EP4164520A1 - Catheter systems for having both a thermodilution action and a body obstruction destruction action, and methods for determining blood flow rates and for performing body obstruction destruction - Google Patents
Catheter systems for having both a thermodilution action and a body obstruction destruction action, and methods for determining blood flow rates and for performing body obstruction destructionInfo
- Publication number
- EP4164520A1 EP4164520A1 EP21732007.6A EP21732007A EP4164520A1 EP 4164520 A1 EP4164520 A1 EP 4164520A1 EP 21732007 A EP21732007 A EP 21732007A EP 4164520 A1 EP4164520 A1 EP 4164520A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fluid
- catheter
- tubular member
- lumen
- distal end
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 70
- 230000006378 damage Effects 0.000 title claims abstract description 44
- 230000017531 blood circulation Effects 0.000 title description 42
- 239000012530 fluid Substances 0.000 claims abstract description 449
- 239000008280 blood Substances 0.000 claims description 68
- 210000004369 blood Anatomy 0.000 claims description 68
- 210000004204 blood vessel Anatomy 0.000 claims description 32
- 208000007536 Thrombosis Diseases 0.000 claims description 31
- 239000000523 sample Substances 0.000 claims description 26
- 239000000203 mixture Substances 0.000 claims description 24
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 15
- 239000011780 sodium chloride Substances 0.000 claims description 14
- 239000007788 liquid Substances 0.000 claims description 7
- 238000004090 dissolution Methods 0.000 claims description 6
- 239000007864 aqueous solution Substances 0.000 claims description 5
- 239000003978 infusion fluid Substances 0.000 description 171
- 238000001802 infusion Methods 0.000 description 128
- 238000004891 communication Methods 0.000 description 19
- 208000031481 Pathologic Constriction Diseases 0.000 description 10
- 238000010276 construction Methods 0.000 description 10
- 230000036262 stenosis Effects 0.000 description 10
- 208000037804 stenosis Diseases 0.000 description 10
- 241001465754 Metazoa Species 0.000 description 9
- 210000001367 artery Anatomy 0.000 description 9
- 238000004026 adhesive bonding Methods 0.000 description 5
- 210000004351 coronary vessel Anatomy 0.000 description 5
- 238000003745 diagnosis Methods 0.000 description 5
- 230000009977 dual effect Effects 0.000 description 5
- 210000005166 vasculature Anatomy 0.000 description 5
- 238000003466 welding Methods 0.000 description 5
- 206010000891 acute myocardial infarction Diseases 0.000 description 4
- 238000009529 body temperature measurement Methods 0.000 description 4
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 4
- 230000004963 pathophysiological condition Effects 0.000 description 4
- 230000036772 blood pressure Effects 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 238000013146 percutaneous coronary intervention Methods 0.000 description 3
- 208000006117 ST-elevation myocardial infarction Diseases 0.000 description 2
- 235000012000 cholesterol Nutrition 0.000 description 2
- 238000013467 fragmentation Methods 0.000 description 2
- 238000006062 fragmentation reaction Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 208000001778 Coronary Occlusion Diseases 0.000 description 1
- 206010011086 Coronary artery occlusion Diseases 0.000 description 1
- -1 FIDPE Polymers 0.000 description 1
- 206010020565 Hyperaemia Diseases 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229920002614 Polyether block amide Polymers 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 238000002679 ablation Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007435 diagnostic evaluation Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 230000010102 embolization Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000002594 fluoroscopy Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000012623 in vivo measurement Methods 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 208000010125 myocardial infarction Diseases 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000009168 stem cell therapy Methods 0.000 description 1
- 238000009580 stem-cell therapy Methods 0.000 description 1
- 230000001732 thrombotic effect Effects 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 230000024883 vasodilation Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000007794 visualization technique Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/3203—Fluid jet cutting instruments
- A61B17/32037—Fluid jet cutting instruments for removing obstructions from inner organs or blood vessels, e.g. for atherectomy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00017—Electrical control of surgical instruments
- A61B2017/00022—Sensing or detecting at the treatment site
- A61B2017/00084—Temperature
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/22—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
- A61B2017/22038—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with a guide wire
- A61B2017/22039—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with a guide wire eccentric
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/22—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
- A61B2017/22038—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with a guide wire
- A61B2017/22042—Details of the tip of the guide wire
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/22—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
- A61B2017/22051—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an inflatable part, e.g. balloon, for positioning, blocking, or immobilisation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/22—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
- A61B2017/22051—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an inflatable part, e.g. balloon, for positioning, blocking, or immobilisation
- A61B2017/22065—Functions of balloons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/22—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
- A61B2017/22072—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an instrument channel, e.g. for replacing one instrument by the other
- A61B2017/22074—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an instrument channel, e.g. for replacing one instrument by the other the instrument being only slidable in a channel, e.g. advancing optical fibre through a channel
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/06—Measuring instruments not otherwise provided for
- A61B2090/064—Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension
Definitions
- Catheter systems for having both a thermodilution action and a body obstruction destruction action and methods for determining blood flow rates and for performing body obstruction destruction CROSS-REFERENCE TO RELATED APPLICATIONS
- the disclosure is directed to catheter systems for having both a thermodilution action and a body obstruction destruction action, and methods for determining blood flow rates and for performing body obstruction destruction.
- Thermodilution is a method of determining blood flow through a body vessel based on in vivo measurements of temperature drop of blood using a temperature sensor as a result of introducing an indicator fluid (e.g., saline) having a lower temperature than blood into the blood upstream from the temperature sensor.
- an indicator fluid e.g., saline
- the measured temperature drop which is a function of the blood flow and set indicator fluid flow, may be used to determine the absolute blood flow rate through the body vessel.
- the calculated absolute blood flow rate may be used for the diagnosis and understanding of microvascular disease.
- one illustrative embodiment is a catheter system for determining blood flow in a body lumen.
- the system includes a catheter including an outer tubular member and an inner tubular member disposed within the outer tubular member.
- the catheter also includes a fluid lumen defined between the inner tubular member and the outer tubular member and a second lumen (e.g., a guidewire lumen, a temperature probe lumen, etc.) defined by the inner tubular member.
- One or more fluid infusion openings are located at a distal end region of the catheter. The one or more fluid infusion openings are configured to permit fluid to exit the catheter from the fluid lumen.
- one or more fluid holes are located at the distal end region of the catheter, and are configured to permit fluid to pass from the fluid lumen into the second lumen.
- the catheter system also includes an elongate member (e.g., a guidewire, a temperature probe, etc.) advanceable through the second lumen of the catheter.
- the elongate member may include a temperature sensor positioned on a distal end portion of the elongate member which is positionable within the second lumen of the inner tubular member to measure a temperature of fluid entering the second lumen of the inner tubular member through the one or more fluid holes.
- the system includes an elongate catheter shaft having a proximal end, a distal end, and a lumen extending therethrough.
- the catheter shaft also includes one or more fluid infusion openings located at a distal end region of the catheter shaft.
- the one or more fluid infusion openings are configured to permit fluid to exit the lumen of the catheter shaft into the body lumen.
- a first temperature sensor is positioned within the lumen of the catheter shaft proximate the one or more fluid infusion openings. The first temperature sensor is configured to be in direct contact with a fluid within the lumen to measure a temperature of the fluid exiting the lumen through the one or more fluid infusion openings.
- the elongate catheter shaft may include an elongated reduced diameter region extending distal of the one or more fluid infusion openings to the distal end of the elongate catheter shaft.
- a second temperature sensor may be positioned on an exterior of the elongated reduced diameter region proximate the distal end of the elongate catheter shaft to measure a mixture of blood and fluid infused into the blood from the catheter shaft.
- Yet another illustrative embodiment is a method of determining blood flow in a body vessel of a patient.
- the method includes advancing a catheter to a desired location within the body vessel.
- the catheter includes an outer tubular member, an inner tubular member disposed within the outer tubular member, a fluid lumen defined between the inner tubular member and the outer tubular member, and a second lumen defined by the inner tubular member.
- a fluid is delivered through the fluid lumen to a distal end region of the catheter.
- a temperature sensor mounted on an elongate member is positioned within the second lumen of the catheter and the temperature of the fluid passing into the second lumen from the fluid lumen is measured with the temperature sensor positioned in the second lumen.
- the fluid is infused into blood in the body vessel from the fluid lumen and the temperature of a mixture of the fluid and the blood is measured with a temperature sensor mounted on an elongate member positioned in the body vessel distal of the catheter.
- the blood flow rate may then be calculated based on the measured temperature of the fluid and the measured temperature of the mixture of the fluid and the blood.
- a still further illustrative embodiment is a catheter system for performing body obstruction destruction in a live being body lumen, for example a blood vessel.
- a blood vessel in this specification and claims, it is meant any blood vessel in which blood flows, including a vessel, an artery, a coronary, etc.
- the live being may be a human or an animal.
- the body obstruction may be a thrombus or thrombosis, or a blood clot.
- the invention further relates to a catheter system for performing destruction of a body obstruction in a body vessel of a live being , comprising a catheter shaft comprising a proximal end and a distal end, including an outer tubular member and at least one inner tubular member disposed within the outer tubular member; a first fluid lumen defined between the inner tubular member and the outer tubular member and at least one second lumen defined by the at least one inner tubular member; one or more fluid exit openings located at a distal end region of the catheter configured to permit fluid to exit the catheter from the first fluid lumen; fluid pressure means located external of the catheter ahead from the proximal end for delivering said fluid in the first fluid lumen at a pressure range predetermined to cause destruction of said obstruction.
- the catheter system further comprises an elongate member advanceable through the second lumen of the catheter.
- the elongate member comprises a temperature sensor positioned on a distal end portion of the elongate member.
- the temperature sensor on the distal end portion of the elongate member is positionable ahead of the distal end of the catheter to measure temperature in the blood vessel
- the one or more fluid exit openings extend through a wall of the outer tubular member from an inner surface of the outer tubular member to an outer surface of the outer tubular member.
- the one or more fluid exit openings are configured to generate a jet of fluid exiting the catheter and at a pressure sufficient to cause mechanical destruction of the body obstruction.
- the one or more fluid exit openings include at least one set of four fluid exit openings equidistantly spaced circumferentially around the outer tubular member. According to another variant feature, the one or more fluid exit openings include at least two sets of four fluid exit openings equidistantly spaced circumferentially around the outer tubular member.
- the fluid exit opening(s) have a diameter ranging between about 50 microns (0.050 millimeters) and about 200 microns (0.200 millimeters).
- the diameter size selected is usually adapted to the pressure of the fluid and said fluid pressure at the entrance of said catheter or at the vicinity of at least one fluid exit opening ranges between about 10x 101,325Pa or 10 ATM and about 50x101,325Pa or 50 ATM.
- the fluid exit opening(s) have a diameter ranging between about 50 microns (0.050 millimeters) and about 150 microns (0.150 millimeters).
- the diameter size selected is usually adapted to the pressure of the fluid and said fluid pressure at the entrance of said catheter or at the vicinity of at least one fluid exit opening ranges between about 10x 101,325Pa or 10 ATM and about 50x101,325Pa or 50 ATM.
- the fluid exit opening(s) have a diameter ranging between about 70 microns (0.070 millimeters) and about 150 microns (0.150 millimeters).
- the diameter size selected is usually adapted to the pressure of the fluid and said fluid pressure at the entrance of said catheter or at the vicinity of at least one fluid exit opening ranges between about 10x 101,325Pa or 10 ATM and about 50x101,325Pa or 50 ATM.
- the pressure of the fluid at the entrance of said catheter or at the vicinity of at least one fluid exit opening ranges between at least, or more than, 30x101,325Pa or 30 ATM and 50x101,325Pa or 50 ATM. This pressure is particularly adapted with a size of the orifices ranging between about 70 microns (0.070 millimeters) and about 110 microns (0.110 millimeters).
- one or more fluid holes are located at the distal end region of the catheter, and are configured to permit fluid to pass from the first fluid lumen into the second lumen and said one or more fluid holes extend through a wall of the inner tubular member from an outer surface of the inner tubular member to an inner surface of the inner tubular member.
- the one or more fluid holes are one or more weeping holes configured to allow fluid to weep into the second lumen.
- the one or more fluid holes have a diameter ranging between about, or more than, 100 micrometers and about 300 micrometers.
- the elongate catheter shaft includes an elongated reduced diameter region extending distal of the one or more fluid exit openings to the distal end of the elongate catheter shaft.
- a first temperature sensor is positioned within the first fluid lumen of the catheter shaft proximate the one or more fluid exit openings, the first temperature sensor configured to be in direct contact with the fluid within the lumen to measure a temperature of the fluid exiting the lumen through the one or more fluid exit openings.
- the catheter further comprises a second temperature sensor positioned on an exterior of the elongated reduced diameter region proximate the distal end of the elongate catheter shaft.
- the second temperature sensor is positioned at least 4 centimeters distal of the one or more fluid exit openings.
- the distal end of the inner tubular member is sealingly secured to the distal end of the elongate catheter shaft.
- an elongate member comprises a guidewire advanceable through the inner tubular member.
- the guidewire comprises a temperature sensor positioned on a distal end portion of the guidewire to measure a temperature of a blood/fluid mixture in the body lumen distal of the one or more fluid exit openings.
- the catheter comprises at least one pressure sensor in the vicinity of at least one fluid exit opening.
- the fluid is a liquid selected from a saline and an aqueous solution compatible with blood comprising at least one clot or thrombosis dissolution aid.
- said elongate member is a guidewire, and wherein said catheter is selected from an Over The Wire (OTW) catheter and a Single Operator Exchange (SOE) catheter.
- OGW Over The Wire
- SOE Single Operator Exchange
- the invention relates to a method of performing destruction of a body obstruction in a body vessel of a live being, the method comprising: advancing a catheter to a desired location within the body vessel, the catheter including a catheter shaft comprising a proximal end and a distal end, comprising an outer tubular member and at least one inner tubular member disposed within the outer tubular member; a first fluid lumen defined between the inner tubular member and the outer tubular member and at least one second lumen defined by the inner tubular member; one or more fluid exit openings located at a distal end region of the catheter configured to permit fluid to exit the catheter from the first fluid lumen; providing a delivery of a fluid through the first fluid lumen to a distal end region of the catheter and at a pressure range predetermined to exit said fluid at a pressure and for a period of time causing destruction of said obstruction.
- the catheter comprises at least one set of four fluid exit openings located at the distal end region of the catheter equidistantly spaced circumferentially around the outer tubular member.
- the catheter comprises two sets of four fluid exit openings located at the distal end region of the catheter equidistantly spaced circumferentially around the outer tubular member
- the advancing step of said catheter within said body step comprises using an elongate member.
- said elongate member is a guidewire, and wherein said catheter is selected from an Over The Wire (OTW) catheter and a Single Operator Exchange (SOE) catheter.
- said catheter is provided with a temperature sensor, said method comprising measuring with said temperature sensor the temperature of the fluid exiting the catheter or of the blood ahead of the distal end of the catheter.
- the method is further comprising: providing at least one temperature sensor on the distal end of the elongate member and positioning the elongate member to a location distal of the catheter for measuring the temperature of the mixture of the fluid and the blood distal of the catheter.
- the catheter includes one or more fluid holes located at the distal end region of the catheter in the vicinity of at least one said fluid exit opening , the one or more fluid holes configured on the inner tube to permit the fluid to pass from the first fluid lumen into the second lumen; and repositioning the elongate member to a location in front of one said fluid hole to measure the temperature of the fluid in the vicinity of the fluid exiting the catheter.
- the fluid exit opening(s) have a diameter ranging between about 50 microns (0.050 millimeters) and about 200 microns (0.200 millimeters).
- the diameter size selected is usually adapted to the pressure of the fluid and said fluid pressure at the entrance of said catheter or at the vicinity of at least one fluid exit opening ranges between about 10x 101,325Pa or 10 ATM and about 50x101,325Pa or 50 ATM.
- the fluid exit opening(s) have a diameter ranging between about 50 microns (0.050 millimeters) and about 150 microns (0.150 millimeters).
- the fluid exit opening(s) have a diameter ranging between about 70 microns (0.070 millimeters) and about 150 microns (0.150 millimeters) or about 110 microns (0.110 millimeters).
- the pressure of the fluid at the entrance of said catheter or at the vicinity of at least one fluid exit opening ranges between at least, or more than, 20x101,325Pa or 20 ATM, or even 30x101,325Pa or 30 ATM, and 50x101,325Pa or 50 ATM.
- This pressure is particularly adapted with a size of the orifices ranging between about 50 microns (0.050 millimeters) and about 200 microns (0.200 millimeters).
- the period of time required to achieve the full, or substantially the full, destruction of the obstruction depends of course from the type and the volume of obstruction. Said period of time generally varies between a few seconds and a few minutes, in particular between about 30 seconds and about 5 minutes.
- the catheter comprises at least one pressure sensor in the vicinity of at least one fluid exit opening and the method comprises measuring the pressure at the vicinity of said fluid exit opening and correcting the pressure value of the fluid injected into said fluid lumen.
- FIG. 1 is a schematic representation of an exemplary catheter system including an infusion catheter and associated guidewire for determining blood flow through a body vessel using a thermodilution technique.
- FIG. 1 A is a cross-sectional view taken along line 1 A-1 A of FIG. 1.
- FIG. 2 is a side view of a portion of the infusion catheter of FIG. 1.
- FIG. 3 is a schematic representation of an alternative embodiment of a catheter system including an infusion catheter and associated guidewire for determining blood flow through a body vessel using a thermodilution technique.
- FIGS. 4-7 illustrate aspects of an exemplary method of determining blood flow through a body vessel using the catheter system of FIG. 1.
- FIG. 8 is a schematic representation of another embodiment of a catheter system for determining blood flow through a body vessel using a thermodilution technique.
- FIG. 9 is a schematic representation of another embodiment of a catheter system for determining blood flow through a body vessel using a thermodilution technique.
- FIG. 10 is a schematic representation of another embodiment of a catheter system for determining blood flow through a body vessel using a thermodilution technique.
- FIG. 11 is a schematic representation of an exemplary further catheter system including a catheter and associated guidewire for performing destruction of a body obstruction, for instance a thrombus, through a body vessel of a live being, let it be a human or an animal.
- a body obstruction for instance a thrombus
- FIG. 11A is a cross-sectional view taken along line 1A-1A of FIG. 1, showing a set of 4 fluid exit openings circumferentially equidistantly arranged.
- FIG. 12 is a side view of a portion of the catheter of FIG. 11 according to a variant feature with 4 fluid exit openings in quincunx.
- FIG. 13 is a schematic representation of an alternative embodiment of a catheter system including a catheter and associated guidewire for performing destruction of a body obstruction through a body vessel of a live being, let it be a human or an animal.
- FIGS. 14-17 illustrate aspects of an exemplary method of performing destruction of a body obstruction through a body vessel using the catheter system of FIG. 11.
- FIG. 18 is a schematic representation of another embodiment of a catheter system for performing destruction of a body obstruction, for instance a blood clot, through a body vessel of a live being, let it be a human or an animal.
- FIG. 19 is a schematic representation of another embodiment of a catheter system for performing destruction of a body obstruction, for instance a thrombus, through a body vessel of a live being, let it be a human or an animal.
- a body obstruction for instance a thrombus
- FIG. 20 is a schematic representation of another embodiment of a catheter system for performing destruction of a body obstruction, for instance a blood clot, through a body vessel of a live being, let it be a human or an animal.
- a body obstruction for instance a blood clot
- a body vessel should be understood as meaning any vessel in a live being wherein blood flows, including a vessel, an artery, a coronary, etc.
- a live being may be a human and an animal.
- An obstruction in a body or blood vessel may be any obstruction, for instance a thrombus, a thrombosis, or a blood clot, without any limitation.
- the infusion catheter 10 may include an elongate catheter shaft 12 extending distally from a hub assembly 20.
- the catheter shaft 12 may have a proximal end 16 attached to the hub assembly 20 and a distal end 18 opposite the proximal end 16.
- the catheter shaft 12 may be a dual lumen catheter shaft having a first, infusion fluid lumen 34 and a second, guidewire lumen 36 extending along at least a portion of the catheter shaft 12 configured for advancing the infusion catheter 10 over a guidewire 30.
- the catheter 10 may be an over-the-wire (OTW) catheter in which the guidewire lumen 36 may extend through the entire length of the catheter shaft 12 from the distal end 18 to the proximal end 16.
- OGW over-the-wire
- the catheter 10 may be a single-operator- exchange (SOE) catheter in which the guidewire lumen 36 extends only through a distal portion of the catheter shaft 12.
- SOE single-operator- exchange
- the catheter shaft 12 may include an outer tubular member 13 and an inner tubular member 14 extending through the lumen of the outer tubular member 13.
- the infusion fluid lumen 34 may be defined by the outer tubular member 13 through the proximal portion of the catheter shaft 12, while the infusion fluid lumen 34 may be defined between an outer surface of the inner tubular member 14 and an inner surface of the outer tubular member 13 through the distal portion of the catheter shaft 12.
- the infusion fluid lumen 34 may be defined between an outer surface of the inner tubular member 14 and an inner surface of the outer tubular member 13 throughout the catheter shaft 12.
- the hub assembly 20 may include a proximal port 22 in fluid communication with the infusion fluid lumen 34.
- a source of infusion fluid (not shown), such as an infusion pump, syringe, etc., may be coupled to the proximal port 22 to supply infusion fluid to the infusion fluid lumen 34.
- the lumen of the inner tubular member 14 may define the guidewire lumen 36 with a distal guidewire port 28 proximate the distal end of the inner tubular member 14 and a proximal guidewire port 26 proximate the proximal end of the inner tubular member 14.
- the distal guidewire port 28 may be located proximate the distal end 18 of the catheter shaft 12 and the proximal guidewire port 26 may be located a short distance proximal of the distal end 18 and distal of the proximal end 16 of the catheter shaft 12.
- the proximal guidewire port 26 may be of any desired construction, providing access to the guidewire lumen 36.
- the proximal guidewire port 26 may be formed in accordance with a guidewire port forming process as described in U.S. Patent No. 6,409,863, which is incorporated herein by reference.
- a distal end portion 38 of the outer tubular member 13 may be a reduced diameter portion or necked portion, secured to the inner tubular member 14 to seal the infusion lumen 34 proximate the distal end 18 of the catheter shaft 12.
- the distal end portion 38 may include a tapered region in which the outer tubular member 13 tapers down to a reduced inner and/or outer diameter at the distal end of the outer tubular member 13.
- the inner surface of a distal end portion of the outer tubular member 13 may be secured to the outer surface of a distal end portion of the inner tubular member 14 in the distal end portion 38.
- the outer tubular member 13 may be secured to the inner tubular member 14, for example, by laser welding, hot jaws, or other thermal bonding method, an adhesive bonding method, or other bonding method if desired.
- the catheter shaft 12 may include a distal tip 24, formed as a separate component and secured at the distal end 18 of the catheter shaft 12.
- the distal tip 24 may be secured to the inner tubular member 14 and/or outer tubular member 13, for example, by laser welding, hot jaws, or other thermal bonding method, an adhesive bonding method, or other bonding method if desired.
- the distal end portion of the outer tubular member 13 may span the joint between the inner tubular member 14 and the distal tip 24 such that the distal end portion of the outer tubular member 13 is bonded to each of the inner tubular member 14 and the distal tip 24.
- the distal tip 24 may be formed as a unitary portion of the inner tubular member 14 and/or the outer tubular member 13.
- the catheter shaft 12 may also include one or more radiopaque markers 52 located proximate the distal end 18 of the catheter shaft 12.
- the radiopaque marker(s) 52 may facilitate viewing the location of the distal end 18 of the catheter shaft 12 using a fluoroscopy technique or other visualization technique during a medical procedure.
- the catheter shaft 12 includes a radiopaque marker 52 secured to the inner tubular member 14 proximate the tapered distal end portion 38 of the catheter shaft 12.
- the catheter shaft 12 may include one or more fluid infusion openings 40 (e.g., holes, apertures) located at a distal end region of the catheter 10.
- fluid infusion openings 40 e.g., holes, apertures
- the fluid infusion openings 40 may be in fluid communication with the infusion fluid lumen 34 and may be configured to permit infusion fluid to exit the catheter 10 from the infusion fluid lumen 34 proximate the distal end 18 of the catheter shaft 12.
- the catheter shaft 12 may include a plurality of fluid infusion openings 40 extending through a wall of the outer tubular member 13 from an inner surface of the outer tubular member 13 to an outer surface of the outer tubular member 13.
- the catheter shaft 12 may include four fluid infusion openings 40 equidistantly spaced circumferentially around the outer tubular member 13 (i.e., with each fluid infusion opening 40 arranged about 90° from another fluid infusion opening 40.
- the catheter shaft 12 may include one, two, three, or more fluid infusion openings 40 arranged around the perimeter of the catheter shaft 12.
- the fluid infusion openings 40 may be configured to expel an infusion fluid (e.g., an indicator fluid) in a radially outward direction from each of the fluid infusion openings 40 to facilitate mixing of the infusion fluid with blood flowing through the vessel lumen.
- an infusion fluid e.g., an indicator fluid
- the fluid infusion openings 40 may be arranged in a different orientation, such as in a fashion to permit infusion fluid to be expelled generally distally from the catheter shaft 12, if desired.
- first and second oppositely positioned fluid infusion openings 40a may be located a longitudinal distance X, such as about 0.5 millimeters, about 1 millimeter, about 2 millimeters, or about 3 millimeters, away from third and fourth oppositely positioned fluid infusion openings 40b, in some embodiments.
- first and second oppositely positioned fluid infusion openings 40a may be longitudinally aligned with the third and fourth oppositely positioned fluid infusion openings 40b, if desired.
- the one or more fluid infusion openings 40 may be configured to generate a jet of infusion fluid F exiting the catheter shaft 12.
- the fluid infusion openings 40 may be appropriately sized to generate a pressure stream of the infusion fluid F exiting the fluid infusion openings 40.
- the fluid infusion openings 40 may have a diameter of about 25 microns (0.025 millimeters) to about 300 microns (0.300 millimeters), about 25 microns (0.025 millimeters) to about 100 microns (0.100 millimeters), about 100 microns (0.100 millimeters) to about 200 microns (0.200 millimeters), or about 200 microns (0.200 millimeters) to about 300 microns (0.300 millimeters), for example.
- the size of the fluid infusion openings 40 may be selected based on the volume of infusion fluid to ensure a jet of infusion fluid is formed exiting the catheter shaft 12.
- the catheter shaft 12 may also include one or more fluid holes 50 (e.g., openings, apertures) located at the distal end region of the catheter 10.
- the fluid hole(s) may be in fluid communication with the infusion fluid lumen 34 and may be configured to permit infusion fluid to pass from the infusion fluid lumen 34 into the guidewire lumen 36.
- the catheter shaft 12 may include one or more fluid holes 50 extending through a wall of the inner tubular member 14 from an outer surface of the inner tubular member 14 to an inner surface of the inner tubular member 14. As shown in FIG.
- the catheter shaft 12 may include one fluid hole 50 extending through the wall of the inner tubular member 14 to permit infusion fluid F to enter the guidewire lumen 36 from the infusion fluid lumen 34.
- the catheter shaft 12 may include two, three or more such fluid holes 50, if desired.
- the fluid hole(s) 50 may be a weeping hole configured to allow infusion fluid to weep or exude slowly into the guidewire lumen 36 from the infusion fluid lumen 34.
- the fluid hole(s) 50 may be configured to allow infusion fluid to weep, drip, trickle, ooze or otherwise slowly exude into the guidewire lumen 36.
- the fluid hole(s) 50 may have a diameter of about 100 microns (0.100 millimeters) to about 300 microns (0.300 millimeters), about 100 microns (0.100 millimeters) to about 200 microns (0.200 millimeters), or about 200 microns (0.200 millimeters) to about 300 microns (0.300 millimeters), for example.
- the catheter system 2 may also include an elongate member, such as a guidewire 30 sized and configured to be disposed through the guidewire lumen 36 of the infusion catheter 10 such that the infusion catheter 10 may be advanced along the guidewire 30 to a target location in the vasculature.
- the guidewire 30 may include a temperature sensor 32, such as a thermistor or a thermocouple, mounted on a distal end region of the guidewire 30.
- a temperature sensor 32 such as a thermistor or a thermocouple
- the guidewire 30 may also include a pressure sensor located at the distal end region of the guidewire 30 for measuring blood pressure at a target location within the vasculature.
- the infusion catheter 110 may be similar to the infusion catheter 10 illustrated in FIG. 1.
- the infusion catheter 110 may include an elongate catheter shaft 12 extending distally from a hub assembly 20, having a proximal end 16 attached to the hub assembly 20 and a distal end 18 opposite the proximal end 16.
- the catheter shaft 12 may be a dual lumen catheter shaft having a first, infusion fluid lumen 34 and a second, guidewire lumen 36 extending along at least a portion of the catheter shaft 12 configured for advancing the infusion catheter 110 over the guidewire 30.
- the catheter shaft 12 may include an outer tubular member 13 and an inner tubular member 14 extending through the lumen of the outer tubular member 13.
- the infusion fluid lumen 34 may be defined by the outer tubular member 13 through the proximal portion of the catheter shaft 12, while the infusion fluid lumen 34 may be defined between an outer surface of the inner tubular member 14 and an inner surface of the outer tubular member 13 through the distal portion of the catheter shaft 12.
- the infusion fluid lumen 34 may be defined between an outer surface of the inner tubular member 14 and an inner surface of the outer tubular member 13 throughout the catheter shaft 12.
- the hub assembly 20 may include a proximal port 22 in fluid communication with the infusion fluid lumen 34.
- a source of infusion fluid (not shown), such as an infusion pump, syringe, etc., may be coupled to the proximal port 22 to supply infusion fluid to the infusion fluid lumen 34.
- the lumen of the inner tubular member 14 may define the guidewire lumen 36 with a distal guidewire port 28 proximate the distal end of the inner tubular member 14 and a proximal guidewire port 26 proximate the proximal end of the inner tubular member 14.
- the catheter 110 may include an inflatable balloon 120 mounted on a distal region of the catheter shaft 12.
- the inflatable balloon 120 may include a proximal balloon waist secured (e.g., thermally or adhesively bonded) to a distal end of the outer tubular member 13 and a distal balloon waist secured (e.g., thermally or adhesively bonded) to a distal end of the inner tubular member 14.
- the infusion fluid lumen 34 extending along the catheter shaft 12 may be in fluid communication with the interior of the inflatable balloon 120 to delivery infusion fluid to the inflatable balloon 120.
- the inflatable balloon 120 may include one or more fluid infusion openings 140 (e.g., holes, apertures) configured to permit infusion fluid to exit the balloon 120 from the infusion fluid lumen 34.
- the balloon 120 may include a plurality of fluid infusion openings 140 extending through a wall of the balloon 120 when the balloon 120 is inflated with the infusion fluid.
- the balloon 120 may include four fluid infusion openings 140 equidistantly spaced circumferentially around the balloon 120 (i.e. , with each fluid infusion opening 140 arranged about 90° from another fluid infusion opening 140).
- the balloon 120 may include one, two, three, or more fluid infusion openings 140 arranged around the perimeter of the balloon 120.
- the fluid infusion openings 140 may be configured to expel an infusion fluid radially outward from the balloon 120 to facilitate mixing of the infusion fluid with blood flowing through the vessel lumen.
- the fluid infusion openings 140 may be located on the distal cone portion of the balloon 120, on a cylindrical body portion of the balloon 120, or at a different position, if desired.
- the balloon may be configured to create turbulence in the blood flow to facilitate mixing the infusion fluid with the blood flowing distal of the balloon 120.
- the fluid infusion openings 140 may be configured to generate a jet of infusion fluid exiting the balloon 120.
- the fluid infusion openings 140 may be appropriately sized to generate a pressure stream of the infusion fluid exiting the fluid infusion openings 140.
- the size of the fluid infusion openings 140 may be selected based on the volume of infusion fluid to ensure a jet of infusion fluid is formed exiting the balloon 120.
- the catheter shaft 12 of the infusion catheter 110 may also include one or more fluid holes 50 (e.g., openings, apertures) located at the distal end region of the catheter 110 configured to permit infusion fluid to pass from the infusion fluid lumen 34 into the guidewire lumen 36.
- the catheter shaft 12 may include one or more fluid holes 50 extending through a wall of the inner tubular member 14 from an outer surface of the inner tubular member 14 to an inner surface of the inner tubular member 14.
- the fluid hole(s) 50 may be a weeping hole configured to allow infusion fluid to weep or exude slowly into the guidewire lumen 36 from the infusion fluid lumen 34.
- the fluid hole(s) 50 may be configured to allow infusion fluid to weep, drip, trickle, ooze or otherwise slowly exude into the guidewire lumen 36.
- FIGS. 4-7 illustrate aspects of an exemplary method of determining blood flow through a body vessel using the catheter system of FIG. 1.
- a guidewire such as the guidewire 30 having a temperature sensor 32 mounted on a distal end region thereof, may be advanced through a lumen 82 of a blood vessel 80 of the vasculature to a desired target location, such as in a coronary artery, for example.
- the infusion catheter 10 may then be advanced over the guidewire 30 to the target location within the blood vessel 80, as shown in FIG. 5.
- the infusion catheter 10 may be advanced over a different guidewire, such as a conventional guidewire, to the target location, and subsequently the guidewire may be exchanged for the guidewire 30 having a temperature sensor 32 mounted thereon.
- the temperature sensor 32 positioned distal of the infusion catheter 10 the actual temperature T b of the blood may be measured with the temperature sensor 32 and recorded.
- an estimated temperature e.g., 98.6° F
- the guidewire 30 may be withdrawn proximally to reposition the sensor 32 inside the guidewire lumen 36, as shown in FIG. 6.
- the sensor 32 may be positioned within the guidewire lumen 36 adjacent to the fluid hole 50 extending through the inner tubular member 14.
- the infusion fluid F e.g., saline
- the infusion fluid F may be delivered through the infusion fluid lumen 34 to the distal end region of the catheter 10.
- the infusion fluid F may be provided to the distal region of the catheter 10 at a pressure of about 1 ATM to about 30 ATM.
- a small amount of the infusion fluid F may enter the guidewire lumen 36 through the fluid hole(s) 50 from the infusion fluid lumen 34.
- the actual temperature T f of the infusion fluid F at the distal end region of the catheter 10 may be measured and recorded.
- the temperature sensor 32 may be positioned adjacent to the fluid hole(s) 50 such that infusion fluid F passing into the guidewire lumen 36 may come into direct contact with the temperature sensor 32 in the guidewire lumen 36.
- the temperature sensor 32 may be otherwise positioned within the guidewire lumen 36 such that infusion fluid F located in the guidewire lumen 36 may come into direct contact with the temperature sensor 32 in the guidewire lumen 36.
- the temperature sensor 32 on the guidewire 30 may then be advanced to a location distal of the catheter 10, as shown in FIG. 7.
- the temperature sensor 32 may be advanced distally to a position located a distance D from the fluid infusion openings 40.
- the distance D may be about 3 centimeters or more, about 4 centimeters or more, about 5 centimeters or more, or about 6 centimeters or more to ensure the infusion fluid F completely mixes with the blood prior to reaching the temperature sensor 32.
- the temperature sensor 32 may be positioned a distance D of about 3 centimeters to about 8 centimeters, about 3 centimeters to about 6 centimeters, about 4 centimeters to about 8 centimeters, or about 4 centimeters to about 6 centimeters distal of the infusion fluid openings 40 on the catheter shaft 12.
- the infusion fluid F may be infused into the blood stream in the lumen 82 of the blood vessel 80 through the fluid infusion openings 40 from the infusion fluid lumen 34.
- a continuous flow of infusion fluid F at a known flow rate through the infusion fluid lumen 34 may be provided with an infusion pump, with a substantial portion of the infusion fluid F exiting the catheter 10 through the infusion fluid lumen(s) 40 and a small amount of the infusion fluid F exiting the catheter 10 via the guidewire lumen 36.
- the flow rate of the infusion fluid F may be set to any desired flow rate, for example, a continuous flow rate of about 15 ml/min, about 20 ml/min, about 25 ml/min, about 30 ml/min, about 35 ml/min, or about 40 ml/min.
- the infusion fluid F may mix with the blood flowing through the blood vessel 80 to provide a mixture of blood and infusion fluid F. If the temperature T f of the infusion fluid F (e.g., at room temperature) is less than the temperature T b of the blood, then the mixture of blood and infusion fluid F may have a temperature T m less than the temperature T b of the blood.
- the temperature T m of the mixture of blood and infusion fluid F may be measured with the temperature sensor 32 and recorded.
- Multiple temperature measurements of the infusion fluid, blood and/or the mixture of blood and infusion fluid may be taken to calculate an average, or adjusted temperature for calculating the blood flow rate through the blood vessel 80.
- the temperatures may be measured in any desired order.
- the temperature T m of the mixture of the infusion fluid and the blood may be measured first with the temperature sensor 32 located a distance D distal of the catheter 10 as shown in FIG. 7, and then the temperature T f of the infusion fluid entering the guidewire lumen 36 may be measured by withdrawing the temperature sensor 32 into the guidewire lumen 36 as shown in FIG. 6.
- the temperature T f of the fluid F, the temperature T b of the blood, and the temperature T m of the mixture of blood and infusion fluid may be measured using a different temperature sensor positioned on the guidewire 30 distinct from the temperature sensor 32, a temperature sensor positioned on a second guidewire, positioned on the catheter 10, or otherwise positioned to take the corresponding temperature.
- the measured temperatures may then be used to calculate the actual, absolute blood flow rate of blood in the blood vessel 80 at the target location.
- T m the temperature of the mixture of blood and infusion fluid
- the actual, absolute flow rate of the blood through the blood vessel 80 at the target location may be calculated.
- the absolute blood flow rate may be used in a diagnostic evaluation for determining a medical condition of the patient.
- the calculated absolute blood flow rate could be combined with other measurements to provide further diagnostic analysis.
- the calculated absolute blood flow rate may be combined with an absolute blood pressure measured at the target location in the blood vessel 80 to determine the absolute resistance of the blood vessel 80.
- fractional flow reserve may be used to measure the pressure drop across a stenosis or narrowing in the blood vessel 80.
- Fractional flow reserve (FFR) may be calculated with the following equation:
- R s resistance across the stenosis or narrowing
- P d measured pressure distal of the stenosis or narrowing
- P p measured pressure proximal of the stenosis or narrowing
- Q b the actual blood flow rate
- the measured actual blood flow rate may be useful for the diagnosis and understanding of a number of pathophysiological conditions such as heart transplantation, stem cell therapy, or a transmural myocardial infarction, for example.
- the catheter system 202 may include an infusion catheter 210, and in some instances an associated guidewire 30.
- the infusion catheter 210 may include an elongate catheter shaft 212 extending distally from a hub assembly 220.
- the catheter shaft 212 may have a proximal end 216 attached to the hub assembly 220 and a distal end 218 opposite the proximal end 216.
- the catheter shaft 212 may be a single lumen catheter shaft formed of a tubular member 213 having an infusion fluid lumen 234 defined therein.
- the catheter shaft 212 may include a reduced diameter distal end region 224 extending to the distal end 218 of the catheter shaft 212.
- a guidewire 230 may extend through the infusion fluid lumen 234 of the catheter shaft 212 from a proximal guidewire port 226 located in the hub assembly 220 to a distal guidewire port 228 at the distal tip of the reduced diameter distal end region 224.
- the inner diameter of the reduced diameter distal end region 224 may be closely sized to the diameter of the guidewire 230 such that substantially no infusion fluid leaks out of the catheter shaft 212 through the distal guidewire port 228.
- the reduced diameter distal end region 224 may have a length L of about 3 centimeters to about 6 centimeters, for example.
- the hub assembly 220 may also include a proximal fluid port 222 in fluid communication with the infusion fluid lumen 234.
- a source of infusion fluid (not shown), such as an infusion pump, syringe, etc., may be coupled to the proximal fluid port 222 to supply infusion fluid F to the infusion fluid lumen 234.
- the catheter shaft 212 may include one or more fluid infusion openings 240 (e.g., holes, apertures) located at a distal end region of the catheter 210.
- the fluid infusion openings 240 may be in fluid communication with the infusion fluid lumen 234 and may be configured to permit infusion fluid to exit the catheter 210 from the infusion fluid lumen 234 proximate the distal end 218 of the catheter shaft 212.
- the catheter shaft 212 may include a plurality of fluid infusion openings 240 extending through a wall of the tubular member 213 from an inner surface of the tubular member 213 to an outer surface of the tubular member 213.
- the infusion openings 240 may be of a similar construction and arrangement as the infusion openings 40 of the catheter 10 described above.
- the fluid infusion openings 240 may be configured to expel an infusion fluid in a radially outward direction from each of the fluid infusion openings 240 to facilitate mixing of the infusion fluid with blood flowing through the vessel lumen.
- the fluid infusion openings 240 may be arranged in a different orientation, such as in a fashion to permit infusion fluid to be expelled generally distally from the catheter shaft 212, if desired
- the infusion catheter 210 may include a first temperature sensor 260, such as a thermistor or a thermocouple, positioned within the infusion fluid lumen 234 of the catheter shaft 212 proximate the fluid infusion openings 240.
- the temperature sensor 260 may be configured to be in direct contact with the infusion fluid F within the infusion fluid lumen 234 to measure the temperature T f of the infusion fluid F exiting the infusion fluid lumen 234 through the fluid infusion openings 240.
- the infusion catheter 210 may also include a second temperature sensor 232, such as a thermistor or a thermocouple, positioned on an exterior of the elongated reduced diameter distal end region 224 proximate the distal end 218 of the catheter shaft 212.
- the second temperature sensor 232 may be positioned a distance D distal of the one or more fluid infusion openings 240.
- the second temperature sensor 232 mounted on the exterior of the catheter shaft 212, may be used to measure the temperature T b of the blood flowing in the lumen 82 of the blood vessel 80, as well as the temperature T m of the mixture of blood and infusion fluid flowing distal of the infusion fluid openings 240.
- the distance D may be about 3 centimeters or more, about 4 centimeters or more, about 5 centimeters or more, or about 6 centimeters or more to ensure the infusion fluid F completely mixes with the blood prior to reaching the temperature sensor 232.
- the temperature sensor 232 may be positioned a distance D of about
- the measured temperatures obtained with the infusion catheter 210 may then be used to calculate the actual, absolute blood flow rate of blood in the blood vessel 80 at the target location, as well as other calculated parameters, which may be useful for the diagnosis and understanding of a number of pathophysiological conditions.
- the catheter system 302 may include an infusion catheter 310, and in some instances an associated guidewire 330.
- the infusion catheter 310 may include an elongate catheter shaft 312 extending distally from a hub assembly 320.
- the catheter shaft 312 may have a proximal end 316 attached to the hub assembly 320 and a distal end 318 opposite the proximal end 316.
- the catheter shaft 312 may be a dual lumen catheter shaft having an infusion fluid lumen 334 and a guidewire lumen 336 extending through the catheter shaft 212 configured for advancing the infusion catheter 310 over a guidewire 330. As shown in FIG.
- the catheter 310 may be an over-the-wire (OTW) catheter in which the guidewire lumen 336 may extend through the entire length of the catheter shaft 312 from a proximal guidewire port 326 located in the hub assembly 320 to a distal guidewire port 328 at the distal end 218 of the catheter shaft 312.
- OGW over-the-wire
- the catheter 310 may be a single-operator-exchange (SOE) catheter in which the guidewire lumen 336 extends only through a distal portion of the catheter shaft 312.
- SOE single-operator-exchange
- the catheter shaft 312 may include an outer tubular member 313 and an inner tubular member 314 extending through the lumen of the outer tubular member 313.
- the outer tubular member 313 may coaxially surround the inner tubular member 314.
- the lumen of the inner tubular member 314 may define the guidewire lumen 336.
- the infusion fluid lumen 334 may be defined between an outer surface of the inner tubular member 314 and an inner surface of the outer tubular member 313.
- the hub assembly 320 may include a proximal port 322 in fluid communication with the infusion fluid lumen 334.
- a source of infusion fluid (not shown), such as an infusion pump, syringe, etc., may be coupled to the proximal port 322 to supply infusion fluid to the infusion fluid lumen 334.
- a distal end portion 338 of the outer tubular member 313 may be a reduced diameter portion or necked portion, secured to the inner tubular member 314 to seal the infusion fluid lumen 334 proximate the distal end 318 of the catheter shaft 312.
- the distal end portion 338 may include a tapered region in which the outer tubular member 313 tapers down to a reduced inner and/or outer diameter at the distal end of the outer tubular member 313.
- the inner surface of a distal end portion of the outer tubular member 313 may be secured to the outer surface of a distal end portion of the inner tubular member 314 in the distal end portion 38.
- the outer tubular member 313 may be secured to the inner tubular member 314, for example, by laser welding, hot jaws, or other thermal bonding method, an adhesive bonding method, or other bonding method if desired.
- the catheter shaft 312 may include a distal tip, formed as a separate component and secured at the distal end 318 of the catheter shaft 312, or the distal tip may be formed as a unitary portion of the inner tubular member 314 and/or the outer tubular member 313.
- the catheter shaft 312 may include one or more fluid infusion openings 340 (e.g., holes, apertures) located at a distal end region of the catheter 310.
- the fluid infusion openings 340 may be in fluid communication with the infusion fluid lumen 334 and may be configured to permit infusion fluid to exit the catheter 310 from the infusion fluid lumen 334 proximate the distal end 318 of the catheter shaft 312.
- the catheter shaft 312 may include a plurality of fluid infusion openings 340 extending through a wall of the outer tubular member 313 from an inner surface of the outer tubular member 313 to an outer surface of the outer tubular member 313.
- the infusion fluid openings 340 may be of a similar construction and arrangement as the infusion openings 40 of the catheter 10 described above.
- the fluid infusion openings 340 may be configured to expel an infusion fluid F in a radially outward direction from each of the fluid infusion openings 340 to facilitate mixing of the infusion fluid F with blood flowing through the vessel lumen.
- the fluid infusion openings 340 may be arranged in a different orientation, such as in a fashion to permit infusion fluid to be expelled generally distally from the catheter shaft 312, if desired.
- the infusion catheter 310 may include a temperature sensor 360, such as a thermistor or a thermocouple, positioned within the infusion fluid lumen 334 of the catheter shaft 312 proximate the fluid infusion openings 340.
- the temperature sensor 360 may be secured to the inner surface of the outer tubular member 313 proximate one of the fluid infusion openings 340.
- the temperature sensor 360 may be configured to be in direct contact with the infusion fluid F within the infusion fluid lumen 334 to measure the temperature T f of the infusion fluid F exiting the infusion fluid lumen 334 through the fluid infusion openings 340.
- the catheter system 302 may also include a guidewire 330 sized and configured to be disposed through the guidewire lumen 336 of the infusion catheter 310 such that the infusion catheter 310 may be advanced along the guidewire 330 to a target location in the vasculature.
- the guidewire 330 may include a temperature sensor 332, such as a thermistor or a thermocouple, mounted on a distal end region of the guidewire 330.
- a temperature sensor 332 such as a thermistor or a thermocouple
- the guidewire 330 may also include a pressure sensor located at the distal end region of the guidewire 330 for measuring blood pressure at a target location within the vasculature.
- the temperature sensor 332, mounted on the guidewire 330, may be used to measure the temperature T of the blood flowing in the lumen 82 of the blood vessel 80, as well as the temperature T m of the mixture of blood and infusion fluid flowing distal of the infusion fluid openings 340.
- the temperature sensor 332 may be positioned a distance D distal of the infusion fluid openings 340 when taking temperature measurements of the mixture of blood and infusion fluid.
- the distance D may be about 3 centimeters or more, about 4 centimeters or more, about 5 centimeters or more, or about 6 centimeters or more to ensure the infusion fluid F completely mixes with the blood prior to reaching the temperature sensor 332.
- the temperature sensor 332 may be positioned a distance D of about
- the measured temperatures obtained with the infusion catheter 310 and the guidewire 330 may then be used to calculate the actual, absolute blood flow rate of blood in the blood vessel 80 at the target location, as well as other calculated parameters, which may be useful for the diagnosis and understanding of a number of pathophysiological conditions.
- the catheter system 402 may include an infusion catheter 410, and in some instances an associated temperature probe 470 and/or guidewire 430.
- the infusion catheter 410 may be similar to the infusion catheter 10 illustrated in FIG. 1.
- the infusion catheter 410 may include an elongate catheter shaft 412 extending distally from a hub assembly 420, having a proximal end 416 attached to the hub assembly 420 and a distal end 418 opposite the proximal end 416.
- the catheter shaft 412 may be a triple lumen catheter shaft having a first, infusion fluid lumen 434 and a second, an auxiliary lumen 435 (e.g., a temperature probe lumen), and a third, guidewire lumen 436 extending along at least a portion of the catheter shaft 412 configured for advancing the infusion catheter 410 over the guidewire
- the catheter shaft 412 may include an outer tubular member 413 and first and second inner tubular members 415, 414 extending through the lumen of the outer tubular member 413.
- the infusion fluid lumen 434 may be defined by the portion of the lumen of the outer tubular member 413 exterior of the first and second inner tubular members 415, 414.
- the hub assembly 420 may include a proximal port 422 in fluid communication with the infusion fluid lumen 434.
- a source of infusion fluid (not shown), such as an infusion pump, syringe, etc., may be coupled to the proximal port 422 to supply infusion fluid to the infusion fluid lumen 434.
- the catheter shaft 412 may be an extruded tubular member including three lumens extending there through, for example.
- the lumen of the second inner tubular member 414 may define the guidewire lumen 436 with a distal guidewire port 428 proximate the distal end of the second inner tubular member 414 and a proximal guidewire port 426 proximate the proximal end of the second inner tubular member 414.
- the guidewire 430 may be extendable through the guidewire lumen 436.
- the lumen of the first inner tubular member 415 may define the auxiliary lumen 435 configured for longitudinally receiving an elongate member, such as a temperature probe 470 there through.
- the auxiliary lumen 435 may extend from the proximal end of the catheter 410 to the distal end of the catheter 410, with a proximal portion of the temperature probe 470 extending proximal of the auxiliary lumen 435 (e.g., proximal of the catheter 410) and a distal portion of the temperature probe 470 extending distal of the auxiliary lumen 435 (e.g., distal of the catheter 410).
- a distal end portion 438 of the outer tubular member 413 may be a reduced diameter portion or necked portion, secured to the first inner tubular member 415 and/or the second inner tubular member 414 to seal the infusion lumen 434 proximate the distal end 418 of the catheter shaft 412.
- the distal end portion 438 may include a tapered region in which the outer tubular member 413 tapers down to a reduced inner and/or outer diameter at the distal end of the outer tubular member 413.
- the inner surface of a distal end portion of the outer tubular member 413 may be secured to the outer surface of a distal end portion of the first inner tubular member 415 and/or the outer surface of a distal end portion of the second inner tubular member 414 in the distal end portion 438.
- the outer tubular member 413 may be secured to the inner tubular members 414, 415, for example, by laser welding, hot jaws, or other thermal bonding method, an adhesive bonding method, or other bonding method if desired.
- the catheter shaft 412 may include one or more fluid infusion openings 440 (e.g., holes, apertures) located at a distal end region of the catheter 410.
- the fluid infusion openings 440 may be in fluid communication with the infusion fluid lumen 434 and may be configured to permit infusion fluid to exit the catheter 410 from the infusion fluid lumen 434 proximate the distal end 418 of the catheter shaft 412.
- the catheter shaft 412 may include a plurality of fluid infusion openings 440 extending through a wall of the outer tubular member 413 from an inner surface of the outer tubular member 413 to an outer surface of the outer tubular member 413.
- the infusion fluid openings 440 may be of a similar construction and arrangement as the infusion openings 40 of the catheter 10 described above.
- the fluid infusion openings 440 may be configured to expel an infusion fluid F in a radially outward direction from each of the fluid infusion openings 440 to facilitate mixing of the infusion fluid F with blood flowing through the vessel lumen.
- the fluid infusion openings 440 may be arranged in a different orientation, such as in a fashion to permit infusion fluid to be expelled generally distally from the catheter shaft 412, if desired.
- the catheter shaft 412 may also include one or more fluid holes 450 (e.g., openings, apertures) located at the distal end region of the catheter 410.
- the fluid hole(s) may be in fluid communication with the infusion fluid lumen 434 and may be configured to permit infusion fluid to pass from the infusion fluid lumen 434 into the auxiliary lumen 435.
- the catheter shaft 412 may include one or more fluid holes 450 extending through a wall of the first inner tubular member 415 from an outer surface of the first inner tubular member 415 to an inner surface of the first inner tubular member 415.
- the catheter shaft 412 may include one fluid hole 450 extending through the wall of the first inner tubular member 415 to permit infusion fluid F to enter the auxiliary lumen 435 from the infusion fluid lumen 434, or the catheter shaft 412 may include two, three or more such fluid holes 450, if desired.
- the fluid hole(s) 450 may be a weeping hole configured to allow infusion fluid to weep or exude slowly into the auxiliary lumen 435 from the infusion fluid lumen 434.
- the fluid hole(s) 450 may be configured to allow infusion fluid to weep, drip, trickle, ooze or otherwise slowly exude into the auxiliary lumen 435.
- the fluid hole(s) 450 may have a diameter of about 100 microns (0.100 millimeters) to about 300 microns (0.300 millimeters), about 100 microns (0.100 millimeters) to about 200 microns (0.200 millimeters), or about 200 microns (0.200 millimeters) to about 300 microns (0.300 millimeters), for example.
- the catheter system 402 may also include a temperature probe 470 sized and configured to be disposed through the auxiliary lumen 435 of the infusion catheter 410.
- the temperature probe 470 may be longitudinally actuatable through the auxiliary lumen 435 relative to the catheter 410.
- the temperature probe 470 may include a temperature sensor 472, such as a thermistor or a thermocouple, mounted on a distal end region of the temperature probe 470.
- a temperature probe 470 is a fiber optic temperature sensor available from Neoptix.
- the temperature sensor 472, mounted on the temperature probe 470 may be used to measure the temperature T b of the blood flowing in the lumen of the blood vessel, as well as the temperature T m of the mixture of blood and infusion fluid flowing distal of the infusion fluid openings 440.
- the temperature sensor 472 may be positioned a distance distal of the infusion fluid openings 440 when taking temperature measurements of the mixture of blood and infusion fluid.
- the distance may be about 3 centimeters or more, about 4 centimeters or more, about 5 centimeters or more, or about 6 centimeters or more to ensure the infusion fluid F completely mixes with the blood prior to reaching the temperature sensor 472.
- the temperature sensor 472 may be positioned a distance D of about 3 centimeters to about 8 centimeters, about 3 centimeters to about
- the temperature probe 470 may be longitudinally actuated relative to the catheter 410 to position the sensor 472 inside the auxiliary lumen 435 to obtain a measurement of the temperature T f of the infusion fluid.
- the sensor 472 may be positioned within the auxiliary lumen 435 adjacent to the fluid hole 450 extending through the first inner tubular member 415.
- the infusion fluid F e.g., saline
- the infusion fluid F may be delivered through the infusion fluid lumen 434 to the distal end region of the catheter 410.
- the infusion fluid F may be provided to the distal region of the catheter 410 at a pressure of about 1 ATM to about 30 ATM.
- a small amount of the infusion fluid F may enter the auxiliary lumen 435 through the fluid hole(s) 450 from the infusion fluid lumen 434. Accordingly, with the temperature sensor 472 positioned in the auxiliary lumen 435, the actual temperature T f of the infusion fluid F at the distal end region of the catheter 410 may be measured and recorded.
- the temperature sensor 472 may be positioned adjacent to the fluid hole(s) 450 such that infusion fluid F passing into the auxiliary lumen 435 may come into direct contact with the temperature sensor 472 in the auxiliary lumen 435.
- the temperature sensor 472 may be otherwise positioned within the auxiliary lumen 435 such that infusion fluid F located in the auxiliary lumen 435 may come into direct contact with the temperature sensor 472 in the auxiliary lumen 435.
- the temperature probe 470 may include a visual marker system including markings or indicia 474 on a proximal portion of the temperature probe 470 that medical personnel may use to determine the position of the temperature sensor 472 relative to the fluid infusion opening(s) 440 and/or the fluid hole(s) 450.
- the markings or indicia 474 may be located on the temperature probe 470 proximal of the hub assembly 420 for direct observation by an operator.
- the temperature probe 470 may include a first mark or indicia 474 at a known location corresponding to when the temperature sensor 472 is positioned proximate the fluid hole 450, a second mark or indicia 474 at a known location corresponding to when the temperature sensor 472 is located a first known distance (e.g., 3 centimeters) distal of the catheter 410 and thus the fluid infusion openings 440, a third mark or indicia 474 at a known location corresponding to when the temperature sensor 472 is at a second distance (e.g., 4 centimeters) distal of the catheter 410 and thus the fluid infusion openings 440, a fourth mark or indicia 474 at a known location corresponding to when the temperature sensor 472 is at a third distance (e.g., 5 centimeters) distal of the catheter 410 and thus the fluid infusion openings 440, a fifth mark or indicia 474 at a known location corresponding to when the temperature
- the measured temperatures obtained with the temperature probe 470 may then be used to calculate the actual, absolute blood flow rate of blood in a blood vessel at the target location, as well as other calculated parameters, which may be useful for the diagnosis and understanding of a number of pathophysiological conditions.
- the above described catheter using thermodilution for determining blood flow is capable of being also used, either with the essential same structure as described above for the embodiments of Figures 1 to 10, or with variant embodiment structures for instance as shown on Figures 11 to 20, without limitation, for performing the destruction of a body obstruction in a body lumen, in particular a body vessel of a live being.
- a body vessel should be understood as meaning any vessel in a live being wherein blood flows, including a vessel, an artery, a coronary, etc.
- a live being may be a human and an animal.
- An obstruction in a body or blood vessel may be any obstruction, for instance a thrombus, a thrombosis, or a blood clot, without any limitation.
- fluid exit opening(s) having a predetermined diameter in the range of about 50 micrometer to about 200 micrometers, in a particular variant ranging between 50 microns and 150 microns, in a further particular variant between 70 micrometer and 150 microns or according to another variant between 70 and 110 microns, and a predetermined fluid pressure ranging between about 10x101,325Pa or 10 Atm and about 50x101,325Pa, or 50 Atm, or according to a variant embodiment ranging between at least, or more than 20x101 ,325Pa or 20 Atm and about 50x101 ,325Pa, or 50 Atm, or according to a further variant embodiment ranging between at least, or more than 30x101,325Pa or 30 Atm and about 50x101,325Pa, or 50 Atm ,the fluid flow exiting the fluid exit openings has a shearing force causing a mechanical destruction of this body obstruction, which is in general either a shearing force causing a mechanical destruction of this body obstruction,
- the selected size of the fluid exit openings depends upon the value of the pressure of the injected fluid and the value of pressure depends also upon the number of fluid exit openings present on the outer wall of the catheter, as above said and below detailed.
- At least one set of 4 fluid exit openings circumferentially equidistantly arranged.
- This at least one set four fluid exit openings may be either located within the same plane substantially perpendicular to the vessel longitudinal axis or located in quincunx within two distinct parallel planes substantially perpendicular to the vessel longitudinal axis.
- a catheter system 502 is shown similar to that of Figure 1, comprising an elongate catheter 510 having a catheter shaft 512 extending distally from the hub assembly 520, said catheter shaft comprising a proximal end 516 attached to the hub assembly and a distal end 518 opposite the proximal end 516.
- the catheter shaft 512 may be a dual lumen having a first, fluid lumen 534 and a second lumen 536 for insertion of an elongate element which can be a guidewire 530 extending along at least a portion of the catheter shaft 512 configured for advancing the catheter 510 over the guidewire 530.
- the catheter 510 maybe an over the wire (OTW) catheter in which the guidewire lumen 536 may extend through the entire length of the catheter shaft 512 from the distal end 518 to the proximal end 516 as shown in Figures 18 and 19 further described farther.
- OGW over the wire
- the catheter may be a single operator- exchange (SOE) in which the guidewire lumen 536 extends only through a distal portion of the catheter shaft 512 or 912.
- SOE single operator- exchange
- the catheter shaft 512 may include an outer tubular member 513 and an inner tubular member 514 disposed within, and extending through, a first fluid lumen 534 of the outer tubular member 514 ; said first fluid lumen 534 is thus defined between the inner tubular member 514 and the outer tubular member 513 and a second lumen 536 defined by the inner tubular member 514.
- the fluid lumen 534 may be defined between an outer surface of the inner tubular member 514 and the inner surface of the outer tubular member 513 and is understandably extending from the proximal end 516 and the distal end 518.
- One or more fluid exit openings 540 are located at a distal end region of the catheter configured to permit fluid to exit the catheter from the first fluid lumen 534.
- the hub assembly 520 may include a proximal port 522 in fluid communication with the fluid lumen 534.
- a control device 590 may include fluid pressure means 592 located external of the catheter ahead from the proximal end 516 and coupled to the proximal port 522 for delivering said fluid in the first fluid lumen 534 at a pressure range predetermined to cause destruction of said obstruction when exiting the fluid exit openings 540.
- the catheter system may further comprise an elongate member 530 advanceable through the second lumen 536 of the catheter.
- the elongate member may comprise a temperature sensor 532 positioned on a distal end portion of the elongate member 530.
- the temperature sensor 532 on the distal end portion of the elongate member 530 is positionable ahead of the distal end 518 of the catheter to measure temperature in the blood vessel 580 shown on Figures 14 to 17.
- the lumen 536 of the inner tubular member 514 may define the elongate member lumen 536, here shown as a guidewire lumen 536 with a distal port 528 proximate the distal end 518, and a proximate guidewire port 526 proximate the proximal end of the inner tubular member 514.
- the one or more fluid exit openings 540 extend through a wall of the outer tubular member 513 from an inner surface of the outer tubular member to an outer surface of the outer tubular member.
- the one or more fluid exit openings 540 are configured to generate a jet of fluid exiting the catheter, in particular radially substantially perpendicularly to the surface of the outer tubular member 513, and at a pressure sufficient to cause mechanical destruction of the body obstruction like a thrombosis T shown on figures 15- 20.
- the one or more fluid exit openings 540 include at least one set of four fluid exit openings 540 equidistantly spaced circumferentially around the outer tubular member as shown on Figures 11, 11A, 16 and 18.
- the 4 fluid exit openings are located in the same plane substantially perpendicular to the longitudinal axis of the catheter and therefore also of the body vessel 580.
- the 4 fluid exit openings 540a and 540b , or 640a and 640b are located in two distinct parallel planes substantially perpendicular to the longitudinal axis of the catheter and therefore also of the body vessel 580.
- the one or more fluid exit openings include at least two sets of four fluid exit openings 840 and 940 equidistantly spaced circumferentially around the outer tubular member 880 and 980 as shown on figures 19 and 20, respectively.
- one or more fluid holes 550, Figure 11 , or fluid holes 650, Figure 13 are located at the distal end region of the catheter, and are configured to permit fluid to pass from the first fluid lumen 534 into the second lumen 536 and said one or more fluid holes 550 extend through a wall of the inner tubular member 536 from an outer surface of the inner tubular member to an inner surface of the inner tubular member.
- the one or more fluid holes 550, 650 are one or more weeping holes configured to allow fluid to weep into the second lumen.
- the one or more fluid holes 550, 650 have a diameter ranging between about 100 micrometers and about 300 micrometers.
- the elongate catheter shaft 512 includes an elongated reduced diameter region 538 extending distal of the one or more fluid exit openings 540 to the distal end of the elongate catheter shaft 512.
- a first temperature sensor 760, 860 is positioned within the first fluid lumen of the catheter shaft proximate the one or more fluid exit openings 740, 840, the first temperature sensor 760, 860, configured to be in direct contact with the fluid within the lumen to measure a temperature of the fluid exiting the lumen through the one or more fluid exit openings 740, 840.
- the catheter may further comprise a second temperature sensor 732 positioned on an exterior of the elongated reduced diameter region 724 proximate the distal end 718 of the elongate catheter shaft 710, as shown on Figure 18.
- the second temperature sensor 732 is positioned at least 4 centimeters distal of the one or more fluid exit openings 740.
- the distal end of the inner tubular member is sealingly secured to the distal end of the elongate catheter shaft.
- the elongate member 530 may comprise a guidewire advanceable through the inner tubular member 514.
- the guidewire 530 may comprise a temperature sensor 532 positioned on a distal end portion of the guidewire to measure a temperature of a blood/fluid mixture in the body lumen distal of the one or more fluid exit openings 540.
- the catheter may comprise at least one pressure sensor P in the vicinity of at least one fluid exit opening 540, Figure 11 or 640, Figure 13, or 740, Figure 18, or 840, Fig 19 or 940, Fig 20.
- the fluid is a liquid selected from a saline and an aqueous solution compatible with blood in a variant embodiment, this saline solution may comprise at least one clot or thrombosis dissolution aid.
- dissolution aids are well known to those skilled in the art.
- the fluid exit opening(s) have a diameter ranging between about 50 microns (0.050 millimeters) and about 200 microns (0.200 millimeters).
- the diameter size selected is usually adapted to the pressure of the fluid and said fluid pressure at the entrance of said catheter or at the vicinity of at least one fluid exit opening ranges between about 10x 101 ,325Pa or 10 ATM and about 50x101 ,325Pa or 50 ATM.
- the fluid exit opening(s) have a diameter ranging between about 50 microns (0.050 millimeters) and about 150 microns (0.150 millimeters) or ranging between about 70 microns (0.070 millimeters) and about 110 microns (0.110 millimeters).
- the pressure of the fluid at the entrance of said catheter or at the vicinity of at least one fluid exit opening ranges between at least, or more than, 20x101,325Pa or 20 ATM, or 30x101,325Pa or 30 ATM and 50x101 ,325Pa or 50 ATM.
- This pressure is particularly adapted with a size of the orifices ranging between about 70 microns (0.070 millimeters) and about 150 microns(0.150 millimiters or even 110 microns (0.110 millimeters) and the pressure depends also upon the number of fluid exit openings present on the outer wall of the catheter as is well understandable for one skilled in the art.
- all embodiments of Figures 11 to 20 may also include one or more radiopaque markers 552, Figures 11 and 16, or 652, Figure 13, or 752, Figure 18, or 852, Figure 19 or 952, Figure 20, for the same reasons as explained for the embodiments of Figures 1 to 10.
- figure 13 relates to a variant embodiment of a Single Operator Exchange (SOE) catheter similar to that of Figure 11.
- the catheter may include an outer tubular member 613 and an inner tubular member 614 disposed within, and extending through, a first fluid lumen 634 of the outer tubular member 614; said first fluid lumen 634 is thus defined between the inner tubular member 614 and the outer tubular member 613 and a second lumen 636 defined by the inner tubular member 614.
- the catheter shaft 612 may extend distally from a hub assembly 620 itself which may include a proximal port 622 in fluid communication with the fluid lumen 634.
- a control device 690 may include fluid pressure means 692 which may be located external of the catheter ahead from the proximal end 616 and coupled to the proximal port 622 for delivering said fluid in the first fluid lumen 634 at a pressure range predetermined to cause destruction of said obstruction when exiting the fluid exit openings 640.
- the catheter system may further comprise an elongate member 630 advanceable through the second lumen 636 of the catheter.
- the catheter may include in this variant embodiment similar to that of Figure 3, an inflatable balloon 620 mounted on a distal region of the catheter shaft 612.
- the balloon may include a proximal waist secured for instance thermally or adhesively bonded, to a distal end of the outer tubular member 613 and a distal waist also secured to a distal end 624 of the inner tubular member 614.
- the fluid lumen 634 extending along the catheter shaft may be in fluid communication with the interior of the inflatable balloon 620 to deliver said fluid to the inflatable balloon.
- the inflatable balloon may include one or more fluid exit openings 640 extending through a wall of the balloon 640 and configured to permit fluid to exit the balloon 620 from the fluid lumen 634.
- the balloon 620 is inflated by the fluid pressure flowing within the fluid lumen 634.
- the balloon may include at least one set of four fluid exit openings 640, equidistantly spaced circumferentially around the balloon 620.
- the fluid exit openings may be located on the distal cone portion of the balloon 620 as shown on Figure 13, or may be on a cylindrical body portion of the balloon 620 or on both as shown on Figure 13, the catheter may be positioned to be blocked by the cone portion of the balloon 620 against an obstruction ahead like a thrombosis T, or a clot or even a cholesterol deposit so that when the fluid is exiting under said predetermined pressure, the jet(s) of fluid will cause mechanical or physical destruction of the obstruction T.
- Figures 14-17 illustrate aspects of an exemplary method of destruction of an obstruction like T in a body vessel 580 using the catheter system of Figure 11.
- an elongate member 530 configured as a guidewire, here bearing a temperature sensor 532 mounted on a distal region thereof, may be advanced through a body lumen blood vessel 580 of a live being, for instance a human or an animal, to a desired target location T shown on Figures 15 to 17, namely an obstruction like a thrombosis, or blood clot, or a cholesterol deposit, for its destruction.
- the catheter 510 may then be advanced over the guide wire 530 to the target location T as shown on figures 15 to 17.
- the catheter 510 may be advanced on a conventional guidewire to the target location and then the guidewire 530 with the temperature sensor 532 may replace it when it is desired to take temperature in the blood vessel.
- the guidewire 530 may be withdrawn proximally to reposition the temperature sensor adjacent the fluid hole 550 as shown on Figure 16 to measure temperature of the fluid in the vicinity of the exit openings 540.
- the temperature sensor 532 on the guidewire 530 may be advanced to a location distal of the catheter as shown on Figure 17, for instance at a distance D from the fluid exit openings 540. This distance D may range between 3 and 6 centimeters or more to measure and check temperature in the blood vessel 580.
- the temperature of the fluid injected under pressure from pressure means 592 is set at a desired value which may be useful for the destruction of the obstruction T while being compatible with the blood.
- This fluid temperature may range between about 20, or room temperature, and about 35°C.
- the fluid flow rate of the fluid F may be set to any desired flow rate which in combination with the fluid pressure will result in a quick destruction of the obstruction T.
- This fluid flow rate may range between about 15 ml/min and about 50 ml/min.
- the pressure means usually may be a pressure fluid, in particular liquid, pump.
- FIG. 18 is an Over The Wire (OTW) catheter and similarly comprises a catheter system 702 similar to that of Figure 8, comprising an elongate catheter 710 having a catheter shaft 712 extending distally from the hub assembly 720, said catheter shaft comprising a proximal end 716 attached to the hub assembly 720 and a distal end 718 opposite the proximal end 716.
- the catheter shaft 712 may be also a double lumen having a first outer fluid lumen 734, and a second inner lumen 714 defined therein.
- the catheter shaft 712 may include a reduced diameter distal end region 724 extending to the distal end 718 of the catheter shaft to help in sliding the catheter, the inner lumen 714 as for the other OTW embodiments is serving as a sliding guide for the elongate element 730 which may be configured as a guide wire.
- the inner diameter of the inner lumen 714 may be closely sized to the diameter of the guide wire 730 such that guiding and sliding of the guide wire is proper.
- the catheter 710 is here an over the wire (OTW) catheter
- the guidewire lumen 736 may extend through the entire length of the catheter shaft 712 from the distal end 718 to the proximal end 716.
- the Hub assembly 720 has a specific fluid entrance 722 linked to a control device 790 comprising fluid pressure means 792 for injection of fluid under pressure into the fluid lumen 734, which will exit through the fluid exit openings 740 to permit destruction of the obstruction T.
- FIG. 19 Another embodiment of a catheter system is shown on Figure 19 and the catheter system is now referenced 802 similar to that of Figure 9, comprising an elongate catheter 810 having a catheter shaft 812 extending distally from the hub assembly 820, said catheter shaft comprising a proximal end 816 attached to the hub assembly and a distal end 818 opposite the proximal end 816.
- the catheter shaft 812 may be a dual lumen having a first, outer fluid lumen 834 and a second inner lumen 836 for insertion of an elongate element which can be a guidewire 830 extending along at least a portion of the catheter shaft 812 configured for advancing the catheter 580 over the guidewire 830.
- the catheter 810 is an over the wire (OTW) catheter in which the guidewire lumen 836 may extend through the entire length of the catheter shaft 812 from the distal end 818 to the proximal end 816.
- OGW over the wire
- the hub assembly 820 has a specific fluid entrance 822 linked to a control device 890 comprising fluid pressure means 892 for injection of fluid under pressure into the fluid lumen 834, which will exit through the fluid exit openings 840.
- a pressure sensor P in the vicinity of a fluid exit opening 840 to measure pressure in the vicinity of the fluid exit opening 840.
- FIG. 20 relates to a further variant embodiment of a Single Operator Exchange (SOE) catheter similar to that of Figure 11 and Figure 13.
- the catheter system 902 may include an elongate catheter 910, and in some instances an associated temperature probe 970 and/or guidewire 930.
- the catheter 910 may be similar to the infusion catheter 10 illustrated in FIG. 1.
- the infusion catheter 910 may include an elongate catheter shaft 912 extending distally from a hub assembly 920, having a proximal end 916 attached to the hub assembly 920 and a distal end 918 opposite the proximal end 916.
- the catheter shaft 912 may be a triple lumen catheter shaft having a first fluid lumen 934 and a second, an auxiliary lumen 935 (e.g., a temperature probe lumen), and a third, guidewire lumen 936 extending along at least a portion of the catheter shaft 912 configured for advancing the infusion catheter 910 over the guidewire 930.
- the catheter shaft 912 may include an outer tubular member 913 and first and second inner tubular members 915, 914 extending through the lumen of the outer tubular member 913.
- the fluid lumen 934 may be defined by the portion of the lumen of the outer tubular member 913 exterior of the first and second inner tubular members 915, 914.
- the hub assembly 920 may include a proximal port 922 in fluid communication with the fluid lumen 934.
- a source of infusion fluid such as an infusion fluid, in particular liquid pump, syringe, etc., may be coupled to a pressure means 992 included in a command central 990 and coupled to the proximal port 922 to supply fluid to the fluid lumen 934 and then to the fluid exit openings 940.
- the catheter shaft 912 may be an extruded tubular member including three lumens extending there through, for example.
- the lumen of the second inner tubular member 914 may define the guidewire lumen 936 with a distal guidewire port 928 proximate the distal end of the second inner tubular member 914 and a proximal guidewire port 926 proximate the proximal end of the second inner tubular member 914.
- the guidewire 930 may be extendable through the guidewire lumen 936.
- the lumen of the first inner tubular member 915 may define the auxiliary lumen 935 configured for longitudinally receiving an elongate member, such as a temperature probe 970 therethrough.
- the auxiliary lumen 935 may extend from the proximal end of the catheter 910 to the distal end of the catheter 910, with a proximal portion of the temperature probe 970 extending proximal of the auxiliary lumen 935 (e.g., proximal of the catheter 910) and a distal portion of the temperature probe 970 extending distal of the auxiliary lumen 935 (e.g., distal of the catheter 910).
- a distal end portion 938 of the outer tubular member 913 may be a reduced diameter portion or necked portion, secured to the first inner tubular member 915 and/or the second inner tubular member 914 to seal the fluid lumen 934 proximate the distal end 918 of the catheter shaft 912.
- the distal end portion 938 may include a tapered region in which the outer tubular member 913 tapers down to a reduced inner and/or outer diameter at the distal end of the outer tubular member 913.
- the inner surface of a distal end portion of the outer tubular member 913 may be secured to the outer surface of a distal end portion of the first inner tubular member 915 and/or the outer surface of a distal end portion of the second inner tubular member 914 in the distal end portion 938.
- the outer tubular member 913 may be secured to the inner tubular members 914, 915, for example, by laser welding, hot jaws, or other thermal bonding method, an adhesive bonding method, or other bonding method if desired.
- the catheter shaft 912 may include one or more fluid exit openings 940
- the fluid exit openings 940 may be in fluid communication with the fluid lumen 934 and may be configured to permit infusion fluid to exit the catheter 910 from the infusion fluid lumen 934 proximate the distal end 918 of the catheter shaft 912.
- the catheter shaft 912 may include a plurality of fluid exit openings 940 extending through a wall of the outer tubular member 913 from an inner surface of the outer tubular member 413 to an outer surface of the outer tubular member 413.
- the fluid exit openings 940 may be of a similar construction and arrangement as the exit openings 450 of the catheter 510 described above.
- the fluid exit openings 940 may be configured to expel a fluid F in a radially outward direction from each of the fluid exit openings 940 to cause fluid F mechanically or physically destroy the obstruction T present within the vessel 980.
- the fluid exit openings 940 may be arranged in a different orientation, such as in a fashion to permit fluid to be expelled under a pressure sufficient to cause mechanical or physical destruction of the obstruction T, if desired.
- Figures 13, 15, to 20 it has been visualized the formation of cavities to symbolize the start of the mechanical destruction of the obstruction T. The total destruction occurs by moving several times the catheter back and forth along the length of the obstruction T as also said in the protocol mentioned farther.
- the catheter may be made of a flexible material compatible with blood vessels, for instance from polyether, Pebax, FIDPE, polyamide, polycarbonate without limitation. It is easy to make the fluid exit openings by micro-pulsation/ ablation with for instance a laser. These exit holes may be made at a distance from 7 to 8 mm of the catheter distal tip. It is apparent that the catheter systems of Figures 11 to 20 are enabling to implement the invention method as follows:
- the inventive method of performing destruction of a body obstruction in a body vessel of a live being comprises: advancing a catheter to a desired location comprising said obstruction within the body vessel, the catheter including a catheter shaft comprising a proximal end and a distal end, comprising an outer tubular member and at least one inner tubular member disposed within the outer tubular member; a first fluid lumen defined between the inner tubular member and the outer tubular member and a second lumen defined by the inner tubular member; one or more fluid exit openings located at a distal end region of the catheter configured to permit fluid to exit the catheter from the first fluid lumen; and providing a delivery of a fluid through the first fluid lumen to a distal end region of the catheter and at a pressure range predetermined to exit said fluid at a pressure and for a period of time causing destruction of said obstruction.
- the advancing step of said catheter within said body step comprises using an elongate member which may be configured as a guidewire.
- said catheter is provided with a temperature probe, said method comprising measuring with said temperature sensor the temperature of the fluid exiting the catheter or of the blood ahead of the distal end of the catheter.
- said method further comprises: providing at least one temperature sensor on the distal end of the elongate member and positioning the elongate member to a location distal of the catheter for measuring the temperature of the mixture of the fluid and the blood distal of the catheter.
- the catheter includes one or more fluid holes located at the distal end region of the catheter in the vicinity of at least one said fluid exit opening, the one or more fluid holes configured on the inner tube to permit the fluid to pass from the first fluid lumen into the second lumen; and repositioning the elongate member to a location in front of one said fluid hole to measure the temperature of the fluid in the vicinity of the fluid exiting the catheter.
- said method further comprises providing said fluid exit opening(s) with a diameter ranging between about 50 microns (0.050 millimeters) and about 200 microns (0.200 millimeters), and in particular as above said , notably between 70 microns (0.070 millimeters) and about 150 microns (0.150 millimeters) or even 110 microns (0.110 millimieters).
- the fluid pressure at the entrance of said catheter or at the vicinity of at least one fluid exit opening ranges between about 10x 101325Pa or 10 ATM and about 50x101,325Pa or 50 ATM, and in particular between at least, or more than, 20x101,325 Pa, or 30x101,325 Pa or 30 ATM and about 50x101 ,325Pa or 50 ATM.
- the catheter comprises at least one pressure sensor in the vicinity of at least one fluid exit opening and said method comprises measuring the pressure of the fluid in the vicinity of said fluid exit opening and correcting the pressure value of the fluid injected in the fluid lumen.
- said method further comprises providing said fluid as a liquid selected from a saline and an aqueous solution compatible with blood comprising at least one clot or thrombosis dissolution aid.
- a clinical protocol of thrombus fragmentation by the invention catheter as described in any of Figures 11 to 20, during primary Percutaneous Coronary Intervention or PCI.
- Thrombus is almost uniformly involved in the abrupt coronary occlusion that is responsible for an acute myocardial infarction (AMI).
- AMI acute myocardial infarction
- thrombus fragmentation occurs by spraying a saline liquid solution perpendicular to the longitudinal axis of the artery to prevent a large thrombus embolization during balloon inflation and stent implantation.
- saline infusion has been shown to induce maximal and steady state microvascular vasodilation that might further contribute to the preservation of microvascular function in the setting of AMI.
- the occluded segment must be located in an artery of at least 3 mm in diameter.
- a regular guide wire is advanced across the thrombotic occlusion. This maneuver usually induces a partial recanalization which allows to visualize the vessel distal to the occlusion. This allows to ascertain the wire position in the lumen of the artery.
- the catheter as described for any of the embodiments of Figures 11 to 20 has, for example, a length of 1403mm and an outer diameter of less than about 1mm.
- the catheter is connected to the pressure means which comprises an infusion pump or an injector able to deliver at least 20 mL/min of constant flow rate.
- the infusion pump is set at a maximum of 700 PSI or about 50 ATM or about 50x101 ,325Pa.
- the pump or the injector are filled with saline at room temperature.
- the saline is made with 1 L of water + 9 g of NaCI (0.9%).
- the catheter After connection to the pump, the catheter is flushed and advanced over the wire and placed in the very distal part of the guide catheter.
- the saline infusion is provided at a constant flow rate of 20 mL/min and at a pressure of about 40 ATM or about 40x101325Pa.
- the saline exits the catheter through the at least 4 lateral holes so that the jets F are perpendicular to the longitudinal axis of the catheter and thus of the artery.
- the catheter is passed slowly through the occlusion T and pulled back in the guiding while maintaining a substantially constant infusion rate.
- the passage is repeated up to 4 times.
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medical Informatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Media Introduction/Drainage Providing Device (AREA)
- Surgical Instruments (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/897,347 US11813416B2 (en) | 2013-04-25 | 2020-06-10 | Catheter systems and methods for performing a destruction of a body obstruction |
PCT/EP2021/065534 WO2021250133A1 (en) | 2020-06-10 | 2021-06-09 | Catheter systems for having both a thermodilution action and a body obstruction destruction action, and methods for determining blood flow rates and for performing body obstruction destruction |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4164520A1 true EP4164520A1 (en) | 2023-04-19 |
Family
ID=76422001
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21732007.6A Pending EP4164520A1 (en) | 2020-06-10 | 2021-06-09 | Catheter systems for having both a thermodilution action and a body obstruction destruction action, and methods for determining blood flow rates and for performing body obstruction destruction |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP4164520A1 (en) |
JP (1) | JP2023531169A (en) |
WO (1) | WO2021250133A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11679195B2 (en) | 2021-04-27 | 2023-06-20 | Contego Medical, Inc. | Thrombus aspiration system and methods for controlling blood loss |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE9600334D0 (en) | 1996-01-30 | 1996-01-30 | Radi Medical Systems | Combined flow, pressure and temperature sensor |
US6635027B1 (en) * | 1997-05-19 | 2003-10-21 | Micro Therepeutics, Inc. | Method and apparatus for intramural delivery of a substance |
US6485500B1 (en) * | 2000-03-21 | 2002-11-26 | Advanced Cardiovascular Systems, Inc. | Emboli protection system |
US6409863B1 (en) | 2000-06-12 | 2002-06-25 | Scimed Life Systems, Inc. | Methods of fabricating a catheter shaft having one or more guidewire ports |
NL1034242C2 (en) * | 2007-02-16 | 2008-08-19 | T M H Beheer B V | Catheter for removing blood clots, has radially oriented outlet openings for cleaning agent located in its head |
US8439878B2 (en) * | 2007-12-26 | 2013-05-14 | Medrad, Inc. | Rheolytic thrombectomy catheter with self-inflating proximal balloon with drug infusion capabilities |
WO2014176448A2 (en) * | 2013-04-25 | 2014-10-30 | Boston Scientific Scimed, Inc. | Thermodilution catheter systems and methods for determining blood flow rates |
JP6921112B2 (en) * | 2016-01-04 | 2021-08-18 | コルフロウ セラピューティクス アーゲー | Systems and methods for treating MVO |
US10792473B2 (en) * | 2016-03-16 | 2020-10-06 | St. Jude Medical Coordination Center Bvba | Core wire having a flattened portion to provide preferential bending |
WO2017214402A1 (en) * | 2016-06-09 | 2017-12-14 | Boston Scientific Scimed, Inc. | Infusion catheter |
-
2021
- 2021-06-09 JP JP2022576378A patent/JP2023531169A/en active Pending
- 2021-06-09 EP EP21732007.6A patent/EP4164520A1/en active Pending
- 2021-06-09 WO PCT/EP2021/065534 patent/WO2021250133A1/en unknown
Also Published As
Publication number | Publication date |
---|---|
JP2023531169A (en) | 2023-07-21 |
WO2021250133A1 (en) | 2021-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10716482B2 (en) | Thermodilution catheter systems and methods for determining blood flow rates | |
US20200147354A1 (en) | Catheter systems and methods useful for cell therapy | |
US9877660B2 (en) | Systems and methods for determining fractional flow reserve without adenosine or other pharmalogical agent | |
EP1901232B1 (en) | Method and system for navigating through an occluded tubular organ | |
WO2017098198A1 (en) | Microcatheter apparatus | |
US20090177183A1 (en) | Cell delivery catheters with distal tip high fidelity sensors | |
JP2016538048A (en) | Multi-sensor affected area evaluation apparatus and method | |
EP2010061A2 (en) | Catheters with laterally deployable elements and linear ultrasound arrays | |
US11813416B2 (en) | Catheter systems and methods for performing a destruction of a body obstruction | |
JP7372992B2 (en) | Apparatus for forming an infusion catheter for treating at least part or all of an obstruction in a passageway such as a body passageway | |
US9138565B2 (en) | Guide wire | |
JPH01158936A (en) | Guide wire for blood pressure monitor and method for its use | |
EP4164520A1 (en) | Catheter systems for having both a thermodilution action and a body obstruction destruction action, and methods for determining blood flow rates and for performing body obstruction destruction | |
CN115721278B (en) | Sacculus inflation pipe with pressure monitoring function | |
US20240315711A1 (en) | Multi-function catheter and methods for diagnosis and/or treatment of venous thromboembolic disease | |
CN112439121A (en) | Non-compliance PTA sacculus expansion pipe | |
CN219595664U (en) | Multicavity pipe and supersound pipe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20221207 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20240229 |