EP4126842B1 - Trka inhibitor - Google Patents
Trka inhibitor Download PDFInfo
- Publication number
- EP4126842B1 EP4126842B1 EP21732765.9A EP21732765A EP4126842B1 EP 4126842 B1 EP4126842 B1 EP 4126842B1 EP 21732765 A EP21732765 A EP 21732765A EP 4126842 B1 EP4126842 B1 EP 4126842B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- pain
- compound
- mmol
- refers
- pharmaceutical composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003112 inhibitor Substances 0.000 title description 10
- 101150111783 NTRK1 gene Proteins 0.000 title description 3
- 208000002193 Pain Diseases 0.000 claims description 109
- 150000001875 compounds Chemical class 0.000 claims description 69
- 238000000034 method Methods 0.000 claims description 30
- 150000003839 salts Chemical class 0.000 claims description 30
- 238000011282 treatment Methods 0.000 claims description 21
- 239000008194 pharmaceutical composition Substances 0.000 claims description 18
- 208000004550 Postoperative Pain Diseases 0.000 claims description 15
- 239000002253 acid Substances 0.000 claims description 15
- 201000008482 osteoarthritis Diseases 0.000 claims description 10
- 206010039073 rheumatoid arthritis Diseases 0.000 claims description 9
- 208000000094 Chronic Pain Diseases 0.000 claims description 7
- 208000004296 neuralgia Diseases 0.000 claims description 6
- 208000021722 neuropathic pain Diseases 0.000 claims description 5
- 238000002560 therapeutic procedure Methods 0.000 claims description 5
- 239000003085 diluting agent Substances 0.000 claims description 4
- 239000003937 drug carrier Substances 0.000 claims description 4
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 4
- 238000002441 X-ray diffraction Methods 0.000 claims description 2
- 230000005855 radiation Effects 0.000 claims description 2
- 238000001228 spectrum Methods 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims 1
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 39
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 31
- 239000000203 mixture Substances 0.000 description 31
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 28
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical compound OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 24
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 21
- 238000002360 preparation method Methods 0.000 description 20
- 239000000243 solution Substances 0.000 description 19
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 18
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 15
- 235000019439 ethyl acetate Nutrition 0.000 description 15
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 14
- 239000007787 solid Substances 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- 238000002330 electrospray ionisation mass spectrometry Methods 0.000 description 13
- 239000011541 reaction mixture Substances 0.000 description 13
- 210000004027 cell Anatomy 0.000 description 12
- 201000010099 disease Diseases 0.000 description 12
- 230000000694 effects Effects 0.000 description 12
- 230000002829 reductive effect Effects 0.000 description 12
- 239000002904 solvent Substances 0.000 description 12
- 238000003756 stirring Methods 0.000 description 12
- 208000024891 symptom Diseases 0.000 description 12
- 229910001868 water Inorganic materials 0.000 description 12
- 239000001384 succinic acid Substances 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 10
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical class CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 10
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 9
- 239000013078 crystal Substances 0.000 description 9
- 230000005764 inhibitory process Effects 0.000 description 9
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 8
- 108091000080 Phosphotransferase Proteins 0.000 description 8
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 8
- 238000001704 evaporation Methods 0.000 description 8
- 230000008020 evaporation Effects 0.000 description 8
- 230000002981 neuropathic effect Effects 0.000 description 8
- 102000020233 phosphotransferase Human genes 0.000 description 8
- 239000005909 Kieselgur Substances 0.000 description 7
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical group C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 7
- 239000000706 filtrate Substances 0.000 description 7
- 108020003175 receptors Proteins 0.000 description 7
- 102000005962 receptors Human genes 0.000 description 7
- 239000000741 silica gel Substances 0.000 description 7
- 229910002027 silica gel Inorganic materials 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 208000035475 disorder Diseases 0.000 description 6
- 239000003814 drug Substances 0.000 description 6
- 238000001914 filtration Methods 0.000 description 6
- 238000000634 powder X-ray diffraction Methods 0.000 description 6
- 229920006395 saturated elastomer Polymers 0.000 description 6
- IRPVABHDSJVBNZ-RTHVDDQRSA-N 5-[1-(cyclopropylmethyl)-5-[(1R,5S)-3-(oxetan-3-yl)-3-azabicyclo[3.1.0]hexan-6-yl]pyrazol-3-yl]-3-(trifluoromethyl)pyridin-2-amine Chemical compound C1=C(C(F)(F)F)C(N)=NC=C1C1=NN(CC2CC2)C(C2[C@@H]3CN(C[C@@H]32)C2COC2)=C1 IRPVABHDSJVBNZ-RTHVDDQRSA-N 0.000 description 5
- 208000005298 acute pain Diseases 0.000 description 5
- 239000000556 agonist Substances 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 5
- 238000003556 assay Methods 0.000 description 5
- 108010005774 beta-Galactosidase Proteins 0.000 description 5
- 239000003153 chemical reaction reagent Substances 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 238000002425 crystallisation Methods 0.000 description 5
- 230000008025 crystallization Effects 0.000 description 5
- 238000011161 development Methods 0.000 description 5
- 229940079593 drug Drugs 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 238000002877 time resolved fluorescence resonance energy transfer Methods 0.000 description 5
- 239000007821 HATU Substances 0.000 description 4
- 239000007832 Na2SO4 Substances 0.000 description 4
- 108091005682 Receptor kinases Proteins 0.000 description 4
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 4
- 206010052428 Wound Diseases 0.000 description 4
- 208000027418 Wounds and injury Diseases 0.000 description 4
- 230000001154 acute effect Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 231100000673 dose–response relationship Toxicity 0.000 description 4
- 239000000284 extract Substances 0.000 description 4
- 208000014674 injury Diseases 0.000 description 4
- MZRVEZGGRBJDDB-UHFFFAOYSA-N n-Butyllithium Substances [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 4
- 230000003389 potentiating effect Effects 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 229910052938 sodium sulfate Inorganic materials 0.000 description 4
- 230000008733 trauma Effects 0.000 description 4
- -1 1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid hexafluorophosphate Chemical compound 0.000 description 3
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 3
- BDAGIHXWWSANSR-UHFFFAOYSA-N Formic acid Chemical compound OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 3
- 101000739876 Homo sapiens Brain-derived neurotrophic factor Proteins 0.000 description 3
- 208000008930 Low Back Pain Diseases 0.000 description 3
- 208000019695 Migraine disease Diseases 0.000 description 3
- 206010028980 Neoplasm Diseases 0.000 description 3
- 108010025020 Nerve Growth Factor Proteins 0.000 description 3
- 102000015336 Nerve Growth Factor Human genes 0.000 description 3
- 208000008765 Sciatica Diseases 0.000 description 3
- 229910052771 Terbium Inorganic materials 0.000 description 3
- 102000005937 Tropomyosin Human genes 0.000 description 3
- 108010030743 Tropomyosin Proteins 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- WQZGKKKJIJFFOK-FPRJBGLDSA-N beta-D-galactose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-FPRJBGLDSA-N 0.000 description 3
- 201000008873 bone osteosarcoma Diseases 0.000 description 3
- 201000011510 cancer Diseases 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000004587 chromatography analysis Methods 0.000 description 3
- 230000001684 chronic effect Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 235000019441 ethanol Nutrition 0.000 description 3
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 3
- 238000004128 high performance liquid chromatography Methods 0.000 description 3
- 102000051542 human BDNF Human genes 0.000 description 3
- 229940077456 human brain-derived neurotrophic factor Drugs 0.000 description 3
- 230000002757 inflammatory effect Effects 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 206010027599 migraine Diseases 0.000 description 3
- 229940053128 nerve growth factor Drugs 0.000 description 3
- 229940005483 opioid analgesics Drugs 0.000 description 3
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 3
- 239000002953 phosphate buffered saline Substances 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 230000000284 resting effect Effects 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- GZCRRIHWUXGPOV-UHFFFAOYSA-N terbium atom Chemical compound [Tb] GZCRRIHWUXGPOV-UHFFFAOYSA-N 0.000 description 3
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 3
- CYPYTURSJDMMMP-WVCUSYJESA-N (1e,4e)-1,5-diphenylpenta-1,4-dien-3-one;palladium Chemical compound [Pd].[Pd].C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1.C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1.C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1 CYPYTURSJDMMMP-WVCUSYJESA-N 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 2
- RKMGAJGJIURJSJ-UHFFFAOYSA-N 2,2,6,6-tetramethylpiperidine Chemical compound CC1(C)CCCC(C)(C)N1 RKMGAJGJIURJSJ-UHFFFAOYSA-N 0.000 description 2
- AFABGHUZZDYHJO-UHFFFAOYSA-N 2-Methylpentane Chemical compound CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 2
- UIBNZQQXZMNYHW-UHFFFAOYSA-N 5-[[2-fluoro-5-(1-methylpyrazol-3-yl)-4-(trifluoromethyl)benzoyl]amino]-4-pyridin-2-ylpyridine-3-carboxylic acid Chemical compound CN(C=C1)N=C1C(C(C(F)(F)F)=C1)=CC(C(NC2=CN=CC(C(O)=O)=C2C2=NC=CC=C2)=O)=C1F UIBNZQQXZMNYHW-UHFFFAOYSA-N 0.000 description 2
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- 206010005063 Bladder pain Diseases 0.000 description 2
- 206010012335 Dependence Diseases 0.000 description 2
- IYFFXMZAZXYPEP-UHFFFAOYSA-N FC1=C(C(=O)N)C=C(C(=C1)C(F)(F)F)C1=NN(C=C1)C Chemical compound FC1=C(C(=O)N)C=C(C(=C1)C(F)(F)F)C1=NN(C=C1)C IYFFXMZAZXYPEP-UHFFFAOYSA-N 0.000 description 2
- VKVPCGGCSYOSEG-UHFFFAOYSA-N FC1=C(C(=O)O)C=C(C(=C1)C(F)(F)F)C1=NN(C=C1)C Chemical compound FC1=C(C(=O)O)C=C(C(=C1)C(F)(F)F)C1=NN(C=C1)C VKVPCGGCSYOSEG-UHFFFAOYSA-N 0.000 description 2
- 206010019233 Headaches Diseases 0.000 description 2
- 101000634196 Homo sapiens Neurotrophin-3 Proteins 0.000 description 2
- 208000004454 Hyperalgesia Diseases 0.000 description 2
- 208000005615 Interstitial Cystitis Diseases 0.000 description 2
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 208000000450 Pelvic Pain Diseases 0.000 description 2
- 102000014400 SH2 domains Human genes 0.000 description 2
- 108050003452 SH2 domains Proteins 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 206010003246 arthritis Diseases 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 208000013507 chronic prostatitis Diseases 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- QTMDXZNDVAMKGV-UHFFFAOYSA-L copper(ii) bromide Chemical compound [Cu+2].[Br-].[Br-] QTMDXZNDVAMKGV-UHFFFAOYSA-L 0.000 description 2
- 238000007405 data analysis Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 210000002919 epithelial cell Anatomy 0.000 description 2
- 239000012065 filter cake Substances 0.000 description 2
- 238000003818 flash chromatography Methods 0.000 description 2
- 235000019253 formic acid Nutrition 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 239000012458 free base Substances 0.000 description 2
- 231100000869 headache Toxicity 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 102000057714 human NTF3 Human genes 0.000 description 2
- JYGXADMDTFJGBT-VWUMJDOOSA-N hydrocortisone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 JYGXADMDTFJGBT-VWUMJDOOSA-N 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 229940043355 kinase inhibitor Drugs 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 238000004811 liquid chromatography Methods 0.000 description 2
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 2
- DLEDOFVPSDKWEF-UHFFFAOYSA-N lithium butane Chemical compound [Li+].CCC[CH2-] DLEDOFVPSDKWEF-UHFFFAOYSA-N 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- QCBVUHGECYPLFY-UHFFFAOYSA-N methyl 2-fluoro-4-(trifluoromethyl)benzoate Chemical compound COC(=O)C1=CC=C(C(F)(F)F)C=C1F QCBVUHGECYPLFY-UHFFFAOYSA-N 0.000 description 2
- OEZMPDBFAZNIJE-UHFFFAOYSA-N methyl 2-fluoro-5-(1-methylpyrazol-3-yl)-4-(trifluoromethyl)benzoate Chemical compound COC(C1=C(C=C(C(=C1)C1=NN(C=C1)C)C(F)(F)F)F)=O OEZMPDBFAZNIJE-UHFFFAOYSA-N 0.000 description 2
- CGEUHIDQWJAONG-UHFFFAOYSA-N methyl 2-fluoro-5-nitro-4-(trifluoromethyl)benzoate Chemical compound COC(C(C=C(C(C(F)(F)F)=C1)[N+]([O-])=O)=C1F)=O CGEUHIDQWJAONG-UHFFFAOYSA-N 0.000 description 2
- CCQVELJRZVWGPZ-UHFFFAOYSA-N methyl 5-[[2-fluoro-5-(1-methylpyrazol-3-yl)-4-(trifluoromethyl)benzoyl]amino]-4-pyridin-2-ylpyridine-3-carboxylate Chemical compound CN(C=C1)N=C1C(C(C(F)(F)F)=C1)=CC(C(NC2=CN=CC(C(OC)=O)=C2C2=NC=CC=C2)=O)=C1F CCQVELJRZVWGPZ-UHFFFAOYSA-N 0.000 description 2
- IKSXSHYBAFJDBZ-UHFFFAOYSA-N methyl 5-amino-2-fluoro-4-(trifluoromethyl)benzoate Chemical compound COC(=O)c1cc(N)c(cc1F)C(F)(F)F IKSXSHYBAFJDBZ-UHFFFAOYSA-N 0.000 description 2
- SGBUWZHSQLZMPP-UHFFFAOYSA-N methyl 5-bromo-2-fluoro-4-(trifluoromethyl)benzoate Chemical compound COC(=O)c1cc(Br)c(cc1F)C(F)(F)F SGBUWZHSQLZMPP-UHFFFAOYSA-N 0.000 description 2
- XBNHXEPSIVWXPI-UHFFFAOYSA-N methyl 5-bromo-4-pyridin-2-ylpyridine-3-carboxylate Chemical compound COC(C1=C(C2=NC=CC=C2)C(Br)=CN=C1)=O XBNHXEPSIVWXPI-UHFFFAOYSA-N 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- BQJCRHHNABKAKU-KBQPJGBKSA-N morphine Chemical compound O([C@H]1[C@H](C=C[C@H]23)O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4O BQJCRHHNABKAKU-KBQPJGBKSA-N 0.000 description 2
- 230000001473 noxious effect Effects 0.000 description 2
- 229940127240 opiate Drugs 0.000 description 2
- 239000012044 organic layer Substances 0.000 description 2
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 2
- 230000002085 persistent effect Effects 0.000 description 2
- 239000003757 phosphotransferase inhibitor Substances 0.000 description 2
- DCWXELXMIBXGTH-UHFFFAOYSA-N phosphotyrosine Chemical compound OC(=O)C(N)CC1=CC=C(OP(O)(O)=O)C=C1 DCWXELXMIBXGTH-UHFFFAOYSA-N 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000002953 preparative HPLC Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 201000007094 prostatitis Diseases 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000004808 supercritical fluid chromatography Methods 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- 230000000472 traumatic effect Effects 0.000 description 2
- 208000009935 visceral pain Diseases 0.000 description 2
- CXNIUSPIQKWYAI-UHFFFAOYSA-N xantphos Chemical compound C=12OC3=C(P(C=4C=CC=CC=4)C=4C=CC=CC=4)C=CC=C3C(C)(C)C2=CC=CC=1P(C=1C=CC=CC=1)C1=CC=CC=C1 CXNIUSPIQKWYAI-UHFFFAOYSA-N 0.000 description 2
- YUHZIUAREWNXJT-UHFFFAOYSA-N (2-fluoropyridin-3-yl)boronic acid Chemical class OB(O)C1=CC=CN=C1F YUHZIUAREWNXJT-UHFFFAOYSA-N 0.000 description 1
- BJMSXWLXFYZHIU-UHFFFAOYSA-N 1-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyrazole Chemical compound CN1C=CC(B2OC(C)(C)C(C)(C)O2)=N1 BJMSXWLXFYZHIU-UHFFFAOYSA-N 0.000 description 1
- 238000005160 1H NMR spectroscopy Methods 0.000 description 1
- OCIYTBZXTFPSPI-UHFFFAOYSA-N 2-fluoro-4-(trifluoromethyl)benzoic acid Chemical compound OC(=O)C1=CC=C(C(F)(F)F)C=C1F OCIYTBZXTFPSPI-UHFFFAOYSA-N 0.000 description 1
- 125000004105 2-pyridyl group Chemical group N1=C([*])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- RYNFQZRVPDOMAR-UHFFFAOYSA-N 5-[[2-fluoro-5-(1-methylpyrazol-3-yl)-4-(trifluoromethyl)benzoyl]amino]-4-pyridin-2-ylpyridine-3-carboxamide Chemical compound CN(C=C1)N=C1C(C(C(F)(F)F)=C1)=CC(C(NC2=CN=CC(C(N)=O)=C2C2=NC=CC=C2)=O)=C1F RYNFQZRVPDOMAR-UHFFFAOYSA-N 0.000 description 1
- DDILUXVGWWORKX-UHFFFAOYSA-N 5-bromo-4-iodopyridine-3-carboxylic acid Chemical compound OC(=O)C1=CN=CC(Br)=C1I DDILUXVGWWORKX-UHFFFAOYSA-N 0.000 description 1
- FQIUCPGDKPXSLL-UHFFFAOYSA-N 5-bromopyridine-3-carboxylic acid Chemical compound OC(=O)C1=CN=CC(Br)=C1 FQIUCPGDKPXSLL-UHFFFAOYSA-N 0.000 description 1
- JRLTTZUODKEYDH-UHFFFAOYSA-N 8-methylquinoline Chemical group C1=CN=C2C(C)=CC=CC2=C1 JRLTTZUODKEYDH-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 1
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 description 1
- 206010002556 Ankylosing Spondylitis Diseases 0.000 description 1
- 208000036487 Arthropathies Diseases 0.000 description 1
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 1
- 208000025940 Back injury Diseases 0.000 description 1
- 208000000003 Breakthrough pain Diseases 0.000 description 1
- 229910021590 Copper(II) bromide Inorganic materials 0.000 description 1
- KDXKERNSBIXSRK-RXMQYKEDSA-N D-lysine Chemical compound NCCCC[C@@H](N)C(O)=O KDXKERNSBIXSRK-RXMQYKEDSA-N 0.000 description 1
- 208000032131 Diabetic Neuropathies Diseases 0.000 description 1
- 239000012591 Dulbecco’s Phosphate Buffered Saline Substances 0.000 description 1
- 208000005171 Dysmenorrhea Diseases 0.000 description 1
- 206010013935 Dysmenorrhoea Diseases 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 206010019196 Head injury Diseases 0.000 description 1
- 208000035154 Hyperesthesia Diseases 0.000 description 1
- 208000012659 Joint disease Diseases 0.000 description 1
- 208000000913 Kidney Calculi Diseases 0.000 description 1
- 206010027603 Migraine headaches Diseases 0.000 description 1
- 206010028116 Mucosal inflammation Diseases 0.000 description 1
- 201000010927 Mucositis Diseases 0.000 description 1
- 208000023178 Musculoskeletal disease Diseases 0.000 description 1
- 101150117329 NTRK3 gene Proteins 0.000 description 1
- 206010029148 Nephrolithiasis Diseases 0.000 description 1
- 101150056950 Ntrk2 gene Proteins 0.000 description 1
- 208000014677 Periarticular disease Diseases 0.000 description 1
- 206010065016 Post-traumatic pain Diseases 0.000 description 1
- 206010036376 Postherpetic Neuralgia Diseases 0.000 description 1
- 206010037779 Radiculopathy Diseases 0.000 description 1
- 208000025747 Rheumatic disease Diseases 0.000 description 1
- 208000013738 Sleep Initiation and Maintenance disease Diseases 0.000 description 1
- 208000002847 Surgical Wound Diseases 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 125000000218 acetic acid group Chemical group C(C)(=O)* 0.000 description 1
- 125000003668 acetyloxy group Chemical group [H]C([H])([H])C(=O)O[*] 0.000 description 1
- 229960001138 acetylsalicylic acid Drugs 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 206010053552 allodynia Diseases 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 235000012538 ammonium bicarbonate Nutrition 0.000 description 1
- 239000001099 ammonium carbonate Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 238000006254 arylation reaction Methods 0.000 description 1
- 102000005936 beta-Galactosidase Human genes 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 238000000423 cell based assay Methods 0.000 description 1
- 150000005829 chemical entities Chemical class 0.000 description 1
- 229940124301 concurrent medication Drugs 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000003246 corticosteroid Substances 0.000 description 1
- 229960001334 corticosteroids Drugs 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000006880 cross-coupling reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000003412 degenerative effect Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 238000002050 diffraction method Methods 0.000 description 1
- VAYGXNSJCAHWJZ-UHFFFAOYSA-N dimethyl sulfate Chemical compound COS(=O)(=O)OC VAYGXNSJCAHWJZ-UHFFFAOYSA-N 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 238000003174 enzyme fragment complementation Methods 0.000 description 1
- 230000010856 establishment of protein localization Effects 0.000 description 1
- FCZCIXQGZOUIDN-UHFFFAOYSA-N ethyl 2-diethoxyphosphinothioyloxyacetate Chemical compound CCOC(=O)COP(=S)(OCC)OCC FCZCIXQGZOUIDN-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229960002428 fentanyl Drugs 0.000 description 1
- PJMPHNIQZUBGLI-UHFFFAOYSA-N fentanyl Chemical compound C=1C=CC=CC=1N(C(=O)CC)C(CC1)CCN1CCC1=CC=CC=C1 PJMPHNIQZUBGLI-UHFFFAOYSA-N 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000005802 health problem Effects 0.000 description 1
- 229960000890 hydrocortisone Drugs 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 206010022437 insomnia Diseases 0.000 description 1
- OWFXIOWLTKNBAP-UHFFFAOYSA-N isoamyl nitrite Chemical compound CC(C)CCON=O OWFXIOWLTKNBAP-UHFFFAOYSA-N 0.000 description 1
- 239000010977 jade Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002483 medication Methods 0.000 description 1
- PJQRAYFGASCVGR-UHFFFAOYSA-N methyl 5-bromo-4-iodopyridine-3-carboxylate Chemical compound BrC=1C(=C(C=NC1)C(=O)OC)I PJQRAYFGASCVGR-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 229960005181 morphine Drugs 0.000 description 1
- FFWLYMMISQUEAL-AWEZNQCLSA-N n-[5-[7-[(2s)-1-hydroxypropan-2-yl]pyrrolo[2,3-d]pyrimidine-5-carbonyl]pyridin-3-yl]-2-[4-(trifluoromethyl)phenyl]acetamide Chemical group C12=CN=CN=C2N([C@H](CO)C)C=C1C(=O)C(C=1)=CN=CC=1NC(=O)CC1=CC=C(C(F)(F)F)C=C1 FFWLYMMISQUEAL-AWEZNQCLSA-N 0.000 description 1
- 230000000508 neurotrophic effect Effects 0.000 description 1
- 230000003040 nociceptive effect Effects 0.000 description 1
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 239000012038 nucleophile Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- 230000008058 pain sensation Effects 0.000 description 1
- MUJIDPITZJWBSW-UHFFFAOYSA-N palladium(2+) Chemical compound [Pd+2] MUJIDPITZJWBSW-UHFFFAOYSA-N 0.000 description 1
- 229960005489 paracetamol Drugs 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 208000033808 peripheral neuropathy Diseases 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 229960004618 prednisone Drugs 0.000 description 1
- XOFYZVNMUHMLCC-ZPOLXVRWSA-N prednisone Chemical compound O=C1C=C[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 XOFYZVNMUHMLCC-ZPOLXVRWSA-N 0.000 description 1
- 238000000159 protein binding assay Methods 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000013557 residual solvent Substances 0.000 description 1
- 238000004366 reverse phase liquid chromatography Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 230000000552 rheumatic effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000020341 sensory perception of pain Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 230000008542 thermal sensitivity Effects 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- GYUURHMITDQTRU-UHFFFAOYSA-N tributyl(pyridin-2-yl)stannane Chemical compound CCCC[Sn](CCCC)(CCCC)C1=CC=CC=N1 GYUURHMITDQTRU-UHFFFAOYSA-N 0.000 description 1
- 206010044652 trigeminal neuralgia Diseases 0.000 description 1
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 1
- 229910000404 tripotassium phosphate Inorganic materials 0.000 description 1
- 238000001665 trituration Methods 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
- 230000004584 weight gain Effects 0.000 description 1
- 235000019786 weight gain Nutrition 0.000 description 1
- UGOMMVLRQDMAQQ-UHFFFAOYSA-N xphos Chemical group CC(C)C1=CC(C(C)C)=CC(C(C)C)=C1C1=CC=CC=C1P(C1CCCCC1)C1CCCCC1 UGOMMVLRQDMAQQ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
- C07D401/12—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/14—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P23/00—Anaesthetics
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B2200/00—Indexing scheme relating to specific properties of organic compounds
- C07B2200/13—Crystalline forms, e.g. polymorphs
Definitions
- the present invention is in the field of medicine. Particularly, the present invention relates to a compound that inhibits tropomysin receptor kinase A (TrkA), compositions comprising such a compound, and such a compound and composition for use in the treatment of pain.
- the compound may treat acute or chronic pain of nociceptive/inflammatory, neuropathic, nociplastic, or mixed etiologies.
- U.S. Patent Application Publication No. 2013/0336964 explains the role of TrkA and Nerve Growth Factor (NGF) in the human pain system. Accordingly, targeting and inhibiting TrKA can potentially be useful in treating pain.
- NGF Nerve Growth Factor
- WO 2015/15148344 and its family member U.S. Patent No. 9,815,846 ); WO 2015/143652 ; WO 2015/143653 ; WO 2015/143654 ; WO 2015/159175 ;and WO 2015/170208 ).
- Antibodies have also been developed that are designed to bind to and/or inhibit TrkA and treat pain. ( See , for example, U.S. Patent No. 10,618,974 , U.S. Patent Application Publication No.
- Persistent pain represents a major health problem and causes significant losses in quality of life. Persistent pain may present with different levels of severity, and is associated with a variety of pathologies, such as back injury or degenerative disk disease, migraine headaches, arthritis, diabetic neuropathy, cancer and other diseases. Mild pain is presently treated with acetaminophen, aspirin, and other (typically over-the-counter) medications. Moderate pain may be controlled using corticosteroidal drugs such as cortisol and prednisone. Problems with the effectiveness and/or tolerability of existing treatments are well known, and corticosteroids for example display remarkable adverse effects including weight gain, insomnia, and immune system weakening.
- opioids such as morphine and fentanyl
- long-term use of opiates is limited by several serious drawbacks, including development of addiction, tolerance and physical dependence.
- Potential overuse of opioids has been characterized as an "opioid epidemic" in view of the growing number of people that use and may be addicted to opioids.
- TrkA inhibitors may provide one or more improved pharmacological properties, for example safety, potency, efficacy, or tolerability, in particular for the treatment of pain/chronic pain.
- no agents targeting TrkA signaling have been approved for the treatment of pain.
- agents that can inhibit TrkA signaling such as alternative TrkA inhibitors.
- the present embodiments provide a compound that is a TrkA inhibitor useful in the treatment of pain.
- an embodiment of the present invention provides a TrkA inhibitor compound of the formula (which is designated as "FORMULA I"):
- embodiments of the present invention provide one or more pharmaceutically acceptable salts of the compound of FORMULA I, and said salts for use as TrKA inhibitors.
- An embodiment of the present invention further provides the compound of FORMULA I or a pharmaceutically salt thereof, as well as a pharmaceutical composition comprising a compound of FORMULA I or a pharmaceutically salt thereof, for use in a method for the treatment of pain.
- the pharmaceutical compositions include the compound or pharmaceutically acceptable salt of FORMULA I, and one or more pharmaceutically acceptable carriers, diluents or excipients.
- Such a method for treating pain comprises administering to a patient in need thereof an effective amount of a compound of FORMULA I, or pharmaceutically acceptable salt thereof, or a pharmaceutical composition thereof.
- the method may be a method for treating acute or chronic pain that is musculoskeletal or neuropathic in origin.
- pain examples include, post-surgical pain, rheumatoid arthritis pain, osteoarthritis pain, neuropathic pain, diabetic nerve pain (DNP), chronic lower back pain (CLBP), including non radicular (non-neuropathic) and radicular lower back pain (which are sometimes referred to as lumbosacral radiculopathy (LSR) or sciatica), as well as visceral pain such as chronic prostatitis, interstitial cystitis (bladder pain) or chronic pelvic pain.
- DNP diabetic nerve pain
- CLBP chronic lower back pain
- LSR lumbosacral radiculopathy
- visceral pain such as chronic prostatitis, interstitial cystitis (bladder pain) or chronic pelvic pain.
- An embodiment of the present invention provides the compound of FORMULA I, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition thereof, for use in a method of therapy.
- the present embodiments also provide a compound that is the hemisuccinic acid salt of the compound of FORMULA I.
- the hemisuccinic acid salt of the compound of FORMULA I be crystalline.
- the hemisuccinic acid salt is characterized by a substantial peak in the X-ray diffraction spectrum, at diffraction angle 2-theta of 10.5° in combination with one or more of the peaks selected from the group consisting of 12.6, and 22.2; with a tolerance for the diffraction angles of 0.2 degrees.
- An embodiment of the present invention further provides a pharmaceutical composition comprising the hemisuccinic acid salt of FORMULA I.
- These pharmaceutical compositions include the hemisuccinic acid salt of FORMULA I, and one or more pharmaceutically acceptable carriers, diluents or excipients.
- An embodiment of the present invention provides the hemisuccinic acid salt of FORMULA I, or a pharmaceutical composition thereof, for use in a method of therapy.
- Another embodiment provides the hemisuccinic acid salt of FORMULA I, for use in a method for the treatment pain.
- the pain is acute or chronic pain that is musculoskeletal or neuropathic in origin.
- pain examples include post-surgical pain, rheumatoid arthritis pain, osteoarthritis pain, neuropathic pain, DNP, and CLBP, including non radicular (non-neuropathic) and radicular lower back pain (which are sometimes referred to as LSR or sciatica), as well as visceral pain (such as, for example, chronic prostatitis, interstitial cystitis (bladder pain) or chronic pelvic pain).
- an effective amount can be determined by one skilled in the art by the use of known techniques, and by observing results obtained under analogous circumstances.
- determining the effective amount for a patient a number of factors are considered, including, but not limited to: weight, age, and general health; the specific disease or disorder involved; the degree of involvement or severity of the disease or disorder; the response of the individual patient; the compound administered; the mode of administration; the bioavailability characteristics of the preparation administered; the dose regimen selected; the use of concomitant medication; and other relevant circumstances.
- the compound of the present invention may be formulated as pharmaceutical compositions administered by any route which makes the compound bioavailable.
- such compositions are for oral administration.
- Such pharmaceutical compositions and processes for preparing the same are well known in the art ( See , e.g., Remington: The Science and Practice of Pharmacy, L.V. Allen, Editor, 22nd Edition, Pharmaceutical Press, 2012 ).
- the compound and pharmaceutically acceptable salts of the present embodiments are expected to treat a class of pain, which includes post-surgical pain, neuropathic pain, rheumatoid arthritis pain and osteoarthritis pain, including, for example, non radicular (non-neuropathic) and radicular CLBP, DNP, and LSR.
- a class of pain which includes post-surgical pain, neuropathic pain, rheumatoid arthritis pain and osteoarthritis pain, including, for example, non radicular (non-neuropathic) and radicular CLBP, DNP, and LSR.
- the compound of FORMULA I and pharmaceutically acceptable salts or pharmaceutical compositions thereof of the present invention may also be useful in the treatment of other forms of pain.
- treatment and/or “treating” and/or “treat” are intended to refer to all processes wherein there may be a slowing, interrupting, arresting, controlling, stopping, or reversing of the progression of the disorders described, but does not necessarily indicate a total elimination of all disorder symptoms. Treatment may also include the prevention of pain.
- Treatment includes administration of a compound of FORMULA I, or a pharmaceutically acceptable salt thereof or pharmaceutical composition thereof, for treatment of a disease or condition in a human that would benefit from a reduction in TrkA activity, wherein said treatment provides: (a) inhibiting further progression of the disease, i.e., arresting its development; (b) relieving the disease, i.e., causing regression of the disease or disorder or alleviating symptoms or complications thereof; and/or (c) preventing the onset of the disease of symptoms.
- Treatment expressly includes reducing incidence of pain, ameliorating a pain or one or more symptoms of a pain, palliating a pain or one or more symptoms of a pain, delaying the development of pain. Treatment also includes, in some situations, treating the pain but not necessarily modifying the underlying disease or condition giving rise to the pain.
- Reducing incidence of pain means any of reducing duration, and/or frequency of pain (including, for example, delaying or increasing time to post-surgical pain in an individual).
- individuals may vary in terms of their response to treatment, and as such, a "method of reducing incidence of rheumatoid arthritis pain or osteoarthritis pain in an individual" reflects administering the compound or pharmaceutically acceptable salts based on a reasonable expectation that such administration is likely cause a reduction in incidence in that particular individual.
- Treatment of pain also includes reducing the severity of the pain as well as reducing the need for and/or amount of (e.g., exposure to) other drugs and/or therapies generally used for this conditions, including, for example, opiates).
- “Ameliorating" a pain or one or more symptoms of a pain means a lessening or improvement of one or more symptoms of pain, as compared to not administering a compound or pharmaceutically acceptable salt. “Ameliorating” includes shortening or reduction in duration of a symptom.
- “Palliating" pain or one or more symptoms of a pain means lessening the extent of one or more undesirable clinical manifestations of post-surgical pain in an individual, or population of individuals, treated with a compound or pharmaceutically acceptable salt in accordance with the invention.
- “delaying" the development of pain means to defer, hinder, slow, retard, stabilize, and/or postpone progression of pain, such as post-surgical pain, rheumatoid arthritis pain, or osteoarthritis pain. Such a delay can be of varying lengths of time, depending on the history of the disease and/or individuals being treated. As is evident to one skilled in the art, a sufficient or significant delay can, in effect, encompass prevention, in that the individual does not develop pain.
- a method that "delays" development of the symptom can be a method that reduces probability of developing the symptom in a given time frame, and/or reduces the extent of the symptoms in a given time frame, when compared to not using the method. Such comparisons are typically based on clinical studies, using a statistically significant number of subjects.
- Pain refers to pain of any etiology, including acute and chronic pain, and any pain with an inflammatory component.
- pain include post-surgical pain, post-operative pain (including dental pain), migraine, headache and trigeminal neuralgia, pain associated with burn, wound or kidney stone, pain associated with trauma (including traumatic head injury), neuropathic pain, pain associated with musculo-skeletal disorders such as rheumatoid arthritis, osteoarthritis, including, for example, non radicular (non-neuropathic) and radicular CLBP, DNP, and LSR (sciatica), ankylosing spondylitis, sero-negative (non-rheumatoid) arthropathies, non-articular rheumatism and peri-articular disorders, and pain associated with cancer (including "break-through pain” and pain associated with terminal cancer), peripheral neuropathy and post-herpetic neuralgia.
- pain with an inflammatory component in addition to some of those described
- Pain expressly includes chronic pain of both musculoskeletal as well as neuropathic origin. Pain also expressly includes acute pain or sudden pain. Pain scales for the measurement of pain level are well known, such as those disclosed, for example, in McConnell, S. et al., "The Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC): A Review of Its Utility and Measurement Properties", Arthritis Care & Research, 45:453-461, 2001 , and Haefeli., M. et al., "Pain Assessment", European Spine Journal 2006 Jan; 15 (Suppl 1): S17-S24 .
- Post-surgical pain refers to pain arising or resulting from an external trauma such as a cut, puncture, incision, tear, or wound into tissue of an individual (including that that arises from all surgical procedures, whether invasive or non-invasive).
- post-surgical pain does not include pain that occurs (arises or originates) without an external physical trauma.
- post-surgical pain is internal or external (including peripheral) pain, and the wound, cut, trauma, tear or incision may occur accidentally (as with a traumatic wound) or deliberately (as with a surgical incision).
- pain includes nociception and the sensation of pain, and pain can be assessed objectively and subjectively, using pain scores and other methods well-known in the art.
- Post-surgical pain includes allodynia (i.e., increased response to a normally non-noxious stimulus) and hyperalgesia (i.e., increased response to a normally noxious or unpleasant stimulus), which can in turn, be thermal or mechanical (tactile) in nature.
- the pain is characterized by thermal sensitivity, mechanical sensitivity and/or resting pain.
- the post-surgical pain comprises mechanically-induced pain or resting pain.
- the post-surgical pain comprises resting pain.
- the pain can be primary or secondary pain, as is well-known in the art.
- the term "patient,” “subject,” and “individual,” refers to a human, more particularly, a patient in need thereof.
- the patient is further characterized with a disease, disorder, or condition (e.g., pain, for example, primary or secondary headache and/or migraine including chronic migraine) that would benefit from a reduction in TrkA activity.
- the patient is further characterized as being at risk of developing a condition described above, or condition that would benefit from a reduction in TrkA activity.
- a pharmaceutically acceptable salt of the compound of the invention can be formed, for example, by reaction of an appropriate free base of a compound of the invention and an appropriate pharmaceutically acceptable acid in a suitable solvent under standard conditions well known in the art. See , for example, Gould, P.L., "Salt selection for basic drugs," International Journal of Pharmaceutics, 33: 201-217 (1986 ); Bastin, R.J., et al. "Salt Selection and Optimization Procedures for Pharmaceutical New Chemical Entities," Organic Process Research and Development, 4: 427-435 (2000 ); and Berge, S.M., et al., “Pharmaceutical Salts," Journal of Pharmaceutical Sciences, 66: 1-19, (1977 ).
- a compound of FORMULA I, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition thereof may be prepared by a variety of procedures known to one of ordinary skill in the art, some of which are illustrated in the preparations and examples below.
- the products of each step in the preparations and examples below can be recovered by conventional methods well known in the art, including extraction, evaporation, precipitation, chromatography, filtration, trituration, and crystallization.
- all substituents unless otherwise indicated, are as previously defined.
- the reagents and starting materials are readily available to one of ordinary skill in the art. Without limiting the scope of the invention, the following preparations and examples are provided to further illustrate aspects of the invention.
- the compound of FORMULA I may be prepared by using any other suitable starting material or intermediate which can be prepared by one of skill in the art.
- aa refers to amino acid
- ACN refers to acetonitrile
- Ac refers to acetyl
- hBDNF refers to human Brain-derived neurotrophic factor
- CAS# refers to Chemical Abstracts Registry number
- DCM refers to methylene chloride or dichloromethane
- DIPEA refers to N,N-diisopropylethylamine
- DMF refers to N,N-dimethylformamide
- DMSO refers to dimethyl sulfoxide
- D-PBS refers to Dulbecco's phosphate buffered Saline
- EDTA refers to ethylenediaminetetraacetic acid
- Et refers to ethyl
- Et 2 O refers to die
- LC-ES/MS is performed on an AGILENT ® HP1100 liquid chromatography system. Electrospray mass spectrometry measurements (acquired in positive and/or negative mode) are performed on a Mass Selective Detector quadrupole mass spectrometer interfaced to the HP1100 HPLC.
- NMR spectra are performed on a Bruker AVIII HD 400 MHz NMR Spectrometer, obtained as CDCl 3 or (CD 3 ) 2 SO solutions reported in ppm, using residual solvent [CDCl 3 , 7.26 ppm; (CD 3 ) 2 SO, 2.05 ppm] as reference standard.
- peak multiplicities the following abbreviations may be used: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), br-s (broad singlet), dd (doublet of doublets), dt (doublet of triplets).
- Coupling constants (J) when reported, are reported in hertz (Hz).
- Methyl 2-fluoro-4-(trifluoromethyl)benzoate (5.1 g, 23 mmol) is dissolved in concentrated aqueous H 2 SO 4 (25 mL) and the resulting mixture is cooled to 0 °C with stirring. An aqueous solution of 7M HNOs (2.5 mL, 40 mmol) is added dropwise over 15 min at 0 °C, and the resulting mixture is allowed to warm to RT with stirring for 1h. The reaction mixture is poured over ice, and the resulting precipitate is collected by filtration, washed with water, and air-dried with vacuum suction.
- Methyl 2-fluoro-5-nitro-4-(trifluoromethyl)benzoate (5.8 g, 21.7 mml) is dissolved in MeOH (150 mL), and the mixture is sparged with N 2 . Pd/C (500 mg) is added, the reaction mixture is sealed, and the resulting mixture is stirred under a balloon of H 2 at ambient temperature and pressure for 4h. The reaction mixture is purged with N 2 , filtered over a bed of diatomaceous earth, and the methanolic filtrate is concentrated under reduced pressure.
- Methanesulfonato(2-dicyclohexylphosphino-2',4',6'-tri-isopropyl-1,1'-biphenyl)(2'-methylamino-1,1'-biphenyl-2-yl)palladium(II) 190 mg, 0.2 mmol
- Methanesulfonato(2-dicyclohexylphosphino-2',4',6'-tri-isopropyl-1,1'-biphenyl)(2'-methylamino-1,1'-biphenyl-2-yl)palladium(II) 190 mg, 0.2 mmol
- the resulting mixture is irradiated in a microwave reactor at 100 °C for 4 h.
- reaction mixture is cooled to RT and loaded directly onto silica gel for purification, eluting with a gradient of 5-100% MeOH (containing 10% v/v 2 M NH 3 in MeOH) in DCM to obtain, after evaporation of the desired chromatographic fractions, the title compound (1.1g, 85% yield) as a white solid.
- ESMS m / z ): 303 (M+H).
- a mixture of THF (350 mL) and 2,2,6,6-tetramethylpiperidine (41 mL, 240 mmol) is cooled with stirring to - 50 °C under N 2 .
- a 2.5 M solution of n-BuLi in hexanes (81 mL, 220 mmol) is added portion wise, maintaining temperature below - 40 °C, and the resulting mixture is stirred at - 50 °C for 10 min.
- 5-Bromopyridine-3-carboxylic acid (20.0 g, 99.0 mmol) is added portion wise, maintaining temperature below -40 °C.
- the resulting reaction mixture is stirred at -50 °C and added to a solution of I 2 (30.2 g, 119 mmol) in THF (300 mL) via cannula under N 2 with slight pressure at - 50 °C with stirring.
- the resulting mixture is warmed to RT with stirring under N 2 for 4 h.
- the reaction mixture is quenched with water (20 mL), and most of the solvent is evaporated under a stream of N 2 .
- the resulting residue is poured into 1 N aqueous solution of NaOH (250 mL).
- a 25 mL microwave vessel containing, methyl 5-bromo-4-iodo-pyridine-3-carboxylate (710 mg, 2.1 mmol), CsF (630 mg, 4.1 mmol), LiCl (176 mg, 4.1 mmol), tetrakis(triphenyl-phosphine)palladium(0) (120 mg, 0.1 mmol) is evacuated and purged with nitrogen (two cycles of vacuum/ nitrogen). 1,4-Dioxane (18 mL, 210.8 mmol) is added, nitrogen bubbled through the mixture, and tributyl(2-pyridyl)stannane (540 ⁇ L, 1.7 mmol) is added.
- a 25 mL microwave vial is charged with , 2-fluoro-5-(1-methylpyrazol-3-yl)-4-(trifluoromethyl)benzamide (282 mg, 1 mmol), CsCOs (800 mg, 2.5 mmol), tris(dibenzylideneacetone)dipalladium(0) (150 mg, 0.2 mmol) and 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene (190 mg, 0.3 mmol).
- the vial is sealed, subjected to two cycles of vacuum / nitrogen, and a solution of methyl 5-bromo-4-(2-pyridyl)pyridine-3-carboxylate (240 mg, 0.8 mmol) in 1,4-dioxane (8 mL) is added. Nitrogen is bubbled through the mixture for 5 min and mixture is heated in a heating block at 130 °C overnight. The mixture is filtered through diatomaceous earth and rinsed sequentially with EtOAc and MeOH, and the filtrate is concentrated to give a brown oil.
- Methyl 5-[[2-fluoro-5-(1-methylpyrazol-3-yl)-4-(trifluoromethyl)benzoyl]amino]-4-(2-pyridyl)pyridine-3-carboxylate (40 mg, 0.07 mmol) is dissolved in MeOH (5 mL) and treated with a 2M aqueous solution of NaOH (5 mL, 10 mmol), and the resulting mixture is stirred at for 30 min. The reaction is acidified with an aqueous solution of 2M HCl and extracted with DCM. The organic layer is separated, dried through a hydrophobic frit, and concentrated under reduced pressure to give a pale yellow solid .
- aqueous phase is additionally extracted with 20% MeOH/DCM, the layers are separated, and the organic extract is dried over MgSO 4 , filtered, combined with previous organic phase, and concentrated to give the title compound (40 mg, 118% crude yield) as a pale yellow solid suitable for use without additional purification.
- ESMS m / z ): 486 (M+H).
- reaction mixture is stirred at RT for 60 min, diluted in MeOH (to a total volume of 6 mL), filtered over diatomaceous earth, and purified by preparative HPLC (PHENOMENEX ® Gemini 5 ⁇ , 30 ⁇ 100 mm, 60 mL/min, 220 nm) over C18 silica gel, eluting with a gradient of 15-100% ACN in water containing 10 mM NH 4 CO 3 , adjusted to pH ⁇ 9 with aqueous NH 4 OH over 9 minutes, to obtain the title compound (25 mg, 56% yield) after evaporation of the desired chromatographic fractions.
- ESMS m / z ): 485 (M+H).
- hTrkA, hTrkB, hTrkC Human tropomyosin receptor kinase assays to examine hTrk kinase inhibitors
- hTrk kinase activity The activity of human tropomyosin receptor hTrk kinase is quantitated using TR-FRET technology (Invitrogen) as per vendor instructions. Briefly, compounds for dose-response studies are serially diluted in dimethyl sulfoxide (1:2 for 20 concentrations) using an acoustic dispensing instrument Echo Access (Labcyte) and dispensed into ProxiPlate-384 plus plates (PerkinElmer). Kinase domain for hTrkA, hTrkB or hTrkC is added and the plates are incubated at room temperature (RT) for one hour.
- TR-FRET technology Invitrogen
- ATP and poly-GT are next added and plates are incubated at RT for one hour.
- EDTA and terbium-labeled antibody are added and plates are incubated at RT for one hour after which the TR-FRET signal is detected using an ENVISION ® plate reader (Perkin-Elmer). The ratio of fluorescence at 520 to 495 nm is calculated.
- the internal standard used in this procedure is N-[5-[7-[(1S)-2-hydroxy-1-methyl-ethyl]pyrrolo[2,3-d]pyrimidine-5-carbonyl]-3-pyridyl]-2-[4-(trifluoromethyl)phenyl]acetamide:
- This internal standard is commercially available as CAS Registry Number 1402438-37-2 .
- This internal standard may also be made using the teachings of U.S. Patent No. 8,846,698 .
- Activation of hTrkA, TrkB or TrkC is examined using PathHunter ® (DiscoverX) enzyme fragment complementation technology.
- PathHunter ® DiscoverX enzyme fragment complementation technology.
- ⁇ -gal ⁇ -galactosidase
- PK ⁇ -galactosidase
- EA Enzyme Acceptor
- hU2OS human Bone Osteosarcoma Epithelial
- DiscoverX Activation of hTrk receptors by agonists results in receptor phosphorylation.
- the SH2-EA fusion protein binds the phosphorylated hTrk receptor resulting in complementation of PK and EA to form an active ⁇ -gal enzyme.
- ⁇ -gal enzymatic activity is quantitatively measured using a chemiluminescent substrate in the PathHunter ® detection kit (DiscoverX).
- Human nerve growth factor (hNGF, PeproTech) human brain-derived neurotrophic factor (hBDNF, PeproTech) and recombinant human neurotrophin-3 protein (hNT-3, PeproTech) are used as agonists for hTrkA, hTrkB or hTrkC receptors respectively.
- hTrk kinase activity The activity of hTrkA and hTrkC kinase is quantitated using Pathhunter ® technology (DiscoverX) as per vendor instructions. Briefly, on the assay day, compounds for dose-response studies are serially diluted in dimethyl sulfoxide (1:3 for 10 concentrations) using an acoustic dispensing instrument Echo Access (Labcyte) and dispensed into cell plates that are subsequently incubated at room temperature (RT) for one hour.
- Pathhunter ® technology DiscoverX
- Pathhunter ® detection reagents (DiscoverX) are added and plates are read in an ENVISION ® plate reader (Perkin-Elmer) at 700 nm after 1h incubation at RT in the dark.
- hBDNF Human brain-derived neurotrophic factor
- hNT-3 recombinant human neurotrophin-3 protein
- Example 1 is a potent inhibitor of and selective for hTrkA in vitro.
- Example 2 To a flask, add the hemi succinic acid cocrystal of Example 1 (40.1 g, 72.2 mmol, 1 eq). Add DMSO (120 mL), and heat to 50 °C to obtain a solution. Polish filter the solution and rinse with DMSO (2 ⁇ ⁇ 2 mL).
- the XRPD patterns of crystalline solids are obtained on a Bruker D8 Endeavor X-ray powder diffractometer, equipped with a CuK ⁇ (1.5418 ⁇ ) source and a Linxeye detector, operating at 40 kV and 40 mA.
- the sample is scanned between 4 and 42 2 ⁇ °, with a step size of 0.009 2 ⁇ ° and a scan rate of 0.5 seconds/step, and using 0.3° primary slit opening, and 3.9° PSD opening.
- the dry powder is packed on a quartz sample holder and a smooth surface is obtained using a glass slide.
- the crystal form diffraction patterns are collected at ambient temperature and relative humidity.
- Crystal peak positions are determined in MDI-Jade after whole pattern shifting based on an internal NIST 675 standard with peaks at 8.853 and 26.774 2 ⁇ °. It is well known in the crystallographic art that, for any given crystal form, the relative intensities of the diffraction peaks may vary due to preferred orientation resulting from factors such as crystal morphology and habit. Where the effects of preferred orientation are present, peak intensities are altered, but the characteristic peak positions of the polymorph are unchanged. See, e.g. The United States Pharmacopeia #23, National Formulary #18, pages 1843-1844, 1995 . Furthermore, it is also well known in the crystallography art that for any given crystal form the angular peak positions may vary slightly.
- peak positions can shift due to a variation in the temperature at which a sample is analyzed, sample displacement, or the presence or absence of an internal standard.
- a peak position variability of ⁇ 0.2 2 ⁇ ° is presumed to take into account these potential variations without hindering the unequivocal identification of the indicated crystal form. Confirmation of a crystal form may be made based on any unique combination of distinguishing peaks.
- a prepared sample of the hemisuccinic acid of Example 1 is characterized by an XRPD pattern using CuK ⁇ radiation as having diffraction peaks (2-theta values) as described in Table A below, and in particular having a peak at 10.5 in combination with one or more of the peaks selected from the group consisting of 12.6, and 22.2; with a tolerance for the diffraction angles of 0.2 degrees. Table A.
- Example 1 of the present disclosure (data taken from Table 1 above) hTrkA IC50 1.55 nM 11.1 nM 1.24 nM hTrkB IC50 713 nM > 47,900 nM 6,700 nM hTrkC IC50 452 nM 37,800 nM 9,010 nM
- Example 1 is a potent binder of Trk A, and is selective for Trk A.
- Example 89 of US Patent No. 9815846 is potent with respect to Trk A, but is not as selective for Trk B and Trk C as in Example 1.
- Example 141 of US Patent No. 9815846 has similar selectivity for Trk A over Trk B and Trk C, but is less potent at the target Trk A.
- the compound of Example 141 of US Patent No. 9815846 in which there is a two pyridine rings is difficult to achieve synthetically, and it would likely not be possible to make this molecule on a kilogram scale using the techniques outlined in US Patent No. 9815846 .
- Example 152 has the following structure:
- Example 152 has a pyridine ring whereas Example 152 has a phenyl ring. If you compare the listed Trk A IC50 values for these two molecules that are found in Table 2 of US Patent 9815846 , Example 141 (with the pyridine ring) has a listed value of 14 nM whereas Example 152 (with the phenyl ring) has a listed value of 0.069 nM. Thus, by using a phenyl ring in Example 152 (rather than a pyridine ring of Example 141), there is a dramatic effect on the potency at TrkA - over 200 fold (e.g., 14 divided by 0.069. is 202.9). However, when compared with the molecule of present Example 1 (which also has a pyridine ring like Example 141 of US Patent 9815846 ), the present Example 1 has good the potency and selectivity.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Anesthesiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Plural Heterocyclic Compounds (AREA)
- Registering, Tensioning, Guiding Webs, And Rollers Therefor (AREA)
Description
- The present invention is in the field of medicine. Particularly, the present invention relates to a compound that inhibits tropomysin receptor kinase A (TrkA), compositions comprising such a compound, and such a compound and composition for use in the treatment of pain. The compound may treat acute or chronic pain of nociceptive/inflammatory, neuropathic, nociplastic, or mixed etiologies.
-
U.S. Patent Application Publication No. 2013/0336964 explains the role of TrkA and Nerve Growth Factor (NGF) in the human pain system. Accordingly, targeting and inhibiting TrKA can potentially be useful in treating pain. (See, for example,WO 2015/15148344 U.S. Patent No. 9,815,846 WO 2015/143652 ;WO 2015/143653 ;WO 2015/143654 ;WO 2015/159175 ;andWO 2015/170208 ). Antibodies have also been developed that are designed to bind to and/or inhibit TrkA and treat pain. (See, for example,U.S. Patent No. 10,618,974 U.S. Patent Application Publication No. 2013/0336961 ,U.S. Patent No. 7,601,818 ,WO 2000/73344 WO 2016/087677 ). The protein sequence for human TrkA is provided inU.S. Patent Application Publication No. 2013/0336961 . - Persistent pain represents a major health problem and causes significant losses in quality of life. Persistent pain may present with different levels of severity, and is associated with a variety of pathologies, such as back injury or degenerative disk disease, migraine headaches, arthritis, diabetic neuropathy, cancer and other diseases. Mild pain is presently treated with acetaminophen, aspirin, and other (typically over-the-counter) medications. Moderate pain may be controlled using corticosteroidal drugs such as cortisol and prednisone. Problems with the effectiveness and/or tolerability of existing treatments are well known, and corticosteroids for example display remarkable adverse effects including weight gain, insomnia, and immune system weakening. Moderate or severe pain may be treated with opioids such as morphine and fentanyl, but long-term use of opiates is limited by several serious drawbacks, including development of addiction, tolerance and physical dependence. Potential overuse of opioids has been characterized as an "opioid epidemic" in view of the growing number of people that use and may be addicted to opioids.
- As current pain therapies are often poorly effective and/or have serious undesirable side effects (like addiction), an urgent need exists to develop drugs which are directed to new molecular targets. Specifically, there is an urgent medical need to develop new pain treatment agents that are less likely to be addictive and/or cause dependency. Further, there is a need for new TrkA inhibitors that may provide one or more improved pharmacological properties, for example safety, potency, efficacy, or tolerability, in particular for the treatment of pain/chronic pain. To date, no agents targeting TrkA signaling have been approved for the treatment of pain. Thus, there remains a need for agents that can inhibit TrkA signaling, such as alternative TrkA inhibitors.
-
- In addition to the compound of FORMULA I, embodiments of the present invention provide one or more pharmaceutically acceptable salts of the compound of FORMULA I, and said salts for use as TrKA inhibitors.
- An embodiment of the present invention further provides the compound of FORMULA I or a pharmaceutically salt thereof, as well as a pharmaceutical composition comprising a compound of FORMULA I or a pharmaceutically salt thereof, for use in a method for the treatment of pain. The pharmaceutical compositions include the compound or pharmaceutically acceptable salt of FORMULA I, and one or more pharmaceutically acceptable carriers, diluents or excipients.
- Such a method for treating pain comprises administering to a patient in need thereof an effective amount of a compound of FORMULA I, or pharmaceutically acceptable salt thereof, or a pharmaceutical composition thereof. The method may be a method for treating acute or chronic pain that is musculoskeletal or neuropathic in origin. Specific, non-limiting examples of pain include, post-surgical pain, rheumatoid arthritis pain, osteoarthritis pain, neuropathic pain, diabetic nerve pain (DNP), chronic lower back pain (CLBP), including non radicular (non-neuropathic) and radicular lower back pain (which are sometimes referred to as lumbosacral radiculopathy (LSR) or sciatica), as well as visceral pain such as chronic prostatitis, interstitial cystitis (bladder pain) or chronic pelvic pain.
- An embodiment of the present invention provides the compound of FORMULA I, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition thereof, for use in a method of therapy.
- The present embodiments also provide a compound that is the hemisuccinic acid salt of the compound of FORMULA I.
- In addition, some embodiments have the hemisuccinic acid salt of the compound of FORMULA I be crystalline. In some embodiments, the hemisuccinic acid salt is characterized by a substantial peak in the X-ray diffraction spectrum, at diffraction angle 2-theta of 10.5° in combination with one or more of the peaks selected from the group consisting of 12.6, and 22.2; with a tolerance for the diffraction angles of 0.2 degrees.
- An embodiment of the present invention further provides a pharmaceutical composition comprising the hemisuccinic acid salt of FORMULA I. These pharmaceutical compositions include the hemisuccinic acid salt of FORMULA I, and one or more pharmaceutically acceptable carriers, diluents or excipients.
- An embodiment of the present invention provides the hemisuccinic acid salt of FORMULA I, or a pharmaceutical composition thereof, for use in a method of therapy. Another embodiment provides the hemisuccinic acid salt of FORMULA I, for use in a method for the treatment pain. In some embodiments, the pain is acute or chronic pain that is musculoskeletal or neuropathic in origin. Specific, non-limiting examples of pain include post-surgical pain, rheumatoid arthritis pain, osteoarthritis pain, neuropathic pain, DNP, and CLBP, including non radicular (non-neuropathic) and radicular lower back pain (which are sometimes referred to as LSR or sciatica), as well as visceral pain (such as, for example, chronic prostatitis, interstitial cystitis (bladder pain) or chronic pelvic pain).
- An effective amount can be determined by one skilled in the art by the use of known techniques, and by observing results obtained under analogous circumstances. In determining the effective amount for a patient, a number of factors are considered, including, but not limited to: weight, age, and general health; the specific disease or disorder involved; the degree of involvement or severity of the disease or disorder; the response of the individual patient; the compound administered; the mode of administration; the bioavailability characteristics of the preparation administered; the dose regimen selected; the use of concomitant medication; and other relevant circumstances.
- The compound of the present invention may be formulated as pharmaceutical compositions administered by any route which makes the compound bioavailable. Preferably, such compositions are for oral administration. Such pharmaceutical compositions and processes for preparing the same are well known in the art (See, e.g., Remington: The Science and Practice of Pharmacy, L.V. Allen, Editor, 22nd Edition, Pharmaceutical Press, 2012).
- The compound and pharmaceutically acceptable salts of the present embodiments are expected to treat a class of pain, which includes post-surgical pain, neuropathic pain, rheumatoid arthritis pain and osteoarthritis pain, including, for example, non radicular (non-neuropathic) and radicular CLBP, DNP, and LSR. The compound of FORMULA I and pharmaceutically acceptable salts or pharmaceutical compositions thereof of the present invention may also be useful in the treatment of other forms of pain. As used interchangeably herein, "treatment" and/or "treating" and/or "treat" are intended to refer to all processes wherein there may be a slowing, interrupting, arresting, controlling, stopping, or reversing of the progression of the disorders described, but does not necessarily indicate a total elimination of all disorder symptoms. Treatment may also include the prevention of pain. Treatment includes administration of a compound of FORMULA I, or a pharmaceutically acceptable salt thereof or pharmaceutical composition thereof, for treatment of a disease or condition in a human that would benefit from a reduction in TrkA activity, wherein said treatment provides: (a) inhibiting further progression of the disease, i.e., arresting its development; (b) relieving the disease, i.e., causing regression of the disease or disorder or alleviating symptoms or complications thereof; and/or (c) preventing the onset of the disease of symptoms. Treatment, as used herein, expressly includes reducing incidence of pain, ameliorating a pain or one or more symptoms of a pain, palliating a pain or one or more symptoms of a pain, delaying the development of pain. Treatment also includes, in some situations, treating the pain but not necessarily modifying the underlying disease or condition giving rise to the pain.
- "Reducing incidence" of pain as used herein means any of reducing duration, and/or frequency of pain (including, for example, delaying or increasing time to post-surgical pain in an individual). As is understood by those skilled in the art, individuals may vary in terms of their response to treatment, and as such, a "method of reducing incidence of rheumatoid arthritis pain or osteoarthritis pain in an individual" reflects administering the compound or pharmaceutically acceptable salts based on a reasonable expectation that such administration is likely cause a reduction in incidence in that particular individual.
- Treatment of pain also includes reducing the severity of the pain as well as reducing the need for and/or amount of (e.g., exposure to) other drugs and/or therapies generally used for this conditions, including, for example, opiates).
- "Ameliorating" a pain or one or more symptoms of a pain (such as rheumatoid arthritis pain or osteoarthritis pain) means a lessening or improvement of one or more symptoms of pain, as compared to not administering a compound or pharmaceutically acceptable salt. "Ameliorating" includes shortening or reduction in duration of a symptom.
- "Palliating" pain or one or more symptoms of a pain (such as rheumatoid arthritis pain or osteoarthritis pain) means lessening the extent of one or more undesirable clinical manifestations of post-surgical pain in an individual, or population of individuals, treated with a compound or pharmaceutically acceptable salt in accordance with the invention.
- As used herein, "delaying" the development of pain means to defer, hinder, slow, retard, stabilize, and/or postpone progression of pain, such as post-surgical pain, rheumatoid arthritis pain, or osteoarthritis pain. Such a delay can be of varying lengths of time, depending on the history of the disease and/or individuals being treated. As is evident to one skilled in the art, a sufficient or significant delay can, in effect, encompass prevention, in that the individual does not develop pain. A method that "delays" development of the symptom can be a method that reduces probability of developing the symptom in a given time frame, and/or reduces the extent of the symptoms in a given time frame, when compared to not using the method. Such comparisons are typically based on clinical studies, using a statistically significant number of subjects.
- "Pain" as used herein refers to pain of any etiology, including acute and chronic pain, and any pain with an inflammatory component. Examples of pain include post-surgical pain, post-operative pain (including dental pain), migraine, headache and trigeminal neuralgia, pain associated with burn, wound or kidney stone, pain associated with trauma (including traumatic head injury), neuropathic pain, pain associated with musculo-skeletal disorders such as rheumatoid arthritis, osteoarthritis, including, for example, non radicular (non-neuropathic) and radicular CLBP, DNP, and LSR (sciatica), ankylosing spondylitis, sero-negative (non-rheumatoid) arthropathies, non-articular rheumatism and peri-articular disorders, and pain associated with cancer (including "break-through pain" and pain associated with terminal cancer), peripheral neuropathy and post-herpetic neuralgia. Examples of pain with an inflammatory component (in addition to some of those described above) include rheumatic pain, pain associated with mucositis, and dysmenorrhea.
- Pain, as defined herein, expressly includes chronic pain of both musculoskeletal as well as neuropathic origin. Pain also expressly includes acute pain or sudden pain. Pain scales for the measurement of pain level are well known, such as those disclosed, for example, in McConnell, S. et al., "The Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC): A Review of Its Utility and Measurement Properties", Arthritis Care & Research, 45:453-461, 2001, and Haefeli., M. et al., "Pain Assessment", European Spine Journal 2006 Jan; 15 (Suppl 1): S17-S24.
- "Post-surgical pain" (interchangeably termed "post-incisional" or "post-traumatic pain") refers to pain arising or resulting from an external trauma such as a cut, puncture, incision, tear, or wound into tissue of an individual (including that that arises from all surgical procedures, whether invasive or non-invasive). As used herein, post-surgical pain does not include pain that occurs (arises or originates) without an external physical trauma. In some embodiments, post-surgical pain is internal or external (including peripheral) pain, and the wound, cut, trauma, tear or incision may occur accidentally (as with a traumatic wound) or deliberately (as with a surgical incision). As used herein, "pain" includes nociception and the sensation of pain, and pain can be assessed objectively and subjectively, using pain scores and other methods well-known in the art. Post-surgical pain, as used herein, includes allodynia (i.e., increased response to a normally non-noxious stimulus) and hyperalgesia (i.e., increased response to a normally noxious or unpleasant stimulus), which can in turn, be thermal or mechanical (tactile) in nature. In some embodiments, the pain is characterized by thermal sensitivity, mechanical sensitivity and/or resting pain. In some embodiments, the post-surgical pain comprises mechanically-induced pain or resting pain. In other embodiments, the post-surgical pain comprises resting pain. The pain can be primary or secondary pain, as is well-known in the art.
- As used interchangeably herein, the term "patient," "subject," and "individual," refers to a human, more particularly, a patient in need thereof. In certain embodiments, the patient is further characterized with a disease, disorder, or condition (e.g., pain, for example, primary or secondary headache and/or migraine including chronic migraine) that would benefit from a reduction in TrkA activity. In another embodiment, the patient is further characterized as being at risk of developing a condition described above, or condition that would benefit from a reduction in TrkA activity.
- A pharmaceutically acceptable salt of the compound of the invention can be formed, for example, by reaction of an appropriate free base of a compound of the invention and an appropriate pharmaceutically acceptable acid in a suitable solvent under standard conditions well known in the art. See, for example, Gould, P.L., "Salt selection for basic drugs," International Journal of Pharmaceutics, 33: 201-217 (1986); Bastin, R.J., et al. "Salt Selection and Optimization Procedures for Pharmaceutical New Chemical Entities," Organic Process Research and Development, 4: 427-435 (2000); and Berge, S.M., et al., "Pharmaceutical Salts," Journal of Pharmaceutical Sciences, 66: 1-19, (1977).
- A compound of FORMULA I, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition thereof may be prepared by a variety of procedures known to one of ordinary skill in the art, some of which are illustrated in the preparations and examples below. The products of each step in the preparations and examples below can be recovered by conventional methods well known in the art, including extraction, evaporation, precipitation, chromatography, filtration, trituration, and crystallization. In the preparations and examples below, all substituents unless otherwise indicated, are as previously defined. The reagents and starting materials are readily available to one of ordinary skill in the art. Without limiting the scope of the invention, the following preparations and examples are provided to further illustrate aspects of the invention. In addition, one of ordinary skill in the art appreciates that the compound of FORMULA I may be prepared by using any other suitable starting material or intermediate which can be prepared by one of skill in the art.
- Certain abbreviations may be used herein, and have the following meanings unless otherwise specified: "aa" refers to amino acid; "ACN" refers to acetonitrile; "Ac" refers to acetyl; "hBDNF" refers to human Brain-derived neurotrophic factor; "CAS#" refers to Chemical Abstracts Registry number; "DCM" refers to methylene chloride or dichloromethane; "DIPEA" refers to N,N-diisopropylethylamine; "DMF" refers to N,N-dimethylformamide; "DMSO" refers to dimethyl sulfoxide; "D-PBS" refers to Dulbecco's phosphate buffered Saline; "EDTA" refers to ethylenediaminetetraacetic acid; "ESMS" and "ES/MS" refer to Electrospray Mass Spectrometry; "Et" refers to ethyl; "Et2O" refers to diethyl ether; "EtOAc" refers to ethyl acetate; "EtOH" refers to ethanol or ethyl alcohol; "h" or "hr" refers to hour or hours; "HATU" refers to 1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid hexafluorophosphate; "hTrk" refers to human tropomysin receptor kinase; "HPLC" refers to High Performance Liquid Chromatography; "IC50" refers to the concentration of an agent that produces 50% of the maximal inhibitory response possible for that agent; "LC-ES/MS" refers to Liquid Chromatography with tandem Electrospray Mass Spectrometry; "min" refers to minute or minutes; "Me" refers to methyl; "MeOH" refers to methanol or methyl alcohol; "min" refers to minute or minutes; "n-BuLi" refers to n-butyllithium; "OAc" refers to acetate or acetoxy; "PBS" refers to phosphate-buffered saline; "RT" refers to room temperature; "SD" refers to standard deviation; "sec" refers to second or seconds as a unit of time; "SEM" refers to standard error of the mean; "SFC" refers to Supercritical Fluid Chromatography; "SH2" refers to Src Homology 2 domain; "THF" refers to tetrahydrofuran; "Tris" refers to tris(hydroxymethyl)aminomethane or 2-amino-2-(hydroxymethyl)propane-1,3-diol; "tR" refers to retention time; "U/mL" refers to units per milliliter; "U2OS" refers to human bone osteosarcoma epithelial cells or cell line; "v/v" refers to volume to volume as a ratio of solvent concentration.
- The following Preparations and Examples further illustrate the invention and represent typical synthesis of various compounds of the invention. The reagents and starting materials are readily available, or may be readily synthesized by one of ordinary skill in the art. It should be understood that the Preparations and Examples are set forth by way of illustration and not limitation, and that various modifications may be made by one of ordinary skill in the art.
- LC-ES/MS is performed on an AGILENT® HP1100 liquid chromatography system. Electrospray mass spectrometry measurements (acquired in positive and/or negative mode) are performed on a Mass Selective Detector quadrupole mass spectrometer interfaced to the HP1100 HPLC. LC-MS conditions (low pH): column: PHENOMENEX® GEMINI® NX C18 2.1 mm × 50 mm, 3.0 µ; gradient: 5-100% B in 3 min, then 100% B for 0.75 min column temperature: 50 °C +/-10 °C; flow rate: 1.2 mL/min; Solvent A: deionized water with 0.1% HCOOH; Solvent B: ACN with 0.1% formic acid; wavelength 214 nm. Alternate LC-MS conditions (high pH): column: XTERRA® MS C18 columns 2.1×50 mm, 3.5 µm; gradient: 5% of solvent A for 0.25 min, gradient from 5% to 100% of solvent B in 3 min and 100% of solvent B for 0.5 min or 10% to 100% of solvent B in 3 min and at 100% of solvent B for 0.75 min; column temperature: 50 °C +/-10 °C; flow rate: 1.2 mL/min; Solvent A: 10 mM NH4HCO3 pH 9; Solvent B: ACN ; wavelength: 214 nm.
- Unless otherwise specified, preparative reversed phase chromatography is performed on an AGILENT® 1200 LC-ES/MS equipped with a Mass Selective Detector mass spectrometer and a LEAP® autosampler/fraction collector. High pH methods are run on a 75 × 30 mm PHENOMENEX® GEMINI®-NX, 5 µ particle size column with a 10 × 20 mm guard. Flow rate of 85 mL/min. Eluent is 10 mM ammonium bicarbonate (pH 10) in acetonitrile.
- NMR spectra are performed on a Bruker AVIII HD 400 MHz NMR Spectrometer, obtained as CDCl3 or (CD3)2SO solutions reported in ppm, using residual solvent [CDCl3, 7.26 ppm; (CD3)2SO, 2.05 ppm] as reference standard. When peak multiplicities are reported, the following abbreviations may be used: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), br-s (broad singlet), dd (doublet of doublets), dt (doublet of triplets). Coupling constants (J), when reported, are reported in hertz (Hz).
-
- 2-Fluoro-4-(trifluoromethyl)benzoic acid (5 g, 23 mmol) is dissolved in MeOH (100 mL) and a concentrated aqueous solution of H2SO4 (200 µL, 4 mmol) is added. The resulting mixture is heated to reflux with stirring for 48 h. The reaction mixture is concentrated under reduced pressure, the residue is diluted with water, and extracted with EtOAc. The organic extracts are washed sequentially with saturated aqueous NaHCOs and saturated aqueous NaCl, dried over Na2SO4, filtered, and the filtrate is concentrated under reduced pressure to obtain the title compound (5.2 g, 99% yield). 1H nmr (CDCl3): δ 3.993 (s, 3H), 7.447 (d, 1H), 7.507 (d, 1H), 8.091 (t, 1H).
-
- Methyl 2-fluoro-4-(trifluoromethyl)benzoate (5.1 g, 23 mmol) is dissolved in concentrated aqueous H2SO4 (25 mL) and the resulting mixture is cooled to 0 °C with stirring. An aqueous solution of 7M HNOs (2.5 mL, 40 mmol) is added dropwise over 15 min at 0 °C, and the resulting mixture is allowed to warm to RT with stirring for 1h. The reaction mixture is poured over ice, and the resulting precipitate is collected by filtration, washed with water, and air-dried with vacuum suction. The filtercake is dissolved in EtOAc (100 mL), and the organic mixture is washed sequentially with saturated aqueous NaHCOs and saturated aqueous NaCl. The organic extract is dried over Na2SO4, filtered, and concentrated under reduced pressure to obtain the title compound (5.8 g, 95% yield) as a yellow solid. 1H nmr (CDCl3): δ 4.043 (s, 3H), 7.672 (d, 1H), 8,598 (d, 1H).
-
- Methyl 2-fluoro-5-nitro-4-(trifluoromethyl)benzoate (5.8 g, 21.7 mml) is dissolved in MeOH (150 mL), and the mixture is sparged with N2. Pd/C (500 mg) is added, the reaction mixture is sealed, and the resulting mixture is stirred under a balloon of H2 at ambient temperature and pressure for 4h. The reaction mixture is purged with N2, filtered over a bed of diatomaceous earth, and the methanolic filtrate is concentrated under reduced pressure. The resulting crude residue is purified by chromatography over silica gel, eluting with a gradient of 5-60% EtOAc in hexanes) to obtain the title compound (3.5 g, 68% yield), after evaporation of the desired chromatographic fractions. ESMS (m/z): 236 (M-H).
-
- CuBr2 (3.15 g, 14.1 mmol) and isoamylnitrite (2.2 mL, 16 mmol) are added to a solution of methyl 5-amino-2-fluoro-4-(trifluoromethyl)benzoate (3 g, 12.7 mmol) dissolved in ACN (30 mL) and the resulting mixture is stirred at RT for 2 h. The reaction mixture is diluted with hexanes, filtered through a bed of diatomaceous earth, and the collected filtrate is concentrated under reduced pressure. The resulting residue is purified by chromatography over silica gel, eluting with a gradient of 5-40% EtOAc in hexanes, to obtain the title compound (3.8 g, 71% yield) after evaporation of the desired chromatographic fractions. 1H nmr (CDCl3): δ 3.996 (s, 3H), 7.521 (dd, 1H), 8.272 (t, 1H).
-
- 1-Methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole (1.0 g, 4.8 mmol) and methyl 5-bromo-2-fluoro-4-(trifluoromethyl)benzoate (1.3 g, 4.3 mmol) are suspended in THF (6 mL) containing 1M aqueous K3PO4 (2 mL, 2 mmol) in a microwave vial equipped with a stir bar and the mixture is sparged with N2 for 5 min. Methanesulfonato(2-dicyclohexylphosphino-2',4',6'-tri-isopropyl-1,1'-biphenyl)(2'-methylamino-1,1'-biphenyl-2-yl)palladium(II) (190 mg, 0.2 mmol) is added and the vial is sealed with a Teflon cap. The resulting mixture is irradiated in a microwave reactor at 100 °C for 4 h. The reaction mixture is cooled to RT and loaded directly onto silica gel for purification, eluting with a gradient of 5-100% MeOH (containing 10% v/v 2 M NH3 in MeOH) in DCM to obtain, after evaporation of the desired chromatographic fractions, the title compound (1.1g, 85% yield) as a white solid. ESMS (m/z): 303 (M+H).
-
- Solid LiOH (1.0 g, 41 mmol) is added to a solution of methyl 2-fluoro-5-(1-methylpyrazol-3-yl)-4-(trifluoromethyl)benzoate (1.1 g, 3.7 mmol) in EtOH (50 mL) and H2O (10 mL) and the resulting reaction mixture is stirred at RT for 2 h. The mixture is acidified with 5N HCl and extracted with EtOAc. The organic extracts are washed with saturated aqueous NaCl, dried over Na2SO4, filtered, and concentrated under reduced pressure to obtain the title compound (1.1 g, 99% yield) as a white solid. ESMS (m/z): 298 (M+H).
-
- A mixture of THF (350 mL) and 2,2,6,6-tetramethylpiperidine (41 mL, 240 mmol) is cooled with stirring to - 50 °C under N2. A 2.5 M solution of n-BuLi in hexanes (81 mL, 220 mmol) is added portion wise, maintaining temperature below - 40 °C, and the resulting mixture is stirred at - 50 °C for 10 min. 5-Bromopyridine-3-carboxylic acid (20.0 g, 99.0 mmol) is added portion wise, maintaining temperature below -40 °C. The resulting reaction mixture is stirred at -50 °C and added to a solution of I2 (30.2 g, 119 mmol) in THF (300 mL) via cannula under N2 with slight pressure at - 50 °C with stirring. The resulting mixture is warmed to RT with stirring under N2 for 4 h. The reaction mixture is quenched with water (20 mL), and most of the solvent is evaporated under a stream of N2. The resulting residue is poured into 1 N aqueous solution of NaOH (250 mL). The resulting basic mixture is washed with Et2O:EtOAc (1:1, ~ 250 mL), and the separated aqueous layer is acidified to pH ~ 1 with 5 N aqueous HCl. The resulting precipitate is collected by filtration, triturated with MeOH, collected by filtration, and the filter cake is washed with Et2O and hexanes and air-dried, to obtain the title compound (20.0 g, 55% yield) as a tan solid, sufficient for use without additional purification and used as is in the next step. ESMS (m/z): (79Br/81Br) 328/330 (M+H).
-
- In a 50 mL RBF is added 5-bromo-4-iodo-pyridine-3-carboxylic acid (2.8 g, 8.5 mmol), acetone (23 mL), K2CO3 (1.8 g, 12.8 mmol), and dimethyl sulfate (891 µL, 9.3 mmol). The mixture is allowed to stir at RT overnight. The reaction mixture is filtered through diatomaceous earth, rinsed with acetone and EtOAc, and the filtrate is concentrated under reduced pressure. The resulting residue is purified by flash chromatography on silica gel, eluting with a gradient of 0-100% EtOAc (containing 2% EtsN) in isohexane, to give the title compound (2.15 g, 70.5% yield) as crystalline yellow solid after evaporation of the desired chromatographic fractions. 1H nmr ((CD3)2SO): δ 3.906 (s, 3H), 8.592 (s, 1H), 8.862 (s, 1H).
-
- References: Bioorg. Med. Chem. Lett., 2017, 27(16), 3817; Bioorg. Med. Chem. Lett., 2016, 26(1), 160.
- A 25 mL microwave vessel containing, methyl 5-bromo-4-iodo-pyridine-3-carboxylate (710 mg, 2.1 mmol), CsF (630 mg, 4.1 mmol), LiCl (176 mg, 4.1 mmol), tetrakis(triphenyl-phosphine)palladium(0) (120 mg, 0.1 mmol) is evacuated and purged with nitrogen (two cycles of vacuum/ nitrogen). 1,4-Dioxane (18 mL, 210.8 mmol) is added, nitrogen bubbled through the mixture, and tributyl(2-pyridyl)stannane (540 µL, 1.7 mmol) is added. The sealed reaction mixture is heated to 125 °C in a heating block and heated overnight. The resulting mixture is stirred over 48 h at RT. The crude mixture is filtered through diatomaceous earth and rinsed with EtOAc, and the filtrate is concentrated under reduced pressure. The resulting residue is purified by flash chromatography over silica gel, eluting with 0 to 70% EtOAc in isohexanes, to obtain the title compound (140 mg, 23% yield) as a golden oil after evaporation of the desired chromatographic fractions. ESMS (m/z): (79Br/81Br) 292/294 (M+H).
-
- 2-Fluoro-5-(1-methylpyrazol-3-yl)-4-(trifluoromethyl)benzoic acid (33.1 g, 115 mmol), NH4Cl (8.0 g, 150 mmol), HATU (57 g, 142.4 mmol), DIPEA (44 mL, 252 mmol) and DMF (300 mL) are combined in a round-bottomed flask and stirred at RT for 1 h. The reaction mixture is diluted with water and the resulting precipitate is collected by filtration, washed with water, and dried under vacuum at 50 °C to obtain the title compound (24 g, 72% yield) as an off-white, crystalline solid. The filtrate is concentrated under reduced pressure and diluted with water. The resulting mixture is extracted with EtOAc, and the organic layer is washed with saturated aqueous NaCl, dried over Na2SO4, filtered, and concentrated under reduced pressure. The resulting residue is triturated with EtOAc, collected by filtration and air-dried, to obtain additional title compound (5.4 g, 16% yield) as a white, crystalline solid. The title compound is combined with previously recovered title material (29.0 g, 92% total yield). ESMS (m/z): 288 (M+H).
-
- A 25 mL microwave vial is charged with , 2-fluoro-5-(1-methylpyrazol-3-yl)-4-(trifluoromethyl)benzamide (282 mg, 1 mmol), CsCOs (800 mg, 2.5 mmol), tris(dibenzylideneacetone)dipalladium(0) (150 mg, 0.2 mmol) and 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene (190 mg, 0.3 mmol). The vial is sealed, subjected to two cycles of vacuum / nitrogen, and a solution of methyl 5-bromo-4-(2-pyridyl)pyridine-3-carboxylate (240 mg, 0.8 mmol) in 1,4-dioxane (8 mL) is added. Nitrogen is bubbled through the mixture for 5 min and mixture is heated in a heating block at 130 °C overnight. The mixture is filtered through diatomaceous earth and rinsed sequentially with EtOAc and MeOH, and the filtrate is concentrated to give a brown oil. The resulting residue is diluted in MeOH (to a total volume of 8.5 ml), filtered over a bed of diatomaceous earth, and purified by preparative HPLC over C18 silica gel (PHENOMENEX® Gemini, 5 µ, 30 × 100mm, 60 mL/min, 210 nm), eluting with a gradient of 5-100% ACN in water containing 10 mM NH4CO3, adjusted to pH ~ 9 with aqueous NH4OH, over 9 minutes (1 total injection), to obtain the title compound (40 mg, 8.5% yield) after evaporation of the desired chromatographic fractions. ESMS (m/z): 500 (M+H).
-
- Methyl 5-[[2-fluoro-5-(1-methylpyrazol-3-yl)-4-(trifluoromethyl)benzoyl]amino]-4-(2-pyridyl)pyridine-3-carboxylate (40 mg, 0.07 mmol) is dissolved in MeOH (5 mL) and treated with a 2M aqueous solution of NaOH (5 mL, 10 mmol), and the resulting mixture is stirred at for 30 min. The reaction is acidified with an aqueous solution of 2M HCl and extracted with DCM. The organic layer is separated, dried through a hydrophobic frit, and concentrated under reduced pressure to give a pale yellow solid . The aqueous phase is additionally extracted with 20% MeOH/DCM, the layers are separated, and the organic extract is dried over MgSO4, filtered, combined with previous organic phase, and concentrated to give the title compound (40 mg, 118% crude yield) as a pale yellow solid suitable for use without additional purification. ESMS (m/z): 486 (M+H).
-
- 5-[[2-fluoro-5-(1-methylpyrazol-3-yl)-4-(trifluoromethyl)benzoyl]amino]-4-(2-pyridyl)pyridine-3-carboxylic acid (40 mg, 0.08 mmol) is dissolved in anhydrous DMF (2 mL). HATU (58 mg, 0.2 mmol) and NH4Cl (55 mg, 1.0mmol), and DIPEA (270 µL, 1.6 mmol) are added. The reaction mixture is stirred at RT for 60 min, diluted in MeOH (to a total volume of 6 mL), filtered over diatomaceous earth, and purified by preparative HPLC (PHENOMENEX® Gemini 5 µ, 30 × 100 mm, 60 mL/min, 220 nm) over C18 silica gel, eluting with a gradient of 15-100% ACN in water containing 10 mM NH4CO3, adjusted to pH ~ 9 with aqueous NH4OH over 9 minutes, to obtain the title compound (25 mg, 56% yield) after evaporation of the desired chromatographic fractions. ESMS (m/z): 485 (M+H).
- The reaction of non-phosphorylated hTrk kinase domains (hTrkA, aa: 441-796, hTrkB, aa:526-838 or hTrkC, aa:510-825) with a fluorescein-labeled poly-GT substrate (poly-GT, Invitrogen) generates a fluorescein-labeled phosphorylated product. Binding of the terbium-labeled antibody (Invitrogen) to the phosphorylated tyrosine product brings the terbium and fluorescein into proximity, resulting in an increase in time-resolved fluorescence resonance energy transfer (TR-FRET). In the presence of an inhibitor, formation of phosphorylated product is reduced, and the TR-FRET value is decreased.
- Inhibition of hTrk kinase activity: The activity of human tropomyosin receptor hTrk kinase is quantitated using TR-FRET technology (Invitrogen) as per vendor instructions. Briefly, compounds for dose-response studies are serially diluted in dimethyl sulfoxide (1:2 for 20 concentrations) using an acoustic dispensing instrument Echo Access (Labcyte) and dispensed into ProxiPlate-384 plus plates (PerkinElmer). Kinase domain for hTrkA, hTrkB or hTrkC is added and the plates are incubated at room temperature (RT) for one hour. ATP and poly-GT are next added and plates are incubated at RT for one hour. EDTA and terbium-labeled antibody are added and plates are incubated at RT for one hour after which the TR-FRET signal is detected using an ENVISION® plate reader (Perkin-Elmer). The ratio of fluorescence at 520 to 495 nm is calculated.
- Data Analysis: The data are converted into % Inhibition and relative IC50 values are calculated from the top-bottom range of the concentration response curve using a four-parameter logistic curve fitting program (GENEDATA SCREENERO v13.0.5) with the equation Y=Bottom + (Top-Bottom)/(1+10^((LogIC50-X)*HillSlope)). The top of the curve is 100% inhibition and defined by the kinase wells treated with an internal standard, which is a non-selective hTrk kinase inhibitor ([final]=7.9uM), whereas the bottom of the curve is 0% inhibition and defined by the kinase wells in the absence of compound.
- The internal standard used in this procedure is N-[5-[7-[(1S)-2-hydroxy-1-methyl-ethyl]pyrrolo[2,3-d]pyrimidine-5-carbonyl]-3-pyridyl]-2-[4-(trifluoromethyl)phenyl]acetamide:
U.S. Patent No. 8,846,698 . - Activation of hTrkA, TrkB or TrkC is examined using PathHunter® (DiscoverX) enzyme fragment complementation technology. In this approach, one fragment of β-galactosidase (β-gal) ProLink (PK) is fused to the C-terminal of the Trk receptor and co-expressed with a phosphotyrosine SH2 domain protein fused with the remaining fragment of β-gal, Enzyme Acceptor (EA), in human Bone Osteosarcoma Epithelial (hU2OS) cells also expressing the p75 neurotrophic receptor (DiscoverX). Activation of hTrk receptors by agonists results in receptor phosphorylation. The SH2-EA fusion protein binds the phosphorylated hTrk receptor resulting in complementation of PK and EA to form an active β-gal enzyme. β-gal enzymatic activity is quantitatively measured using a chemiluminescent substrate in the PathHunter® detection kit (DiscoverX). Human nerve growth factor (hNGF, PeproTech), human brain-derived neurotrophic factor (hBDNF, PeproTech) and recombinant human neurotrophin-3 protein (hNT-3, PeproTech) are used as agonists for hTrkA, hTrkB or hTrkC receptors respectively.
- Cell Culture: Cultured hU2OS cells that express hTrk receptors and p75 (PathHunter® system, DiscoverX) are grown in AssayComplete™ U2OS Cell Culture Kit 11 (DiscoverX) to about 80% confluence. On the day before the assay, cells are detached using AssayComplete™ Cell Detachment Reagent (DiscoverX), harvested in AssayComplete™ Cell Plating 16 Reagent (DiscoverX) to the correct cell concentration (250,000/ml) and seeded at 5K/well into 384-well poly-D-lysine coated white plates (BD Biosciences). Cell plates are incubated at 37°C overnight.
- Inhibition of hTrk kinase activity: The activity of hTrkA and hTrkC kinase is quantitated using Pathhunter® technology (DiscoverX) as per vendor instructions. Briefly, on the assay day, compounds for dose-response studies are serially diluted in dimethyl sulfoxide (1:3 for 10 concentrations) using an acoustic dispensing instrument Echo Access (Labcyte) and dispensed into cell plates that are subsequently incubated at room temperature (RT) for one hour. For studies in hTrKA-p75 cells, recombinant human NGF-β (PeproTech) is added to the cells at an EC80 concentration ([final]= 27 ng/ml) and plates are incubated at RT for three hours. Pathhunter® detection reagents (DiscoverX) are added and plates are read in an ENVISION® plate reader (Perkin-Elmer) at 700 nm after 1h incubation at RT in the dark. Human brain-derived neurotrophic factor (hBDNF, PeproTech, [final] = 20 ng/ml) or recombinant human neurotrophin-3 protein (hNT-3, PeproTech, [final] = 29 ng/ml) are used as agonist for studies in hTrkB-p75 or hTrkC-p75 cells, respectively.
- Data Analysis: The data are converted into % Inhibition and relative IC50 values are calculated from the top-bottom range of the concentration response curve using a four-parameter logistic curve fitting program (GENEDATA SCREENER® v13.0.5) with the equation Y=Bottom +(Top-Bottom)/(1+10^((LogIC50-X)*HillSlope)). The top of the curve is 100% inhibition and defined by the wells without agonist stimulation. The bottom of the curve is 0% inhibition and defined by the agonist-stimulated (hNGF, hBDNF or hNT) wells in the absence of inhibitor.
Table 1. Relative IC50 in nM of Example 1 against hTrkA/B/C ± SEM (N = number of times tested) PathHunter® cell-based assay Binding Assays hTrkA (nM) hTrkB (nM) hTrkC (nM) hTrkA (nM) hTrkB (nM) hTrkC (nM) 1.24 (N = 32) 6,700 (N = 25) 9,010 (N = 24) 1.09 (N = 4) > 4,290 (N = 1) 8,360 (N = 1) - These data indicate that the compound of Example 1 is a potent inhibitor of and selective for hTrkA in vitro.
- To a flask, add 16 g of the compound of Example 1 (33.0 mmol, 1 eq). Add THF (288 mL) and water (32 mL). Heat this mixture to 55 °C and obtain a solution. Polish filter the solution and rinse with 9:1 v:v THF:water (2 × 16 mL). In a separate flask, add succinic acid (3.9 g, 33.0 mmol, 1 eq) and ethanol (80 mL). Mix until a solution results.
- Transfer the solution of the compound of Example 1 to a flask with overhead stirring and a distillation head and rinse with 9:1 v:v THF:water (16 mL). Add the succinic acid solution in EtOH. Heat the solution to reflux and begin distillation. After 300 mL distillate are collected, solids crystallize from the mixture. Add back EtOH (160 mL) and stir. Turn off the heat. Cool to room temperature. Filter and rinse with EtOH (4 × 16 mL). Dry the wetcake under vacuum at 50 °C. Isolate white solids, the hemi succinic acid salt of the compound of Example 1 (16.58 g, 30.5 mmol, 92.5% yield).
- The following is a description of a crystallization process for the hemi succinic acid cocrystal. Those skilled in the art would appreciate that a similar process could be used to crystallize the free base (with modifications as needed, as would be appreciated by a skilled artisan).
- To a flask, add the hemi succinic acid cocrystal of Example 1 (40.1 g, 72.2 mmol, 1 eq). Add DMSO (120 mL), and heat to 50 °C to obtain a solution. Polish filter the solution and rinse with DMSO (2 × ~2 mL).
- To another flask, add succinic acid (14.5 g, 123 mmol, 1.7 eq) and EtOH (980 mL). Mix until a solution results.
- To the crystallization vessel, add DMSO (20 mL) and a portion of the succinic acid solution in EtOH (140 mL). Heat to 50 °C. Add seed crystals of the hemi succinic acid salt of the compound of Example 1 (1.4 g) and stir.
- Add the solution of compound of Example 1 in DMSO and the solution of succinic acid in EtOH to the crystallization vessel in separate feed streams over 4 hours, maintaining the temperature of the crystallization vessel at 50 °C. After the co-addition is complete, cool the mixture slowly to 20 °C. Stir at 20 °C, then filter and rinse with a solution of succinic acid in EtOH (2 mg/mL succinic acid in EtOH, 4 × 70 mL rinses). Dry the wetcake under vacuum at 50 °C. Isolate white solids, the hemi succinic acid cocrystal of the compound of Example 1 (38.2 g, 70.3 mmol, 92% yield corrected for the seed amount).
- NMR: 1H NMR (400 MHz, DMSO-d 6) δ 12.14 (s, 1H), 10.66 (d, J = 3.1 Hz, 1H), 9.08 (s, 1H), 8.70 - 8.63 (m, 1H), 8.61 (s, 1H), 8.06 (s, 1H), 7.94 - 7.85 (m, 2H), 7.83 (d, J = 10.6 Hz, 1H), 7.80 (d, J = 2.2 Hz, 1H), 7.60 - 7.52 (m, 2H), 7.46 - 7.38 (m, 1H), 6.46 - 6.41 (m, 1H), 3.93 (s, 3H), 2.43 (s, 2H).
- Mass spec: found 485.0 m/z, theory 485.1
- The XRPD patterns of crystalline solids are obtained on a Bruker D8 Endeavor X-ray powder diffractometer, equipped with a CuKα (1.5418Å) source and a Linxeye detector, operating at 40 kV and 40 mA. The sample is scanned between 4 and 42 2θ°, with a step size of 0.009 2θ° and a scan rate of 0.5 seconds/step, and using 0.3° primary slit opening, and 3.9° PSD opening. The dry powder is packed on a quartz sample holder and a smooth surface is obtained using a glass slide. The crystal form diffraction patterns are collected at ambient temperature and relative humidity. Crystal peak positions are determined in MDI-Jade after whole pattern shifting based on an internal NIST 675 standard with peaks at 8.853 and 26.774 2θ°. It is well known in the crystallographic art that, for any given crystal form, the relative intensities of the diffraction peaks may vary due to preferred orientation resulting from factors such as crystal morphology and habit. Where the effects of preferred orientation are present, peak intensities are altered, but the characteristic peak positions of the polymorph are unchanged. See, e.g. The United States Pharmacopeia #23, National Formulary #18, pages 1843-1844, 1995. Furthermore, it is also well known in the crystallography art that for any given crystal form the angular peak positions may vary slightly. For example, peak positions can shift due to a variation in the temperature at which a sample is analyzed, sample displacement, or the presence or absence of an internal standard. In the present case, a peak position variability of ± 0.2 2θ° is presumed to take into account these potential variations without hindering the unequivocal identification of the indicated crystal form. Confirmation of a crystal form may be made based on any unique combination of distinguishing peaks.
- A prepared sample of the hemisuccinic acid of Example 1 is characterized by an XRPD pattern using CuKα radiation as having diffraction peaks (2-theta values) as described in Table A below, and in particular having a peak at 10.5 in combination with one or more of the peaks selected from the group consisting of 12.6, and 22.2; with a tolerance for the diffraction angles of 0.2 degrees.
Table A. XRPD peaks of crystalline hemisuccinic acid of Example 1 hemisuccinic acid of Example 1 Peak Angle (°2-Theta) +/-0.2° Relative Intensity (% of most intense peak) 1 10.5 100.0% 2 11.8 33.6% 3 12.6 37.2% 4 14.1 34.4% 5 16.0 32.2% 6 18.6 36.5% 7 20.6 42.0% 8 21.3 54.3% 9 22.2 67.1% 10 24.7 69.5% - The following two molecules were made from
U.S. Patent No. 9,815,846 U.S. Patent No. 9,815,846 -
-
- These two compounds from
US Patent No. 9815846 Table 2: Comparative IC50 data for binding to Trk A, Trk B, and Trk C. Example 89 of US Patent No. 9815846 Example 141 of US Patent No. 9815846 Example 1 of the present disclosure (data taken from Table 1 above) hTrkA IC50 1.55 nM 11.1 nM 1.24 nM hTrkB IC50 713 nM > 47,900 nM 6,700 nM hTrkC IC50 452 nM 37,800 nM 9,010 nM - As can see from the data in Table 2, the compound of Example 1 is a potent binder of Trk A, and is selective for Trk A. Example 89 of
US Patent No. 9815846 US Patent No. 9815846 US Patent No. 9815846 US Patent No. 9815846
Xinlan A. F. Cook, Antoine de Gombert, Janette McKnight, Loïc R. E. Pantaine and Michael C. Willis, "The 2-Pyridyl Problem: Challenging Nucleophiles in Cross-Coupling Arylations", Angew. Chem. Int. Ed. 2020, 59, 2 - 26. -
- The difference between Example 152 and Example 141 of
US Patent 9815846 US Patent 9815846 US Patent 9815846
Claims (11)
- The compound according to claim 3, wherein the hemisuccinic acid salt is crystalline.
- The compound according to either claim 3 or claim 4 wherein the hemisuccinic acid salt is characterized by a substantial peak in the X-ray diffraction spectrum using CuKα radiation, at diffraction angle 2-theta of 10.5° in combination with one or more of the peaks selected from the group consisting of 12.6, and 22.2; with a tolerance for the diffraction angles of 0.2 degrees.
- A pharmaceutical composition comprising a compound according to any one of claims 1 to 5 and one or more pharmaceutically acceptable carriers, diluents or excipients.
- A compound according to any one of claims 1 to 5, or a pharmaceutical composition according to claim 6, for use in a method of therapy.
- A compound according to any one of claims 1 to 5, or a pharmaceutical composition according to claim 6, for use in a method for the treatment of pain.
- The compound or pharmaceutical composition for use in a method for the treatment of pain according to claim 8, wherein the pain is selected from the group consisting of post-surgical pain, neuropathic pain, rheumatoid arthritis pain and osteoarthritis pain.
- The compound or pharmaceutical composition for use in a method for the treatment of pain according to claim 8, wherein the pain is chronic pain.
- A process for preparing a pharmaceutical composition, comprising admixing a compound according to claim 1, or a pharmaceutically acceptable salt thereof, with one or more pharmaceutically acceptable carriers, diluents, or excipients.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202063031073P | 2020-05-28 | 2020-05-28 | |
PCT/US2021/033853 WO2021242677A1 (en) | 2020-05-28 | 2021-05-24 | Trka inhibitor |
Publications (2)
Publication Number | Publication Date |
---|---|
EP4126842A1 EP4126842A1 (en) | 2023-02-08 |
EP4126842B1 true EP4126842B1 (en) | 2023-06-28 |
Family
ID=76444680
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21732765.9A Active EP4126842B1 (en) | 2020-05-28 | 2021-05-24 | Trka inhibitor |
Country Status (8)
Country | Link |
---|---|
US (1) | US11498915B2 (en) |
EP (1) | EP4126842B1 (en) |
JP (1) | JP7496440B2 (en) |
CN (1) | CN115667241B (en) |
AR (1) | AR122141A1 (en) |
ES (1) | ES2951556T3 (en) |
TW (1) | TW202210467A (en) |
WO (1) | WO2021242677A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW202409023A (en) | 2022-07-14 | 2024-03-01 | 美商富曼西公司 | Herbicidal benzoxazines |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1306704B1 (en) | 1999-05-26 | 2001-10-02 | Sirs Societa Italiana Per La R | MONOCLONAL ANTIBODIES AND ITS SYNTHETIC OR BIOTECHNOLOGICAL DERIVATIVES ENABLE TO ACT AS ANTAGONIST MOLECULES FOR NGF. |
DK1648509T3 (en) | 2003-07-15 | 2013-01-07 | Amgen Inc | Human anti-NGF neutralizing antibodies as selective NGF pathway inhibitors |
WO2012009640A2 (en) | 2010-07-16 | 2012-01-19 | The Ohio State University | B cell depletion for central nervous system injuries and methods and uses thereof |
SG193513A1 (en) | 2011-04-05 | 2013-10-30 | Pfizer Ltd | Pyrrolo [2, 3 -d] pyrimidine derivatives as inhibitors of tropomyosin- related kinases |
EP2674439B1 (en) | 2012-06-13 | 2017-02-01 | Rottapharm Biotech S.r.l. | Anti-TrkA antibodies, derivatives and uses thereof |
WO2015143654A1 (en) * | 2014-03-26 | 2015-10-01 | Merck Sharp & Dohme Corp. | TrkA KINASE INHIBITORS,COMPOSITIONS AND METHODS THEREOF |
WO2015143653A1 (en) * | 2014-03-26 | 2015-10-01 | Merck Sharp & Dohme Corp. | TrkA KINASE INHIBITORS,COMPOSITIONS AND METHODS THEREOF |
WO2015143652A1 (en) * | 2014-03-26 | 2015-10-01 | Merck Sharp & Dohme Corp. | TrkA KINASE INHIBITORS,COMPOSITIONS AND METHODS THEREOF |
US20170197939A1 (en) | 2014-04-15 | 2017-07-13 | Pfizer Inc. | Tropomyosin-Related Kinase Inhibitors Containing Both A 1H-Pyrazole And A Pyrimidine Moiety |
CN110625540B (en) | 2014-05-03 | 2021-10-29 | 株式会社半导体能源研究所 | Film-like member supporting apparatus |
WO2015170218A1 (en) * | 2014-05-07 | 2015-11-12 | Pfizer Inc. | Tropomyosin-related kinase inhibitors |
MA41097A (en) | 2014-12-05 | 2017-10-10 | Glenmark Pharmaceuticals Sa | ANTI-TRKA ANTIBODIES WITH ENHANCED INHIBITORAL PROPERTIES AND DERIVATIVES OF SAID ANTIBODIES FOR USE TO TREAT BONE PAIN |
AR114110A1 (en) | 2018-02-28 | 2020-07-22 | Lilly Co Eli | ANTI-TRKA ANTIBODY |
-
2021
- 2021-05-20 AR ARP210101385A patent/AR122141A1/en unknown
- 2021-05-20 TW TW110118191A patent/TW202210467A/en unknown
- 2021-05-24 US US17/328,459 patent/US11498915B2/en active Active
- 2021-05-24 CN CN202180038173.0A patent/CN115667241B/en active Active
- 2021-05-24 JP JP2022572743A patent/JP7496440B2/en active Active
- 2021-05-24 WO PCT/US2021/033853 patent/WO2021242677A1/en unknown
- 2021-05-24 EP EP21732765.9A patent/EP4126842B1/en active Active
- 2021-05-24 ES ES21732765T patent/ES2951556T3/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN115667241A (en) | 2023-01-31 |
EP4126842A1 (en) | 2023-02-08 |
US11498915B2 (en) | 2022-11-15 |
TW202210467A (en) | 2022-03-16 |
JP2023527397A (en) | 2023-06-28 |
AR122141A1 (en) | 2022-08-17 |
CN115667241B (en) | 2024-04-16 |
WO2021242677A1 (en) | 2021-12-02 |
ES2951556T3 (en) | 2023-10-23 |
US20210371399A1 (en) | 2021-12-02 |
JP7496440B2 (en) | 2024-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7042812B2 (en) | Crystal form of triazolopyrimidine compound | |
EP4083038B1 (en) | Pyridazinyl thiazolecarboxamide compound | |
CN108349964A (en) | N-(Pyridine -2- bases)-4-(Thiazole -5- bases)Pyrimidine -2- aminated compounds is as therapeutic compound | |
AU2017284702B2 (en) | Pyrrolopyrimidine crystal for preparing JAK inhibitor | |
JP2021512059A (en) | Degradation and use of BTK by conjugation of Bruton's tyrosine kinase (BTK) inhibitor with E3 ligase ligand | |
KR101797046B1 (en) | Deuterated phenyl amino pyrimidine compound and pharmaceutical composition containing same | |
CN111163766A (en) | AHR inhibitors and uses thereof | |
TW201625620A (en) | Heterocyclic hydroxamic acids as protein deacetylase inhibitors and dual protein deacetylase-protein kinase inhibitors and methods of use thereof | |
CN116528864A (en) | Heteroaryl carboxamide compounds | |
JP2022514254A (en) | Rapamycin derivative | |
CA3184594A1 (en) | Heterocyclic compound and use thereof | |
KR20180085814A (en) | Preparation of Substituted 5,6-dihydro-6-phenylbenzo [f] isoquinolin-2-amine | |
TWI771280B (en) | Solid forms of substituted 5,6-dihydro-6-phenylbenzo[f]isoquinolin-2-amine compounds | |
EP4126842B1 (en) | Trka inhibitor | |
WO2017071636A1 (en) | Phthalazine ketone derivative, and preparation method and use thereof | |
JP2022538901A (en) | Pyrazolone condensed pyrimidine compound, its production method and use | |
AU2018278283B2 (en) | Pyridoquinazoline derivatives useful as protein kinase inhibitors | |
CN116783183A (en) | 1- (2- (4-cyclopropyl-1H-1, 2, 3-triazol-1-yl) acetyl) -4-hydroxy-N- (benzyl) pyrrolidine-2-carboxamide derivatives as VHL inhibitors for the treatment of anemia and cancer | |
TW202016091A (en) | A pharmaceutically acceptable salt and crystal form of otr inhibitor and preparation method thereof | |
EP3632913A1 (en) | Carboxylic acid derivatives of pyridoquinazolines useful as protein kinase inhibitors | |
EP3898587B1 (en) | Condensed pyrroles as novel bromodomain inhibitors | |
EP4293018A1 (en) | Compound serving as nlrp3 inhibitor | |
IL296700A (en) | Process, compositions, and crystalline of substituted pyridinone-pyridinyl compounds | |
JP2024037713A (en) | Cocrystalline forms of fgfr3 inhibitors | |
TW202016092A (en) | Crystal form of OTR inhibitor and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20221103 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 40078982 Country of ref document: HK |
|
INTG | Intention to grant announced |
Effective date: 20230327 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1582604 Country of ref document: AT Kind code of ref document: T Effective date: 20230715 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602021003165 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2951556 Country of ref document: ES Kind code of ref document: T3 Effective date: 20231023 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230628 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230928 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20230628 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1582604 Country of ref document: AT Kind code of ref document: T Effective date: 20230628 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230628 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230628 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230628 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230628 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230628 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230929 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230628 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230628 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231028 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230628 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230628 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230628 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231030 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231028 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230628 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230628 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230628 |
|
VS25 | Lapsed in a validation state [announced via postgrant information from nat. office to epo] |
Ref country code: MD Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230628 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230628 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602021003165 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230628 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20240402 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240418 Year of fee payment: 4 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240603 Year of fee payment: 4 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230628 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240531 Year of fee payment: 4 Ref country code: FR Payment date: 20240418 Year of fee payment: 4 |