Nothing Special   »   [go: up one dir, main page]

EP3913104A1 - Use of a steel material - Google Patents

Use of a steel material Download PDF

Info

Publication number
EP3913104A1
EP3913104A1 EP21169902.0A EP21169902A EP3913104A1 EP 3913104 A1 EP3913104 A1 EP 3913104A1 EP 21169902 A EP21169902 A EP 21169902A EP 3913104 A1 EP3913104 A1 EP 3913104A1
Authority
EP
European Patent Office
Prior art keywords
steel material
steel
use according
nickel
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP21169902.0A
Other languages
German (de)
French (fr)
Inventor
Seyed Amin MOUSAVI RIZZI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bilstein GmbH and Co KG
Original Assignee
Bilstein GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bilstein GmbH and Co KG filed Critical Bilstein GmbH and Co KG
Publication of EP3913104A1 publication Critical patent/EP3913104A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni

Definitions

  • the invention is based on a stainless austenitic steel St 1.4404 according to the material data sheet of the Deutsche Austechnike from 08.06.2016.
  • a stainless steel should be useful for many areas of application.
  • the main disadvantage of this steel is that it contains a high proportion of nickel as an alloying element, on the order of 10 to 13 percent by weight. Due to the high nickel prices, this leads to a considerable increase in the price of the product, so that due to the high price, the use of this material for many areas of application is out of the question.
  • the aim of the invention is to provide an inexpensive austenitic steel which makes these steel qualities accessible to new areas of application.
  • a nickel-free austenitic steel with a high manganese content is specified, which is extremely useful for the specified use and thus also makes the material accessible for new areas of application.
  • Such a so-called high manganese austenite is sufficiently corrosion-resistant and easily formable, in particular cold-formable, with the steel being able to be used in new areas of application due to its inexpensive composition.
  • nickel is only intended as an exception and in small amounts in order to optimize the ductility properties and improve the corrosion resistance. If the improved corrosion resistance is dispensed with, the proportion of nickel can remain set to zero.
  • the material contains less than 5% deformation-indexed martensite in the case of cold deformation using predominantly the TWIP mechanism.
  • a special feature is also seen in the fact that the technological properties of the steel material are set by rolling the material with a suitable degree of rolling and / or annealing the material at a suitable annealing temperature.
  • alloying elements In the case of alloying elements, a basic distinction must be made as to whether they are carbide, austenite or ferrite formers and for what purpose they are added to the steel.
  • each individual element gives the steel certain specific properties depending on its proportion. If several elements are present, the effect can be increased. However, there are alloy variants in which the individual elements with regard to a certain behavior do not exert their influence in the same direction, but can counteract each other.
  • the presence of the alloying elements in the steel only provides the prerequisite for the desired properties; this can only be achieved through processing and heat treatment.
  • Carbon is the most important and most influential alloying element in steel.
  • every unalloyed steel contains silicon, manganese, phosphorus and sulfur, which are unintentionally added during manufacture.
  • the addition of further alloying elements to achieve special effects as well as the deliberate increase in the manganese and silicon content leads to alloyed steel.
  • With increasing C content the strength and hardenability of the steel increase, whereas its elongation, forgeability, weldability and machinability (using cutting tools) are reduced.
  • the corrosion resistance to water, acids and hot gases is practically not influenced by the carbon.
  • the proportion of carbon is kept relatively low, so that an optimal relationship between strength and elongation is obtained.
  • the aim is to achieve maximum formability.
  • carbon is an austenite former.
  • Mn is an austenite former and is mainly used according to the invention as a cheaper substitute for Ni. This is why a proportion of 10-20% is used in this concept.
  • the main task of Cr is to protect against corrosion. Since in this concept the product is to be used in a corrosive medium, a Cr content of 14-16% is used here in order to obtain increased corrosion protection.
  • Nickel is one of the alloying elements that promote solidification according to the stable iron-carbon system. By reducing the critical cooling rate, nickel increases the hardening and tempering. Nickel also increases the toughness, especially in the low temperature range, has a grain-refining effect and reduces the sensitivity to overheating.
  • the 18/10 chrome-nickel steel (1.4301) is one of the main representatives of corrosion-resistant austenitic steels.
  • nickel is a relatively expensive alloying element and, according to the invention, the proportion here is replaced by manganese.
  • a certain proportion can increase the toughness and also have a positive influence on the stability of the austenite.
  • nickel has a positive effect on corrosion resistance.
  • Nitrogen acts as an austenite former in a similar way to carbon.
  • the nitrogen content in the steel can be increased significantly, some of the nickel in austenitic steels replaces the effect of carbon and the carbon content can be reduced.
  • nitrogen serves as a substitute for carbon and improves corrosion resistance. Furthermore, nitrogen acts as a substitute for the autenite former nickel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

Die Erfindung betrifft die Verwendung eines Stahlwerkstoffes zur Herstellung von sauergasbeständigen Teilen für die Energieerzeugung, Rohren, Tanks, von Pipelines für Gase oder andere Fluide, von mit Wasserstoff in Berührung kommenden Bauteilen, Bipolar-Platten von Brennstoffzellen und von Wärmetauschern, wobei der Stahlwerkstoff folgende Bestandteile hat:hochmanganhaltiger austenitischer Stahl mit (Angaben in Gewichtsprozent)• 0,02 bis 0,12 % Kohlenstoff,• 0,05 bis 0,5 % Stickstoff,• 10 bis 20 % Mangan,• 10 bis 20 % Chrom,• Rest Eisen mit üblichen Verunreinigungen.The invention relates to the use of a steel material for the production of sour gas-resistant parts for power generation, pipes, tanks, pipelines for gases or other fluids, components that come into contact with hydrogen, bipolar plates of fuel cells and heat exchangers, the steel material having the following components has: high manganese content austenitic steel with (data in percent by weight) • 0.02 to 0.12% carbon, • 0.05 to 0.5% nitrogen, • 10 to 20% manganese, • 10 to 20% chromium, • the remainder iron with common impurities.

Description

Die Erfindung geht aus von einem nichtrostenden austenitischen Stahl St 1.4404 gemäß Werkstoffdatenblatt der Deutschen Edelstahlwerke vom 08.06.2016. Ein solcher Edelstahl soll für viele Anwendungsbereiche brauchbar sein. Der wesentliche Nachteil dieses Stahls ist, dass ein hoher Anteil an Nickel als Legierungselement enthalten ist und zwar in der Größenordnung von 10 bis 13 Gewichtsprozent. Dies führt aufgrund der hohen Nickelpreise zu einer erheblichen Verteuerung des Produktes, so dass aufgrund des hohen Preises die Anwendung dieses Materials für viele Anwendungsgebiete nicht in Betracht kommt.The invention is based on a stainless austenitic steel St 1.4404 according to the material data sheet of the Deutsche Edelstahlwerke from 08.06.2016. Such a stainless steel should be useful for many areas of application. The main disadvantage of this steel is that it contains a high proportion of nickel as an alloying element, on the order of 10 to 13 percent by weight. Due to the high nickel prices, this leads to a considerable increase in the price of the product, so that due to the high price, the use of this material for many areas of application is out of the question.

Ziel der Erfindung ist es, einen kostengünstigen austenitischen Stahl zur Verfügung zu stellen, der diese Stahlqualitäten neuen Verwendungsbereichen zugänglich macht.The aim of the invention is to provide an inexpensive austenitic steel which makes these steel qualities accessible to new areas of application.

Demzufolge gibt die Erfindung eine neue Verwendung eines Stahlwerkstoffes zur Herstellung von sauergasbeständigen Teilen für die Energieerzeugung, Rohren, Tanks, von Pipelines für Gase oder andere Fluide, von mit Wasserstoff in Berührung kommenden Bauteilen, Bipolar-Platten von Brennstoffzellen und von Wärmetauschern an, wobei der Stahlwerkstoff folgende Bestandteile hat:
hochmanganhaltiger austenitischer Stahl mit (Angaben in Gewichtsprozent)

  • 0,02 bis 0,12 % Kohlenstoff,
  • 0,05 bis 0,5 % Stickstoff,
  • 10 bis 20 % Mangan,
  • 10 bis 20 % Chrom,
  • Rest Eisen mit üblichen Verunreinigungen.
Accordingly, the invention is a new use of a steel material for the production of sour gas-resistant parts for power generation, pipes, tanks, pipelines for gases or other fluids, components coming into contact with hydrogen, bipolar plates of fuel cells and heat exchangers, whereby the steel material has the following components:
high manganese content austenitic steel with (data in percent by weight)
  • 0.02 to 0.12% carbon,
  • 0.05 to 0.5% nitrogen,
  • 10 to 20% manganese,
  • 10 to 20% chromium,
  • The remainder is iron with the usual impurities.

Gemäß der Erfindung wird ein nickelfreier hochmanganhaltiger austenitischer Stahl angegeben, der für die angegebene Verwendung ausgezeichnet brauchbar ist und somit den Werkstoff auch für neue Anwendungsbereiche zugänglich macht.According to the invention, a nickel-free austenitic steel with a high manganese content is specified, which is extremely useful for the specified use and thus also makes the material accessible for new areas of application.

Ein solcher sogenannter hoch Mangan-Austenit ist ausreichend korrosionsbeständig und gut umformbar, insbesondere kaltumformbar, wobei der Stahl aufgrund seiner kostengünstigen Zusammensetzung neuen Anwendungsbereichen zugeführt werden kann.Such a so-called high manganese austenite is sufficiently corrosion-resistant and easily formable, in particular cold-formable, with the steel being able to be used in new areas of application due to its inexpensive composition.

Der Stahlwerkstoff kann neben den angegebenen Bestandteilen noch mindestens einen weiteren Bestandteil haben, nämlich

  • bis zu 0,8 % Silizium,
  • bis zu 4 % Kupfer,
  • bis zu 4 % Nickel,
  • bis zu 2 % Molybdän,
  • höchstens 0,05 % Phosphor,
  • höchstens 0,05 % Schwefel,
  • bis zu 0,5 % Titan,
  • bis zu 0,5 % Niob,
  • bis zu 0,5 % Vanadium.
In addition to the specified components, the steel material can also have at least one further component, namely
  • up to 0.8% silicon,
  • up to 4% copper,
  • up to 4% nickel,
  • up to 2% molybdenum,
  • not more than 0.05% phosphorus,
  • not more than 0.05% sulfur,
  • up to 0.5% titanium,
  • up to 0.5% niobium,
  • up to 0.5% vanadium.

Alle Angaben sind grundsätzlich in Gewichtsprozent.All data are always in percent by weight.

Das Hinzufügen von Nickel ist nur ausnahmsweise und in geringen Mengen vorgesehen, um die Duktilitätseigenschaften zu optimieren und die Korrosionsbeständigkeit zu verbessern. Sofern auf die verbesserte Korrosionsbeständigkeit verzichtet wird, kann der Anteil von Nickel auf null gesetzt bleiben.The addition of nickel is only intended as an exception and in small amounts in order to optimize the ductility properties and improve the corrosion resistance. If the improved corrosion resistance is dispensed with, the proportion of nickel can remain set to zero.

Bevorzugt sind die Bestandteile an Legierungselementen wie folgt:

  • 0,05 bis 0,08 % Kohlenstoff,
  • 0,08 bis 0,15 % Stickstoff,
  • 13 bis 17 % Mangan,
  • 13 bis 17 % Chrom,
  • 1 bis 2 % Nickel,
sowie vorzugsweise
  • 0,1 bis 0,2 Silizium,
  • 1 bis 2 % Kupfer,
  • maximal 0,2 % Molybdän,
und als zulässige Verunreinigungen
  • höchstens 0,005 % Schwefel,
  • höchstens 0,02 % Phospor,
  • höchstens 0,5 % Titan,
  • höchstens 0,5 % Niob,
  • höchstens 0,5 % Vanadium
  • Rest Eisen gegebenenfalls mit üblichen Verunreinigungen.
Angaben in Gewichtsprozent)The components of alloy elements are preferred as follows:
  • 0.05 to 0.08% carbon,
  • 0.08 to 0.15% nitrogen,
  • 13 to 17% manganese,
  • 13 to 17% chromium,
  • 1 to 2% nickel,
as well as preferably
  • 0.1 to 0.2 silicon,
  • 1 to 2% copper,
  • maximum 0.2% molybdenum,
and as permissible impurities
  • not more than 0.005% sulfur,
  • not more than 0.02% phosphorus,
  • not more than 0.5% titanium,
  • not more than 0.5% niobium,
  • at most 0.5% vanadium
  • The remainder is iron, possibly with the usual impurities.
Data in percent by weight)

Der angegebene Stahlwerkstoff hat vorzugsweise folgende mechanische technologische Eigenschaften:

  • Zugfestigkeit Rm = 500 bis 800 MPa,
  • Streckgrenze Rp 0,2 = 200 bis 500 MPa,
  • Bruchdehnung A80 = mindestens 42 %.
The specified steel material preferably has the following mechanical technological properties:
  • Tensile strength R m = 500 to 800 MPa,
  • Yield strength R p 0.2 = 200 to 500 MPa,
  • Elongation at break A80 = at least 42%.

Besonders bevorzugt ist dabei vorgesehen, dass der Werkstoff bei Kaltverformung unter vorwiegender Verwendung des TWIP-Mechanismus einen Anteil von weniger als 5 % verformungsindiziertem Martensit enthält.It is particularly preferred that the material contains less than 5% deformation-indexed martensite in the case of cold deformation using predominantly the TWIP mechanism.

Eine Besonderheit wird noch darin gesehen, dass die technologischen Eigenschaften des Stahlwerkstoffes durch Walzen des Werkstoffs mit geeignetem Abwalzgrad und/oder Glühen des Werkstoffes bei geeigneter Glühtemperatur eingestellt werden.A special feature is also seen in the fact that the technological properties of the steel material are set by rolling the material with a suitable degree of rolling and / or annealing the material at a suitable annealing temperature.

Einfluss der Elemente:Influence of the elements:

Bei den Legierungselementen ist grundsätzlich zu unterscheiden, ob sie Karbid-, Austenit- oder Ferritbildner sind bzw. zu welchem Zweck sie dem Stahl zulegiert werden.In the case of alloying elements, a basic distinction must be made as to whether they are carbide, austenite or ferrite formers and for what purpose they are added to the steel.

Jedes einzelne Element verleiht dem Stahl je nach Anteil bestimmte spezifische Eigenschaften. Bei Anwesenheit mehrerer Elemente kann die Wirkung gesteigert werden. Es gibt jedoch Legierungsvarianten, bei denen die Einzelelemente bezüglich eines bestimmten Verhaltens ihren Einfluss nicht in gleicher Richtung ausüben, sondern sich entgegenwirken können.Each individual element gives the steel certain specific properties depending on its proportion. If several elements are present, the effect can be increased. However, there are alloy variants in which the individual elements with regard to a certain behavior do not exert their influence in the same direction, but can counteract each other.

Das Vorhandensein der Legierungselemente im Stahl bringt nur die Voraussetzung für die gewünschten Eigenschaften; erst die Verarbeitung und Wärmebehandlung lässt diese erzielen.The presence of the alloying elements in the steel only provides the prerequisite for the desired properties; this can only be achieved through processing and heat treatment.

Kohlenstoff (C)Carbon (C)

Allgemein:
Kohlenstoff ist das wichtigste und einflussreichste Legierungselement im Stahl. Neben Kohlenstoff enthält jeder unlegierte Stahl Silizium, Mangan, Phosphor und Schwefel, welche bei der Herstellung unbeabsichtigt hinzukommen. Der Zusatz weiterer Legierungselemente zur Erzielung besonderer Wirkungen sowie die bewusste Erhöhung des Mangan- und Siliziumgehaltes führt zum legierten Stahl. Mit zunehmendem C-Gehalt steigen die Festigkeit und Härtbarkeit des Stahles, wogegen seine Dehnung, Schmiedbarkeit, Schweißbarkeit und Bearbeitbarkeit (durch spanabhebende Werkzeuge) verringert werden. Der Korrosionswiderstand gegenüber Wasser, Säuren und heißen Gasen wird durch den Kohlenstoff praktisch nicht beeinflusst.
Generally:
Carbon is the most important and most influential alloying element in steel. In addition to carbon, every unalloyed steel contains silicon, manganese, phosphorus and sulfur, which are unintentionally added during manufacture. The addition of further alloying elements to achieve special effects as well as the deliberate increase in the manganese and silicon content leads to alloyed steel. With increasing C content, the strength and hardenability of the steel increase, whereas its elongation, forgeability, weldability and machinability (using cutting tools) are reduced. The corrosion resistance to water, acids and hot gases is practically not influenced by the carbon.

Bei dem erfindungsgemäßen Konzept wird der Anteil an Kohlenstoff relativ gering gehalten, so dass ein optimales Verhältnis zwischen Festigkeit und Dehnung erhalten. Ziel ist es eine maximale Umformbarkeit zu erzielen. Des Weiteren ist Kohlenstoff ein Austenitbildner.In the concept according to the invention, the proportion of carbon is kept relatively low, so that an optimal relationship between strength and elongation is obtained. The aim is to achieve maximum formability. Furthermore, carbon is an austenite former.

Mangan (Mn)Manganese (Mn)

Allgemein:

  • Mn setzt die kritische Abkühlungsgeschwindigkeit sehr stark herab und erhöht damit die Härtbarkeit
  • Streckgrenze und Festigkeit werden durch Mn-Zusatz erhöht
  • Gehalte über 4% führen auch bei langsamer Abkühlung zur Ausbildung von sprödem martensitischem Gefüge
  • Stähle mit Mn-Gehalten über 12% sind bei gleichzeitigem hohem C-Anteil austenitisch, weil Mn den γ-Bereich erheblich ausweitet.
Generally:
  • Mn greatly reduces the critical cooling rate and thus increases the hardenability
  • Yield strength and strength are increased by adding Mn
  • Contents above 4% lead to the formation of a brittle martensitic structure even with slow cooling
  • Steels with an Mn content of more than 12% are austenitic with a high C content at the same time, because Mn considerably expands the γ range.

Mn ist ein Austenitbildner und wird erfindungsgemäß hauptsächlich als günstigerer Ersatz für Ni eingesetzt. Daher wird in diesem Konzept auch ein Anteil von 10-20% eingesetzt.Mn is an austenite former and is mainly used according to the invention as a cheaper substitute for Ni. This is why a proportion of 10-20% is used in this concept.

Chrom (Cr)Chromium (Cr)

Allgemein:

  • Setzt die für die Martensitbildung erforderliche kritische Abkühlgeschwindigkeit herab
  • Erhöht Härtbarkeit und verbessert Vergütbarkeit
  • Cr erhöht Zunderbeständigkeit
  • Cr schnürt das γ-Gebiet ab und erweitert dadurch den Ferritbereich; stabilisiert jedoch den Austenit in austenitischen Cr-Mn- bzw. Cr-Ni-Stählen
  • Chrom bildet ab 10,5 % Massenanteil eine Chromoxid-Schicht, wodurch weitere Oxidation verhindert wird. Wird diese Oxidschicht beschädigt, gelangt blankes Metall in Kontakt mit der Atmosphäre, und es bildet sich automatisch eine neue passivierende Schicht, d. h., die Schicht ist selbstheilend.
Generally:
  • Reduces the critical cooling rate required for martensite formation
  • Increases hardenability and improves temperability
  • Cr increases scale resistance
  • Cr constricts the γ region and thereby expands the ferrite range; however, it stabilizes the austenite in austenitic Cr-Mn or Cr-Ni steels
  • Chromium forms a chromium oxide layer above 10.5% by mass, which prevents further oxidation. If this oxide layer is damaged, bare metal comes into contact with the atmosphere and a new passivating layer is automatically formed, ie the layer is self-healing.

Gemäß der Erfindung ist die Hauptaufgabe des Cr der Schutz vor Korrosion. Da in diesem Konzept das Produkt in einem korrodierendem Medium verwendet werden soll, wird hier ein Cr-Gehalt von 14-16% eingesetzt, um einen erhöhten Korrosionsschutz zu erhalten.According to the invention, the main task of Cr is to protect against corrosion. Since in this concept the product is to be used in a corrosive medium, a Cr content of 14-16% is used here in order to obtain increased corrosion protection.

Nickel (Ni)Nickel (Ni)

Allgemein:
Nickel gehört zu den Legierungselementen, die eine Erstarrung nach dem stabilen Eisen-Kohlenstoffsystem begünstigen. Durch Verringerung der kritischen Abkühlgeschwindigkeit erhöht Nickel die Durchhärtung und Durchvergütung. Weiter erhöht Nickel vor allem die Zähigkeit, besonders im Tieftemperaturgebiet, wirkt kornfeinend und senkt die Überhitzungsempfindlichkeit. De 18/10 Chrom-Nickel-Stahl (1.4301) zählt zu den Hauptvertretern der korrosionsbeständigen austenitischen Stähle.
Generally:
Nickel is one of the alloying elements that promote solidification according to the stable iron-carbon system. By reducing the critical cooling rate, nickel increases the hardening and tempering. Nickel also increases the toughness, especially in the low temperature range, has a grain-refining effect and reduces the sensitivity to overheating. The 18/10 chrome-nickel steel (1.4301) is one of the main representatives of corrosion-resistant austenitic steels.

Wie bereits erwähnt, ist Nickel ein relativ teures Legierungselement und gemäß der Erfindung wird hier der Anteil durch Mangan ersetzt. Jedoch kann durch einen gewissen Anteil, die Zähigkeit erhöht und auch die Stabilität des Austenits dadurch positiv beeinflusst werden. Des Weiteren hat Nickel einen positiven Effekt auf die Korrosionsbeständigkeit.As already mentioned, nickel is a relatively expensive alloying element and, according to the invention, the proportion here is replaced by manganese. However, a certain proportion can increase the toughness and also have a positive influence on the stability of the austenite. Furthermore, nickel has a positive effect on corrosion resistance.

Stickstoff (N)Nitrogen (N)

Allgemein:
Stickstoff wirkt als Austenitbildner ähnlich wie Kohlenstoff. Die geringere maximale Löslichkeit des Eisens für Stickstoff ist jedoch deutlich größer als die für Kohlenstoff. Durch Zulegieren anderer Elemente oder Druckaufstickung kann der Stickstoffgehalt im Stahl deutlich erhöht werden, ein Teil des Nickels in austenitischen Stählen ersetzt die Wirkung des Kohlenstoffes und der Kohlenstoffgehalt kann abgesenkt werden.
Generally:
Nitrogen acts as an austenite former in a similar way to carbon. The lower maximum solubility of the However, iron for nitrogen is significantly larger than that for carbon. By adding other elements or applying nitrogen pressure, the nitrogen content in the steel can be increased significantly, some of the nickel in austenitic steels replaces the effect of carbon and the carbon content can be reduced.

Gemäß der Erfindung dient der Stickstoff als Ersatz für den Kohlenstoff und verbessert die Korrosionsbeständigkeit. Des Weiteren wirkt Stickstoff als Substitution des Autenitbildners Nickel.According to the invention, nitrogen serves as a substitute for carbon and improves corrosion resistance. Furthermore, nitrogen acts as a substitute for the autenite former nickel.

Austenitbilnder:Austenite formers:

Legierungselemente, die das Austenitgebiet erweitern und den Austenit stabilisieren. Ni, Co, Mn, N und C sind die wichtigsten Vertreter. Mit Hilfe des Schaeffler-DeLong-Diagramms kann das resultierende Gefüge hochlegierter Stähle anhand der chemischen Zusammensetzung bestimmt werden. In diesem Diagramm stehen die Austenitbildner den Ferritbildnern gegenüber, wie in der Zeichnung gezeigt.Alloying elements that expand the austenite area and stabilize the austenite. Ni, Co, Mn, N and C are the most important representatives. With the help of the Schaeffler DeLong diagram, the resulting structure of high-alloy steels can be determined based on the chemical composition. In this diagram, the austenite formers are opposed to the ferrite formers, as shown in the drawing.

Claims (5)

Verwendung eines Stahlwerkstoffes zur Herstellung von sauergasbeständigen Teilen für die Energieerzeugung, Rohren, Tanks, von Pipelines für Gase oder andere Fluide, von mit Wasserstoff in Berührung kommenden Bauteilen, Bipolar-Platten von Brennstoffzellen und von Wärmetauschern, wobei der Stahlwerkstoff folgende Bestandteile hat:
hochmanganhaltiger austenitischer Stahl mit (Angaben in Gewichtsprozent) • 0,02 bis 0,12 % Kohlenstoff, • 0,05 bis 0,5 % Stickstoff, • 10 bis 20 % Mangan, • 10 bis 20 % Chrom, • Rest Eisen mit üblichen Verunreinigungen.
Use of a steel material for the production of sour gas-resistant parts for power generation, pipes, tanks, pipelines for gases or other fluids, components that come into contact with hydrogen, bipolar plates of fuel cells and heat exchangers, the steel material having the following components:
high manganese content austenitic steel with (data in percent by weight) • 0.02 to 0.12% carbon, • 0.05 to 0.5% nitrogen, • 10 to 20% manganese, • 10 to 20% chromium, • Remaining iron with usual impurities.
Verwendung nach Anspruch 1,
wobei der Stahlwerkstoff mindestens einen der weiteren Bestandteile hat, nämlich • bis zu 0,8 % Silizium, • bis zu 4 % Nickel, • bis zu 2 % Molybdän, • höchstens 0,05 % Phosphor, • höchstens 0,05 % Schwefel, • bis zu 0,5 % Titan, • bis zu 0,5 % Niob, • bis zu 0,5 % Vanadium.
Use according to claim 1,
wherein the steel material has at least one of the further components, namely • up to 0.8% silicon, • up to 4% nickel, • up to 2% molybdenum, • a maximum of 0.05% phosphorus, • a maximum of 0.05% sulfur, • up to 0.5% titanium, • up to 0.5% niobium, • up to 0.5% vanadium.
Verwendung nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass der Stahlwerkstoff folgende mechanische technologische Eigenschaften hat: Zugfestigkeit Rm = 500 bis 800 MPa, Streckgrenze Rp 0,2 = 200 bis 500 MPa, Bruchdehnung A80 = mindestens 42 %.
Use according to claim 1 or 2,
characterized in that the steel material has the following mechanical technological properties: Tensile strength R m = 500 to 800 MPa, Yield strength R p 0.2 = 200 to 500 MPa, Elongation at break A80 = at least 42%.
Verwendung nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet, dass der Werkstoff bei Kaltverformung unter alleiniger Verwendung des TWIP-Mechanismus einen Anteil von weniger als 5 % verformungsindiziertem Martensit enthält.
Use according to one of claims 1 to 3,
characterized in that the material contains less than 5% deformation-indexed martensite in the case of cold deformation using the TWIP mechanism alone.
Verwendung nach einem der Ansprüche 1 bis 4,
dadurch gekennzeichnet, dass die technologischen Eigenschaften des Stahlwerkstoffes durch Walzen des Werkstoffs mit geeignetem Abwalzgrad und/oder Glühen des Werkstoffes bei geeigneter Glühtemperatur eingestellt werden.
Use according to one of claims 1 to 4,
characterized in that the technological properties of the steel material are adjusted by rolling the material with a suitable degree of rolling and / or annealing the material at a suitable annealing temperature.
EP21169902.0A 2020-05-19 2021-04-22 Use of a steel material Withdrawn EP3913104A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102020113495 2020-05-19

Publications (1)

Publication Number Publication Date
EP3913104A1 true EP3913104A1 (en) 2021-11-24

Family

ID=75639809

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21169902.0A Withdrawn EP3913104A1 (en) 2020-05-19 2021-04-22 Use of a steel material

Country Status (4)

Country Link
US (1) US20210348255A1 (en)
EP (1) EP3913104A1 (en)
JP (1) JP2021181614A (en)
KR (1) KR20210143116A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3904401A (en) * 1974-03-21 1975-09-09 Carpenter Technology Corp Corrosion resistant austenitic stainless steel
EP0249117A2 (en) * 1981-03-20 1987-12-16 Kabushiki Kaisha Toshiba A process for preparing a crevice corrosion-resistant non-magnetic steel
US5308577A (en) * 1990-04-12 1994-05-03 Crs Holdings, Inc. Austenitic, non-magnetic, stainless steel alloy and articles made therefrom
EP0687745A1 (en) * 1993-03-25 1995-12-20 Armco Inc. High strength austenitic stainless steel having excellent galling resistance
ES2142756A1 (en) * 1998-04-22 2000-04-16 Acerinox Sa Austenitic stainless steel with a low nickel content
EP1944385A1 (en) * 2005-11-01 2008-07-16 Nippon Steel & Sumikin Stainless Steel Corporation High-manganese austenitic stainless steel for high-pressure hydrogen gas

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3904401A (en) * 1974-03-21 1975-09-09 Carpenter Technology Corp Corrosion resistant austenitic stainless steel
EP0249117A2 (en) * 1981-03-20 1987-12-16 Kabushiki Kaisha Toshiba A process for preparing a crevice corrosion-resistant non-magnetic steel
US5308577A (en) * 1990-04-12 1994-05-03 Crs Holdings, Inc. Austenitic, non-magnetic, stainless steel alloy and articles made therefrom
EP0687745A1 (en) * 1993-03-25 1995-12-20 Armco Inc. High strength austenitic stainless steel having excellent galling resistance
ES2142756A1 (en) * 1998-04-22 2000-04-16 Acerinox Sa Austenitic stainless steel with a low nickel content
EP1944385A1 (en) * 2005-11-01 2008-07-16 Nippon Steel & Sumikin Stainless Steel Corporation High-manganese austenitic stainless steel for high-pressure hydrogen gas

Also Published As

Publication number Publication date
JP2021181614A (en) 2021-11-25
US20210348255A1 (en) 2021-11-11
KR20210143116A (en) 2021-11-26

Similar Documents

Publication Publication Date Title
DE69010234T2 (en) High-strength steel with a high chromium content and with very good toughness and oxidation resistance properties.
DE69604341T2 (en) MARTENSITIC. STAINLESS STEEL WITH GOOD RESISTANCE TO PUNCH CORROSION AND WITH HIGH HARDNESS
US5582656A (en) Ferritic-austenitic stainless steel
DE69700057T2 (en) Heat-resistant, ferritic steel with low Cr and Mn content and with excellent strength at high temperatures
DE69203906T2 (en) Low-alloy, heat-resistant steel with improved fatigue strength and toughness.
DE69303518T2 (en) Heat-resistant, ferritic steel with low chromium content and with improved fatigue strength and toughness
DE69510060T2 (en) STAINLESS STEEL MARTENSITE STEEL WITH EXCELLENT PROCESSABILITY AND SULFUR INDUCED STRESS CORROSION RESISTANCE
DE4212966C2 (en) Use of a martensitic chromium steel
US20230279531A1 (en) Austenitic stainless steel and manufacturing method thereof
DE1558668C3 (en) Use of creep-resistant, stainless austenitic steels for the production of sheet metal
CN101421429A (en) Stainless steel weld overlays with enhanced wear resistance
US6136110A (en) Ferritic heat-resistant steel having excellent high temperature strength and process for producing the same
DE69904336T2 (en) HIGH CHROME, HEAT RESISTANT, FERITIC STEEL
CN111270132A (en) Stainless steel for pressure-bearing material of petroleum and natural gas drilling equipment and preparation method thereof
EP3899064B1 (en) Super austenitic material
EP0455625B1 (en) High strength corrosion-resistant duplex alloy
DE2752082C2 (en) Austenitic stainless steel
DE1553841A1 (en) Knife blades made from corrosion-resistant austenitic stainless steel alloys
EP3913104A1 (en) Use of a steel material
JP3342501B2 (en) High strength and high toughness stainless steel and method for producing the same
DE102009008285A1 (en) steel alloy
EP3469108B1 (en) Method for producing a cold-rolled steel strip having trip-characteristics made of a high-strength mangan-containing steel
DE102018122901A1 (en) Process for the production of ultra high-strength steel sheets and steel sheet therefor
DE2634403A1 (en) STAINLESS ALLOY CAST STEEL
DE10146616A1 (en) Austenitic steel used for wear resistant and crash resistant non-rusting components in machines and vehicles contains alloying additions of chromium and manganese

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

B565 Issuance of search results under rule 164(2) epc

Effective date: 20210601

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220314

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230316

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20230419