of the process according to the invention operates at a temperature of between 250° C. and 450° C., and very preferably, between 250 and 400° C., at a pressure of between 2 MPa and 10 MPa and very preferably between 1 MPa and 9 MPa, at an hourly volume rate advantageously between 0.2 and 7 h 1 and very preferably between 0.5 and 5 h -1 , at a hydrogen flow rate such that the hydrogen/feed volume ratio is advantageously between 100 and 1000 normal m 3 of hydrogen per m 3 of feed and preferably between 150 and 1000 normal m 3 of hydrogen per m 3 of feed.
- Stage d) of hydroconversion of the process according to the invention operates with a ratio between the partial pressure of hydrogen sulphide and hydrogen of less than 5.10 -5 , preferably less than 4.10 5 , very preferably less than 3.10 5 , very preferably less than 2.10 5 and even more preferably less than 1.5.10 5
- the hydroconversion catalyst comprises at least tungsten and/or molybdenum in combination with at least nickel and/or cobalt.
- the tungsten and/or molybdenum content is advantageously comprised in oxide equivalent between 5 and 50% by weight relative to the finished catalyst, preferably between 10 and 40% by weight and very preferably between 15 and 35% by weight and the nickel and/or cobalt content of said catalyst is advantageously comprised in oxide equivalent between 0.5 and 10% by weight relative to the finished catalyst, preferably between 1 and 8% by weight and very preferably between 1.5 and 6% by weight.
- Said catalyst is used in its sulfurized form.
- the catalyst comprises tungsten in combination with nickel.
- the metals are advantageously introduced into the catalyst by any method known to those skilled in the art, such as for example comixing, dry impregnation or impregnation by exchange.
- the hydroconversion catalyst also advantageously comprises at least one acidic solid and optionally a binder.
- the acidic solid is a Bronsted acid preferably chosen from silica alumina, zeolite Y, SAPO-11, SAPO-41, ZSM-22, ferrierite, ZSM-23, ZSM-48 , ZBM-30, I ⁇ ZM-1, COK-7.
- the acidic solid is silica alumina.
- a binder can advantageously also be used during the support shaping step. A binder is preferably used when zeolite is used.
- Said binder is advantageously chosen from silica (S1O 2 ), alumina (Al 2 O 3 ), clays, titanium oxide (T1O 2 ), boron oxide (B 2 O 3 ) and zirconia (ZrC>2) taken alone or in a mixture.
- said binder is chosen from silica and alumina and even more preferably, said binder is alumina in all its forms known to those skilled in the art, such as for example gamma alumina.
- a preferred catalyst used in the process according to the invention comprises a silica-alumina and at least tungsten and/or molybdenum and at least nickel and/or cobalt, said catalyst being sulfurized.
- the tungsten and/or molybdenum content is advantageously comprised, in oxide equivalent, between 5 and 50% by weight relative to the finished catalyst, preferably between 10 and 40% by weight and very preferably between 15 and 35% by weight.
- weight and the nickel and/or cobalt content of said catalyst is advantageously comprised, in oxide equivalent, between 0.5 and 10% by weight relative to the finished catalyst, preferably between 1 and 8% by weight and very preferably between 1.5 and 6% by weight.
- the element content is perfectly measured using X-ray fluorescence.
- a preferred catalyst used in the process according to the invention comprises a particular silica-alumina, said silica-alumina having:
- silica content is advantageously between 10 and 50% by weight
- an average diameter of the mesopores measured by mercury porosimetry between 3 and 12 nm, preferably between 3 nm and 11 nm and very preferably between 4 nm and 10.5 nm,
- a total pore volume measured by mercury porosimetry of between 0.4 and 1.2 ml/g, preferably between 0.4 and 1.0 ml/g and very preferably between 0.4 and 0.8 ml /g,
- the mean diameter of the mesopores is defined as being the diameter corresponding to the cancellation of the curve derived from the mercury intrusion volume obtained from the mercury porosity curve for pore diameters between 2 and 50 ⁇ m.
- the metal distribution coefficient of said preferred catalyst is greater than 0.1, preferably greater than 0.2 and very preferably greater than 0.4.
- the distribution coefficient represents the distribution of the metal inside the catalyst grain.
- the partition coefficient of metals can be measured by Castaing microprobe.
- step e) of the process according to the invention the effluent from step d) undergoes a fractionation step, preferably in a distillation train which integrates atmospheric distillation and optionally vacuum distillation, to obtain at least a middle distillate fraction.
- step e) is to separate the gases from the liquid, and in particular to recover the hydrogen-rich gases which may also contain light substances such as the Ci - C4 cut and at least one diesel cut, at least one kerosene cut and at least one minus a naphtha cup. Upgrading the naphtha cut is not the subject of the present invention, but this cut can advantageously be sent to a steam cracking or catalytic reforming unit.
- Figure 1 represents the evolution of the cloud point of the liquid effluent as a function of time during the hydroconversion in Example 4.
- Figure 2 represents the evolution of the cloud point of the liquid effluent as a function of time during the hydroconversion in example 7.
- Figure 3 represents the evolution of the cloud point of the liquid effluent as a function of time during the hydroconversion in example 8.
- Figure 4 represents the evolution of the cloud point of the liquid effluent as a function of time during the hydroconversion in Example 9.
- Example 1 preparation of a hydrotreating catalyst (C1)
- the catalyst is an industrial catalyst based on nickel, molybdenum and phosphorus on alumina with contents of molybdenum oxide M0O3 of 22% by weight, nickel oxide NiO of 4% by weight and phosphorus oxide P2O5 of 5% by weight relative to to the total weight of the finished catalyst, supplied by the company AXENS.
- Example 2 Preparation of a hydroconversion catalyst in accordance with the invention (C2)
- the silica-alumina powder is prepared according to the synthesis protocol described in patent EP1 415 712A.
- the amounts of orthosilicic acid and aluminum hydrate are chosen so as to have a composition of 70% by weight of alumina Al 2 O 3 and 30% by weight of silica S1O 2 in the final solid.
- This mixture is rapidly homogenized in a commercial colloid mill in the presence of nitric acid so that the nitric acid content of the suspension leaving the mill is 8% relative to the mixed silica-alumina solid. Then the suspension is conventionally dried in an atomizer in a conventional manner at 300°C to 60°C. The powder thus prepared is shaped in a Z arm in the presence of 8% nitric acid relative to the anhydrous product. Extrusion is carried out by passing the paste through a die fitted with 1.4 mm diameter holes. The extrudates thus obtained are dried in an oven at 140°C then calcined under a flow of dry air at 550°C then calcined at 850°C in the presence of steam.
- the silica-alumina extrudates are then subjected to a dry impregnation step with an aqueous solution of ammonium metatungstate and nickel nitrate, left to mature in a water soaker for 24 hours at room temperature and then calcined for two hours under dry air in bed traversed at 450°C (temperature rise ramp of 5°C/min).
- the content by weight of tungsten oxide WO 3 of the finished catalyst after calcination is 27%, the content of nickel oxide NiO is 3.5%.
- the metal distribution coefficient measured by Castaing microprobe is equal to 0.93.
- Example 3 hydrotreatment of a feed from a renewable source according to a process in accordance with the invention
- Table 1 Characteristics of the rapeseed oil used as a feedstock for the hydrotreatment
- the catalyst is sulfurized in-situ in the unit, with a distillation gas oil containing 2% by weight of dimethyldisulphide , under a total pressure of 5.1 MPa, a hydrogen/gas oil ratio with additives of 700 Nm 3 per m 3 .
- the volume of diesel fuel added per volume of catalyst and per hour is set at 1 h 1 .
- the sulfurization is carried out for 12 hours at 350° C., with a temperature rise ramp of 10° C. per hour.
- the operating conditions of the unit are adjusted in order to carry out the hydrotreatment of the charge:
- the hydrogen used is supplied by Air Product and has a purity greater than 99.999% by volume.
- a gas/liquid separator so as to recover a light fraction containing mainly hydrogen, propane, water in vapor form, carbon oxides (CO and CO2) and ammonia and a liquid hydrocarbon effluent mainly consisting of linear hydrocarbons.
- the water present in the liquid hydrocarbon effluent is removed by settling.
- the liquid hydrocarbon effluent thus obtained contains an atomic oxygen content of less than 80 ppm by weight, said atomic oxygen content being measured by the infrared adsorption technique described in patent application US2009/0018374, and a sulfur content of 2 ppm by weight and a nitrogen content of less than 1 ppm by weight, said nitrogen and sulfur contents being measured respectively by chemiluminescence and by UV fluorescence.
- Said liquid hydrocarbon effluent has a density of 791 kg/m 3 .
- the liquid hydrocarbon effluent is composed of paraffins; its composition, measured by gas chromatography, is provided in Table 2.
- Table 2 composition of the liquid hydrocarbon effluent used as feedstock for hydroconversion
- Example 4 Hydroconversion of the liquid hydrocarbon effluent from Example 3 according to a process not in accordance with the invention
- Catalyst C2 undergoes an in-situ sulfurization step in the unit, with isane to which 2% by weight of dimethyldisulfide has been added, under a total pressure of 5.1 MPa, a hydrogen ratio / isane with additive of 350 Nm 3 per m 3 .
- the volume of isane added per volume of catalyst and per hour is set at 1 h 1 .
- the sulfurization is carried out for 12 hours at 350° C., with a temperature rise ramp of 10° C. per hour.
- the operating conditions of the unit are adjusted in order to carry out the hydroconversion of the liquid hydrocarbon effluent containing 500 ppm by weight of sulfur:
- the hydrogen stream used and entering the hydroconversion stage is provided by Air Product, it has a purity greater than 99.999%, it is free of hydrogen sulphide.
- the ratio between the partial pressure of hydrogen sulphide and the partial pressure of hydrogen is then equal to 4.10 -4 .
- Temperature stages at 333 and 343°C are carried out in order to vary the severity of the hydroconversion.
- the measurement (typically daily) of the cloud point (by the ASTM D5773 method) of the liquid effluent makes it possible to follow the evolution of the performance of the catalyst at each temperature level. For each temperature, the test duration is extended until a stable cloud point is obtained. Once cloud point stability is achieved, the liquid effluent is accumulated for 24 hours. Under the chosen operating conditions, no deactivation of the catalyst is observed (see Figure 1).
- the average distillate yield is calculated as follows:
- the cloud point and the motor cetane number of the middle distillate cut are respectively determined by the ASTM D5773 method, and by the CFR method by ASTM D613.
- the main characteristics of the effluents produced and the associated operating conditions are shown in Table 3.
- Example 5 Hydroconversion of the liquid hydrocarbon effluent from Example 3 according to a process in accordance with the invention
- Catalyst C2 undergoes a sulfurization step identical to that reported in Example 4.
- the operating conditions of the unit are adjusted in order to carry out the hydroconversion of the liquid hydrocarbon effluent containing 50 ppm by weight of sulfur:
- the hydrogen stream used and entering the hydroconversion stage is supplied by Air Product, it has a purity greater than 99.999% by volume, it is free of hydrogen sulphide.
- the ratio between the partial pressure of hydrogen sulphide and the partial pressure of hydrogen is then equal to 4.10 -5 .
- the temperature stages are adjusted in order to obtain cloud points of the middle distillate comparable to those obtained in example 4.
- the measurement (typically daily) of the cloud point of the liquid effluent makes it possible to follow the evolution of the performances catalyst at each temperature level. For each temperature, the test duration is extended until a stable cloud point is obtained. Once cloud point stability is achieved, the liquid effluent is accumulated for 24 hours. Under the chosen operating conditions, no deactivation of the catalyst is observed.
- Example 4 Said liquid effluent is then weighed and then fractionated by distillation in order to determine the average distillate yield in the manner reported in Example 4.
- the main characteristics of the effluents produced and the associated operating conditions are shown in Table 3. It can be seen that compared to non-compliant Example 4, the reduction in the P(H2S)/P(H2) ratio makes it possible to improve the activity of the catalyst. Indeed, the temperature required to reach a comparable cloud point value is 2 to 3 degrees lower. In addition, the reduction in the P(H2S)/P(H2) ratio also makes it possible to improve the selectivity of the catalyst since for a comparable cloud point value, the yield of middle distillate increases by 5 points.
- Example 6 Hydroconversion of the liquid hydrocarbon effluent resulting from example 3 according to a method in accordance with the invention
- Catalyst C2 undergoes a sulfurization step identical to that reported in Example 4.
- the operating conditions of the unit are adjusted in order to carry out the hydroconversion of the liquid hydrocarbon effluent containing 50 ppm by weight of sulfur:
- the hydrogen stream used and entering the hydroconversion stage is supplied by Air Product, it has a purity greater than 99.999% by volume, it is free of hydrogen sulphide.
- the ratio between the partial pressure of hydrogen sulphide and the partial pressure of hydrogen is then equal to 1.2.10 -5 .
- the temperature stages are adjusted in order to obtain cloud points of the middle distillate comparable to those obtained in example 4.
- the measurement (typically daily) of the cloud point of the liquid effluent makes it possible to follow the evolution of the performances catalyst at each temperature level. For each temperature, the test duration is extended until a stable cloud point is obtained. Once the stability of the cloud point is reached, we accumulates liquid effluent for 24 hours. Under the operating conditions chosen, no deactivation of the catalyst is observed.
- Example 4 Said liquid effluent is then weighed and then fractionated by distillation in order to determine the average distillate yield in the manner reported in Example 4.
- the main characteristics of the effluents produced and the associated operating conditions are reported in Table 3. It is noted that compared to Example 4 not conforming, the reduction of the P(H 2 S)/P(H2) ratio makes it possible to improve the activity of the catalyst. Indeed, the temperature required to reach a comparable cloud point value is 5 to 6 degrees lower. In addition, the reduction in the P(H 2 S)/P(H2) ratio also makes it possible to improve the selectivity of the catalyst since for a comparable cloud point value, the yield of middle distillate increases by 6 points.
- Table 3 Main characteristics of the effluents produced by hydroconversion and associated operating conditions
- Example 7 Hydroconversion of the liquid hydrocarbon effluent from Example 3 according to a process not in accordance with the invention
- Catalyst C2 undergoes an in-situ sulphidation step in the unit, with isane to which 2% by weight of dimethyl disulphide has been added, under a total pressure of 5.1 MPa, a hydrogen/gasoil ratio with additive of 700 Nm 3 per m 3 .
- the volume of isane added per volume of catalyst and per hour is set at 1 h 1 .
- the sulfurization is carried out for 12 hours at 350° C., with a temperature rise ramp of 10° C. per hour.
- the operating conditions of the unit are adjusted in order to carry out the hydroconversion of the liquid hydrocarbon effluent containing 50 ppm by weight of sulfur:
- the hydrogen stream used in the hydroconversion step is supplied by Air Product, it has a purity greater than 99.999% by volume, it is free of hydrogen sulphide.
- the ratio between the partial pressure of hydrogen sulphide and the partial pressure of hydrogen is then equal to 6.10 -5 .
- Temperature stages at 326 then 336°C are carried out in order to vary the severity of the hydroconversion, and a return point is carried out at 326°C to evaluate the deactivation of the catalyst.
- the regular measurement (typically daily) of the cloud point of the liquid effluent makes it possible to follow the evolution of the performance of the catalyst at each temperature level. For each temperature, the test duration is extended until a stable cloud point is obtained. Once cloud point stability is achieved, the liquid effluent is accumulated for 24 hours. Said liquid effluent is then weighed and then fractionated by distillation in order to determine the average distillate yield in the manner reported in Example 4.
- Figure 2 represents the evolution of the daily measurement of the liquid effluent during the test.
- the catalyst undergoes deactivation at each temperature of the test as evidenced by the increase in the value of the cloud point between the start and the end of each temperature level.
- the cloud point increases from -19°C (after 36 hours) to -10°C at 252 hours, at which point catalyst activity stabilizes.
- a deactivation is also observed at the second point (temperature plateau at 336° C.).
- the return point carried out at 326°C confirms the deactivation of the catalyst: the cloud point stabilizes at 1°C, against -10°C as a stabilized value at the end of the first point.
- the increase in cloud point between the first measured value and the last measured value is used to assess catalyst deactivation:
- Catalyst deactivation final cloud point (°C) - initial cloud point (°C)
- Example 8 Hydroconversion of the liquid hydrocarbon effluent resulting from example 3 according to a method in accordance with the invention
- Catalyst C2 undergoes a sulfurization step identical to that reported in Example 6.
- the hydrogen stream used in the hydroconversion step is supplied by Air Product, it has a purity greater than 99.999% by volume, it is free of hydrogen sulphide.
- the ratio between the partial pressure of hydrogen sulphide and the partial pressure of hydrogen is then equal to 1.2 10 5 .
- Temperature stages at 326 then 336° C. are carried out in order to vary the severity of the hydroconversion, and a return point is carried out at 326° C. to evaluate the deactivation of the catalyst.
- the regular measurement (typically daily) of the cloud point of the liquid effluent makes it possible to follow the evolution of the performance of the catalyst at each temperature level. For each temperature, the test duration is extended until a stable cloud point is obtained. Once cloud point stability has been achieved, the liquid effluent is accumulated for 24 hours. Said liquid effluent is then weighed and then fractionated by distillation in order to determine the average distillate yield in the manner reported in Example 4.
- Figure 3 represents the evolution of the daily measurement of the liquid effluent during the test.
- the catalyst undergoes deactivation at each temperature of the test, just as is observed in Example 7, which is non-compliant.
- the deactivation is less pronounced than in example 7.
- the cloud point increases from -20° C. (after 24 hours) to -15° C. at 288 hours, value at which the activity of the catalyst stabilizes.
- a deactivation is also observed at the second point (temperature plateau at 336° C.).
- Table 4 Main characteristics of effluents produced by hydroconversion and associated operating conditions
- Example 9 Hydroconversion of the liquid hydrocarbon effluent resulting from example 3 according to a method in accordance with the invention
- the P(H 2 S)/P(H2) ratio is not in accordance with the invention during certain periods. For example due to occasional malfunctioning of any tools for purifying the hydrogen sent to the unit and/or the liquid hydrocarbon effluent from step c).
- the readjustment of the P(H 2 S)/P(H2) ratio in a range in accordance with the invention, after operation under non-compliant conditions, also makes it possible to improve the performance of the catalyst as illustrated below.
- Catalyst C2 undergoes a sulfurization step identical to that reported in Example 6.
- the step of hydroconversion of the liquid hydrocarbon effluent from Example 3 is carried out under different operating conditions, some of which simulate temporary operation of the unit not in accordance with the invention during certain periods.
- the Table 5 shows the different operating conditions implemented. Throughout the test, the temperature, the total pressure, the hydrogen/charge ratio and the WH are kept constant. Points 1 and 4 are not in accordance with the invention because of their too high P(H2S)/P(H2) ratio (additivation of dimethyldisulphide in the charge), whereas points 2 and 3 are in conformity. For points 2 and 4 oxygenated impurities are also present in the hydrogen flow. This is done by using a standard mixture containing hydrogen, carbon monoxide and carbon dioxide supplied by Air Product.
- the atomic O content contained in the hydrogen flow is then 4200 ppm by volume.
- the regular measurement (typically daily) of the cloud point of the liquid effluent makes it possible to follow the evolution of the performance of the catalyst at each temperature level. For each temperature, the test duration is extended until a stable cloud point is obtained. Once cloud point stability has been achieved, the liquid effluent is accumulated for 24 hours. Said liquid effluent is then weighed and then fractionated by distillation in order to determine the average distillate yield in the manner reported in Example 4.
- Figure 4 represents the evolution of the daily measurement of the liquid effluent during the test. Under the operating conditions chosen, the catalyst undergoes deactivation at the first point of the test (non-compliant), just as is observed in examples 7 and 8. It is observed that the cloud point stabilizes at a value of -6° vs. All other things being equal, adjusting the P(H2S)/P(H2) ratio to a value in accordance with the invention, at point 2, allows the catalyst to regain activity. At point 2 the cloud point stabilizes at -8°C. At point 3, the addition of oxygenated compounds in the hydrogen induces a loss of activity of the catalyst, the cloud point then stabilizing at -5°C.
- Table 5 shows the main characteristics of the effluents produced at each operating point, when the unit is stabilized.
- the mode of operation according to the invention is advantageous. All other things being equal, adjusting the P(H 2 S)/P(H2) ratio to values in accordance with the invention makes it possible both to gain in middle distillate yield but also to improve the cold properties of said middle distillate (comparison point 1 and point 2 and comparison point 3 and point 4).
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Catalysts (AREA)
Abstract
Description
PROCEDE OPTIMISE D'HYDROTRAITEM ENT ET D’HYDROCONVERSION DE CHARGES ISSUES DE SOURCES RENOUVELABLES OPTIMIZED PROCESS FOR HYDROTREATMENT AND HYDROCONVERSION OF CHARGES FROM RENEWABLE SOURCES
Domaine de l'invention Field of the invention
La recherche de nouvelles sources d'énergies renouvelables pour la production de carburants constitue un enjeu majeur pour à la fois répondre à la demande en carburant et prendre en compte les préoccupations liées à l'environnement. The search for new sources of renewable energy for the production of fuels is a major challenge in order to both meet the demand for fuel and take into account concerns related to the environment.
A ce titre, la valorisation en carburants de charges issues de sources renouvelables a connu ces dernières années un très vif regain d'intérêt. Parmi ces charges on peut citer par exemple les huiles végétales, les graisses animales, brutes ou ayant subi un traitement préalable, ainsi que les mélanges de telles charges. Ces charges contiennent des structures chimiques de type triglycérides ou esters ou acides gras, la structure et la longueur de chaîne hydrocarbonée de ces derniers étant compatible avec les hydrocarbures présents dans les gazoles et le kérosène. In this respect, the recovery of feedstocks from renewable sources into fuels has experienced a very strong resurgence of interest in recent years. Among these fillers, mention may be made, for example, of vegetable oils, animal fats, raw or having undergone a prior treatment, as well as mixtures of such fillers. These fillers contain chemical structures of the triglyceride or ester or fatty acid type, the structure and the length of the hydrocarbon chain of the latter being compatible with the hydrocarbons present in gas oils and kerosene.
Une voie possible est la transformation catalytique de la charge issue de source renouvelable en carburant paraffinique désoxygéné en présence d'hydrogène (hydrotraitement). De nombreux catalyseurs métalliques ou sulfures sont connus pour être actifs pour ce type de réaction. One possible route is the catalytic transformation of the charge from a renewable source into deoxygenated paraffinic fuel in the presence of hydrogen (hydrotreating). Many metal or sulphide catalysts are known to be active for this type of reaction.
Ces procédés d'hydrotraitement de charge issue de source renouvelable sont déjà bien connus et sont décrits dans de nombreux brevets. On peut citer par exemple les brevets : US 4,992,605, US 5,705,722, EP 1,681,337 et EP 1,741,768. These processes for hydrotreating feed from a renewable source are already well known and are described in numerous patents. Mention may be made, for example, of the patents: US 4,992,605, US 5,705,722, EP 1,681,337 and EP 1,741,768.
L'utilisation de solides à base de sulfures de métaux de transition permet la production de paraffines à partir de molécule de type ester selon deux voies réactionnelles : The use of solids based on transition metal sulphides allows the production of paraffins from ester-type molecules according to two reaction pathways:
- l'hydrodésoxygénation conduisant à la formation d'eau par consommation d'hydrogène et à la formation d'hydrocarbures de nombre de carbone (Cn) égal à celui des chaînes d'acides gras initiales, - hydrodeoxygenation leading to the formation of water by consumption of hydrogen and the formation of hydrocarbons with a carbon number (C n ) equal to that of the initial fatty acid chains,
- la décarboxylation/décarbonylation conduisant à la formation d'oxydes de carbone (monoxyde et dioxyde de carbone : CO et CO2) et à la formation d'hydrocarbures comptant un carbone en moins (Cn-i) par rapport aux chaînes d'acides gras initiales. - decarboxylation/decarbonylation leading to the formation of carbon oxides (carbon monoxide and dioxide: CO and CO2) and to the formation of hydrocarbons with one less carbon (C n -i) compared to the acid chains bold initials.
L'effluent liquide issu de ces procédés d'hydrotraitement, après séparation, est essentiellement constitué de n-paraffines et est substantiellement exempt d'impuretés soufrées, azotées et oxygénées. Après hydrotraitement et séparation des gaz, la teneur en soufre est typiquement comprise entre 1 et 20 ppm poids, la teneur en azote est généralement comprise entre 0,2 et 30 ppm poids et la teneur en oxygène est généralement inférieure à 2000 ppm poids. Les paraffines présentent un nombre d’atome de carbone typiquement compris entre 9 et 25, qui est principalement dépendant de la composition de la charge à hydrotraiter. The liquid effluent resulting from these hydrotreating processes, after separation, essentially consists of n-paraffins and is substantially free of sulfur, nitrogen and oxygen impurities. After hydrotreating and gas separation, the sulfur content is typically between 1 and 20 ppmw, the nitrogen content is typically between 0.2 and 30 ppmw, and the oxygen content is typically less than 2000 ppm weight. Paraffins have a number of carbon atoms typically between 9 and 25, which is mainly dependent on the composition of the charge to be hydrotreated.
Toutefois, cet effluent liquide ne peut généralement pas être incorporé tel quel au pool kérosène ou gazole notamment en raison de propriétés à froid insuffisantes et/ou de températures d’ébullition trop élevées. En effet, les paraffines présentes conduisent à des points d'écoulement hauts et donc à des phénomènes de figeage pour des utilisations à basses températures. Par exemple, l’éicosane (paraffine linéaire à 20 atomes de carbone, C20H42) possède une température d’ébullition égale à 340°C et un point de fusion de 37°C. La température d’ébullition de l’éicosane est ainsi compatible avec une incorporation dans un pool gazole mais sa température de fusion peut générer des problèmes de figeage et limiter son utilisation. A titre illustratif, la température limite de filtrabilité pour un gazole hiver est au maximum de -15°C. Par ailleurs la température d’ébullition de l’éicosane le rend non incorporable au pool kérosène, pour lequel la température finale de la courbe de distillation doit être inférieure à 300°C. However, this liquid effluent cannot generally be incorporated as such into the kerosene or diesel pool, in particular because of insufficient cold properties and/or too high boiling temperatures. Indeed, the paraffins present lead to high pour points and therefore to congealing phenomena for uses at low temperatures. For example, eicosane (linear paraffin with 20 carbon atoms, C20H42) has a boiling point of 340°C and a melting point of 37°C. The boiling point of eicosane is thus compatible with incorporation into a diesel pool, but its melting point can cause freezing problems and limit its use. By way of illustration, the filterability limit temperature for winter diesel is a maximum of -15°C. Moreover, the boiling point of eicosane means that it cannot be incorporated into the kerosene pool, for which the final temperature of the distillation curve must be less than 300°C.
Selon le taux d’incorporation et le pool carburant privilégié (gazole ou kérosène) qui sont visés, il peut être nécessaire d’effectuer une étape d’hydroconversion (réactions d’hydroisomérisation et/ou d’hydrocraquage) pour transformer les paraffines linéaires de l’effluent liquide hydrotraité. L’hydroisomérisation permet de convertir une paraffine linéaire en paraffine branchée avec conservation du nombre d’atomes de carbone de la molécule. Ceci permet d’améliorer les propriétés à froid de l’effluent car les paraffines branchées présentent de meilleures propriétés à froid que les paraffines linéaires. Par exemple le nonadécane possède un point de fusion de 32°C alors que l’un de ses isomères monobranchés, le 7- méthyl-octadécane a un point de fusion de -16°C. L’hydrocraquage permet de convertir une paraffine linéaire en paraffines linéaires ou branchées de plus petit poids moléculaire. Ceci permet d’ajuster au besoin la courbe de distillation de l’effluent pour le rendre compatible avec le pool kérosène. A titre illustratif, l’hydrocraquage d’une molécule d’éicosane peut conduire à la production de deux molécules de 2-méthylnonane. La température d’ébullition du 2- méthylnonane est de 167°C, ce qui est compatible avec une incorporation au pool kérosène. L’étape d’hydroconversion est effectuée sur un catalyseur bifonctionnel présentant à la fois une fonction hydro/déshydrogénante et une fonction acide de Bronsted. Les conditions opératoires peuvent être adaptées pour favoriser les réactions d’hydroisomérisation ou d’hydrocraquage selon les besoins. Dans tous les cas il est souhaitable de minimiser la production de produits de craquage trop légers pour être incorporés dans le pool kérosène ou gazole. Le choix approprié de la phase acide permet de favoriser l’isomérisation des paraffines linéaires longues et de minimiser le craquage. Ainsi la sélectivité de forme des zéolithes monodimensionnelles à pores moyens (10 MR) comme les zéolithes ZSM-22, ZSM-23, NU- 10, ZSM-48, ZBM-30 rend leur utilisation particulièrement adaptée pour obtenir des catalyseurs sélectifs envers l’isomérisation. D’autres phases acides de type zéolithiques ou non zéolitiques telles que les alumines halogénées (chlorées ou fluorées notamment), les alumines phosphorées, silice-alumines ou encore les alumines silicées peuvent également être mises en œuvre. Depending on the incorporation rate and the preferred fuel pool (diesel or kerosene) targeted, it may be necessary to carry out a hydroconversion step (hydroisomerization and/or hydrocracking reactions) to transform the linear paraffins of the hydrotreated liquid effluent. Hydroisomerization makes it possible to convert a linear paraffin into a branched paraffin with conservation of the number of carbon atoms in the molecule. This makes it possible to improve the cold properties of the effluent since branched paraffins have better cold properties than linear paraffins. For example nonadecane has a melting point of 32°C while one of its monobranched isomers, 7-methyl-octadecane has a melting point of -16°C. Hydrocracking makes it possible to convert a linear paraffin into linear or branched paraffins of lower molecular weight. This makes it possible to adjust the distillation curve of the effluent if necessary to make it compatible with the kerosene pool. By way of illustration, the hydrocracking of one molecule of eicosane can lead to the production of two molecules of 2-methylnonane. The boiling point of 2-methylnonane is 167°C, which is compatible with incorporation into the kerosene pool. The hydroconversion step is carried out on a bifunctional catalyst having both a hydro/dehydrogenating function and a Bronsted acid function. The operating conditions can be adapted to promote the hydroisomerization or hydrocracking reactions as required. In all cases, it is desirable to minimize the production of cracking products that are too light to be incorporated into the kerosene or gas oil pool. The appropriate choice of the acid phase makes it possible to promote the isomerization of long linear paraffins and to minimize cracking. Thus the shape selectivity of one-dimensional zeolites with medium pores (10 MR) such as ZSM-22, ZSM-23, NU-10, ZSM-48, ZBM-30 zeolites makes their use particularly suitable for obtaining catalysts that are selective towards isomerization. Other acid phases of the zeolitic or non-zeolitic type such as halogenated aluminas (chlorinated or fluorinated in particular), phosphorus-containing aluminas, silica-aluminas or even siliceous aluminas can also be used.
Toutefois, il est bien connu que des facteurs autres que la phase acide ont un impact sur l’activité et la sélectivité d’un catalyseur bifonctionnel. L'hydroisomérisation et l’hydrocraquage des normales paraffines ont ainsi fait l'objet de nombreuses études académiques depuis les travaux originels des années soixante de Weisz ou Coonradt et Garwood. Le mécanisme le plus communément admis implique tout d'abord que la n-paraffine soit déshydrogénée en n- oléfine sur la phase hydro-déshydrogénante puis, après diffusion vers la phase acide, qu'elle soit protonée en ion carbénium. Après réarrangement structural et/ou b-scission, les ions carbéniums désorbent de la phase acide sous forme d'oléfines après déprotonation. Puis, après diffusion vers la phase hydro-déshydrogénante, les oléfines sont hydrogénées pour former les produits de réaction finaux. Il convient alors d’avoir une fonction hydro/déshydrogénante suffisamment active vis-à-vis de la fonction acide pour d’une part approvisionner rapidement la phase acide en oléfines et d’autre part pour hydrogéner rapidement les intermédiaires oléfiniques après leur réaction sur la phase acide. Ceci permet d’une part de maximiser l’activité du catalyseur et d’autre part de favoriser l’hydroisomérisation par rapport à l’hydrocraquage lorsque la première réaction est souhaitée, ou de limiter la production de produits de craquage trop légers lorsque la réaction d’hydrocraquage est souhaitée. L’utilisation d’une fonction hydrogénante suffisamment active est également souhaitable afin de limiter la désactivation du catalyseur bifonctionnel par cokage lors de l’ hydroconversion de n-paraffines (Alvarez et coll., Journal of Catalysis, 162, 2, 179-189) pour une gamme de conditions opératoires fixées. However, it is well known that factors other than the acid phase have an impact on the activity and selectivity of a bifunctional catalyst. The hydroisomerization and hydrocracking of normal paraffins have thus been the subject of many academic studies since the original work of the sixties by Weisz or Coonradt and Garwood. The most commonly accepted mechanism involves first of all that the n-paraffin is dehydrogenated into n-olefin on the hydro-dehydrogenating phase and then, after diffusion towards the acid phase, that it is protonated into the carbenium ion. After structural rearrangement and/or b-scission, the carbenium ions desorb from the acid phase in the form of olefins after deprotonation. Then, after diffusion to the hydro-dehydrogenating phase, the olefins are hydrogenated to form the final reaction products. It is then necessary to have a hydro/dehydrogenating function that is sufficiently active with respect to the acid function in order, on the one hand, to quickly supply the acid phase with olefins and, on the other hand, to quickly hydrogenate the olefinic intermediates after their reaction on the acid phase. This makes it possible on the one hand to maximize the activity of the catalyst and on the other hand to promote hydroisomerization compared to hydrocracking when the first reaction is desired, or to limit the production of too light cracking products when the reaction hydrocracking is desired. The use of a sufficiently active hydrogenating function is also desirable in order to limit the deactivation of the bifunctional catalyst by coking during the hydroconversion of n-paraffins (Alvarez et al., Journal of Catalysis, 162, 2, 179-189) for a range of fixed operating conditions.
Des métaux nobles (Pt, Pd) ou des métaux de transition du groupe VIA (Mo, W) associés à des métaux de transition du groupe VIII (Ni, Co) peuvent tenir le rôle de fonction hydrogénante pour le catalyseur. Les métaux nobles sont employés sous leur forme réduite alors que les métaux de transition le sont sous une forme sulfurée. Pour ces derniers, il existe un effet de synergie connu entre les métaux de transition du groupe VIA et les métaux de transition du groupe VIII, généralement attribué à la décoration des phases sulfures du groupe VIA par les métaux de transition du groupe VIII. On parle alors de phase sulfure de molybdène ou de tungstène promues par du nickel ou du cobalt (« CoMoS », « NiMoS », « NiWS »). Cet effet de synergie se traduit par une augmentation de l’activité catalytique de la phase promue comparativement à une phase non promue. Noble metals (Pt, Pd) or group VIA transition metals (Mo, W) combined with group VIII transition metals (Ni, Co) can play the role of hydrogenating function for the catalyst. Noble metals are used in their reduced form while transition metals are used in a sulphide form. For the latter, there is a known synergistic effect between Group VIA transition metals and Group VIII transition metals, generally attributed to decoration of Group VIA sulfide phases by Group VIII transition metals. We then speak of molybdenum or tungsten sulphide phase promoted by nickel or cobalt (“CoMoS”, “NiMoS”, “NiWS”). This effect synergy results in an increase in the catalytic activity of the promoted phase compared to an unpromoted phase.
Le choix de la nature de la fonction hydrogénante, de type métal noble ou sulfure, est fonction de différents critères, de nature économique (le prix des métaux nobles est nettement plus élevé que celui des métaux de transition des groupes VIA et VIII) ou de nature chimique (impact de la présence de contaminants). Ainsi, l’activité hydrogénante des métaux nobles est plus élevée que celle des sulfures de métaux de transition lorsque la pression partielle en hydrogène sulfuré (H2S) dans le milieu réactionnel est faible voire nulle. A contrario l’activité hydrogénante des sulfures de métaux de transition est plus élevée que celle des métaux nobles lorsque la pression partielle en H2S dans le milieu réactionnel devient importante (C. Marcilly, Catalyse acido-basique, volume 2, 2003, éditions Technip). Par ailleurs il est reporté que l’utilisation de sulfures de métaux de transition nécessite la présence d’H2S dans le milieu réactionnel pour assurer leur stabilité, et notamment le maintien de la promotion des phases sulfures de molybdène ou de tungstène par le nickel ou le cobalt en conditions réactionnelles. Le maintien de la promotion est souhaitable afin de conserver l’effet de synergie et d’avoir une activité maximale de la phase sulfure. Par exemple, en test molécule d’hydrogénation du toluène, un catalyseur à base de phase sulfure de tungstène promu par du nickel (« NiWS ») sur silice-alumine présente une activité par atome de tungstène 16 fois supérieure à celle d’un catalyseur à base de sulfure de tungstène non promu par du nickel (« WS ») sur silice-alumine (M. Girleanu et coll. , ChemCatChem 2014, 6, 1594-1598). Le maintien de la promotion est fonction des conditions opératoires dans lesquelles travaille le catalyseur. Des études combinant de la modélisation moléculaire par DFT et modèle thermodynamique permettent ainsi de proposer des diagrammes de stabilité des phases promues en fonction d’une grandeur thermodynamique appelée potentiel chimique en soufre. La valeur du potentiel chimique en soufre est elle-même calculée à partir de la température du milieu et du rapport entre les pressions partielles en hydrogène sulfuré (H2S) et en hydrogène (H2) et est disponible sous forme d’abaque (C. Arrouvel et coll., Journal of Catalysis 2005, 232, 161-178). Le potentiel chimique en soufre diminue lorsque la température augmente, et lorsque le rapport entre les pressions partielles en hydrogène sulfuré et en hydrogène diminue. Il est ainsi possible d’évaluer la stabilité thermodynamique des phases promues en fonction des conditions opératoires. Ainsi, il est reporté que la phase NiWS n’est thermodynamiquement plus stable (ségrégation complète du nickel et perte de promotion) pour des valeurs de potentiel chimique en soufre inférieures à -1.27 eV. The choice of the nature of the hydrogenating function, of the noble metal or sulphide type, depends on various criteria, of an economic nature (the price of the noble metals is significantly higher than that of the transition metals of groups VIA and VIII) or of chemical nature (impact of the presence of contaminants). Thus, the hydrogenating activity of noble metals is higher than that of transition metal sulphides when the partial pressure of hydrogen sulphide (H 2 S) in the reaction medium is low or even zero. Conversely, the hydrogenating activity of transition metal sulfides is higher than that of noble metals when the partial pressure of H 2 S in the reaction medium becomes high (C. Marcilly, Catalyse acido-basique, volume 2, 2003, editions Technip). Furthermore, it is reported that the use of transition metal sulphides requires the presence of H 2 S in the reaction medium to ensure their stability, and in particular the maintenance of the promotion of the molybdenum or tungsten sulphide phases by nickel. or cobalt under reaction conditions. Maintaining the promotion is desirable in order to retain the synergistic effect and to have maximum activity of the sulphide phase. For example, in the toluene hydrogenation molecule test, a catalyst based on a nickel-promoted tungsten sulphide phase (“NiWS”) on silica-alumina exhibits an activity per tungsten atom 16 times greater than that of a catalyst based on non-nickel promoted tungsten sulfide (“WS”) on silica-alumina (M. Girleanu et al., ChemCatChem 2014, 6, 1594-1598). Maintaining the promotion depends on the operating conditions under which the catalyst works. Studies combining molecular modeling by DFT and thermodynamic model thus make it possible to propose diagrams of stability of the phases promoted according to a thermodynamic quantity called chemical potential in sulfur. The value of the chemical sulfur potential is itself calculated from the temperature of the medium and the ratio between the partial pressures of hydrogen sulphide (H 2 S) and hydrogen (H 2 ) and is available in the form of an abacus ( C. Arrouvel et al., Journal of Catalysis 2005, 232, 161-178). The chemical potential of sulfur decreases when the temperature increases, and when the ratio between the partial pressures of hydrogen sulphide and hydrogen decreases. It is thus possible to evaluate the thermodynamic stability of the promoted phases as a function of the operating conditions. Thus, it is reported that the NiWS phase is no longer thermodynamically stable (complete nickel segregation and loss of promotion) for sulfur chemical potential values below -1.27 eV.
Dans le domaine de l’hydroconversion de paraffines longues (cires), issues de la synthèse Fischer-Tropsch, sur des catalyseurs bifonctionnels sulfure de type NiMoS ou NiWS sur silice- alumine, D. Leckel (Energy & Fuels 2009, 23, 5-6, 2370-2375) reporte que la teneur en H2S dans le gaz en sortie d’unité doit être au moins de 100 ppm et de manière préférée au moins de 200 ppm pour maintenir le catalyseur sous sa forme sulfurée. La composition du gaz de sortie n’est pas précisée. Les valeurs fournies correspondent à des rapports P(H2S)/P(H2) au minimum supérieurs à 1.10-4 et de préférence au minimum supérieurs à 2.10-4 dans le cas où on suppose que le gaz de sortie n’est constitué que d’hhS et d’hydrogène. In the field of the hydroconversion of long paraffins (waxes), resulting from the Fischer-Tropsch synthesis, on sulphide bifunctional catalysts of the NiMoS or NiWS type on silica-alumina, D. Leckel (Energy & Fuels 2009, 23, 5- 6, 2370-2375) reports that the H 2 S content in the gas leaving the unit must be at least 100 ppm and preferably at least 200 ppm to maintain the catalyst in its sulfurized form. The composition of the exit gas is not specified. The values provided correspond to P(H2S)/P(H2) ratios at least greater than 1.10 -4 and preferably at least greater than 2.10 -4 in the case where it is assumed that the outlet gas consists only of 'hhS and hydrogen.
La demande de brevet FR2940144 A1 revendique un procédé d’hydrodésoxygénation de charges issues de renouvelables. L’effluent issu de l’hydrodésoxygénation est soumis à une étape de séparation et de préférence une étape de séparation gaz/liquide et de séparation de l’eau et d’au moins une base hydrocarbonée liquide. Après une étape d’élimination de composés azotés, ladite base hydrocarbonée liquide est hydroisomérisée sur un catalyseur bifonctionnel d’hydroisomérisation. Il est enseigné qu’il est possible d’additionner une certaine quantité de composés soufrés tels que par exemple le diméthyldisulfure pour maintenir le catalyseur sous sa forme sulfurée si besoin. De façon avantageuse la quantité de soufre est telle que la teneur en H2S dans le gaz de recycle qui est envoyé dans l’étape d’hydroisomérisation est d’au moins 15 ppm volume, de préférence au moins 0,1% volume et de manière préférée au moins 0,2% volume. La composition du gaz de recycle n’est pas précisée. Les valeurs fournies correspondent à des rapports P(H2S)/P(H2) au minimum supérieurs à 1 ,5.10-5, de préférence au minimum supérieurs à 1.10-3 et de manière préférée supérieurs à 2.10-3 dans le cas où on suppose que le gaz de recycle n’est constitué que d’h^S et d’hydrogène. Aucun n’exemple n’est fourni. Patent application FR2940144 A1 claims a process for the hydrodeoxygenation of feedstocks derived from renewables. The effluent resulting from the hydrodeoxygenation is subjected to a stage of separation and preferably a stage of gas/liquid separation and of separation of the water and of at least one liquid hydrocarbon base. After a step for eliminating nitrogenous compounds, said liquid hydrocarbon base is hydroisomerized on a bifunctional hydroisomerization catalyst. It is taught that it is possible to add a certain amount of sulfur compounds such as, for example, dimethyldisulfide to maintain the catalyst in its sulfurized form if necessary. Advantageously, the quantity of sulfur is such that the H 2 S content in the recycle gas which is sent to the hydroisomerization stage is at least 15 ppm by volume, preferably at least 0.1% by volume and preferably at least 0.2% volume. The composition of the recycle gas is not specified. The values provided correspond to P(H2S)/P(H2) ratios at least greater than 1.5.10 -5 , preferably at least greater than 1.10 -3 and preferably greater than 2.10 -3 in the case where it is assumed that the recycle gas consists only of h^S and hydrogen. No examples are provided.
La demande de brevet W02009/156452 A1 (SHELL) revendique un procédé pour la production d’hydrocarbures paraffiniques à partir d’une charge contenant des triglycérides, des diglycérides, des monoglycérides et/ou des acides gras. Ledit procédé comprend (a) une étape d’hydrodésoxygénation en présence d’hydrogène et d’un catalyseur afin d’obtenir un effluent comprenant de l’eau et des paraffines, (b) une étape de séparation de l’effluent issu de (a) pour obtenir un effluent liquide riche en paraffines et (c) une étape d’hydroisomérisation dudit effluent riche en paraffines en présence d’hydrogène et d’un catalyseur comprenant du sulfure de nickel et du sulfure de tungstène et/ou de molybdène comme phases hydrogénantes et un support comprenant de la silice-alumine et/ou une zéolithe. Il est enseigné que l’utilisation de phases sulfures à la place de métaux nobles comme phases hydrogénantes permet de ne pas avoir à éliminer complètement les impuretés de l’effluent issu de l’étape (a). Il est également enseigné que pour maintenir le catalyseur d’hydroisomérisation sous sa forme sulfurée, il est nécessaire d’additiver l’hydrogène de make-up par de l’hydrogène sulfuré (H2S) ou un précurseur d’hydrogène sulfuré tel que le diméthyldisulfure. Aucune teneur minimale en hydrogène sulfuré n’est enseignée. L’étape (c) de l’exemple fourni met en œuvre un catalyseur d’hydroisomérisation de type NiWS / silice-alumine. Afin de maintenir le catalyseur sous sa forme sulfurée 5000 ppm de soufre sont additivés dans la charge dans l’étape d’hydroisomérisation sous forme de di-ter-butyl-polysulfide. Ceci correspond à un rapport entre la pression partielle d’H2S et la pression partielle d’hydrogène de 2,2.10-3 en entrée de réacteur après décomposition du di-ter-butyl-polysulfide. Patent application WO2009/156452 A1 (SHELL) claims a process for the production of paraffinic hydrocarbons from a feed containing triglycerides, diglycerides, monoglycerides and/or fatty acids. Said process comprises (a) a step of hydrodeoxygenation in the presence of hydrogen and a catalyst in order to obtain an effluent comprising water and paraffins, (b) a step of separating the effluent from ( a) to obtain a liquid effluent rich in paraffins and (c) a step of hydroisomerization of said effluent rich in paraffins in the presence of hydrogen and a catalyst comprising nickel sulphide and tungsten and/or molybdenum sulphide as hydrogenating phases and a support comprising silica-alumina and/or a zeolite. It is taught that the use of sulphide phases instead of noble metals as hydrogenating phases makes it possible not to have to completely remove the impurities from the effluent resulting from step (a). It is also taught that to maintain the hydroisomerization catalyst in its sulphide form, it is necessary to add the make-up hydrogen with hydrogen sulphide (H 2 S) or a precursor of hydrogen sulphide such as dimethyldisulfide. No minimum hydrogen sulfide content is taught. Step (c) of the example provided uses a hydroisomerization catalyst of the NiWS/silica-alumina type. In order to keep the catalyst under its sulphide form 5000 ppm of sulfur are added to the charge in the hydroisomerization stage in the form of di-ter-butyl-polysulphide. This corresponds to a ratio between the partial pressure of H 2 S and the partial pressure of hydrogen of 2.2×10 -3 at the reactor inlet after decomposition of the di-ter-butyl-polysulphide.
La demande de brevet U S2011/0219669 A1 revendique une méthode de production de carburant diesel comprenant le mélange d’une charge d’origine renouvelable et d’une charge fossile, ledit mélange étant ensuite transformé au contact d’un catalyseur déparaffinage/isomérisation mettant en jeu une fonction hydrogénante et une fonction acide de type zéolithique. Il est enseigné que lorsque la fonction hydrogénante dudit catalyseur est de type sulfurée, par exemple NiWS, la charge hydrocarbonée doit contenir un minimum de soufre pour maintenir la fonction hydrogénante sous sa forme sulfurée. La teneur minimale recommandée en soufre (présent dans des molécules soufrées), dans la charge est d’au moins 50 ppm poids, de préférence au moins 100 ppm poids, de manière préférée au moins 200 ppm poids. La décomposition de ces molécules soufrées dans le réacteur de déparaffinage/isomérisation permet de générer une pression partielle d’H2S nécessaire au maintien de la phase hydrogénante sous sa forme sulfure. Alternativement le soufre peut être apporté directement sous forme d’H2S, par exemple déjà présent dans le flux gazeux riche en hydrogène approvisionnant l’unité. Patent application U S2011/0219669 A1 claims a method for producing diesel fuel comprising mixing a feed of renewable origin and a fossil feed, said mixture then being transformed in contact with a dewaxing/isomerization catalyst putting a hydrogenating function and an acid function of the zeolite type are involved. It is taught that when the hydrogenating function of said catalyst is of the sulphide type, for example NiWS, the hydrocarbon feed must contain a minimum of sulfur to maintain the hydrogenating function in its sulphide form. The minimum recommended content of sulfur (present in sulfur molecules) in the feed is at least 50 ppm by weight, preferably at least 100 ppm by weight, more preferably at least 200 ppm by weight. The decomposition of these sulfur molecules in the deparaffinization/isomerization reactor makes it possible to generate a partial pressure of H 2 S necessary for maintaining the hydrogenating phase in its sulfide form. Alternatively, the sulfur can be supplied directly in the form of H 2 S, for example already present in the hydrogen-rich gas stream supplying the unit.
En effet, l'étape d’hydroconversion peut utiliser de l'hydrogène provenant de différentes sources. Selon la nature des différentes sources, l'hydrogène utilisé dans le procédé selon l'invention peut contenir ou pas des impuretés. Par exemple une unité de reformage catalytique produit de l'hydrogène durant les réactions de déshydrogénation des napthènes en aromatiques et durant les réactions de déshydrocyclisation. L'hydrogène produit par une unité de reformage catalytique est substantiellement exempt de CO et de C02. L'hydrogène peut également être produit par d'autres méthodes comme par exemple par le vaporeformage d'hydrocarbures légers ou encore par l'oxydation partielle de différents hydrocarbures comme des résidus lourds. Le vaporeformage consiste à transformer une charge légère d'hydrocarbure en gaz de synthèse, c'est-à-dire en un mélange d'hydrogène (H2), de monoxyde de carbone (CO), de dioxyde de carbone (C02), et d'eau (H20) par réaction avec de la vapeur d'eau sur un catalyseur à base de Nickel. Dans ce cas la production d'hydrogène s'accompagne également de la formation d'oxydes de carbone qui sont sensiblement éliminés par la conversion à la vapeur du monoxyde de carbone (CO), en dioxyde de carbone (C02), puis par élimination du C02 par absorption par exemple par une solution d'amines. Il peut également y avoir élimination du monoxyde de carbone (CO) résiduel par une étape de méthanation. D'autres sources d'hydrogène peuvent également être employées comme l'hydrogène issu des gaz de craquage catalytique qui contient des quantités significatives de CO et de CO2. L’hydrogène employé peut également provenir du gaz de sortie d’une unité d’hydrotraitement, dans ce cas cet hydrogène peut subir des étapes de purification plus ou moins poussées pour éliminer des impuretés comme l’ammoniac (NH3) ou l’hydrogène sulfuré (H2S). Indeed, the hydroconversion step can use hydrogen from different sources. Depending on the nature of the different sources, the hydrogen used in the process according to the invention may or may not contain impurities. For example, a catalytic reforming unit produces hydrogen during the dehydrogenation reactions of napthenes into aromatics and during the dehydrocyclization reactions. The hydrogen produced by a catalytic reforming unit is substantially free of CO and C0 2 . Hydrogen can also be produced by other methods such as, for example, by the steam reforming of light hydrocarbons or else by the partial oxidation of various hydrocarbons such as heavy residues. Steam reforming consists of transforming a light hydrocarbon charge into synthesis gas, that is to say into a mixture of hydrogen (H 2 ), carbon monoxide (CO), carbon dioxide (C0 2 ) , and water (H 2 0) by reaction with steam over a nickel-based catalyst. In this case the production of hydrogen is also accompanied by the formation of carbon oxides which are substantially eliminated by the steam conversion of carbon monoxide (CO) to carbon dioxide (C0 2 ), then by elimination C0 2 by absorption for example by a solution of amines. There can also be elimination of residual carbon monoxide (CO) by a methanation step. Other sources of hydrogen can also be used such as hydrogen from catalytic cracking gases which contains significant amounts of CO and CO2. The hydrogen used can also come from the outlet gas of a hydrotreating unit, in this case this hydrogen can undergo more or less extensive purification steps to eliminate impurities such as ammonia (NH 3 ) or hydrogen sulfur (H 2 S).
En tentant de développer un procédé de traitement de charges issues de source renouvelable comprenant au moins une étape d'hydrotraitement et une étape d’hydroconversion caractérisée par l’utilisation d’un catalyseur bifonctionnel comprenant une phase sulfure de molybdène et/ou de tungstène en combinaison avec au moins du nickel et/ou du cobalt, la demanderesse a découvert, de manière surprenante, que la diminution du rapport entre la pression partielle en hydrogène sulfuré et la pression partielle en hydrogène entrant dans l’unité d’hydroconversion en deçà des valeurs usuellement divulguées dans l’art antérieur permet d’améliorer les performances dudit catalyseur d’hydroconversion. By attempting to develop a method for treating feedstocks from renewable sources comprising at least one hydrotreatment step and one hydroconversion step characterized by the use of a bifunctional catalyst comprising a molybdenum and/or tungsten sulphide phase in combination with at least nickel and/or cobalt, the applicant has discovered, surprisingly, that the reduction in the ratio between the hydrogen sulphide partial pressure and the hydrogen partial pressure entering the hydroconversion unit below the values usually disclosed in the prior art makes it possible to improve the performance of said hydroconversion catalyst.
Un avantage du procédé selon la présente invention est donc de fournir un procédé de traitement d'une charge issue d'une source renouvelable qui subit un hydrotraitement avant d'être envoyé dans une étape d’hydroconversion utilisant d’un catalyseur bifonctionnel comprenant une phase sulfure de molybdène et/ou de tungstène promue par du nickel et/ou du cobalt, ledit catalyseur opérant dans des conditions opératoires telles que le rapport entre la pression partielle en H2S et la pression partielle en hydrogène entrant dans ladite étape d’hydroconversion soit inférieur à 5.10-5. An advantage of the method according to the present invention is therefore to provide a method for treating a feedstock from a renewable source which undergoes hydrotreatment before being sent to a hydroconversion step using a bifunctional catalyst comprising a phase molybdenum and/or tungsten sulfide promoted by nickel and/or cobalt, said catalyst operating under operating conditions such that the ratio between the H2S partial pressure and the hydrogen partial pressure entering said hydroconversion step is lower at 5.10 -5 .
Un avantage de la présente invention est de fournir un procédé permettant d’obtenir un gain d’activité et de sélectivité du catalyseur d’hydroconversion. La mise en œuvre des conditions opératoires conformes à l’invention permet, toutes choses égales par ailleurs, de diminuer la température nécessaire pour obtenir une valeur de propriétés à froid visée pour la coupe distillât moyen (mesurée par exemple par une valeur de point de trouble). La mise en œuvre des conditions opératoires conformes à l’invention permet également d’améliorer le rendement en coupe distillât moyen pour une valeur de propriétés à froid ciblée (mesurée par exemple par une valeur de point de trouble). An advantage of the present invention is to provide a method making it possible to obtain a gain in activity and selectivity of the hydroconversion catalyst. The implementation of the operating conditions in accordance with the invention makes it possible, all other things being equal, to reduce the temperature necessary to obtain a cold property value targeted for the middle distillate cut (measured for example by a cloud point value ). The implementation of the operating conditions in accordance with the invention also makes it possible to improve the yield in the middle distillate cut for a targeted cold property value (measured for example by a cloud point value).
Dans un mode préféré, un avantage du procédé selon l’invention est aussi de permettre une meilleure résistance du catalyseur d’hydroconversion à la désactivation quand les conditions opératoires de l’étape d’hydroconversion, notamment en termes de pression totale et de rapport hydrogène sur charge, favorisent la désactivation. In a preferred mode, an advantage of the process according to the invention is also to allow better resistance of the hydroconversion catalyst to deactivation when the operating conditions of the hydroconversion step, in particular in terms of total pressure and hydrogen ratio on load, promote deactivation.
Un autre avantage du procédé selon l’invention est également de permettre une meilleure résistance du catalyseur d’hydroconversion à la présence éventuelle de composés oxygénés. Enfin, conformément à l’invention, un fonctionnement temporaire de l’unité d’hydroconversion dans des conditions opératoires non conformes à l’invention n’est pas exclu. Il peut ainsi arriver que le rapport entre la pression partielle en hydrogène sulfuré et la pression partielle en hydrogène ne soit pas conforme à l’invention durant certaines périodes. Par exemple en raison d’un mauvais fonctionnement ponctuel des outils éventuels de purification de l’hydrogène envoyé dans l’unité d’hydroconversion et/ou de l’effluent hydrocarboné liquide issu de l’étape c). Dans ce cas la remise en état des outils éventuels de purification de l’hydrogène et/ou de l’effluent hydrocarboné issu de c) permettent de retrouver un mode de fonctionnement du procédé conforme à l’invention. Another advantage of the process according to the invention is also to allow better resistance of the hydroconversion catalyst to the possible presence of oxygenated compounds. Finally, in accordance with the invention, temporary operation of the hydroconversion unit under operating conditions not in accordance with the invention is not excluded. It may thus happen that the ratio between the hydrogen sulphide partial pressure and the hydrogen partial pressure is not in accordance with the invention during certain periods. For example due to occasional malfunctioning of any tools for purifying the hydrogen sent to the hydroconversion unit and/or the liquid hydrocarbon effluent from step c). In this case, the repair of any tools for purifying the hydrogen and/or the hydrocarbon effluent resulting from c) makes it possible to find an operating mode of the process in accordance with the invention.
Objet de l'invention Object of the invention
Plus précisément, la présente invention concerne un procédé de traitement d'une charge issue d'une source renouvelable comprenant au moins : a) une étape d'hydrotraitement de ladite charge en présence d'un catalyseur en lit fixe, ledit catalyseur comprenant une fonction hydrogénante et un support oxyde, à une température comprise entre 200 et 450°C, à une pression comprise entre 1 MPa et 10 MPa, à une vitesse spatiale horaire comprise entre 0,1 h 1 et 10 h-1 et en présence d'une quantité totale d'hydrogène mélangée à la charge telle que le ratio hydrogène/charge soit compris entre 70 et 1000 Nm3 d’hydrogène/m3 de charge, b) une étape de séparation d'au moins une partie de l’effluent issu de l'étape a) en au moins une fraction légère et au moins un effluent liquide hydrocarboné, c) une étape d'élimination d'au moins une partie de l'eau de l'effluent liquide hydrocarboné issu de l'étape b), d) une étape d’hydroconversion d'au moins une partie de l'effluent liquide hydrocarboné issu de l'étape c) en présence d'un catalyseur bifonctionnel d’hydroconversion en lit fixe, ledit catalyseur comprenant une phase sulfure de molybdène et/ou de tungstène en combinaison avec au moins du nickel et/ou du cobalt, ladite étape d’hydroconversion étant effectuée à une température comprise entre 250°C et 500°C, à une pression comprise entre 1 MPa et 10 MPa, à une vitesse spatiale horaire comprise entre 0,1 et 10 h 1 et en présence d'une quantité totale d'hydrogène mélangée à la charge telle que le ratio hydrogène/charge soit compris entre 70 et 1000 Nm3/m3 de charge, en présence d’une quantité totale de soufre telle que le rapport entre la pression partielle d’hydrogène sulfuré et d’hydrogène en entrée de ladite étape d’hydroconversion soit inférieur à 5.10-5, de préférence inférieur à 4.105, de manière très préférée inférieure à 3.10-5, de manière très préférée inférieure à 2.105 et de manière encore plus préférée inférieure à 1,5.10-5. e) une étape de fractionnement de l'effluent issu de l'étape d) pour obtenir au moins une fraction distillât moyen. More specifically, the present invention relates to a process for treating a feed from a renewable source comprising at least: a) a step of hydrotreating said feed in the presence of a fixed-bed catalyst, said catalyst comprising a function hydrogenating agent and an oxide support, at a temperature of between 200 and 450°C, at a pressure of between 1 MPa and 10 MPa, at an hourly space velocity of between 0.1 h 1 and 10 h -1 and in the presence of a total quantity of hydrogen mixed with the charge such that the hydrogen/charge ratio is between 70 and 1000 Nm 3 of hydrogen/m 3 of charge, b) a stage of separation of at least part of the effluent from step a) into at least one light fraction and at least one liquid hydrocarbon effluent, c) a step of removing at least part of the water from the liquid hydrocarbon effluent from step b ), d) a step of hydroconversion of at least a portion of the liquid hydrocarbon effluent from step c) in the presence of a bifunctional fixed-bed hydroconversion catalyst, said catalyst comprising a molybdenum and/or tungsten sulphide phase in combination with at least nickel and/or cobalt, said hydroconversion step being carried out at a temperature between 250°C and 500°C, at a pressure between 1 MPa and 10 MPa, at an hourly space velocity between 0.1 and 10 h 1 and in the presence of a total quantity of hydrogen mixed with the charge such that the hydrogen/charge ratio is between 70 and 1000 Nm 3 /m 3 of charge, in the presence of a total quantity of sulfur such that the ratio between the partial pressure of hydrogen sulphide and hydrogen at the inlet of said hydroconversion step is less than 5.10 -5 , preferably less than 4.10 5 , very preferably less than 3.10 -5 , very preferably less than 2.10 5 and even more preferably less than 1 ,5.10 -5 . e) a step of fractionating the effluent from step d) to obtain at least one middle distillate fraction.
Description détaillée de l’invention Detailed description of the invention
Charges Expenses
La présente invention est particulièrement dédiée à la préparation de bases carburant gazoles et/ou kérosènes correspondant aux nouvelles normes environnementales, à partir de charges issues de sources renouvelables. The present invention is particularly dedicated to the preparation of gas oil and/or kerosene fuel bases corresponding to the new environmental standards, from feedstocks originating from renewable sources.
Les charges issues de sources renouvelables utilisées dans le procédé selon la présente invention sont avantageusement choisies parmi les huiles et graisses d'origine végétale ou animale, ou des mélanges de telles charges, contenant des triglycérides et/ou des acides gras libres et/ou des esters. Les huiles végétales peuvent avantageusement être brutes ou raffinées, totalement ou en partie, et issues des végétaux suivants : colza, tournesol, soja, palme, palmiste, olive, noix de coco, jatropha, cette liste n'étant pas limitative. Les huiles d'algues ou de poisson sont également pertinentes. Les graisses animales sont avantageusement choisies parmi le lard ou les graisses composées de résidus de l'industrie alimentaire ou issus des industries de la restauration. The fillers from renewable sources used in the process according to the present invention are advantageously chosen from oils and fats of vegetable or animal origin, or mixtures of such fillers, containing triglycerides and/or free fatty acids and/or esters. The vegetable oils can advantageously be crude or refined, totally or partly, and derived from the following plants: rapeseed, sunflower, soya, palm, palm kernel, olive, coconut, jatropha, this list not being exhaustive. Seaweed or fish oils are also relevant. The animal fats are advantageously chosen from lard or fats composed of residues from the food industry or from catering industries.
Ces charges contiennent essentiellement des structures chimiques de type triglycérides que l'homme du métier connaît également sous l'appellation tri ester d'acides gras ainsi que des acides gras libres. Un tri ester d'acide gras est ainsi composé de trois chaînes d'acides gras. Ces chaînes d'acide gras sous forme de tri ester ou sous forme d'acide gras libres, possèdent un nombre d'insaturations par chaîne, également appelé nombre de doubles liaisons carbone carbone par chaîne, généralement compris entre 0 et 3 mais qui peut être plus élevé notamment pour les huiles issues d'algues qui présentent généralement un nombre d'insaturations par chaînes de 5 à 6. These fillers essentially contain chemical structures of the triglyceride type that those skilled in the art also know under the name fatty acid triester as well as free fatty acids. A fatty acid triester is thus composed of three chains of fatty acids. These fatty acid chains in triester form or in free fatty acid form have a number of unsaturations per chain, also called the number of carbon-carbon double bonds per chain, generally between 0 and 3 but which can be higher in particular for oils derived from algae which generally have a number of unsaturations per chain of 5 to 6.
Les molécules présentes dans les charges issues de sources renouvelables utilisées dans la présente invention présentent donc un nombre d'insaturations, exprimé par molécule de triglycéride, avantageusement compris entre 0 et 18. Dans ces charges, le taux d'insaturation, exprimé en nombre d'insaturations par chaîne grasse hydrocarbonée, est avantageusement compris entre 0 et 6. The molecules present in the fillers from renewable sources used in the present invention therefore have a number of unsaturations, expressed per molecule of triglyceride, advantageously between 0 and 18. In these fillers, the level of unsaturation, expressed as the number of unsaturation per hydrocarbon fatty chain is advantageously between 0 and 6.
Les charges issues de sources renouvelables comportent généralement également différentes impuretés et notamment des hétéroatomes tels que l'azote. Les teneurs en azote dans les huiles végétales sont généralement comprises entre 1 ppm et 100 ppm poids environ, selon leur nature. Procédé et catalyseurs The feeds from renewable sources generally also contain various impurities and in particular heteroatoms such as nitrogen. Nitrogen contents in vegetable oils are generally between 1 ppm and 100 ppm by weight approximately, depending on their nature. Process and catalysts
De manière avantageuse, la charge peut subir préalablement à l'étape a) du procédé selon l'invention une étape de pré-traitement ou pré-raffinage de façon à éliminer, par un traitement approprié, des contaminants tels que des métaux, comme les composés alcalins par exemple sur des résines échangeuses d'ions, les alcalino-terreux et le phosphore. Des traitements appropriés peuvent par exemple être des traitements thermiques et/ou chimiques bien connus de l'homme du métier. Advantageously, the charge may undergo, prior to step a) of the process according to the invention, a pre-treatment or pre-refining step so as to eliminate, by an appropriate treatment, contaminants such as metals, such as alkaline compounds eg on ion exchange resins, alkaline earths and phosphorus. Appropriate treatments can for example be thermal and/or chemical treatments well known to those skilled in the art.
Conformément à l'étape a) du procédé selon l'invention, la charge, éventuellement prétraitée, est mise au contact d'un catalyseur en lit fixe à une température comprise entre 200 et 450°C, de préférence entre 220 et 350°C, de manière préférée entre 220 et 320°C, et de manière encore plus préférée entre 220 et 310°C. La pression est comprise entre 1 MPa et 10 MPa, de manière préférée entre 1 MPa et 6 MPa et de manière encore plus préférée entre 1 MPa et 4 MPa. La vitesse spatiale horaire, soit le volume de charge par volume de catalyseur et par heure est comprise entre 0,1 h 1 et 10 h 1. La charge est mise au contact du catalyseur en présence d'hydrogène. La quantité totale d'hydrogène mélangée à la charge est telle que le ratio hydrogène/charge est compris entre 70 et 1000 Nm3 d’hydrogène/m3 de charge et de manière préférée compris entre 150 et 750 Nm3 d’hydrogène/m3 de charge. In accordance with step a) of the process according to the invention, the charge, optionally pretreated, is brought into contact with a catalyst in a fixed bed at a temperature of between 200 and 450° C., preferably between 220 and 350° C. , preferably between 220 and 320°C, and even more preferably between 220 and 310°C. The pressure is between 1 MPa and 10 MPa, preferably between 1 MPa and 6 MPa and even more preferably between 1 MPa and 4 MPa. The hourly space velocity, ie the volume of charge per volume of catalyst and per hour is between 0.1 h 1 and 10 h 1 . The charge is brought into contact with the catalyst in the presence of hydrogen. The total quantity of hydrogen mixed with the charge is such that the hydrogen/charge ratio is between 70 and 1000 Nm 3 of hydrogen/m 3 of charge and preferably between 150 and 750 Nm 3 of hydrogen/m 3 load.
Dans l'étape a) du procédé selon l'invention, le catalyseur en lit fixe est avantageusement un catalyseur d’hydrotraitement comprenant une fonction hydro-déshydrogénante comprenant au moins un métal du groupe VIII et/ou du groupe VI B, pris seul ou en mélange et un support choisi dans le groupe formé par l’alumine, la silice, les silices-alumines, la magnésie, les argiles et les mélanges d’au moins deux de ces minéraux. Ce support peut également avantageusement renfermer d’autres composés et par exemple des oxydes choisis dans le groupe formé par l’oxyde de bore, la zircone, l’oxyde de titane, l’anhydride phosphorique. Le support préféré est un support d’alumine et de manière très préférée d’alumine h, d ou g. In step a) of the process according to the invention, the fixed-bed catalyst is advantageously a hydrotreating catalyst comprising a hydro-dehydrogenating function comprising at least one metal from group VIII and/or from group VI B, taken alone or as a mixture and a support chosen from the group formed by alumina, silica, silica-aluminas, magnesia, clays and mixtures of at least two of these minerals. This support can also advantageously contain other compounds and for example oxides chosen from the group formed by boron oxide, zirconia, titanium oxide, phosphoric anhydride. The preferred support is an alumina support and most preferably h, d or g alumina.
Ledit catalyseur est avantageusement un catalyseur comprenant des métaux du groupe VIII de préférence choisis parmi le nickel et le cobalt, pris seul ou en mélange, de préférence en association avec au moins un métal du groupe VI B de préférence choisi parmi le molybdène et le tungstène, pris seul ou en mélange. Said catalyst is advantageously a catalyst comprising metals from group VIII preferably chosen from nickel and cobalt, taken alone or as a mixture, preferably in combination with at least one metal from group VI B preferably chosen from molybdenum and tungsten. , taken alone or in combination.
La teneur en oxydes de métaux des groupes VIII et de préférence en oxyde de nickel est avantageusement comprise entre 0,5 et 10% en poids d'oxyde de nickel (NiO) et de préférence entre 1 et 5% en poids d'oxyde de nickel et la teneur en oxydes de métaux des groupes VI B et de préférence en trioxyde de molybdène est avantageusement comprise entre 1 et 30% en poids d'oxyde de molybdène (M0O3), de préférence de 5 à 25% en poids, les pourcentages étant exprimés en % poids par rapport à la masse totale du catalyseur. The content of group VIII metal oxides and preferably of nickel oxide is advantageously between 0.5 and 10% by weight of nickel oxide (NiO) and preferably between 1 and 5% by weight of nickel oxide. nickel and the content of group VI B metal oxides and preferably of molybdenum trioxide is advantageously between 1 and 30% by weight of molybdenum oxide (MOO3), preferably from 5 to 25% by weight, the percentages being expressed in% by weight relative to the total mass of the catalyst.
La teneur totale en oxydes de métaux des groupes VI B et VIII dans le catalyseur utilisé dans l'étape a) est avantageusement comprise entre 5 et 40% en poids et de manière préférée comprise entre 6 et 30% en poids par rapport à la masse totale du catalyseur. The total content of metal oxides of groups VI B and VIII in the catalyst used in step a) is advantageously between 5 and 40% by weight and preferably between 6 and 30% by weight relative to the mass. total catalyst.
Ledit catalyseur utilisé dans l'étape a) du procédé selon l'invention doit être avantageusement caractérisé par un fort pouvoir hydrogénant de façon à orienter le plus possible la sélectivité de la réaction vers une hydrogénation conservant le nombre d'atomes de carbone des chaînes grasses c'est à dire la voie hydrodéoxygénation, ceci afin de maximiser le rendement en hydrocarbures entrant dans le domaine de distillation des kérosènes et/ou des gazoles. C'est pourquoi de manière préférée, on opère à une température relativement basse. Maximiser la fonction hydrogénante permet également de limiter les réactions de polymérisation et/ou de condensation conduisant à la formation de coke qui dégraderait la stabilité des performances catalytiques. De façon préférée on utilise un catalyseur de type Ni ou NiMo. Said catalyst used in step a) of the process according to the invention must advantageously be characterized by a high hydrogenating power so as to direct the selectivity of the reaction as much as possible towards hydrogenation preserving the number of carbon atoms of the fatty chains. that is to say the hydrodeoxygenation route, in order to maximize the yield of hydrocarbons entering the field of distillation of kerosenes and/or gas oils. This is why it is preferred to operate at a relatively low temperature. Maximizing the hydrogenating function also makes it possible to limit the polymerization and/or condensation reactions leading to the formation of coke which would degrade the stability of the catalytic performances. Preferably, a catalyst of the Ni or NiMo type is used.
Ledit catalyseur utilisé dans l'étape a) d'hydrotraitement du procédé selon l'invention peut également avantageusement contenir un élément dopant choisi parmi le phosphore et le bore, pris seuls ou en mélange. Ledit élément dopant peut être introduit dans la matrice ou de préférence être déposé sur le support. On peut également déposer du silicium sur le support, seul ou avec le phosphore et/ou le bore et/ou le fluor. Said catalyst used in stage a) of hydrotreatment of the process according to the invention can also advantageously contain a doping element chosen from phosphorus and boron, taken alone or as a mixture. Said doping element can be introduced into the matrix or preferably be deposited on the support. It is also possible to deposit silicon on the support, alone or with phosphorus and/or boron and/or fluorine.
La teneur en poids d'oxyde dudit élément dopant est avantageusement inférieure à 20% et de manière préférée inférieure à 10% et elle est avantageusement d’au moins 0,001%. The content by weight of oxide of said doping element is advantageously less than 20% and preferably less than 10% and it is advantageously at least 0.001%.
Des catalyseurs préférés sont les catalyseurs décrits dans la demande de brevet FR 2 943 071 décrivant des catalyseurs ayant une forte sélectivité pour les réactions d'hydrodésoxygénation. Preferred catalysts are the catalysts described in patent application FR 2 943 071 describing catalysts having a high selectivity for hydrodeoxygenation reactions.
D'autres catalyseurs préférés sont les catalyseurs décrits dans la demande de brevet EP 2 210 663 décrivant des catalyseurs supportés ou massiques comprenant une phase active constituée d'un élément sulfuré du groupe VI B, l'élément du groupe VI B étant le molybdène.Other preferred catalysts are the catalysts described in patent application EP 2 210 663 describing supported or bulk catalysts comprising an active phase consisting of a sulphide element from group VI B, the element from group VI B being molybdenum.
Les métaux des catalyseurs utilisés dans l'étape a) d'hydrotraitement du procédé selon l'invention sont des métaux sulfurés ou des phases métalliques et de préférence des métaux sulfurés. The metals of the catalysts used in stage a) of hydrotreatment of the process according to the invention are sulphide metals or metallic phases and preferably sulphide metals.
On ne sortirait pas du cadre de la présente invention en utilisant dans l'étape a) du procédé selon l'invention, de manière simultanée ou de manière successive, un seul catalyseur ou plusieurs catalyseurs différents. Cette étape peut être effectuée industriellement dans un ou plusieurs réacteurs avec un ou plusieurs lits catalytiques et de préférence à courant descendant de liquide. It would not be departing from the scope of the present invention to use in step a) of the process according to the invention, simultaneously or successively, a single catalyst or several different catalysts. This step can be carried out industrially in one or more reactors with one or more catalytic beds and preferably with a downflow of liquid.
Ladite étape a) d'hydrotraitement permet l'hydrodésoxygénation, l'hydrodéazotation et l'hydrodésulfuration de ladite charge. Said hydrotreatment step a) allows the hydrodeoxygenation, hydrodenitrogenation and hydrodesulphurization of said feed.
Conformément à l'étape b) du procédé selon l'invention, une étape de séparation d'au moins une partie et de préférence la totalité de l'effluent issu de l'étape a) est mise œuvre. Ladite étape b) permet de séparer au moins une fraction légère, au moins un effluent liquide hydrocarboné. In accordance with stage b) of the process according to the invention, a stage of separation of at least part and preferably all of the effluent resulting from stage a) is implemented. Said step b) makes it possible to separate at least one light fraction, at least one liquid hydrocarbon effluent.
Ladite fraction légère comprend au moins une fraction gazeuse qui comprend l'hydrogène non converti et les gaz contenant au moins un atome d'oxygène issu de la décomposition des composés oxygénés lors de l'étape a) d'hydrotraitement et les composés C4 , c'est à dire les composés Ci à C4 présentant de préférence un point d’ébullition final inférieur à 20°C. Le but de cette étape est de séparer les gaz du liquide, et notamment, de récupérer les gaz riches en hydrogène pouvant contenir également des gaz tels que CO et CO2 et au moins un effluent hydrocarboné liquide. Ledit effluent liquide hydrocarboné présente de préférence une teneur en soufre inférieure à 10 ppm poids, une teneur en azote inférieure à 2 ppm poids. Said light fraction comprises at least one gaseous fraction which comprises the unconverted hydrogen and the gases containing at least one oxygen atom resulting from the decomposition of the oxygenated compounds during stage a) of hydrotreatment and the compounds C4, c ie the compounds C1 to C4 preferably exhibiting a final boiling point below 20°C. The purpose of this step is to separate the gases from the liquid, and in particular to recover the hydrogen-rich gases which may also contain gases such as CO and CO2 and at least one liquid hydrocarbon effluent. Said liquid hydrocarbon effluent preferably has a sulfur content of less than 10 ppm by weight, a nitrogen content of less than 2 ppm by weight.
L'étape b) de séparation peut avantageusement être mise en œuvre par toute méthode connue de l'homme du métier telle que par exemple la combinaison de un ou plusieurs séparateurs haute et/ou basse pression, et/ou d'étapes de distillation et/ou de stripage haute et/ou basse pression. Separation step b) can advantageously be implemented by any method known to those skilled in the art such as for example the combination of one or more high and/or low pressure separators, and/or distillation and /or high and/or low pressure stripping.
Conformément à l'étape c) du procédé selon l'invention, au moins une partie et de préférence la totalité de l'effluent liquide hydrocarboné issu de l'étape b) de séparation subit une étape d'élimination d'au moins une partie et de préférence la totalité de l'eau formée par les réactions d’hydrodésoxygénation (H DO) qui ont lieu lors de l'étape b) d'hydrotraitement. Le but de cette étape d'élimination de l'eau est de séparer l'eau de l'effluent liquide hydrocarboné contenant les hydrocarbures paraffiniques. In accordance with step c) of the process according to the invention, at least a part and preferably all of the liquid hydrocarbon effluent resulting from step b) of separation undergoes a step of elimination of at least a part and preferably all of the water formed by the hydrodeoxygenation (HDO) reactions which take place during stage b) of hydrotreatment. The purpose of this water removal step is to separate the water from the liquid hydrocarbon effluent containing the paraffinic hydrocarbons.
L'étape c) d'élimination d'au moins une partie de l’eau et de préférence la totalité de l'eau peut avantageusement être réalisée par toutes les méthodes et techniques connues de l’homme du métier. De préférence, ladite étape c) est mise en ouvre par séchage, par passage sur un dessicant, par flash, par décantation ou par une combinaison d'au moins deux de ces techniques. La teneur en oxygène atomique de l'effluent liquide hydrocarboné contenant les hydrocarbures paraffiniques issue de l'étape c) du procédé selon l'invention, exprimée en partie par million en poids (ppm) est de préférence inférieure à 500 ppm, de manière préférée inférieure à 300 ppm, de manière très préférée inférieure à 100 ppm poids. La teneur en ppm poids en oxygène atomique dans ledit effluent liquide hydrocarboné est mesurée par la technique d'absorption infra rouge telle que par exemple la technique décrite dans la demande de brevet US2009/0018374A1. Step c) of eliminating at least part of the water and preferably all of the water can advantageously be carried out by all the methods and techniques known to those skilled in the art. Preferably, said step c) is implemented by drying, by passing over a desiccant, by flash, by decantation or by a combination of at least two of these techniques. The atomic oxygen content of the liquid hydrocarbon effluent containing the paraffinic hydrocarbons resulting from step c) of the process according to the invention, expressed in part per million by weight (ppm) is preferably less than 500 ppm, more preferably less than 300 ppm, very preferably less than 100 ppm by weight. The content in ppm by weight of atomic oxygen in said liquid hydrocarbon effluent is measured by the infrared absorption technique such as for example the technique described in patent application US2009/0018374A1.
Conformément à l'étape d) du procédé selon l'invention, une partie au moins et de préférence la totalité de l'effluent liquide hydrocarboné issu de l'étape c) du procédé selon l'invention est convertie en présence d'un catalyseur bifonctionnel d’hydroconversion en lit fixe, ledit catalyseur comprenant une phase sulfure de molybdène et/ou tungstène en combinaison avec au moins du nickel et/ou du cobalt, ladite étape d’hydroconversion étant effectuée à une température comprise entre 250 et 500°C, à une pression comprise entre 1 MPa et 10 MPa, à une vitesse spatiale horaire comprise entre 0,1 et 10 h 1 et en présence d'une quantité totale d'hydrogène mélangée à la charge telle que le ratio hydrogène/charge soit compris entre 70 et 1000 Nm3/m3 de charge, et en présence d’une quantité totale de soufre telle que le rapport entre la pression partielle d’hydrogène sulfuré et la pression partielle d’hydrogène en entrée de ladite étape d’hydroconversion soit inférieur à 5.10-5, de préférence inférieur à 4.10-5, de manière très préférée inférieure à 3.10-5, de manière très préférée inférieure à 2.10-5 et de manière encore plus préférée inférieure à 1 ,5.10-5. In accordance with step d) of the process according to the invention, at least part and preferably all of the liquid hydrocarbon effluent resulting from step c) of the process according to the invention is converted in the presence of a catalyst bifunctional fixed bed hydroconversion, said catalyst comprising a molybdenum and/or tungsten sulphide phase in combination with at least nickel and/or cobalt, said hydroconversion step being carried out at a temperature between 250 and 500°C , at a pressure of between 1 MPa and 10 MPa, at an hourly space velocity of between 0.1 and 10 h 1 and in the presence of a total quantity of hydrogen mixed with the charge such that the hydrogen/charge ratio is comprised between 70 and 1000 Nm 3 /m 3 of charge, and in the presence of a total quantity of sulfur such that the ratio between the partial pressure of hydrogen sulphide and the partial pressure of hydrogen at the inlet of said hydroconversion stage is less than 5.10 -5 , preferably e less than 4.10 -5 , very preferably less than 3.10 -5 , very preferably less than 2.10 -5 and even more preferably less than 1.5.10 -5 .
Le soufre présent peut provenir de l’effluent hydrocarboné issu de l’étape c) et/ou du flux d’hydrogène mélangée à la charge de l’étape d). Lorsque le soufre est apporté par l’effluent hydrocarboné, celui-ci se trouve généralement sous la forme de molécules soufrées organiques, non converties à l’issue de l’étape a) du procédé. Lorsque le soufre est apporté par l’hydrogène, il se trouve généralement sous la forme d’hydrogène sulfuré. Eventuellement du soufre peut être apporté par ajout de molécules soufrées dans la charge et/ou l’hydrogène pour maintenir le catalyseur d’hydroconversion sous forme sulfurée. The sulfur present may come from the hydrocarbon effluent from stage c) and/or from the hydrogen flow mixed with the feed from stage d). When the sulfur is provided by the hydrocarbon effluent, it is generally in the form of organic sulfur molecules, unconverted at the end of step a) of the process. When sulfur is supplied by hydrogen, it is generally in the form of hydrogen sulphide. Optionally, sulfur can be provided by adding sulfur molecules to the charge and/or hydrogen to maintain the hydroconversion catalyst in sulfur form.
Au sens de l’invention, le rapport des pressions partielles d’hydrogène sulfuré et d’hydrogène est calculé en considérant la quantité d’hydrogène et de soufre introduites en entrée de l’unité d’hydroconversion, et que tout l’hydrogène introduit se trouve en phase gaz (l’hydrogène éventuellement dissous dans la charge n’est pas considéré), que tout le soufre se trouve sous forme d’hydrogène sulfuré (les molécules soufrées, si présentes, sont transformées en hydrogène sulfuré), et que tout l’hydrogène sulfuré se trouve en phase gaz. Within the meaning of the invention, the ratio of the partial pressures of hydrogen sulphide and hydrogen is calculated by considering the quantity of hydrogen and sulfur introduced at the inlet of the hydroconversion unit, and that all the hydrogen introduced is in the gas phase (the hydrogen possibly dissolved in the charge is not considered), that all the sulfur is in the form of hydrogen sulphide (the sulphur-containing molecules, if present, are transformed into hydrogen sulphide), and that all of the hydrogen sulfide is in the gas phase.
Si nécessaire, ledit flux d’hydrogène subit une étape de purification dans le cas où la teneur en sulfure d’hydrogène dans ledit flux d’hydrogène en entrée de l’étape d) est supérieure à 50 ppm en volume. La teneur en hydrogène sulfuré dans ledit flux d'hydrogène peut être mesurée par toute méthode connue de l'homme du métier telle que par exemple par chromatographie en phase gazeuse ou par spectrométrie infrarouge laser, par exemple proposée par la société AP2E (analyseur ProCeas® H2 purity). If necessary, said hydrogen stream undergoes a purification step in the case where the hydrogen sulphide content in said hydrogen stream entering step d) is greater than 50 ppm by volume. The hydrogen sulfide content in said hydrogen stream can be measured by any method known to those skilled in the art such as, for example, by gas phase chromatography or by laser infrared spectrometry, for example proposed by the company AP2E (ProCeas® analyzer H2 purity).
La teneur en hydrogène dans ledit flux d’hydrogène peut être mesurée par toute méthode connue de l’homme du métier telle que par exemple la mesure par conductivité thermique, par exemple proposée par la société WITT (Inline Gas Analyser). The hydrogen content in said hydrogen flow can be measured by any method known to those skilled in the art such as for example measurement by thermal conductivity, for example proposed by the company WITT (Inline Gas Analyser).
La présence de composés oxygénés peut induire une perte d’activité du catalyseur d’hydroconversion. The presence of oxygenated compounds can induce a loss of activity of the hydroconversion catalyst.
De préférence, ledit flux d’hydrogène subit une étape de purification dans le cas où la teneur en oxygène atomique dans ledit flux d'hydrogène entrant dans l’unité d’hydroconversion est supérieure à 250 ppm en volume. De manière préférée, ledit flux d’hydrogène subit une étape de purification dans le cas où la teneur en oxygène atomique dans ledit flux d'hydrogène est supérieure à 50 ppm en volume. Preferably, said hydrogen stream undergoes a purification step if the atomic oxygen content in said hydrogen stream entering the hydroconversion unit is greater than 250 ppm by volume. Preferably, said hydrogen stream undergoes a purification step in the case where the atomic oxygen content in said hydrogen stream is greater than 50 ppm by volume.
Ledit flux d'hydrogène utilisé dans le procédé selon l'invention et de préférence dans l'étape d) du procédé selon l'invention est avantageusement généré par les procédés connus de l'homme du métier tels que par exemple un procédé de reformage catalytique ou de craquage catalytique des gaz. Said hydrogen flow used in the process according to the invention and preferably in step d) of the process according to the invention is advantageously generated by the processes known to those skilled in the art such as for example a catalytic reforming process or catalytic cracking of gases.
Selon la nature des différentes sources, l'hydrogène utilisé dans le procédé selon l'invention peut contenir ou pas des impuretés. La teneur en oxygène atomique dans ledit flux d'hydrogène peut être mesurée par toute méthode connue de l'homme du métier telle que par exemple par chromatographie en phase gazeuse. Depending on the nature of the different sources, the hydrogen used in the process according to the invention may or may not contain impurities. The atomic oxygen content in said hydrogen flow can be measured by any method known to those skilled in the art such as for example by gas phase chromatography.
De préférence, ledit flux d'hydrogène peut être de l'hydrogène frais ou un mélange d'hydrogène frais et d'hydrogène de recycle, c'est-à-dire d'hydrogène non converti lors de l'étape d) d’hydroconversion et/ou non converti lors de l’étape a) d’hydrotraitement et recyclé dans ladite étape d). Preferably, said hydrogen stream can be fresh hydrogen or a mixture of fresh hydrogen and recycled hydrogen, that is to say hydrogen not converted during step d) of hydroconversion and/or not converted during stage a) of hydrotreatment and recycled in said stage d).
Dans le cas où ledit flux d’hydrogène contient une teneur en oxygène atomique supérieure à 500 ppm volume, de préférence supérieure à 250 ppm volume et de manière préférée supérieure à 50 ppm volume, ledit flux d'hydrogène subit une étape de purification pour éliminer les composés oxygénés avant d'être introduit dans ladite étape d). Dans le cas où ledit flux d’hydrogène contient une teneur en hydrogène sulfuré supérieure à 50 ppm volume, ledit flux d’hydrogène subit une étape de purification pour éliminer le sulfure d’hydrogène avant d’être introduit dans ladite étape d). Ladite étape de purification du flux d'hydrogène peut avantageusement s'effectuer selon toute méthode connue de l'homme du métier (voir par exemple Z. Du et coll., Catalysts, 2021, 11 , 393). In the case where said hydrogen stream contains an atomic oxygen content greater than 500 ppm volume, preferably greater than 250 ppm volume and preferably greater than 50 ppm volume, said hydrogen stream undergoes a purification step to eliminate the oxygenated compounds before being introduced into said step d). If said hydrogen stream contains a hydrogen sulphide content greater than 50 volume ppm, said hydrogen stream undergoes a purification step to remove the hydrogen sulphide before being introduced into said step d). Said hydrogen flow purification step can advantageously be carried out according to any method known to those skilled in the art (see for example Z. Du et al., Catalysts, 2021, 11, 393).
De préférence, ladite étape de purification est avantageusement mise en œuvre selon les méthodes d'adsorption modulée en pression ou PSA "Pressure Swing Adsorption" selon la terminologie anglo-saxonne, ou d'adsorption modulée en température ou TSA "Température Swing Adsorption" selon la terminologie anglo-saxonne, de lavage aux amines, de méthanation, d'oxydation préférentielle, de procédés membranaires, de distillation cryogénique, utilisées seules ou combinées. Preferably, said purification step is advantageously implemented according to the methods of pressure swing adsorption or PSA "Pressure Swing Adsorption" according to the English terminology, or temperature swing adsorption or TSA "Temperature Swing Adsorption" according to Anglo-Saxon terminology, washing with amines, methanation, preferential oxidation, membrane processes, cryogenic distillation, used alone or in combination.
Lorsque le procédé met en œuvre un recyclage de l'hydrogène, une purge de l'hydrogène de recycle peut également avantageusement être effectuée afin de limiter l'accumulation de molécules contenant au moins un atome d'oxygène tel que le monoxyde de carbone CO ou le dioxyde de carbone CO2 et ainsi de limiter la teneur en oxygène atomique dans ledit flux d'hydrogène. When the process implements a recycling of hydrogen, a purge of the recycled hydrogen can also advantageously be carried out in order to limit the accumulation of molecules containing at least one oxygen atom such as carbon monoxide CO or carbon dioxide CO2 and thus to limit the atomic oxygen content in said hydrogen flow.
De préférence, la teneur en oxygène atomique dans ledit flux d'hydrogène utilisé dans le procédé selon l'invention et de préférence dans l'étape d) du procédé selon l'invention, exprimée en partie par million en volume (ppmv), doit être inférieure à 500 ppmv, de manière préférée inférieure à 250 ppmv et de manière très préférée inférieure à 50 ppmv. La teneur en oxygène atomique dans ledit flux d'hydrogène se calcule à partir des concentrations en molécules ayant au moins un atome d'oxygène dans ledit flux d'hydrogène, pondérées du nombre d'atome d'oxygène présent dans ladite molécule oxygénée. A titre d'exemple, considérant un flux d'hydrogène contenant du CO du CO2, la teneur en oxygène atomique contenue dans ledit flux d'hydrogène est alors égale à : ppmv(O) = ppmv (CO) + 2 * ppmv (CO2) avec : ppmv (O) teneur en oxygène atomique dans le flux d'hydrogène en partie par million en volume, ppmv (CO) teneur en monoxyde de carbone dans le flux d'hydrogène en partie par million en volume, ppmv (CO2) teneur en dioxyde de carbone dans le flux d'hydrogène en partie par million en volume. Preferably, the atomic oxygen content in said hydrogen stream used in the process according to the invention and preferably in step d) of the process according to the invention, expressed in parts per million by volume (ppmv), must be less than 500 ppmv, preferably less than 250 ppmv and most preferably less than 50 ppmv. The atomic oxygen content in said hydrogen flow is calculated from the concentrations of molecules having at least one oxygen atom in said hydrogen flow, weighted by the number of oxygen atoms present in said oxygenated molecule. By way of example, considering a hydrogen flow containing CO or CO2, the atomic oxygen content contained in said hydrogen flow is then equal to: ppmv(O) = ppmv (CO) + 2 * ppmv (CO2 ) with: ppmv (O) atomic oxygen content in the hydrogen stream in parts per million by volume, ppmv (CO) carbon monoxide content in the hydrogen stream in parts per million by volume, ppmv (CO2) carbon dioxide content in the hydrogen stream in parts per million by volume.
Dans le cas où ledit flux d’hydrogène contient une teneur en oxygène atomique inférieure à 500 ppmv, de préférence inférieure à 250 ppmv et de manière préférée inférieure à 50 ppmv, aucune étape de purification dudit flux d'hydrogène n'est mise en œuvre avant que ledit flux ne soit introduit dans ladite étape d). In the case where said hydrogen stream contains an atomic oxygen content of less than 500 ppmv, preferably less than 250 ppmv and preferably less than 50 ppmv, no step for purifying said hydrogen stream is implemented before said stream is introduced into said step d).
Les conditions opératoires de l'étape d) d’hydroconversion sont ajustées pour favoriser les réactions d’hydroisomérisation ou d’hydrocraquage selon les besoins. De préférence, l'étape d) d’hydroconversion du procédé selon l'invention opère à une température comprise entre 250°C et 450°C, et de manière très préférée, entre 250 et 400°C, à une pression comprise entre 2 MPa et 10 MPa et de manière très préférée, entre 1 MPa et 9 MPa, à une vitesse volumique horaire avantageusement comprise entre 0,2 et 7 h 1 et de manière très préférée, entre 0,5 et 5 h-1, à un débit d'hydrogène tel que le rapport volumique hydrogène/charge est avantageusement compris entre 100 et 1000 normaux m3 d'hydrogène par m3 de charge et de manière préférée entre 150 et 1000 normaux m3 d'hydrogène par m3 de charge. L’étape d) d’hydroconversion du procédé selon l’invention opère avec un rapport entre la pression partielle d’hydrogène sulfuré et d’hydrogène inférieur à 5.10-5, de préférence inférieur à 4.10 5, de manière très préférée inférieur à 3.105, de manière très préférée inférieur à 2.105 et de manière encore plus préférée inférieur à 1,5.105 The operating conditions of step d) of hydroconversion are adjusted to promote the hydroisomerization or hydrocracking reactions as required. Preferably, step d) of hydroconversion of the process according to the invention operates at a temperature of between 250° C. and 450° C., and very preferably, between 250 and 400° C., at a pressure of between 2 MPa and 10 MPa and very preferably between 1 MPa and 9 MPa, at an hourly volume rate advantageously between 0.2 and 7 h 1 and very preferably between 0.5 and 5 h -1 , at a hydrogen flow rate such that the hydrogen/feed volume ratio is advantageously between 100 and 1000 normal m 3 of hydrogen per m 3 of feed and preferably between 150 and 1000 normal m 3 of hydrogen per m 3 of feed. Stage d) of hydroconversion of the process according to the invention operates with a ratio between the partial pressure of hydrogen sulphide and hydrogen of less than 5.10 -5 , preferably less than 4.10 5 , very preferably less than 3.10 5 , very preferably less than 2.10 5 and even more preferably less than 1.5.10 5
Conformément à l’invention, le catalyseur d’hydroconversion comprend au moins du tungstène et/ou du molybdène en combinaison avec au moins du nickel et/ou du cobalt. According to the invention, the hydroconversion catalyst comprises at least tungsten and/or molybdenum in combination with at least nickel and/or cobalt.
La teneur en tungstène et/ou molybdène est avantageusement comprise en équivalent oxyde entre 5 et 50% en poids par rapport au catalyseur fini, de manière préférée entre 10 et 40% en poids et de manière très préférée entre 15 et 35% en poids et la teneur en nickel et/ou cobalt dudit catalyseur est avantageusement comprise en équivalent oxyde entre 0,5 et 10% en poids par rapport au catalyseur fini, de manière préférée entre 1 et 8% en poids et de manière très préférée entre 1,5 et 6% en poids. Ledit catalyseur est utilisé sous sa forme sulfurée. The tungsten and/or molybdenum content is advantageously comprised in oxide equivalent between 5 and 50% by weight relative to the finished catalyst, preferably between 10 and 40% by weight and very preferably between 15 and 35% by weight and the nickel and/or cobalt content of said catalyst is advantageously comprised in oxide equivalent between 0.5 and 10% by weight relative to the finished catalyst, preferably between 1 and 8% by weight and very preferably between 1.5 and 6% by weight. Said catalyst is used in its sulfurized form.
De manière préféré le catalyseur comprend du tungstène en combinaison avec du nickel.Preferably the catalyst comprises tungsten in combination with nickel.
Les métaux sont avantageusement introduits dans le catalyseur par toute méthode connue de l'homme du métier, comme par exemple le comalaxage, l'imprégnation à sec ou l'imprégnation par échange. The metals are advantageously introduced into the catalyst by any method known to those skilled in the art, such as for example comixing, dry impregnation or impregnation by exchange.
Le catalyseur d’hydroconversion comprend en outre, avantageusement au moins un solide acide et éventuellement un liant. The hydroconversion catalyst also advantageously comprises at least one acidic solid and optionally a binder.
De préférence, le solide acide est un acide de Bronsted de préférence choisi parmi la silice alumine, la zéolithe Y, la SAPO-11 , la SAPO-41, la ZSM-22, la ferrierite, la ZSM-23, la ZSM- 48, la ZBM-30, IΊZM-1, la COK-7. De préférence, le solide acide est la silice alumine. Éventuellement, un liant peut avantageusement également être utilisé durant l'étape de mise en forme du support. On utilise de préférence un liant lorsque la zéolithe est employée. Preferably, the acidic solid is a Bronsted acid preferably chosen from silica alumina, zeolite Y, SAPO-11, SAPO-41, ZSM-22, ferrierite, ZSM-23, ZSM-48 , ZBM-30, IΊZM-1, COK-7. Preferably, the acidic solid is silica alumina. Optionally, a binder can advantageously also be used during the support shaping step. A binder is preferably used when zeolite is used.
Ledit liant est avantageusement choisi parmi la silice (S1O2), l’alumine (AI2O3), les argiles, l’oxyde de titane (T1O2), l’oxyde de bore (B2O3) et la zircone (ZrC>2) pris seul ou en mélange. De préférence, ledit liant est choisi parmi la silice et l’alumine et de manière encore plus préférée, ledit liant est l’alumine sous toutes ses formes connues de l'homme du métier, telle que par exemple l'alumine gamma. Said binder is advantageously chosen from silica (S1O 2 ), alumina (Al 2 O 3 ), clays, titanium oxide (T1O 2 ), boron oxide (B 2 O 3 ) and zirconia (ZrC>2) taken alone or in a mixture. Preferably, said binder is chosen from silica and alumina and even more preferably, said binder is alumina in all its forms known to those skilled in the art, such as for example gamma alumina.
Un catalyseur préféré utilisé dans le procédé selon l'invention comprend une silice-alumine et au moins du tungstène et/ou du molybdène et au moins du nickel et/ou du cobalt, ledit catalyseur étant sulfuré. La teneur en tungstène et/ou molybdène est avantageusement comprise, en équivalent oxyde, entre 5 et 50% en poids par rapport au catalyseur fini, de manière préférée entre 10 et 40% en poids et de manière très préférée entre 15 et 35% en poids et la teneur en nickel et/ou cobalt dudit catalyseur est avantageusement comprise, en équivalent oxyde, entre 0,5 et 10% en poids par rapport au catalyseur fini, de manière préférée entre 1 et 8% en poids et de manière très préférée entre 1,5 et 6% en poids. La teneur en éléments est parfaitement mesurée à l'aide de la fluorescence X. A preferred catalyst used in the process according to the invention comprises a silica-alumina and at least tungsten and/or molybdenum and at least nickel and/or cobalt, said catalyst being sulfurized. The tungsten and/or molybdenum content is advantageously comprised, in oxide equivalent, between 5 and 50% by weight relative to the finished catalyst, preferably between 10 and 40% by weight and very preferably between 15 and 35% by weight. weight and the nickel and/or cobalt content of said catalyst is advantageously comprised, in oxide equivalent, between 0.5 and 10% by weight relative to the finished catalyst, preferably between 1 and 8% by weight and very preferably between 1.5 and 6% by weight. The element content is perfectly measured using X-ray fluorescence.
Un catalyseur préféré utilisé dans le procédé selon l’invention, comprend une silice-alumine particulière, ladite silice-alumine présentant : A preferred catalyst used in the process according to the invention comprises a particular silica-alumina, said silica-alumina having:
- de l’alumine et de la silice avec une teneur massique en silice (S1O2) supérieure à 5% poids et inférieure ou égale à 95% poids, de préférence comprise entre 10 et 80% poids, de manière préférée une teneur en silice supérieure à 20% poids et inférieure à 80% poids et de manière encore plus préférée supérieure à 25% poids et inférieure à 75% poids, la teneur en silice est avantageusement comprise entre 10 et 50% poids - alumina and silica with a mass content of silica (S1O2) greater than 5% by weight and less than or equal to 95% by weight, preferably between 10 and 80% by weight, preferably a higher silica content at 20% by weight and less than 80% by weight and even more preferably greater than 25% by weight and less than 75% by weight, the silica content is advantageously between 10 and 50% by weight
- une surface spécifique BET de 100 à 500 m2/g, de préférence comprise entre 200 m2/g et 450 m2/g et de manière très préférée entre 200 m2/g et 300 m2/g, - a BET specific surface of 100 to 500 m 2 /g, preferably between 200 m 2 /g and 450 m 2 /g and very preferably between 200 m 2 /g and 300 m 2 /g,
- un diamètre moyen des mésopores mesuré par porosimétrie au mercure compris entre 3 et 12 nm, de préférence compris entre 3 nm et 11 nm et de manière très préférée entre 4 nm et 10,5 nm, - an average diameter of the mesopores measured by mercury porosimetry between 3 and 12 nm, preferably between 3 nm and 11 nm and very preferably between 4 nm and 10.5 nm,
- un volume poreux total mesuré par porosimétrie au mercure compris entre 0,4 et 1,2 ml/g, de préférence entre 0,4 et 1,0 ml/g et de manière très préférée entre 0,4 et 0,8 ml/g, - a total pore volume measured by mercury porosimetry of between 0.4 and 1.2 ml/g, preferably between 0.4 and 1.0 ml/g and very preferably between 0.4 and 0.8 ml /g,
- un volume des macropores, dont le diamètre est supérieur à 50 nm, inférieur à 0,002 ml/g.- a volume of the macropores, the diameter of which is greater than 50 nm, less than 0.002 ml/g.
Le diamètre moyen des mésopores est défini comme étant le diamètre correspondant à l'annulation de la courbe dérivée du volume d'intrusion du mercure obtenue à partir de la courbe de porosité au mercure pour des diamètres de pores compris entre 2 et 50 m. De préférence, le coefficient de répartition des métaux dudit catalyseur préféré est supérieur à 0, 1 , de préférence supérieur à 0,2 et de manière très préférée supérieur à 0,4. Le coefficient de répartition représente la distribution du métal à l'intérieur du grain de catalyseur. Le coefficient de répartition des métaux peut être mesuré par microsonde de Castaing. The mean diameter of the mesopores is defined as being the diameter corresponding to the cancellation of the curve derived from the mercury intrusion volume obtained from the mercury porosity curve for pore diameters between 2 and 50 µm. Preferably, the metal distribution coefficient of said preferred catalyst is greater than 0.1, preferably greater than 0.2 and very preferably greater than 0.4. The distribution coefficient represents the distribution of the metal inside the catalyst grain. The partition coefficient of metals can be measured by Castaing microprobe.
Conformément à l'étape e) du procédé selon l'invention, l'effluent issu de l'étape d) subit une étape de fractionnement, de préférence dans un train de distillation qui intègre une distillation atmosphérique et éventuellement une distillation sous vide, pour obtenir au moins une fraction distillât moyen. In accordance with step e) of the process according to the invention, the effluent from step d) undergoes a fractionation step, preferably in a distillation train which integrates atmospheric distillation and optionally vacuum distillation, to obtain at least a middle distillate fraction.
Ladite étape e) a pour but de séparer les gaz du liquide, et notamment, de récupérer les gaz riches en hydrogène pouvant contenir également des légers tels que la coupe Ci - C4 et au moins une coupe gazole, au moins une coupe kérosène et au moins une coupe naphta. La valorisation de la coupe naphta n'est pas l'objet de la présente invention, mais cette coupe peut avantageusement être envoyée dans une unité de vapocraquage ou de reformage catalytique. The purpose of said step e) is to separate the gases from the liquid, and in particular to recover the hydrogen-rich gases which may also contain light substances such as the Ci - C4 cut and at least one diesel cut, at least one kerosene cut and at least one minus a naphtha cup. Upgrading the naphtha cut is not the subject of the present invention, but this cut can advantageously be sent to a steam cracking or catalytic reforming unit.
Description des figures Description of figures
La figure 1 représente l’évolution du point de trouble de l’effluent liquide en fonction du temps lors de l’hydroconversion dans l’exemple 4. Figure 1 represents the evolution of the cloud point of the liquid effluent as a function of time during the hydroconversion in Example 4.
La figure 2 représente l’évolution du point de trouble de l’effluent liquide en fonction du temps lors de l’hydroconversion dans l’exemple 7. Figure 2 represents the evolution of the cloud point of the liquid effluent as a function of time during the hydroconversion in example 7.
La figure 3 représente l’évolution du point de trouble de l’effluent liquide en fonction du temps lors de l’hydroconversion dans l’exemple 8. Figure 3 represents the evolution of the cloud point of the liquid effluent as a function of time during the hydroconversion in example 8.
La figure 4 représente l’évolution du point de trouble de l’effluent liquide en fonction du temps lors de l’hydroconversion dans l’exemple 9. Figure 4 represents the evolution of the cloud point of the liquid effluent as a function of time during the hydroconversion in Example 9.
EXEMPLES EXAMPLES
Exemple 1 : préparation d'un catalyseur d'hydrotraitement (C1) Example 1: preparation of a hydrotreating catalyst (C1)
Le catalyseur est un catalyseur industriel à base de nickel, molybdène et phosphore sur alumine avec des teneurs en oxyde de molybdène M0O3 de 22% poids, en oxyde de nickel NiO de 4% poids et en oxyde de phosphore P2O5 de 5% poids par rapport au poids total du catalyseur fini, fourni par la société AXENS. The catalyst is an industrial catalyst based on nickel, molybdenum and phosphorus on alumina with contents of molybdenum oxide M0O3 of 22% by weight, nickel oxide NiO of 4% by weight and phosphorus oxide P2O5 of 5% by weight relative to to the total weight of the finished catalyst, supplied by the company AXENS.
Exemple 2 : Préparation d'un catalyseur d’hydroconversion conforme à l'invention (C2) La poudre de silice-alumine est préparée selon le protocole de synthèse décrit dans le brevet EP1 415 712A. Les quantités d'acide orthosilicique et d’hydrate d’aluminium sont choisies de manière à avoir une composition de 70% en poids d'alumine AI2O3 et 30% en poids de silice S1O2 dans le solide final. Example 2: Preparation of a hydroconversion catalyst in accordance with the invention (C2) The silica-alumina powder is prepared according to the synthesis protocol described in patent EP1 415 712A. The amounts of orthosilicic acid and aluminum hydrate are chosen so as to have a composition of 70% by weight of alumina Al 2 O 3 and 30% by weight of silica S1O 2 in the final solid.
Ce mélange est rapidement homogénéisé dans un broyeur colloïdal commercial en présence d’acide nitrique de façon que la teneur en acide nitrique de la suspension en sortie de broyeur soit de 8% rapportée au solide mixte silice-alumine. Puis la suspension est séchée classiquement dans un atomiseur de manière conventionnelle de 300°C à 60°C. La poudre ainsi préparée est mise en forme dans un bras en Z en présence de 8% d’acide nitrique par rapport au produit anhydre. L’extrusion est réalisée par passage de la pâte au travers d'une filière munie d'orifices de diamètre 1 ,4 mm. Les extrudés ainsi obtenus sont séchés en étuve à 140°C puis calciné sous débit d'air sec à 550°C puis calcinés à 850°C en présence de vapeur d’eau. This mixture is rapidly homogenized in a commercial colloid mill in the presence of nitric acid so that the nitric acid content of the suspension leaving the mill is 8% relative to the mixed silica-alumina solid. Then the suspension is conventionally dried in an atomizer in a conventional manner at 300°C to 60°C. The powder thus prepared is shaped in a Z arm in the presence of 8% nitric acid relative to the anhydrous product. Extrusion is carried out by passing the paste through a die fitted with 1.4 mm diameter holes. The extrudates thus obtained are dried in an oven at 140°C then calcined under a flow of dry air at 550°C then calcined at 850°C in the presence of steam.
Les caractéristiques du support ainsi préparé sont les suivantes : The characteristics of the support thus prepared are as follows:
- un diamètre moyen des mésopores mesuré par porosimétrie au mercure de 7,7 nm,- an average diameter of the mesopores measured by mercury porosimetry of 7.7 nm,
- un volume poreux total de 0,49 ml/g, - a total pore volume of 0.49 ml/g,
- un volume mésoporeux de 0,47 ml/g, - a mesoporous volume of 0.47 ml/g,
- un volume des macropores, dont le diamètre est supérieur à 50 nm inférieur à 0,01 ml/g,- a volume of macropores, whose diameter is greater than 50 nm, less than 0.01 ml/g,
- une surface BET de 240 m2/g. - a BET surface of 240 m 2 /g.
Les extrudés de silice-alumine sont ensuite soumis à une étape d'imprégnation à sec par une solution aqueuse de métatungstate d’ammonium et de nitrate de nickel laissés à maturer en maturateur à eau durant 24 heures à température ambiante puis calcinés durant deux heures sous air sec en lit traversé à 450°C (rampe de montée en température de 5°C/min). La teneur pondérale en oxyde de tungstène WO3 du catalyseur fini après calcination est de 27%, la teneur en oxyde de nickel NiO est de 3,5%. Le coefficient de répartition des métaux mesuré par microsonde de Castaing est égal à 0,93. The silica-alumina extrudates are then subjected to a dry impregnation step with an aqueous solution of ammonium metatungstate and nickel nitrate, left to mature in a water soaker for 24 hours at room temperature and then calcined for two hours under dry air in bed traversed at 450°C (temperature rise ramp of 5°C/min). The content by weight of tungsten oxide WO 3 of the finished catalyst after calcination is 27%, the content of nickel oxide NiO is 3.5%. The metal distribution coefficient measured by Castaing microprobe is equal to 0.93.
Exemple 3 : hydrotraitement d'une charge issue de source renouvelable selon un procédé conforme à l'invention Example 3: hydrotreatment of a feed from a renewable source according to a process in accordance with the invention
Dans un réacteur régulé en température de manière à assurer un fonctionnement isotherme et à lit fixe chargé de 190 ml de catalyseur d'hydrotraitement C1, le catalyseur étant préalablement sulfuré, on effectue l’hydrotraitement d’huile de colza pré-raffinée de densité 920 kg/m3 présentant une teneur en oxygène de 11 % poids. L'indice de cétane est de 35 et la distribution en acide gras de l'huile de colza est détaillée dans le tableau 1. Préalablement à l’étape d’hydrotraitement, ladite charge est additivée avec du diméthyldisulfure afin d’ajuster sa teneur en soufre à 50 ppm en poids. In a temperature-regulated reactor so as to ensure isothermal operation and with a fixed bed charged with 190 ml of hydrotreating catalyst C1, the catalyst being previously sulfurized, the hydrotreating of pre-refined rapeseed oil with a density of 920 is carried out. kg/m 3 having an oxygen content of 11% by weight. The cetane number is 35 and the fatty acid distribution of rapeseed oil is detailed in table 1. the hydrotreatment step, said charge is added with dimethyldisulphide in order to adjust its sulfur content to 50 ppm by weight.
Composition en acide gras Fatty acid composition
14:0 0,1 14:0 0.1
16:0 5,0 16:0 5.0
16:1 0,3 16:1 0.3
17:0 0,1 17:0 0.1
17:1 0,1 17:1 0.1
18:0 1.5 18:0 1.5
18:1 trans <0,1 18:1 cis 60,1 18:2 trans <0,1 18:2 cis 20,4 18:3 trans <0,1 18:3 cis 9.6 20:0 0,5 20:1 1,2 22:0 0,3 22:1 0,2 24:0 0,1 24:1 0,2 18:1 trans <0.1 18:1 cis 60.1 18:2 trans <0.1 18:2 cis 20.4 18:3 trans <0.1 18:3 cis 9.6 20:0 0.5 20 :1 1.2 22:0 0.3 22:1 0.2 24:0 0.1 24:1 0.2
Tableau 1 : Caractéristiques de l'huile de colza utilisée comme charge pour l'hydrotraitement Avant l’hydrotraitement de la charge, le catalyseur est sulfuré in-situ dans l’unité, avec un gazole de distillation additivé de 2% en poids de diméthyldisulfure, sous une pression totale de 5,1 MPa, un rapport hydrogène / gazole additivé de 700 Nm3 par m3. Le volume de gazole additivé par volume de catalyseur et par heure est fixé à 1 h 1. La sulfuration est effectuée durant 12 heures à 350°C, avec une rampe de montée en température de 10°C par heure. Après sulfuration, les conditions opératoires de l’unité sont ajustées afin d’effectuer l’hydrotraitement de la charge : Table 1: Characteristics of the rapeseed oil used as a feedstock for the hydrotreatment Before hydrotreating the feedstock, the catalyst is sulfurized in-situ in the unit, with a distillation gas oil containing 2% by weight of dimethyldisulphide , under a total pressure of 5.1 MPa, a hydrogen/gas oil ratio with additives of 700 Nm 3 per m 3 . The volume of diesel fuel added per volume of catalyst and per hour is set at 1 h 1 . The sulfurization is carried out for 12 hours at 350° C., with a temperature rise ramp of 10° C. per hour. After sulfurization, the operating conditions of the unit are adjusted in order to carry out the hydrotreatment of the charge:
- WH (volume de charge / volume de catalyseur / heure) : 1 h 1 , - WH (volume of charge / volume of catalyst / hour): 1 h 1 ,
- pression totale de travail : 5,1 MPa, - total working pressure: 5.1 MPa,
- rapport hydrogène / charge : 700 Nm3 d’hydrogène / m3 de charge, - température : 310°C. - hydrogen/charge ratio: 700 Nm 3 of hydrogen / m 3 of charge, - temperature: 310°C.
L’hydrogène employé est fourni par Air Product et présente une pureté supérieure à 99.999% en volume. The hydrogen used is supplied by Air Product and has a purity greater than 99.999% by volume.
Étape b) et c) : séparation de l'effluent issu de l'étape a) La totalité de l'effluent hydrotraité issu de l'étape a) est séparée à l'aide d'un séparateur gaz/liquide de manière à récupérer une fraction légère contenant majoritairement de l'hydrogène, du propane, de l'eau sous forme de vapeur, des oxydes de carbone (CO et CO2) et de l'ammoniac et un effluent hydrocarboné liquide majoritairement constituée d'hydrocarbures linéaires. L'eau présente dans l'effluent hydrocarboné liquide est éliminée par décantation. L'effluent hydrocarboné liquide ainsi obtenu contient une teneur en oxygène atomique inférieure à 80 ppm poids, ladite teneur en oxygène atomique étant mesurée par la technique d'adsorption infrarouge décrite dans la demande de brevet US2009/0018374, et une teneur en soufre de 2 ppm poids et une teneur en azote inférieure à 1 ppm poids, lesdites teneurs en azote et en soufre étant mesurées respectivement par chimiluminescence et par fluorescence UV. Ledit effluent hydrocarboné liquide présente une densité de 791 kg/m3. L’effluent hydrocarboné liquide est composé de paraffines ; sa composition, mesurée par chromatographie en phase gaz, est fournie dans le tableau 2. Step b) and c): separation of the effluent from step a) All of the hydrotreated effluent from step a) is separated using a gas/liquid separator so as to recover a light fraction containing mainly hydrogen, propane, water in vapor form, carbon oxides (CO and CO2) and ammonia and a liquid hydrocarbon effluent mainly consisting of linear hydrocarbons. The water present in the liquid hydrocarbon effluent is removed by settling. The liquid hydrocarbon effluent thus obtained contains an atomic oxygen content of less than 80 ppm by weight, said atomic oxygen content being measured by the infrared adsorption technique described in patent application US2009/0018374, and a sulfur content of 2 ppm by weight and a nitrogen content of less than 1 ppm by weight, said nitrogen and sulfur contents being measured respectively by chemiluminescence and by UV fluorescence. Said liquid hydrocarbon effluent has a density of 791 kg/m 3 . The liquid hydrocarbon effluent is composed of paraffins; its composition, measured by gas chromatography, is provided in Table 2.
Tableau 2 : composition de l’effluent hydrocarboné liquide utilisé comme charge pour l’ hydroconversion Table 2: composition of the liquid hydrocarbon effluent used as feedstock for hydroconversion
Exemple 4 : Hydroconversion de l'effluent hydrocarboné liquide issu de l’exemple 3 selon un procédé non conforme à l’invention Example 4: Hydroconversion of the liquid hydrocarbon effluent from Example 3 according to a process not in accordance with the invention
Dans un réacteur régulé en température de manière à assurer un fonctionnement isotherme et à lit fixe chargé de 50 ml de catalyseur d’hydroconversion C2, le catalyseur étant préalablement sulfuré, on effectue l’hydroconversion de l’effluent hydrocarboné liquide issu de l’exemple 3. On introduit préalablement du soufre sous forme de diméthyldisulfure dans ledit effluent hydrocarboné liquide, de manière à obtenir une teneur totale en soufre de 500 ppm en poids dans ledit effluent hydrocarboné liquide. In a temperature-regulated reactor so as to ensure isothermal operation and with a fixed bed loaded with 50 ml of hydroconversion catalyst C2, the catalyst being previously sulfurized, the hydroconversion of the liquid hydrocarbon effluent from example 3. Sulfur is introduced beforehand in the form of dimethyldisulphide into said liquid hydrocarbon effluent, so as to obtain a total sulfur content of 500 ppm by weight in said liquid hydrocarbon effluent.
Le catalyseur C2 subit une étape de sulfuration in-situ dans l’unité, avec de l’isane additivé de 2% en poids de diméthyldisulfure, sous une pression totale de 5,1 MPa, un rapport hydrogène / isane additivé de 350 Nm3 par m3. Le volume d’isane additivé par volume de catalyseur et par heure est fixé à 1 h 1. La sulfuration est effectuée durant 12 heures à 350°C, avec une rampe de montée en température de 10°C par heure. Catalyst C2 undergoes an in-situ sulfurization step in the unit, with isane to which 2% by weight of dimethyldisulfide has been added, under a total pressure of 5.1 MPa, a hydrogen ratio / isane with additive of 350 Nm 3 per m 3 . The volume of isane added per volume of catalyst and per hour is set at 1 h 1 . The sulfurization is carried out for 12 hours at 350° C., with a temperature rise ramp of 10° C. per hour.
Après sulfuration les conditions opératoires de l’unité sont ajustées afin d’effectuer l’hydroconversion de l’effluent hydrocarboné liquide contenant 500 ppm poids de soufre :After sulfurization, the operating conditions of the unit are adjusted in order to carry out the hydroconversion of the liquid hydrocarbon effluent containing 500 ppm by weight of sulfur:
- WH (volume de charge / volume de catalyseur / heure) = 1 h 1 , - WH (volume of charge / volume of catalyst / hour) = 1 h 1 ,
- pression totale de travail : 5,1 MPa, - total working pressure: 5.1 MPa,
- rapport hydrogène / charge : 700 Nm3 d’hydrogène / m3 de charge. - hydrogen/charge ratio: 700 Nm 3 of hydrogen/m 3 of charge.
Le flux d'hydrogène utilisé et entrant dans l'étape d’hydroconversion est fourni par Air Product, il présente une pureté supérieure à 99,999%, il est exempt d’hydrogène sulfuré. Le rapport entre la pression partielle d’hydrogène sulfuré et la pression partielle en hydrogène est alors égal à 4.10-4. The hydrogen stream used and entering the hydroconversion stage is provided by Air Product, it has a purity greater than 99.999%, it is free of hydrogen sulphide. The ratio between the partial pressure of hydrogen sulphide and the partial pressure of hydrogen is then equal to 4.10 -4 .
Des paliers de température à 333 et 343°C sont effectués afin de varier la sévérité de l’hydroconversion. La mesure (typiquement journalière) du point de trouble (par la méthode ASTM D5773) de l’effluent liquide permet de suivre l’évolution des performances du catalyseur à chaque palier de température. Pour chaque température, la durée de test est prolongée jusqu’à obtenir un point de trouble stable. Une fois la stabilité du point de trouble atteinte, on accumule l’effluent liquide pendant 24 heures. Dans les conditions opératoires choisies, aucune désactivation du catalyseur n’est observée (voir Figure 1). Temperature stages at 333 and 343°C are carried out in order to vary the severity of the hydroconversion. The measurement (typically daily) of the cloud point (by the ASTM D5773 method) of the liquid effluent makes it possible to follow the evolution of the performance of the catalyst at each temperature level. For each temperature, the test duration is extended until a stable cloud point is obtained. Once cloud point stability is achieved, the liquid effluent is accumulated for 24 hours. Under the chosen operating conditions, no deactivation of the catalyst is observed (see Figure 1).
En sortie d’unité, une analyse en ligne par chromatographie en phase gazeuse et un compteur gaz permettent de calculer la masse d’hydrocarbures légers produits (essentiellement des hydrocarbures possédant 1 à 5 atomes de carbone) et présent dans le flux d’hydrogène. Ledit effluent liquide est ensuite pesé puis fractionné par distillation afin de déterminer le rendement distillât moyen (coupe 130°C+, correspondant aux hydrocarbures dont la température d’ébullition est de plus de 130°C). On leaving the unit, an online analysis by gas phase chromatography and a gas meter make it possible to calculate the mass of light hydrocarbons produced (essentially hydrocarbons with 1 to 5 carbon atoms) and present in the hydrogen flow. Said liquid effluent is then weighed then fractionated by distillation in order to determine the average distillate yield (cut 130° C. + , corresponding to hydrocarbons whose boiling point is more than 130° C.).
Le rendement en distillât moyen est calculé ainsi : The average distillate yield is calculated as follows:
Rendement (distillât moyen) = [(masse effluent liquide* %coupe 130 100) / (masse effluent liquide + masse d’hydrocarbures légers)] * 100 Yield (middle distillate) = [(mass liquid effluent* %cut 130 100) / (mass liquid effluent + mass of light hydrocarbons)] * 100
Par ailleurs le point de trouble et l'indice de cétane moteur de la coupe distillât moyen sont respectivement déterminés par la méthode ASTM D5773, et par la méthode CFR par l’ASTM D613. Les principales caractéristiques des effluents produits et les conditions opératoires associées sont reportées dans le tableau 3. Furthermore, the cloud point and the motor cetane number of the middle distillate cut are respectively determined by the ASTM D5773 method, and by the CFR method by ASTM D613. The main characteristics of the effluents produced and the associated operating conditions are shown in Table 3.
Exemple 5 : Hydroconversion de l'effluent hydrocarboné liquide issu de l’exemple 3 selon un procédé conforme à l’invention Example 5: Hydroconversion of the liquid hydrocarbon effluent from Example 3 according to a process in accordance with the invention
Dans un réacteur régulé en température de manière à assurer un fonctionnement isotherme et à lit fixe chargé de 50 ml de catalyseur d’hydroconversion C2, le catalyseur étant préalablement sulfuré, on effectue l’hydroconversion de l’effluent hydrocarboné liquide issu de l’exemple 3. On introduit préalablement du soufre sous forme de diméthyldisulfure dans ledit effluent hydrocarboné liquide, de manière à obtenir une teneur totale en soufre de 50 ppm en poids dans ledit effluent hydrocarboné liquide. In a temperature-regulated reactor so as to ensure isothermal operation and with a fixed bed loaded with 50 ml of hydroconversion catalyst C2, the catalyst being previously sulfurized, the hydroconversion of the liquid hydrocarbon effluent from example 3. Sulfur is introduced beforehand in the form of dimethyldisulphide into said liquid hydrocarbon effluent, so as to obtain a total sulfur content of 50 ppm by weight in said liquid hydrocarbon effluent.
Le catalyseur C2 subit une étape de sulfuration identique à celle reportée dans l’exemple 4.Catalyst C2 undergoes a sulfurization step identical to that reported in Example 4.
Après sulfuration les conditions opératoires de l’unité sont ajustées afin d’effectuer l’hydroconversion de l’effluent hydrocarboné liquide contenant 50 ppm poids de soufre: After sulfurization, the operating conditions of the unit are adjusted in order to carry out the hydroconversion of the liquid hydrocarbon effluent containing 50 ppm by weight of sulfur:
- WH (volume de charge / volume de catalyseur / heure) = 1 h 1 , - WH (volume of charge / volume of catalyst / hour) = 1 h 1 ,
- pression totale de travail : 5,1 MPa, - total working pressure: 5.1 MPa,
- rapport hydrogène / charge : 700 Nm3 d’hydrogène / m3 de charge. - hydrogen/charge ratio: 700 Nm 3 of hydrogen/m 3 of charge.
Les conditions opératoires sont donc les mêmes que celles de l’exemple 4, seule la teneur en soufre dans l’effluent hydrocarboné liquide est différente. The operating conditions are therefore the same as those of Example 4, only the sulfur content in the liquid hydrocarbon effluent is different.
Le flux d'hydrogène utilisé et entrant dans l'étape d’hydroconversion est fourni par Air Product, il présente une pureté supérieure à 99,999% en volume, il est exempt d’hydrogène sulfuré. Le rapport entre la pression partielle d’hydrogène sulfuré et la pression partielle en hydrogène est alors égal à 4.10-5. The hydrogen stream used and entering the hydroconversion stage is supplied by Air Product, it has a purity greater than 99.999% by volume, it is free of hydrogen sulphide. The ratio between the partial pressure of hydrogen sulphide and the partial pressure of hydrogen is then equal to 4.10 -5 .
Les paliers de température sont ajustés afin d’obtenir des points de trouble du distillât moyen comparables à ceux obtenus dans l’exemple 4. La mesure (typiquement journalière) du point de trouble de l’effluent liquide permet de suivre l’évolution des performances du catalyseur à chaque palier de température. Pour chaque température, la durée de test est prolongée jusqu’à obtenir un point de trouble stable. Une fois la stabilité du point de trouble atteinte, on accumule l’effluent liquide pendant 24 heures. Dans les conditions opératoires choisies, aucune désactivation du catalyseur n’est observée. The temperature stages are adjusted in order to obtain cloud points of the middle distillate comparable to those obtained in example 4. The measurement (typically daily) of the cloud point of the liquid effluent makes it possible to follow the evolution of the performances catalyst at each temperature level. For each temperature, the test duration is extended until a stable cloud point is obtained. Once cloud point stability is achieved, the liquid effluent is accumulated for 24 hours. Under the chosen operating conditions, no deactivation of the catalyst is observed.
Ledit effluent liquide est ensuite pesé puis fractionné par distillation afin de déterminer le rendement distillât moyen de la manière reportée dans l’exemple 4. Les principales caractéristiques des effluents produits et les conditions opératoires associées sont reportées dans le tableau 3. On constate que comparativement à l’exemple 4 non conforme, la diminution du rapport P(H2S)/P(H2) permet d’améliorer l’activité du catalyseur. En effet, la température nécessaire pour atteindre une valeur de point de trouble comparable est de 2 à 3 degrés plus basse. De plus, la diminution du rapport P(H2S)/P(H2) permet aussi d’améliorer la sélectivité du catalyseur puisque pour une valeur de point de trouble comparable, le rendement en distillât moyen augmente de 5 points. Said liquid effluent is then weighed and then fractionated by distillation in order to determine the average distillate yield in the manner reported in Example 4. The main characteristics of the effluents produced and the associated operating conditions are shown in Table 3. It can be seen that compared to non-compliant Example 4, the reduction in the P(H2S)/P(H2) ratio makes it possible to improve the activity of the catalyst. Indeed, the temperature required to reach a comparable cloud point value is 2 to 3 degrees lower. In addition, the reduction in the P(H2S)/P(H2) ratio also makes it possible to improve the selectivity of the catalyst since for a comparable cloud point value, the yield of middle distillate increases by 5 points.
Exemple 6 : Hydroconversion de l'effluent hydrocarboné liquide issu de l’exemple 3 selon un procédé conforme à l’invention Example 6: Hydroconversion of the liquid hydrocarbon effluent resulting from example 3 according to a method in accordance with the invention
Dans un réacteur régulé en température de manière à assurer un fonctionnement isotherme et à lit fixe chargé de 50 ml de catalyseur d’hydroconversion C2, le catalyseur étant préalablement sulfuré, on effectue l’hydroconversion de l’effluent hydrocarboné liquide issu de l’exemple 3. On introduit préalablement du soufre sous forme de diméthyldisulfure dans ledit effluent hydrocarboné liquide, de manière à obtenir une teneur totale en soufre de 15 ppm en poids dans ledit effluent hydrocarboné liquide. In a temperature-regulated reactor so as to ensure isothermal operation and with a fixed bed loaded with 50 ml of hydroconversion catalyst C2, the catalyst being previously sulfurized, the hydroconversion of the liquid hydrocarbon effluent from example 3. Sulfur is introduced beforehand in the form of dimethyldisulphide into said liquid hydrocarbon effluent, so as to obtain a total sulfur content of 15 ppm by weight in said liquid hydrocarbon effluent.
Le catalyseur C2 subit une étape de sulfuration identique à celle reportée dans l’exemple 4.Catalyst C2 undergoes a sulfurization step identical to that reported in Example 4.
Après sulfuration les conditions opératoires de l’unité sont ajustées afin d’effectuer l’hydroconversion de l’effluent hydrocarboné liquide contenant 50 ppm poids de soufre: After sulfurization, the operating conditions of the unit are adjusted in order to carry out the hydroconversion of the liquid hydrocarbon effluent containing 50 ppm by weight of sulfur:
- WH (volume de charge / volume de catalyseur / heure) = 1 h 1 , - WH (volume of charge / volume of catalyst / hour) = 1 h 1 ,
- pression totale de travail : 5,1 MPa, - total working pressure: 5.1 MPa,
- rapport hydrogène / charge : 700 Nm3 d’hydrogène / m3 de charge. - hydrogen/charge ratio: 700 Nm 3 of hydrogen/m 3 of charge.
Les conditions opératoires sont donc les mêmes que celles de l’exemple 4, seule la teneur en soufre dans l’effluent hydrocarboné liquide est différente. The operating conditions are therefore the same as those of Example 4, only the sulfur content in the liquid hydrocarbon effluent is different.
Le flux d'hydrogène utilisé et entrant dans l'étape d’hydroconversion est fourni par Air Product, il présente une pureté supérieure à 99,999% en volume, il est exempt d’hydrogène sulfuré. Le rapport entre la pression partielle d’hydrogène sulfuré et la pression partielle en hydrogène est alors égal à 1 ,2.10-5. The hydrogen stream used and entering the hydroconversion stage is supplied by Air Product, it has a purity greater than 99.999% by volume, it is free of hydrogen sulphide. The ratio between the partial pressure of hydrogen sulphide and the partial pressure of hydrogen is then equal to 1.2.10 -5 .
Les paliers de température sont ajustés afin d’obtenir des points de trouble du distillât moyen comparables à ceux obtenus dans l’exemple 4. La mesure (typiquement journalière) du point de trouble de l’effluent liquide permet de suivre l’évolution des performances du catalyseur à chaque palier de température. Pour chaque température, la durée de test est prolongée jusqu’à obtenir un point de trouble stable. Une fois la stabilité du point de trouble atteinte, on accumule l’effluent liquide pendant 24 heures. Dans les conditions opératoires choisies, aucune désactivation du catalyseur n’est observée. The temperature stages are adjusted in order to obtain cloud points of the middle distillate comparable to those obtained in example 4. The measurement (typically daily) of the cloud point of the liquid effluent makes it possible to follow the evolution of the performances catalyst at each temperature level. For each temperature, the test duration is extended until a stable cloud point is obtained. Once the stability of the cloud point is reached, we accumulates liquid effluent for 24 hours. Under the operating conditions chosen, no deactivation of the catalyst is observed.
Ledit effluent liquide est ensuite pesé puis fractionné par distillation afin de déterminer le rendement distillât moyen de la manière reportée dans l’exemple 4. Les principales caractéristiques des effluents produits et les conditions opératoires associées sont reportées dans le tableau 3. On constate que comparativement à l’exemple 4 non conforme, la diminution du rapport P(H2S)/P(H2) permet d’améliorer l’activité du catalyseur. En effet, la température nécessaire pour atteindre une valeur de point de trouble comparable est de 5 à 6 degrés plus basse. De plus, la diminution du rapport P(H2S)/P(H2) permet aussi d’améliorer la sélectivité du catalyseur puisque pour une valeur de point de trouble comparable, le rendement en distillât moyen augmente de 6 points. Said liquid effluent is then weighed and then fractionated by distillation in order to determine the average distillate yield in the manner reported in Example 4. The main characteristics of the effluents produced and the associated operating conditions are reported in Table 3. It is noted that compared to Example 4 not conforming, the reduction of the P(H 2 S)/P(H2) ratio makes it possible to improve the activity of the catalyst. Indeed, the temperature required to reach a comparable cloud point value is 5 to 6 degrees lower. In addition, the reduction in the P(H 2 S)/P(H2) ratio also makes it possible to improve the selectivity of the catalyst since for a comparable cloud point value, the yield of middle distillate increases by 6 points.
Tableau 3 : Principales caractéristiques des effluents produits par hydroconversion et conditions opératoires associées Exemple 7 : Hydroconversion de l'effluent hydrocarboné liquide issu de l’exemple 3 selon un procédé non conforme à l’invention Table 3: Main characteristics of the effluents produced by hydroconversion and associated operating conditions Example 7: Hydroconversion of the liquid hydrocarbon effluent from Example 3 according to a process not in accordance with the invention
Dans un réacteur régulé en température de manière à assurer un fonctionnement isotherme et à lit fixe chargé de 50 ml de catalyseur d’hydroconversion C2, le catalyseur étant préalablement sulfuré, on effectue l’hydroconversion de l’effluent hydrocarboné liquide issu de l’exemple 3. On introduit préalablement du soufre sous forme de diméthyldisulfure dans ledit effluent hydrocarboné liquide, de manière à obtenir une teneur totale en soufre de 50 ppm en poids dans ledit effluent hydrocarboné liquide. In a temperature-regulated reactor so as to ensure isothermal operation and with a fixed bed loaded with 50 ml of hydroconversion catalyst C2, the catalyst being previously sulfurized, the hydroconversion of the liquid hydrocarbon effluent from example 3. Sulfur is introduced beforehand in the form of dimethyldisulphide into said liquid hydrocarbon effluent, so as to obtain a total sulfur content of 50 ppm by weight in said liquid hydrocarbon effluent.
Le catalyseur C2 subit une étape de sulfuration in-situ dans l’unité, avec de l’isane additivé de 2% en poids de diméthyldisulfure, sous une pression totale de 5,1 MPa, un rapport hydrogène / gazole additivé de 700 Nm3 par m3. Le volume d’isane additivé par volume de catalyseur et par heure est fixé à 1 h 1. La sulfuration est effectuée durant 12 heures à 350°C, avec une rampe de montée en température de 10°C par heure. Catalyst C2 undergoes an in-situ sulphidation step in the unit, with isane to which 2% by weight of dimethyl disulphide has been added, under a total pressure of 5.1 MPa, a hydrogen/gasoil ratio with additive of 700 Nm 3 per m 3 . The volume of isane added per volume of catalyst and per hour is set at 1 h 1 . The sulfurization is carried out for 12 hours at 350° C., with a temperature rise ramp of 10° C. per hour.
Après sulfuration les conditions opératoires de l’unité sont ajustées afin d’effectuer l’hydroconversion de l’effluent hydrocarboné liquide contenant 50 ppm poids de soufre: After sulfurization, the operating conditions of the unit are adjusted in order to carry out the hydroconversion of the liquid hydrocarbon effluent containing 50 ppm by weight of sulfur:
- WH (volume de charge / volume de catalyseur / heure) = 0,6 h 1 , - WH (volume of charge / volume of catalyst / hour) = 0.6 h 1 ,
- pression totale de travail : 2,8 MPa, - total working pressure: 2.8 MPa,
- rapport hydrogène / charge : 470 Nm3 d’hydrogène / m3 de charge. - hydrogen/charge ratio: 470 Nm 3 of hydrogen/m 3 of charge.
Le flux d'hydrogène utilisé dans l'étape d’hydroconversion est fourni par Air Product, il présente une pureté supérieure à 99,999% en volume, il est exempt d’hydrogène sulfuré. Le rapport entre la pression partielle d’hydrogène sulfuré et la pression partielle en hydrogène est alors égal à 6.10-5. The hydrogen stream used in the hydroconversion step is supplied by Air Product, it has a purity greater than 99.999% by volume, it is free of hydrogen sulphide. The ratio between the partial pressure of hydrogen sulphide and the partial pressure of hydrogen is then equal to 6.10 -5 .
Comparativement aux exemples 4 et 5, les conditions opératoires choisies sont plus exigeantes vis-à-vis de la stabilité du catalyseur. Sans vouloir être liée par une quelconque théorie, la demanderesse pense que la diminution de la pression totale de travail ainsi que du rapport hydrogène/charge peuvent favoriser la désactivation par cokage du catalyseur. Compared to Examples 4 and 5, the operating conditions chosen are more demanding with respect to the stability of the catalyst. Without wishing to be bound by any theory, the Applicant believes that the reduction in the total working pressure as well as in the hydrogen/charge ratio can promote deactivation by coking of the catalyst.
Des paliers de température à 326 puis 336°C sont effectués afin de varier la sévérité de l’hydroconversion, et un point retour est effectué à 326°C pour évaluer la désactivation du catalyseur. La mesure régulière (typiquement journalière) du point de trouble de l’effluent liquide permet de suivre l’évolution des performances du catalyseur à chaque palier de température. Pour chaque température, la durée de test est prolongée jusqu’à obtenir un point de trouble stable. Une fois la stabilité du point de trouble atteinte, on accumule l’effluent liquide pendant 24 heures. Ledit effluent liquide est ensuite pesé puis fractionné par distillation afin de déterminer le rendement distillât moyen de la manière reportée dans l’exemple 4. Temperature stages at 326 then 336°C are carried out in order to vary the severity of the hydroconversion, and a return point is carried out at 326°C to evaluate the deactivation of the catalyst. The regular measurement (typically daily) of the cloud point of the liquid effluent makes it possible to follow the evolution of the performance of the catalyst at each temperature level. For each temperature, the test duration is extended until a stable cloud point is obtained. Once cloud point stability is achieved, the liquid effluent is accumulated for 24 hours. Said liquid effluent is then weighed and then fractionated by distillation in order to determine the average distillate yield in the manner reported in Example 4.
La figure 2 représente l’évolution de la mesure journalière de l’effluent liquide au cours du test. Dans les conditions opératoires choisies, le catalyseur subit une désactivation à chaque température du test comme en témoigne l’augmentation de la valeur du point de trouble entre le début et la fin de chaque palier de température. Par exemple au premier point à 326°C, le point de trouble augmente de -19°C (après 36 heures) à -10°C à 252 heures, valeur à laquelle l’activité du catalyseur se stabilise. Une désactivation est également observée au second point (palier de température à 336°C). Enfin, le point retour effectué à 326°C confirme la désactivation du catalyseur : le point de trouble se stabilise à 1°C, contre -10°C en valeur stabilisée à la fin du premier point. L’augmentation du point de trouble entre la première valeur mesurée et la dernière valeur mesurée est employée pour évaluer la désactivation du catalyseur : Figure 2 represents the evolution of the daily measurement of the liquid effluent during the test. Under the chosen operating conditions, the catalyst undergoes deactivation at each temperature of the test as evidenced by the increase in the value of the cloud point between the start and the end of each temperature level. For example at the first point at 326°C, the cloud point increases from -19°C (after 36 hours) to -10°C at 252 hours, at which point catalyst activity stabilizes. A deactivation is also observed at the second point (temperature plateau at 336° C.). Finally, the return point carried out at 326°C confirms the deactivation of the catalyst: the cloud point stabilizes at 1°C, against -10°C as a stabilized value at the end of the first point. The increase in cloud point between the first measured value and the last measured value is used to assess catalyst deactivation:
Désactivation du catalyseur = point de trouble final (°C) - point de trouble initial (°C) Catalyst deactivation = final cloud point (°C) - initial cloud point (°C)
La désactivation du catalyseur ainsi que les principales caractéristiques des effluents produits et les conditions opératoires associées aux point n°1 et point n°2 sont reportées dans le tableau 4. The deactivation of the catalyst as well as the main characteristics of the effluents produced and the operating conditions associated with point No. 1 and point No. 2 are reported in Table 4.
Exemple 8 : Hydroconversion de l'effluent hydrocarboné liquide issu de l’exemple 3 selon un procédé conforme à l’invention Example 8: Hydroconversion of the liquid hydrocarbon effluent resulting from example 3 according to a method in accordance with the invention
Dans un réacteur régulé en température de manière à assurer un fonctionnement isotherme et à lit fixe chargé de 50 ml de catalyseur d’hydroconversion C2, le catalyseur étant préalablement sulfuré, on effectue l’hydroconversion de l’effluent hydrocarboné liquide issu de l’exemple 3. On introduit préalablement du soufre sous forme de diméthyldisulfure dans ledit effluent hydrocarboné liquide, de manière à obtenir une teneur totale en soufre de 10 ppm en poids dans ledit effluent hydrocarboné liquide. In a temperature-regulated reactor so as to ensure isothermal operation and with a fixed bed loaded with 50 ml of hydroconversion catalyst C2, the catalyst being previously sulfurized, the hydroconversion of the liquid hydrocarbon effluent from example 3. Sulfur is introduced beforehand in the form of dimethyldisulphide into said liquid hydrocarbon effluent, so as to obtain a total sulfur content of 10 ppm by weight in said liquid hydrocarbon effluent.
Le catalyseur C2 subit une étape de sulfuration identique à celle reportée dans l’exemple 6.Catalyst C2 undergoes a sulfurization step identical to that reported in Example 6.
Après sulfuration les conditions opératoires de l’unité sont ajustées afin d’effectuer l’hydroconversion de l’effluent hydrocarboné liquide contenant 11 ppm poids de soufre :After sulfurization, the operating conditions of the unit are adjusted in order to carry out the hydroconversion of the liquid hydrocarbon effluent containing 11 ppm by weight of sulfur:
- WH (volume de charge / volume de catalyseur / heure) = 0,6 h 1 , - WH (volume of charge / volume of catalyst / hour) = 0.6 h 1 ,
- pression totale de travail : 2,8 MPa, - total working pressure: 2.8 MPa,
- rapport hydrogène / charge : 470 Nm3 d’hydrogène / m3 de charge. - hydrogen/charge ratio: 470 Nm 3 of hydrogen/m 3 of charge.
Les conditions opératoires sont donc les mêmes que celles de l’exemple 6, seule la teneur en soufre dans l’effluent hydrocarboné liquide est différente. The operating conditions are therefore the same as those of Example 6, only the sulfur content in the liquid hydrocarbon effluent is different.
Le flux d'hydrogène utilisé dans l'étape d’hydroconversion est fourni par Air Product, il présente une pureté supérieure à 99,999% en volume, il est exempt d’hydrogène sulfuré. Le rapport entre la pression partielle d’hydrogène sulfuré et la pression partielle en hydrogène est alors égal à 1 ,2 105. Des paliers de température à 326 puis 336°C sont effectués afin de varier la sévérité de l’hydroconversion, et un point retour est effectué à 326°C pour évaluer la désactivation du catalyseur. La mesure régulière (typiquement journalière) du point de trouble de l’effluent liquide permet de suivre l’évolution des performances du catalyseur à chaque palier de température. Pour chaque température, la durée de test est prolongée jusqu’à obtenir un point de trouble stable. Une fois la stabilité du point de trouble atteinte, on accumule l’effluent liquide pendant 24 heures. Ledit effluent liquide est ensuite pesé puis fractionné par distillation afin de déterminer le rendement distillât moyen de la manière reportée dans l’exemple 4. The hydrogen stream used in the hydroconversion step is supplied by Air Product, it has a purity greater than 99.999% by volume, it is free of hydrogen sulphide. The ratio between the partial pressure of hydrogen sulphide and the partial pressure of hydrogen is then equal to 1.2 10 5 . Temperature stages at 326 then 336° C. are carried out in order to vary the severity of the hydroconversion, and a return point is carried out at 326° C. to evaluate the deactivation of the catalyst. The regular measurement (typically daily) of the cloud point of the liquid effluent makes it possible to follow the evolution of the performance of the catalyst at each temperature level. For each temperature, the test duration is extended until a stable cloud point is obtained. Once cloud point stability has been achieved, the liquid effluent is accumulated for 24 hours. Said liquid effluent is then weighed and then fractionated by distillation in order to determine the average distillate yield in the manner reported in Example 4.
La figure 3 représente l’évolution de la mesure journalière de l’effluent liquide au cours du test. Dans les conditions opératoires choisies, le catalyseur subit une désactivation à chaque température du test, tout comme cela est observé dans l’exemple 7, non conforme. En revanche la désactivation est moins prononcée que dans l’exemple 7. Par exemple au premier point à 326°C, le point de trouble augmente de -20°C (après 24 heures) à -15°C à 288 heures, valeur à laquelle l’activité du catalyseur se stabilise. Une désactivation est également observée au second point (palier de température à 336°C). La désactivation moindre du catalyseur permet d’atteindre des valeurs stabilisées de point de trouble plus basses que dans l’exemple 6 : -15°C à la fin du point 1 (contre -10°C dans l’exemple 6), -22°C à la fin du point 2 (contre - 16°C dans l’exemple 6). Enfin, la valeur stabilisée du point de trouble au point 3 (point retour) confirme la moindre désactivation : -4°C contre +1°C dans l’exemple 6. Figure 3 represents the evolution of the daily measurement of the liquid effluent during the test. Under the chosen operating conditions, the catalyst undergoes deactivation at each temperature of the test, just as is observed in Example 7, which is non-compliant. On the other hand, the deactivation is less pronounced than in example 7. For example at the first point at 326° C., the cloud point increases from -20° C. (after 24 hours) to -15° C. at 288 hours, value at which the activity of the catalyst stabilizes. A deactivation is also observed at the second point (temperature plateau at 336° C.). The less deactivation of the catalyst makes it possible to reach stabilized values of cloud point lower than in example 6: -15°C at the end of point 1 (compared to -10°C in example 6), -22 °C at the end of point 2 (against - 16°C in example 6). Finally, the stabilized value of the cloud point at point 3 (return point) confirms the slightest deactivation: -4°C against +1°C in example 6.
La désactivation du catalyseur et les principales caractéristiques des effluents produits et les conditions opératoires associées sont reportées dans le tableau 4. On constate que comparativement à l’exemple 6 non conforme, la diminution du rapport P(H2S)/P(H2) permet, toutes choses égales par ailleurs, de multiples gains lorsque les conditions opératoires provoquent une désactivation du catalyseur. D 'une part, comparativement à l’exemple 6 non conforme, la désactivation est moindre. D’autre part, pour une température de réaction donnée, la diminution du rapport P(H2S)/P(H2) permet à la fois d’améliorer le rendement en distillât moyen ainsi que les propriétés à froid dudit distillât moyen. The deactivation of the catalyst and the main characteristics of the effluents produced and the associated operating conditions are shown in Table 4. all other things being equal, multiple gains when the operating conditions cause catalyst deactivation. On the one hand, compared to non-compliant example 6, the deactivation is less. On the other hand, for a given reaction temperature, the reduction in the P(H2S)/P(H2) ratio makes it possible both to improve the yield of middle distillate as well as the cold properties of said middle distillate.
Tableau 4 : Principales caractéristiques des effluents produits par hydroconversion et conditions opératoires associées Table 4: Main characteristics of effluents produced by hydroconversion and associated operating conditions
Exemple 9 : Hydroconversion de l'effluent hydrocarboné liquide issu de l’exemple 3 selon un procédé conforme à l’invention Example 9: Hydroconversion of the liquid hydrocarbon effluent resulting from example 3 according to a method in accordance with the invention
Lors de d’utilisation du catalyseur dans l’unité industrielle d’hydroconversion, il peut arriver que le rapport P(H2S)/P(H2) ne soit pas conforme à l’invention durant certaines périodes. Par exemple en raison d’un mauvais fonctionnement ponctuel des outils éventuels de purification de l’hydrogène envoyé dans l’unité et/ou de l’effluent hydrocarboné liquide issu de l’étape c). Le réajustement du rapport P(H2S)/P(H2) dans une gamme conforme à l’invention, après un fonctionnement dans des conditions non conformes, permet également d’améliorer les performances du catalyseur comme cela est illustré ci-dessous. When using the catalyst in the industrial hydroconversion unit, it may happen that the P(H 2 S)/P(H2) ratio is not in accordance with the invention during certain periods. For example due to occasional malfunctioning of any tools for purifying the hydrogen sent to the unit and/or the liquid hydrocarbon effluent from step c). The readjustment of the P(H 2 S)/P(H2) ratio in a range in accordance with the invention, after operation under non-compliant conditions, also makes it possible to improve the performance of the catalyst as illustrated below.
Dans un réacteur régulé en température de manière à assurer un fonctionnement isotherme et à lit fixe chargé de 50 ml de catalyseur d’hydroconversion C2, le catalyseur étant préalablement sulfuré, on effectue l’hydroconversion de l’effluent hydrocarboné liquide issu de l’exemple 3. In a temperature-regulated reactor so as to ensure isothermal operation and with a fixed bed loaded with 50 ml of hydroconversion catalyst C2, the catalyst being previously sulfurized, the hydroconversion of the liquid hydrocarbon effluent from example 3.
Le catalyseur C2 subit une étape de sulfuration identique à celle reportée dans l’exemple 6.Catalyst C2 undergoes a sulfurization step identical to that reported in Example 6.
Après sulfuration on effectue l’étape d’hydroconversion de l’effluent hydrocarboné liquide issu de l’exemple 3 dans différentes conditions opératoires, dont certaines simulent un fonctionnement temporaire de l’unité non conforme à l’invention durant certaines périodes. Le tableau 5 reporte les différentes conditions opératoires mises en œuvre. Durant tout le test, la température, la pression totale, le rapport hydrogène/charge et la WH sont maintenus constants. Les points 1 et 4 sont non conformes à l’invention en raison de leur rapport P(H2S)/P(H2) trop élevé (additivation de diméthyldisulfure dans la charge), alors que les points 2 et 3 sont conformes. Pour les points 2 et 4 des impuretés oxygénées sont également présentes dans le flux d’hydrogène. Ceci est effectué par utilisation d’un mélange étalon contentant de l’hydrogène, du monoxyde de carbone et du dioxyde de carbone fourni par Air Product. La teneur en O atomique contenue dans le flux d’hydrogène est alors de 4200 ppm en volume. La mesure régulière (typiquement journalière) du point de trouble de l’effluent liquide permet de suivre l’évolution des performances du catalyseur à chaque palier de température. Pour chaque température, la durée de test est prolongée jusqu’à obtenir un point de trouble stable. Une fois la stabilité du point de trouble atteinte, on accumule l’effluent liquide pendant 24 heures. Ledit effluent liquide est ensuite pesé puis fractionné par distillation afin de déterminer le rendement distillât moyen de la manière reportée dans l’exemple 4. After sulfurization, the step of hydroconversion of the liquid hydrocarbon effluent from Example 3 is carried out under different operating conditions, some of which simulate temporary operation of the unit not in accordance with the invention during certain periods. the Table 5 shows the different operating conditions implemented. Throughout the test, the temperature, the total pressure, the hydrogen/charge ratio and the WH are kept constant. Points 1 and 4 are not in accordance with the invention because of their too high P(H2S)/P(H2) ratio (additivation of dimethyldisulphide in the charge), whereas points 2 and 3 are in conformity. For points 2 and 4 oxygenated impurities are also present in the hydrogen flow. This is done by using a standard mixture containing hydrogen, carbon monoxide and carbon dioxide supplied by Air Product. The atomic O content contained in the hydrogen flow is then 4200 ppm by volume. The regular measurement (typically daily) of the cloud point of the liquid effluent makes it possible to follow the evolution of the performance of the catalyst at each temperature level. For each temperature, the test duration is extended until a stable cloud point is obtained. Once cloud point stability has been achieved, the liquid effluent is accumulated for 24 hours. Said liquid effluent is then weighed and then fractionated by distillation in order to determine the average distillate yield in the manner reported in Example 4.
La figure 4 représente l’évolution de la mesure journalière de l’effluent liquide au cours du test. Dans les conditions opératoires choisies, le catalyseur subit une désactivation au premier point du test (non conforme), tout comme cela est observé dans l’exemple 7 et 8. On observe que le point de trouble se stabilise à une valeur de -6°C. Toutes choses égales par ailleurs, l’ajustement du rapport P(H2S)/P(H2) à une valeur conforme à l’invention, au point 2, permet au catalyseur de regagner en activité. Au point 2 le point de trouble se stabilise à -8°C. Au point 3, l’ajout de composés oxygénés dans l’hydrogène induit une perte d’activité du catalyseur, le point de trouble se stabilisant alors à -5°C. Au point 4, toutes choses égales par ailleurs, l’ajustement du rapport P(H2S)/P(H2) à une valeur non conforme à l’invention induit encore une perte d’activité du catalyseur, le point de trouble se stabilisant alors à 0°C. Que ce soit en présence ou en absence de composés oxygénés, il apparaît donc avantageux de travailler dans une gamme de rapport P(H2)/P(H2S) conforme à l’invention. Figure 4 represents the evolution of the daily measurement of the liquid effluent during the test. Under the operating conditions chosen, the catalyst undergoes deactivation at the first point of the test (non-compliant), just as is observed in examples 7 and 8. It is observed that the cloud point stabilizes at a value of -6° vs. All other things being equal, adjusting the P(H2S)/P(H2) ratio to a value in accordance with the invention, at point 2, allows the catalyst to regain activity. At point 2 the cloud point stabilizes at -8°C. At point 3, the addition of oxygenated compounds in the hydrogen induces a loss of activity of the catalyst, the cloud point then stabilizing at -5°C. At point 4, all other things being equal, the adjustment of the P(H2S)/P(H2) ratio to a value not in accordance with the invention still induces a loss of activity of the catalyst, the cloud point then stabilizing at 0°C. Whether in the presence or absence of oxygenated compounds, it therefore appears advantageous to work in a range of P(H2)/P(H2S) ratios in accordance with the invention.
Enfin, dans le tableau 5 on reporte les principales caractéristiques des effluents produits à chaque point de fonctionnement, lorsque l’unité est stabilisée. Ici encore le mode de fonctionnement conforme à l’invention est avantageux. Toutes choses égales par ailleurs l’ajustement du rapport P(H2S)/P(H2) à des valeurs conformes à l’invention permet à la fois de gagner en rendement en distillât moyen mais aussi d’améliorer les propriétés à froid dudit distillât moyen (comparaison point 1 et point 2 et comparaison point 3 et point 4). Finally, Table 5 shows the main characteristics of the effluents produced at each operating point, when the unit is stabilized. Here again the mode of operation according to the invention is advantageous. All other things being equal, adjusting the P(H 2 S)/P(H2) ratio to values in accordance with the invention makes it possible both to gain in middle distillate yield but also to improve the cold properties of said middle distillate (comparison point 1 and point 2 and comparison point 3 and point 4).
Tableau 5 : Principales caractéristiques des effluents produits par hydroconversion et conditions opératoires associées pour l’exemple 9 Table 5: Main characteristics of the effluents produced by hydroconversion and associated operating conditions for Example 9
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR2104684A FR3122661B1 (en) | 2021-05-04 | 2021-05-04 | OPTIMIZED PROCESS FOR HYDROTREATMENT AND HYDROCONVERSION OF FEEDS FROM RENEWABLE SOURCES |
PCT/EP2022/060159 WO2022233561A1 (en) | 2021-05-04 | 2022-04-15 | Optimized process for the hydrotreating and hydroconversion of feedstocks derived from renewable sources |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4334412A1 true EP4334412A1 (en) | 2024-03-13 |
Family
ID=76920900
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP22723126.3A Pending EP4334412A1 (en) | 2021-05-04 | 2022-04-15 | Optimized process for the hydrotreating and hydroconversion of feedstocks derived from renewable sources |
Country Status (7)
Country | Link |
---|---|
US (1) | US20240240108A1 (en) |
EP (1) | EP4334412A1 (en) |
CN (1) | CN117280014A (en) |
AR (1) | AR125744A1 (en) |
BR (1) | BR112023021919A2 (en) |
FR (1) | FR3122661B1 (en) |
WO (1) | WO2022233561A1 (en) |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4992605A (en) | 1988-02-16 | 1991-02-12 | Craig Wayne K | Production of hydrocarbons with a relatively high cetane rating |
CA2149685C (en) | 1994-06-30 | 1999-09-14 | Jacques Monnier | Conversion of depitched tall oil to diesel fuel additive |
FR2846574B1 (en) | 2002-10-30 | 2006-05-26 | Inst Francais Du Petrole | CATALYST AND PROCESS FOR HYDROCRACKING HYDROCARBON LOADS |
DK1681337T3 (en) | 2005-01-14 | 2011-03-07 | Neste Oil Oyj | Process for the production of hydrocarbons |
DK1741768T4 (en) | 2005-07-04 | 2023-04-24 | Neste Oyj | Process for the production of diesel hydrocarbons |
WO2007082589A1 (en) | 2006-01-23 | 2007-07-26 | Shell Internationale Research Maatschappij B.V. | Hydrogenation catalyst and use thereof for hdrogenating fischer-tropsch endproducts |
EP2296810B1 (en) | 2008-06-25 | 2022-05-04 | Shell Internationale Research Maatschappij B.V. | A process for producing paraffinic hydrocarbons from feedstocks comprising glycerides and/or fatty acids |
FR2940144B1 (en) | 2008-12-23 | 2016-01-22 | Inst Francais Du Petrole | PROCESS FOR TRANSFORMING EXCELLENT QUALITY RENEWABLE FUEL ORIGLENT EFFLUENTS USING A MOLYBDENATED CATALYST |
FR2943071B1 (en) | 2009-03-10 | 2011-05-13 | Inst Francais Du Petrole | PROCESS FOR THE HYDRODESOXYGENATION OF CHARGES RESULTING FROM RENEWABLE SOURCES WITH LIMITED CONVERSION TO DECARBOXYLATION USING A CATALYST BASED ON NICKEL AND MOLYBDEN |
US8729330B2 (en) | 2010-03-09 | 2014-05-20 | Exxonmobil Research And Engineering Company | Hydroprocessing of diesel range biomolecules |
FR2987842B1 (en) * | 2012-03-12 | 2015-02-27 | IFP Energies Nouvelles | OPTIMIZED PROCESS FOR THE VALORISATION OF BIO-OILS TO HYDROCARBON FUELS |
DK201800550A1 (en) * | 2018-09-06 | 2019-08-19 | Haldor Topsøe A/S | 2 stage process with conversion of light ends product |
-
2021
- 2021-05-04 FR FR2104684A patent/FR3122661B1/en active Active
-
2022
- 2022-04-15 WO PCT/EP2022/060159 patent/WO2022233561A1/en active Application Filing
- 2022-04-15 BR BR112023021919A patent/BR112023021919A2/en unknown
- 2022-04-15 CN CN202280032957.7A patent/CN117280014A/en active Pending
- 2022-04-15 US US18/558,622 patent/US20240240108A1/en active Pending
- 2022-04-15 EP EP22723126.3A patent/EP4334412A1/en active Pending
- 2022-05-02 AR ARP220101151A patent/AR125744A1/en unknown
Also Published As
Publication number | Publication date |
---|---|
FR3122661B1 (en) | 2024-05-17 |
FR3122661A1 (en) | 2022-11-11 |
BR112023021919A2 (en) | 2023-12-19 |
WO2022233561A1 (en) | 2022-11-10 |
CN117280014A (en) | 2023-12-22 |
US20240240108A1 (en) | 2024-07-18 |
AR125744A1 (en) | 2023-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2210663B1 (en) | Method for transforming feedstocks from renewable sources into top-quality fuel by implementing a molybdenum-based catalyst | |
EP2228423B1 (en) | Method for hydrodeoxygenation of oils or fats with limited conversion to decarboxylation with an heterogeneous catalyst | |
EP2138552B1 (en) | Conversion process of feedstocks derived from renewable sources to diesel fuel basestocks of good quality using a zeolite catalyst | |
EP2473274B1 (en) | Method for converting charges from renewable sources involving coprocessing with a petroleum feedstock, using a molybdenum- and nickel-based catalyst | |
EP2468838B1 (en) | Production of paraffin fuels using renewable materials by a continuous hydrogen-treatment method | |
EP2138553B1 (en) | Method for converting charges from renewable sources based on high-quality diesel fuels implementing a zeolitic catalyst with no intermediate gas-liquid separation | |
EP2316909B1 (en) | Process for hydrotreating renewable sources with indirect heating implementing a molybdenum catalyst | |
FR2999596A1 (en) | Producing diesel bases used as e.g. marine fuel, by contacting filler with hydrotreating catalyst to produce effluent including e.g. hydrocarbon-based liquid fraction, contacting fraction with catalyst and separating effluent from fraction | |
FR2926087A1 (en) | MULTI-PROCESS PROCESS FOR THE PRODUCTION OF MEDIUM DISTILLATES BY HYDROISOMERIZATION AND HYDROCRACKING OF AN EFFLUENT PRODUCED BY THE FISCHER-TROPSCH PROCESS | |
WO2011027044A1 (en) | Method for converting charges from renewable sources involving coprocessing with a petroleum feedstock, using a molybdenum-based catalyst | |
WO2009106704A2 (en) | Method of producing middle distillates by sequenced hydroisomeration and hydrocracking of effluent produced by the fischer-tropsch process | |
EP2316910B1 (en) | Process for hydrotreating renewable sources with indirect heating implementing a nickel and molybdenum catalyst with a specific atomic ratio | |
EP2316908B1 (en) | Process for hydrotreating renewable sources with indirect heating | |
WO2011045482A1 (en) | Method for the hydroprocessing and hydroisomerisation of oils originating from renewable sources, using a modified zeolite | |
EP4334412A1 (en) | Optimized process for the hydrotreating and hydroconversion of feedstocks derived from renewable sources | |
FR3148602A1 (en) | One-step hydrotreatment and hydroisomerization process for vegetable oil using at least one sulfide catalyst with an isomerizing zeolite | |
FR3148603A1 (en) | Process for the hydrotreatment and hydroisomerization of vegetable oil in one step using at least one sulfide catalyst with a zeolite of structural type BEA alone or in mixture with a zeolite of structural type FAU | |
FR2981942A1 (en) | METHOD FOR HYDROPROCESSING AND HYDROISOMERIZING BIOMASS CHARGES IN WHICH THE HYDROSIOMERIZING EFFLUENT AND THE HYDROGEN FLOW CONTAIN A LIMITED OXYGEN CONTENT |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20231204 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20241218 |