EP4058224A1 - Spherical powder for making 3d objects - Google Patents
Spherical powder for making 3d objectsInfo
- Publication number
- EP4058224A1 EP4058224A1 EP20807361.9A EP20807361A EP4058224A1 EP 4058224 A1 EP4058224 A1 EP 4058224A1 EP 20807361 A EP20807361 A EP 20807361A EP 4058224 A1 EP4058224 A1 EP 4058224A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- powder
- less
- alloy
- determined
- refractory metals
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000843 powder Substances 0.000 title claims abstract description 162
- 238000004519 manufacturing process Methods 0.000 claims abstract description 42
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 40
- 239000000956 alloy Substances 0.000 claims abstract description 40
- 239000003870 refractory metal Substances 0.000 claims abstract description 27
- 239000002245 particle Substances 0.000 claims description 44
- 238000000034 method Methods 0.000 claims description 33
- 239000013078 crystal Substances 0.000 claims description 27
- 238000002844 melting Methods 0.000 claims description 20
- 230000008018 melting Effects 0.000 claims description 20
- 239000000203 mixture Substances 0.000 claims description 20
- 239000000654 additive Substances 0.000 claims description 15
- 230000000996 additive effect Effects 0.000 claims description 15
- 229910052751 metal Inorganic materials 0.000 claims description 13
- 239000002184 metal Substances 0.000 claims description 13
- 238000001746 injection moulding Methods 0.000 claims description 12
- 238000005245 sintering Methods 0.000 claims description 11
- 239000010936 titanium Substances 0.000 claims description 11
- 238000001816 cooling Methods 0.000 claims description 7
- 229910052715 tantalum Inorganic materials 0.000 claims description 7
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 6
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 6
- 229910052721 tungsten Inorganic materials 0.000 claims description 6
- 238000002441 X-ray diffraction Methods 0.000 claims description 5
- 238000010894 electron beam technology Methods 0.000 claims description 5
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 claims description 5
- 239000010937 tungsten Substances 0.000 claims description 5
- 239000003638 chemical reducing agent Substances 0.000 claims description 4
- 238000009694 cold isostatic pressing Methods 0.000 claims description 4
- 239000000155 melt Substances 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- 230000006698 induction Effects 0.000 claims description 3
- 239000011777 magnesium Substances 0.000 claims description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 2
- 238000005275 alloying Methods 0.000 claims description 2
- 238000000889 atomisation Methods 0.000 claims description 2
- 229910052791 calcium Inorganic materials 0.000 claims description 2
- 239000011575 calcium Substances 0.000 claims description 2
- 230000008021 deposition Effects 0.000 claims description 2
- 229910052735 hafnium Inorganic materials 0.000 claims description 2
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 claims description 2
- 239000011261 inert gas Substances 0.000 claims description 2
- 229910052749 magnesium Inorganic materials 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 239000011733 molybdenum Substances 0.000 claims description 2
- 229910052758 niobium Inorganic materials 0.000 claims description 2
- 239000010955 niobium Substances 0.000 claims description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 2
- 229910052720 vanadium Inorganic materials 0.000 claims description 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 2
- 238000003466 welding Methods 0.000 claims description 2
- 229910052727 yttrium Inorganic materials 0.000 claims description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims description 2
- 229910052726 zirconium Inorganic materials 0.000 claims description 2
- 229910002065 alloy metal Inorganic materials 0.000 claims 1
- 238000009826 distribution Methods 0.000 description 19
- 241000282341 Mustela putorius furo Species 0.000 description 11
- 150000002739 metals Chemical class 0.000 description 8
- 239000001301 oxygen Substances 0.000 description 8
- 229910052760 oxygen Inorganic materials 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 238000001878 scanning electron micrograph Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 239000011164 primary particle Substances 0.000 description 4
- 230000011514 reflex Effects 0.000 description 4
- 229910001362 Ta alloys Inorganic materials 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- DZZDTRZOOBJSSG-UHFFFAOYSA-N [Ta].[W] Chemical compound [Ta].[W] DZZDTRZOOBJSSG-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000010309 melting process Methods 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000007873 sieving Methods 0.000 description 2
- 238000010146 3D printing Methods 0.000 description 1
- 229910001111 Fine metal Inorganic materials 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 230000035508 accumulation Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000000713 high-energy ball milling Methods 0.000 description 1
- 238000001513 hot isostatic pressing Methods 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 1
- 238000004372 laser cladding Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
- 238000004454 trace mineral analysis Methods 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/045—Alloys based on refractory metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/052—Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/06—Metallic powder characterised by the shape of the particles
- B22F1/065—Spherical particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/12—Metallic powder containing non-metallic particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/20—Direct sintering or melting
- B22F10/25—Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/20—Direct sintering or melting
- B22F10/28—Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/30—Process control
- B22F10/34—Process control of powder characteristics, e.g. density, oxidation or flowability
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/02—Compacting only
- B22F3/04—Compacting only by applying fluid pressure, e.g. by cold isostatic pressing [CIP]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/11—Making porous workpieces or articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
- B22F9/08—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
- B22F9/08—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
- B22F9/082—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/045—Alloys based on refractory metals
- C22C1/0458—Alloys based on titanium, zirconium or hafnium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
- B22F9/08—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
- B22F9/082—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
- B22F2009/0848—Melting process before atomisation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/20—Refractory metals
- B22F2301/205—Titanium, zirconium or hafnium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2304/00—Physical aspects of the powder
- B22F2304/10—Micron size particles, i.e. above 1 micrometer up to 500 micrometer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/22—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
- B22F3/225—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by injection molding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Definitions
- the present invention relates to spherical alloy powders made from at least two refractory metals, the alloy powder having a homogeneous microstructure and at least two different crystalline phases, and a method for producing such powders.
- the present invention further relates to the use of such powders in the production of three-dimensional components and to a component made from such a powder.
- additive manufacturing encompasses all manufacturing processes in which three-dimensional objects are manufactured by applying material in layers under computer control and connecting the layers to one another, usually through physical and chemical hardening or melting processes. Additive manufacturing processes are particularly notable due to their high precision and shape accuracy and enable models and samples to be produced quickly and inexpensively.
- MIM metal injection molding
- a fine metal powder is mixed with an organic binder and placed in a mold using an injection molding machine, the binder is then removed and the component sintered, allowing the mechanical advantages to be sintered ter components with the great variety of shapes of injection molding.
- the process offers the possibility of producing components with complex geometries, which conventional processes can only be manufactured in several parts, in a single piece.
- plastics common materials for use in additive manufacturing processes and injection molding processes are plastics, synthetic resins, ceramics and metals. While there is now a wide variety of plastic materials that are routinely used in these processes, there continues to be a need in the metals art for suitable powders, particularly a good one Must have flowability and high sintering activity in order to be able to be processed into stable and durable objects.
- WO 2011/070475 describes a method for producing an alloy with at least two refractory metals, according to the method, the two refractory metals are melted and mixed in a crucible by applying an electron beam and the melt is solidified, the molten metals for solidification with a Cooling rate in a range of 200 Ks 1 to 2000 Ks 1 can be quenched. It is recommended to provide the two metals in the form of a powder and to mix them with one another before melting in order to achieve a complete solution of the two metals in one another. It is particularly important that the two metals form a solid solution in any composition and that a second phase is prevented from occurring.
- the method described has the disadvantage that a large amount of impurities is introduced into the powder through the use of the melting crucible and the high temperatures required.
- US 2019/084048 discloses a method for producing atomized, spherical ⁇ -Ti / Ta alloy powders for additive manufacturing, comprising the following steps: a) mixing elemental Ti and Ta powders to form a Ti-Ta powder composition; b) hot isostatic pressing of the
- the method described has the disadvantage that the powders obtained have an inhomogeneous microstructure, which can be undesirable for some applications.
- CN 108296490 provides a manufacturing method for spherical tungsten-tantalum alloy powder in which an irregularly shaped tungsten-tantalum mixed powder prepared using a high energy ball milling method is used as raw material.
- the raw powder used is shaped into the desired alloy powder by means of plasma spheroidization.
- the grinding process used has the disadvantage of undesirable introduction of abrasion from the grinding balls.
- a powder which consists of an alloy of at least two refractory metals and has a homogeneous microstructure and at least two different crystal phases.
- a first object of the present invention is a spherical powder for the production of three-dimensional components, the powder being an alloy powder composed of at least two refractory metals, the alloy powder having a homogeneous microstructure and at least two different crystalline phases.
- the powder according to the invention is characterized by good flowability and high sintering activity, which enables the production of pore-free and mechanically stable components by means of additive manufacturing and / or injection molding.
- alloy powder is to be regarded as synonymous with the powder according to the invention, unless otherwise indicated.
- Refractory metals in the context of the present invention are the refractory metals of the third, fourth, fifth and sixth subgroups of the periodic table of the elements. These metals stand out In addition to their high melting point, they have a passivation layer at room temperature.
- alloy powder denotes a powder in which the refractory metals are present in the form of an alloy and form a macroscopically homogeneous powder. These powders are in contrast to mixed powders in which the components are individually present in the form of a mixture and macroscopically there is an inhomogeneous distribution of elements.
- “Homogeneous microstructure” in the context of the present invention is understood to mean a homogeneous distribution of elements, that is to say a uniform distribution and spatial filling of the alloy components in the individual powder particles without macroscopic fluctuations from place to place.
- particle size denotes the longest linear dimension of a powder particle from one end to the opposite end of the particle.
- Agglomerates in the context of the present invention are understood as solidified accumulations of previously loose powder particles.
- the previously loose particles, which are formed into agglomerates by means of sintering, for example, are referred to as primary particles.
- the use of additive manufacturing methods and MIM extends to almost all areas of industry.
- the properties of the manufactured components can be influenced by the powders used, whereby, in addition to the mechanical properties of the components, other properties such as optical and electronic properties can also be adapted.
- the refractory metals are those selected from the group consisting of tantalum, niobium, vanadium, yttrium, titanium, zirconium, hafnium, tungsten and molybdenum.
- the at least two refractory metals are tantalum and tungsten.
- the alloy powder according to the invention is free of Ti.
- the proportion of titanium in the alloy powder according to the invention is particularly preferably less than 1.5% by weight, particularly preferably less than 1.0% by weight, in particular at less than 0.5% by weight and especially at less than 0.1% by weight, based in each case on the total weight of the alloy powder.
- the powder according to the invention is particularly characterized in that the alloy powder has at least two different crystal phases. It has been found to be particularly advantageous if one of these crystal phases is a metastable crystal phase.
- a metastable crystal phase is understood to mean a phase that is thermodynamically unstable at room temperature.
- the crystal phases occurring in the alloy powder according to the invention can be determined, for example, with the aid of X-ray diffraction analyzes (RBA) and differentiated on the basis of their reflections in the X-ray diffraction program.
- RBA X-ray diffraction analyzes
- the distribution of the different crystal phases in the powder can vary.
- a preferred embodiment of the present invention is characterized in that one crystal phase makes up a larger proportion than the other crystal phases.
- the powder according to the invention preferably has a main crystal phase and at least one secondary crystal phase. It was surprisingly found that the ratio of the phases has an influence on the mechanical properties of a later component, the ratio of the phases being able to be determined by means of their reflection intensities in the X-ray diffraction program, indicated there as pulses per angle [° 2Theta].
- alloy powders in particular of refractory metals, have the disadvantage that the various alloy components are inhomogeneously distributed in the individual powder particles due to the manufacturing process, since the residence time of the particles is usually too short to allow sufficient mixing and diffusion of the individual components to reach.
- This inhomogeneous distribution has disadvantages in particular for the mechanical properties of the components made from these powders, which can only be compensated for by using a significantly higher energy input, for example in the SLM process with a significantly higher laser power or lower scanning speed of the laser in the manufacturing process can.
- an embodiment of the powder according to the invention is preferred in which in at least 95%, preferably in at least 97%, particularly preferably in at least 99% of all powder particles, the content of the alloying elements, expressed in% by weight, within a particle by less than 8% vary, preferably by 0.05 to 6%, particularly preferably 0.05 to 3%, determined by means of EDX (energy dispersive X-ray spectroscopy).
- the powder according to the invention is characterized in particular by its sphericity, which makes it particularly suitable for use in additive manufacturing processes and injection molding processes.
- An embodiment is therefore preferred in which the powder particles have an average aspect ratio Y A of 0.7 to 1, preferably 0.8 to 1, particularly preferably 0.9 to 1 and in particular 0.95 to 1, Y A being defined than the ratio of the minimum Ferret
- the Ferret diameter denotes the distance between two tangents of a particle at any angle.
- the maximum Ferret diameter x Ferret max9o can be determined by first determining the maximum Ferret diameter and then determining the Ferret diameter, which is offset by an angle of 90 ° to this maximum Ferret diameter. This also applies to the determination of the minimum Ferret diameter.
- the Ferret diameter of a particle can be determined, for example, by means of image evaluation methods from scanning electron microscope images (SEM images) (see also FIG. 9 in this regard).
- the flowability of a powder is another criterion that defines its suitability for use in additive manufacturing processes in particular.
- the powder according to the invention is characterized by a flowability which is adapted to the requirements in these manufacturing processes is adapted. Therefore, an embodiment of the powder according to the invention is preferred in which the powder has a flowability of less than 25s / 50g, preferably less than 20s / 50g and in particular less than 15s / 50g, each determined in accordance with ASTM B213.
- the powder according to the invention is characterized by a high tap density, a further criterion that should be taken into account when choosing a powder for use in such manufacturing processes.
- the powder according to the invention has a tap density of 40 to 80% of its theoretical density, preferably 60 to 80% of its theoretical density, in each case determined in accordance with ASTM B527.
- the mechanical properties and the porosity of components that are manufactured by means of such manufacturing processes can be controlled, inter alia, by the particle size of the powders used, the particle sizes should be selected depending on the respective manufacturing process, in particular a narrow one Particle size distribution has proven beneficial.
- the powder according to the invention has a particle size distribution with a D10 value of greater than 2 pm, preferably greater than 5 pm and a D90 value of less than 80 pm, preferably less than 70 pm with a D50 value of 20 up to 50 pm, preferably 25 to 50 pm, each determined in accordance with ASTM B822.
- This particle size distribution has proven to be particularly advantageous for selective laser melting (SLM) processes.
- the D10 value of the particle size distribution of the powder according to the invention is more than 20 ⁇ m, preferably more than 50 ⁇ m, and the D90 value is less than 150 ⁇ m, preferably less than 120 ⁇ m, with a D50 value of 40 up to 90 pm, preferably 60 to 85 pm, each determined in accordance with ASTM B822.
- a particle size distribution as indicated has proven to be particularly advantageous.
- the powder according to the invention has a particle size distribution with a D10 value of more than 50 ⁇ m, preferably more than 80 ⁇ m and a D90 value of less than 240 ⁇ m, preferably less than 210 ⁇ m, with a D50 value from 60 to 150 pm, preferably 100 to 150 ⁇ m, each determined in accordance with ASTM B822. Powders with such a particle size distribution have proven to be particularly advantageous when using laser cladding processes (CL).
- CL laser cladding processes
- the powder according to the invention has a particle size distribution with a D10 value of more than 1 ⁇ m, preferably more than 2 ⁇ m and a D90 value of less than 45 ⁇ m, preferably less than 40 ⁇ m, with a D50 value from 6 to 30 pm, preferably 8 to 20 pm, in each case determined in accordance with ASTM B822.
- a particle size distribution in the specified range has proven to be advantageous.
- the D50 value is to be understood as the mean particle size, with 50% of the particles being smaller than the values given. The same applies to the D10, D90 and D99 values.
- Another object of the present invention is a method for producing the alloy powder according to the invention.
- the method according to the invention comprises the following steps: a) Providing a starting powder mixture comprising at least two refractory metals, the starting powder mixture having a particle size with a D99 value of less than 100 ⁇ m and at least one of the refractory metals having a particle size with a D99 value of less than 10 pm, each determined in accordance with ASTM B822; b) producing a powder body from the starting powder mixture by means of cold isostatic pressing (CIP); c) sintering the pressed body at a temperature which is 400 to 1150 ° C., preferably 700 to 1050 ° C.
- CIP cold isostatic pressing
- the method according to the invention gives spherical powders with a narrow particle size distribution and high sintering activity, which allow the production of pore-free and mechanically stable components by means of additive manufacturing processes or MIM.
- the powders produced with the method according to the invention are furthermore distinguished by a homogeneous distribution of the alloy constituents and the presence of at least two crystal phases.
- the compression (CIP) of the powder is preferably carried out at a compression pressure of at least 1.7-10 8 Pa (1700 bar), particularly preferably at least 1.9-10 8 Pa (1900 bar).
- the method according to the invention further comprises a classification step, preferably sieving. In this way, the desired particle size distribution can be adapted and set.
- the starting powder mixture has a particle size with a D99 value of less than 100 ⁇ m, preferably less than 80 ⁇ m, in each case determined by means of ASTM B822.
- At least one of the refractory metals in the starting powder mixture has a particle size with a D99 value of less than 10 ⁇ m, preferably less than 5 ⁇ m, particularly preferably less than 2 ⁇ m, in each case determined by means of ASTM B822, which is preferably is the refractory metal with the highest melting point.
- refractory metals are used in the starting powder mixture, the primary particles of which have been sintered to form porous agglomerates, in particular those refractory metals which have a primary particle size of less than 10 ⁇ m, preferably less than 3 ⁇ m, particularly preferably less than 1 ⁇ m have, determined by means of image evaluation methods from scanning electron microscope images (SEM images).
- At least one refractory metal of the starting powder mixture is in the form of sintered, porous agglomerates with a particle size with a D99 value of less than 100 mp ⁇ , preferably less than 80 pm, determined according to ASTM B822, and which has a primary particle size of less than 10 pm, preferably less than 3 pm, particularly preferably less than 1 pm, determined by means of SEM images.
- the sintering in step c) of the method according to the invention is carried out at a temperature which is 400 to 1150 ° C., preferably 700 to 1050 ° C., below the melting point of the alloy component with the lowest melting point, the melting points of the alloy components being known to the person skilled in the art or can be found in the literature.
- the duration of the sintering process can be adapted according to the required properties of the powder, but is preferably 0.5 to 6 hours, particularly preferably 1 to 5 hours.
- the sintering is preferably carried out at a temperature of at least 1400 ° C.
- the cooling takes place in a low-oxygen environment.
- An embodiment is therefore preferred in which the cooling takes place during the atomization by means of cooled inert gas.
- the starting powder mixture is therefore an oxygen-containing component of the Refractory metals, such as, for example, their oxides or sub-oxides, added in order to set a desired oxygen content in the powders according to the invention in a targeted manner.
- an oxygen-containing component of the Refractory metals such as, for example, their oxides or sub-oxides
- the powders according to the invention can be used not only in additive manufacturing processes, but also for the manufacture of three-dimensional components by means of metal injection molding (MIM).
- MIM metal injection molding
- the present invention therefore also relates to the use of the powder according to the invention or a powder obtained according to the method according to the invention in additive manufacturing processes and / or metal injection molding processes.
- the additive manufacturing process is preferably one that is selected from the group consisting of Selective Laser Melting (SLM), Electron Beam Melting (EBM) and Laser Deposition Welding (LC).
- Another object of the present invention is a component which was produced using the alloy powder according to the invention or a powder obtained by means of the method according to the invention.
- the component is preferably a component that is used in high-temperature applications, for example in the context of engines and high-temperature furnaces.
- the component is preferably a medical implant or device.
- Powders Ta2.5W (E1) and Tal3W (E2) according to the invention were produced, the particle size D99 of the tantalum powder used being 49 ⁇ m and that of the tungsten powder being 1.9 ⁇ m in the starting powder mixtures, each measured in accordance with ASTM B822.
- the powders were shaped into a compact by means of cold isostatic pressing (CIP) at a pressing pressure of 2000 bar, which was sintered at 1950 ° C. for 2 hours.
- the sintered body obtained in this way was melted by means of electrode induction melting (EIGA) and the melt was atomized while cooling at the same time.
- CIP cold isostatic pressing
- EIGA electrode induction melting
- the alloy powders obtained ⁇ 63mhi were deoxidized at 1000 ° C. for two hours in the presence of Mg.
- Table 1 The compositions and properties of the powders obtained are summarized in Table 1, the parameters in each case being determined according to the standards given above.
- the oxygen and nitrogen content of the powder was determined by means of hot carrier gas extraction (Leco TCH600) and the particle sizes in each case by means of laser diffraction (ASTM B822, MasterSizer S, dispersion in water and Daxad 11, 5 min ultrasound treatment).
- the trace analysis of the metallic impurities was carried out by means of ICP-OES with the following analysis devices PQ 9000 (Analytik Jena) or Ultima 2 (Horiba).
- the crystal phases were determined by means of X-ray diffraction (RBA) using a device from Malvern-PANalytical (X ' Pert-MPD with semiconductor detector, X-ray tube Cu LFF with 40KV / 40mA, Ni filter) Table 1:
- FIG. 3 shows an EDX recording on a ground sample of the powder Tal3W
- FIG. 4 shows the spherical shape of the powder particles of Tal3W on the basis of an SEM image on a litter preparation.
- a powder Ta2.5W (cf.) was produced according to the conventional process by first producing a fusible ingot using an electron beam. This was embrittled by hydrogenation with hydrogen and ground. The hydrogen was removed in a high vacuum and the material was sieved to a value of less than 63 ⁇ m.
- Table 2 As X-ray diffraction analyzes and SEM images show, the powder obtained had neither two different crystal phases nor a spherical morphology (see FIGS. 5a and 5b).
- Table 2 As a further comparison, a powder Ta2.5W (Vg2) was produced by pressing the corresponding starting powder and sintering it at 1200 ° C. to form a metal body which was then atomized.
- the particle sizes D99 of the Starting metals Ta and W were 150 pm and 125 pm, respectively. The results are also summarized in Table 2.
- a third comparison powder was produced analogously to comparison 2, but 13% by weight of W was used (Vg3, see table 2).
- Vg3 has a dendritic microstructure, the variation of the tantalum and tungsten contents being represented by different gray levels and being up to 15% by weight in the areas marked 1 to 4.
- a second crystal phase could not be identified (see FIG. 6b).
- no powders with a homogeneous microstructure or elementary distribution which simultaneously have two different crystal phases can be obtained with known methods.
- the powder according to comparison 3 (Vg3) and the powder E2b according to the invention were printed using the SLM with the printing parameters indicated in table 3.
- a dense, cube-shaped component with an edge length of approx. 2.5 cm and a homogeneous microstructure should be produced.
- the density of the component is given as the ratio of the actually measured density of the component to the theoretical density of the alloy in%.
- a density of less than 100% indicates the presence of unwanted pores, which can have a negative impact on the mechanical properties of the component.
- the component produced with the powder according to the invention could be obtained in the required density even at low laser power or volumetric energy density, which among other things leads to increased process reliability, lower energy consumption and lower oxygen uptake of the remaining powder.
- the scanning speed of the laser could be increased so that a higher throughput was achieved.
- FIG. 7 shows an SEM image of a ground sample of the component (D3) produced with the powder E2b according to the invention with a density of 99% of the theoretical density.
- FIG. 8 shows an SEM image of a ground sample of a component D1 which was produced with the comparison powder V3b. The low density of the component of less than 80% of the theoretical density can be clearly seen.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Nanotechnology (AREA)
- Plasma & Fusion (AREA)
- Fluid Mechanics (AREA)
- Automation & Control Theory (AREA)
- Powder Metallurgy (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
The present invention relates to spherical alloy powders composed of at least two refractory metals, the alloy powder having a homogeneous microstructure and comprising at least two different crystalline phases, and to a method for producing such powders. The present invention further relates to the use of such powders in the making of three-dimensional components and to a component produced from such a powder.
Description
Sphärisches Pulver zur Fertigung von dreidimensionalen Objekten Spherical powder for the production of three-dimensional objects
Die vorliegende Erfindung betrifft sphärische Legierungspulver aus mindestens zwei Refraktärmetallen, wobei das Legierungspulver eine homogene Mikrostruktur und mindestens zwei unterschiedliche kristalline Phasen aufweist, sowie ein Verfahren zur Herstellung solcher Pulver. Weiterhin betrifft die vorliegende Erfindung die Verwendung solcher Pulver in der Fertigung von dreidimensionalen Bauteilen und ein aus einem solchen Pulver hergestelltes Bauteil. The present invention relates to spherical alloy powders made from at least two refractory metals, the alloy powder having a homogeneous microstructure and at least two different crystalline phases, and a method for producing such powders. The present invention further relates to the use of such powders in the production of three-dimensional components and to a component made from such a powder.
Für die Herstellung metallischer Bauteile mit komplexer Geometrie stehen verschiedene Verfahren zur Verfügung. Zum einen können solche Bauteile mittels additiver Fertigung, auch bekannt unter dem Schlagwort des 3D-Drucks, hergestellt werden. Unter der Bezeichnung „additiver Fertigung" sind alle Fertigungsverfahren zusammengefasst, bei denen dreidimensionale Gegenstände dadurch hergestellt werden, dass Material computergesteuert jeweils schichtweise aufgetragen und die Schichten untereinander verbunden werden, in der Regel durch physikalische und chemische Härtungs- oder Schmelzprozesse. Additive Fertigungsverfahren zeichnen sich insbesondere durch ihre hohe Präzision und Formgenauigkeit aus und ermöglichen es, Modelle und Muster schnell und kostengünstig herzustellen. Eine weitere Möglichkeit, metallische Bauteile herzustellen ist das Metallpulverspritzgießen (MIM - metal injection molding), das seinen Ursprung in der Spritzgusstechnologie der Kunststoffe hat. Beim MIM wird ein feines Metallpulver mit einem organischen Binder vermischt und mittels einer Spritzgussmaschine in eine Form eingebracht. Anschließend wird der Binder entfernt und das Bauteil gesintert. Auf diese Weise lassen sich die mechanischen Vorteile gesinterter Bauteile mit der großen Formgebungsvielfalt des Spritzgießens verbinden. Als weiteren Vorteil bietet das Verfahren die Möglichkeit, Bauteile mit anspruchsvoller Geometrie, die in konventionellen Verfahren nur mehrteilig zu fertigen sind, in einem einzigen Stück herzustellen. Various processes are available for the production of metallic components with complex geometry. On the one hand, such components can be manufactured using additive manufacturing, also known as 3D printing. The term "additive manufacturing" encompasses all manufacturing processes in which three-dimensional objects are manufactured by applying material in layers under computer control and connecting the layers to one another, usually through physical and chemical hardening or melting processes. Additive manufacturing processes are particularly notable due to their high precision and shape accuracy and enable models and samples to be produced quickly and inexpensively. Another option for producing metallic components is metal injection molding (MIM), which has its origins in the injection molding technology of plastics a fine metal powder is mixed with an organic binder and placed in a mold using an injection molding machine, the binder is then removed and the component sintered, allowing the mechanical advantages to be sintered ter components with the great variety of shapes of injection molding. As a further advantage, the process offers the possibility of producing components with complex geometries, which conventional processes can only be manufactured in several parts, in a single piece.
Gängige Werkstoffe für die Verwendung in additiven Fertigungsverfahren und Spritzgussverfahren sind Kunststoffe, Kunstharze, Keramiken und Metalle. Während es inzwischen eine große Auswahl an Kunststoffmaterialien gibt, die routinemäßig in diesen Prozessen eingesetzt werden, besteht auf dem Gebiet der Metalle weiterhin der Bedarf nach geeigneten Pulvern, die insbesondere eine gute
Fließfähigkeit und hohe Sinteraktivität aufweisen müssen, um zu stabilen und beständigen Objekten verarbeitet werden zu können. Common materials for use in additive manufacturing processes and injection molding processes are plastics, synthetic resins, ceramics and metals. While there is now a wide variety of plastic materials that are routinely used in these processes, there continues to be a need in the metals art for suitable powders, particularly a good one Must have flowability and high sintering activity in order to be able to be processed into stable and durable objects.
WO 2011/070475 beschreibt ein Verfahren zur Herstellung einer Legierung mit mindestens zwei hochschmelzenden Metallen, wobei gemäß dem Verfahren die beiden hochschmelzenden Metalle in einem Schmelztiegel durch Anwenden eines Elektronenstrahls geschmolzen und vermischt werden und das Schmelzgut verfestigt wird, wobei die geschmolzenen Metalle zur Verfestigung mit einer Abkühlgeschwindigkeit in einem Bereich von 200 Ks 1 bis 2000 Ks 1 abgeschreckt werden. Es wird empfohlen, die beiden Metalle in Form eines Pulvers bereitzustellen und vor dem Aufschmelzen miteinander zu vermischen um eine vollständige Lösung der beiden Metalle ineinander zu erreichen. Besonders wichtig ist dabei, dass die beiden Metalle in jeglicher Zusammensetzung eine feste Lösung bilden und das Auftreten einer zweiten Phase verhindert wird. Das beschriebene Verfahren weist allerdings den Nachteil auf, dass durch die Verwendung des Schmelztiegels und den benötigten hohen Temperaturen eine große Menge an Verunreinigungen in das Pulver eingebracht wird. WO 2011/070475 describes a method for producing an alloy with at least two refractory metals, according to the method, the two refractory metals are melted and mixed in a crucible by applying an electron beam and the melt is solidified, the molten metals for solidification with a Cooling rate in a range of 200 Ks 1 to 2000 Ks 1 can be quenched. It is recommended to provide the two metals in the form of a powder and to mix them with one another before melting in order to achieve a complete solution of the two metals in one another. It is particularly important that the two metals form a solid solution in any composition and that a second phase is prevented from occurring. However, the method described has the disadvantage that a large amount of impurities is introduced into the powder through the use of the melting crucible and the high temperatures required.
US 2019/084048 offenbart ein Verfahren zur Herstellung zerstäubter, kugelförmiger ß-Ti/Ta-Legierungspulver zur additiven Fertigung, umfassend die folgenden Schritte: a) Mischen von elementaren Ti- und Ta-Pulvern zur Bildung einer Ti-Ta-Pulverzusammensetzung; b) heiß-isostatisches Verpressen derUS 2019/084048 discloses a method for producing atomized, spherical β-Ti / Ta alloy powders for additive manufacturing, comprising the following steps: a) mixing elemental Ti and Ta powders to form a Ti-Ta powder composition; b) hot isostatic pressing of the
Pulverzusammensetzung zur Bildung einer Ti-/Ta-Elektrode und c) Behandeln der Ti-/Ta-Elektrode mittels EIGA um ein zerstäubtes, kugelförmiges Ti-/Ta- Legierungspulver zu erhalten. Das beschriebene Verfahren weist allerdings den Nachteil auf, dass die erhaltenen Pulver eine inhomogen Mikrostruktur aufweisen, was für einige Anwendungen unerwünscht sein kann. Powder composition for forming a Ti / Ta electrode and c) treating the Ti / Ta electrode by means of EIGA in order to obtain an atomized, spherical Ti / Ta alloy powder. However, the method described has the disadvantage that the powders obtained have an inhomogeneous microstructure, which can be undesirable for some applications.
CN 108296490 stellt ein Herstellungsverfahren für kugelförmiges Wolfram-Tantal- Legierungspulver bereit, bei dem ein irregulär geformtes Wolfram-Tantal- Mischpulver, das unter Verwendung eines Hochenergie-Kugelmahlverfahrens hergestellt wurde, als Rohmaterial verwendet wird. Das eingesetzte Rohpulver wird mittels plasma spheroidization zu dem gewünschten Legierungspulver geformt. Das verwendete Mahlverfahren weist bekanntermaßen den Nachteil des unerwünschten Eintrages von Abrieb der Mahlkugeln auf.
Die im Stand der Technik beschriebenen Verfahren zur Herstellung von Legierungspulvern weisen den Nachteil auf, dass teilweise hohe Anteile an Fremdpartikeln bei dem Herstellungsverfahren in die Pulver eingetragen werden und die Pulver eine dendritische Elementverteilung aufweisen, was sich wiederum negativ auf die Qualität der Bauteile auswirken kann, die aus diesen Pulvern hergestellt werden, da die Bauteile für eine längere Zeit und in der Regel auch bei höherer Temperatur gesintert werden müssen, um die gewünschte mechanische Festigkeit zu erhalten. Daher ist es Aufgabe der vorliegenden Erfindung die Nachteile des Standes der Technik zu überwinden und ein Pulver zur Verfügung, das die Fertigung porenfreier und mechanisch stabiler Bauteile ermöglicht, insbesondere von Bauteilen mit komplexer Geometrie, die für Hochtemperaturanwendungen geeignet sind. CN 108296490 provides a manufacturing method for spherical tungsten-tantalum alloy powder in which an irregularly shaped tungsten-tantalum mixed powder prepared using a high energy ball milling method is used as raw material. The raw powder used is shaped into the desired alloy powder by means of plasma spheroidization. As is known, the grinding process used has the disadvantage of undesirable introduction of abrasion from the grinding balls. The processes described in the prior art for the production of alloy powders have the disadvantage that in some cases high proportions of foreign particles are introduced into the powder during the production process and the powders have a dendritic element distribution, which in turn can have a negative effect on the quality of the components, which are made from these powders, since the components have to be sintered for a longer period of time and usually also at a higher temperature in order to obtain the desired mechanical strength. It is therefore the object of the present invention to overcome the disadvantages of the prior art and to provide a powder which enables the production of pore-free and mechanically stable components, in particular components with complex geometry that are suitable for high-temperature applications.
Es wurde überraschend gefunden, dass diese Aufgabe durch ein Pulver gelöst wird, das aus einer Legierung von mindestens zwei Refraktärmetallen besteht und eine homogen Mikrostruktur sowie mindestens zwei unterschiedliche Kristallphasen aufweist. It has surprisingly been found that this object is achieved by a powder which consists of an alloy of at least two refractory metals and has a homogeneous microstructure and at least two different crystal phases.
Daher ist ein erster Gegenstand der vorliegenden Erfindung ein sphärisches Pulver zur Fertigung von dreidimensionalen Bauteilen, wobei es sich bei dem Pulver um ein Legierungspulver aus mindestens zwei Refraktärmetallen handelt, wobei das Legierungspulver eine homogene Mikrostruktur und mindestens zwei unterschiedliche kristalline Phasen aufweist. Therefore, a first object of the present invention is a spherical powder for the production of three-dimensional components, the powder being an alloy powder composed of at least two refractory metals, the alloy powder having a homogeneous microstructure and at least two different crystalline phases.
Das erfindungsgemäße Pulver zeichnet sich durch eine gute Fließfähigkeit und hohe Sinteraktivität aus, wodurch die Herstellung porenfreier und mechanisch stabiler Bauteile mittels additiver Fertigung und/oder Spritzgussfertigung ermöglicht wird. The powder according to the invention is characterized by good flowability and high sintering activity, which enables the production of pore-free and mechanically stable components by means of additive manufacturing and / or injection molding.
Der Ausdruck „Legierungspulver" ist im Rahmen der vorliegenden Erfindung als gleichbedeutend mit dem erfindungsgemäßen Pulver anzusehen, soweit nichts Gegenteiliges angeben ist. In the context of the present invention, the expression “alloy powder” is to be regarded as synonymous with the powder according to the invention, unless otherwise indicated.
Bei Refraktärmetallen im Sinne der vorliegenden Erfindung handelt es sich um die hochschmelzenden, unedlen Metalle der dritten, vierten, fünften und sechsten Nebengruppe des Periodensystems der Elemente. Diese Metalle zeichnen sich
neben ihrem hohen Schmelzpunkt dadurch aus, dass sie bei Raumtemperatur eine Passivierungsschicht aufweisen. Refractory metals in the context of the present invention are the refractory metals of the third, fourth, fifth and sixth subgroups of the periodic table of the elements. These metals stand out In addition to their high melting point, they have a passivation layer at room temperature.
Der Begriff „Legierungspulver" bezeichnet im Rahmen der vorliegenden Erfindung ein Pulver, bei dem die Refraktärmetalle in Form einer Legierung vorliegen und ein makroskopisch homogenes Pulver bilden. Diese Pulver stehen im Gegensatz zu Mischpulvern, bei denen die Bestandteile individuell in Form einer Mischung vorliegen und makroskopisch eine inhomogene Elementverteilung vorliegt. In the context of the present invention, the term “alloy powder” denotes a powder in which the refractory metals are present in the form of an alloy and form a macroscopically homogeneous powder. These powders are in contrast to mixed powders in which the components are individually present in the form of a mixture and macroscopically there is an inhomogeneous distribution of elements.
Unter „homogener Mikrostruktur" im Sinne der vorliegenden Erfindung wird eine homogene Elementverteilung, das heißt eine gleichmäßige Verteilung und Raumfüllung der Legierungskomponenten in den einzelnen Pulverpartikeln ohne makroskopische Schwankungen von Ort zu Ort verstanden. “Homogeneous microstructure” in the context of the present invention is understood to mean a homogeneous distribution of elements, that is to say a uniform distribution and spatial filling of the alloy components in the individual powder particles without macroscopic fluctuations from place to place.
Der Begriff der Partikelgröße bezeichnet im Rahmen der vorliegenden Anmeldung die längste lineare Abmessung eines Pulverpartikels von einem Ende zum gegenüberliegenden Ende des Partikels. Unter Agglomerate im Sinne der vorliegenden Erfindung werden verfestigte Anhäufungen von vormals losen Pulverpartikeln verstanden. Die vormals losen Partikel, die beispielsweise mittels Sintern zu Agglomeraten geformt werden, werden als Primärpartikel bezeichnet. In the context of the present application, the term particle size denotes the longest linear dimension of a powder particle from one end to the opposite end of the particle. Agglomerates in the context of the present invention are understood as solidified accumulations of previously loose powder particles. The previously loose particles, which are formed into agglomerates by means of sintering, for example, are referred to as primary particles.
Der Einsatz von additiven Fertigungsmethoden und MIM erstreckt sich auf nahezu alle Bereiche der Industrie. Dabei können die Eigenschaften der hergestellten Bauteile durch die verwendeten Pulver beeinflusst werden, wobei neben den mechanischen Eigenschaften der Bauteile auch weitere Eigenschaften wie beispielsweise optische und elektronische Eigenschaften angepasst werden können.The use of additive manufacturing methods and MIM extends to almost all areas of industry. The properties of the manufactured components can be influenced by the powders used, whereby, in addition to the mechanical properties of the components, other properties such as optical and electronic properties can also be adapted.
Daher ist eine Ausführungsform des erfindungsgemäßen Pulvers bevorzugt, bei der es sich bei den Refraktärmetallen um solche handelt, die ausgewählt sind aus der Gruppe bestehend aus Tantal, Niob, Vanadium, Yttrium, Titan, Zirkonium, Hafnium, Wolfram und Molybdän. In einer besonders bevorzugten Ausführungsform handelt es sich bei den mindestens zwei Refraktärmetallen um Tantal und Wolfram. In einer besonders bevorzugten Ausführungsform ist das erfindungsgemäße Legierungspulver frei von Ti. Besonders bevorzugt liegt in diesem Fall der Anteil an Titan im erfindungsgemäßen Legierungspulver bei weniger als 1,5 Gew.-%, besonders bevorzugt weniger als 1,0 Gew.-%,
insbesondere bei weniger als 0,5 Gew.-% und im Speziellen bei weniger als 0,1 Gew.-%, jeweils bezogen auf das Gesamtgewicht des Legierungspulvers. Therefore, an embodiment of the powder according to the invention is preferred in which the refractory metals are those selected from the group consisting of tantalum, niobium, vanadium, yttrium, titanium, zirconium, hafnium, tungsten and molybdenum. In a particularly preferred embodiment, the at least two refractory metals are tantalum and tungsten. In a particularly preferred embodiment, the alloy powder according to the invention is free of Ti. In this case, the proportion of titanium in the alloy powder according to the invention is particularly preferably less than 1.5% by weight, particularly preferably less than 1.0% by weight, in particular at less than 0.5% by weight and especially at less than 0.1% by weight, based in each case on the total weight of the alloy powder.
Das erfindungsgemäße Pulver zeichnet sich insbesondere dadurch aus, dass das Legierungspulver mindestens zwei unterschiedliche Kristallphasen aufweist. Als besonders vorteilhaft hat es sich herausgestellt, wenn es sich bei einer dieser Kristallphasen um eine metastabile Kristallphase handelt. In diesem Zusammenhang wird unter einer metastabilen Kristallphase eine bei Raumtemperatur thermodynamisch instabile Phase verstanden. Die in dem erfindungsgemäßen Legierungspulver auftretenden Kristallphasen können beispielsweise mit Hilfe von Röntgenbeugungsanalysen (RBA) bestimmt und anhand ihrer Reflexe im Röntgendiffraktrogramm unterschieden werden. Die Verteilung der unterschiedlichen Kristallphasen im Pulver kann variieren. Eine bevorzugte Ausführungsform der vorliegenden Erfindung zeichnet sich dadurch aus, dass eine Kristallphase einen größeren Anteil ausmacht als die anderen Kristallphasen. Diese Phase mit dem größten Anteil wird als Hauptkristallphase bezeichnet, während Phasen mit einem geringeren Anteil als Nebenkristallphasen oder Nebenphasen bezeichnet werden. Vorzugsweise weist das erfindungsgemäße Pulver eine Hauptkristallphase und mindestens eine Nebenkristallphase auf. Es wurde überraschend gefunden, dass das Verhältnis der Phasen einen Einfluss auf die mechanischen Eigenschaften eines späteren Bauteils hat, wobei das Verhältnis der Phasen mittels ihrer Reflexintensitäten im Röntgendiffraktrogramm, dort angegeben als Impulse pro Winkel [° 2Theta], bestimmt werden kann. In einer besonders bevorzugten Ausführungsform ist das Verhältnis des Reflexes mit der höchsten Intensität der mindestens einen Nebenphase (I (P2) 100) und des Reflexes mit der höchsten Intensität der Hauptkristallphase (I(P1)100), ausgedrückt als I(P2)100 / I(P1)100, vorzugsweise kleiner als 0,75, besonders bevorzugt 0,05 bis 0,55, insbesondere 0,07 bis 0,4, jeweils bestimmt mittels Röntgendiffraktometrie. The powder according to the invention is particularly characterized in that the alloy powder has at least two different crystal phases. It has been found to be particularly advantageous if one of these crystal phases is a metastable crystal phase. In this context, a metastable crystal phase is understood to mean a phase that is thermodynamically unstable at room temperature. The crystal phases occurring in the alloy powder according to the invention can be determined, for example, with the aid of X-ray diffraction analyzes (RBA) and differentiated on the basis of their reflections in the X-ray diffraction program. The distribution of the different crystal phases in the powder can vary. A preferred embodiment of the present invention is characterized in that one crystal phase makes up a larger proportion than the other crystal phases. This phase with the largest proportion is referred to as the main crystal phase, while phases with a smaller proportion are referred to as secondary crystal phases or secondary phases. The powder according to the invention preferably has a main crystal phase and at least one secondary crystal phase. It was surprisingly found that the ratio of the phases has an influence on the mechanical properties of a later component, the ratio of the phases being able to be determined by means of their reflection intensities in the X-ray diffraction program, indicated there as pulses per angle [° 2Theta]. In a particularly preferred embodiment, the ratio of the reflex with the highest intensity of the at least one secondary phase (I (P2) 100) and the reflex with the highest intensity of the main crystal phase (I (P1) 100), expressed as I (P2) 100 / I (P1) 100, preferably less than 0.75, particularly preferably 0.05 to 0.55, in particular 0.07 to 0.4, each determined by means of X-ray diffractometry.
Ein weiterer Aspekt, der das erfindungsgemäße Pulver auszeichnet, ist dessen homogene Mikrostruktur. In der Regel weisen Legierungspulver, insbesondere von Refraktärmetallen, den Nachteil auf, dass die verschiedenen Legierungsbestandteile herstellungsbedingt inhomogen in den einzelnen Pulverpartikeln verteilt sind, da die Verweilzeit der Partikel in der Regel zu kurz ist, um eine ausreichende Durchmischung und Diffusion der einzelnen Bestandteile zu
erreichen. Diese inhomogene Verteilung bringt insbesondere Nachteile für die mechanischen Eigenschaften der aus diesen Pulvern gefertigten Bauteile mit sich, die nur durch Einsatz eines deutlich höheren Energieeintrags, wie beispielsweise beim SLM Verfahren durch eine deutlich höhere Laserleistung oder niedrigere Scan-Geschwindigkeit des Lasers, im Herstellungsprozess kompensiert werden können. Im Rahmen der vorliegenden Erfindung wurde jedoch überraschend festgestellt, dass bereits die Pulver an sich eine homogene Verteilung der Legierungsbestandteile aufweisen. Daher ist eine Ausführungsform des erfindungsgemäßen Pulvers bevorzugt, in der in mindestens 95%, bevorzugt in mindestens 97%, besonders bevorzugt in mindestens 99% aller Pulverpartikel die Gehalte der Legierungselemente, ausgedrückt in Gew.-%, innerhalb eines Partikels um weniger als 8% variieren, vorzugsweise um 0,05 bis 6%, besonders bevorzugt 0,05 bis 3%, bestimmt mittels EDX (energiedispersive Röntgenspektroskopie). Das erfindungsgemäße Pulver zeichnet sich insbesondere durch seine Sphärizität aus, wodurch es besonders für den Einsatz in additiven Fertigungsverfahren und Spritzgussverfahren geeignet ist. Daher ist eine Ausführungsform bevorzugt, in der die Pulverpartikel ein durchschnittliches Aspektverhältnis YA von 0,7 bis 1, vorzugsweise 0,8 bis 1, besonders bevorzugt 0,9 bis 1 und insbesondere 0,95 bis 1 aufweisen, wobei YA definiert ist als das Verhältnis des minimalen Ferret-Another aspect that distinguishes the powder according to the invention is its homogeneous microstructure. As a rule, alloy powders, in particular of refractory metals, have the disadvantage that the various alloy components are inhomogeneously distributed in the individual powder particles due to the manufacturing process, since the residence time of the particles is usually too short to allow sufficient mixing and diffusion of the individual components to reach. This inhomogeneous distribution has disadvantages in particular for the mechanical properties of the components made from these powders, which can only be compensated for by using a significantly higher energy input, for example in the SLM process with a significantly higher laser power or lower scanning speed of the laser in the manufacturing process can. In the context of the present invention, however, it was surprisingly found that the powders themselves already have a homogeneous distribution of the alloy constituents. Therefore, an embodiment of the powder according to the invention is preferred in which in at least 95%, preferably in at least 97%, particularly preferably in at least 99% of all powder particles, the content of the alloying elements, expressed in% by weight, within a particle by less than 8% vary, preferably by 0.05 to 6%, particularly preferably 0.05 to 3%, determined by means of EDX (energy dispersive X-ray spectroscopy). The powder according to the invention is characterized in particular by its sphericity, which makes it particularly suitable for use in additive manufacturing processes and injection molding processes. An embodiment is therefore preferred in which the powder particles have an average aspect ratio Y A of 0.7 to 1, preferably 0.8 to 1, particularly preferably 0.9 to 1 and in particular 0.95 to 1, Y A being defined than the ratio of the minimum Ferret
Durchmessers zum maximalen Ferret-Durchmesser, ausgedrückt als YA = x Fen-et min / x Ferret max- Der Ferret-Durchmesser bezeichnet dabei den Abstand zweier Tangenten eines Partikels in einem beliebigen Winkel. Der maximale Ferret- Durchmesser x Ferret max9o kann dadurch ermittelt werden, dass zunächst der maximale Ferret-Durchmesser bestimmt wird und dann der Ferret-Durchmesser ermittelt wird, der um einen Winkel von 90° zu diesem maximalen Ferret- Durchmesser versetzt ist. Dies gilt analog für die Bestimmung des minimalen Ferret-Durchmessers. Der Ferret-Durchmesser eines Partikels kann beispielsweise mittels Bildauswertungsverfahren aus Rasterelektronenmikroskop-Aufnahmen (REM-Aufnahmen) bestimmt werden (vergleiche hierzu auch Figur 9). Diameter to the maximum Ferret diameter, expressed as Y A = x Fen-et min / x Ferret max- The Ferret diameter denotes the distance between two tangents of a particle at any angle. The maximum Ferret diameter x Ferret max9o can be determined by first determining the maximum Ferret diameter and then determining the Ferret diameter, which is offset by an angle of 90 ° to this maximum Ferret diameter. This also applies to the determination of the minimum Ferret diameter. The Ferret diameter of a particle can be determined, for example, by means of image evaluation methods from scanning electron microscope images (SEM images) (see also FIG. 9 in this regard).
Neben der Sphärizität ist die Fließfähigkeit eines Pulvers ein weiteres Kriterium, das dessen Eignung für die Verwendung in insbesondere additiven Fertigungsverfahren ausmacht. Das erfindungsgemäße Pulver zeichnet sich durch eine Fließfähigkeit aus, die an die Erfordernisse in diesen Fertigungsprozessen
angepasst ist. Daher ist eine Ausführungsform des erfindungsgemäßen Pulvers bevorzugt, in der das Pulver eine Fließfähigkeit von weniger als 25s/50g, vorzugsweise weniger als 20s/50g und insbesondere weniger als 15s/50g aufweist, jeweils bestimmt gemäß ASTM B213. In addition to sphericity, the flowability of a powder is another criterion that defines its suitability for use in additive manufacturing processes in particular. The powder according to the invention is characterized by a flowability which is adapted to the requirements in these manufacturing processes is adapted. Therefore, an embodiment of the powder according to the invention is preferred in which the powder has a flowability of less than 25s / 50g, preferably less than 20s / 50g and in particular less than 15s / 50g, each determined in accordance with ASTM B213.
Weiterhin zeichnet sich das erfindungsgemäße Pulver durch eine hohe Klopfdichte aus, ein weiteres Kriterium, das bei der Wahl eines Pulvers für die Verwendung in solchen Fertigungsprozessen berücksichtigt werden sollte. In einer bevorzugten Ausführungsform weist das erfindungsgemäße Pulver eine Klopfdichte von 40 bis 80% seiner theoretischen Dichte, vorzugsweise 60 bis 80% seiner theoretischen Dichte auf, jeweils bestimmt gemäß ASTM B527. Furthermore, the powder according to the invention is characterized by a high tap density, a further criterion that should be taken into account when choosing a powder for use in such manufacturing processes. In a preferred embodiment, the powder according to the invention has a tap density of 40 to 80% of its theoretical density, preferably 60 to 80% of its theoretical density, in each case determined in accordance with ASTM B527.
Es ist bekannt, dass die mechanischen Eigenschaften und die Porosität von Bauteilen, die mittels solcher Fertigungsverfahren hergestellt werden, unter anderem durch die Partikelgröße der verwendeten Pulver gesteuert werden können, wobei die Partikelgrößen in Abhängigkeit des jeweiligen Fertigungsverfahrens ausgewählt werden sollten, wobei sich insbesondere eine enge Partikelgrößenverteilung von Vorteil erwiesen hat. In einer bevorzugten Ausführungsform der vorliegenden Erfindung weist das erfindungsgemäße Pulver eine Partikelgrößenverteilung mit einem D10-Wert von größer 2 pm, vorzugsweise größer 5 pm und einem D90-Wert von weniger als 80 pm, vorzugsweise weniger als 70 pm mit einem D50-Wert von 20 bis 50 pm, vorzugsweise 25 bis 50 pm auf, jeweils bestimmt gemäß ASTM B822. Diese Partikelgrößenverteilung hat sich als besonders vorteilhaft für Selective-Laser-Melting (SLM)-Verfahren erwiesen. It is known that the mechanical properties and the porosity of components that are manufactured by means of such manufacturing processes can be controlled, inter alia, by the particle size of the powders used, the particle sizes should be selected depending on the respective manufacturing process, in particular a narrow one Particle size distribution has proven beneficial. In a preferred embodiment of the present invention, the powder according to the invention has a particle size distribution with a D10 value of greater than 2 pm, preferably greater than 5 pm and a D90 value of less than 80 pm, preferably less than 70 pm with a D50 value of 20 up to 50 pm, preferably 25 to 50 pm, each determined in accordance with ASTM B822. This particle size distribution has proven to be particularly advantageous for selective laser melting (SLM) processes.
In einer weiteren bevorzugten Ausführungsform liegt der D10-Wert der Partikelgrößenverteilung des erfindungsgemäßen Pulvers bei mehr als 20 pm, vorzugsweise mehr als 50 pm und der D90-Wert bei weniger als 150 pm, vorzugsweise weniger als 120 pm, mit einem D50-Wert von 40 bis 90 pm, vorzugsweise 60 bis 85 pm, jeweils bestimmt gemäß ASTM B822. Insbesondere im Bereich der Electronbeam-Melting-Verfahren (EBM) hat sich eine Partikelgrößenverteilung wie angegeben als besonders vorteilhaft erwiesen. In a further preferred embodiment, the D10 value of the particle size distribution of the powder according to the invention is more than 20 μm, preferably more than 50 μm, and the D90 value is less than 150 μm, preferably less than 120 μm, with a D50 value of 40 up to 90 pm, preferably 60 to 85 pm, each determined in accordance with ASTM B822. In particular in the area of the electron beam melting process (EBM), a particle size distribution as indicated has proven to be particularly advantageous.
In einer weiteren bevorzugten Ausführungsform weist das erfindungsgemäße Pulver eine Partikelgrößenverteilung mit einem D10-Wert von mehr als 50 pm, vorzugsweise mehr als 80 pm und einem D90-Wert von weniger als 240 pm, vorzugsweise weniger als 210 pm auf, mit einem D50-Wert von 60 bis 150 pm,
vorzugsweise 100 bis 150 pm, jeweils bestimmt gemäß ASTM B822. Pulver mit einer solchen Partikelgrößenverteilung haben sich als besonders vorteilhaft in der Verwendung von Laser-cladding-Verfahren (CL) erwiesen. In a further preferred embodiment, the powder according to the invention has a particle size distribution with a D10 value of more than 50 μm, preferably more than 80 μm and a D90 value of less than 240 μm, preferably less than 210 μm, with a D50 value from 60 to 150 pm, preferably 100 to 150 μm, each determined in accordance with ASTM B822. Powders with such a particle size distribution have proven to be particularly advantageous when using laser cladding processes (CL).
In einer weiteren bevorzugten Ausführungsform weist das erfindungsgemäße Pulver eine Partikelgrößenverteilung mit einem D10-Wert von mehr als 1 pm, vorzugsweise mehr als 2 pm und einem D90-Wert von weniger als 45 pm, vorzugsweise weniger als 40 pm auf, mit einem D50-Wert von 6 bis 30 pm vorzugsweise 8 bis 20 pm, jeweils bestimmt gemäß ASTM B822. Insbesondere bei der Verwendung solcher Pulver in Spritzgussverfahren wie Metal-Injection-Molding (MIM) hat sich eine Partikelgrößenverteilung im angegebenen Bereich als vorteilhaft erwiesen. In a further preferred embodiment, the powder according to the invention has a particle size distribution with a D10 value of more than 1 μm, preferably more than 2 μm and a D90 value of less than 45 μm, preferably less than 40 μm, with a D50 value from 6 to 30 pm, preferably 8 to 20 pm, in each case determined in accordance with ASTM B822. In particular when using such powders in injection molding processes such as metal injection molding (MIM), a particle size distribution in the specified range has proven to be advantageous.
Im Rahmen der vorliegenden Erfindung ist der D50-Wert als mittlere Partikelgröße zu verstehen, wobei 50% der Partikel kleiner als die angegeben Werte sind. Analoges gilt für die D10-, D90 und die D99-Werte. Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung des erfindungsgemäßen Legierungspulvers. Das erfindungsgemäße Verfahren umfasst die folgenden Schritte: a) Bereitstellen einer Ausgangspulvermischung umfassend mindestens zwei Refraktärmetalle, wobei die Ausgangspulvermischung eine Partikelgröße mit einem D99-Wert von weniger als 100 pm aufweist und wenigstens eines der Refraktärmetalle eine Partikelgröße mit einem D99-Wert von weniger als 10 pm aufweist, jeweils bestimmt gemäß ASTM B822; b) Herstellen eines Pulverkörpers aus der Ausgangspulvermischung mittels kalt isostatischem Verpressen (CIP); c) Sintern des gepressten Körpers bei einer Temperatur, die 400 bis 1150 °C, vorzugsweise 700 bis 1050 °C unterhalb des niedrigsten Schmelzpunkts der Komponenten der Ausgangspulvermischung liegt; d) Aufschmelzen des gesinterten Körpers mittels Elektrodeninduktionsschmelzen (EIGA); und e) Zerstäuben der Schmelze bei gleichzeitiger Abkühlung unter Erhalt eines sphärischen Legierungspulvers.
Es wurde überraschend gefunden, dass durch das erfindungsgemäße Verfahren sphärische Pulver mit einer engen Partikelgrößenverteilung und einer hohen Sinteraktivität erhalten werden, die die Herstellung von porenfreien und mechanisch stabilen Bauteilen mittels additiver Fertigungsverfahren oder MIM erlauben. Die mit dem erfindungsgemäßen Verfahren hergestellten Pulver zeichnen sich weiterhin durch eine homogene Verteilung der Legierungsbestandteile und die Anwesenheit von mindestens zwei Kristallphasen aus. In the context of the present invention, the D50 value is to be understood as the mean particle size, with 50% of the particles being smaller than the values given. The same applies to the D10, D90 and D99 values. Another object of the present invention is a method for producing the alloy powder according to the invention. The method according to the invention comprises the following steps: a) Providing a starting powder mixture comprising at least two refractory metals, the starting powder mixture having a particle size with a D99 value of less than 100 μm and at least one of the refractory metals having a particle size with a D99 value of less than 10 pm, each determined in accordance with ASTM B822; b) producing a powder body from the starting powder mixture by means of cold isostatic pressing (CIP); c) sintering the pressed body at a temperature which is 400 to 1150 ° C., preferably 700 to 1050 ° C. below the lowest melting point of the components of the starting powder mixture; d) melting the sintered body by means of electrode induction melting (EIGA); and e) atomizing the melt with simultaneous cooling to obtain a spherical alloy powder. It has surprisingly been found that the method according to the invention gives spherical powders with a narrow particle size distribution and high sintering activity, which allow the production of pore-free and mechanically stable components by means of additive manufacturing processes or MIM. The powders produced with the method according to the invention are furthermore distinguished by a homogeneous distribution of the alloy constituents and the presence of at least two crystal phases.
Das Verpressen (CIP) des Pulvers erfolgt vorzugsweise bei einem angewandten Pressdruck von mindestens 1,7- 108 Pa (1700 bar), besonders bevorzugt von mindestens 1,9-108 Pa (1900 bar). The compression (CIP) of the powder is preferably carried out at a compression pressure of at least 1.7-10 8 Pa (1700 bar), particularly preferably at least 1.9-10 8 Pa (1900 bar).
In einer bevorzugten Ausführungsform umfasst das erfindungsgemäße Verfahren weiterhin einen Klassifizierungsschritt, vorzugsweise Sieben. Auf diese Weise kann die gewünschte Partikelgrößenverteilung angepasst und eingestellt werden. In a preferred embodiment, the method according to the invention further comprises a classification step, preferably sieving. In this way, the desired particle size distribution can be adapted and set.
In einer weiteren bevorzugten Ausführungsform weist die Ausgangspulvermischung eine Partikelgröße mit einem D99-Wert von weniger als 100 pm, vorzugsweise weniger als 80 pm auf, jeweils bestimmt mittels ASTM B822.In a further preferred embodiment, the starting powder mixture has a particle size with a D99 value of less than 100 μm, preferably less than 80 μm, in each case determined by means of ASTM B822.
In einer bevorzugten Ausführungsform weist mindestens eines der Refraktärmetalle in der Ausgangspulvermischung eine Partikelgröße mit einem D99-Wert von weniger als 10 pm, vorzugsweise weniger als 5 pm, besonders bevorzugt weniger als 2 pm auf, jeweils bestimmt mittels ASTM B822, wobei es sich dabei vorzugsweise um das Refraktärmetall mit dem höchsten Schmelzpunkt handelt . In a preferred embodiment, at least one of the refractory metals in the starting powder mixture has a particle size with a D99 value of less than 10 μm, preferably less than 5 μm, particularly preferably less than 2 μm, in each case determined by means of ASTM B822, which is preferably is the refractory metal with the highest melting point.
Es hat sich als vorteilhaft herausgestellt, wenn Refraktärmetalle in der Ausgangspulvermischung verwendet werden, deren Primärpartikel zu porösen Agglomeraten versintert wurden, insbesondere solche Refraktärmetalle, die eine Primärpartikelgröße von weniger als 10 pm, vorzugsweise von weniger als 3 pm, besonders bevorzugt von weniger als 1 pm aufweisen, bestimmt mittels Bildauswertungsverfahren aus Rasterelektronenmikroskop-Aufnahmen (REM- Aufnahmen). Daher ist eine Ausführungsform bevorzugt, in der mindestens ein Refraktärmetall der Ausgangspulvermischung in Form von gesinterten, porösen Agglomeraten mit einer Partikelgröße mit einem D99-Wert von weniger als 100
mpΊ, vorzugsweise weniger als 80 pm vorliegt, bestimmt gemäß ASTM B822, und das eine Primärpartikelgröße von weniger als 10 pm, vorzugsweise von weniger als 3 pm, besonders bevorzugt von weniger als 1 pm aufweist, bestimmt mittels REM Aufnahmen. It has been found to be advantageous if refractory metals are used in the starting powder mixture, the primary particles of which have been sintered to form porous agglomerates, in particular those refractory metals which have a primary particle size of less than 10 μm, preferably less than 3 μm, particularly preferably less than 1 μm have, determined by means of image evaluation methods from scanning electron microscope images (SEM images). An embodiment is therefore preferred in which at least one refractory metal of the starting powder mixture is in the form of sintered, porous agglomerates with a particle size with a D99 value of less than 100 mpΊ, preferably less than 80 pm, determined according to ASTM B822, and which has a primary particle size of less than 10 pm, preferably less than 3 pm, particularly preferably less than 1 pm, determined by means of SEM images.
Das Sintern in Schritt c) des erfindungsgemäßen Verfahrens wird bei einer Temperatur durchgeführt, die 400 bis 1150 °C, vorzugsweise 700 bis 1050 °C, unterhalb des Schmelzpunkts der Legierungskomponente mit dem niedrigsten Schmelzpunkt liegt, wobei die Schmelzpunkte der Legierungsbestandteile dem Fachmann bekannt sind oder der Literatur entnommen werden können. Die Dauer des Sintervorgangs kann gemäß den geforderten Eigenschaften des Pulvers angepasst werden, beträgt jedoch vorzugsweise 0,5 bis 6 Stunden, besonders bevorzugt 1 bis 5 Stunden. The sintering in step c) of the method according to the invention is carried out at a temperature which is 400 to 1150 ° C., preferably 700 to 1050 ° C., below the melting point of the alloy component with the lowest melting point, the melting points of the alloy components being known to the person skilled in the art or can be found in the literature. The duration of the sintering process can be adapted according to the required properties of the powder, but is preferably 0.5 to 6 hours, particularly preferably 1 to 5 hours.
Im Rahmen der vorliegenden Erfindung werden vorzugsweise Refraktär metalle mit einem hohen Schmelzpunkt eingesetzt. Daher wird das Sintern vorzugsweise bei einer Temperatur von wenigsten 1400 °C durchgeführt. In the context of the present invention, refractory metals with a high melting point are preferably used. Therefore, the sintering is preferably carried out at a temperature of at least 1400 ° C.
Es hat sich gezeigt, dass sich für einige Anwendungen ein hoher Sauerstoffgehalt im Legierungspulver negativ auf dessen Verwendung in bestimmten Fertigungsverfahren auswirkt. Daher ist eine Ausführungsform des erfindungsgemäßen Verfahrens bevorzugt, in der das Legierungspulver weiterhin einem Desoxidationsschritt in Gegenwart eines Reduktionsmittels unterzogen wird, wobei als Reduktionsmittel vorzugsweise Magnesium oder Calcium, insbesondere in Form von Dampf, verwendet wird. Eine detaillierte Beschreibung eines geeigneten Desoxidationsprozesses findet der Fachmann beispielsweise in der Patentschrift EP 1 144 147. It has been shown that for some applications a high oxygen content in the alloy powder has a negative effect on its use in certain manufacturing processes. An embodiment of the method according to the invention is therefore preferred in which the alloy powder is furthermore subjected to a deoxidation step in the presence of a reducing agent, magnesium or calcium, in particular in the form of steam, being used as the reducing agent. A person skilled in the art can find a detailed description of a suitable deoxidation process in patent specification EP 1 144 147, for example.
Um den Sauerstoffgehalt des erfindungsgemäßen Pulvers schon während des Herstellungsprozesses möglichst gering zu halten, hat es sich als vorteilhaft erwiesen, wenn das Abkühlen in einer sauerstoffarmen Umgebung stattfindet. Daher ist eine Ausführungsform bevorzugt, in der das Abkühlen während des Zerstäubens mittels gekühlten Inertgases erfolgt. In order to keep the oxygen content of the powder according to the invention as low as possible during the production process, it has proven to be advantageous if the cooling takes place in a low-oxygen environment. An embodiment is therefore preferred in which the cooling takes place during the atomization by means of cooled inert gas.
Für spezielle Anwendungen jedoch ist eine gezielte Einstellung des Sauerstoffgehaltes wünschenswert. In einer bevorzugten Ausführungsform wird der Ausgangspulvermischung daher eine sauerstoffhaltige Komponente der
Refraktärmetalle, wie beispielsweise deren Oxide oder Sub-Oxide, zugesetzt, um gezielt einen gewünschten Sauerstoffgehalt in den erfindungsgemäßen Pulvern einzustellen. For special applications, however, a specific adjustment of the oxygen content is desirable. In a preferred embodiment, the starting powder mixture is therefore an oxygen-containing component of the Refractory metals, such as, for example, their oxides or sub-oxides, added in order to set a desired oxygen content in the powders according to the invention in a targeted manner.
Überraschenderweise hat sich gezeigt, dass die erfindungsgemäßen Pulver nicht nur in additiven Fertigungsverfahren, sondern auch zur Herstellung von dreidimensionalen Bauteilen mittels Metal Injection Molding (MIM) eingesetzt werden können. Daher ist ein weiterer Gegenstand der vorliegenden Erfindung die Verwendung des erfindungsgemäßen Pulvers oder eines Pulvers, das gemäß dem erfindungsgemäßen Verfahren gewonnen wurde, in additiven Fertigungsverfahren und/oder Metallspritzgussverfahren. Bei dem additiven Fertigungsverfahren handelt es sich vorzugsweises um eines, das aus der Gruppe ausgewählt ist, die aus Selective Laser Melting (SLM), Electron Beam Melting (EBM) und Laserauftragsschweißen (LC) besteht. Surprisingly, it has been shown that the powders according to the invention can be used not only in additive manufacturing processes, but also for the manufacture of three-dimensional components by means of metal injection molding (MIM). The present invention therefore also relates to the use of the powder according to the invention or a powder obtained according to the method according to the invention in additive manufacturing processes and / or metal injection molding processes. The additive manufacturing process is preferably one that is selected from the group consisting of Selective Laser Melting (SLM), Electron Beam Melting (EBM) and Laser Deposition Welding (LC).
Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Bauteil, das unter Verwendung des erfindungsgemäßen Legierungspulvers oder eines Pulvers, das mittels des erfindungsgemäßen Verfahrens gewonnen wurde, hergestellt wurde. Vorzugsweise handelt es sich bei dem Bauteil um ein Bauteil, das in Hochtemperaturanwendungen eingesetzt wird, beispielsweise im Rahmen von Triebwerken und Hochtemperaturöfen. Alternativ handelt es sich bei dem Bauteil vorzugsweise um ein medizinisches Implantat oder Gerät. Another object of the present invention is a component which was produced using the alloy powder according to the invention or a powder obtained by means of the method according to the invention. The component is preferably a component that is used in high-temperature applications, for example in the context of engines and high-temperature furnaces. Alternatively, the component is preferably a medical implant or device.
Beispiele: Examples:
Die vorliegende Erfindung wird anhand der folgenden Beispiele näher erläutert, wobei diese keinesfalls als Einschränkung des Erfindungsgedanken zu verstehen sind. The present invention is explained in more detail with reference to the following examples, which are in no way to be understood as a restriction of the inventive concept.
Es wurden erfindungsgemäße Pulver Ta2.5W (El) und Tal3W (E2) hergestellt, wobei in den Ausgangspulvermischungen die Partikelgröße D99 der verwendeten Tantalpulver 49 pm und die der Wolframpulver 1.9 pm betrug, jeweils gemessen gemäß ASTM B822. Die Pulver wurden mittels kalt-isostatischem Verpressen (CIP) bei einem Pressdruck von 2000 bar zu einem Presskörper geformt, der bei 1950 °C für 2 Stunden gesintert wurde. Der so erhaltene Sinterkörper wurde mittels Elektrodeninduktionsschmelzen (EIGA) aufgeschmolzen und die Schmelze bei gleichzeitiger Abkühlung zerstäubt. Nach der Klassifizierung der zerstäubten Pulver
durch Siebung in zwei Fraktionen (<63mhi, 63-100mhi) wurden die erhaltenen Legierungspulver <63mhi bei 1000 °C für zwei Stunden in Gegenwart von Mg desoxidiert. Die Zusammensetzungen und Eigenschaften der erhaltenen Pulver sind in Tabelle 1 zusammengefasst, wobei die Parameter jeweils gemäß den oben angegebenen Normen bestimmt wurden. Powders Ta2.5W (E1) and Tal3W (E2) according to the invention were produced, the particle size D99 of the tantalum powder used being 49 μm and that of the tungsten powder being 1.9 μm in the starting powder mixtures, each measured in accordance with ASTM B822. The powders were shaped into a compact by means of cold isostatic pressing (CIP) at a pressing pressure of 2000 bar, which was sintered at 1950 ° C. for 2 hours. The sintered body obtained in this way was melted by means of electrode induction melting (EIGA) and the melt was atomized while cooling at the same time. According to the classification of the atomized powder by sieving into two fractions (<63mhi, 63-100mhi) the alloy powders obtained <63mhi were deoxidized at 1000 ° C. for two hours in the presence of Mg. The compositions and properties of the powders obtained are summarized in Table 1, the parameters in each case being determined according to the standards given above.
Der Sauerstoff- und Stickstoffgehalt der Pulver wurde mittels Trägergasheißextraktion (Leco TCH600) und die Partikelgrößen jeweils mittels Laserbeugung (ASTM B822, MasterSizer S, Dispersion in Wasser und Daxad 11, 5 min Ultraschallbehandlung) bestimmt. Die Spurenanalytik der metallischen Verunreinigungen erfolgte mittels ICP-OES mit den folgenden Analysegeräten PQ 9000 (Analytik Jena) oder Ultima 2 (Horiba). Die Bestimmung der Kristallphasen erfolgte mittels Röntgenbeugung (RBA) mit einem Gerät der Firma Malvern- PANalytical (X'Pert-MPD mit Halbleiterdetektor, Röntgenröhre Cu LFF mit 40KV / 40mA, Ni-Filter) Tabelle 1:
The oxygen and nitrogen content of the powder was determined by means of hot carrier gas extraction (Leco TCH600) and the particle sizes in each case by means of laser diffraction (ASTM B822, MasterSizer S, dispersion in water and Daxad 11, 5 min ultrasound treatment). The trace analysis of the metallic impurities was carried out by means of ICP-OES with the following analysis devices PQ 9000 (Analytik Jena) or Ultima 2 (Horiba). The crystal phases were determined by means of X-ray diffraction (RBA) using a device from Malvern-PANalytical (X ' Pert-MPD with semiconductor detector, X-ray tube Cu LFF with 40KV / 40mA, Ni filter) Table 1:
Bei den erfindungsgemäßen Pulvern ließen sich jeweils zwei unterschiedliche kristalline Phasen im Röntgendiffraktrogramm identifizieren, eine kubische Hauptkristallphase und eine tetragonale Nebenkristallphase, wie auch aus den Figuren 1 und 2 ersichtlich, die jeweils Aufnahmen der erfindungsgemäßen Pulver Ta2.5W (Figur 1) und Tal3W (Figur 2) zeigen. Die ermittelten Verhältnisse der Reflexintensitäten für die Reflexe mit den jeweils höchsten Intensitäten sind in Tabelle 1 angegeben. In the case of the powders according to the invention, two different crystalline phases could be identified in the X-ray diffractogram, a cubic main crystal phase and a tetragonal secondary crystal phase, as can also be seen from FIGS. 1 and 2, the recordings of the powders according to the invention Ta2.5W (FIG. 1) and Tal3W (FIG 2) show. The determined ratios of the reflex intensities for the reflexes with the highest intensities in each case are given in Table 1.
Weitere Aufnahmen des Pulvers Tal3W aus Versuch E2b zeigen, dass im Gegensatz zu herkömmlichen Pulvern keine dendritischen Strukturen zu erkennen sind und die Pulverpartikel sphärisch sind. Hierzu zeigt Figur 3 eine EDX-Aufnahme
an einer angeschliffenen Probe des Pulvers Tal3W, während Figur 4 die sphärische Form der Pulverpartikel von Tal3W anhand einer REM-Aufnahme an einem Streupräparat zeigt. Further recordings of the powder Tal3W from experiment E2b show that, in contrast to conventional powders, no dendritic structures can be seen and the powder particles are spherical. For this purpose, FIG. 3 shows an EDX recording on a ground sample of the powder Tal3W, while FIG. 4 shows the spherical shape of the powder particles of Tal3W on the basis of an SEM image on a litter preparation.
Zu Vergleichszwecken wurde ein Pulver Ta2.5W (Vgl) gemäß dem konventionellen Prozess hergestellt, indem zunächst ein Schmelzingot mittels Elektronenstrahl hergestellt wurde. Dieser wurde durch Hydrieren mit Wasserstoff versprödet und gemahlen. Der Wasserstoff wurde im Hochvakuum entfernt und das Material auf einen Wert von kleiner 63 pm gesiebt. Die entsprechenden Ergebnisse dazu sind in Tabelle 2 zusammengefasst. Wie Röntgenbeugungsanalysen und REM-Aufnahmen zeigen, wies das erhaltene Pulver weder zwei unterschiedliche Kristallphasen noch eine sphärische Morphologie auf (siehe Figuren 5a und 5b). For comparison purposes, a powder Ta2.5W (cf.) was produced according to the conventional process by first producing a fusible ingot using an electron beam. This was embrittled by hydrogenation with hydrogen and ground. The hydrogen was removed in a high vacuum and the material was sieved to a value of less than 63 μm. The corresponding results are summarized in Table 2. As X-ray diffraction analyzes and SEM images show, the powder obtained had neither two different crystal phases nor a spherical morphology (see FIGS. 5a and 5b).
Tabelle 2:
Als weiterer Vergleich wurde ein Pulver Ta2.5W (Vg2) hergestellt, indem die entsprechenden Ausgangspulver gepresst und bei 1200 °C zu einem Metallkörper gesintert wurden, der anschließend zerstäubt wurde. Die Partikelgrößen D99 der
Ausgangsmetalle Ta und W betrug 150 pm beziehungsweise 125 pm. Die Ergebnisse sind ebenfalls in Tabelle 2 zusammengefasst. Table 2: As a further comparison, a powder Ta2.5W (Vg2) was produced by pressing the corresponding starting powder and sintering it at 1200 ° C. to form a metal body which was then atomized. The particle sizes D99 of the Starting metals Ta and W were 150 pm and 125 pm, respectively. The results are also summarized in Table 2.
Analog zu Vergleich 2 wurde ein drittes Vergleichspulver hergestellt, wobei jedoch 13 Gew.-% W eingesetzt wurden (Vg3, siehe Tabelle 2). Wie Figur 6a deutlich zeigt weist das Pulver gemäß Vg3 eine dendritische Mikrostruktur auf, wobei die Variation der Tantal- und Wolfram-Gehalte durch unterschiedliche Graustufen dargestellt ist und in den mit 1 bis 4 gekennzeichneten Bereichen bis zu 15 Gew.-% betrug. Eine zweite Kristallphase konnte nicht identifiziert werden (siehe Figur 6b). Wie die Vergleichsversuche zeigen, können mit bekannten Verfahren keine Pulver mit einer homogenen Mikrostruktur oder Elementarverteilung erhalten werden, die gleichzeitig zwei unterschiedliche Kristallphasen aufweisen. A third comparison powder was produced analogously to comparison 2, but 13% by weight of W was used (Vg3, see table 2). As FIG. 6a clearly shows, the powder according to Vg3 has a dendritic microstructure, the variation of the tantalum and tungsten contents being represented by different gray levels and being up to 15% by weight in the areas marked 1 to 4. A second crystal phase could not be identified (see FIG. 6b). As the comparative experiments show, no powders with a homogeneous microstructure or elementary distribution which simultaneously have two different crystal phases can be obtained with known methods.
Das Pulver gemäß Vergleich 3 (Vg3) sowie das erfindungsgemäße Pulver E2b wurden mittels SLM mit den in Tabelle 3 angegebenen Druckparametern verdruckt. Dabei sollte ein möglichst dichtes, würfelförmiges Bauteil mit einer Kantenlänge von ca. 2,5 cm und einer homogenen Mikrostruktur hergestellt werden. Die Dichte des Bauteils ist als Verhältnis der tatsächlich gemessenen Dichte des Bauteils zur theoretischen Dichte der Legierung in % angegebenen. Eine Dichte von weniger als 100% deutet auf das Vorliegen unerwünschter Poren hin, die zu einer negativen Beeinflussung der mechanischen Eigenschaften des Bauteils führen können. The powder according to comparison 3 (Vg3) and the powder E2b according to the invention were printed using the SLM with the printing parameters indicated in table 3. A dense, cube-shaped component with an edge length of approx. 2.5 cm and a homogeneous microstructure should be produced. The density of the component is given as the ratio of the actually measured density of the component to the theoretical density of the alloy in%. A density of less than 100% indicates the presence of unwanted pores, which can have a negative impact on the mechanical properties of the component.
Das mit dem erfindungsgemäßen Pulver hergestellte Bauteil konnte bereits bei niedriger Laserleistung beziehungsweise volumetrischer Energiedichte in der erforderlichen Dichte erhalten werden, was unter anderem zu einer erhöhten Prozesssicherheit, einem niedrigeren Energieverbrauch und einer niedrigeren Sauerstoffaufnahme des restlichen Pulvers führt. Alternativ konnte die Scangeschwindigkeit des Lasers erhöht werden, so dass ein höherer Durchsatz erzielt wurde. The component produced with the powder according to the invention could be obtained in the required density even at low laser power or volumetric energy density, which among other things leads to increased process reliability, lower energy consumption and lower oxygen uptake of the remaining powder. Alternatively, the scanning speed of the laser could be increased so that a higher throughput was achieved.
Tabelle 3:
Table 3:
Figur 7 zeigt eine REM-Aufnahme einer geschliffenen Probe des mit dem erfindungsgemäßen Pulver E2b hergestellten Bauteils (D3) mit einer Dichte von 99% der theoretischen Dichte. Figur 8 zeigt eine REM-Aufnahme einer geschliffenen Probe eines Bauteils Dl, das mit dem Vergleichspulver V3b hergestellt wurde. Deutlich ist die geringe Dichte des Bauteils von weniger als 80% der theoretischen Dichte zu erkennen.
FIG. 7 shows an SEM image of a ground sample of the component (D3) produced with the powder E2b according to the invention with a density of 99% of the theoretical density. FIG. 8 shows an SEM image of a ground sample of a component D1 which was produced with the comparison powder V3b. The low density of the component of less than 80% of the theoretical density can be clearly seen.
Claims
1 . Sphärisches Pulver zur Fertigung von dreidimensionalen Bauteilen, dadurch gekennzeichnet, dass es sich bei dem Pulver um ein Legierungspulver aus mindestens zwei Refraktärmetallen handelt, wobei das Legierungspulver eine homogene Mikrostruktur und mindestens zwei kristalline Phasen aufweist. 1 . Spherical powder for the production of three-dimensional components, characterized in that the powder is an alloy powder composed of at least two refractory metals, the alloy powder having a homogeneous microstructure and at least two crystalline phases.
2. Pulver gemäß Anspruch 1 , dadurch gekennzeichnet, dass es sich bei den Refraktärmetallen um Tantal, Niob, Vanadium, Yttrium, Titan, Zirkonium, Hafnium, Wolfram und Molybdän, vorzugsweise um Wolfram und Tantal handelt. 2. Powder according to claim 1, characterized in that the refractory metals are tantalum, niobium, vanadium, yttrium, titanium, zirconium, hafnium, tungsten and molybdenum, preferably tungsten and tantalum.
3. Pulver gemäß wenigstens einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass das Legierungspulver im Wesentlichen frei von Ti ist, wobei der Gehalt an Ti in dem Legierungspulver vorzugsweise weniger als 1 ,5 Gew.-% , besonders bevorzugt weniger als 1 ,0 Gew.-%, insbesondere bei weniger als 0,5 Gew.-% und im Speziellen bei weniger als 0,1 Gew.-% . 3. Powder according to at least one of claims 1 to 2, characterized in that the alloy powder is essentially free of Ti, the content of Ti in the alloy powder preferably being less than 1.5% by weight, particularly preferably less than 1, 0% by weight, in particular at less than 0.5% by weight and especially at less than 0.1% by weight.
4. Pulver gemäß wenigstens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass es sich bei einer der Kristallphasen um eine metastabile Kristallphase handelt. 4. Powder according to at least one of claims 1 to 3, characterized in that one of the crystal phases is a metastable crystal phase.
5. Pulver gemäß wenigstens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Pulver eine Hauptkristallphase und mindestens eine Nebenkristallphase aufweist, wobei das Intensitätsverhältnis des Reflexes aus einem Röntgendiffraktogramm mit der höchsten Intensität mindestens einer Nebenkristallphase ( I ( P2 ) 100 ) und der höchsten Intensität der Hauptkristallphase ( I ( P1 ) 100) , ausgedrückt als I ( P2 ) 100 / I ( P1 ) 100 , vorzugsweise kleiner als 0,75, besonders bevorzugt 0,05 bis 0,55, insbesondere 0,07 bis 0,4 ist, jeweils bestimmt mittels Röntgendiffraktometrie.
5. Powder according to at least one of claims 1 to 4, characterized in that the powder has a main crystal phase and at least one secondary crystal phase, the intensity ratio of the reflection from an X-ray diffractogram with the highest intensity of at least one secondary crystal phase (I (P2) 100) and the highest intensity of the main crystal phase (I (P1) 100), expressed as I (P2) 100 / I (P1) 100, preferably less than 0.75, particularly preferably 0.05 to 0.55, in particular 0.07 to 0, 4, each determined by means of X-ray diffractometry.
6. Pulver gemäß wenigstens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass in mindestens 95%, vorzugsweise mindestens 97% , besonders bevorzugt mindestens 99% aller Pulverpartikel die Gehalte der Legierungselemente, ausgedrückt in Gew.-%, innerhalb eines Partikels um weniger als 8% variieren, vorzugsweise um 0,05 bis 6%, besonders bevorzugt 0,05 bis 3%, bestimmt mittels EDX (energiedispersive Röntgen Spektroskopie). 6. Powder according to at least one of claims 1 to 5, characterized in that in at least 95%, preferably at least 97%, particularly preferably at least 99% of all powder particles, the content of the alloying elements, expressed in% by weight, within a particle is less than 8%, preferably by 0.05 to 6%, particularly preferably 0.05 to 3%, determined by means of EDX (energy dispersive X-ray spectroscopy).
7. Pulver gemäß wenigstens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Pulver eine Fließfähigkeit von weniger als 25 s/50g, vorzugsweise weniger als 20 s/50g und insbesondere weniger als 15 s/50g aufweist, jeweils bestimmt gemäß ASTM B213. 7. Powder according to at least one of claims 1 to 6, characterized in that the powder has a flowability of less than 25 s / 50g, preferably less than 20 s / 50g and in particular less than 15 s / 50g, each determined in accordance with ASTM B213 .
8. Pulver gemäß wenigstens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Pulver eine Klopfdichte von 40 bis 80% seiner theoretischen Dichte, vorzugsweise 60 bis 80% seiner theoretischen Dichte aufweist, jeweils bestimmt gemäß ASTM B527. 8. Powder according to at least one of claims 1 to 7, characterized in that the powder has a tap density of 40 to 80% of its theoretical density, preferably 60 to 80% of its theoretical density, each determined in accordance with ASTM B527.
9. Verfahren zur Herstellung sphärischer Legierungspulver gemäß wenigstens einem der Ansprüche 1 bis 8 umfassend die Schritte a) Bereitstellen einer Ausgangspulvermischung umfassend mindestens zwei Refraktärmetalle, wobei die Ausgangspulvermischung eine Partikelgröße mit einem D99-Wert von weniger als 100 gm und wenigstens eines der Refraktärmetalle eine Partikelgröße mit einem D99-Wert von weniger als 10 gm aufweist, jeweils bestimmt gemäß ASTM B822. b) Herstellen eines Pulverkörpers aus der Ausgangspulvermischung mittels kalt-isostatischem Verpressen (CI P); c) Sintern des gepressten Körpers bei einer Temperatur, die 400 bis 1150 °C, vorzugsweise 700 bis 1050 °C unterhalb des niedrigsten Schmelzpunkts der Refraktärmetalle der Ausgangspulvermischung liegt; d) Aufschmelzen des gepressten Pulverkörpers mittels Elektroden- indu kt ionsschmelzen; e) Zerstäuben der Schmelze bei gleichzeitiger Abkühlung unter Erhalt eines sphärischen Legierungspulvers.
9. A method for producing spherical alloy powders according to at least one of claims 1 to 8 comprising the steps of a) providing a starting powder mixture comprising at least two refractory metals, the starting powder mixture having a particle size with a D99 value of less than 100 μm and at least one of the refractory metals having a particle size with a D99 value of less than 10 gm, each determined in accordance with ASTM B822. b) producing a powder body from the starting powder mixture by means of cold isostatic pressing (CI P); c) sintering the pressed body at a temperature which is 400 to 1150 ° C., preferably 700 to 1050 ° C. below the lowest melting point of the refractory metals of the starting powder mixture; d) melting the pressed powder body by means of electrode induction melting; e) atomizing the melt with simultaneous cooling to obtain a spherical alloy powder.
10. Verfahren gemäß Anspruch 9, dadurch gekennzeichnet, dass eines der10. The method according to claim 9, characterized in that one of the
Refraktärmetalle der Ausgangspulvermischung in Form von porösenRefractory metals of the starting powder mixture in the form of porous
Agglomeraten mit einer Partikelgröße D99 von weniger als 100 pm, bestimmt gemäß ASTM B822, vorliegt. Agglomerates with a particle size D99 of less than 100 μm, determined according to ASTM B822, is present.
11. Verfahren gemäß Anspruch wenigstens einem der Ansprüche 9 und 10, dadurch gekennzeichnet, dass das Sintern während einer Zeitdauer von 0,5 bis 6 Stunden, vorzugsweise 1 bis 5 Stunden durchgeführt wird. 11. The method according to claim at least one of claims 9 and 10, characterized in that the sintering is carried out for a period of 0.5 to 6 hours, preferably 1 to 5 hours.
12. Verfahren gemäß wenigstens einem der Ansprüche 9 bis 11 , dadurch gekennzeichnet, dass das Legierungspulver weiterhin einem12. The method according to at least one of claims 9 to 11, characterized in that the alloy powder further a
Desoxidationsschritt in Gegenwart eines Reduktionsmittels unterzogen wird, wobei es sich bei dem Reduktionsmittel vorzugsweise um Magnesium oder Calcium, insbesondere in Form von Dampf, handelt. Deoxidation step is subjected in the presence of a reducing agent, the reducing agent preferably being magnesium or calcium, in particular in the form of steam.
13. Verfahren gemäß wenigstens einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, dass das Abkühlen während des Zerstäubens mittels gekühlten Inertgases erfolgt. 13. The method according to at least one of claims 9 to 12, characterized in that the cooling takes place during the atomization by means of cooled inert gas.
14. Verwendung eines Legierungspulvers gemäß wenigstens einem der Ansprüche 1 bis 8 oder eines Pulvers erhältlich nach einem Verfahren gemäß wenigstens einem der Ansprüche 9 bis 13 in additiven Fertigungsverfahren und/oder Metallpulverspritzgießverfahren (MIM). 14. Use of an alloy powder according to at least one of claims 1 to 8 or a powder obtainable by a method according to at least one of claims 9 to 13 in additive manufacturing processes and / or metal powder injection molding processes (MIM).
15. Verwendung gemäß Anspruch 14, dadurch gekennzeichnet, dass es sich bei dem additiven Fertigungsverfahren um ein Verfahren handelt, das ausgewählt ist aus der Gruppe bestehend aus Selective Laser Melting (SLM), Electron Beam Melting (EBM) und Laserauftragsschweißen (LC). 15. Use according to claim 14, characterized in that the additive manufacturing process is a process selected from the group consisting of Selective Laser Melting (SLM), Electron Beam Melting (EBM) and laser deposition welding (LC).
16. Bauteil hergestellt unter Verwendung eines Legierungsmetallpulvers gemäß wenigstens einem der Ansprüche 1 bis 8 oder eines Pulvers erhältlich nach einem Verfahren gemäß wenigstens einem der Ansprüche 9 bis 13.
16. Component produced using an alloy metal powder according to at least one of claims 1 to 8 or a powder obtainable by a method according to at least one of claims 9 to 13.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102019217654.2A DE102019217654A1 (en) | 2019-11-15 | 2019-11-15 | Spherical powder for the production of three-dimensional objects |
PCT/EP2020/082099 WO2021094560A1 (en) | 2019-11-15 | 2020-11-13 | Spherical powder for making 3d objects |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4058224A1 true EP4058224A1 (en) | 2022-09-21 |
Family
ID=73449069
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20807361.9A Pending EP4058224A1 (en) | 2019-11-15 | 2020-11-13 | Spherical powder for making 3d objects |
Country Status (12)
Country | Link |
---|---|
US (1) | US20220395900A1 (en) |
EP (1) | EP4058224A1 (en) |
JP (1) | JP2023502935A (en) |
KR (1) | KR20220099107A (en) |
CN (1) | CN114641357A (en) |
AU (1) | AU2020382062A1 (en) |
BR (1) | BR112022006007A2 (en) |
CA (1) | CA3157126A1 (en) |
DE (1) | DE102019217654A1 (en) |
IL (1) | IL292769A (en) |
TW (1) | TW202132579A (en) |
WO (1) | WO2021094560A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023142251A1 (en) * | 2022-01-25 | 2023-08-03 | 赵远云 | Spherical iron alloy powder material, preparation method therefor, and application thereof |
EP4324580A1 (en) * | 2022-08-16 | 2024-02-21 | H.C. Starck Tungsten GmbH | Refractory metal powder for additive manufacturing and method for the production thereof |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1144147B8 (en) | 1998-05-06 | 2012-04-04 | H.C. Starck GmbH | METHOD FOR PRODUCING METAL POWDERS BY REDUCTION OF THE OXIDES, Nb AND Nb-Ta POWDERS AND CAPACITOR ANODE OBTAINED THEREWITH |
JP2013513026A (en) | 2009-12-07 | 2013-04-18 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | An alloy comprising two refractory metals, in particular tungsten and tantalum, and an X-ray anode comprising said alloy, and a method for fabricating said alloy and X-ray anode |
US20180258512A1 (en) * | 2015-09-17 | 2018-09-13 | Nanyang Technological University | Titanium-tantalum alloy and method of forming thereof |
CN105296802B (en) * | 2015-11-03 | 2017-03-22 | 华南理工大学 | High-tenacity dual-scale structural titanium alloy and preparation method and application thereof |
CN106735280B (en) * | 2016-11-23 | 2019-05-28 | 西北有色金属研究院 | A kind of preparation method of spherical shape TiTa alloy powder |
CN108296490A (en) | 2017-01-13 | 2018-07-20 | 龙岩紫荆创新研究院 | A kind of manufacturing method of spherical shape tungsten tantalum alloy powder |
US20190084048A1 (en) * | 2017-09-18 | 2019-03-21 | Tosoh Smd, Inc. | Titanium-tantalum powders for additive manufacturing |
CN109834260A (en) * | 2017-11-27 | 2019-06-04 | 沈阳东青科技有限公司 | A kind of PREP method prepares spherical Ni Ti alloy powder |
US11865612B2 (en) * | 2018-04-13 | 2024-01-09 | Taniobis Gmbh | Metal powder for 3D-printing |
CN109434121A (en) * | 2018-11-22 | 2019-03-08 | 天津大学 | A method of Nb-Al amorphous thin layer is prepared using mechanical alloying method |
-
2019
- 2019-11-15 DE DE102019217654.2A patent/DE102019217654A1/en active Pending
-
2020
- 2020-11-12 TW TW109139452A patent/TW202132579A/en unknown
- 2020-11-13 EP EP20807361.9A patent/EP4058224A1/en active Pending
- 2020-11-13 IL IL292769A patent/IL292769A/en unknown
- 2020-11-13 JP JP2022528004A patent/JP2023502935A/en active Pending
- 2020-11-13 CA CA3157126A patent/CA3157126A1/en active Pending
- 2020-11-13 KR KR1020227015769A patent/KR20220099107A/en unknown
- 2020-11-13 CN CN202080079042.2A patent/CN114641357A/en active Pending
- 2020-11-13 US US17/775,888 patent/US20220395900A1/en active Pending
- 2020-11-13 WO PCT/EP2020/082099 patent/WO2021094560A1/en unknown
- 2020-11-13 AU AU2020382062A patent/AU2020382062A1/en active Pending
- 2020-11-13 BR BR112022006007A patent/BR112022006007A2/en unknown
Also Published As
Publication number | Publication date |
---|---|
AU2020382062A1 (en) | 2022-05-26 |
KR20220099107A (en) | 2022-07-12 |
IL292769A (en) | 2022-07-01 |
CN114641357A (en) | 2022-06-17 |
JP2023502935A (en) | 2023-01-26 |
BR112022006007A2 (en) | 2022-09-06 |
TW202132579A (en) | 2021-09-01 |
US20220395900A1 (en) | 2022-12-15 |
WO2021094560A1 (en) | 2021-05-20 |
DE102019217654A1 (en) | 2021-05-20 |
CA3157126A1 (en) | 2021-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE60121242T2 (en) | Molybdenum-copper composite powder and its production and processing into a pseudo alloy | |
DE60205251T2 (en) | SPUTTER TARGETS ON PT-CO BASE | |
DE68906837T2 (en) | SINTERED WORKPIECES AND METHOD FOR THEIR PRODUCTION. | |
EP3802898B1 (en) | Density-optimized molybdenum alloy | |
EP2974812B1 (en) | Method for the manufacture of a component from a metal alloy with an amorphous phase | |
DE60301069T2 (en) | PRESERVED BINDEX POWDER | |
EP2944401A1 (en) | Method for producing a component from a metallic alloy containing an amorphous phase | |
DE68921246T2 (en) | Sintered, surface-refined alloy with and without hard coating as well as a process for producing the alloy. | |
DE112011103352T5 (en) | Alloy process for aluminum metal powder | |
EP3166741A1 (en) | Method for producing a component | |
DE69702949T2 (en) | Composite carbide powder for use in cemented carbide and process for its manufacture | |
DE102019129302A1 (en) | SOFT MAGNETIC ALLOY POWDER, DUST CORE, MAGNETIC COMPONENT AND ELECTRONIC DEVICE | |
EP4058224A1 (en) | Spherical powder for making 3d objects | |
WO2019034506A1 (en) | Copper-based alloy for the production of bulk metallic glasses | |
EP3041631B1 (en) | Chromium metal powder | |
EP2205381A2 (en) | Metal powder mixture and the use thereof | |
DE112011104430B4 (en) | Improved aluminum alloy metal powder with transition elements | |
EP2473204B1 (en) | Hydroxylapatite material, and method for the production thereof | |
DE102007052198B3 (en) | Metal powder mixture for sintering, comprises first fraction containing metal alloy and components initiating phase conversion well below melting point | |
DE102010024669B3 (en) | Producing metal foam with stabilizing particles in metal matrix, comprises producing foamable starting material, foaming the starting material, and generating stabilizing particles in in-situ reaction of reactive substance and molten metal | |
EP3231536B1 (en) | Method for producing components from titanium or titanium alloys with powder metallurgy | |
DE10110448A1 (en) | Coating powder based on titanium sub-oxides with defined defect structure used in coating technology is modified by alloy elements stabilizing defect structure during processing of coating powder | |
DE102019104492B4 (en) | METHOD FOR PRODUCING A CRYSTALLINE ALUMINUM-IRON-SILICON ALLOY | |
DE3043321A1 (en) | SINTER PRODUCT FROM METAL ALLOY AND THE PRODUCTION THEREOF | |
DE102008062614A1 (en) | Precursor for the production of sintered metallic components, a process for the production of the precursor and the manufacture of the components |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20220615 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) |