EP3904785B1 - Verfahren und prüfkammer zur konditionierung von luft - Google Patents
Verfahren und prüfkammer zur konditionierung von luft Download PDFInfo
- Publication number
- EP3904785B1 EP3904785B1 EP21170171.9A EP21170171A EP3904785B1 EP 3904785 B1 EP3904785 B1 EP 3904785B1 EP 21170171 A EP21170171 A EP 21170171A EP 3904785 B1 EP3904785 B1 EP 3904785B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- temperature
- heat exchanger
- refrigerant
- expansion element
- pressure side
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 29
- 230000003750 conditioning effect Effects 0.000 title claims description 7
- 238000001816 cooling Methods 0.000 claims description 124
- 239000003507 refrigerant Substances 0.000 claims description 124
- 238000009835 boiling Methods 0.000 claims description 33
- 238000011144 upstream manufacturing Methods 0.000 claims description 27
- 239000000203 mixture Substances 0.000 claims description 15
- 238000010438 heat treatment Methods 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 9
- 238000004781 supercooling Methods 0.000 description 9
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 8
- 229910002092 carbon dioxide Inorganic materials 0.000 description 4
- 239000001569 carbon dioxide Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 230000001276 controlling effect Effects 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- RWRIWBAIICGTTQ-UHFFFAOYSA-N difluoromethane Chemical compound FCF RWRIWBAIICGTTQ-UHFFFAOYSA-N 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- 230000008014 freezing Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 239000000110 cooling liquid Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- GTLACDSXYULKMZ-UHFFFAOYSA-N pentafluoroethane Chemical compound FC(F)C(F)(F)F GTLACDSXYULKMZ-UHFFFAOYSA-N 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B7/00—Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B40/00—Subcoolers, desuperheaters or superheaters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/04—Refrigeration circuit bypassing means
- F25B2400/0409—Refrigeration circuit bypassing means for the evaporator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/04—Refrigeration circuit bypassing means
- F25B2400/0411—Refrigeration circuit bypassing means for the expansion valve or capillary tube
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/02—Compressor control
- F25B2600/026—Compressor control by controlling unloaders
- F25B2600/0261—Compressor control by controlling unloaders external to the compressor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/25—Control of valves
- F25B2600/2501—Bypass valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/19—Pressures
- F25B2700/193—Pressures of the compressor
- F25B2700/1931—Discharge pressures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/19—Pressures
- F25B2700/193—Pressures of the compressor
- F25B2700/1933—Suction pressures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2116—Temperatures of a condenser
- F25B2700/21163—Temperatures of a condenser of the refrigerant at the outlet of the condenser
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/002—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
- F25B9/008—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
Definitions
- the invention relates to a method and a test chamber for conditioning air, with a test space that can be closed off from the environment and is temperature-insulated for receiving test material, and a temperature control device for temperature control of the test space, with the temperature control device being equipped with a cooling device, with a cooling circuit, with a zeotropic refrigerant , a heat exchanger arranged in the test chamber, a compressor, a condenser, a first expansion element and an internal heat exchanger, a temperature in a temperature range from -40 °C to +180 °C is formed inside the test chamber, with the internal heat exchanger being on a high-pressure side of the Cooling circuit in a direction of flow before the first expansion element and then the condenser, and on a low-pressure side of the cooling circuit in the direction of flow after the heat exchanger and before the compressor, is connected, the cooling circuit having a bypass m with at least one second expansion element, the bypass on the high-pressure side in the direction of flow following the condenser and in
- test chambers are regularly used to check the physical and/or chemical properties of objects, in particular devices.
- temperature test cabinets or climate test cabinets are known within which temperatures can be set in a range from -70°C to +180°C.
- additional desired climatic conditions can be set, to which the device or the test material is then exposed over a defined period of time.
- Such test chambers are regularly or partially designed as a mobile device, which is only connected to a building with the necessary supply lines and includes all the assemblies required for temperature control and air conditioning. Temperature control of a test room accommodating the test material to be tested is regularly carried out in a circulating air duct within the test room.
- the circulating air duct forms an air treatment space in the test space, in which heat exchangers are arranged for heating or cooling the air flowing through the circulating air duct or the test space.
- a fan sucks in the air in the test room and directs it in the circulating air duct to the respective heat exchangers.
- the test material can be tempered in this way or exposed to a defined temperature change. During a test interval, for example, a temperature can repeatedly change between a maximum temperature and a minimum temperature of the test chamber.
- the refrigerant circulating in the cooling circuit must be such that it can be used in the cooling circuit within the aforementioned temperature difference. Furthermore, as a result of legal regulations, the refrigerant must not contribute significantly to ozone depletion in the atmosphere or global warming, and it must also be non-flammable. These provisions can be affected in particular by refrigerants or Refrigerant mixtures are met, which have a comparatively high mass fraction of carbon dioxide, these refrigerant mixtures have zeotropic properties due to the different substances mixed together, which in turn is undesirable. In a zeotropic refrigerant mixture, a phase transition takes place over a temperature range, the so-called temperature glide. A difference between the boiling temperature and the dew point temperature at constant pressure is considered a temperature glide.
- the known test chambers therefore regularly have an internal heat exchanger, which can be connected to a high-pressure side of the cooling circuit in a flow direction before the expansion element and then to the condenser, and to a low-pressure side of the cooling circuit in a flow direction before the compressor and then to the heat exchanger.
- the internal heat exchanger cools or so-called sub-cools the liquefied refrigerant on the high-pressure side.
- a bypass can be provided, which has a second expansion element and forms a return injection device for refrigerant.
- Refrigerant can then be conducted via the bypass from the high-pressure side via the second expansion element into the low-pressure side upstream of the internal heat exchanger in the direction of flow, so that cooling of the refrigerant on the high-pressure side of the internal heat exchanger is increased.
- This lowering of a suction gas temperature upstream of the compressor on the low-pressure side of the internal heat exchanger means that greater subcooling can consequently be achieved.
- This supercooling is usually not monitored and no temperature is measured upstream of the first expansion device.
- the second expansion element is set in such a way that refrigerant is continuously metered via the second expansion element and subcooling is thus ensured during operation of the cooling circuit.
- Such a test chamber is, for example, from DE 10 2017 216 363 A1 known.
- the disadvantage here is that due to the comparatively wide temperature range, with multi-stage cooling devices from -70 °C to +180 °C and with single-stage cooling devices from -40 °C to +180 °C, the cooling capacity required for supercooling varies greatly. Depending on the operating point of the cooling device, there may be fluctuations so that the supercooling may not be sufficient. If a larger amount of refrigerant is metered to the internal heat exchanger for supercooling the refrigerant on the high-pressure side via the second expansion element, the suction gas temperature before the compressor can drop to an unacceptable level.
- the present invention is therefore based on the object of proposing a method and a test chamber for conditioning air which ensures stable operating behavior.
- the method according to the invention for conditioning air is carried out with a test chamber with a test space that can be closed and temperature-insulated from the environment for receiving test material and a temperature control device for temperature control of the test space, with the temperature control device having a cooling device with a cooling circuit with a refrigerant, a Heat exchanger arranged in the test room, a compressor, a condenser, a first expansion element and an internal heat exchanger, a temperature in a temperature range of -40 °C to +180 °C is formed inside the test room, with the internal heat exchanger on a high-pressure side of the cooling circuit in one direction of flow before the first expansion element and then the condenser, and on a low-pressure side of the cooling circuit in the direction of flow following the heat exchanger and before the compressor, the cooling circuit having a bypass has at least one second expansion element, with the bypass being connected on the high-pressure side in the direction of flow downstream of the condenser and upstream of the internal heat exchanger, and on the low-pressure side downstream
- the side walls, floor walls and ceiling walls of the test room are thermally insulated, so that heat exchange with the surroundings of the test room is largely avoided.
- the heat exchanger is arranged in the test room, so that the cooling circuit runs at least in sections through the test room.
- the heat exchanger can be arranged in an air treatment room of the test room.
- the cooling device further has the Compressor, which can be a compressor, for example, and the compressor arranged downstream in the flow direction of the refrigerant condenser for the compressed refrigerant.
- the compressed refrigerant which is under high pressure after compression and is essentially in gaseous form, condenses in the condenser and is then essentially in a liquid state.
- the liquid refrigerant continues through the internal heat exchanger and expansion device, again becoming gaseous through expansion due to a pressure drop. If it is a zeotropic refrigerant, only part of the refrigerant can possibly evaporate in the heat exchanger and an unusable part of a wet vapor component of the refrigerant can be relocated to the internal heat exchanger. The gaseous refrigerant is then sucked in again by the compressor and compressed. In principle, the method can also be carried out with an azeotropic refrigerant.
- the temperature control device includes the control device with the pressure sensor and the temperature sensor, which are connected to the high-pressure side.
- a pressure of the refrigerant on the high-pressure side is measured via the pressure sensor.
- the pressure sensor can therefore be connected to any point in the cooling circuit on the high-pressure side. Since a temperature of the refrigerant in the course of the cooling circuit is regularly different, depending on the section of the cooling circuit, it is provided that the temperature sensor is arranged on the high-pressure side in the direction of flow after the internal heat exchanger and before the first expansion element. Accordingly, a temperature of the refrigerant is then measured immediately before the first expansion element.
- the control device now controls the second expansion element or a metering of refrigerant via the bypass from the high-pressure side to the low-pressure side to the internal heat exchanger as a function of a pressure measured at the pressure sensor and a temperature measured at the temperature sensor.
- the method can be carried out particularly easily if a pressure sensor and a temperature sensor are already installed at the appropriate point in the cooling circuit and the temperature control device has a control device. It is then only necessary to modify the control device accordingly in such a way that the second expansion element is controlled by the control device as a function of a pressure measured at the pressure sensor and a temperature measured at the temperature sensor.
- the high-pressure side refrigerant can be cooled by the internal heat exchanger. Since the internal heat exchanger is connected to the high-pressure side and the low-pressure side of the refrigeration cycle, the high-pressure-side refrigerant can be cooled by the low-pressure-side refrigerant flowing through the internal heat exchanger.
- Refrigerant can be supplied to the internal heat exchanger via the second expansion element, it being possible for refrigerant to be supplied to the compressor from the low-pressure side of the internal heat exchanger.
- the bypass is provided with the second expansion element, with the bypass and the second expansion element being connected Refrigerant is dosed on the low-pressure side in front of the internal heat exchanger and so a suction gas temperature can be further reduced.
- the method can be used particularly advantageously if a refrigerant with a temperature glide of ⁇ 5 K is used as the refrigerant.
- a zeotropic refrigerant can also be formed by a refrigerant mixture. Depending on the mixture composition of this refrigerant mixture, the refrigerant can have a temperature glide of ⁇ 7 K to ⁇ 15 K. The temperature glide is given here for an evaporation pressure of 1 bar.
- the refrigerant R469A or a mixture of the refrigerant R469A and the refrigerant R410A or R466A can be used.
- the refrigerant R469A consists of 35% by weight carbon dioxide, 32.5% by weight difluoromethane and 32.5% by weight pentafluoroethane and has a boiling temperature of -78.5 °C and a dew point temperature of -61.5 °C , so that temperatures down to -70 °C can be reached in a correspondingly adapted cooling circuit, for example in a multi-stage cooling device.
- the mixture of the refrigerant R469A and the refrigerant R410A or R466 can advantageously be used in a single-stage cooling device with only one cooling circuit.
- the proportion by mass of R449A in the refrigerant mixture can be 30 to 70 percent by mass, with the proportion by mass of the further refrigerant R410A or R466 in the refrigerant mixture being 30 to 70 percent by mass.
- the proportion by mass of R449A can be 50 percent by mass and the proportion by mass of R410A or R466 can be 50 percent by mass.
- the refrigerant(s) also meets the requirements of EU Regulation No. 5172014 on refrigerants in the version valid on the priority date. With regard to the designation of refrigerants, reference is made to DIN 8960 in the version last valid on the priority date.
- the control device controls the second expansion element according to a reference variable
- the reference variable can be a boiling temperature of the refrigerant or temperature of the subcooled refrigerant at the first expansion element.
- the control device can consequently form a control circuit or a controller which compares the command variable with a controlled variable or influences the second expansion element with a manipulated variable. Since the refrigerant in the cooling circuit is known in principle, the boiling temperature of the refrigerant at the measured pressure in the high-pressure side is also known, so that the boiling temperature of the refrigerant can advantageously be used as a reference variable.
- the control device can include means for data processing, for example a PLC control, a computer or the like, with the control device being able to run a computer program product or software that carries out the steps required to carry out the method.
- the boiling temperature can be determined by the control device, in which case the control device can calculate the boiling temperature of the refrigerant for the pressure measured at the pressure sensor. Accordingly, it can be provided that the control device calculates the boiling temperature of the relevant refrigerant for the respective measured pressure and thus specifically determines the boiling temperature or the control variable.
- the boiling temperature can be calculated particularly easily using a polynomial or a vapor pressure table.
- the polynomial or the vapor pressure table can then simulate a phase boundary line that corresponds to the boiling temperature or the saturation temperature at a saturation vapor pressure or boiling pressure.
- the polynomial or the vapor pressure table can be stored in the control device, so that a value for the boiling temperature can be derived for the measured pressure, which then corresponds to an assumed boiling pressure, or can be calculated by the control device.
- the control device can calculate the command variable by adding the boiling temperature to a safety value of 5 K to 25 K, preferably 7 K to 15 K.
- the control device can determine the reference variable in such a way that a safety value is added to the boiling temperature, so that the reference variable is greater than the boiling temperature. If a range of, for example, 7 K to 15 K is assumed for the safety value, a command variable range results within which the control device controls the second expansion element. Adding the safety value to the reference variable can prevent the temperature of the refrigerant at the first expansion element from rising above the boiling temperature, for example as a result of a temperature control jump.
- the control device can subtract the temperature measured at the temperature sensor as a control variable from the boiling temperature, the control device being able to control the second expansion element with a control variable depending on the control deviation.
- a control deviation can be determined particularly easily by subtracting the measured temperature from the calculated boiling temperature.
- the control device can then control the second expansion element with a manipulated variable and thus influence a quantity of refrigerant metered via the second expansion element.
- the second expansion element can be controlled using the manipulated variable when the measured temperature is higher than the command variable or the boiling temperature, and the manipulated variable cannot be controlled when the measured temperature is lower than the command variable. If there is no control with the manipulated variable, a manipulated variable or an output level is then 0%. However, the second expansion element can still be opened far enough for the coolant to flow through the second expansion element and continuous supercooling is ensured. A further opening of the second expansion organ only occurs if the measured temperature is higher than the reference variable. Otherwise the second expansion element is in normal operation. Deviating from this, it can also be provided that the second expansion element is closed completely when the measured temperature is lower than the reference variable.
- the control device can limit the manipulated variable to a maximum value. This then ensures that the second expansion element is not opened so far that, in the event of a failure of the temperature sensor or the pressure sensor, the second expansion element is opened so far by the control device that the cooling device is damaged.
- the second expansion element can be controlled particularly advantageously with a PID controller of the control device.
- the PID controller may be a PID controller in a series structure or a PID controller in a parallel structure.
- the PID controller is easy to implement and easy to adapt.
- the PID controller can be implemented particularly easily within the framework of digital control with the control device.
- the temperature control device can be used to set a temperature in a temperature range from -50 °C to +180 °C, preferably from -70 °C to +180 °C, particularly preferably from -80 °C to +180 °C, within the Test room are trained.
- the temperature range from -50 °C to +180 °C can still be achieved by a single-stage cooling device with just one cooling circuit.
- a multi-stage cooling device with at least two or more cooling circuits connected in the manner of a cascade can be used for the remaining, lower temperature ranges.
- a temperature in a temperature range from ⁇ +60 °C to +220 °C within the test chamber can also be reduced to a temperature of -70 °C or -80 °C by means of the temperature control device. That Refrigerant is strongly heated in the heat exchanger due to the comparatively high temperature in the test chamber, which is why the cooling circuit can be technically adapted to a refrigerant heated in this temperature range in terms of its design, at least on a low-pressure side of the cooling circuit. Otherwise, a refrigerant heated in this way can no longer be optimally used on the high-pressure side of the cooling circuit.
- a temperature constancy of +/-1 K +/-0.3 K to +/-0.5 K is formed in the specified temperature range during a test interval in the test room.
- a test interval is understood here as a time segment of a complete test period in which the test material is exposed to a substantially constant temperature or climatic condition.
- An expansion element is understood to mean at least one expansion valve, throttle element, throttle valve or another suitable narrowing of a fluid line.
- the first expansion element and the second expansion element can each be formed from a throttle element and a magnetic valve, it being possible for refrigerant to be metered by means of the control device via the respective throttle element and the magnetic valve.
- the throttling element can be an adjustable valve or a capillary, via which refrigerant is then conducted by means of the magnetic valve.
- the solenoid valve can in turn be actuated by means of the control device. Actuation can take place in such a way that the solenoid valve is actuated via a manipulated variable for dosing refrigerant.
- the test chamber according to the invention for conditioning air comprises a test space that can be closed and temperature-insulated from the environment for receiving test material, and a temperature control device for temperature control of the test space, the temperature control device comprising a cooling device with a cooling circuit with a refrigerant, a heat exchanger arranged in the test space, a Compressor, a condenser, a first expansion device and an internal one Has a heat exchanger, wherein a temperature in a temperature range from -40 °C to +180 °C can be formed within the test chamber by means of the temperature control device, wherein the internal heat exchanger is on a high-pressure side of the cooling circuit in a flow direction before the first expansion element and subsequently the condenser, and on a low-pressure side of the cooling circuit in the direction of flow downstream of the heat exchanger and upstream of the compressor, the cooling circuit having a bypass with at least one second expansion element, the bypass on the high-pressure side in the flow direction downstream of the condenser and upstream of the internal
- the cooling device can be designed with just one cooling circuit.
- the condenser can be designed as a cascade heat exchanger of a further cooling circuit of the cooling device, wherein the further cooling circuit can have a further refrigerant, the cascade heat exchanger, a further compressor, a further condenser and a further expansion element.
- the test chamber can then have at least two cooling circuits, wherein the cooling circuit can form a second stage of the cooling device and the further cooling circuit, which is then upstream of the cooling circuit, can form a first stage of the cooling device.
- the condenser then serves as a cascade heat exchanger or heat exchanger for the cooling circuit. In this embodiment of a test chamber, it is possible to develop particularly low temperatures in the test space, for example -70°C.
- the temperature control device can have a heating device with a heater and a heating heat exchanger in the test chamber.
- the heating device can be an electrical resistance heater, for example, which heats the heating and heat exchanger in such a way that the heating and heat exchanger allows the temperature in the test chamber to be increased. If the heat exchanger and the heating heat exchanger can be specifically controlled by the control device for cooling or heating the air circulating in the test room, a temperature in the above-mentioned temperature range can be formed inside the test room by means of the temperature control device.
- the heating heat exchanger can be combined with the heat exchanger of the cooling circuit in such a way that a common heat exchanger body is formed, through which the refrigerant can flow and which has heating elements of an electrical resistance heater.
- the condenser can be designed with air cooling or water cooling or another cooling liquid if the condenser is not designed as a cascade heat exchanger.
- the condenser can be cooled with any suitable fluid. It is essential that the heat load occurring at the condenser is dissipated via air cooling or water cooling in such a way that the refrigerant can condense so that it is liquefied.
- the cooling circuit can have a further bypass with at least one third expansion element, the further bypass on the high-pressure side downstream of the compressor in the direction of flow and upstream of the condenser, and on the low-pressure side downstream of the internal heat exchanger and upstream of the compressor, such that a suction gas temperature and/or a suction gas pressure of the refrigerant can be regulated on the low-pressure side upstream of the compressor, and/or that a pressure difference between the High-pressure side and the low-pressure side can be compensated.
- the further bypass can additionally be equipped with an adjustable or controllable valve, for example a solenoid valve.
- a cross section of the third expansion element can be dimensioned in such a way that an overflow of the refrigerant from the high-pressure side to the low-pressure side affects normal operation of the cooling device only insignificantly.
- the third expansion element can be actuated by the control device, which in turn can be additionally coupled to a further pressure sensor which is arranged in the cooling circuit in a direction of flow directly in front of the compressor. It is particularly advantageous if a suction gas temperature of ⁇ 30° C. can be set via the additional bypass.
- the refrigerant can also be metered in such a way that the operating time of the compressor can be regulated. In principle, it is disadvantageous if the compressor or compressor is switched on and off many times. A service life of the compressor can be extended if it is operated for longer periods of time.
- the refrigerant can be routed past the expansion element or the condenser via the further bypass, for example in order to delay an automatic switch-off of the compressor and to extend the service life of the compressor.
- the internal heat exchanger can be designed as a supercooling section or a heat exchanger, in particular a plate heat exchanger.
- the sub-cooling section can already be formed by two line sections of the cooling circuit that are in contact with one another.
- test chamber results from the feature descriptions of the subclaims that refer back to claim 1 .
- the 1 shows a schematic representation of a cooling device 10 with a cooling circuit 11, within which a refrigerant can circulate.
- the refrigerant is a zeotropic refrigerant with a temperature glide of ⁇ 5 K.
- the cooling device 10 includes a further cooling circuit 12 which is connected upstream of the cooling circuit 11 .
- the cooling circuit 11 comprises a heat exchanger 14 arranged in a test space 13 of a test chamber (not shown in detail here), a compressor 15, a condenser 16, a first expansion element 17 and an internal heat exchanger 18.
- the cooling circuit 11 has a high-pressure side 19, which extends in the direction of flow of the refrigerant runs from the compressor 15 to the first expansion element 17 and a low-pressure side 20, which runs from the first expansion element 17 to the compressor 15.
- a pipe section 21 from the compressor 15 to the condenser 16 the refrigerant is gaseous and has a comparatively high temperature.
- the refrigerant compressed by the compressor 15 flows into the cooling circuit 11 via an oil separator 22 to the condenser 16, the gaseous refrigerant being liquefied in the condenser 16.
- the internal heat exchanger 18 follows the condenser 16 in the cooling circuit 11, the refrigerant therefore being in the liquid state in a pipe section 23 of the cooling circuit 11 between the condenser 16 and the first expansion element 17.
- Expansion of the refrigerant downstream of the first expansion element 17 cools the heat exchanger 14, with the refrigerant then changing into the gaseous aggregate state in a pipe section 24 between the first expansion element 17 and the heat exchanger 14 and via a pipe section 25 from the heat exchanger 14 to the compressor 15 is conducted.
- the internal heat exchanger 18 is connected to the tube sections 23 and 25 on the high-pressure side 19 and the low-pressure side 20 of the cooling circuit 11 .
- the refrigerant on the high-pressure side 19 flows so closely past the refrigerant on the low-pressure side 20 in the internal heat exchanger 18 that an exchange of thermal energy occurs in the internal heat exchanger 18 .
- the internal heat exchanger 18 is used here to supercool the refrigerant on the high-pressure side 19 with the refrigerant on the low-pressure side 20. This supercooling is ensured by a bypass 26, which is formed from a pipe section 27 with a second expansion element 28.
- the bypass 26 or the pipe section 27 is connected on the high-pressure side 19 in the direction of flow after the condenser 16 and before the internal heat exchanger 18, and on the low-pressure side 20 after the heat exchanger 14 and before the internal heat exchanger 18.
- Refrigerant can thus be metered or expanded from the high-pressure side 19 to the low-pressure side 20 via the second expansion element 28 and conducted into the internal heat exchanger 18 .
- a pressure sensor 29 for measuring the pressure of the low-pressure side 20 is arranged in the pipe section 25 immediately before the compressor 15
- a pressure sensor 30 for measuring the pressure of the high-pressure side 19 is arranged in the pipe section 21 immediately following the compressor 15 .
- a temperature sensor 31 is arranged in the pipe section 23, following the internal heat exchanger 18 and directly in front of the first expansion element 17, with which a temperature of the refrigerant is measured.
- Another bypass 32 with a third expansion element 33 is also connected in the cooling circuit 11 .
- the further bypass 32 runs from the high-pressure side 19 in the direction of flow after the compressor 15 and before the condenser 16, to the low-pressure side 20 after the internal heat exchanger 18 and before the compressor 15.
- Via the further bypass 32 or the third expansion element 33 a Suction gas temperature and / or a suction gas pressure of the refrigerant on the low-pressure side 20 before the compressor 15 is regulated and, if necessary, a pressure difference between the high-pressure side 19 and the low-pressure side 20 can be compensated.
- the other cooling circuit 12 is filled with another refrigerant and includes another compressor 34, another condenser 35 and another expansion element 36.
- the condenser 16 of the cooling circuit 11 is integrated into the further cooling circuit 12 that a cascade heat exchanger 37 through the Capacitor 16 is formed.
- the test chamber which is not shown in detail here, has a control device with which the cooling device 10 can be controlled.
- the control device is coupled to the pressure sensor 29, the pressure sensor 30, the temperature sensor 31, the first expansion element 17 and the second expansion element 28.
- a pressure is measured by the control device via the pressure sensor 30 and a temperature of the refrigerant is measured via the temperature sensor 31 and the second expansion element 28 is controlled with a manipulated variable.
- the controller determines a Boiling temperature of the refrigerant at the temperature sensor 31 in that the control device calculates the boiling temperature for the pressure measured at the pressure sensor 30 . This calculation is done using a polynomial or a vapor pressure table.
- the boiling temperature is a reference variable according to which the control device controls the second expansion element 17 .
- the control device determines a control deviation by subtracting the temperature measured at the temperature sensor 31 as a control variable from the boiling temperature, the control device controlling the second expansion element 28 as a function of this control deviation using the manipulated variable.
- the second expansion element By controlling the second expansion element when a control deviation occurs due to a higher temperature at the temperature sensor 31, it can be ensured that the refrigerant is always supercooled upstream of the first expansion element 17 to such an extent that the refrigerant is not heated to the boiling point.
- the cooling circuit 11 and thus the cooling device 10 can be operated safely and without major temperature fluctuations.
- the 2 shows a schematic representation of a cooling device 40.
- the cooling circuit 11 is operated as described above. With the cooling device 40, it is possible to form low temperatures in the test room, for example -40.degree. C. to -50.degree.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
- Air Conditioning Control Device (AREA)
Description
- Die Erfindung betrifft ein Verfahren und eine Prüfkammer zur Konditionierung von Luft mit einem gegenüber einer Umgebung verschließbaren und temperaturisolierten Prüfraum zur Aufnahme von Prüfgut, und einer Temperiervorrichtung zur Temperierung des Prüfraums, wobei mittels der Temperiervorrichtung mit einer Kühleinrichtung, mit einem Kühlkreislauf, mit einem zeotropen Kältemittel, einem in dem Prüfraum angeordneten Wärmeübertrager, einem Verdichter, einem Kondensator, einem ersten Expansionsorgan und einem internen Wärmeübertrager eine Temperatur in einem Temperaturbereich von -40 °C bis +180 °C innerhalb des Prüfraums ausgebildet wird, wobei der interne Wärmeübertrager an einer Hochdruckseite des Kühlkreislaufs in einer Strömungsrichtung vor dem ersten Expansionsorgan und nachfolgend dem Kondensator, und an einer Niederdruckseite des Kühlkreislaufs in der Strömungsrichtung nachfolgend dem Wärmeübertrager und vor dem Verdichter, angeschlossen ist, wobei der Kühlkreislauf einen Bypass mit zumindest einem zweiten Expansionsorgan aufweist, wobei der Bypass an der Hochdruckseite in der Strömungsrichtung nachfolgend dem Kondensator und vor dem internen Wärmeübertrager, und an der Niederdruckseite nachfolgend dem Wärmeübertrager und vor dem internen Wärmeübertrager angeschlossen ist.
- Derartige Verfahren und Prüfkammern werden regelmäßig zur Überprüfung von physikalischen und/oder chemischen Eigenschaften von Gegenständen insbesondere Vorrichtungen eingesetzt. So sind Temperaturprüfschränke oder Klimaprüfschränke bekannt, innerhalb derer Temperaturen in einem Bereich von -70 °C bis + 180 °C eingestellt werden können. Bei Klimaprüfschränken können ergänzend gewünschte Klimabedingungen eingestellt werden, denen dann die Vorrichtung bzw. das Prüfgut über einen definierten Zeitraum ausgesetzt wird. Derartige Prüfkammern sind regelmäßig bzw. teilweise als ein mobiles Gerät ausgebildet, welches lediglich mit den erforderlichen Versorgungsleitungen mit einem Gebäude verbunden ist und alle zur Temperierung und Klimatisierung erforderlichen Baugruppen umfasst. Eine Temperierung eines das zu prüfende Prüfgut aufnehmendem Prüfraums erfolgt regelmäßig in einem Umluftkanal innerhalb des Prüfraums. Der Umluftkanal bildet einen Luftbehandlungsraum im Prüfraum aus, in dem Wärmetauscher zur Erwärmung oder Kühlung der den Umluftkanal bzw. den Prüfraum durchströmenden Luft angeordnet sind. Dabei saugt ein Lüfter bzw. ein Ventilator die im Prüfraum befindliche Luft an und leitet sie im Umluftkanal zu den jeweiligen Wärmetauschern. Das Prüfgut kann so temperiert oder auch einem definierten Temperaturwechsel ausgesetzt werden. Während eines Prüfintervalls kann beispielsweise eine Temperatur zwischen einem Temperaturmaximum und einem Temperaturminimum der Prüfkammer wiederholt wechseln.
- Das im Kühlkreislauf zirkulierende Kältemittel muss dabei so beschaffen sein, dass es in dem Kühlkreislauf innerhalb der vorgenannten Temperaturdifferenz verwendbar ist. Weiter darf infolge gesetzlicher Bestimmungen das Kältemittel nicht wesentlich zum Ozonabbau in der Atmosphäre oder der globalen Erwärmung beitragen sowie auch nicht brennbar sein. Diese Bestimmungen können insbesondere durch Kältemittel bzw. Kältemittelgemische erfüllt werden, die einen vergleichsweise hohen Masseanteil an Kohlendioxid aufweisen, wobei diese Kältemittelgemische aufgrund der unterschiedlichen, miteinander gemischten Stoffe zeotrope Eigenschaften haben, was wiederum unerwünscht ist. Bei einem zeotropen Kältemittelgemisch erfolgt ein Phasenübergang über einen Temperaturbereich, den sogenannten Temperaturgleit. Als Temperaturgleit wir dabei eine Differenz zwischen der Siedetemperatur und der Taupunkttemperatur bei konstantem Druck angesehen. Da Kohlendioxid eine Gefriertemperatur bzw. einen Gefrierpunkt von -56,6 °C aufweist, ergibt sich bei Kältemittelgemischen mit Kohlendioxid als wesentlichen Mischpartner zur Erzielung von Temperaturen bis -70 °C ein vergleichsweise großer Temperaturgleit. Da mit einer Prüfkammer bzw. einer entsprechenden Kühleinrichtung ein vergleichsweise schneller Temperaturwechsel am Wärmeübertrager ausgebildet werden muss, ist es erforderlich ein Expansionsorgan und einen Wärmeübertrager bzw. Verdampfer des betreffenden Kühlkreislaufs an die Verdampfungstemperatur des Kältemittels anzupassen. Derartige Kühleinrichtungen können nicht als Gemischkaskadenanlage betrieben werden bei der ein zeotropes Kältemittel sukzessive über ein Expansionsorgan verdampft wird. Gemischkaskadenanlagen sind lediglich zur Ausbildung einer wesentlichen statischen Tieftemperatur geeignet.
- Die bekannten Prüfkammern weisen daher regelmäßig einen internen Wärmeübertrager auf, der an einer Hochdruckseite des Kühlkreislaufs in einer Strömungsrichtung vor dem Expansionsorgan und nachfolgend dem Kondensator, und an einer Niederdruckseite des Kühlkreislaufs in einer Strömungsrichtung vor dem Verdichter und nachfolgend dem Wärmeübertrager angeschlossen sein kann. Mit dem internen Wärmeübertrager erfolgt eine Kühlung bzw. sogenannte Unterkühlung des verflüssigten Kältemittels der Hochdruckseite.
- Weiter kann ein Bypass vorgesehen sein, der ein zweites Expansionsorgan aufweist und eine Rückeinspritzeinrichtung für Kältemittel ausbildet. Über den Bypass kann dann von der Hochdruckseite Kältemittel über das zweite Expansionsorgan in die Niederdruckseite in Strömungsrichtung vor dem internen Wärmeübertrager geleitet werden, sodass eine Kühlung des Kältemittels auf der Hochdruckseite des internen Wärmeübertragers verstärkt wird. Durch dieses Herabsetzen einer Sauggasttemperatur vor dem Verdichter auf der Niederdruckseite des internen Wärmeübertagers kann folglich eine größere Unterkühlung erreicht werden. Diese Unterkühlung wird in der Regel nicht überwacht bzw. es wird keine Temperatur vor dem ersten Expansionsorgan gemessen. Das zweite Expansionsorgan wird so eingestellt, dass stetig Kältemittel über das zweite Expansionsorgan dosiert wird und somit während eines Betriebs des Kühlkreislaufs eine Unterkühlung sichergestellt ist. Eine derartige Prüfkammer ist beispielsweise aus der
DE 10 2017 216 363 A1 bekannt. - Nachteilig ist hier jedoch, dass aufgrund des vergleichsweise weiten Temperaturbereichs, bei mehrstufigen Kühleinrichtungen von -70 °C bis +180 °C und bei einstufigen Kühleinrichtungen von -40 °C bis +180 °C, die zur Unterkühlung benötigte Kälteleistung sehr stark variiert. Je nach Betriebspunkt der Kühleinrichtung kann es zu Schwankungen kommen, sodass die Unterkühlungen dann gegebenenfalls nicht ausreichend ist. Wenn über das zweite Expansionsorgan eine größere Menge an Kältemittel zu dem internen Wärmeübertrager zur Unterkühlung des Kältemittels auf der Hochdruckseite dosiert wird, kann es zur Absenkung der Sauggastemperatur vor dem Verdichter auf ein nicht mehr akzeptables Niveau kommen.
- Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren und eine Prüfkammer zur Konditionierung von Luft vorzuschlagen das bzw. die ein stabiles Betriebsverhalten gewährleistet.
- Diese Aufgabe wird durch ein Verfahren mit den Merkmalen des Anspruchs 1 und einer Prüfkammer mit den Merkmalen des Anspruchs 16 gelöst.
- Das erfindungsgemäße Verfahren zur Konditionierung von Luft wird mit einer Prüfkammer mit einem gegenüber einer Umgebung verschließbaren und temperaturisolierten Prüfraum zur Aufnahme von Prüfgut und einer Temperiervorrichtung zur Temperierung des Prüfraums ausgeführt, wobei mittels der Temperiervorrichtung mit einer Kühleinrichtung mit einem Kühlkreislauf mit einem Kältemittel, einem in dem Prüfraum angeordneten Wärmeübertrager, einem Verdichte, einem Kondensator, einem ersten Expansionsorgan und einem internen Wärmeübertrager eine Temperatur in einem Temperaturbereich von -40 °C bis +180 °C innerhalb des Prüfraums ausgebildet wird, wobei der interne Wärmeübertrager an einer Hochdruckseite des Kühlkreislaufs in einer Strömungsrichtung vor dem ersten Expansionsorgan und nachfolgend dem Kondensator, und an einer Niederdruckseite des Kühlkreislaufs in der Strömungsrichtung nachfolgend dem Wärmeübertrager und vor dem Verdichter, angeschlossen ist, wobei der Kühlkreislauf einen Bypass mit zumindest einem zweiten Expansionsorgan aufweist, wobei der Bypass an der Hochdruckseite in der Strömungsrichtung nachfolgend dem Kondensator und vor dem internen Wärmeübertrager, und an der Niederdruckseite nachfolgend dem Wärmeübertrager und vor dem internen Wärmeübertrager angeschlossen ist, wobei eine Regeleinrichtung der Temperiervorrichtung mit einem Drucksensor an der Hochdruckseite und mit einem Temperatursensor an der Hochdruckseite in der Strömungsrichtung nachfolgend dem internen Wämeübertrager in den Kühlkreislauf das zweite Expansionsorgan in Abhängigkeit eines am Drucksensor gemessenen Drucks und einer am Temperatursensor gemessenen Temperatur regelt.
- Bei dem erfindungsgemäßen Verfahren sind Seitenwände, Bodenwände und Deckenwände des Prüfraums temperaturisoliert, sodass ein Wärmeaustausch mit einer Umgebung des Prüfraums weitgehend vermieden wird. Der Wärmeübertrager ist in dem Prüfraum angeordnet, sodass der Kühlkreislauf zumindest abschnittsweise durch den Prüfraum verläuft. Insbesondere kann der Wärmeübertrager in einem Luftbehandlungsraum des Prüfraums angeordnet sein. Die Kühleinrichtung weist weiter den Verdichter, welcher beispielsweise ein Kompressor sein kann, sowie den in Strömungsrichtung des Kältemittels dem Verdichter nachfolgend angeordneten Kondensator für das verdichtete Kältemittel auf. Das verdichtete Kältemittel, welches nach der Verdichtung unter einem hohen Druck steht und im Wesentlichen gasförmig vorliegt, kondensiert im Kondensator und liegt dann im Wesentlichen in einem flüssigen Aggregatzustand vor. Das flüssige Kältemittel strömt weiter über den internen Wärmeübertrager und das Expansionsorgan, wobei es durch Expansion infolge eines Druckabfalls wiederum gasförmig wird. Wenn es sich um ein zeotropes Kältemittel handelt, kann gegebenenfalls nur ein Teil des Kältemittels in dem Wärmeübertrager verdampfen und ein nicht nutzbarer Teil eines Nassdampf-Anteils des Kältemittels in den internen Wärmeübertrager verlagert werden. Nachfolgend wird das gasförmige Kältemittel wieder vom Verdichter angesaugt und verdichtet. Prinzipiell kann das Verfahren auch mit einem azeotropen Kältemittel ausgeführt werden.
- Erfindungsgemäß umfasst die Temperiervorrichtung die Regeleinrichtung mit dem Drucksensor und dem Temperatursensor, die an der Hochdruckseite angeschlossen sind. Über den Drucksensor wird ein Druck des Kältemittels der Hochdruckseite gemessen. Prinzipiell kann der Drucksensor daher an einer beliebigen Stelle des Kühlkreislaufs der Hochdruckseite angeschlossen sein. Da eine Temperatur des Kältemittels im Verlauf des Kühlkreislaufs regelmäßig, je nach Abschnitt des Kühlkreislaufs, unterschiedlich ist, ist vorgesehen dass der Temperatursensor an der Hochdruckseite in der Strömungsrichtung nachfolgend dem internen Wärmeübertrager und vor dem ersten Expansionsorgan angeordnet ist. Demzufolge wird dann eine Temperatur des Kältemittels unmittelbar vor dem ersten Expansionsorgan gemessen. Die Regeleinrichtung regelt nun das zweite Expansionsorgan bzw. eine Dosierung von Kältemittel über den Bypass von der Hochdruckseite in die Niederdruckseite zu dem internen Wärmeübertrager in Abhängigkeit eines am Drucksensor gemessenen Drucks und einer am Temperatursensor gemessenen Temperatur. Durch die Einbeziehung von Druck und Temperatur bei der Regelung wird es erst möglich einen Zustand des Kältemittels vor dem ersten Expansionsorgan verlässlich zu ermitteln und eine ausreichende Unterkühlung des Kältemittels vor dem ersten Expansionsorgan mittels des internen Wärmeübertragers durch die Regelung des zweiten Expansionsorgans zu ermöglichen. Somit ist dann stets immer sichergestellt, dass ausreichend flüssiges Kältemittel am ersten Expansionsorgan zur Verfügung steht und gleichzeitig eine Sauggasttemperatur nicht zu weit abgesenkt wird. Kritische Betriebszustände der Kühleinrichtung können so mit einfachen Mitteln vermieden werden.
- Das Verfahren ist besonders einfach ausführbar, wenn in dem Kühlkreislauf bereits ein Drucksensor und ein Temperatursensor an entsprechender Stelle verbaut ist und die Temperiervorrichtung über eine Regeleinrichtung verfügt. Dann ist es lediglich erforderlich die Regeleinrichtung entsprechend so zu modifizieren, dass das zweite Expansionsorgan mittels der Regeleinrichtung in Abhängigkeit eines am Drucksensor gemessenen Drucks und einer am Temperatursensor gemessenen Temperatur geregelt wird.
- Folglich kann das Kältemittel der Hochdruckseite mittels des internen Wärmeübertragers gekühlt werden. Da der interne Wärmeübertrager an die Hochdruckseite und die Niederdruckseite des Kühlkreislaufs angeschlossen ist, kann das Kältemittel der Hochdruckseite bei einem Durchfließen des internen Wärmeübertragers von dem Kältemittel der Niederdruckseite gekühlt werden.
- Über das zweite Expansionsorgan kann dem internen Wärmeübertrager Kältemittel zugeführt werden, wobei von der Niederdruckseite des internen Wärmeübertragers Kältemittel dem Verdichter zugeführt werden kann. Um eine Kühlung bzw. Unterkühlung des Kältemittels der Hochdruckseite im internen Wärmeübertrager sicherzustellen bzw. eine Temperatur des Kältemittels nicht über eine Siedetemperatur des Kältemittels zu erhöhen ist der Bypass mit dem zweiten Expansionsorgan vorgesehen, wobei über den Bypass und das zweite Expansionsorgan Kältemittel auf die Niederdruckseite vor dem internen Wärmeübertrager dosiert wird und so eine Sauggasttemperatur weiter abgesenkt werden kann.
- Das Verfahren ist besonders voreilhaft anwendbar, wenn als Kältemittel ein Kältemittel mit einem Temperaturgleit von ≥ 5 K verwendet wird. Ein zeotropes Kältemittel kann auch durch ein Kältemittelgemisch ausgebildet sein. Je nach Mischungszusammensetzung dieses Kältemittelgemischs kann das Kältemittel einen Temperaturgleit von ≥7 K bis ≥15 K aufweisen. Der Temperaturgleit ist hier für einen Verdampfungsdruck von 1 Bar angegeben.
- Beispielsweise kann als Kältemittel R469A oder ein Gemisch aus dem Kältemittel R469A und dem Kältemittel R410A oder R466A verwendet werden. Das Kältemittel R469A besteht aus 35 Gew.-% Kohlenstoffdioxid, 32,5 Gew.-% Difluormethan und 32,5 Gew.% Pentafluorethan und weist eine Siedetemperatur von -78,5 °C und eine Taupunkttemperatur von -61,5 °C auf, sodass in einem entsprechend angepassten Kühlkreislauf, beispielsweise in einer mehrstufigen Kühleinrichtung, Temperaturen bis -70 °C erreichbar sind. Das Gemisch aus dem Kältemittel R469A und dem Kältemittel R410A oder R466 kann vorteilhaft in einer einstufigen Kühleinrichtung mit nur einem Kühlkreislauf verwendet werden. Der Masseanteil R449A an dem Kältemittelgemisch kann 30 bis 70 Masseprozent betragen, wobei der Masseanteil des weiteren Kältemittels R410A oder R466 an dem Kältemittelgemisch 30 bis 70 Masseprozent betragen kann. Vorteilhaft kann der Masseanteil R449A 50 Masseprozent und der Masseanteil R410A oder R466 50 Masseprozent betragen. Auch erfüllt das bzw. erfüllen die Kältemittel die Anforderungen der EU-Verordnung Nr. 5172014 an Kältemittel in der zum Prioritätstag gültigen Fassung. Die Benennung von Kältemitteln betreffend wird auf die DIN 8960 in der zuletzt von dem Prioritätstag gültigen Fassung verwiesen.
- Besonders vorteilhat ist es, wenn die Regeleinrichtung das zweite Expansionsorgan nach einer Führungsgröße regelt, wobei die Führungsgröße eine Siedetemperatur des Kältemittels oder Temperatur des unterkühlten Kältemittels am ersten Expansionsorgan sein kann. Die Regeleinrichtung kann folglich einen Regelkreis bzw. einen Regler ausbilden der die Führungsgröße mit einer Regelgröße vergleicht oder das zweite Expansionsorgan mit einer Stellgröße beeinflusst. Da das im Kühlkreislauf befindliche Kältemittel grundsätzlich bekannt ist, ist auch die Siedetemperatur des Kältemittels bei dem gemessenen Druck in der Hochdruckseite bekannt, sodass die Siedetemperatur des Kältemittels vorteilhaft als Führungsgröße verwendet werden kann. Die Regeleinrichtung kann Mittel zur Datenverarbeitung, beispielsweise eine SPS-Steuerung, einen Computer oder dergleichen umfassen, wobei mit der Regeleinrichtung ein Computerprogrammprodukt bzw. eine Software ausgeführt werden kann, die die zur Ausführung des Verfahrens erforderlichen Schritte durchführt.
- Eine Bestimmung der Siedetemperatur kann durch die Regeleinrichtung erfolgen, wobei die Regeleinrichtung für den am Drucksensor gemessenen Druck die Siedetemperatur des Kältemittels berechnen kann. Demnach kann vorgesehen sein, dass die Regeleinrichtung die Siedetemperatur des betreffenden Kältemittels für den jeweiligen gemessenen Druck berechnet und so die Siedetemperatur bzw. die Führungsgröße der Regelung eigens ermittelt.
- Besonders einfach kann die Berechnung der Siedetemperatur mittels eines Polynoms oder einer Dampfdrucktabelle erfolgen. Das Polynom oder die Dampfdrucktabelle können dann eine Phasengrenzlinie, die der Siedetemperatur bzw. der Sättigungstemperatur bei einem Sättigungsdampfdruck bzw. Siededruck entspricht nachbilden. Das Polynom oder die Dampfdrucktabelle kann in der Regeleinrichtung gespeichert sein, sodass sich für den gemessenen Druck, der dann einem angenommenen Siededruck entspricht, ein Wert für die Siedetemperatur ableiten bzw. durch die Regeleinrichtung berechnen lässt.
- Die Regeleinrichtung kann die Führungsgröße durch Addition der Siedetemperatur mit einem Sicherheitswert von 5 K bis 25 K, bevorzugt 7 K bis 15 K, berechnen. Die Regeleinrichtung kann die Führungsgröße derart bestimmen, dass zu der Siedetemperatur noch ein Sicherheitswert addiert wird, sodass die Führungsgröße größer ist als die Siedetemperatur. Wird für den Sicherheitswert ein Bereich von beispielsweise 7 K bis 15 K angenommen, ergibt sich ein Führungsgrößenbereich innerhalb dem die Regeleinrichtung das zweite Expansionsorgan regelt. Durch den Zuschlag des Sicherheitswertes auf die Führungsgröße kann vermieden werden, dass die Temperatur des Kältemittels an dem ersten Expansionsorgan, beispielsweise durch einen Regelsprung der Temperatur, über die Siedetemperatur steigt.
- Die Regeleinrichtung kann zur Bestimmung einer Regelabweichung die am Temperatursensor gemessene Temperatur als Regelgröße von der Siedetemperatur subtrahieren wobei die Regeleinrichtung das zweite Expansionsorgan in Abhängigkeit der Regelabweichung mit einer Stellgröße regeln kann. Durch die Subtraktion der gemessenen Temperatur von der berechneten Siedetemperatur lässt sich eine Regelabweichung besonders einfach bestimmen. Je nach Regelabweichung kann die Regeleinrichtung dann das zweite Expansionsorgan mit einer Stellgröße regeln und so eine Menge eines über das zweite Expansionsorgan dosierte Kältemittel beeinflussen.
- Folglich kann eine Regelung des zweiten Expansionsorgans mit der Stellgröße erfolgen, wenn die gemessene Temperatur höher ist als die Führungsgröße bzw. die Siedetemperatur, und keine Regelung mit der Stellegröße erfolgen, wenn die gemessene Temperatur niedriger ist als die Führungsgröße. Sofern keine Regelung mit der Stellgröße erfolgt ist eine Stellgröße bzw. ein Stellgrad dann 0%. Das zweite Expansionsorgan kann jedoch noch so weit geöffnet sein, das Kältemittel über das zweite Expansionsorgan fließt und eine kontinuierliche Unterkühlung sichergestellt ist. Eine weitergehende Öffnung des zweiten Expansionsorgans erfolgt nur dann, wenn die gemessene Temperatur höher ist als die Führungsgröße. Andernfalls befindet sich das zweite Expansionsorgan in einem Normalbetrieb. Davon abweichend kann auch vorgesehen sein, dass das zweite Expansionsorgan vollständig geschlossen wird, wenn die gemessene Temperatur niedriger ist als die Führungsgröße.
- Die Regeleinrichtung kann die Stellgröße auf einen maximalen Wert begrenzen. Dadurch ist dann sichergestellt, dass das zweite Expansionsorgan nicht so weit geöffnet wird, dass bei einem Ausfall des Temperatursensors oder des Drucksensors das zweite Expansionsorgan von der Regeleinrichtung so weit geöffnet wird, dass die Kühleinrichtung beschädigt wird.
- Das zweite Expansionsorgan kann besonders vorteilhaft mit einem PID-Regler der Regeleinrichtung geregelt werden. Der PID-Regler kann ein PID-Regler in einer Reihenstruktur oder einen PID-Regler in einer Parallelstruktur sein. Der PID-Regler ist einfach realisierbar und leicht anpassbar. Der PID-Regler kann besonders einfach im Rahmen einer digitalen Regelung mit der Regeleinrichtung realisiert werden.
- Bei dem Verfahren kann mittels der Temperiervorrichtung eine Temperatur in einem Temperaturbereich von -50 °C bis +180 °C, bevorzugt von - 70 °C bis +180 °C, besonders bevorzugt von -80 °C bis +180 °C, innerhalb des Prüfraums ausgebildet werden. Der Temperaturbereich von - 50 °C bis +180 °C kann noch von einer einstufigen Kühleinrichtung mit nur einem Kühlkreislauf ausgebildet werden. Für die übrigen, tieferen Temperaturbereiche kann eine mehrstufige Kühleinrichtung mit zumindest zwei oder mehr in Art einer Kaskade verbundenen Kühlkreisläufen verwendet werden. Weiter kann mittels der Temperiervorrichtung eine Temperatur in einem Temperaturbereich von -80 °C bis +180 °C, bevorzugt -80 °C bis +220 °C, innerhalb des Prüfraums ausgebildet werden. Auch kann mittels der Temperiervorrichtung eine Temperatur in einem Temperaturbereich von < +60 °C bis +220 °C innerhalb des Prüfraums auf eine Temperatur von -70 °C oder -80 °C reduziert werden. Das Kältemittel wird im Wärmeübertrager durch die vergleichsweise hohe Temperatur im Prüfraum stark erwärmt weshalb der Kühlkreislauf hinsichtlich seiner Konstruktion, zumindest auf einer Niederdruckseite des Kühlkreislaufs, an ein in diesem Temperaturbereich erwärmtes Kältemittel technisch angepasst sein kann. Ein derart erwärmtes Kältemittel ist sonst nicht mehr auf der Hochdruckseite des Kühlkreislaufs optimal nutzbar. Weiter kann auch vorgesehen sein, dass in dem angegebenen Temperaturbereich eine Temperaturkonstanz von +/-1 K +/-0,3 K bis +/-0,5 K während eines Prüfintervalls in dem Prüfraum ausgebildet wird. Unter einem Prüfintervall wird hier ein Zeitabschnitt eines vollständigen Prüfzeitraums verstanden in dem Prüfgut einer im Wesentlichen gleichbleibenden Temperatur oder Klimabedingung ausgesetzt wird.
- Unter einem Expansionsorgan wird zumindest ein Expansionsventil, Drosselorgan, Drosselventil oder eine andere geeignete Verengung einer Fluidleitung verstanden.
- Das erste Expansionsorgan und das zweite Expansionsorgan können jeweils aus einem Drosselorgan und einem Magnetventil gebildet sein, wobei mittels der Regeleinrichtung über das jeweilige Drosselorgan und das Magnetventil Kältemittel dosiert werden kann. Das Drosselorgan kann ein einstellbares Ventil oder eine Kapillare sein, über das bzw. die dann mittels des Magnetventils Kältemittel geleitet wird. Das Magnetventil kann seinerseits mittels der Regeleinrichtung betätigt werden. Die Betätigung kann derart erfolgen, dass das Magnetventil über eine Stellgröße zur Dosierung von Kältemittel betätigt wird.
- Die erfindungsgemäße Prüfkammer zur Konditionierung von Luft, umfasst eine gegenüber einer Umgebung verschließbaren und temperaturisolierten Prüfraum zur Aufnahme von Prüfgut, und einer Temperiervorrichtung zur Temperierung des Prüfraums, wobei die Temperiervorrichtung eine Kühleinrichtung mit einem Kühlkreislauf mit einem Kältemittel, einen in dem Prüfraum angeordneten Wärmeübertrager, einen Verdichter, einen Kondensator, ein erstes Expansionsorgan und einen internen Wärmeübertrager aufweist, wobei mittels der Temperiervorrichtung eine Temperatur in einem Temperaturereich von -40 °C bis +180 °C innerhalb des Prüfraums ausbildbar ist, wobei der interne Wärmeübertrager an einer Hochdruckseite des Kühlkreislaufs in einer Strömungsrichtung vor dem ersten Expansionsorgan und nachfolgend dem Kondensator, und an einer Niederdruckseite des Kühlkreislaufs in der Strömungsrichtung nachfolgend dem Wärmeübertrager und vor dem Verdichter, angeschlossen ist, wobei der Kühlkreislauf einen Bypass mit zumindest einem zweiten Expansionsorgan aufweist, wobei der Bypass an der Hochdruckseite in der Strömungsrichtung nachfolgend dem Kondensator und vor dem internen Wärmeübertrager und an der Niederdruckseite nachfolgend dem Wärmeübertrager und vor dem internen Wärmeübertrager angeschlossen ist, wobei die Temperiervorrichtung eine Regeleinrichtung mit einem Drucksensor an der Hochdruckseite und einem Temperatursensor an der Hochdruckseite in der Strömungsrichtung nachfolgend dem internen Wärmerübertrager in dem Kühlkreislauf umfasst, wobei das zweite Expansionsorgan mittels der Regeleinrichtung in Abhängigkeit eines am Drucksensor gemessenen Drucks und einer am Temperatursensor gemessenen Temperatur regelbar ist. Zu den Vorteilen der erfindungsgemäßen Prüfkammer wird auf die Vorteilsbeschreibung des erfindungsgemäßen Verfahrens verwiesen.
- Die Kühleinrichtung kann mit alleine einem Kühlkreislauf ausbildet sein. Bei dieser Ausführungsform einer Prüfkammer wird es möglich niedrige Temperaturen ohne großen baulichen Anlagenaufwand für mehrere Kühlkreisläufe in dem Prüfraum auszubilden, beispielsweise -40 °C oder bis zu -50 °C.
- Der Kondensator kann als ein Kaskaden-Wärmeübertrager eines weiteren Kühlkreislaufs der Kühleinrichtung ausgebildet sein, wobei der weitere Kühlkreislauf ein weiteres Kältemittel, den Kaskaden-Wärmeübertrager, einen weiteren Verdichter, einen weiteren Kondensator, und ein weiteres Expansionsorgan aufweisen kann. Demnach kann die Prüfkammer dann zumindest zwei Kühlkreisläufe aufweisen, wobei der Kühlkreislauf eine zweite Stufe der Kühleinrichtung und der weitere Kühlkreislauf, der dann dem Kühlkreislauf vorgelagert ist, eine erste Stufe der Kühleinrichtung ausbilden kann. Der Kondensator dient dann als ein Kaskaden-Wärmeübertrager bzw. Wärmeübertrager für den Kühlkreislauf. Bei dieser Ausführungsform einer Prüfkammer wird es möglich besonders niedrige Temperaturen in dem Prüfraum auszubilden, beispielsweise -70 °C.
- Die Temperiervorrichtung kann eine Heizeinrichtung mit einer Heizung und einem Heiz-Wärmeübertrager in dem Prüfraum aufweisen. Die Heizeinrichtung kann beispielsweise eine elektrische Widerstandsheizung sein, die den Heiz-Wärmeübertrager beheizt derart, dass über den Heiz-Wärmeübertrager eine Temperaturerhöhung in dem Prüfraum ermöglicht wird. Wenn der Wärmeübertrager und der Heiz-Wärmeübertrager mittels der Regeleinrichtung zur Kühlung oder Erwärmung der im Prüfraum umgewälzten Luft gezielt gesteuert werden können, kann mittels der Temperiervorrichtung innerhalb des Prüfraums eine Temperatur in dem vorstehend angegebenen Temperaturbereich ausgebildet werden. Der Heiz-Wärmeübertrager kann zusammen mit dem Wärmeübertrager des Kühlkreislaufs derart kombiniert sein, dass ein gemeinsamer Wärmeübertragerkörper ausgebildet ist, der vom Kältemittel durchströmbar ist und der Heizelemente einer elektrischen Widerstandheizung aufweist. Der Kondensator kann mit einer Luftkühlung oder Wasserkühlung oder einer anderen Kühlflüssigkeit ausgebildet sein, wenn der Kondensator nicht als ein Kaskaden-Wärmeübertrager ausgebildet ist. Prinzipiell kann der Kondensator mit jedem geeigneten Fluid gekühlt werden. Wesentlich ist, dass die am Kondensator anfallende Wärmelast über die Luftkühlung oder Wasserkühlung so abgeführt wird, dass das Kältemittel so kondensieren kann, dass es verflüssigt wird.
- Der Kühlkreislauf kann einen weiteren Bypass mit zumindest einem dritten Expansionsorgan aufweisen, wobei der weitere Bypass an der Hochdruckseite in der Strömungsrichtung nachfolgend dem Verdichter und vor dem Kondensator, und an der Niederdruckseite nachfolgend dem internen Wärmeübertrager und vor dem Verdichter angeschlossen sein kann, derart, dass eine Sauggastemperatur und/oder ein Sauggasdruck des Kältemittels auf der Niederdruckseite vor dem Verdichter regelbar ist, und/oder dass eine Druckdifferenz zwischen der Hochdruckseite und der Niederdruckseite ausgleichbar ist. Der weitere Bypass kann ergänzend mit einem einstellbaren oder regelbaren Ventil, beispielsweise einem Magnetventil ausgestattet sein. Durch die Verbindung von Hochdruckseite und Niederdruckseite über das dritte Expansionsorgan kann sichergestellt werden, dass bei einem Anlagenstillstand das verdichtete und gasförmige Kältemittel von der Hochdruckseite allmählich auf die Niederdruckseite des Kühlkreislaufs strömt. So wird auch bei geschlossenem Expansionsorgan sichergestellt, dass ein allmählicher Druckausgleich zwischen der Hochdruckseite und der Niederdruckseite erfolgt. Ein Querschnitt des dritten Expansionsorgans kann dabei so bemessen sein, dass ein Überströmen des Kältemittels von der Hochdruckseite zu der Niederdruckseite einen normalen Betrieb der Kühleinrichtung nur unwesentlich beeinflusst. Eine Betätigung des dritten Expansionsorgans kann durch die Regeleinrichtung erfolgen, die ihrerseits ergänzend mit einem weiteren Drucksensor, der in dem Kühlkreislauf in einer Strömungsrichtung unmittelbar vor dem Verdichter angeordnet ist, gekoppelt sein kann. Besonders vorteilhaft ist es, wenn über den weiteren Bypass eine Sauggastemperatur von ≤ 30 °C eingestellt werden kann. Auch kann das Kältemittel so dosiert werden, dass eine Betriebsdauer des Verdichters regelbar ist. Prinzipiell ist es nachteilig wenn der Verdichter bzw. Kompressor vielfach eingeschaltet und ausgeschaltet wird. Eine Lebensdauer des Kompressors kann verlängert werden wenn dieser längere Zeitabschnitte im Betrieb ist. Über den weiteren Bypass kann das Kältemittel an dem Expansionsorgan oder dem Kondensator vorbeigeführt werden, um beispielsweise ein automatisches Abschalten des Kompressors zu verzögern und eine Betriebsdauer des Kompressors zu verlängern.
- Der interne Wärmeübertrager kann als eine Unterkühlstrecke oder ein Wärmetauscher, insbesondere Plattenwärmetauscher ausgebildet sein. Die Unterkühlstrecke kann bereits durch zwei aneinander anliegende Leitungsabschnitte des Kühlkreislaufs ausgebildet sein.
- Weitere vorteilhafte Ausführungsformen einer Prüfkammer ergeben sich aus den Merkmalsbeschreibungen der auf den Anspruch 1 rückbezogenen Unteransprüche.
- Nachfolgend wird eine bevorzugte Ausführungsform der Erfindung unter Bezugnahme auf die beigefügte Zeichnung näher erläutert.
- Es zeigen:
- Fig. 1
- eine schematische Darstellung einer ersten Ausführungsform einer Kühleinrichtung;
- Fig. 2
- eine schematische Darstellung einer zweiten Ausführungsform einer Kühleinrichtung.
- Die
Fig. 1 zeigt eine schematische Darstellung einer Kühleinrichtung 10 mit einem Kühlkreislauf 11, innerhalb dem ein Kältemittel zirkulieren kann. Das Kältemittel ist ein zeotropes Kältemittel mit einem Temperaturgleit von ≥ 5 K. Die Kühleinrichtung 10 umfasst einen weiteren Kühlkreislauf 12, der dem Kühlkreislauf 11 vorgeschaltet ist. Der Kühlkreislauf 11 umfasst einen in einem Prüfraum 13 einer hier nicht näher dargestellten Prüfkammer angeordneten Wärmeübertrager 14, einen Verdichter 15, einen Kondensator 16, ein erstes Expansionsorgan 17 und einen internen Wärmeübertrager 18. Der Kühlkreislauf 11 weist eine Hochdruckseite 19, die in Strömungsrichtung des Kältemittels vom Verdichter 15 zum ersten Expansionsorgan 17 verläuft sowie eine Niederdruckseite 20, die vom ersten Expansionsorgan 17 zum Verdichter 15 verläuft, auf. In einem Rohrabschnitt 21 vom Verdichter 15 zum Kondensator 16 ist das Kältemittel gasförmig und weist eine vergleichsweise hohe Temperatur auf. Das von dem Verdichter 15 komprimierte Kältemittel fließt in den Kühlkreislauf 11 über einen Ölabscheider 22 zu dem Kondensator 16, wobei das gasförmige Kältemittel in dem Kondensator 16 verflüssigt wird. In Strömungsrichtung des Kältemittels folgt in dem Kühlkreislauf 11 nach dem Kondensator 16 der interne Wärmeübertrager 18, wobei in einem Rohrabschnitt 23 des Kühlkreislaufs 11 zwischen dem Kondensator 16 und dem ersten Expansionsorgan 17 das Kältemittel demnach im flüssigen Aggregatzustand vorliegt. Durch eine Expansion des Kältemittels nachfolgend dem ersten Expansionsorgan 17 erfolgt eine Kühlung des Wärmeübertragers 14, wobei das Kältemittel dann in einem Rohrabschnitt 24 zwischen dem ersten Expansionsorgan 17 und dem Wärmeübertrager 14 in den gasförmigen Aggregatzustand übergeht und über einen Rohrabschnitt 25 vom Wärmeübertrager 14 zu dem Verdichter 15 geleitet wird. - In dem Kühlkreislauf 11 ist der interne Wärmeübertrager 18 an den Rohrabschnitten 23 und 25 auf der Hochdruckseite 19 und der Niederdruckseite 20 des Kühlkreislaufs 11 angeschlossen. Das Kältemittel der Hochdruckseite 19 strömt im internen Wärmeübertrager 18 an dem Kältemittel der Niederdruckseite 20 so dicht vorbei, dass es zu einem Austausch von Wärmeenergie in dem internen Wärmeübertrager 18 kommt. Der interne Wärmeübertrager 18 dient hier zur Unterkühlung des Kältemittels der Hochdruckseite 19 durch das Kältemittel der Niederdruckseite 20. Diese Unterkühlung wird durch einen Bypass 26 sichergestellt, der aus einem Rohrabschnitt 27 mit einem zweiten Expansionsorgan 28 ausgebildet ist. Der Bypass 26 bzw. der Rohrabschnitt 27 ist an der Hochdruckseite 19 in der Strömungsrichtung nachfolgend dem Kondensator 16 und vor dem internen Wärmeübertrager 18, und an der Niederdruckseite 20 nachfolgend dem Wärmeübertrager 14 und vor dem internen Wärmeübertrager 18 angeschlossen. Über das zweite Expansionsorgan 28 kann so Kältemittel von der Hochdruckseite 19 auf die Niederdruckseite 20 dosiert bzw. expandiert und in den internen Wärmeübertrager 18 geleitet werden.
- Weiter ist in dem Rohrabschnitt 25 unmittelbar vor dem Verdichter 15 ein Drucksensor 29 zum Messen des Drucks der Niederdruckseite 20, und in dem Rohrabschnitt 21, unmittelbar nachfolgend dem Verdichter 15 ein Drucksensor 30 zum Messen des Drucks der Hochdruckseite 19 angeordnet. In dem Rohrabschnitt 23, nachfolgend dem internen Wärmeübertrager 18 und unmittelbar vor dem ersten Expansionsorgan 17 ist ein Temperatursensor 31 angeordnet mit dem eine Temperatur des Kältemittels gemessen wird.
- Weiter ist im Kühlkreislauf 11 ein weiterer Bypass 32 mit einem dritten Expansionsorgan 33 angeschlossen. Der weitere Bypass 32 verläuft von der Hochdruckseite 19 in der Strömungsrichtung nachfolgend dem Verdichter 15 und vor dem Kondensator 16, zu der Niederdruckseite 20 nachfolgend dem internen Wärmeübertrager 18 und vor dem Verdichter 15. Über den weiteren Bypass 32 bzw. das dritte Expansionsorgan 33 kann eine Sauggastemperatur und/oder ein Sauggasdruck des Kältemittels auf der Niederdruckseite 20 vor dem Verdichter 15 geregelt und bei Bedarf eine Druckdifferenz zwischen der Hochdruckseite 19 und der Niederdruckseite 20 ausgeglichen werden.
- Der weitere Kühlkreislauf 12 ist mit einem weiteren Kältemittel gefüllt und umfasst einen weiteren Verdichter 34, einen weiteren Kondensator 35 und ein weiteres Expansionsorgan 36. Der Kondensator 16 des Kühlkreislaufs 11 ist so in den weiteren Kühlkreislauf 12 integriert, dass ein Kaskaden-Wärmeübertrager 37 durch den Kondensator 16 ausgebildet ist.
- Die hier nicht näher dargestellte Prüfkammer weist eine Regeleinrichtung auf, mit der die Kühleinrichtung 10 regelbar ist. Die Regeleinrichtung ist mit dem Drucksensor 29, dem Drucksensor 30, dem Temperatursensor 31, dem ersten Expansionsorgan 17 und dem zweiten Expansionsorgan 28 gekoppelt. Insbesondere wird mittels der Regeleinrichtung über den Drucksensor 30 ein Druck und über den Temperatursensor 31 eine Temperatur des Kältemittels gemessen und das zweite Expansionsorgan 28 mit einer Stellgröße angesteuert. Die Regeleinrichtung bestimmt eine Siedetemperatur des Kältemittels am Temperatursensor 31 dadurch, dass die Regeleinrichtung die Siedetemperatur für den am Drucksensor 30 gemessenen Druck berechnet. Diese Berechnung erfolgt mittels eines Polynoms oder einer Dampfdrucktabelle. Die Siedetemperatur ist eine Führungsgröße nach der die Regeleinrichtung das zweite Expansionsorgan 17 regelt. Die Regeleinrichtung bestimmt eine Regelabweichung dadurch, dass die am Temperatursensor 31 gemessene Temperatur als Regelgröße von der Siedetemperatur subtrahiert wird, wobei die Regeleinrichtung das zweite Expansionsorgan 28 in Abhängigkeit dieser Regelabweichung mit der Stellgröße regelt.
- Dabei ist vorgesehen, dass die Regelung des zweiten Expansionsorgans 28 nur dann erfolgt, wenn die gemessene Temperatur höher ist als die Führungsgröße. Wenn die gemessene Temperatur niedriger ist als die Führungsgröße erfolgt keine Regelung des zweiten Expansionsorgans 28 mit der Stellgröße bzw. das zweite Expansionsorgan 28 wird dann wie sonst üblich betrieben. Durch die Regelung des zweiten Expansionsorgans bei Auftreten einer Regelabweichung durch eine höhere Temperatur am Temperatursensor 31 kann sichergestellt werden, dass stets eine Unterkühlung des Kältemittels vor dem ersten Expansionsorgan 17 so weit erfolgt, dass das Kältemittel nicht bis zu der Siedetemperatur erwärmt wird. Der Kühlkreislauf 11 und damit die Kühleinrichtung 10 kann so sicher und ohne größere Temperaturschwankungen betrieben werden. Wenn der Drucksensor 30 und der Temperatursensor 31 ohnehin in einem Kühlkreislauf vorhanden sind ist es lediglich erforderlich die Regeleinrichtung so auszubilden bzw. anzupassen, dass eine entsprechende Regelung des zweiten Expansionsorgans 28 ausgeführt werden kann. So kann mit einfachen Mitteln eine Betriebssicherheit der Kühleinrichtung 10 wesentlich verbessert werden.
- Die
Fig. 2 zeigt eine schematische Darstellung einer Kühleinrichtung 40. Im Unterschied zur Kühleinrichtung ausFig.1 ist hier alleine der Kühlkreislauf 11 vorgesehen. Die Kühleinrichtung 40 ist daher einstufig ausgebildet. Ein Betrieb des Kühlkreislaufs 11 erfolgt wie oben beschrieben. Mit der Kühleinrichtung 40 wird es möglich niedrige Temperaturen ohne großen Anlagenaufwand in dem Prüfraum auszubilden, beispielsweise -40 °C bis -50 °C.
Claims (21)
- Verfahren zur Konditionierung von Luft, ausgeführt mit einer Prüfkammer mit einem gegenüber einer Umgebung verschließbaren und temperaturisolierten Prüfraum (13) zur Aufnahme von Prüfgut, und einer Temperiervorrichtung zur Temperierung des Prüfraums, wobei mittels der Temperiervorrichtung mit einer Kühleinrichtung (10, 40) mit einem Kühlkreislauf (11) mit einem Kältemittel, einem in dem Prüfraum angeordneten Wärmeübertrager (14), einem Verdichter (15), einem Kondensator (16), einem ersten Expansionsorgan (17) und einem internen Wärmeübertrager (18) eine Temperatur in einem Temperaturbereich von -40 °C bis +180 °C innerhalb des Prüfraums ausgebildet wird, wobei der interne Wärmeübertrager an einer Hochdruckseite (19) des Kühlkreislaufs in einer Strömungsrichtung vor dem ersten Expansionsorgan und nachfolgend dem Kondensator, und an einer Niederdruckseite (20) des Kühlkreislaufs in der Strömungsrichtung nachfolgend dem Wärmeübertrager und vor dem Verdichter, angeschlossen ist, wobei der Kühlkreislauf einen Bypass (26) mit zumindest einem zweiten Expansionsorgan (28) aufweist, wobei der Bypass an der Hochdruckseite in der Strömungsrichtung nachfolgend dem Kondensator und vor dem internen Wärmeübertrager, und an der Niederdruckseite nachfolgend dem Wärmeübertrager und vor dem internen Wärmeübertrager angeschlossen ist,
dadurch gekennzeichnet,
dass eine Regeleinrichtung der Temperiervorrichtung mit einem Drucksensor (30) an der Hochdruckseite und mit einem Temperatursensor (31) an der Hochdruckseite in der Strömungsrichtung nachfolgend dem internen Wärmeübertrager in dem Kühlkreislauf das zweite Expansionsorgan in Abhängigkeit eines am Drucksensor gemessenen Drucks und einer am Temperatursensor gemessenen Temperatur regelt. - Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
dass das Kältemittel der Hochdruckseite (19) mittels des internen Wärmeübertragers (18) gekühlt wird. - Verfahren nach Anspruch 1 oder 2,
dadurch gekennzeichnet,
dass über das zweite Expansionsorgan (28) dem internen Wärmeübertrager (18) Kältemittel zugeführt wird, wobei von der Niederdruckseite (20) des internen Wärmeübertragers Kältemittel dem Verdichter (15) zugeführt wird. - Verfahren nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet,
dass als Kältemittel ein Kältemittel mit einem Temperaturglide von ≥ 5 K verwendet wird. - Verfahren nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet,
dass als Kältemittel R469A oder ein Gemisch aus dem Kältemittel R469A und dem Kältemittel R410A oder R466A verwendet wird. - Verfahren nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet,
dass die Regeleinrichtung das zweite Expansionsorgan (28) nach einer Führungsgröße regelt, wobei die Führungsgröße eine Siedetemperatur des Kältemittels oder Temperatur des unterkühlten Kältemittels am ersten Expansionsorgan (17) ist. - Verfahren nach Anspruch 6,
dadurch gekennzeichnet,
dass eine Bestimmung der Siedetemperatur durch die Regeleinrichtung erfolgt, wobei die Regeleinrichtung für den am Drucksensor (30) gemessenen Druck die Siedetemperatur des Kältemittels berechnet. - Verfahren nach Anspruch 7,
dadurch gekennzeichnet,
dass die Berechnung der Siedetemperatur mittels eines Polynoms oder einer Dampfdrucktabelle erfolgt. - Verfahren nach einem der Ansprüche 6 bis 8,
dadurch gekennzeichnet,
dass die Regeleinrichtung die Führungsgröße durch Addition der Siedetemperatur mit einem Sicherheitswert von 5 K bis 25 K, bevorzugt 7 K bis 15 K, berechnet. - Verfahren nach einem der Ansprüche 6 bis 9,
dadurch gekennzeichnet,
dass die Regeleinrichtung zur Bestimmung einer Regelabweichung die am Temperatursensor (31) gemessene Temperatur als Regelgröße von der Siedetemperatur subtrahiert, wobei die Regeleinrichtung das zweite Expansionsorgan (28) in Abhängigkeit der Regelabweichung mit einer Stellgröße regelt. - Verfahren nach Anspruch 10,
dadurch gekennzeichnet,
dass eine Regelung des zweiten Expansionsorgans (28) mit der Stellgröße erfolgt, wenn die gemessene Temperatur höher ist als die Führungsgröße, und dass keine Regelung mit der Stellgröße erfolgt, wenn die gemessene Temperatur niedriger ist als die Führungsgröße. - Verfahren nach Anspruch 10 oder 11,
dadurch gekennzeichnet,
dass die Regeleinrichtung die Stellgröße auf einen maximalen Wert begrenzt. - Verfahren nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet,
dass das zweite Expansionsorgan (28) mit einem PID-Regler der Regeleinrichtung geregelt wird. - Verfahren nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet,
dass eine Temperatur in einem Temperaturbereich von -50 °C bis +180 °C, bevorzugt von -70 °C bis +180 °C, besonders bevorzugt von -80 °C bis +180 °C, innerhalb des Prüfraums ausgebildet wird. - Verfahren nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet,
dass das erste Expansionsorgan (17) und das zweite Expansionsorgan (28) jeweils aus einem Drosselorgan und einem Magnetventil gebildet werden, wobei mittels der Regeleinrichtung über das jeweilige Drosselorgan und das Magnetventil Kältemittel dosiert wird. - Prüfkammer zur Konditionierung von Luft, umfassend einen gegenüber einer Umgebung verschließbaren und temperaturisolierten Prüfraum (13) zur Aufnahme von Prüfgut, und eine Temperiervorrichtung zur Temperierung des Prüfraums, wobei die Temperiervorrichtung eine Kühleinrichtung (10, 40) mit einem Kühlkreislauf (11) mit einem Kältemittel, einen in dem Prüfraum angeordneten Wärmeübertrager (14), einen Verdichter (15), einen Kondensator (16), ein erstes Expansionsorgan (17) und einen internen Wärmeübertrager (18) aufweist, wobei mittels der Temperiervorrichtung eine Temperatur in einem Temperaturbereich von -40 °C bis +180 °C innerhalb des Prüfraums ausbildbar ist, wobei der interne Wärmeübertrager an einer Hochdruckseite (19) des Kühlkreislaufs in einer Strömungsrichtung vor dem ersten Expansionsorgan und nachfolgend dem Kondensator, und an einer Niederdruckseite (20) des Kühlkreislaufs in der Strömungsrichtung nachfolgend dem Wärmeübertrager und vor dem Verdichter, angeschlossen ist, wobei der Kühlkreislauf einen Bypass (26) mit zumindest einem zweiten Expansionsorgan (28) aufweist, wobei der Bypass an der Hochdruckseite in der Strömungsrichtung nachfolgend dem Kondensator und vor dem internen Wärmeübertrager, und an der Niederdruckseite nachfolgend dem Wärmeübertrager und vor dem internen Wärmeübertrager angeschlossen ist,
dadurch gekennzeichnet,
dass die Temperiervorrichtung eine Regeleinrichtung mit einem Drucksensor (30) an der Hochdruckseite und mit einem Temperatursensor (31) an der Hochdruckseite in der Strömungsrichtung nachfolgend dem internen Wärmeübertrager in dem Kühlkreislauf umfasst, wobei das zweite Expansionsorgan mittels der Regeleinrichtung in Abhängigkeit eines am Drucksensor gemessenen Drucks und einer am Temperatursensor gemessenen Temperatur geregelt wird. - Prüfkammer nach Anspruch 16, dadurch gekennzeichnet, dass die Kühleinrichtung (40) mit alleine einem Kühlkreislauf (12) ausbildet ist.
- Prüfkammer nach Anspruch 16,
dadurch gekennzeichnet,
dass der Kondensator (16) als ein Kaskaden-Wärmeübertrager (37) eines weiteren Kühlkreislaufs (12) der Kühleinrichtung (10) ausbildet ist, wobei der weitere Kühlkreislauf ein weiteres Kältemittel, den Kaskaden-Wärmeübertrager, einen weiteren Verdichter (34), einen weiteren Kondensator (35), und ein weiteres Expansionsorgan (36) aufweist. - Prüfkammer nach einem der Ansprüche 16 bis 18,
dadurch gekennzeichnet,
dass die Temperiervorrichtung eine Heizeinrichtung mit einer Heizung und einem Heiz-Wärmeübertrager in dem Prüfraum aufweist. - Prüfkammer nach einem der Ansprüche 16 bis 19,
dadurch gekennzeichnet,
dass der Kühlkreislauf (11) einen weiteren Bypass (32) mit zumindest einem dritten Expansionsorgan (33) aufweist, wobei der weitere Bypass an der Hochdruckseite (19) in der Strömungsrichtung nachfolgend dem Verdichter (15) und vor dem Kondensator (16), und an der Niederdruckseite (20) nachfolgend dem internen Wärmeübertrager (18) und vor dem Verdichter angeschlossen ist, derart, dass eine Sauggastemperatur und/oder ein Sauggasdruck des Kältemittels auf der Niederdruckseite vor dem Verdichter regelbar ist, und/oder dass eine Druckdifferenz zwischen der Hochdruckseite und der Niederdruckseite ausgleichbar ist. - Prüfkammer nach einem der Ansprüche 16 bis 20,
dadurch gekennzeichnet,
dass der interne Wärmeübertrager (18) als eine Unterkühlstrecke oder ein Wärmetauscher, insbesondere Plattenwärmetauscher ausgebildet ist.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20171621 | 2020-04-27 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3904785A1 EP3904785A1 (de) | 2021-11-03 |
EP3904785B1 true EP3904785B1 (de) | 2022-08-24 |
Family
ID=70470916
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21170171.9A Active EP3904785B1 (de) | 2020-04-27 | 2021-04-23 | Verfahren und prüfkammer zur konditionierung von luft |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP3904785B1 (de) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7178353B2 (en) * | 2004-02-19 | 2007-02-20 | Advanced Thermal Sciences Corp. | Thermal control system and method |
DE102017012212A1 (de) * | 2017-09-08 | 2019-03-14 | Technische Universität Dresden | Kältemittel |
DE102018215026B4 (de) * | 2018-09-04 | 2021-08-26 | Audi Ag | Kälteanlage für ein Fahrzeug mit einem einen zweiflutigen Wärmeübertrager aufweisenden Kältemittelkreislauf sowie Wärmeübertrager und Verfahren zum Betreiben der Kälteanlage |
-
2021
- 2021-04-23 EP EP21170171.9A patent/EP3904785B1/de active Active
Also Published As
Publication number | Publication date |
---|---|
EP3904785A1 (de) | 2021-11-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3679109B1 (de) | Kältemittel | |
EP3430325B1 (de) | Prüfkammer | |
EP3511695B1 (de) | Prüfkammer | |
EP3682175A1 (de) | Verfahren und vorrichtung zur konditionierung von luft | |
DE102019105676B4 (de) | Kältemittel und dessen Verwendung | |
DE102019105682B4 (de) | Kältemittel und dessen Verwendung | |
EP3705551A1 (de) | Kältemittel | |
EP3686261B1 (de) | Kältemittel | |
EP3699515A1 (de) | Temperierkammer und verfahren | |
EP3584512A1 (de) | Prüfkammer und verfahren | |
EP3859235A1 (de) | Prüfkammer und verfahren zur steuerung | |
DE112019007078T5 (de) | Klimagerät | |
EP3686260B1 (de) | Kältemittel | |
EP3865788A1 (de) | Kühleinrichtung, prüfkammer und verfahren | |
EP3904785B1 (de) | Verfahren und prüfkammer zur konditionierung von luft | |
EP3926021B1 (de) | Kältemittel | |
EP3910043A1 (de) | Kältemittel | |
EP3730587B1 (de) | Kältemittel | |
EP3922929A1 (de) | Verfahren zum regeln einer kompressionskälteanlage und kompressionskälteanlage | |
EP4317841A1 (de) | Prüfkammer und verfahren zur steuerung | |
EP4317843A1 (de) | Prüfkammer und verfahren zum betrieb | |
EP4488598A1 (de) | Prüfkammer und verfahren zur steuerung | |
DE102011114401A1 (de) | Kühl- und/oder Gefriergerät |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
B565 | Issuance of search results under rule 164(2) epc |
Effective date: 20210902 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20211129 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F25B 9/00 20060101ALN20220310BHEP Ipc: F25B 49/02 20060101ALI20220310BHEP Ipc: F25B 40/00 20060101ALI20220310BHEP Ipc: F25B 7/00 20060101AFI20220310BHEP |
|
INTG | Intention to grant announced |
Effective date: 20220323 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: WEISS TECHNIK GMBH |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1513909 Country of ref document: AT Kind code of ref document: T Effective date: 20220915 Ref country code: DE Ref legal event code: R096 Ref document number: 502021000113 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20220824 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220824 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220824 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221226 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221124 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220824 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220824 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220824 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220824 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220824 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221224 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220824 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220824 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220824 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220824 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220824 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220824 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502021000113 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220824 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220824 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230524 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220824 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20230525 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230423 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20230430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220824 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220824 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230423 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230423 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240429 Year of fee payment: 4 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240430 Year of fee payment: 4 Ref country code: FR Payment date: 20240430 Year of fee payment: 4 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220824 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220824 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240430 |