Nothing Special   »   [go: up one dir, main page]

EP3983041A1 - Vessel access catheter method of use - Google Patents

Vessel access catheter method of use

Info

Publication number
EP3983041A1
EP3983041A1 EP20821687.9A EP20821687A EP3983041A1 EP 3983041 A1 EP3983041 A1 EP 3983041A1 EP 20821687 A EP20821687 A EP 20821687A EP 3983041 A1 EP3983041 A1 EP 3983041A1
Authority
EP
European Patent Office
Prior art keywords
length
lumen
endovascular device
support
support lumen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP20821687.9A
Other languages
German (de)
French (fr)
Other versions
EP3983041A4 (en
Inventor
Daniel Ezra Walzmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/848,699 external-priority patent/US20200246584A1/en
Application filed by Individual filed Critical Individual
Publication of EP3983041A1 publication Critical patent/EP3983041A1/en
Publication of EP3983041A4 publication Critical patent/EP3983041A4/en
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0021Catheters; Hollow probes characterised by the form of the tubing
    • A61M25/0041Catheters; Hollow probes characterised by the form of the tubing pre-formed, e.g. specially adapted to fit with the anatomy of body channels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/954Instruments specially adapted for placement or removal of stents or stent-grafts for placing stents or stent-grafts in a bifurcation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/962Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0067Catheters; Hollow probes characterised by the distal end, e.g. tips
    • A61M25/0068Static characteristics of the catheter tip, e.g. shape, atraumatic tip, curved tip or tip structure
    • A61M25/007Side holes, e.g. their profiles or arrangements; Provisions to keep side holes unblocked
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00743Type of operation; Specification of treatment sites
    • A61B2017/00778Operations on blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0891Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M2025/1043Balloon catheters with special features or adapted for special applications
    • A61M2025/1045Balloon catheters with special features or adapted for special applications for treating bifurcations, e.g. balloons in y-configuration, separate balloons or special features of the catheter for treating bifurcations

Definitions

  • the described invention relates generally to endovascular devices.
  • Blood vessels are dynamic structures that constrict, relax, pulsate, and proliferate. Within the body, blood vessels form a closed delivery system that begins and ends at the heart. There are three major types of blood vessels: (i) arteries; (ii) capillaries and (iii) veins. As the heart contracts, it forces blood into the large arteries leaving the ventricles. Blood then moves into smaller arteries successively, until finally reaching the smallest branches, the arterioles, which feed into the capillary beds of organs and tissues. Blood drains from the capillaries into venules, the smallest veins, and then into larger veins that merge and ultimately empty into the heart.
  • capillaries help serve cellular needs. Exchanges between the blood and tissue cells occur primarily through the thin capillary walls.
  • the walls of most blood vessels (the exception being the smallest vessels, e.g., venules), have three layers, or tunics, that surround a central blood-containing space called the vessel lumen.
  • the innermost tunic (layer) is the tunica intima.
  • the tunica intima contains endothelium, the simple squamous epithelium that lines the lumen of all vessels.
  • the endothelium is continuous with the endocardial lining of the heart, and its flat cells fit closely together, forming
  • a sub-endothelial layer consisting of a basement membrane and loose connective tissue, supports the endothelium.
  • the middle tunic (layer), the tunica media, is mostly circularly arranged smooth muscle cells and sheets of elastin.
  • the activity of the smooth muscle is regulated by sympathetic vasomotor nerve fibers of the autonomic nervous system. Depending on the body’s needs at any given time, regulation causes either vasoconstriction (lumen diameter decreases) or vasodilation (lumen diameter increases).
  • the activities of the tunica media are critical in regulating the circulatory system because small changes in vessel diameter greatly influence blood flow and blood pressure.
  • the tunica media is the bulkiest layer in arteries, which bear the chief responsibility for maintaining blood pressure and proper circulation.
  • the outer layer of a blood vessel wall is primarily composed of collagen fibers that protect the vessel, reinforce the vessel, and anchor the vessel to surrounding structures.
  • the tunica externa contains nerve fibers, lymphatic vessels, and elastic fibers (e.g., in large veins).
  • the tunica externa contains a structure known as the vasa vasorum, which literally means“vessels of vessels”.
  • the vasa vasorum nourishes external tissues of the blood vessel wall.
  • Interior layers of blood vessels receive nutrients directly from blood in the lumen (See, e.g., The Cardiovascular System at a Glance, 4th Edition, Philip I. Aaronson, Jeremy P. T. Ward, Michelle J. Connolly, November 2012, ⁇ 2012, Wiley-Blackwell, Hoboken, NJ).
  • FIGs 8 and 9 show schematic illustrations of the brain’s blood vessels.
  • Each cerebral hemisphere is supplied by an internal carotid artery, which arises from a common carotid artery beneath the angle of the jaw, enters the cranium through the carotid foramen, traverses the cavemosus sinus (giving off the ophthalmic artery), penetrates the dura and divides into the anterior and middle cerebral arteries.
  • the large surface branches of the anterior cerebral artery supply the cortex and white matter of the inferior frontal lobe, the medial surface of the frontal and parietal lobes and the anterior corpus callosum.
  • Smaller penetrating branches supply the deeper cerebrum and diencephalon, including limbic structures, the head of the caudate, and the anterior limb of the internal capsule.
  • the large surface branches of the middle cerebral artery supply most of the cortex and white matter of the hemisphere’s convexity, including the frontal, parietal, temporal and occipital lobes, and the insula.
  • Smaller penetrating branches supply the deep white matter and diencephalic structures such as the posterior limb of the internal capsule, the putamen, the outer globus pallidus, and the body of the caudate.
  • the internal carotid artery After the internal carotid artery emerges from the cavernous sinus, it also gives off the anterior choroidal artery, which supplies the anterior hippocampus and, at a caudal level, the posterior limb of the internal capsule.
  • Each vertebral artery arises from a subclavian artery, enters the cranium through the foramen magnum, and gives off an anterior spinal artery and a posterior inferior cerebellar artery.
  • the vertebral arteries join at the junction of the pons and the medulla to form the basilar artery, which at the level of the pons gives off the anterior inferior cerebellar artery and the internal auditory artery, and, at the midbrain, the superior cerebellar artery.
  • the basilar artery then divides into the two posterior cerebral arteries.
  • the large surface branches of the posterior cerebral arteries supply the inferior temporal and medial occipital lobes and the posterior corpus callosum; the smaller penetrating branches of these arteries supply diencephalic structures, including the thalamus and the subthalamic nuclei, as well as part of the midbrain (see Principles of Neural Sciences, 2d Ed., Eric R. Kandel and James H. Schwartz, Elsevier Science Publishing Co, Inc, New York, pp. 854-56 (1985)).
  • Interconnections between blood vessels protect the brain when part of its vascular supply is compromised.
  • Anastomoses are interconnections between blood vessels that protect the brain when part of its vascular supply is compromised.
  • the two anterior cerebral arteries are connected by the anterior communicating artery and the posterior cerebral arteries are connected to the internal carotid arteries by the posterior
  • the femoral artery is the main artery that provides oxygenated blood to the tissues of the leg. It passes through the deep tissues of the femoral (or thigh) region of the leg parallel to the femur.
  • the common femoral artery is the largest artery found in the femoral (thigh) region of the body. It begins as a continuation of the external iliac artery at the inguinal ligament which serves as the dividing line between the pelvis and the leg. From the inguinal ligament, the femoral artery follows the medial side of the head and neck of the femur inferiorly and laterally before splitting into the deep femoral artery and the superficial femoral artery.
  • the superficial femoral artery flexes to follow the femur inferiorly and medially. At its distal end, it flexes again and descends posterior to the femur before forming the popliteal artery of the posterior knee and continuing on into the lower leg and foot.
  • the deep femoral artery follows the same path as the superficial branch, but follows a deeper path through the tissues of the thigh, closer to the femur. It branches off into the lateral and medial circumflex arteries and the perforating arteries that wrap around the femur and deliver blood to the femur and deep muscles of the thigh. Unlike the superficial femoral artery, none of the branches of the deep femoral artery continue into the lower leg or foot.
  • the femoral artery is made of several distinct tissue layers that help it to deliver blood to the tissues of the leg.
  • the innermost layer known as the endothelium or tunica intima, is made of thin, simple squamous epithelium that holds the blood inside the hollow lumen of the blood vessel and prevents platelets from sticking to the surface and forming blood clots.
  • Surrounding the tunica intima is a thicker middle layer of connective tissues known as the tunica media.
  • the tunica media contains many elastic and collagen fibers that give the femoral artery its strength and elasticity to withstand the force of blood pressure inside the vessel. Visceral muscle in the tunica media may contract or relax to help regulate the amount of blood flow.
  • the tunica externa is the outermost layer of the femoral artery that contains many collagen fibers to reinforce the artery and anchor it to the surrounding tissues so that it remains stationary.
  • the femoral artery is classified as an elastic artery, meaning that it contains many elastic fibers that allow it to stretch in response to blood pressure. Every contraction of the heart causes a sudden increase in the blood pressure in the femoral artery, and the artery wall expands to accommodate the blood. This property allows the femoral artery to be used to detect a person’s pulse through the skin (See, e.g., The Cardiovascular System at a Glance, 4th Edition, Philip I. Aaronson, Jeremy P. T. Ward, Michelle J. Connolly, November 2012, ⁇ 2012, Wiley-Blackwell, Hoboken, NJ).
  • Endovascular diagnostic and therapeutic procedures are generally performed through the femoral artery.
  • Some of the reasons for this generalized approach include its location, easy approach for puncture and hemostasis, low rate of complications, technical ease, wide applicability and relative patient comfort (Alvarez-Tostado J.A. et al. Journal of Vascular Surgery 2009; 49(2): 378-385).
  • Femoral puncture also allows access to virtually all of the arterial territories and affords favorable ergonomics for the operator in most instances (Alvarez-Tostado J.A. et al. Journal of Vascular Surgery 2009; 49(2): 378-385).
  • the brachial artery is a major blood vessel located in the upper arm and is the main supplier of blood to the arm and hand. It continues from the axillary artery at the shoulder and travels down the underside of the arm. Along with the medial cubital vein and bicep tendon, it forms the cubital fossa, a triangular pit on the inside of the elbow. Below the cubital fossa, the brachial artery divides into two arteries running down the forearm: the ulnar and the radial; the two main branches of the brachial artery. Other branches of the brachial artery include the inferior ulnar collateral, profunda brachii, and superior ulnar arteries (See, e.g., The
  • Brachial artery access is a critical component of complex endovascular procedures, especially in instances where femoral access is difficult or contraindicated, such as the absence of palpable femoral pulses, severe common femoral occlusive disease, recent femoral intervention or surgery or femoral aneurysms/pseudoaneurysms. It is a straightforward procedure with a high success rate for percutaneous cannulation (Alvarez-Tostado J.A. et al. Journal of Vascular Surgery 2009; 49(2): 378-385).
  • the current standard for therapeutic recanalization and reperfusion in vascular disease and acute stroke is to perform endovascular interventions via a transfemoral approach, meaning, starting a catheter in the femoral artery at the groin, proceeding through the aorta and carotid artery to the affected blood vessel. All existing devices are designed to be used from this starting point and surgeons are most familiar and comfortable with this route.
  • PCD Percutaneous Coronary Intervention
  • PCI Percutaneous coronary intervention
  • methods include balloon angioplasty, coronary stenting, atherectomy (devices that ablate plaque), thrombectomy (devices that remove clots from blood vessels) and embolic protection (devices that capture and remove embolic debris).
  • Balloon angioplasty involves advancing a balloon-tipped catheter to an area of narrowing, inflating the balloon, and then removing the catheter after deflation.
  • Angioplasty can reduce the severity of coronary stenosis, improve coronary flow, and diminish or eliminate objective and subjective manifestations of ischemia (Losordo D.W. et al. Circulation 1992 Dec. 86(6): 1845- 58).
  • the mechanism of balloon angioplasty action involves three events: plaque fracture, compression of the plaque, and stretching of the vessel wall. These lead to expansion of the external elastic lumina and axial plaque redistribution along the length of the vessel (Losordo D.W. et al. Circulation 1992 Dec. 86(6): 1845-58).
  • Coronary stents are metallic scaffolds that are deployed within a diseased coronary artery segment to maintain wide luminal patency. They were devised as permanent endoluminal prostheses that could seal dissections, create a predictably large initial lumen, and prevent early recoil and late vascular remodeling (Krajcer Z. and Howell M.H. Tex Heart Inst J. 2000; 27(4): 369-385).
  • Drug-eluting stents elute medication to reduce restenosis (the recurrence of abnormal narrowing of a blood vessel) within the stents.
  • DES s Drug-eluting stents
  • Coronary stents are used in about 90% of interventional procedures. Stent-assisted coronary intervention has replaced coronary artery bypass graft (CABG) as the most common revascularization procedure in patients with coronary artery disease (CAD) and is used in patients with multi-vessel disease and complex coronary anatomy (Kalyanasundaram A. et al. Medscape December 16, 2014; article 164682: emedicine.medscape.com/article/164682- overview#a3).
  • CABG coronary artery bypass graft
  • CAD coronary artery bypass graft
  • the directional coronary atherectomy (DCA) catheter was first used in human peripheral vessels in 1985 and in coronary arteries in 1986.
  • DCA directional coronary atherectomy
  • a low-pressure positioning balloon presses a windowed steel housing against a lesion; any plaque that protrudes into the window is shaved from the lesion by a spinning cup-shaped cutter and trapped in the device’s nose cone (Hinohara T. et al. Circulation 1990 Mar. 81(3 Suppl):IV79-91).
  • Rotational atherectomy uses a high-speed mechanical rotational stainless-steel burr with a diamond chip— embedded surface.
  • the burr is attached to a hollow flexible drive shaft that permits it to be advanced over a steerable guide wire with a platinum coil tip.
  • the drive shaft is encased within a Teflon® sheath through which a flush solution is pumped to lubricate and cool the drive shaft and burr.
  • a compressed air turbine rotates the drive shaft at 140,000-200,000 rpm during advancement across a lesion (Hinohara T. et al. Circulation 1990 Mar. 81(3 Suppl): IV79- 91).
  • an intense light beam travels via optical fibers within a catheter and enters the coronary lumen.
  • the laser catheter is advanced to the proximal end of the lesion. Blood and contrast medium are removed from the target vessel by flushing with saline before activating the laser (Kalyanasundaram A. et al. Medscape December 16, 2014; article 164682: emedicine.medscape.com/article/164682- overview#a3).
  • Intracoronary thrombi may be treated with mechanical thrombectomy devices. These include rheolytic, suction and ultrasonic thrombectomy devices.
  • the catheters used for suction thrombectomy act via manual aspiration. These catheters are advanced over a wire to the intracoronary thrombus then passed through the thrombus while suction is applied to a hole in the catheter tip. Large intact thrombus fragments can be removed by means of this technique (Kalyanasundaram A. et al. Medscape December 16, 2014; article 164682; emedicine.medscape.com/article/164682-overview#a3).
  • Ultrasonic thrombectomy involves the use of ultrasonic vibration to induce cavitation that can fragment a thrombus into smaller components (Choi S.W. et al. J. Intery Cardiol. 2006 Feb. 19(1): 87-92).
  • Embolization the passage of an embolus (blood clot) within the blood stream
  • embolus blood clot
  • stents across complex atherosclerotic carotid artery lesions (Krajcer Z. and Howell M.H. Tex Heart Inst J. 2000; 27(4): 369-385).
  • Several devices have been developed to trap such embolic material and remove it from the circulation.
  • the PercuSurge Guardwire is a device that consists of a 0.014- or 0.018-inch angioplasty guidewire constructed of a hollow nitinol hypotube. Incorporated into the distal wire segment is an inflatable balloon capable of occluding vessel flow. The proximal end of the wire incorporates a MicrosealTM that allows inflation and deflation of the distal occlusion balloon. When the Microseal adapter is detached, the occlusion balloon remains inflated, at which time angioplasty and stenting are performed. An aspiration catheter can be advanced over the wire into the vessel, and manual suction is applied to retrieve particulate debris (Krajcer Z. and Howell M.H.
  • the Medicorp device consists of a protection balloon and a dilation balloon that can be used over a 0.014-inch coronary guidewire. Occlusion above the lesion and below the lesion creates a dilation zone without a flow, which is aspirated and cleared of atherosclerotic debris (Krajcer Z. and Howell M.H. Tex Heart Inst J. 2000; 27(4): 369-385).
  • AAA Abdominal Aortic Aneurysms
  • Two endoluminal AAA exclusion stent graft systems have received FDA approval: (i) the AncureTM Endograft System (Guidant/EVT; Menlo Park, Calif); and (ii) the AneuRxTM device (Medtronic AVE; Santa Rosa, Calif) (Krajcer Z. and Howell M.H. Tex Heart Inst J. 2000; 27(4): 369-385). Both are over-the-wire systems that require bilateral femoral artery access.
  • the AncureTM stent graft is an unsupported, single piece of woven Dacron® fabric.
  • the graft is bifurcated and has no intra-graft junctions.
  • the main device is delivered through a 24-Fr introducer sheath; a 12-Fr sheath is required to facilitate the deployment of the contralateral iliac limb.
  • the graft is attached via a series of hooks that are located at the proximal aortic end and at both iliac ends.
  • the hooks are seated transmurally (passing through the vessel wall) in the aorta and the iliac arteries, initially by minimal radial force, and then affixed by low-pressure balloon dilation.
  • Radiopaque markers are located on the body of the graft for correct alignment and positioning (Krajcer Z. and Howell M.H. Tex Heart Inst J. 2000; 27(4): 369-385).
  • the AneuRxTM device is a modular 2-piece system composed of a main bifurcation segment and a contralateral iliac limb.
  • the graft is made of thin-walled woven polyester that is fully supported by a self-expanding nitinol exoskeleton. Attachment is accomplished by radial force at the attachment sites, which causes a frictional seal.
  • the main bifurcated body is delivered through a 21-Fr sheath, and the contralateral limb requires a 16-Fr sheath.
  • the body of the graft has radiopaque markers that facilitate correct alignment and positioning (Krajcer Z. and Howell M.H. Tex Heart Inst J. 2000; 27(4): 369-385).
  • Mechanical thrombectomy excision of a clot from a blood vessel
  • remove occluding thrombi blood clots
  • Subgroups include (1) suction thrombectomy devices that remove occlusions from the cerebral vessels by aspiration (Proximal Thrombectomy) and (2) clot removal devices that physically seize cerebral thrombi and drag them out of the cerebral vessels (Distal Thrombectomy) (Gralla J. et al. Stroke 2006; 37: 3019-24; Brekenfeld C. et al. Stroke 2008; 39: 1213-9).
  • Manual suction thrombectomy is performed by moving forward an aspiration catheter at the proximal surface of the thrombus (Singh P. et al. J Neurosci Rural Pract. 2013 Jul-Sep; 4(3): 298-303). Manual aspiration is then carried out and the aspiration catheter is taken back under continuous negative pressure.
  • the Penumbra System (Penumbra, Almeda, CA USA) is a variation of the manual proximal aspiration method which comprises a dedicated reperfusion catheter attached to a pumping system applying constant aspiration.
  • a second retriever device is similar to a stent and is utilized to take out the resistant clot (Singh P. et al. J Neurosci Rural Pract.
  • the time window for neuroradiological intervention is 8 hours after stroke onset in patients not eligible for intravenous thrombolysis or in patients where intravenous thrombolysis was unsuccessful (Singh P. et al. J Neurosci Rural Pract. 2013 Jul-Sep; 4(3): 298-303).
  • the Penumbra SystemTM has been examined in a number of clinical trials.
  • the Penumbra Pivotal Stroke Trial was a prospective, single-arm, multicenter study that recruited 125 stroke patients (mean NIHSS 18) within 8 hours of symptom onset and was successful in 81.6% of treated vessels (Penumbra Pivotal Stroke Trial Investigators: The Penumbra pivotal stroke trial: Safety and effectiveness of a new generation of mechanical devices for clot removal in intracranial large vessel occlusive disease. Stroke 2009; 40: 2761-8).
  • Distal thrombectomy is a technically difficult procedure (Singh P. et al. J Neurosci rural Pract. 2013 Jul-Sep; 4(3): 298-303).
  • MERCI Mechanism Embolus Removal in Cerebral Ischemia
  • FDA United States Food and Drug Administration
  • the occlusion site In the initial stage of the procedure, the occlusion site must be traversed with a microcatheter so as to deploy the device beyond the thrombus.
  • the MERCI Retriever® device is pulled back into the thrombus and positioned within the clot.
  • the MERCI Retriever® and the trapped clot are withdrawn, initially into the positioning catheter and then out of the patient’s body (Singh P. et al. J Neurosci rural Pract. 2013 Jul-Sep; 4(3): 298 303).
  • Proximal balloon occlusion by means of a balloon guide catheter and aspiration during retrieval of the Merci device is done for the majority of cases in order to prevent thromboembolic complications (Nogueira R.G. et al.
  • the MERCI Retriever® clinical trial was a 25 -site, uncontrolled, technical efficacy trial (Smith W.S. et al. Stroke 2005; 36: 1432-8).
  • the trial incorporated 151 patients with occlusion of the internal carotid artery or vertebral and basilar arteries, who did not qualify for intra-arterial therapy (IAT) within 8 hours of symptom onset (Smith W.S. et al. Stroke 2005; 36: 1432-8).
  • Successful recanalization was accomplished in 46%, with excellent clinical outcome in 27.7% of patients (Smith W.S. et al. Stroke 2005; 36: 1432-1438).
  • Successful recanalization was linked with distinctly better clinical outcomes.
  • Drawbacks of this method include delayed in-stent thrombosis, the use of platelet inhibitors which may cause intracerebral hemorrhage (ICH) and perforator occlusion from relocation of the thrombus after stent placement (Samaniego E.A. et al Front Neurol. 2011; 2: 1-7; Fitzsimmons B.F. et al. Am J Neuroradiol. 2006; 27: 1132-4; Levy E.I. et al. Neurosurgery 2006; 58: 458-63; Zaidat O.O. et al. Stroke 2008; 39: 2392-5).
  • ICH intracerebral hemorrhage
  • Retrievable thrombectomy stents are self-expandable, re-sheathable, and re-constrainable stent-like thrombectomy devices which combine the advantages of intracranial stent deployment with immediate reperfusion and subsequent retrieval with definitive clot removal from the occluded artery (Singh P. et al. J Neurosci Rural Pract. 2013 Jul-Sep; 4(3): 298-303). Removal of the device circumvents the drawbacks associated with permanent stent implantation. These include the requirement for double anti-platelet medication, which potentially adds to the risk of hemorrhagic complications and the risk of in-stent thrombosis or stenosis.
  • the application of retrievable thrombectomy stents is analogous to that of intracranial stents.
  • a guide catheter is positioned in the proximal internal carotid artery.
  • a guide wire is advanced coaxially over a microcatheter within the blocked intracranial vessel and navigated past the thrombus.
  • the microcatheter is then advanced over the wire through the clot, and the guide wire is substituted for the embolectomy device Singh P. et al. J Neurosci rural Pract. 2013 Jul-Sep; 4(3): 298-303).
  • the revascularization device is placed with the middle third of the device residing within the thrombus formation.
  • the radial force of the stent retriever is able to create a channel by squeezing the thrombus and is able to partially restore blood flow to the distal territory in the majority of cases, producing a channel for a temporary bypass (Singh P. et al. J Neurosci Rural Pract. 2013 Jul-Sep; 4(3): 298-303).
  • the device is usually left in place for an embedding time of up to 10 minutes, permitting entrapment of the thrombus within the stent struts.
  • the unfolded stent and the microcatheter are slowly dragged into the guide catheter with flow reversal by continuous aspiration with a 50-ml syringe from the guide catheter Singh P. et al. J Neurosci Rural Pract. 2013 Jul-Sep; 4(3): 298-303).
  • the designs of these stents differ in terms of radial strength, design of the proximal and distal stent aperture, stent cell design, material and supplementary intraluminal struts (Mordasini P. et al. Am J Neuroradiol 2011; 32: 294-300; Brekenfeld C. et al. Am J Neuroradiol.
  • the most common aortic arch branching pattern in humans consists of three great vessels originating from the arch of the aorta.
  • the first branch is the innominate artery (brachiocephalic artery), which branches into the right subclavian artery and the right common carotid artery.
  • the second branch in the most common pattern is the left common carotid artery, and the last branch is the left subclavian artery (Layton K.F. Am J Neuroradiol. 2006; 27: 1541-1542)
  • HLHS hypoplastic left heart syndrome
  • HLHS comprises a wide spectrum of cardiac malformations, including hypoplasia or atresia (abnormal opening or failure of a structure to be tubular) of the aortic and mitral valves and hypoplasia of the left ventricle and ascending aorta.
  • the great vessels are normally related in this congenital anomaly.
  • HLHS has a reported prevalence of 0.2 per 1000 live births and occurs twice as often in boys as in girls. Left untreated, HLHS is lethal (Kau T. et al. Semin Intervent Radiol. 2007; 24(2): 141 152).
  • Coarctation of the aorta accounts for about 5 to 7% of all congenital heart disease. It is defined as a discrete stenosis in the proximal descending thoracic aorta. Only those with the most severe obstruction (e.g., aortic arch atresia or interruption) or associated cardiac defects invariably present in infancy (Jenkins N.R, Ward C. QJM. 1999; 92: 365-371). Most other cases are identified because of a murmur or hypertension found on routine examination.
  • Age at presentation is related to the severity rather than the site of obstruction, as a result of cardiac failure or occasionally cerebrovascular accident, aortic dissection, or endocarditis (Jenkins N.R, Ward C. QJM. 1999; 92: 365-371).
  • Aortic coarctation may be subclassified into isolated coarctation, coarctation with ventricular septal defect, and coarctation with complex intracardiac anomalies (Backer C.L. et al. Ann Thorac Surg. 2000; 69: S308— S318).
  • An exceedingly rare congenital anomaly is coarctation of a right aortic arch (Maxey T.S. et al. J Card Surg. 2006; 21 : 261-263).
  • Interrupted aortic arch is defined as the loss of luminal continuity between the ascending and descending aorta and is associated with a multitude of lesions ranging from isolated ventricular septal defects to complex ones (Kau T. et al. Semin Intervent Radiol. 2007; 24(2): 141-152).
  • An interrupted aortic arch may be subclassified into anatomical types based on the location of the interruption (Maxey T.S. et al. J Card Surg. 2006; 21 : 261-263). Although results have improved, repair of this abnormality is associated with a significant mortality and morbidity (Tchervenkov C.I. et al. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2005: 92-102).
  • a ductus arteriosus Botalli permits blood flow between the aorta (distal to the left subclavian artery) and the pulmonary artery. In a full-term infant, the ductus usually closes within the first 2 days of life. Persistent patency beyond that point is generally permanent, being two to three times as common in girls as in boys. Most of the cases occur as isolated defects. Typical concomitant findings are left ventricle hypertrophy and pulmonary artery dilation.
  • Persistent ductus arteriosus may also be associated with coarctation of the aorta, transposition of the great vessels, and ventricular septal defect (Campbell M. Br Heart J. 1968; 30:4-13).
  • the thyroid IMA artery is a collateral vessel feeding the thyroid gland (Wolpert S.M. Radiology 1969; 92: 333-334). This vessel occurs in up to 16.9% of the population (Vasovic L. et al. Ital J Anat Embryol. 2004; 109 : 189- 197). It may be a branch of the aortic arch between the brachiocephalic and left subclavian arteries. However, more frequently it is a branch of the brachiocephalic artery. A further variant of origin is from the right common carotid artery. In the remaining cases, it may originate from the internal mammary, subclavian, or inferior thyroid arteries (Kadir S. In: Kadir S, editor. Atlas of Normal and Variant Angiographic Anatomy. Philadelphia: WB Saunders; 1991. Regional anatomy of the thoracic aorta, pp. 19-54).
  • the right subclavian artery is the last branch of the aortic arch in approximately 1% of individuals (Richardson J.V. et al. Ann Thorac Surg. 1981; 31: 426-432). It courses to the right behind the esophagus in approximately 80% of these cases, between the esophagus and trachea in 15%, and anterior to the trachea or mainstem bronchus in 5% (Kadir S. In: Kadir S, editor. Atlas of Normal and Variant Angiographic Anatomy. Philadelphia: WB Saunders; 1991.
  • Right aortic arch is an uncommon anatomical anomaly that occurs in ⁇ 0.1% of the population (Cina C.S. et al. J Vase Surg. 2004; 39: 131-139). It results from the persistence of the right fourth branchial arch (Kadir S. In: Kadir S, editor. Atlas of Normal and Variant
  • the mirror-image type (left brachiocephalic trunk, right common carotid and subclavian arteries) is almost always associated with congenital heart disease, especially the cyanotic type (McElhinney D.B. et al. Pediatr Cardiol. 2001; 22:285-291).
  • the aortic isthmus in adults has a variable appearance. Its configuration may show a concavity, a straightening or slight convexity, or a discrete focal bulge.
  • the latter finding represents a ductus diverticulum, present in about 9% of individuals. Representing the most distal segment of the embryonic right arch, the ductus diverticulum is a fiisiform dilation of the ventromedial portion of the proximal descending thoracic aorta. At times a prominent ductus diverticulum may resemble a traumatic pseudoaneurysm of the aortic isthmus (Goodman PC. et al. Cardiovasc Intervent Radiol. 1982; 5: 1-4). Double Aortic Arch
  • the double aortic arch is a rare anomaly caused by persistence (to varying degrees) of the fetal double aortic arch system (Kadir S. In: Kadir S, editor. Atlas of Normal and Variant Angiographic Anatomy. Philadelphia: WB Saunders; 1991. Regional anatomy of the thoracic aorta pp. 19-54).
  • the ascending aorta divides into two arches that pass to either side of the esophagus and trachea and reunite to form the descending aorta. Therefore, it is a form of complete vascular ring, resulting in noncardiac morbidity, but rarely associated with intracardiac defects (Alsenaidi K. et al. Pediatrics. 2006; 118: el336— el341).
  • the descending aorta is usually on the left side. Most commonly, one arch is dominant, whereas the other may be of small caliber or represented by a fibrous band.
  • the cervical aortic arch refers to an unusually high location of the aortic arch in the low or mid-neck region (Kadir S. In: Kadir S, editor. Atlas of Normal and Variant Angiographic Anatomy. Philadelphia: WB Saunders; 1991. Regional anatomy of the thoracic aorta pp. 19-54). This rare type of aortic arch anomaly is presumed to result from persistence of the third aortic arch and regression of the normal fourth arch. Abnormalities of brachiocephalic arterial branching and arch laterality are common in patients with a cervical aortic arch (McElhinney D.B. et al. Pediatr Cardiol. 2001; 22:285-291).
  • a common brachiocephalic trunk (also known as the innominate artery), in which both common carotid arteries and the right subclavian artery arise from a single trunk off the arch, is the most frequent normal variant of aortic arch branching (Kadir S. In: Kadir S, editor. Atlas of Normal and Variant Angiographic Anatomy. Philadelphia: WB Saunders; 1991. Regional anatomy of the thoracic aorta, pp. 19-54) ( Figure 4).
  • the innominate artery and the left common carotid artery have a common origin. Therefore, only 2 great vessels originate from the aortic arch (Layton K.F. et al. Am J Neuroradiol.
  • aortic and vertebral artery variations inhibits the treatment of diseases that require endovascular intervention via a transfemoral approach.
  • the acute angle at which the left common carotid artery branches from the aortic arch in the bovine arch configuration makes mechanical endovascular neurointervention difficult, especially when additional tortuosity (i.e., twists) in the aorta and/or the carotid artery are present.
  • tortuosity i.e., twists
  • catheters exist that can access the origin of the left common carotid artery when arterial variations exist.
  • these catheters lack adequate support which results in kickback of the advancing wire into the aortic arch.
  • an endovascular device capable of treating diseases that require endovascular intervention in a patient suffering from a blood vessel anomaly.
  • the described invention provides a dual lumen endovascular device capable of effectively treating such patients by providing support and thus preventing kickback of an advancing wire, resulting in distal blood vessel access, clot retrieval, embolization of an aneurysm and/or embolization of an arteriovenous malformation (AVM).
  • AVM arteriovenous malformation
  • the described invention provides an endovascular device including a tube comprising a first end comprising a bifurcation; and a second end comprising an opening, wherein the bifurcation at the first end comprises a first branch comprising a diameter of the first branch and a second branch comprising a diameter of the second branch, the diameter of the first branch is greater than the diameter of the second branch, the opening at the second end comprises a primary opening comprising a diameter of the primary opening and secondary opening comprising a diameter of the secondary opening, the diameter of the primary opening is greater than the diameter of the secondary opening, the first branch comprising the diameter of the first branch and the primary opening comprising the diameter of the primary opening, form a non-support lumen comprising a diameter of the non-support lumen and a length of the non- support lumen, wherein the diameter of the non-support lumen comprises the diameter of the fust branch and the diameter of the primary opening, and the second branch comprising the diameter of the second branch and secondary opening comprising the diameter
  • a nonsupport lumen is one which allows the movement of wires within it and allows communication between the external attachment device and the target area for treatment.
  • Non-support lumens are directly involved with treatment whereas support lumens such as balloon lumens yield indirect assistance in facilitating the work of non-support lumens.
  • the support lumen is a conduit through which a second device is advanced into a blood vessel; or the non-support lumen (also referred to as a working lumen) is a conduit through which a second device is advanced into a blood vessel; or a combination thereof.
  • the second device is a diagnostic catheter, a therapeutic catheter, a therapeutic balloon, a retrievable balloon, a therapeutic stent, a retrievable stent, a flow-diverting stent, a coil, a wire, an endoluminal mesh, an embolic agent, another endovascular device or a combination thereof.
  • the present invention at a minimum contains one first lumen.
  • a second lumen (located either inside the inner diameter of said first lumen or between the outer diameter and the inner diameter of the first lumen or outside of the outer diameter of the first lumen) may be used to operate a balloon element of the present invention.
  • the first lumen is composed of two parts, namely the support lumen and the non-support lumen (also referred to as a“working lumen”).
  • the length of the support lumen ranges from at least 90.05 cm to at least 200 cm; or the length of the working lumen ranges from at least 20 cm to at least 160 cm, or the length of the support lumen ranges from at least 100.1% to at least 120% of the length of the working lumen.
  • inner diameter (ID) of the working lumen ranges from at least 0.1 French (Fr) (0.001 inches) to at least 30 French (Fr) (0.394 inches).
  • the support lumen comprises an inflatable balloon.
  • the inflatable balloon is attached to the distal portion of the support lumen.
  • Balloon elements associated with the current invention do not require wires to operate them. Balloon elements associated with the current invention may use additional lumen. Balloon elements associated with the current invention may be located before, at and after the side hole, and since the side hole is a significant structural element uniquely one embodiment should be opposite the side hole.
  • the present invention can use a catheter that has a longer length outside the body of the patient than inside, so location of Luer-Lock location is not related to a position relative to the patient. More particularly the external termination device is preferably located on the end of the tube that remains outside the patient’s body. The present invention will locate the Luer Lock and other terminal devices at the proximal end-hole which is both external to the patient and the hole furthest from a balloon deployment location, if any.
  • the support lumen comprises an additional lumen that fills and empties a balloon.
  • the balloon is positioned along a length of the endovascular device; or the balloon is adapted to be filled from the working lumen when an appropriate sized wire or catheter or device is inserted through the working lumen; or the additional lumen comprises an external termination device (e.g., Luer Lock or other medical fittings external to the patient for whom device is being used to eliminate or ameliorate a medical difficulty) attached at a proximal end; or a combination thereof.
  • an external termination device e.g., Luer Lock or other medical fittings external to the patient for whom device is being used to eliminate or ameliorate a medical difficulty
  • the endovascular device comprises a separate lumen adapted to fill and empty into a balloon positioned along a length of the endovascular device
  • the support lumen comprises a device separate from the endovascular device that provides added support.
  • the device separate from the endovascular device that provides added support is a stent, a retrievable stent, a balloon, a retrievable balloon, a wire or combination thereof.
  • the endovascular device further comprises an external termination device attached to a proximal end of the working lumen and an external termination device attached to a proximal end of the support lumen.
  • the primary opening comprises an extension at an angle.
  • the angle is fixed or adjustable; or the angle of the extension ranges from an angle of at least 1 degree to an angle of at least 359 degrees.
  • the described invention provides an endovascular device including a tube comprising a side-hole; said side-hole is symmetrical without a directional element and uniform perimeter, a first segment comprising a primary opening; and a second segment, wherein the first segment extends from the primary opening to the side-hole; the second segment extends from the side-hole and tapers to an end, the side-hole and the first segment form a working lumen comprising a diameter of the working lumen and a length of the working lumen, and the second segment forms a support lumen comprising a diameter of the support lumen and a length of the support lumen, and the support lumen is effective: to provide stability to the endovascular device; and to prevent kickback of the endovascular device.
  • the support lumen is a conduit through which a second device is advanced into a blood vessel; or the working lumen is a conduit through which a second device is advanced into a blood vessel; or a combination thereof.
  • the second device is a diagnostic catheter, a therapeutic catheter, a therapeutic balloon, a retrievable balloon, a therapeutic stent, a retrievable stent, a flow-diverting stent, a coil, a wire, an endoluminal mesh, an embolic agent, another endovascular device or a combination thereof.
  • the length of the support lumen ranges from at least0.05 cm to at least 32 cm; or the diameter of the working lumen is equal to or greater than diameter of the support lumen; or the length of the working lumen ranges from at least 20 cm to at least 160 cm; or the length of the support lumen ranges from at least 0.1% to at least 20% of the length of the working lumen.
  • the inner diameter (ID) of the working lumen ranges from at least 0.1 French (Fr) (0.001 inches) to at least 30 French (Fr) (0.394 inches).
  • the endovascular device comprises an inflatable balloon.
  • the inflatable balloon is attached to the distal portion of the support lumen.
  • the inflatable balloon is attached proximal to the side-hole; or distal to the side-hole; or opposite the side-hole.
  • the inflatable balloon spans a length of the side-hole from a distal portion of the side-hole to a proximal portion of the side-hole.
  • the support lumen comprises an additional lumen that fills and empties a balloon.
  • the balloon is positioned along a length of the endovascular device; or the balloon is adapted to be filled from the working lumen when an appropriate sized wire or catheter or device is inserted through the working lumen; or the additional lumen comprises an external termination device (e.g., Luer Lock attached at a proximal end; or a combination thereof.
  • an external termination device e.g., Luer Lock attached at a proximal end; or a combination thereof.
  • the endovascular device comprises a separate lumen adapted to fill and empty into a balloon positioned along a length of the endovascular device.
  • the support lumen comprises a device separate from the endovascular device that provides added support.
  • the device separate from the endovascular device that provides added support is a stent, a retrievable stent, a balloon, a retrievable balloon, a wire or combination thereof.
  • the endovascular device further comprises an external termination device attached to a proximal end of the working lumen and an external termination device attached to a proximal end of the support lumen.
  • the side-hole comprises an extension at an angle.
  • the angle is fixed or adjustable; or the angle of the extension ranges from an angle of at least 1 degree to an angle of at least 359 degrees.
  • the endovascular device is an intracranial endovascular device or a peripheral blood vessel endovascular device.
  • FIG. 1 shows an illustration of a side view of some embodiments of a dual lumen catheter of the described invention.
  • Fig. 2 shows an illustration of a cross-sectional view of some embodiments of a dual lumen catheter of the described invention.
  • FIG. 3 shows an illustration of a side view of some embodiments of a single lumen catheter of the described invention.
  • FIG. 4 shows an illustration of the most common aortic arch branching pattern found in humans (from Layton K.F. et al. Am J Neuroradiol. 2006; 27: 141-1542).
  • FIG. 5 shows an illustration of the aortic arch branching pattern in bovine arch variation (from Layton K.F. et al. Am J Neuroradiol. 2006; 27: 141-1542).
  • Fig. 6 shows an illustration of a side view of some embodiments of a support lumen of the described invention.
  • FIG. 7 shows an illustration of some embodiments of the endovascular device of the described invention comprising an“S”-shape support lumen inserted into an aortic arch.
  • FIG. 8 shows an illustrative view of the cerebral arteries.
  • FIG. 9 shows an illustrative view of the cerebral arteries (from Netter FH. The CIBA Collection of Medical Illustrations: Volumes 1, Nervous System. Vol. 1. Part I. CIBA: USA. 1986. pp. 256).
  • Fig. 10 shows an illustrative embodiment of an endovascular device according to the described invention.
  • the device is depicted inserted in the left middle cerebral artery (L- MCA) with the side-hole oriented to access an acutely angled branch feeder of an arteriovenous malformation (AVM).
  • L- MCA left middle cerebral artery
  • AVM arteriovenous malformation
  • Fig. 11 shows an illustration of a cross-sectional view of some embodiments of a dual lumen endovascular device 1100 according to the described invention.
  • 1101 is an illustration of a cross-sectional view of a working lumen of a dual lumen endovascular device 1100 according to the described invention.
  • 1102 is an illustration of a cross-sectional view of a support lumen of a dual lumen endovascular device 1100 according to the described invention.
  • Fig. 12 shows and illustrative embodiment of an endovascular device according to the described invention.
  • the device is depicted inserted in the left middle cerebral artery (L- MCA) with the side-hole oriented to access an acutely angled branch feeder of an arteriovenous malformation (AVM).
  • AVM arteriovenous malformation
  • the device is depicted with an angled extension protruding from the side- hole.
  • ablation refers to a procedure that uses radiofrequency energy (e.g., microwave heat) to destroy a small area of heart tissue that is causing rapid and irregular heartbeats. Destroying this tissue restores the heart’s regular rhythm.
  • the procedure is also called radiofrequency ablation.
  • acute angle and“acute angulation” are used interchangeably herein to refer to a sharp, obstructive or abnormal angle or bend (e.g., less than 90 degrees) in an organ, artery, vessel, etc.
  • the head end When referring to animals that typically have one end with a head and mouth, with the opposite end often having the anus and tail, the head end is referred to as the cranial end, while the tail end is referred to as the caudal end.
  • rostral refers to the direction toward the end of the nose, and caudal is used to refer to the tail direction.
  • the surface or side of an animal’s body that is normally oriented upwards, away from the pull of gravity, is the dorsal side; the opposite side, typically the one closest to the ground when walking on all legs, swimming or flying, is the ventral side.
  • A“sagittal” plane divides the body into left and right portions.
  • the “midsagittal” plane is in the midline, i.e. it would pass through midline structures such as the spine, and all other sagittal planes are parallel to it.
  • A“coronal” plane divides the body into dorsal and ventral portions.
  • A“transverse” plane divides the body into cranial and caudal portions.
  • a coronal or frontal plane is a Y-Z plane, perpendicular to the ground, which separates the anterior from the posterior.
  • a sagittal plane is an X-Z plane, perpendicular to the ground and to the coronal plane, which separates left from right.
  • the midsagittal plane is the specific sagittal plane that is exactly in the middle of the body.
  • Structures near the midline are called medial and those near the sides of animals are called lateral. Therefore, medial structures are closer to the midsagittal plane, lateral structures are further from the midsagittal plane. Structures in the midline of the body are median. For example, the tip of a human subject’s nose is in the median line.
  • Ipsilateral means on the same side, contralateral means on the other side and bilateral means on both sides. Structures that are close to the center of the body are proximal or central, while ones more distant are distal or peripheral. For example, the hands are at the distal end of the arms, while the shoulders are at the proximal ends.
  • “bovine arch variation” is an anatomical deviation from the most common aortic arch branching pattern in humans.
  • an anomaly can occur in a blood vessel having tortuosity.
  • aneurysm refers to a localized widening (dilatation)of an artery, a vein, or the heart. At the point of an aneurysm, there is typically a bulge, where the wall of the blood vessel or organ is weakened and may rupture.
  • Blood flow proceeds from the parent vessel into the aneurysm at the distal or downstream extent of the aneurysm neck (i.e., the transition from the sac to the parent artery), circulates around the periphery along the aneurysm wall from the neck to the top of the fundus (i.e., aneurysm sac) (downstream to upstream), returning in a type of“isotropic shower” along the aneurysm wall toward the neck region, and exits the closest of the aneurysm neck into the parent vessel (See, e.g., Strother C.M. Neuroradiology 1994; 36: 530-536; Moulder P. V. Physiology and biomechanics of aneurysms. In: Kerstein MD, Moulder PV, Webb WR, eds. Aneurysms. Baltimore, Md: Williams & Wilkins; 1983:20).
  • AAA “abdominal aortic aneurysm”
  • AAA refers to an aortic diameter at least one and one-half times the normal diameter at the level of the renal arteries, which is approximately 2.0 cm.
  • Aortic aneurysms constitute the 14th leading cause of death in the United States.
  • Risk factors associated with AAA include age, sex, ethnicity, smoking, hypertension and atherosclerosis, among others (See, e.g., Aggarwal S. et al. Exp Clin Cardiol. 2011; 16(1): 11-15; Ouriel K. et al. J Vase Surg. 1992; 15: 12-18; Silverberg E. et al. CA Cancer J Clin. 1990; 40: 9-26).
  • AFM arteriovenous malformation
  • AVMs are congenital vascular lesions that occur as a result of capillary mal-development between the arterial and venous systems. Approximately 0.14% of the United States population has an intracranial AVM that poses a significant risk and represents a major life threat, particularly to persons under the age of 50 years.
  • the vessels constituting the AVM are weak and enlarged and serve as direct shunts for blood flow between the high-pressure arterial system and the low-pressure venous system, corresponding to a large pressure gradient and small vascular resistance.
  • the abnormal low-resistance, high-flow shunting of blood within the brain AVM without an intervening capillary bed causes the fragile dilated vessels in the nidus (i.e., tangle of blood vessels) to become structurally abnormal and fatigued, to further enlarge, and to rupture (See, e.g., Wilkins R.H. Neurosurgery 1985; 16:421-430; Graves V.B. et al. Invest Radiol. 1990; 25: 952-960; Hademenos G.J. et al., Neurosurgery 1996; 38: 1005-1015).
  • the abnormal micro-vessels of an AVM serve as passive conduits for blood flow from the arterial circulation directly to the venous circulation, by-passing their normal physiological function of brain tissue perfusion.
  • the hemodynamic consequences of an AVM occur as a result of two interdependent circulatory mechanisms involved in the shunting of blood between artery and vein (See, e.g., Hademenos G.J. and Massoud T.F. Stroke 1996; 27: 1072 1083).
  • Cerebrovascular steal The abnormal shunting of blood flow by brain AVMs rapidly removes or“steals” blood from the normal cerebral circulation and substantially reduces the volume of blood reaching the surrounding normal brain tissue. This phenomenon, known as cerebrovascular steal, depends on the size of the AVM and is the most plausible explanation for the development of progressive neurological deficits. Cerebrovascular steal could translate into additional neurological complications developed as a result of cerebral ischemia or stroke in neuronal territories adjacent to an AVM (See, e.g., Manchola I.F. et al. Neurosurgery 1993; 33: 556-562; Hademenos G.J. and Massoud T.F. Stroke 1997; 28: 2067-2077).
  • atherectomy refers to a minimally invasive endovascular surgery technique for removing atherosclerosis from blood vessels within the body by cutting plaque from the walls of a blood vessel.
  • Atherosclerosis also known as“hardening of the arteries” refers to a pathological process in which calcified lipid or fatty deposits from flowing blood accumulate along the innermost intimal layer of a vessel wall. Atherosclerotic plaques are found almost exclusively at the outer wall of one or both daughter vessels at major arterial bifurcations, including the carotid. Atherosclerosis and the development of arterial plaques are the products of a host of independent biochemical processes including the oxidation of low-density lipoproteins, formation of fatty streaks, and the proliferation of smooth muscle cells. As the plaques form, the walls become thick, fibrotic, and calcified.
  • Atherosclerotic deposits promote the development of blood clots or the process of thrombosis, due in part, to flow obstruction and to high shear stresses exerted on the vessel wall by the blood.
  • High wall shear stress mechanically damages the inner wall of the artery, initiating a lesion.
  • Low wall shear stress encourages the deposition of particles on the artery wall, promoting the accumulation of plaque.
  • Turbulence has also been implicated in atherosclerotic disease because it can increase the kinetic energy deposited in the vessel walls and because it can lead to areas of stasis, or stagnant blood flow, that promote clotting. The presence of
  • Atherosclerotic lesions introduces an irregular vessel surface, resulting in turbulent blood flow, thus causing the dislodgment of plaques of varying size into the bloodstream. Subsequently, the dislodged plaque lodges into a vessel of smaller size, preventing further passage of blood flow (See, e.g., Hademenos G J. and Massoud T.F. Stroke 1997; 28: 2067-2077).
  • atresia refers to the absence or abnormal narrowing of an opening or passage in the body.
  • aortic atresia refers to a rare congenital anomaly in which the aortic orifice is absent or closed.
  • Atrial fibrillation refers to an irregular and often fast heart rate which may cause symptoms such as heart palpitations, fatigue, and shortness of breath.
  • Atrial fibrillation weakens the cardiac wall and introduces abnormalities in the physiological function of the heartbeat, which ultimately result in reduced systemic pressure, conditions of ischemia and stroke.
  • brachiocephalic trunk also known as“innominate artery”, as used herein, refers to a major vessel that supplies the head, neck and right arm. It is the first of three main branches of the aortic arch, which originates from the upward convexity. After arising in the midline, it courses upwards to the right, crossing the trachea, and bifurcates posteriorly to the right sternoclavicular joint into the right subclavian and right common carotid arteries. It typically measures 4-5 cm in length with a diameter of approximately 12 mm.
  • brain aneurysm refers to a cerebrovascular disease that manifests as a pouching or ballooning of the vessel wall (i.e., vascular dilation).
  • the vascular dilatation develops at a diseased site along the arterial wall into a distended sac of stressed and thinned arterial tissue.
  • the fully developed cerebral aneurysm typically ranges in size from a few millimeters to 15 mm but can attain sizes greater than 2.5 cm. If left untreated, the aneurysm may continue to expand until it ruptures, causing hemorrhage, severe neurological complications and deficits, and possibly death (Hademenos G.J. and Massoud T.F. Stroke 1997; 28: 2067-2077; Hademenos G.J. Phys Today 1995; 48: 24-30).
  • Surgical clipping is an intracranial procedure in which a small metallic clip is placed along the neck of the aneurysm. The clip prevents blood from entering into the aneurysm sac so that it no longer poses a risk for bleeding. The clip remains in place, causing the aneurysm to shrink and permanently scar.
  • Endovascular coiling is a minimally invasive technique in which a catheter is inserted into the femoral artery and navigated through the blood vessels to the vessels of the brain and into the aneurysm.
  • Coils are then packed into the aneurysm to the point where it arises from the blood vessel, thus preventing blood flow from entering the aneurysm. Additional devices, such as a stent or balloon, for example, may be needed to keep the coils in place.
  • the term“branch”, as used herein, refers to something that extends from or enters into a main body or source; a division or offshoot from a main stem (e.g., blood vessels); one of the primary divisions of a blood vessel.
  • curve diameter refers to the furthest distance a catheter moves from its straight axis as it is being deflected.
  • the curve diameter does not always remain constant during deflection and does not necessarily indicate the location of the catheter tip.
  • diastolicator refers to a long, tapered device adapted stretch an opening in skin and/or to stretch a blood vessel to allow for insertion of a larger device, e.g., a sheath, catheter, etc.
  • distal refers to the state of being situated away from the interface or entry point of the device of the current invention and the patient.
  • the term“deflection”, as used herein, refers to movement of a catheter independent of the rest of the catheter.
  • deployment point refers to a location on the outside of the tube element of the invention, within the tube element of the invention, or inside of the tube element of the invention which is located within 6 cm of the edge of a side-hole and/or located at the end-hole, or within 3 cm of the end hole.
  • embolus refers to a gaseous particulate matter that acts as a traveling“clot”.
  • a common example of an embolus is an aggregate dislodged from an atherosclerotic lesion. The dislodged platelet aggregate is transported by the bloodstream through the cerebrovasculature until it reaches a vessel too small for further propagation. The clot remains there, clogging the vessel and preventing blood flow from entering the distal vasculature. Emboli can originate from distant sources such as the heart, lungs, and peripheral circulation, which could eventually travel within the cerebral blood vessels, obstructing flow and causing stroke.
  • emboli include atrial fibrillation and valvular disease.
  • the severity of stroke depends on the size of the embolus and the location of the obstruction. The bigger the embolus and the larger the vessel obstruction, the larger the territory of brain at risk (Hademenos G.J. and Massoud T.F. Stroke 1997; 28: 2067-2077).
  • endoluminal refers to the state of being within a tubular organ or structure (e.g., blood vessel, duct, gastrointestinal tract, etc.) or within a lumen.
  • lumen refers to the inner open space or cavity of a tubular structure.
  • the term“French” (abbreviated“Fr” or“F” or“Ga” or“CH” or“Ch”), as used herein, is a system used to measure the diameter of a catheter.
  • the French unit of measure is equivalent to three times the diameter in millimeters (mm). For example, 9 Fr is equivalent to a diameter of 3 mm.
  • hemomorrhage refers to the escape of blood from ruptured blood vessel.
  • Blood vessels are typically structurally adept to withstand the dynamic quantities required to maintain circulatory function. For reasons that are not entirely understood, the vessel wall can become fatigued and abnormally weak and possibly rupture. With vessel rupture, hemorrhage occurs with blood seeping into the surrounding brain tissue. As the blood accumulates within the brain, the displaced volume causes the blood, now thrombosed, to ultimately compress the surrounding vessels. The compression of vessels translates into a reduced vessel diameter and a corresponding reduction in flow to surrounding tissue, thereby enlarging the insult (See, e.g., Hademenos GJ. and Massoud T.F. Stroke 1997; 28: 2067-2077).
  • hemorrhage may occur at the brain surface (extraparenchymal), for example, from the rupture of congenital aneurysms at the circle of Willis, causing subarachnoid hemorrhage (SAH). Hemorrhage also may be intraparenchymal, for example, from rupture of vessels damaged by long-standing hypertension, and may cause a blood clot (intracerebral hematoma) within the cerebral hemispheres, in the brain stem, or in the cerebellum. Hemorrhage may be accompanied by ischemia or infarction.
  • AMMs arteriovenous malformations
  • hypoplasia refers to a condition of arrested development in which an organ or other part of the body remains below the normal size or in an immature state, usually due to a deficiency in the number of cells; atrophy due to destruction of some of the elements and not merely to their general reduction in size.
  • introduction refers to an instrument such as a tube or sheath that is placed within a vein or artery for introduction of a flexible device, for example, a catheter, needle, wire, etc.
  • inflatable balloon element refers to a combination of balloons that may be used, and may be positioned along a length of the medical device, and adapted to be filled from the lumen of said device when an appropriately sized wire or catheter or device is inserted through the lumen; a combination thereof; inflatable balloon elements may be located proximal to the side-hole, distal to the side-hole, or at the side-hole.
  • Inflatable balloon elements must be operated, using a channel which houses wires, tubes and other communicating means for inflating and deflating a balloon or more than one several balloon, including covering the use and deployment of two or more separate additional lumens adapted to fill and empty into two or more balloons positioned along a length of the medical device; the selective inflation of select balloons is effective to position the medical device in a desired position within the cross- sectional diameter of the vessel.
  • the term“kickback”, as used herein refers to the phenomenon of catheter prolapse (slipping forward or down) due to a counterforce against the catheter by the prolapsed coil tail.
  • the counterforce may be due to a lack of available space to insert the last coil. This lack of space may be the result of, for example, a blood vessel variation such as a bovine arch variation, a vertebral artery variation, a thrombus, an embolus, an arteriovenous malformation and the like.
  • a“second device” or second medical device refers to an anchoring device or any of the following devices; diagnostic catheter, a therapeutic catheter, a therapeutic balloon, a retrievable balloon, a therapeutic stent, a retrievable stent, a flow-diverting stent, a coil, a wire, an endoluminal mesh, an embolic agent, another medical device or a combination thereof.
  • references to a“third device” or third medical device means a diagnostic catheter, a therapeutic catheter, a therapeutic balloon, a retrievable balloon, a therapeutic stent, a retrievable stent, a flow-diverting stent, a coil, a wire, an endoluminal mesh, an embolic agent, another medical device or a combination thereof.
  • proximal refers to the state of being situated next to or nearest the point of attachment or origin.
  • round or“round segment” refers a round element for ease of movement in the patient, relying on an anchoring element to keep the catheter in place, in distinction from the prior art which teaches a flat element to help secure a catheter in place.
  • the term“reperfusion”, as used herein, refers to restoration of the flow of blood to a previously ischemic organ or tissue (e.g., heart or brain).
  • restenosis refers to the recurrence of narrowing of a blood vessel (e.g., artery or vein) or valve.
  • the term“steerability”, as used herein, refers to an ability to turn or rotate the distal end of a catheter with like-for-like movement of the proximal section or the catheter
  • supplemental support refers to a stent, a retrievable stent, a balloon, a retrievable balloon, a wire or combination thereof; and that supplemental support may be incorporated into the medical device that provides added support and the incorporated supplemental support may be a stent, a retrievable stent, a balloon, a retrievable balloon, a wire or a combination thereof.
  • tape refers to the reduction of thickness toward end; the gradual diminution of width or thickness in an elongated object; i.e., to become more slender toward one end.
  • thrombectomy refers to the surgical excision of a thrombus.
  • thrombus refers to an internal physiological mechanism responsible for the clotting of blood.
  • a thrombus is a blood clot, an aggregation of platelets and fibrin formed in response either to an atherosclerotic lesion or to vessel injury.
  • the blood coagulation system is activated, which initiates a cascade of processes, transforming prothrombin, ultimately resulting in a fibrin clot.
  • vessel injury can occur as a result of forces (e.g., shear stresses) coupled with excess energy created by the turbulent flow exerted against the inner (intimal) lining of the vessel wall, particularly an atherosclerotic vessel wall (See, e.g., Fry D.L. Circ Res. 1968; 22: 165-197; Stein P.D. and Sabbah H.N. Circ Res. 1974; 35: 608-614; Mustard J.F. et al. Am J Med. 1962; 33: 621- 647; Goldsmith H.L. et al. Thromb Haemost 1986; 55: 415-435).
  • forces e.g., shear stresses
  • the term“tortuosity” and other grammatical forms of the term“tortuous” herein is used as it is commonly understood to refer to a property of a tube, passage or blood vessel (e.g., an artery or a vein) being twisted, crooked or having many turns.
  • vasospasm refers to the sudden constriction of a blood vessel, reducing its diameter and flow rate.
  • the arteries in the subarachnoid space can become spastic with a muscular contraction, known as cerebral vasospasm.
  • the contraction from vasospasm can produce a focal constriction of sufficient severity to cause total occlusion.
  • the length of time that the vessel is contracted during vasospasm varies from hours to days. However, regardless of the duration of vessel constriction, reduction of blood flow induces cerebral ischemia, thought to be reversible within the first 6 hours and irreversible thereafter.
  • vasospasm is maximal between 5 and 10 days after subarachnoid hemorrhage and can occur up to 2 weeks after subarachnoid hemorrhage (See, e.g., Wilkins R.H. Contemp Neurosurg. 1988;10:1-66; Hademenos G.J. and Massoud T.F. Stroke 1997; 28: 2067-2077).
  • Figures 1 and 2 show an exemplary and non-limiting example of some embodiments of the endovascular device 100 of the described invention.
  • Figure 1 illustrates a side view of the endovascular device 100 comprising a tube 130 comprising a bifurcation 180 at a first end and an opening 190 (also termed an“end-hole”) at a second end.
  • the bifurcation 180 is located outside the body of the patient.
  • Bifurcation 180 is comprised of a first branch which runs from entry-hole 140 to the junction of second branch 150 and tube 130, and a second branch 150 that runs from the tip of 150 to the tube 130.
  • Bifurcation 180 is entirely outside the body of the patient with whom the device of the present invention has been inserted.
  • the opening 190 is located at the location most proximal to entry-hole 140.
  • End-hole 190 comprises a primary opening 160 and a secondary opening 170.
  • end-hole 190 is composed completely of primary opening 160.
  • an additional lumen 170 (also termed a“second opening”) is present.
  • the first branch and the primary opening form a working or non-support lumen 120.
  • Working or non-support lumen 120 runs from entry hole 140 to side-hole 310.
  • the second branch and the secondary opening form a support lumen 110.
  • Support lumen runs from side- hole 310 to distal end-hole 190.
  • an external termination device e.g., Luer Lock
  • the external termination device is located near the patient-catheter interface (entry point), preferably within 6 cm.
  • Figure 2 illustrates a cross-sectional view 200 of the endovascular device 100 comprising a cross-sectional view of the primary opening 210 at the second end of the device and a cross-sectional view of the secondary opening 220 at the second end of the device.
  • the external termination device may be a Luer Lock or a hub.
  • the medical device of the preferred embodiments may be an intracranial endovascular device, a peripheral blood vessel endovascular device, or a cardiac blood vessel device]
  • valves inside tube 130. See Figure 1 showing valve 135 and valve 136 in cross-section.
  • valve 135 is located proximal to side-hole 310, and valve 136 proximal to end-hole 190.
  • a valve near the side hole i.e., within 6 cm of the edge of the side, is useful for controlling blood flow associated with the side hole; and a valve near the end hole (at the end-hole or within 6 cm of end-hole 190) is useful for controlling blood flow associated with the end-hole.
  • valves 135 and 136 will close to prevent blood from entering the support lumen 110, thereby preventing blood from stagnating in said support lumen 110. Stagnation could result in the formation of blood clots and subsequent injury to the patient.
  • more than one valve 135, 136 may be used simultaneously, including one valve at end-hole 190 and one valve at the side-hole 310, or one valve proximal to the side-hole 310 and one valve distal from the side-hole 310.
  • the preferred embodiments of the present invention do not use pre-formed, curved configurations to keep the catheter in place as taught in the prior art. In the prior art, different pre-formed curved configurations are required for different target areas. Instead, the present invention teaches away from pre-formed curved configuration to facilitate each of positioning, increasing flexibility of use of the present invention due to the ability to use the same
  • the length of the working (or non-support) lumen 120 of the endovascular device ranges from about 20 cm to about 160 cm. According to
  • the length of the working (or non-support) lumen 120 of the endovascular device ranges from about 20 cm to at least 160 cm. According to some embodiments, the length of the working (or non-support) lumen 120 of the endovascular device ranges from at least 20 cm to at least 160 cm. According to some embodiments, the length of the working (or non-support) lumen 120 of the endovascular device is about 20 cm. According to some embodiments, the length of the working (or non-support) lumen 120 of the endovascular device is about 25 cm. According to some embodiments, the length of the working (or non-support) lumen 120 of the endovascular device is about 30 cm.
  • the length of the working (or nonsupport) lumen 120 of the endovascular device is about 35 cm. According to some embodiments, the length of the working (or non-support) lumen 120 of the endovascular device is about 40 cm. According to some embodiments, the length of the working (or non-support) lumen 120 of the endovascular device is about 45 cm. According to some embodiments, the length of the working (or non-support) lumen 120 of the endovascular device is about 50 cm. According to some embodiments, the length of the working (or non-support) lumen 120 of the endovascular device is about 55 cm. According to some embodiments, the length of the working (or non-support) lumen 120 of the endovascular device is about 60 cm.
  • the length of the working (or non-support) lumen 120 of the endovascular device is at least 65 cm. According to some embodiments, the length of the working (or non-support) lumen 120 of the endovascular device is at least 70 cm. According to some embodiments, the length of the working (or non-support) lumen 120 of the endovascular device is at least 75 cm. According to embodiments, the length of the working (or non-support) lumen 120 of the endovascular device is at least 80 cm. According to some embodiments, the length of the working (or non-support) lumen 120 of the endovascular device is at least 85 cm. According to some embodiments, the length of the working (or non-support) lumen 120 of the endovascular device is at least 90 cm.
  • the length of the working (or non-support) lumen 120 of the endovascular device is at least 95 cm. According to some embodiments, the length of the working (or non-support) lumen 120 of the endovascular device is at least 100 cm. According to some embodiments, the length of the working (or non-support) lumen 120 of the device is at least 105 cm. According to some embodiments, the length of the working (or non-support) lumen 120 of the endovascular device is at least 110 cm. According to some embodiments, the length of the working (or non-support) lumen 120 of the endovascular device is at least 115 cm. According to some embodiments, the length of the working (or non-support) lumen 120 of the endovascular device is at least 120 cm.
  • the length of the working (or nonsupport) lumen 120 of the endovascular device is at least 125 cm. According to some embodiments, the length of the working (or non-support) lumen 120 of the endovascular device is at least 130 cm. According to some embodiments, the length of the working (or non-support) lumen 120 of the endovascular device is at least 135 cm. According to some embodiments, the length of the working (or non-support) lumen 120 of the endovascular device is at least 140 cm. According to some embodiments, the length of the working (or non-support) lumen 120 of the endovascular device is at least 145 cm.
  • the length of the working (or non-support) lumen 120 of the endovascular device is at least 150 cm. According to some embodiments, the length of the working (or non-support) lumen 120 of the endovascular device is at least 155 cm. According to some embodiments, the length of the working (or nonsupport) lumen 120 of the endovascular device is at least 160 cm. According to some embodiments, the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device ranges from about 0.1 French (Fr) (0.001 inches) to about 30 French (Fr) (0.394 inches).
  • the inner diameter (ID) of the working (or nonsupport) lumen 120 of the endovascular device ranges from about 0.1 French (Fr) (0.001 inches) to at least 30 French (Fr) (0.394 inches). According to some embodiments, the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device ranges from at least 0.1 French (Fr) (0.001 inches) to at least 30 French (Fr) (0.394 inches). According to some embodiments, the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device is at least 0.1 French (Fr) (0.001 inches).
  • the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device is at least 0.2 French (Fr) (0.002 inches). According to some embodiments, the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device is at least 0.3 French (Fr) (0.003 inches). According to some embodiments, the inner diameter (ID) of the working (or nonsupport) lumen 120 of the endovascular device is at least 0.4 French (Fr) (0.005 inches).
  • the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device is at least 0.5 French (Fr) (0.007 inches). According to some embodiments, the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device is at least 0.6 French (Fr) (0.008 inches). According to some embodiments, the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device is at least 0.7 French (Fr) (0.009 inches). According to some embodiments, the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device is at least 0.8 French (Fr) (0.01 inches). According to some embodiments, the inner diameter (ID) of the working (or nonsupport) lumen 120 of the endovascular device is at least 0.9 French (Fr) (0.012 inches).
  • the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device is at least 1 French (Fr) (0.013 inches). According to some embodiments, the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device is at least 2 French (Fr) (0.026 inches). According to some embodiments, the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device is at least 3 French (Fr) (0.039 inches). According to some embodiments, the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device is at least 4 French (Fr) (0.052 inches).
  • the inner diameter (ID) of the working (or nonsupport) lumen 120 of the endovascular device is at least 5 French (Fr) (0.066 inches). According to some embodiments, the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device is at least 6 French (Fr) (0.079 inches). According to some embodiments, the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device is at least 7 French (Fr) (0.092 inches). According to some embodiments, the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device is at least 8 French (Fr) (0.105 inches).
  • the inner diameter (ID) of the working (or nonsupport) lumen 120 of the endovascular device is at least 9 French (Fr) (0.118 inches). According to some embodiments, the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device is at least 10 French (Fr) (0.131 inches). According to some embodiments, the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device is at least 11 French (Fr) (0.144 inches). According to some embodiments, the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device is at least 12 French (Fr) (0.157 inches). According to some embodiments, the inner diameter (ID) of the working (or nonsupport) lumen 120 of the endovascular device is at least 13 French (Fr) (0.171 inches).
  • the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device is at least 14 French (Fr) (0.184 inches). According to some embodiments, the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device is at least 15 French (Fr) (0.197 inches). According to some embodiments, the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device is at least 16 French (Fr) (0.210 inches). According to some embodiments, the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device is at least 17 French (Fr) (0.223 inches). According to some embodiments, the inner diameter (ID) of the working (or nonsupport) lumen 120 of the endovascular device is at least 18 French (Fr) (0.236 inches).
  • the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device is at least 19 French (Fr) (0.249 inches). According to some embodiments, the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device is at least 20 French (Fr) (0.262 inches). According to some embodiments, the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device is at least 21 French (Fr) (0.276 inches). According to some embodiments, the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device is at least 22 French (Fr) (0.289 inches). According to some embodiments, the inner diameter (ID) of the working (or nonsupport) lumen 120 of the endovascular device is at least 23 French (Fr) (0.302 inches).
  • the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device is at least 24 French (Fr) (0.315 inches). According to some embodiments, the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device is at least 25 French (Fr) (0.328 inches). According to some embodiments, the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device is at least 26 French (Fr) (0.341 inches). According to some embodiments, the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device is at least 27 French (Fr) (0.354 inches). According to some embodiments, the inner diameter (ID) of the working (or nonsupport) lumen 120 of the endovascular device is at least 28 French (Fr) (0.367 inches).
  • the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device is at least 29 French (Fr) (0.381 inches). According to some embodiments, the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device is at least 30 French (Fr) (0.394 inches).
  • endovascular device ranges from about 100.1% to about 120% of the length of the working (or non-support) lumen 120 of the endovascular device.
  • the length of the support lumen 110 of the endovascular device ranges from about 100.1% to at least 120% of the length of the working (or non-support) lumen 120 of the endovascular device.
  • the length of the support lumen 110 of the endovascular device ranges from at least 100.1% to at least 120% of the length of the working (or non-support) lumen 120 of the endovascular device.
  • the length of the support lumen 110 of the endovascular device is at least 100.1% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 100.2% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 100.3% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some
  • the length of the support lumen 110 of the endovascular device is at least 100.4% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 100.5% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 100.6% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the
  • the endovascular device is at least 100.7% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 100.8% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 100.9% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 101% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 101.1% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 100.8% of the length of
  • the length of the support lumen 110 of the endovascular device is at least 101.2% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 101.3% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 101.4% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the
  • endovascular device is at least 101.5% of the length of the working (or non-support) lumen 120 of the endovascular device.
  • the length of the support lumen 110 of the endovascular device is at least 101.6% of the length of the working (or non-support) lumen 120 of the endovascular device.
  • the length of the support lumen 110 of the endovascular device is at least 101.7% of the length of the working (or non-support) lumen 120 of the endovascular device.
  • the length of the support lumen 110 of the endovascular device is at least 101.8% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments,
  • the length of the support lumen 110 of the endovascular device is at least 101.9% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 102% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 102.1% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the
  • the endovascular device is at least 102.2% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 102.3% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 102.4% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 102.5% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some
  • the length of the support lumen 110 of the endovascular device is at least 102.6% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 102.7% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 102.8% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 102.9% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some
  • the length of the support lumen 110 of the endovascular device is at least 103% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 103.1% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 103.2% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the
  • the endovascular device is at least 103.3% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 103.4% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 103.5% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 103.6% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some
  • the length of the support lumen 110 of the endovascular device is at least 103.7% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 103.8% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 103.9% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the
  • the endovascular device is at least 104% of the length of the working (or non-support) lumen 120 of the endovascular device.
  • the length of the support lumen 110 of the endovascular device is at least 104.1% of the length of the working (or non-support) lumen 120 of the endovascular device.
  • the length of the support lumen 110 of the endovascular device is at least 104.2% of the length of the working (or non-support) lumen 120 of the endovascular device.
  • the length of the support lumen 110 of the endovascular device is at least 104.3% of the length of the working (or non-support) lumen 120 of the endovascular device.
  • the length of the support lumen 110 of the endovascular device is at least 104.4% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some
  • the length of the support lumen 110 of the endovascular device is at least 104.5% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 104.6% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 104.7% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the
  • the endovascular device is at least 104.8% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 104.9% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 105% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 105.1% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some
  • the length of the support lumen 110 of the endovascular device is at least 105.2% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 105.3% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 105.4% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the
  • the endovascular device is at least 105.5% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 105.6% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 105.7% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 105.8% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some
  • the length of the support lumen 110 of the endovascular device is at least 105.9% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 106% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 106.1% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the
  • the endovascular device is at least 106.2% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 106.3% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 106.4% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 106.5% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some
  • the length of the support lumen 110 of the endovascular device is at least 106.6% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 106.7% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 106.8% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the
  • the endovascular device is at least 106.9% of the length of the working (or non-support) lumen 120 of the endovascular device.
  • the length of the support lumen 110 of the endovascular device is at least 107% of the length of the working (or non-support) lumen 120 of the endovascular device.
  • the length of the support lumen 110 of the endovascular device is at least 107.1% of the length of the working (or non-support) lumen 120 of the endovascular device.
  • the length of the support lumen 110 of the endovascular device is at least 107.2% of the length of the working (or non-support) lumen 120 of the endovascular device.
  • the length of the support lumen 110 of the endovascular device is at least 107.3% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 107.4% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 107.5% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the
  • the endovascular device is at least 107.6% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 107.7% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 107.8% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 107.9% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some
  • the length of the support lumen 110 of the endovascular device is at least 108% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 108.1% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 108.2% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the
  • the endovascular device is at least 108.3% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 108.4% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 108.5% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 108.6% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some
  • the length of the support lumen 110 of the endovascular device is at least 108.7% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 108.8% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 108.9% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the
  • the endovascular device is at least 109% of the length of the working (or non-support) lumen 120 of the endovascular device.
  • the length of the support lumen 110 of the endovascular device is at least 109.1% of the length of the working (or non-support) lumen 120 of the endovascular device.
  • the length of the support lumen 110 of the endovascular device is at least 109.2% of the length of the working (or non-support) lumen 120 of the endovascular device.
  • the length of the support lumen 110 of the endovascular device is at least 109.3% of the length of the working (or non-support) lumen 120 of the endovascular device.
  • the length of the support lumen 110 of the endovascular device is at least 109.4% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 109.5% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 109.6% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the
  • the endovascular device is at least 109.7% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 109.8% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 109.9% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 110% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 110.1% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments,
  • the length of the support lumen 110 of the endovascular device is at least 110.2% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 110.3% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 110.4% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the
  • endovascular device is at least 110.5% of the length of the working (or non-support) lumen 120 of the endovascular device.
  • the length of the support lumen 110 of the endovascular device is at least 110.6% of the length of the working (or non-support) lumen 120 of the endovascular device.
  • the length of the support lumen 110 of the endovascular device is at least 110.7% of the length of the working (or non-support) lumen 120 of the endovascular device.
  • the length of the support lumen 110 of the endovascular device is at least 110.8% of the length of the working (or non-support) lumen 120 of the endovascular device.
  • the length of the support lumen 110 of the endovascular device is at least 110.9% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 111% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 111.1% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the
  • the endovascular device is at least 111.2% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 111.3% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 111.4% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 111.5% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some
  • the length of the support lumen 110 of the endovascular device is at least 111.6% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 111.7% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 111.8% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the
  • the endovascular device is at least 111.9% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 112% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 112.1% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 112.2% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some
  • the length of the support lumen 110 of the endovascular device is at least 112.3% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 112.4% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 112.5% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the
  • endovascular device is at least 112.6% of the length of the working (or non-support) lumen 120 of the endovascular device.
  • the length of the support lumen 110 of the endovascular device is at least 112.7% of the length of the working (or non-support) lumen 120 of the endovascular device.
  • the length of the support lumen 110 of the endovascular device is at least 112.8% of the length of the working (or non-support) lumen 120 of the endovascular device.
  • the length of the support lumen 110 of the endovascular device is at least 112.9% of the length of the working (or non-support) lumen 120 of the endovascular device.
  • the length of the support lumen 110 of the endovascular device is at least 113% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 113.1% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 113.2% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 113.3% of the length of the working (or non-support) lumen 120 of the endovascular device.
  • the length of the support lumen 110 of the endovascular device is at least 113.4% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 113.5% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 113.6% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some
  • the length of the support lumen 110 of the endovascular device is at least 113.7% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 113.8% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 113.9% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the
  • the endovascular device is at least 114% of the length of the working (or non-support) lumen 120 of the endovascular device.
  • the length of the support lumen 110 of the endovascular device is at least 114.1% of the length of the working (or non-support) lumen 120 of the endovascular device.
  • the length of the support lumen 110 of the endovascular device is at least 114.2% of the length of the working (or non-support) lumen 120 of the endovascular device.
  • the length of the support lumen 110 of the endovascular device is at least 114.3% of the length of the working (or non-support) lumen 120 of the endovascular device.
  • the length of the support lumen 110 of the endovascular device is at least 114.4% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 110.5% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 114.6% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the
  • the endovascular device is at least 114.7% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 114.8% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 114.9% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 115% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 115.1% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments,
  • the length of the support lumen 110 of the endovascular device is at least 115.2% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 115.3% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 115.4% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the
  • the endovascular device is at least 115.5% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 115.6% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 115.7% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 115.8% of the length of the working (or non-support) lumen 120 of the endovascular device.
  • the length of the support lumen 110 of the endovascular device is at least 115.9% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 116% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 116.1% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the
  • the endovascular device is at least 116.2% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 116.3% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 116.4% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 116.5% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some
  • the length of the support lumen 110 of the endovascular device is at least 116.6% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 116.7% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 116.8% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the
  • the endovascular device is at least 116.9% of the length of the working (or non-support) lumen 120 of the endovascular device.
  • the length of the support lumen 110 of the endovascular device is at least 117% of the length of the working (or non-support) lumen 120 of the endovascular device.
  • the length of the support lumen 110 of the endovascular device is at least 117.1% of the length of the working (or non-support) lumen 120 of the endovascular device.
  • the length of the support lumen 110 of the endovascular device is at least 117.2% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some
  • the length of the support lumen 110 of the endovascular device is at least 117.3% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 117.4% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 117.5% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the
  • the endovascular device is at least 117.6% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 117.7% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 117.8% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 117.9% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some
  • the length of the support lumen 110 of the endovascular device is at least 118% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 118.1 % of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 118.2% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the
  • the endovascular device is at least 118.3% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 118.4% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 118.5% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 118.6% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some
  • the length of the support lumen 110 of the endovascular device is at least 118.7% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 118.8% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 118.9% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the
  • the endovascular device is at least 119% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 119.1% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 119.2% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 119.3% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some
  • the length of the support lumen 110 of the endovascular device is at least 119.4% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 119.5% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 119.6% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the
  • the endovascular device is at least 119.7% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 119.8% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 119.9% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 120% of the length of the working (or non-support) lumen 120 of the endovascular device.
  • the length of the support lumen 110 of the endovascular device ranges from about 90.05 cm to about 200 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device ranges from about 90.05 cm to at least 200 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device ranges from at least 90.05 cm to at least 200 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 90.05 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 90.1 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 90.2 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 90.05 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device ranges from about 90.05 cm to at least 200 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device
  • the length of the support lumen 110 of the endovascular device is at least 90.3 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 90.4 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 90.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 90.6 cm. According to some
  • the length of the support lumen 110 of the endovascular device is at least 90.7 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 90.8 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 90.9 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 91 cm. According to some
  • the length of the support lumen 110 of the endovascular device is at least 91.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 92 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 92.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 93 cm. According to some
  • the length of the support lumen 110 of the endovascular device is at least 93.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 94 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 94.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 95 cm. According to some
  • the length of the support lumen 110 of the endovascular device is at least 95.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 96 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 96.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 97 cm. According to some
  • the length of the support lumen 110 of the endovascular device is at least 97.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 98 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 98.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 99 cm. According to some
  • the length of the support lumen 110 of the endovascular device is at least 99.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 100 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 100.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 101 cm. According to some embodiments,
  • the length of the support lumen 110 of the endovascular device is at least 101.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 102 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 102.5 cm. According to some embodiments, the support lumen 110 of the endovascular device is at least 103 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 103.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 104 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 104.5 cm.
  • the length of the support lumen 110 of the endovascular device is at least 105 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 105.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 106 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 106.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 107 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 107.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 108 cm.
  • the length of the support lumen 110 of the endovascular device is at least 108.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 109 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 109.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 110 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 110.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 111 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 111.5 cm.
  • the length of the support lumen 110 of the endovascular device is at least 112 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 112.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 113 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 113.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 114 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 115 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 115.5 cm.
  • the length of the support lumen 110 of the endovascular device is at least 116 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 116.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 117 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 117.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 118 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 118.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 119 cm.
  • the length of the support lumen 110 of the endovascular device is at least 119.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 120 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 120.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 121 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 121.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 122 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 122.5 cm.
  • the length of the support lumen 110 of the endovascular device is at least 123 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 123.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 124 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 124.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 125 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 125.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 126 cm.
  • the length of the support lumen 110 of the endovascular device is at least 127 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 127.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 128 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 128.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 129 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 129.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 130 cm.
  • the length of the support lumen 110 of the endovascular device is at least 130.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 131 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 131.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 132 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 132.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 133 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 133.5 cm.
  • the length of the support lumen 110 of the endovascular device is at least 134 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 134.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 135 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 135.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 136 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 136.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 137 cm.
  • the length of the support lumen 110 of the endovascular device is at least 137.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 138 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 139 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 139.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 140 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 140.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 141 cm.
  • the length of the support lumen 110 of the endovascular device is at least 141.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 142 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 142.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 143 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 143.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 144 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 144.5 cm.
  • the length of the support lumen 110 of the endovascular device is at least 145 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 145.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 146 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 146.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 147 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 147.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 148 cm.
  • the length of the support lumen 110 of the endovascular device is at least 148.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 149 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 149.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 150 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 151 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 151.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 152 cm.
  • the length of the support lumen 110 of the endovascular device is at least 152.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 153 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 153.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 154 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 154.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 155 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 155.5 cm.
  • the length of the support lumen 110 of the endovascular device is at least 156 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 156.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 157 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 157.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 158 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 158.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 159 cm.
  • the length of the support lumen 110 of the endovascular device is at least 159.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 160 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 160.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 161 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 161.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 162 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 163 cm.
  • the length of the support lumen 110 of the endovascular device is at least 163.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 164 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 164.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 165 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 165.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 166 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 166.5 cm.
  • the length of the support lumen 110 of the endovascular device is at least 167 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 167.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 168 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 168.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 169 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 169.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 170 cm.
  • the length of the support lumen 110 of the endovascular device is at least 170.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 171 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 171.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 172 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 172.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 173 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 173.5 cm.
  • the length of the support lumen 110 of the endovascular device is at least 174 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 175 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 175.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 176 cm. According to some
  • the length of the support lumen 110 of the endovascular device is at least 176.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 177 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 177.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 178 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 178.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 179 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 179.5 cm.
  • the length of the support lumen 110 of the endovascular device is at least 180 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 180.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 181 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 181.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 182 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 182.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 183 cm.
  • the length of the support lumen 110 of the endovascular device is at least 183.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 184 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 184.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 185 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 185.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 186 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 187 cm.
  • the length of the support lumen 110 of the endovascular device is at least 187.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 188 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 188.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 189 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 189.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 190 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 190.5 cm.
  • the length of the support lumen 110 of the endovascular device is at least 191 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 191.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 192 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 192.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 193 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 193.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 194 cm.
  • the length of the support lumen 110 of the endovascular device is at least 194.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 195 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 195.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 196 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 196.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 197 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 197.5 cm.
  • the length of the support lumen 110 of the endovascular device is at least 198 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 199 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 199.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 200 cm.
  • the support lumen 110 of the endovascular device comprises an inflatable balloon.
  • the inflatable balloon is attached to the distal portion of the support lumen 110 of the endovascular device, to some embodiments, the inflatable balloon is attached to a device separate from the endovascular device 100.
  • the separate device is a lumen of an inflatable balloon catheter.
  • the lumen of the inflatable balloon catheter comprises an external termination device (e.g., Luer Lock) on its proximal end.
  • the device separate from the endovascular device 100 is capable of being advanced into a blood vessel through the support lumen 110 of the endovascular device.
  • the inflatable balloon anchors the support lumen 110 of the endovascular device to a blood vessel.
  • the blood vessel is an artery.
  • the blood vessel is a vein.
  • the support lumen 110 of the endovascular device comprises a stent.
  • the stent provides additional support to the endovascular device 100.
  • the stent is retrievable.
  • the retrievable stent is attached to the distal portion of the support lumen 110 of the endovascular device.
  • the retrievable stent is attached to a device separate from the endovascular device 100.
  • the separate device is capable of being advanced into a blood vessel through the support lumen 110 of the endovascular device.
  • the retrievable stent anchors the support lumen 110 of the endovascular device to a blood vessel.
  • the blood vessel is an artery.
  • the blood vessel is a vein.
  • the shape of the support lumen 110 is an“S” shape.
  • the“S” shape is a shepherd’s hook shape.
  • Figure 6 shows an exemplary and non-limiting example of some embodiments of“S”-shaped support lumen 610.
  • the“S”-shaped support lumen 610 can be used to access difficult innominate arteries; to subsequently access the right common carotid artery and its distal branches; and/or to subsequently access the right subclavian artery and/or its branches.
  • the“S”-shaped support lumen 610 can be used to distally access the right subclavian artery and right common carotid artery.
  • the“S”-shaped support lumen 610 can be used at least at the intracranial carotid terminus.
  • the“S” shape is a pre-shaped configuration.
  • the“S”-shaped support lumen 610 is inserted into the body of a subject in a straight configuration and is subsequently re-shaped into a pre-shaped“S” configuration. According to some embodiments, the“S”-shaped support lumen 610 is inserted into the body of a subject in a straight configuration, into the aortic arch in a straight
  • the“S”-shaped support lumen 610 is inserted into the body of a subject in a straight configuration, into the aortic arch in a straight configuration, and the distal portion 630 of the“S”-shaped support lumen 610 curves back across the aortic arch and down the descending aorta to provide support for the endovascular device 100, to facilitate placement of the endovascular device 100, to anchor the endovascular device 100 within a blood vessel, to prevent kickback of the endovascular device 100, or a combination thereof (Figure 7).
  • the placement of the endovascular device 100 is with the primary opening (end hole) 160 positioned at the origin of the innominate artery.
  • the“S”-shaped support lumen 610 comprises shape memory polymer (SMP).
  • SMP shape memory polymer
  • Shape memory polymers include, but are not limited to methacrylates, polyurethanes, blends of polystyrene and polyurethane, and polyvinylchloride.
  • the“S”-shaped support lumen 610 comprises a shape memory alloy (SMA).
  • shape memory alloys include nickel-titanium (i.e., nitinol).
  • the length of the“S”-shaped support lumen 610 is at least 4% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 4.5% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 5% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 5.5% longer than the length of the working (or non-support) lumen 120.
  • the length of the“S”- shaped support lumen 610 is at least 6% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 6.5% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 7% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 7.5% longer than the length of the working (or non-support) lumen 120.
  • the length of the“S”-shaped support lumen 610 is at least 8% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 8.5% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 9% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”- shaped support lumen 610 is at least 9.5% longer than the length of the working (or non-support) lumen 120.
  • the length of the“S”-shaped support lumen 610 is at least 10% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 20% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 30% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 40% longer than the length of the working (or non-support) lumen 120.
  • the length of the“S”-shaped support lumen 610 is at least 50% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 60% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 70% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 80% longer than the length of the working (or non-support) lumen 120.
  • the length of the“S”-shaped support lumen 610 is at least 90% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 100% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 110% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 120% longer than the length of the working (or non-support) lumen 120.
  • the length of the“S”-shaped support lumen 610 is at least 130% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 140% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 150% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 160% longer than the length of the working (or non-support) lumen 120.
  • the length of the“S”-shaped support lumen 610 is at least 170% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 180% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”- shaped support lumen 610 is at least 190% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 200% longer than the length of the working (or non-support) lumen 120.
  • the length of the“S”-shaped support lumen 610 is at least 210% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 220% longer than the length of the working (or non-support) lumen 120. According to some“S”-shaped support lumen 610 is at least 230% longer than the length of the working (or non-support) lumen 120.
  • the length of the“S”-shaped support lumen 610 is at least 240% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 250% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 260% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 270% longer than the length of the working (or non-support) lumen 120.
  • the length of the“S”-shaped support lumen 610 is at least 280% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 290% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 300% longer than the length of the working (or non-support) lumen 120.
  • the“S”-shaped support lumen 610 comprises a curve diameter 620.
  • the curve diameter ranges from about 1 mm to about 10 cm.
  • the curve diameter ranges from about 1 mm to at least 10 cm.
  • the curve diameter ranges from at least 1 mm to at least 10 cm.
  • the curve diameter is at least 1 mm.
  • the curve diameter is at least 2 mm.
  • the curve diameter is at least 3 mm.
  • the curve diameter is at least 4 mm.
  • the curve diameter is at least 5 mm.
  • the curve diameter is at least 6 mm.
  • the curve diameter is at least 7 mm. According to some embodiments, the curve diameter is at least 8 mm. According to some embodiments, the curve diameter is at least 9 mm. According to some embodiments, the curve diameter is at least 1 cm. According to some embodiments, the curve diameter is at least 2 cm. According to some embodiments, the curve diameter is at least 3 cm. According to some embodiments, the curve diameter is at least 4 cm. According to some embodiments, the curve diameter is at least 5 cm. According to some embodiments, the curve diameter is at least 6 cm. According to some embodiments, the curve diameter is at least 7 cm. According to some embodiments, the curve diameter is at least 8 cm. According to some embodiments, the curve diameter is at least 9 cm. According to some embodiments, the curve diameter is at least 10 cm.
  • the first branch 140 comprises a luer lock on its proximal end.
  • the second branch 150 comprises a luer lock on its proximal end.
  • Figure 3 shows an exemplary and non-limiting example of some embodiments of the endovascular device 300 of the described invention.
  • Figure 3 illustrates a side view of the endovascular device 300 comprising a tube comprising a side-hole 310.
  • the side-hole 310 divides the endovascular device 300 into two (2) segments: a first segment 320 and a second segment 330.
  • the first segment 320 comprises a primary opening 340.
  • the first segment 320 extends from the primary opening 340 to the side-hole 310.
  • the side- hole 310 and the first segment 320 form a working lumen.
  • the second segment 330 extends from the side-hole 310 and tapers (i.e., decreases in diameter) to an end or tip 350.
  • the inner diameter of said end 350 comprises end hole 160.
  • the second segment 330 forms a support lumen.
  • the internal diameter of the first segment is greater than the internal diameter of second lumen.
  • the prior art teaches the use of constant internal lumen diameter to help keep device in place, whereas the present invention teaches internal diameter of the first segment to be greater than the internal diameter of the second lumen to allow better anchoring options in smaller side vessels.
  • the endovascular device 300 is an endovascular device.
  • the length of the working lumen formed by the side- hole 310 and the first segment 320 of the endovascular device ranges from about 20 cm to about 160 cm. According to some embodiments, the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device ranges from about 20 cm to at least 160 cm. According to some embodiments, the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device ranges from at least 20 cm to at least 160 cm. According to some embodiments, the length of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 20 cm.
  • the length of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 25 cm. According to some embodiments, the length of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 30 cm. According to some embodiments, the length of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 35 cm.
  • the length of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 40 cm. According to some embodiments, the length of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 45 cm. According to some embodiments, the length of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 50 cm. According to some embodiments, the length of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 55 cm.
  • the length of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 60 cm. According to some embodiments, the length of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 65 cm. According to some embodiments, the length of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 70 cm. According to some embodiments, the length of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 75 cm.
  • the length of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 80 cm. According to some embodiments, the length of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 85 cm. According to some embodiments, the length of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 90 cm. According to some embodiments, the length of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 95 cm.
  • the length of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 100 cm. According to some embodiments, the length of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 105 cm. According to some embodiments, the length of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 110 cm. According to some embodiments, the length of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 115 cm.
  • the length of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 120 cm. According to some embodiments, the length of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 125 cm. According to some embodiments, the length of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 130 cm. According to some embodiments, the length of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 135 cm.
  • the length of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 140 cm. According to some embodiments, the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 145 cm. According to some embodiments, the length of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 150 cm. According to some embodiments, the length of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 155 cm.
  • the length of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 160 cm.
  • the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device ranges from about 0.1 French (Fr) (0.001 inches) to about 30 French (Fr) (0.394 inches). According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device ranges from about 0.1 French (Fr) (0.001 inches) to at least 30 French (Fr) (0.394 inches).
  • the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device ranges from at least 0.1 French (Fr) (0.001 inches) to at least 30 French (Fr) (0.394 inches). According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 0.1 French (Fr) (0.001 inches). According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 0.2 French (Fr) (0.003 inches).
  • the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 0.3 French (Fr) (0.004 inches). According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 0.4 French (Fr) (0.005 inches). According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 0.5 French (Fr) (0.007 inches).
  • the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 0.6 French (Fr) (0.008 inches). According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 0.7 French (Fr) (0.009 inches). According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 0.8 French (Fr) (0.01 inches).
  • the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 0.9 French (Fr) (0.012 inches). According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 1 French (Fr) (0.013 inches). According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 2 French (Fr) (0.026 inches).
  • the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 3 French (Fr) (0.039 inches). According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 4 French (Fr) (0.052 inches). According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 5 French (Fr) (0.066 inches).
  • the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 6 French (Fr) (0.079 inches). According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 7 French (Fr)
  • the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 8 French (Fr) (0.105 inches). According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 9 French (Fr) (0.118 inches). According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 10 French (Fr) (0.131 inches).
  • the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 11 French (Fr) (0.144 inches). According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 12 French (Fr) (0.157 inches). According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 13 French (Fr) (0.171 inches).
  • the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 14 French (Fr) (0.184 inches). According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 15 French (Fr) (0.197 inches). According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 16 French (Fr) (0.210 inches).
  • the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 17 French (Fr) (0.223 inches). According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 18 French (Fr) (0.236 inches). According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 19 French (Fr) (0.249 inches).
  • the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 20 French (Fr) (0.262 inches). According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 21 French (Fr) (0.276 inches). According to some embodiments, the inner (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 22 French (Fr) (0.289 inches).
  • the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 23 French (Fr) (0.302 inches). According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 24 French (Fr) (0.315 inches). According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 25 French (Fr) (0.328 inches).
  • the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 26 French (Fr) (0.341 inches). According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 27 French (Fr) (0.354 inches). According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 28 French (Fr) (0.367 inches).
  • the inner (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 29 French (Fr) (0.381 inches). According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 30 French (Fr) (0.394 inches).
  • the length of the support lumen 330 of the endovascular device ranges from about 0.01% to about 20% of the length formed by the side hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device ranges from about 0.01% to at least 20% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the
  • the endovascular device ranges from at least 0.01% to at least 20% of the length formed by the side- hole 310 and the first segment 320 of the endovascular device.
  • the length of the support lumen 330 of the endovascular device is at least 0.1% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device.
  • the length of the support lumen 330 of the endovascular device is at least 0.2% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device.
  • the endovascular device is at least 0.3% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 0.4% of the length formed by the side- hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 0.5% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 0.6% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the
  • the endovascular device is at least 0.7% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 0.8% of the length formed by the side- hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 0.9% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 1% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the
  • the endovascular device is at least 1.1% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 1.2% of the length formed by the side- hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 1.3% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 1.4% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device.
  • the length of the support lumen 330 of the endovascular device is at least 1.5% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 1.6% of the length formed by the side- hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 1.7% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device.
  • the length of the support lumen 330 of the endovascular device is at least 1.8% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the
  • the endovascular device is at least 1.9% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device.
  • the length of the support lumen 330 of the endovascular device is at least 2% of the length formed by the side- hole 310 and the first segment 320 of the endovascular device.
  • the length of the support lumen 330 of the endovascular device is at least 2.1% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device.
  • the length of the support lumen 330 of the endovascular device is at least 2.2% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device.
  • the length of the support lumen 330 of the endovascular device is at least 1.9% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device.
  • the length of the support lumen 330 of the endovascular device is at least 2% of the length formed by the side-hole 310 and the first
  • the endovascular device is at least 2.3% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 2.4% of the length formed by the side- hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 2.5% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 2.6% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device.
  • the length of the support lumen 330 of the endovascular device is at least 2.7% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 2.8% of the length formed by the side- hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 2.9% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device.
  • the length of the support lumen 330 of the endovascular device is at least 3% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the
  • the endovascular device is at least 3.1 % of the length formed by the side-hole 310 and the first segment 320 of the endovascular device.
  • the length of the support lumen 330 of the endovascular device is at least 3.2% of the length formed by the side- hole 310 and the first segment 320 of the endovascular device.
  • the length of the support lumen 330 of the endovascular device is at least 3.3% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device.
  • the length of the support lumen 330 of the endovascular device is at least 3.4% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device.
  • the endovascular device is at least 3.5% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 3.6% of the length formed by the side- hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 3.7% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 3.8% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the
  • the endovascular device is at least 3.9% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device.
  • the length of the support lumen 330 of the endovascular device is at least 4% of the length formed by the side- hole 310 and the first segment 320 of the endovascular device.
  • the length of the support lumen 330 of the endovascular device is at least 4.1% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device.
  • the length of the support lumen 330 of the endovascular device is at least 4.2% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device.
  • the length of the support lumen 330 of the endovascular device is at least 3.9% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device.
  • the length of the support lumen 330 of the endovascular device is at least 4% of the length formed by the side- hole 310 and the first
  • the endovascular device is at least 4.3% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 4.4% of the length formed by the side- hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 4.5% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 4.6% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the
  • the endovascular device is at least 4.7% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 4.8% of the length formed by the side- hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 4.9% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 5% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the
  • the endovascular device is at least 5.1 % of the length formed by the side-hole 310 and the first segment 320 of the endovascular device.
  • the length of the support lumen 330 of the endovascular device is at least 5.2% of the length formed by the side- hole 310 and the first segment 320 of the endovascular device.
  • the length of the support lumen 330 of the endovascular device is at least 5.3% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device.
  • the length of the support lumen 330 of the endovascular device is at least 5.4% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device.
  • the endovascular device is at least 5.5% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 5.6% of the length formed by the side- hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 5.7% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 5.8% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the
  • the endovascular device is at least 5.9% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device.
  • the length of the support lumen 330 of the endovascular device is at least 6% of the length formed by the side- hole 310 and the first segment 320 of the endovascular device.
  • the length of the support lumen 330 of the endovascular device is at least 6.1% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device.
  • the length of the support lumen 330 of the endovascular device is at least 6.2% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device.
  • the length of the support lumen 330 of the endovascular device is at least 5.9% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device.
  • the length of the support lumen 330 of the endovascular device is at least 6% of the length formed by the side- hole 310 and the first
  • the endovascular device is at least 6.3% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 6.4% of the length formed by the side- hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 6.5% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 6.6% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the
  • the endovascular device is at least 6.7% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 6.8% of the length formed by the side- hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 6.9% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 7% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the
  • the endovascular device is at least 7.1% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 7.2% of the length formed by the side- hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 7.3% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 7.4% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the
  • the endovascular device is at least 7.5% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 7.6% of the length formed by the side- hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 7.7% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 7.8% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the
  • the endovascular device is at least 7.9% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 8% of the length formed by the side- hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 8.1% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 8.2% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the
  • the endovascular device is at least 8.3% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 8.4% of the length formed by the side- hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 8.5% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 8.6% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the
  • the endovascular device is at least 8.7% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 8.8% of the length formed by the side- hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 8.9% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 9% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 9% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the
  • the endovascular device is at least 9.1 % of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 9.2% of the length formed by the side- hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 9.3% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 9.4% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the
  • the endovascular device is at least 9.5% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 9.6% of the length formed by the side- hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 9.7% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 9.8% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the
  • endovascular device is at least 9.9% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device.
  • the length of the support lumen 330 of the endovascular device is at least 10% of the length formed by the side- hole 310 and the first segment 320 of the endovascular device.
  • the length of the support lumen 330 of the endovascular device ranges from about 0.05 cm to about 32 cm. According to embodiments, the length of the support lumen 330 of the endovascular device ranges from about 0.05 cm to at least 32 cm. According to some embodiments, the length of the support lumen 330 of the
  • the endovascular device ranges from at least 0.05 cm to at least 32 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 0.05 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 0.1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 0.2 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 0.3 cm. According to some
  • the length of the support lumen 330 of the endovascular device is at least 0.4 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 0.5 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 0.6 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 0.7 cm. According to some
  • the length of the support lumen 330 of the endovascular device is at least 0.8 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 0.9 cm. According to some embodiments, the length of the support lumen 330 endovascular device is at least 1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 1.1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 1.2 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 1.3 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 1.4 cm.
  • the length of the support lumen 330 of the endovascular device is at least 1.5 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 1.6 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 1.7 cm.
  • the length of the support lumen 330 of the endovascular device is at least 1.8 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 1.9 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 2 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 2.1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 2.2 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 2.3 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 2.4 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 2.5 cm. According to some embodiments,
  • the length of the support lumen 330 of the endovascular device is at least 2.6 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 2.7 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 2.8 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 2.9 cm. According to some
  • the length of the support lumen 330 of the endovascular device is at least 3 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 3.1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 3.2 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 3.3 cm. According to some
  • the length of the support lumen 330 of the endovascular device is at least 3.4 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 3.5 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 3.6 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 3.7 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 3.8 cm.
  • the length of the support lumen 330 of the endovascular device is at least 3.9 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 4 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 4.1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 4.2 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 4.3 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 4.4 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 4.5 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 4.6 cm. According to some embodiments,
  • the length of the support lumen 330 of the endovascular device is at least 4.7 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 4.8 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 4.9 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 5 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 5.1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 5.2 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 5.3 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 5.4 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 5.5 cm. According to some embodiments, the length of
  • the length of the support lumen 330 of the endovascular device is at least 5.6 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 5.7 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 5.8 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 5.9 cm. According to some
  • the length of the support lumen 330 of the endovascular device is at least 6 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 6.1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 6.2 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 6.3 cm. According to some
  • the length of the support lumen 330 of the endovascular device is at least 6.4 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 6.5 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 6.6 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 6.7 cm. According to some
  • the length of the support lumen 330 of the endovascular device is at least 6.8 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 6.9 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 7 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 7.1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 7.2 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 7.3 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 7.4 cm.
  • the length of the support lumen 330 of the endovascular device is at least 7.5 cm. According to some embodiment, the length of the support lumen 330 of the endovascular device is at least 7.6 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 7.7 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 7.8 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 7.9 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 8 cm.
  • the length of the support lumen 330 of the endovascular device is at least 8.1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 8.2 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 8.3 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 8.4 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 8.5 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 8.6 cm. According to some
  • the length of the support lumen 330 of the endovascular device is at least 8.7 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 8.8 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 8.9 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 9 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 9 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 9.1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 9.2 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 9.3 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 9.4 cm. According to some
  • the length of the support lumen 330 of the endovascular device is at least 9.5 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 9.6 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 9.7 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 9.8 cm. According to some
  • the length of the support lumen 330 of the endovascular device is at least 9.9 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 10 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 10.1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 10.2 cm. According to some
  • the length of the support lumen 330 of the endovascular device is at least 10.3 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 10.4 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 10.5 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 10.6 cm. According to some
  • the length of the support lumen 330 of the endovascular device is at least 10.7 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 10.8 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 10.9 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 11 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 11.1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 11.2 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 11.3 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 11.4 cm. According to some
  • the length of the support lumen 330 of the endovascular device is at least 11.5 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 11.6 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 11.7 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 11.8 cm. According to some
  • the length of the support lumen 330 of the endovascular device is at least 11.9 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 12 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 12.1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 12.2 cm. According to some
  • the length of the support lumen 330 of the endovascular device is at least 12.3 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 12.4 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 12.5 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 12.6 cm. According to some
  • the length of the support lumen 330 of the endovascular device is at least 12.7 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 12.8 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 12.9 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 13 cm. According to some
  • the length of the support lumen 330 of the endovascular device is at least 13.1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 13.2 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 13.3 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 13.4 cm. According to some
  • the length of the support lumen 330 of the endovascular device is at least 13.5 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 13.6 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 13.7 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 13.8 cm. According to some
  • the length of the support lumen 330 of the endovascular device is at least 13.9 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 14 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 14.1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 14.2 cm. According to some
  • the length of the support lumen 330 of the endovascular device is at least 14.3 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 14.4 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 14.5 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 14.6 cm. According to some
  • the length of the support lumen 330 of the endovascular device is at least 14.7 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 14.8 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 14.9 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 15 cm. According to some
  • the length of the support lumen 330 of the endovascular device is at least 15.1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 15.2 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 15.3 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 15.4 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 15.5 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 15.6 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 15.7 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 15.8 cm. According to some embodiments,
  • the length of the support lumen 330 of the endovascular device is at least 15.9 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 16 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 16.1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 16.2 cm. According to some
  • the length of the support lumen 330 of the endovascular device is at least 16.3 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 16.4 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 16.5 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 16.6 cm. According to some
  • the length of the support lumen 330 of the endovascular device is at least 16.7 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 16.8 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 16.9 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 17 cm. According to some embodiments,
  • the length of the support lumen 330 of the endovascular device is at least 17.1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 17.2 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 17.3 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 17.4 cm. According to some
  • the length of the support lumen 330 of the endovascular device is at least 17.5 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 17.6 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 17.7 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 17.8 cm. According to some
  • the length of the support lumen 330 of the endovascular device is at least 17.9 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 18 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 18.1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 18.2 cm. According to some
  • the length of the support lumen 330 of the endovascular device is at least 18.3 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 18.4 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 18.5 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 18.6 cm. According to some
  • the length of the support lumen 330 of the endovascular device is at least 18.7 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 18.8 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 18.9 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 19 cm. According to some
  • the length of the support lumen 330 of the endovascular device is at least 19.1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 19.2 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 19.3 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 19.4 cm. According to some
  • the length of the support lumen 330 of the endovascular device is at least 19.5 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 19.6 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 19.7 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 19.8 cm. According to some
  • the length of the support lumen 330 of the endovascular device is at least 19.9 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 20 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 20.1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 20.2 cm. According to some
  • the length of the support lumen 330 of the endovascular device is at least 20.3 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 20.4 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 20.5 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 20.6 cm. According to some
  • the length of the support lumen 330 of the endovascular device is at least 20.7 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 20.8 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 20.9 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 21 cm. According to some embodiments,
  • the length of the support lumen 330 of the endovascular device is at least 21.1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 21.2 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 21.3 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 21.4 cm. According to some
  • the length of the support lumen 330 of the endovascular device is at least 21.5 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 21.6 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 21.7 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 21.8 cm. According to some
  • the length of the support lumen 330 of the endovascular device is at least 21.9 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 22 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 22.1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 22.2 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 22.3 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 22.4 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 22.5 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 22.6 cm. According to some embodiments,
  • the length of the support lumen 330 of the endovascular device is at least 22.7 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 22.8 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 22.9 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 23 cm. According to some
  • the length of the support lumen 330 of the endovascular device is at least 23.1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 23.2 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 23.3 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 23.4 cm. According to some
  • the length of the support lumen 330 of the endovascular device is at least 23.5 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 23.6 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 23.7 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 23.8 cm. According to some
  • the length of the support lumen 330 of the endovascular device is at least 23.9 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 24 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 24.1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 24.2 cm. According to some
  • the length of the support lumen 330 of the endovascular device is at least 24.3 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 24.4 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 24.5 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 24.6 cm. According to some
  • the length of the support lumen 330 of the endovascular device is at least 24.7 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 24.8 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 24.9 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 25 cm. According to some embodiments,
  • the length of the support lumen 330 of the endovascular device is at least 25.1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 25.2 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 25.3 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 25.4 cm. According to some
  • the length of the support lumen 330 of the endovascular device is at least 25.5 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 25.6 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 25.7 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 25.8 cm. According to some
  • the length of the support lumen 330 of the endovascular device is at least 25.9 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 26 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 26.1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 26.2 cm. According to some
  • the length of the support lumen 330 of the endovascular device is at least 26.3 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 26.4 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 26.5 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 26.6 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 26.7 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 26.8 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 26.9 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 27 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 26.4 cm. According to some embodiments, the
  • the length of the support lumen 330 of the endovascular device is at least 27.1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 27.2 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 27.3 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 27.4 cm. According to some
  • the length of the support lumen 330 of the endovascular device is at least 27.5 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 27.6 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 27.7 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 27.8 cm. According to some
  • the length of the support lumen 330 of the endovascular device is at least 27.9 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 28 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 28.1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 28.2 cm. According to some
  • the length of the support lumen 330 of the endovascular device is at least 28.3 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 28.4 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 28.5 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 28.6 cm. According to some
  • the length of the support lumen 330 of the endovascular device is at least 28.7 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 28.8 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 28.9 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 29 cm. According to some
  • the length of the support lumen 330 of the endovascular device is at least 29.1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 29.2 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 29.3 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 29.4 cm. According to some
  • the length of the support lumen 330 of the endovascular device is at least 29.5 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 29.6 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 29.7 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 29.8 cm. According to some
  • the length of the support lumen 330 of the endovascular device is at least 29.9 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 30 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 30.1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 30.2 cm. According to some
  • the length of the support lumen 330 of the endovascular device is at least 30.3 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 30.4 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 30.5 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 30.6 cm. According to some
  • the length of the support lumen 330 of the endovascular device is at least 30.7 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 30.8 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 30.9 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 31 cm. According to some
  • the length of the support lumen 330 of the endovascular device is at least 31.1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 31.2 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 31.3 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 31.4 cm. According to some
  • the length of the support lumen 330 of the endovascular device is at least 31.5 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 31.6 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 31.7 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 31.8 cm. According to some
  • the length of the support lumen 330 of the endovascular device is at least 31.9 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 32 cm.
  • the support lumen 330 of the endovascular device comprises an inflatable balloon.
  • the inflatable balloon is attached to the distal portion of the support lumen 330 of the endovascular device.
  • the inflatable balloon is attached proximal to the side-hole 310.
  • the inflatable balloon is attached distal to the side-hole 310.
  • the inflatable balloon is attached opposite the side-hole 310.
  • the inflatable balloon is attached opposite the side-hole 310 and spans the length of the side-hole 310.
  • the inflatable balloon is attached to a device separate from the endovascular device 300.
  • the separate device is a lumen of an inflatable balloon catheter.
  • the lumen of the inflatable balloon catheter comprises a luer lock on its proximal end.
  • the separate device is capable of being advanced into a blood vessel through the support lumen 330 of the endovascular device.
  • the inflatable balloon anchors the support lumen 330 of the endovascular device to a blood vessel.
  • the blood vessel is an artery.
  • the blood vessel is a vein.
  • the support lumen 330 of the endovascular device comprises a stent.
  • the stent is a retrievable stent.
  • the stent provides additional support to the endovascular device 300.
  • the endovascular device 300 comprises a separate support lumen.
  • the separate support lumen comprises a wire.
  • the wire is capable of being advanced into a blood vessel through the second segment 330.
  • the wire provides stability to the endovascular device 300.
  • the wire provides strength to the endovascular device 300.
  • the wire provides support for the endovascular device 300.
  • the wire facilitates placement of the endovascular device 300.
  • the wire anchors the endovascular device 300 within a blood vessel.
  • the wire provides stability to the working lumen formed by the side-hole 310 and the first segment 320.
  • the wire provides strength to the working lumen formed by the side-hole 310 and the first segment 320. According to some embodiments, the wire provides support for the working lumen formed by the side-hole 310 and the first segment 320. According to some embodiments, the wire facilitates placement of the working lumen formed by the side-hole 310 and the first segment 320. According to some embodiments, the wire anchors the working lumen formed by the side-hole 310 and the first segment 320 within a blood vessel. According to some embodiments, the separate support lumen comprises a stent. According to some embodiments, the stent is capable of being advanced into a blood vessel through the second segment 330. According to some embodiments, the stent provides stability to the endovascular device 300.
  • the stent provides strength to the endovascular device 300.
  • the stent provides support for the endovascular device 300.
  • the stent facilitates placement of the endovascular device 300.
  • the stent anchors the endovascular device 300 within a blood vessel.
  • the stent provides stability to the working lumen formed by the side-hole 310 and the first segment 320.
  • the stent provides strength to the working lumen formed by the side-hole 310 and the first segment 320.
  • the stent provides support for the working lumen formed by the side-hole 310 and the first segment 320.
  • the stent facilitates placement of the working lumen formed by the side-hole 310 and the first segment 320. According to some embodiments, the stent anchors the working lumen formed by the side- hole 310 and the first segment 320 within a blood vessel.
  • the separate support lumen comprises a luer lock on its proximal end. According to some embodiments, the separate support lumen provides additional support to the endovascular device 300.
  • the stent is retrievable.
  • the retrievable stent is attached to the distal portion of the support lumen 330 of the endovascular device.
  • the retrievable stent is attached to a device separate from the endovascular device.
  • the separate device is capable of being advanced into a blood vessel through the support lumen 330 of the endovascular device.
  • the retrievable stent anchors the support lumen 330 of the endovascular device to a blood vessel.
  • the blood vessel is an artery.
  • the blood vessel is a vein.
  • the side-hole 310 of the endovascular device comprises an angled extension of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device.
  • the angle of the angled extension is fixed. According to some embodiments, the angle of the angled extension ranges from about 0 degrees to about 359 degrees. According to some embodiments, the angle of the angled extension ranges from about 0 degrees to at least 359 degrees. According to some embodiments, the angle of the angled extension ranges from at least 0 degrees to at least 359 degrees. According to some embodiments,
  • the angle of the angled extension is at least 0 degrees. According to some embodiments, the angle of the angled extension is at least 10 degrees. According to some embodiments, the angle of the angled extension is at least 20 degrees. According to some embodiments, the angle of the angled extension is at least 30 degrees. According to some embodiments, the angle of the angled extension is at least 40 degrees. According to some embodiments, the angle of the angled extension is at least 50 degrees. According to some embodiments, the angle of the angled extension is at least 60 degrees. According to some embodiments, the angle of the angled extension is at least 70 degrees. According to some embodiments, the angle of the angled extension is at least 80 degrees. According to some embodiments, the angle of the angled extension is at least 90 degrees.
  • the angle of the angled extension is at least 100 degrees. According to some embodiments, the angle of the angled extension is at least 110 degrees. According to some embodiments, the angle of the angled extension is at least 120 degrees. According to some embodiments, the angle of the angled extension is at least 130 degrees. According to some embodiments, the angle of the angled extension is at least 140 degrees. According to some embodiments, the angle of the angled extension is at least 150 degrees. According to some embodiments, the angle of the angled extension is at least 160 degrees. According to some embodiments, the angle of the angled extension is at least 170 degrees. According to some embodiments, the angle of the angled extension is at least 180 degrees. According to some embodiments, the angle of the angled extension is at least 190 degrees.
  • the angle of the angled extension is at least 200 degrees. According to some embodiments, the angle of the angled extension is at least 210 degrees. According to some embodiments, the angle of the angled extension is at least 220 degrees. According to some embodiments, the angle of the angled extension is at least 230 degrees. According to some embodiments, the angle of the angled extension is at least 240 degrees. According to some embodiments, the angle of the angled extension is at least 250 degrees. According to some embodiments, the angle of the angled extension is at least 260 degrees. According to some embodiments, the angle of the angled extension is at least 270 degrees. According to some embodiments, the angle of the angled extension is at least 280 degrees.
  • the angle of the angled extension is at least 290 degrees. According to some embodiments, the angle of the angled extension is at least 300 degrees. According to some embodiments, the angle of the angled extension is at least 310 degrees. According to some embodiments, the angle of the angled extension is at least 320 degrees. According to some embodiments, the angle of the angled extension is at least 330 degrees. According to some embodiments, the angle of the angled extension is at least 340 degrees. According to some embodiments, the angle of the angled extension is at least 350 degrees. According to some embodiments, the angle of the angled extension is at least 359 degrees.
  • the angle of the angled extension is adjustable.
  • the angle of the angled extension is adjustable from about 0 degrees to about 359 degrees. According to some embodiments, the angle of the angled extension is adjustable from about 0 degrees to at least 359 degrees. According to some embodiments, the angle of the angled extension is adjustable from at least 0 degrees to at least 359 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 0 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 10 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 20 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 30 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 40 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 50 degrees. According to some
  • the angle of the angled extension is adjustable to at least 60 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 70 degrees.
  • the angle of the angled extension is adjustable to at least 80 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 90 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 100 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 110 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 120 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 130 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 140 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 150 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 160 degrees.
  • the angle of the angled extension is adjustable to at least 170 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 180 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 190 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 200 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 210 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 220 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 230 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 240 degrees.
  • the angle of the angled extension is adjustable to at least 250 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 260 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 270 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 280 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 290 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 300 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 310 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 320 degrees.
  • the angle of the angled extension is adjustable to at least 330 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 340 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 350 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 359 degrees. According to some embodiments, the angled extension is adjusted after the endovascular device 300 is inserted into a blood vessel.
  • the angled extension of the endovascular device 300 is straightened by an introducer upon entry into a blood vessel.
  • the introducer is rigid enough to straighten the angled extension, but flexible enough to navigate upper cervical and intracranial blood vessels.
  • the introducer comprises a dilator.
  • the angled extension of the endovascular device 300 is straightened by the dilator upon entry into a blood vessel.
  • the angled extension of the endovascular device 300 protrudes from the side-hole 310 when the endovascular device 300 is in its intended position within the blood vessel, when the dilator is removed from the blood vessel, or both.
  • the dilator is an inner dilator.
  • the diameter of the side-hole 310 of the endovascular device ranges from about 0.1 French (Fr) (0.001 inches) to about 5 French (Fr) (0.066 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device ranges from about 0.1 French (Fr) (0.001 inches) to at least 5 French (Fr) (0.066 inches).
  • the diameter of the side-hole 310 of the endovascular device ranges from at least 0.1 French (Fr) (0.001 inches) to at least 5 French (Fr) (0.066 inches).
  • the diameter of the side-hole 310 of the endovascular device is at least 0.1 French (Fr) (0.001 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 0.2 French (Fr) (0.002 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 0.3 French (Fr) (0.003 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 0.4 French (Fr) (0.005 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 0.5 French (Fr) (0.007 inches).
  • the diameter of the side-hole 310 of the endovascular device is at least 0.6 French (Fr) (0.008 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 0.7 French (Fr) (0.009 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 0.8 French (Fr) (0.01 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 0.9 French (Fr) (0.012 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 1 French (Fr) (0.013 inches).
  • the diameter of the side-hole 310 of the endovascular device is at least 1.1 French (Fr) (0.014 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 1.2 French (Fr) (0.016 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 1.3 French (Fr) (0.017 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 1.4 French (Fr) (0.018 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 1.5 French (Fr) (0.02 inches).
  • the diameter of the side-hole 310 of the endovascular device is at least 1.6 French (Fr) (0.021 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 1.7 French (Fr) (0.022 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 1.8 French (Fr) (0.024 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 1.9 French (Fr) (0.025 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 2 French (Fr) (0.026 inches).
  • the diameter of the side-hole 310 of the endovascular device is at least 2.1 French (Fr) (0.028 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 2.2 French (Fr) (0.029 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 2.3 French (Fr) (0.03 inches).
  • the diameter of the side-hole 310 of the endovascular device is at least 2.4 French (Fr) (0.031 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 2.5 French (Fr) (0.033 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 2.6 French (Fr) (0.034 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 2.7 French (Fr) (0.035 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 2.8 French (Fr) (0.037 inches).
  • the diameter of the side-hole 310 of the endovascular device is at least 2.9 French (Fr) (0.038 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 3 French (Fr) (0.039 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 3.1 French (Fr) (0.041 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 3.2 French (Fr) (0.042 inches).
  • the diameter of the side-hole 310 of the endovascular device is at least 3.3 French (Fr) (0.043 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 3.4 French (Fr) (0.045 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 3.5 French (Fr) (0.046 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 3.6 French (Fr) (0.047 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 3.7 French (Fr) (0.049 inches).
  • the diameter of the side-hole 310 of the endovascular device is at least 3.8 French (Fr) (0.05 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 3.9 French (Fr) (0.051 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 4 French (Fr) (0.052 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 4.1 French (Fr) (0.054 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 4.2 French (Fr) (0.055 inches).
  • the diameter of the side-hole 310 of the endovascular device is at least 4.3 French (Fr) (0.056 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 4.4 French (Fr) (0.058 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 4.5 French (Fr) (0.059 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 4.6 French (Fr) (0.06 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 4.7 French (Fr) (0.062 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 4.8 French (Fr) (0.063 inches).
  • the diameter of the side-hole 310 of the endovascular device is at least 4.9 French (Fr) (0.064 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 5 French (Fr) (0.066 inches).
  • the side-hole 310 of the endovascular device comprises a length.
  • the length of the side-hole 310 is measured from the proximal portion of the side-hole 310 to the distal portion of the side-hole 310.
  • the length of the side-hole 310 of the endovascular device ranges from about 0.02 cm to about 0.34 cm.
  • the length of the side-hole 310 of the endovascular device ranges from about 0.02 cm to at least 0.34 cm.
  • the length of the side-hole 310 of the endovascular device ranges from at least 0.02 cm to at least 0.34 cm.
  • the length of the side-hole 310 of the endovascular device is at least 0.02 cm. According to some embodiments, the length of the side-hole 310 of the endovascular device is at least 0.03 cm. According to some embodiments, the length of the side- hole 310 of the endovascular device is at least 0.04 cm. According to some embodiments, the length of the side-hole 310 of the endovascular device is at least 0.05 cm. According to some embodiments, the length of the side-hole 310 of the endovascular device is at least 0.06 cm. According to some embodiments, the length of the side-hole 310 of the endovascular device is at least 0.07 cm.
  • the length of the side-hole 310 of the endovascular device is at least 0.08 cm. According to some embodiments, the length of the side- hole 310 of the endovascular device is at least 0.09 cm. According to some embodiments, the length of the side-hole 310 of the endovascular device is at least 0.10 cm. According to some embodiments, the length of the side-hole 310 of the endovascular device is at least 0.11 cm. According to some embodiments, the length of the side-hole 310 of the endovascular device is at least 0.12 cm. According to some embodiments, the length of the side-hole 310 of the endovascular device is at least 0.13 cm.
  • the length of the side- hole 310 of the endovascular device is at least 0.14 cm. According to some embodiments, the length of the side-hole 310 of the endovascular device is at least 0.15 cm. According to some embodiments, the length of the side-hole 310 of the endovascular device is at least 0.16 cm. According to some embodiments, the length of the side-hole 310 of the endovascular device is at least 0.17 cm. According to some embodiments, the length of the side-hole 310 of the endovascular device is at least 0.18 cm. According to some embodiments, the length of the side- hole 310 of the endovascular device is at least 0.19 cm.
  • the length of the side-hole 310 of the endovascular device is at least 0.20 cm. According to some embodiments, the length of the side-hole 310 of the endovascular device is at least 0.21 cm. According to some embodiments, the length of the side-hole 310 of the endovascular device is at least 0.22 cm. According to some embodiments, the length of the side-hole 310 of the endovascular device is at least 0.23 cm. According to some embodiments, the length of the side- hole 310 of the endovascular device is at least 0.24 cm. According to some embodiments, the length of the side-hole 310 of the endovascular device is at least 0.25 cm.
  • the length of the side-hole 310 of the endovascular device is at least 0.26 cm. According to some embodiments, the length of the side-hole 310 of the endovascular device is at least 0.27 cm. According to some embodiments, the length of the side-hole 310 of the endovascular device is at least 0.28 cm. According to some embodiments, the length of the side- hole 310 of the endovascular device is at least 0.29 cm. According to some embodiments, the length of the side-hole 310 of the endovascular device is at least 0.30 cm. According to some embodiments, the length of the side-hole 310 of the endovascular device is at least 0.31 cm.
  • the length of the side-hole 310 of the endovascular device is at least 0.32 cm. According to some embodiments, the length of the side-hole 310 of the endovascular device is at least 0.33 cm. According to some embodiments, the length of the side- hole 310 of the endovascular device is at least 0.34 cm.
  • the shape of the support lumen 330 is an“S” shape.
  • the“S” shape is a shepherd’s hook shape.
  • Figure 6 shows an exemplary and non-limiting example of some embodiments of the“S”-shaped support lumen 610.
  • the“S”-shaped support lumen 610 can be used to access difficult-to-access innominate arteries; to subsequently access the right common carotid artery and its distal branches; and/or to subsequently access the right subclavian artery and/or its branches.
  • the“S”-shaped support lumen 610 can be used to access difficult-to-access innominate arteries; to subsequently access the right common carotid artery and its distal branches; and/or to subsequently access the right subclavian artery and/or its branches.
  • the“S”-shaped support lumen 610 can be used to access difficult-to-access innominate arteries; to subsequently access the right common carotid artery and its distal branches; and/or to subsequently access the right subclavian artery and/or its branches.
  • support lumen 610 can be used to access distally the right subclavian artery and right common
  • the“S”-shaped support lumen 610 can be used
  • the“S” shape is a pre-shaped configuration.
  • the“S”-shaped support lumen 610 is inserted into the body of
  • the“S”-shaped support lumen 610 is inserted
  • the aortic arch to provide support for the endovascular device 300, to facilitate placement of the
  • endovascular device 300 to anchor the endovascular device 300 within a blood vessel, to prevent
  • the“S”-shaped support lumen 610 is inserted into the body of a subject in a
  • aorta to provide support for the endovascular device 300, to facilitate placement of the
  • endovascular device 300 to anchor the endovascular device 300 within a blood vessel, to prevent
  • the placement of the endovascular device 300 is with the side-hole 310/640
  • the“S”-shaped support lumen 610 comprises shape
  • SMP shape memory polymer
  • polyurethanes blends of polystyrene and polyurethane, and polyvinylchloride. According to
  • the“S”-shaped support lumen 610 comprises a shape memory alloy (SMA).
  • SMA shape memory alloy
  • Non-limiting examples of shape memory alloys include nickel-titanium (i.e., nitinol).
  • the length of the“S”-shaped support lumen 610 is at least 4% longe lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 5% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 5.5% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 6% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 6.5% longer than the length of the working lumen.
  • the length of the“S”-shaped support lumen 610 is at least 7% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 7.5% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 8% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 8.5% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 9% longer than the length of the working lumen.
  • the length of the“S”-shaped support lumen 610 is at least 9.5% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 10% longer than the length of the working lumen. According to some
  • the length of the“S”-shaped support lumen 610 is at least 20% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 30% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 40% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 50% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 60% longer than the length of the working lumen.
  • the length of the“S”-shaped support lumen 610 is at least 70% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 80% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 90% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 100% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 110% longer than the length of the working lumen.
  • the length of the“S”-shaped support lumen 610 is at least 120% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 130% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 140% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 150% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 160% longer than the length of the working lumen.
  • the length of the“S”-shaped support lumen 610 is at least 170% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 180% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 190% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 200% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 210% longer than the length of the working lumen.
  • the length of the“S”-shaped support lumen 610 is at least 220% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 230% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 240% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 250% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 260% longer than the length of the working lumen.
  • the length of the“S”-shaped support lumen 610 is at least 270% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 280% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 290% longer than the length of the working lumen. According to some embodiments, the length of the“S”- shaped support lumen 610 is at least 300% longer than the length of the working lumen.
  • the“S”-shaped support lumen 610 comprises a curve diameter 620.
  • the curve diameter ranges from about 1 cm to about 10 cm.
  • the curve diameter ranges from about 1 cm to at least 10 cm.
  • the curve diameter ranges from at least 1 cm to at least 10 cm.
  • the curve diameter is at least 1 cm.
  • the curve diameter is at least 2 cm.
  • the curve diameter is at least 3 cm.
  • the curve diameter is at least 4 cm.
  • the curve diameter is at least 5 cm.
  • the curve diameter is at least 6 cm.
  • the curve diameter is at least 7 cm.
  • the curve diameter is at least 8 cm.
  • the curve diameter is at least 9 cm.
  • the curve diameter is at least 10 cm.
  • a luer lock is attached to the proximal end of the working lumen, to the proximal end of the support lumen, or both.
  • the primary opening 340 comprises a luer lock.
  • the length of the first segment 320 from the luer lock to the side-hole 310 ranges from about 10 cm to about 130 cm. According to some embodiments, the length of the first segment 320 from the luer lock to the side-hole 310 ranges from about 10 cm to at least 130 cm. According to some embodiments, the length of the first segment 320 from the luer lock to the side-hole 310 ranges from at least 10 cm to at least 130 cm. According to some embodiments, the length of the first segment 320 from the luer lock to the side-hole 310 is at least 10 cm. According to some embodiments, the length of the first segment 320 from the luer lock to the side-hole 310 is at least 20 cm.
  • the length of the first segment 320 from the luer lock to the side-hole 310 is at least 30 cm. According to some embodiments, the length of the first segment 320 from the luer lock to the side-hole 310 is at least 40 cm. According to some embodiments, the length of the first segment 320 from the luer lock to the side-hole 310 is at least 50 cm. According to some embodiments, the length of the first segment 320 from the luer lock to the side-hole 310 is at least 60 cm. According to some embodiments, the length of the first segment 320 from the luer lock to the side-hole 310 is at least 70 cm.
  • the length of the first segment 320 from the luer lock to the side-hole 310 is at least 80 cm. According to some embodiments, the length of the first segment 320 from the luer lock to the side-hole 310 is at least 90 cm. According to some embodiments, the length of the first segment 320 from the luer lock to the side-hole 310 is at least 100 cm. According to some embodiments, the length of the first segment 320 from the luer lock to the side-hole 310 is at least 110 cm. According to some embodiments, the length of the first segment 320 from the luer lock to the side-hole 310 is at least 120 cm. According to some embodiments, the length of the first segment 320 from the luer lock to the side-hole 310 is at least 130 cm.
  • the length of the second segment 330 ranges from about 10% to about 300% longer than the length of the first segment 320 from the luer lock to the side-hole 310. According to some embodiments, the length of the second segment 330 ranges from about 10% to at least 300% longer than the length of the first segment 320 from the luer lock to the side-hole 310. According to some embodiments, the length of the second segment 330 ranges from at least 10% to at least 300% longer than the length of the first segment 320 from the luer lock to the side-hole 310. According to some embodiments, the length of the second segment 330 is at least 10% longer than the length of the first segment 320 from the luer lock to the side-hole 310.
  • the length of the second segment 330 is at least 20% longer than the length of the first segment 320 from the luer lock to the side- hole 310. According to some embodiments, the length of the second segment 330 is at least 30% longer than the length of the first segment 320 from the luer lock to the side-hole 310. According to some embodiments, the length of the second segment 330 is at least 40% longer than the length of the first segment 320 from the luer lock to the side-hole 310. According to some embodiments, the length of the second segment 330 is at least 50% longer than the length of the first segment 320 from the luer lock to the side-hole 310.
  • the length of the second segment 330 is at least 60% longer than the length of first segment 320 from the luer lock to the side-hole 310. According to some embodiments, the length of the second segment 330 is at least 70% longer than the length of the first segment 320 from the luer lock to the side-hole 310. According to some embodiments, the length of the second segment 330 is at least 80% longer than the length of the first segment 320 from the luer lock to the side-hole 310. According to some embodiments, the length of the second segment 330 is at least 90% longer than the length of the first segment 320 from the luer lock to the side-hole 310. According to some embodiments, the length of the second segment 330 is at least 100% longer than the length of the first segment 320 from the luer lock to the side-hole 310. According to some embodiments,
  • the length of the second segment 330 is at least 110% longer than the length of the first segment 320 from the luer lock to the side-hole 310. According to some embodiments, the length of the second segment 330 is at least 120% longer than the length of the first segment 320 from the luer lock to the side-hole 310. According to some embodiments, the length of the second segment 330 is at least 130% longer than the length of the first segment 320 from the luer lock to the side-hole 310. According to some embodiments, the length of the second segment 330 is at least 140% longer than the length of the first segment 320 from the luer lock to the side- hole 310.
  • the length of the second segment 330 is at least 150% longer than the length of the first segment 320 from the luer lock to the side-hole 310. According to some embodiments, the length of the second segment 330 is at least 160% longer than the length of the first segment 320 from the luer lock to the side-hole 310. According to some embodiments, the length of the second segment 330 is at least 170% longer than the length of the first segment 320 from the luer lock to the side-hole 310. According to some
  • the length of the second segment 330 is at least 180% longer than the length of the first segment 320 from the luer lock to the side-hole 310. According to some embodiments, the length of the second segment 330 is at least 190% longer than the length of the first segment 320 from the luer lock to the side-hole 310. According to some embodiments, the length of the second segment 330 is at least 200% longer than the length of the first segment 320 from the luer lock to the side-hole 310. According to some embodiments, the length of the second segment 330 is at least 210% longer than the length of the first segment 320 from the luer lock to the side- hole 310.
  • the length of the second segment 330 is at least 220% longer than the length of the first segment 320 from the luer lock to the side-hole 310. According to some embodiments, the length of the second segment 330 is at least 230% longer than the length of the first segment 320 from the luer lock to the side-hole 310. According to some embodiments, the length of the second segment 330 is at least 240% longer than the length of the first segment 320 from the luer lock to the side-hole 310. According to some
  • the length of the second segment 330 is at least 250% longer than the length of the first segment 320 from the luer lock to the side-hole 310. According to some embodiments, the length of the second segment 330 is at least 260% longer than the length of the first segment 320 from the luer lock to the side-hole 310. According to some embodiments, the length of the second segment 330 is at least 270% longer than the length of the first segment 320 from the luer lock to the side-hole 310. According to some embodiments, the length of the second segment 330 is at least 280% longer than the length of the first segment 320 from the luer lock to the side- hole 310.
  • the length of the second segment 330 is at least 290% longer than the length of the first segment 320 from the luer lock to the side-hole 310. According to some embodiments, the length of the second segment 330 is at least 300% longer than the length of the first segment 320 from the luer lock to the side-hole 310.
  • the length of the endovascular device 300 from the luer lock to the end hole 350 ranges from about 10 cm to about 520 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end hole 350 ranges from about 10 cm to at least 520 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end hole 350 ranges from at least 10 cm to at least 520 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 10 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 20 cm.
  • the length of the endovascular device 300 from the luer lock to the end 350 is at least 30 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 40 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 50 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 60 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 70 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 80 cm.
  • the length of the endovascular device 300 from the luer lock to the end 350 is at least 90 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 100 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 110 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 120 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 130 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 140 cm.
  • the length of the endovascular device 300 from the luer lock to the end 350 is at least 150 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 160 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 170 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 180 cm. According to some embodiments, the length of device 300 from the luer lock to the end 350 is at least 190 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 200 cm.
  • the length of the endovascular device 300 from the luer lock to the end 350 is at least 210 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 220 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 230 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 240 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 250 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 260 cm.
  • the length of the endovascular device 300 from the luer lock to the end 350 is at least 270 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 280 cm. According to some embodiments, the length of the endovascular device 300 from the end 350 is at least 290 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 300 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 310 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 320 cm.
  • the length of the endovascular device 300 from the luer lock to the end 350 is at least 330 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 340 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 350 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 360 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 370 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 380 cm.
  • the length of the endovascular device 300 from the luer lock to the end 350 is at least 390 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 400 cm. According to some embodiments, the length of device 300 from the luer lock to the end 350 is at least 410 cm. According to some embodiments, the length of the
  • endovascular device 300 from the luer lock to the end 350 is at least 420 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 430 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 440 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 450 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 460 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 470 cm.
  • the length of the endovascular device 300 from the luer lock to the end 350 is at least 480 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 490 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 500 cm. According to some embodiments, the length of the endovascular device 300 from the end 350 is at least 510 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 520 cm.
  • the end 350 is open. According to some embodiments, the end 350 is closed.
  • the support lumen 110 provides stability to the endovascular device 100. According to some embodiments, the support lumen 110 provides strength to the endovascular device 100. According to some embodiments, the support lumen 110 provides support for the endovascular device 100. According to some embodiments, the support lumen 110 facilitates placement of the endovascular device 100. According to some embodiments, the support lumen 110 anchors the endovascular device 100 within a blood vessel. According to some embodiments, the support lumen 110 prevents kickback of the endovascular device 100.
  • the blood vessel is an artery. According to some embodiments, the blood vessel is a vein.
  • the second segment 330 provides stability to the endovascular device 300. According to some embodiments, the second segment 330 provides strength to the endovascular device 300. According to some embodiments, the second segment 330 provides support for the endovascular device 300. According to some embodiments, the second segment 330 facilitates placement of the endovascular device 300. According to some embodiments, the second segment 330 anchors the endovascular device 300 within a blood vessel. According to some embodiments, the second segment 330 prevents kickback of the endovascular device 300. According to some embodiments, the blood vessel is an artery.
  • the blood vessel is a vein.
  • the support lumen 110 provides stability to the working (or non-support) lumen 120. According to some embodiments, the support lumen 110 provides strength to the working (or non-support) lumen 120. According to some embodiments, the support lumen 110 provides support for the working (or non-support) lumen 120. According to some embodiments, the support lumen 110 facilitates placement of the working (or nonsupport) lumen 120. According to some embodiments, the support lumen 110 anchors the working (or non-support) lumen 120 within a blood vessel. According to some embodiments, the support lumen 110 prevents kickback of the working (or non-support) lumen 120. According to some embodiments, the blood vessel is an artery. According to some embodiments, the blood vessel is a vein.
  • the second segment 330 provides stability to the working lumen formed by the side-hole 310 and the first segment 320. According to some embodiments, the second segment 330 provides strength to the working lumen formed by the side-hole 310 and the first segment 320. According to some embodiments, the second segment 330 provides support for the working lumen formed by the side-hole 310 and the first segment 320. According to some embodiments, the second segment 330 facilitates placement of the working lumen formed by the side-hole 310 and the first segment 320. According to some embodiments, the second segment 330 anchors the working lumen formed by the side-hole 310 and the first segment 320 within a blood vessel. According to some embodiments, the second segment 330 prevents kickback of the working lumen formed by the side-hole 310 and the first segment 320. According to some embodiments, the blood vessel is an artery. According to some embodiments, the blood vessel is a vein.
  • the length of the support lumen 110 is than the length of the working (or non-support) lumen 120. Said another way, the length of the working (or nonsupport) lumen 120 is less than the length of the support lumen 110.
  • the length of the support lumen 110 ranges from about 10% to about 200% longer than the working (or non-support) lumen 120. According to some embodiments, the length of the support lumen 110 ranges from about 10% to at least 200% longer than the working (or non-support) lumen 120. According to some embodiments, the length of the support lumen 110 ranges from at least 10% to at least 200% longer than the working (or non-support) lumen 120. According to some embodiments, the support lumen 110 is at least 10% longer than the working (or non-support) lumen 120. According to some embodiments,
  • the support lumen 110 is at least 20% longer than the working (or non-support) lumen 120. According to some embodiments, the support lumen 110 is at least 30% longer than the working (or non-support) lumen 120. According to some embodiments, the support lumen 110 is at least 40% longer than the working (or non-support) lumen 120. According to some embodiments, the support lumen 110 is at least 50% longer than the working (or non-support) lumen 120. According to some embodiments, the support lumen 110 is at least 60% longer than the working (or non-support) lumen 120. According to some embodiments, the support lumen 110 is at least 70% longer than the working (or non-support) lumen 120.
  • the support lumen 110 is at least 80% longer than the working (or non-support) lumen 120. According to some embodiments, the support lumen 110 is at least 90% longer than the working (or non-support) lumen 120. According to some embodiments, the support lumen 110 is at least 100% longer than the working (or non-support) lumen 120. According to some embodiments, the support lumen 110 is at least 110% longer than the working (or non-support) lumen 120. According to some embodiments, the support lumen 110 is at least 120% longer than the working (or non-support) lumen 120. According to some embodiments, the support lumen 110 is at least 130% longer than the working (or non-support) lumen 120.
  • the support lumen 110 is at least 140% longer than the working (or non-support) lumen 120. According to some embodiments, the support lumen 110 is at least 150% longer than the working (or non-support) lumen 120. According to some embodiments, the support lumen 110 is at least 160% longer than the working (or non-support) lumen 120. According to some embodiments, the support lumen 110 is at least 170% longer than the working (or non-support) lumen 120. According to some embodiments, the support lumen 110 is at least 180% longer than the working (or non-support) lumen 120. According to some embodiments, the support lumen 110 is at least 190% longer than the working (or non-support) lumen 120. According to some embodiments, the support lumen 110 is at least 200% longer than the working (or non-support) lumen 120.
  • the length of the support lumen 110 ranges from about 105 cm to about 135 cm. According to some embodiments, the length of the support lumen 110 ranges from about 105 cm to at least 135 cm. According to some embodiments, the length of the support lumen 110 ranges from at least 105 cm to at least 135 cm. According to some embodiments, the length of the support lumen 110 is at least 105 cm. According to some embodiments, the length of the support lumen 110 is at least 106 cm. According to some embodiments, the length of the support lumen 110 is at least 107 cm. According to some embodiments, the length of the support lumen 110 is at least 108 cm.
  • the length of the support lumen 110 is at least 109 cm. According to some embodiments, the length of the support lumen 110 is at least 110 cm. According to some embodiments, the length of the support lumen 110 is at least 111 cm. According to some embodiments, the length of the support lumen 110 is at least 112 cm. According to some embodiments, the length of the support lumen 110 is at least 113 cm. According to some embodiments, the length of the support lumen 110 is at least 114 cm. According to some embodiments, the length of the support lumen 110 is at least 115 cm. According to some embodiments, the length of the support lumen 110 is at least 116 cm. According to some embodiments, the length of the support lumen 110 is at least 117 cm.
  • the length of the support lumen 110 is at least 118 cm. According to some embodiments, the length of the support lumen 110 is at least 119 cm. According to some embodiments, the length of the support lumen 110 is at least 120 cm. According to some embodiments, the length of the support lumen 110 is at least 121 cm. According to some embodiments, the length of the support lumen 110 is at least 122 cm. According to some embodiments, the length of the support lumen 110 is at least 123 cm. According to some embodiments, the length of the support lumen 110 is at least 130 cm. According to some embodiments, the length of the support lumen 110 is at least 124 cm. According to some embodiments, the length of the support lumen 110 is at least 125 cm.
  • the length of the support lumen 110 is at least 126 cm. According to some embodiments, the length of the support lumen 110 is at least 127 cm. According to some embodiments, the length of the support lumen 110 is at least 128 cm. According to some embodiments, the length of the support lumen 110 is at least 129 cm. According to some embodiments, the length of the support lumen 110 is at least 130 cm. According to some embodiments, the length of the support lumen 110 is at least 131 cm. According to some embodiments, the length of the support lumen 110 is at least 132 cm. According to some embodiments, the length of the support lumen 110 is at least 133 cm. According to some embodiments, the length of the support lumen 110 is at least 134 cm. According to some embodiments, the length of the support lumen 110 is at least 135 cm.
  • the length of the first segment 320 ranges of about 50 cm to about 145 cm. According to some embodiments, the length of the first segment 320 ranges from about 50 cm to at least 145 cm. According to some embodiments, the length of the first segment 320 ranges from at least 50 cm to at least 145 cm. According to some embodiments, the length of the first segment 320 is at least 50 cm. According to some embodiments, the length of the first segment 320 is at least 51 cm. According to some embodiments, the length of the first segment 320 is at least 52 cm. According to some embodiments, the length of the first segment 320 is at least 53 cm. According to some embodiments, the length of the first segment 320 is at least 54 cm. According to some embodiments, the length of the first segment 320 is at least 55 cm. According to some embodiments, the length of the first segment 320 is at least 56 cm.
  • the length of the first segment 320 is at least 57 cm. According to some embodiments, the length of the first segment 320 is at least 58 cm. According to some embodiments, the length of the first segment 320 is at least 59 cm. According to some embodiments, the length of the first segment 320 is at least 60 cm. According to some embodiments, the length of the first segment 320 is at least 61 cm. According to some embodiments, the length of the first segment 320 is at least 62 cm. According to some embodiments, the length of the first segment 320 is at least 63 cm. According to some embodiments, the length of the first segment 320 is at least 64 cm. According to some embodiments, the length of the first segment 320 is at least 65 cm.
  • the length of the first segment 320 is at least 66 cm. According to some embodiments, the length of the first segment 320 is at least 67 cm. According to some embodiments, the length of the first segment 320 is at least 68 cm. According to some embodiments, the length of the first segment 320 is at least 69 cm. According to some embodiments, the length of the first segment 320 is at least 70 cm. According to some embodiments, the length of the first segment 320 is at least 71 cm. According to some embodiments, the length of the first segment 320 is at least 72 cm. According to some embodiments, the length of the first segment 320 is at least 73 cm. According to some embodiments, the length of the first segment 320 is at least 74 cm.
  • the length of the first segment 320 is at least 75 cm. According to some embodiments, the length of the first segment 320 is at least 76 cm. According to some embodiments, the length of the first segment 320 is at least 77 cm. According to some embodiments, the length of the first segment 320 is at least 78 cm. According to some embodiments, the length of the first segment 320 is at least 79 cm. According to some embodiments, the length of the first segment 320 is at least 80 cm. According to some embodiments, the length of the first segment 320 is at least 81 cm. According to some embodiments, the length of the first segment 320 is at least 82 cm. According to some embodiments, the length of the first segment 320 is at least 83 cm.
  • the length of the first segment 320 is at least 84 cm. According to some embodiments, the length of the first segment 320 is at least 85 cm. According to some embodiments, the length of the first segment 320 is at least 86 cm. According to some embodiments, the length of the first segment 320 is at least 87 cm. According to some embodiments, the length of the first segment 320 is at least 88 cm. According to some embodiments, the length of first segment 320 is at least 89 cm. According to some embodiments, the length of the first segment 320 is at least 90 cm. According to some embodiments, the length of the first segment 320 is at least 91 cm. According to some embodiments, the length of the first segment 320 is at least 92 cm.
  • the length of the first segment 320 is at least 93 cm. According to some embodiments, the length of the first segment 320 is at least 94 cm. According to some embodiments, the length of the first segment 320 is at least 95 cm. According to some embodiments, the length of the first segment 320 is at least 96 cm.
  • the length of the first segment 320 is at least 97 cm. According to some embodiments, the length of the first segment 320 is at least 98 cm. According to some embodiments, the length of the first segment 320 is at least 99 cm. According to some embodiments, the length of the first segment 320 is at least 100 cm. According to some embodiments, the length of the first segment 320 is at least 101 cm. According to some embodiments, the length of the first segment 320 is at least 102 cm. According to some embodiments, the length of the first segment 320 is at least 103 cm. According to some embodiments, the length of the first segment 320 is at least 104 cm. According to some embodiments, the length of the first segment 320 is at least 105 cm.
  • the length of the first segment 320 is at least 106 cm. According to some embodiments, the length of the first segment 320 is at least 107 cm. According to some embodiments, the length of the first segment 320 is at least 108 cm. According to some embodiments, the length of the first segment 320 is at least 109 cm. According to some embodiments, the length of the first segment 320 is at least 110 cm. According to some embodiments, the length of the first segment 320 is at least 111 cm. According to some embodiments, the length of the first segment 320 is at least 112 cm. According to some embodiments, the length of the first segment 320 is at least 113 cm. According to some embodiments, the length of the first segment 320 is at least 114 cm.
  • the length of the first segment 320 is at least 115 cm. According to some embodiments, the length of the first segment 320 is at least 116 cm. According to some embodiments, the length of the first segment 320 is at least 117 cm. According to some embodiments, the length of the first segment 320 is at least 118 cm. According to some embodiments, the length of the first segment 320 is at least 119 cm. According to some embodiments, the length of the first segment 320 is at least 120 cm. According to some embodiments, the length of the first segment 320 is at least 121 cm. According to some embodiments, the length of the first segment 320 is at least 122 cm. According to some embodiments, the length of the first segment 320 is at least 123 cm.
  • the length of the first segment 320 is at least 124 cm. According to some embodiments, the length of the first segment 320 is at least 125 cm. According to some embodiments, the length of the first segment 320 is at least 126 cm. According to some embodiments, the length of the first segment 320 is at least 127 cm. According to some embodiments, the length of the first segment 320 is at least 128 cm. According to some embodiments, the length of the first segment 320 is at least 129 cm. According to some embodiments, the length of the first segment 320 is at least 130 cm. According to some embodiments, the length of the first segment 320 is at least 131 cm. According to some embodiments, the length of the first segment 320 is at least 132 cm.
  • the length of the first segment 320 is at least 133 cm. According to some embodiments, the length of the first segment 320 is at least 134 cm. According to some embodiments, the length of the first segment 320 is at least 135 cm. According to some embodiments, the length of the first segment 320 is at least 136 cm. According to some embodiments, the length of the first segment 320 is at least 137 cm. According to some embodiments, the length of the first segment 320 is at least 138 cm. According to some embodiments, the length of the first segment 320 is at least 139 cm. According to some embodiments, the length of the first segment 320 is at least 140 cm. According to some embodiments, the length of the first segment 320 is at least 141 cm.
  • the length of the first segment 320 is at least 142 cm. According to some embodiments, the length of the first segment 320 is at least 143 cm. According to some embodiments, the length of the first segment 320 is at least 144 cm. According to some embodiments, the length of the first segment 320 is at least 145 cm.
  • the second segment 330 extends from about 3 cm to about 60 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends from about 3 cm to at least 60 cm in length from the side-hole 310.
  • the second segment 330 extends from at least 3 cm to at least 60 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 3 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 4 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 5 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 6 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 7 cm in length from the side-hole 310.
  • the second segment 330 extends at least 8 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 9 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 10 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 11 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 12 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 13 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 14 cm in length from the side-hole 310.
  • the second segment 330 extends at least 15 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 16 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 17 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 18 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 19 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 20 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 21 cm in length from the side-hole 310.
  • the second segment 330 extends at least 22 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 23 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 24 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 25 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 26 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 27 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 28 cm in length from the side-hole 310.
  • the second segment 330 extends at least 29 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 30 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 31 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 32 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 33 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 34 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 35 cm in length from the side-hole 310.
  • the second segment 330 extends at least 36 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 37 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 38 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 39 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 40 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 41 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 42 cm in length from the side-hole 310.
  • the second segment 330 extends at least 43 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 44 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 45 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 46 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 47 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 48 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 49 cm in length from the side-hole 310.
  • the second segment 330 extends at least 50 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 51 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 52 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 53 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 54 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 55 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 56 cm in length from the side-hole 310.
  • the second segment 330 extends at least 57 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 58 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 59 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 60 cm in length from the side-hole 310.
  • the diameter of the support lumen 110 is less than the diameter of the working (or non-support) lumen 120. Said another way, the diameter of the working (or non-support) lumen 120 is greater than the diameter of the support lumen.
  • the diameter of the support lumen 110 is equal to the diameter of the working (or non-support) lumen 120. Said another way, the diameter of the support lumen 110 is the same as the diameter of the working (or non-support) lumen 120. According to some embodiments, the diameter is an inner diameter (ID). According to some embodiments, the diameter is an outer diameter (OD).
  • the diameter of the support lumen 110 ranges from about 0.1 French (Fr) to about 8 French (Fr). According to some embodiments, the diameter of the support lumen 110 ranges from about 0.1 French (Fr) to at least 8 French (Fr). According to some embodiments, the diameter of the support lumen 110 ranges from at least 0.1 French (Fr) to at least 8 French (Fr). According to some embodiments, the diameter of the support lumen 110 is at least 0.5 French (Fr). According to some embodiments, the diameter of the support lumen 110 is at least 0.6 French (Fr). According to some embodiments, the diameter of the support lumen 110 is at least 0.7 French (Fr).
  • the diameter of the support lumen 110 is at least 0.8 French (Fr). According to some embodiments, the diameter of the support lumen 110 is at least 0.9 French (Fr). According to some embodiments, the diameter of the support lumen 110 is at least 1 French (Fr). According to some embodiments, the diameter of the support lumen 110 is at least 2 French (Fr). According to some embodiments, the diameter of the support lumen 110 is at least 3 French (Fr). According to some embodiments, the diameter of the support lumen 110 is at least 4 French (Fr). According to some embodiments, the diameter of the support lumen 110 is at least 5 French (Fr). According to some embodiments, the diameter of the support lumen 110 is at least 6 French (Fr). According to some embodiments, the diameter of the support lumen 110 is at least 7 French (Fr). According to some embodiments, the diameter of the support lumen 110 is at least 8 French.
  • the diameter of the support lumen 110 is less than 1 French (Fr). According to some embodiments the diameter of the support lumen 110 ranges from at least 0.0020 cm (at least 0.0008 inches) to at least 0.0305 cm (at least 0.012 inches).
  • the diameter of the support lumen 110 is at least 0.0020 cm (at least 0.0008 inches). According to some embodiments, the diameter of the support lumen 110 is at least 0.0023 cm (at least 0.0009 inches). According to some embodiments, the diameter of the support lumen 110 is at least 0.0254 cm (at least 0.010 inches). According to some embodiments, the diameter of the support lumen 110 is at least 0.0279 cm (at least 0.011 inches). According to some embodiments, the diameter of the support lumen 110 is at least 0.0305 cm (at least 0.012 inches).
  • the diameter of the support lumen 110 ranges from about 0.08 cm to about 0.12 cm. According to some embodiments, the diameter of the support lumen 110 ranges from about 0.08 cm to at least 0.12 cm. According to some embodiments, the diameter of the support lumen 110 ranges from at least 0.08 cm to at least 0.12 cm. According to some embodiments, the diameter of the support lumen 110 is at least 0.08 cm. According to some embodiments, the diameter of the support lumen 110 is at least 0.081 cm. According to some embodiments, the diameter of the support lumen 110 is at least 0.082 cm. According to some embodiments, the diameter of the support lumen 110 is at least 0.083 cm.
  • the diameter of the support lumen 110 is at least 0.084 cm. According to some embodiments, the diameter of the support lumen 110 is at least 0.085 cm. According to some embodiments, the diameter of the support lumen 110 is at least 0.086 cm. According to some embodiments, the diameter of the support lumen 110 is at least 0.087 cm. According to some embodiments, the diameter of the support lumen 110 is at least 0.088 cm. According to some embodiments, the diameter of the support lumen 110 is at least 0.089 cm. According to some embodiments, the diameter of the support lumen 110 is at least 0.09 cm. According to some embodiments, the diameter of the support lumen 110 is at least 0.091 cm.
  • the diameter of the support lumen 110 is at least 0.092 cm. According to some embodiments, the diameter of the support lumen 110 is at least 0.093 cm. According to some embodiments, the diameter of the support lumen 110 is at least 0.094 cm. According to some embodiments, the diameter of the support lumen 110 is at least 0.095 cm. According to some embodiments, the diameter of the support lumen 110 is at least 0.096 cm. According to some embodiments, the diameter of the support lumen 110 is at least 0.097 cm. According to some embodiments, the diameter of the support lumen 110 is at least 0.098 cm. According to some embodiments, the diameter of the support lumen 110 is at least 0.099 cm. According to some embodiments, the diameter of the support lumen 110 is at least 0.10 cm. According to some embodiments, the diameter of the support lumen 110 is at least 0.11 cm. According to some embodiments, the diameter of the support lumen 110 is at least 0.12 cm.
  • the diameter of the working (or non-support) lumen 120 ranges from about 1 French (Fr) to about 26 French (Fr). According to some embodiments, the diameter of the working (or non-support) lumen 120 ranges from about 1 French (Fr) to at least 26 French (Fr). According to some embodiments, the diameter of the working (or non-support) lumen 120 ranges from at least 1 French (Fr) to at least 26 French (Fr). According to some embodiments, the diameter of the working (or non-support) lumen 120 is at least 1 French (Fr). According to some embodiments, the diameter of the working (or non-support) lumen 120 is at least 2 French (Fr). According to some embodiments, the diameter of the working (or nonsupport) lumen 120 is at least 3 French (Fr). According to some embodiments, the diameter of the working (or non-support) lumen 120 is at least 4 French (Fr). According to some embodiments, the diameter of the working (or non-support) lumen 120 ranges from about 1 French (F
  • the diameter of the working (or non-support) lumen 120 is at least 5 French (Fr). According to some embodiments, the diameter of the working (or non-support) lumen 120 is at least 6 French (Fr). According to some embodiments, the diameter of the working (or nonsupport) lumen 120 is at least 7 French (Fr). According to some embodiments, the diameter of the working (or non-support) lumen 120 is at least 8 French (Fr). According to some embodiments,
  • the diameter of the working (or non-support) lumen 120 is at least 9 French (Fr). According to some embodiments, the diameter of the working (or non-support) lumen 120 is at least 10 French (Fr). According to some embodiments, the diameter of the working (or nonsupport) lumen 120 is at least 11 French (Fr). According to some embodiments, the diameter of the working (or non-support) lumen 120 is at least 12 French (Fr). According to some embodiments, the diameter of the working (or non-support) lumen 120 is at least 13 French (Fr). According to some embodiments, the diameter of the working (or non-support) lumen 120 is at least 14 French (Fr).
  • the diameter of the working (or nonsupport) lumen 120 is at least 15 French (Fr). According to some embodiments, the diameter of the working (or non-support) lumen 120 is at least 16 French (Fr). According to some embodiments, the diameter of the working (or non-support) lumen 120 is at least 17 French (Fr). According to some embodiments, the diameter of the working (or non-support) lumen 120 is at least 18 French (Fr). According to some embodiments, the diameter of the working (or nonsupport) lumen 120 is at least 19 French (Fr). According to some embodiments, the diameter of the working (or non-support) lumen 120 is at least 20 French (Fr).
  • the diameter of the working (or non-support) lumen 120 is at least 21 French (Fr). According to some embodiments, the diameter of the working (or non-support) lumen 120 is at least 22 French (Fr). According to some embodiments, the diameter of the working (or non-support) lumen 120 is at least 23 French (Fr). According to some embodiments, the diameter of the working (or nonsupport) lumen 120 is at least 24 French (Fr). According to some embodiments, the diameter of the working (or non-support) lumen 120 is at least 25 French (Fr). According to some embodiments, the diameter of the working (or non-support) lumen 120 is at least 26 French (Fr).
  • the diameter of the working (or non-support) lumen 120 is less than 1 French (Fr). According to some embodiments the diameter of the working (or non-support) lumen 120 ranges from at least 0.0254 cm (at least 0.010 inches) to at least 0.0305 cm (at least 0.012 inches). According to some embodiments, the diameter of the working (or non-support) lumen 120 is at least 0.0254 cm (at least 0.010 inches). According to some embodiments, the diameter of the working (or non-support) lumen 120 is at least 0.0279 cm (at least 0.011 inches). According to some embodiments, the diameter of the working (or nonsupport) lumen 120 is at least 0.0305 cm (at least 0.012 inches).
  • the diameter of the working (or non-support) lumen 120 ranges from about 0.17 cm to about 0.25 cm. According to some embodiments, the diameter of the working (or non-support) lumen 120 ranges from about 0.17 cm to at least 0.25 cm.
  • the diameter of the working (or non-support) lumen 120 ranges from at least 0.17 cm to at least 0.25 cm. According to some embodiments, the diameter of the working (or non-support) lumen 120 is at least 0.17 cm. According to some embodiments, the diameter of the working (or non-support) lumen 120 is at least 0.18 cm. According to some embodiments, the diameter of the working (or non-support) lumen 120 is at least 0.19 cm.
  • the diameter of the working (or non-support) lumen 120 is at least 0.20 cm. According to some embodiments, the diameter of the working (or non-support) lumen 120 is at least 0.21 cm. According to some embodiments, the diameter of the working (or non-support) lumen 120 is at least 0.22 cm. According to some embodiments, the diameter of the working (or non-support) lumen 120 is at least 0.23 cm. According to some embodiments, the diameter of the working (or non-support) lumen 120 is at least 0.24 cm. According to some embodiments, the diameter of the working (or non-support) lumen 120 is at least 0.25 cm.
  • the first segment 320 ranges in diameter from about 1 French (Fr) to about 26 French (Fr). According to some embodiments, the first segment 320 ranges in diameter from about 1 French (Fr) to at least 26 French (Fr). According to some embodiments, the first segment 320 ranges in diameter from at least 1 French (Fr) to at least 26 French (Fr). According to some embodiments, the diameter of the first segment 320 is at least 1 French (Fr). According to some embodiments, the diameter of the first segment 320 is at least 2 French (Fr). According to some embodiments, the diameter of the first segment 320 is at least 3 French (Fr). According to some embodiments, the diameter of the first segment 320 is at least 4 French (Fr).
  • the diameter of the first segment 320 is at least 5 French (Fr). According to some embodiments, the diameter of the first segment 320 is at least 6 French (Fr). According to some embodiments, the diameter of the first segment 320 is at least 7 French (Fr). According to some embodiments, the diameter of the first segment 320 is at least 8 French (Fr). According to some embodiments, the diameter of the first segment 320 is at least 9 French (Fr). According to some embodiments, the diameter of the first segment 320 is at least 10 French (Fr). According to some embodiments, the diameter of the first segment 320 is at least 11 French (Fr). According to some embodiments, the diameter of the first segment 320 is at least 12 French (Fr).
  • the diameter of the first segment 320 is at least 13 French (Fr). According to some embodiments, the diameter of the first segment 320 is at least 14 French (Fr). According to some embodiments, the diameter of the first segment 320 is at least 15 French (Fr). According to some embodiments, the diameter of the first segment 320 is at least 16 French (Fr). According to some embodiments, the diameter of the first segment 320 is at least 17 French (Fr). According to some embodiments, the diameter of the first segment 320 is at least 18 French (Fr). According to some embodiments, the diameter of the first segment 320 is at least 19 French (Fr). According to some embodiments, the diameter of the first segment 320 is at least 20 French (Fr).
  • the diameter of the first segment 320 is at least 21 French (Fr). According to some embodiments, the diameter of the first segment 320 is at least 22 French (Fr). According to some embodiments, the diameter of the first segment 320 is at least 23 French (Fr). According to some embodiments, the diameter of the first segment 320 is at least 24 French (Fr). According to some embodiments, the diameter of the first segment 320 is at least 25 French (Fr). According to some embodiments, the diameter of the first segment 320 is at least 26 French (Fr).
  • the diameter of the first segment 320 is less than 1 French (Fr). According to some embodiments the diameter of the first segment 320 ranges from at least 0.0254 cm (at least 0.010 inches) to at least 0.0305 cm (at least 0.012 inches). According to some embodiments, the diameter of the first segment 320 is at least 0.0254 cm (at least 0.010 inches). According to some embodiments, the diameter of the first segment 320 is at least 0.0279 cm (at least 0.011 inches). According to some embodiments, the diameter of the first segment 320 is at least 0.0305 cm (at least 0.012 inches).
  • the diameter of the second segment 330 ranges from about 1 French (Fr) to about 23 French (Fr). According to some embodiments, the diameter of the second segment 330 ranges from about 1 French (Fr) to at least 23 French (Fr). According to some embodiments, the diameter of the second segment 330 ranges from at least French (Fr) to at least 23 French (Fr). According to some embodiments, the diameter of the second segment 330 is at least 1 French (Fr). According to some embodiments, the diameter of the second segment 330 is at least 2 French (Fr). According to some embodiments, the diameter of the second segment 330 is at least 3 French (Fr).
  • the diameter of the second segment 330 is at least 4 French (Fr). According to some embodiments, the diameter of the second segment 330 is at least 5 French (Fr). According to some embodiments, the diameter of the second segment 330 is at least 6 French (Fr). According to some embodiments, the diameter of the second segment 330 is at least 7 French (Fr). According to some embodiments,
  • the diameter of the second segment 330 is at least 8 French (Fr). According to some embodiments, the diameter of the second segment 330 is at least 9 French (Fr). According to some embodiments, the diameter of the second segment 330 is at least 10 French (Fr).
  • the diameter of the second segment 330 is at least 11 French (Fr). According to some embodiments, the diameter of the second segment 330 is at least 12 French (Fr). According to some embodiments, the diameter of the second segment 330 is at least 13 French (Fr). According to some embodiments, the diameter of the second segment 330 is at least 14 French (Fr). According to some embodiments, the diameter of the second segment 330 is at least 15 French (Fr). According to some embodiments, the diameter of the second segment 330 is at least 16 French (Fr). According to some embodiments, the diameter of the second segment 330 is at least 17 French (Fr). According to some embodiments, the diameter of the second segment 330 is at least 18 French (Fr).
  • the diameter of the second segment 330 is at least 19 French (Fr). According to some embodiments, the diameter of the second segment 330 is at least 20 French (Fr). According to some embodiments, the diameter of the second segment 330 is at least 21 French. According to some embodiments, the diameter of the second segment 330 is at least 22 French (Fr). According to some embodiments, the diameter of the second segment 330 is at least 23 French (Fr).
  • the diameter of the second segment 330 is less than 1 French (Fr). According to some embodiments the diameter of the second segment 330 ranges from at least 0.0020 cm (at least 0.0008 inches) to at least 0.0305 cm (at least 0.012 inches). According to some embodiments the diameter of the second segment 330 is at least 0.0020 cm (at least 0.0008 inches). According to some embodiments, the diameter of the second segment 330 is at least 0.0023 cm (at least 0.0009 inches). According to some embodiments, the diameter of the second segment 330 is at least 0.0254 cm (at least 0.010 inches). According to some embodiments, the diameter of the second segment 330 is at least 0.0279 cm (at least 0.011 inches). According to some embodiments, the diameter of the second segment 330 is at least 0.0305 cm (at least 0.012 inches).
  • the diameter of the second segment 330 ranges from about 0.008 cm to about 0.5 cm. According to some embodiments, the diameter of the second segment 330 ranges from about 0.008 cm to at least 0.5 cm. According to some embodiments, the diameter of the second segment 330 ranges from at least 0.008 cm to at least 0.5 cm.
  • the diameter of the second segment 330 is at least 0.008 cm. According to some embodiments, the diameter of the second segment 330 is at least 0.081 cm. According to some embodiments, the diameter of the second segment 330 is at least 0.082 cm. According to some embodiments, the diameter of the second segment 330 is at least 0.083 cm. According to some embodiments, the diameter of the second segment 330 is at least 0.084 cm. According to some embodiments, the diameter of the second segment 330 is at least 0.085 cm. According to some embodiments, the diameter of the second segment 330 is at least 0.086 cm. According to some embodiments, the diameter of the second segment 330 is at least 0.087 cm.
  • the diameter of the second segment 330 is at least 0.088 cm. According to some embodiments, the diameter of the second segment 330 is at least 0.089 cm. According to some embodiments, the diameter of the second segment 330 is at least 0.09 cm. According to some embodiments, the diameter of the second segment 330 is at least 0.091 cm. According to some embodiments, the diameter of the second segment 330 is at least 0.092 cm. According to some embodiments, the diameter of the second segment 330 is at least 0.093 cm. According to some embodiments, the diameter of the second segment 330 is at least 0.094 cm. According to some embodiments, the diameter of the second segment 330 is at least 0.095 cm.
  • the diameter of the second segment 330 is at least 0.096 cm. According to some embodiments, the diameter of the second segment 330 is at least 0.097 cm. According to some embodiments, the diameter of the second segment 330 is at least 0.098 cm. According to some embodiments, the diameter of the second segment 330 is at least 0.099 cm. According to some embodiments, the diameter of the second segment 330 is at least 0.10 cm. According to some embodiments, the diameter of the second segment 330 is at least 0.11 cm. According to some embodiments, the diameter of the second segment 330 is at least 0.12 cm.
  • the diameter is an inner diameter (ID). According to some embodiments, the diameter is an outer diameter (OD).
  • the support lumen 110 comprises a device separate from the endovascular device 100.
  • the device separate from the endovascular device 100 provides support to the support lumen 110.
  • the device separate from the endovascular device is a wire.
  • the wire is capable of being advanced into a blood vessel through the support lumen 110.
  • the wire provides stability to the endovascular device 100.
  • the wire provides strength to the endovascular device 100.
  • the wire provides support for the endovascular device 100.
  • the wire facilitates placement of the endovascular device 100.
  • the wire anchors the endovascular device 100 within a blood vessel.
  • the wire provides stability to the working (or non-support) lumen 120.
  • the wire provides strength to the working (or non-support) lumen 120.
  • the wire provides support for the working (or non-support) lumen 120.
  • the wire facilitates placement of the working (or non-support) lumen 120.
  • the wire anchors the working (or non-support) lumen 120 within a blood vessel.
  • the blood vessel is an artery.
  • the blood vessel is a vein.
  • the endovascular device 300 comprises a separate device.
  • the separate device is a wire.
  • the wire is capable of being advanced through the first segment 320 and into the second segment 330.
  • the wire is capable of being advanced into a blood vessel through the second segment 330.
  • the wire provides stability to the endovascular device 300.
  • the wire provides strength to the endovascular device 300.
  • the wire provides support for the endovascular device 300.
  • the wire facilitates placement of the endovascular device 300.
  • the wire anchors the endovascular device 300 within a blood vessel.
  • the wire provides stability to the working lumen formed by the side-hole 310 and the first segment 320.
  • the wire provides strength to the working lumen formed by the side-hole 310 and the first segment 320.
  • the wire provides support for the working lumen formed by the side-hole 310 and the first segment 320.
  • the wire facilitates placement of the working lumen formed by the side-hole 310 and the first segment 320.
  • the wire anchors the working lumen formed by the side-hole 310 and the first segment 320 within a blood vessel.
  • the blood vessel is an artery.
  • the blood vessel is a vein.
  • the diameter of the wire ranges from about 0.002 cm to about 0.5 cm. According to some embodiments, the diameter of the wire ranges from about 0.002 cm to at least 0.5 cm. According to some embodiments, the diameter of the wire ranges from at least 0.002 cm to at least 0.5 cm. According to some embodiments, the diameter of the wire is at least 0.002 cm. According to some embodiments, the diameter of the wire is at least 0.003 cm. According to some embodiments, the diameter of the wire is at least 0.004 cm.
  • the diameter of the wire is at least 0.005 cm. According to some embodiments, the diameter of the wire is at least 0.006 cm. According to some
  • the diameter of the wire is at least 0.007 cm. According to some embodiments, the diameter of the wire is at least 0.008 cm. According to some embodiments, the diameter of the wire is at least 0.009 cm. According to some embodiments, the diameter of the wire is at least 0.01 cm. According to some embodiments, the diameter of the wire is at least 0.02 cm.
  • the diameter of the wire is at least 0.03 cm. According to some embodiments, the diameter of the wire is at least 0.04 cm. According to some embodiments, the diameter of the wire is at least 0.05 cm. According to some embodiments, the diameter of the wire is at least 0.06 cm. According to some embodiments, the diameter of the wire is at least 0.07 cm. According to some embodiments, the diameter of the wire is at least 0.08 cm. According to some embodiments, the diameter of the wire is at least 0.09 cm. According to some
  • the diameter of the wire is at least 0.10 cm. According to some embodiments, the diameter of the wire is at least 0.20 cm. According to some embodiments, the diameter of the wire is at least 0.30 cm. According to some embodiments, the diameter of the wire is at least 0.40 cm. According to some embodiments, the diameter of the wire is at least 0.50 cm.
  • the wire is rigid. According to some embodiments, the wire is flexible.
  • the wire is comprised of a core material which includes, but is not limited to, stainless steel, nitinol or a combination thereof.
  • stainless steel is easier to torque and is more rigid, providing better columnar support.
  • Nitinol is more flexible and kink resistant.
  • Developments such as high-tensile-strength stainless steel and combinations of stainless steel with nitinol have been utilized.
  • High-tensile-strength stainless steel provides more column strength and torquability than original stainless steel.
  • the use of hybrid wires incorporates high-tensile stainless-steel shafts with nitinol tips to impart high torquability and columnar shaft strength with kink-resistance tips.
  • the wire comprises a core taper.
  • the core tapers are areas where the core of the wire changes over a set distance. There may be several tapers in a wire. Long, gradual tapers track well around bends, but do not provide as much support in short distances. Broad, gradual, or long tapers offer acute vessel access and improved tracking.
  • the wire comprises a core grind (i.e., constant diameter).
  • the wire comprises a core that extends to the tip.
  • a core that extends to the tip of the wire increases the transmission of force, is more durable and steerable, improves tactile feedback, and is used in peripheral vessels.
  • the wire comprises a core that does not extend to the tip.
  • a core that does not extend to the tip i.e., shaping ribbon design
  • is delicate, flexible, and soft. This kind of tip is also easier to shape, can be easily prolapsed, and is less likely to inadvertently injure distal vessels.
  • the wire comprises a cover covers included, but are not limited to, a polymer or a plastic.
  • a sleeve of polymer or plastic placed over the wire core enhances lubricity which results in less drag, enhanced lesion crossing, and smooth tracking in tortuous vessels.
  • the wire comprises a coating.
  • Non-limiting examples of a coating include a hydrophobic coating and a hydrophilic coating. Hydrophobic coatings reduce friction and improve device trackability by repelling water to create a smooth, “wax-like” surface, with no water actuation required. Hydrophilic coatings attract water to create a slippery,“gel-like” surface.
  • the wire is a guide wire.
  • the support lumen 110 comprises an inflatable balloon.
  • the inflatable balloon is attached to the distal portion of the support lumen 110.
  • the inflatable balloon is attached to a device separate from the endovascular device 100.
  • the separate device is capable of being advanced into a blood vessel through the support lumen 110.
  • the inflatable balloon anchors the support lumen 110 to a blood vessel.
  • the blood vessel is an artery.
  • the blood vessel is a vein.
  • the diameter of the inflatable balloon ranges from about 1 mm to about 80 mm. According to some embodiments, the diameter of the inflatable balloon ranges from about 1 mm to at least 80 mm. According to some embodiments, the diameter of the inflatable balloon ranges from at least 1 mm to at least 80 mm. According to some embodiments, the diameter of the inflatable balloon is at least 1 mm. According to some embodiments, the diameter of the inflatable balloon is at least 2 mm. According to some embodiments, the diameter of the inflatable balloon is at least 3 mm. According to some embodiments, the diameter of the inflatable balloon is at least 4 mm. According to some embodiments, the diameter of the inflatable balloon is at least 5 mm.
  • the diameter of the inflatable balloon is at least 10 mm. According to some embodiments, the diameter of the inflatable balloon is at least 15 mm. According to some embodiments, the diameter of the inflatable balloon is at least 20 mm. According to some embodiments, the diameter of the inflatable balloon is at least 25 mm. According to some embodiments, the diameter of the inflatable balloon is at least 30 mm. According to some embodiments, the diameter of the inflatable balloon is at least 35 mm. According to some embodiments, the diameter of the inflatable balloon is at least 40 mm. According to some embodiments, the diameter of the inflatable balloon is at least 45 mm. According to some embodiments, the diameter of the inflatable balloon is at least 50 mm. According to some embodiments, the diameter of the inflatable balloon is at least 55 mm.
  • the diameter of the inflatable balloon is at least 60 mm. According to some embodiments, the diameter of the inflatable balloon is at least 65 mm. According to some embodiments, the diameter of the inflatable balloon is at least 70 mm. According to some embodiments, the diameter of the inflatable balloon is at least 75 mm. According to some embodiments, the diameter of the inflatable balloon is at least 80 mm.
  • the length of the balloon ranges from about 1 mm to about 300 mm. According to some embodiments, the length of the balloon ranges from about 1 mm to at least 300 mm. According to some embodiments, the length of the balloon ranges from at least 1 mm to at least 300 mm. According to some embodiments, the length of the inflatable balloon is at least 1 mm. According to some embodiments, the length of the inflatable balloon is at least 2 mm. According to some embodiments, the length of the inflatable balloon is at least 3 mm. According to some embodiments, the length of the inflatable balloon is at least 4 mm. According to some embodiments, the length of the inflatable balloon is at least 5 mm.
  • the length of the inflatable balloon is at least 6 mm. According to some embodiments, the length of the inflatable balloon is at least 7 mm. According to some embodiments, the length of the inflatable balloon is at least 8 mm. According to some embodiments, the length of the inflatable balloon is at least 9 mm. According to some embodiments, the length of the inflatable balloon is at least 10 mm. According to some embodiments, the length of the inflatable balloon is at least 20 mm. According to some embodiments, the length of the inflatable balloon is at least 30 mm. According to some embodiments, the length of the inflatable balloon is at least 40 mm. According to some embodiments, the length of the inflatable balloon is at least 50 mm. According to some embodiments, the length of the inflatable balloon is at least 60 mm.
  • the length of the inflatable balloon is at least 70 mm. According to some embodiments, the length of the inflatable balloon is at least 80 mm. According to some embodiments, the length of the inflatable balloon is at least 90 mm. According to some embodiments, the length of the inflatable balloon is at least 100 mm. According to some embodiments, the length of the inflatable balloon is at least 110 mm. According to some embodiments, the length of the inflatable balloon is at least 120 mm. According to some embodiments, the length of the inflatable balloon is at least 130 mm. According to some embodiments, the length of the inflatable balloon is at least 140 mm. According to some embodiments, the length of the inflatable balloon is at least 150 mm. According to some embodiments, the length of the inflatable balloon is at least 160 mm.
  • the length of the inflatable balloon is at least 170 mm. According to some embodiments, the length of the inflatable balloon is at least 180 mm. According to some embodiments, the length of the inflatable balloon is at least 190 mm. According to some embodiments, the length of the inflatable balloon is at least 200 mm. According to some embodiments, the length of the inflatable balloon is at least 210 mm. According to some embodiments, the length of the inflatable balloon is at least 220 mm. According to some embodiments, the length of the inflatable balloon is at least 230 mm. According to some embodiments, the length of the inflatable balloon is at least 240 mm. According to some embodiments, the length of the inflatable balloon is at least 250 mm.
  • the length of the inflatable balloon is at least 260 mm. According to some embodiments, the length of the inflatable balloon is at least 270 mm. According to some embodiments, the length of the inflatable balloon is at least 280 mm. According to some embodiments, the length of the inflatable balloon is at least 290 mm. According to some embodiments, the length of the inflatable balloon is at least 300 mm.
  • the inflatable balloon is comprised of various shapes including, but not limited to, cylindrical, spherical, oval, conical, stepped, tapered and dog bone.
  • the inflatable balloon is comprised of a material such as, for example, a polyamide, polyethylene terephthalate (PET), polyurethane, composites, and engineered nylons.
  • Engineered nylons include, but are not limited to, Pebax®, Grilamid®, and Vestamid®.
  • the inflatable balloon ends are comprised of various shapes including, but not limited to, conical sharp comer, conical radius comer, offset neck, spherical end and square.
  • the inflatable balloon is filled with a fluid.
  • fluid include sterile water and saline.
  • the support lumen 110 comprises a stent.
  • the stent is retrievable. According to some embodiments, the stent is retrievable. According to some
  • the retrievable stent is attached to the distal portion of the support lumen 110.
  • the retrievable stent is attached to a device separate from the endovascular device.
  • the separate device is capable of being advanced into a blood vessel through the support lumen 110.
  • the retrievable stent anchors the support lumen 110 to a blood vessel.
  • the blood vessel is an artery.
  • the blood vessel is a vein.
  • the stent is self-expanding.
  • the self-expanding stent is attached to the distal portion of the support lumen 110.
  • the self-expanding stent is attached to a device separate from the endovascular device.
  • the separate device is capable of being advanced into a blood vessel through the support lumen 110.
  • the self-expanding stent anchors the support lumen 110 to a blood vessel.
  • the blood vessel is an artery. According to some embodiments, the blood vessel is a vein.
  • the support lumen 110 is rigid. According to some embodiments, the support lumen 110 comprises a soft, flexible portion. According to some embodiments the soft, flexible portion ranges in length from about 2 cm to about 5 cm.
  • the soft, flexible portion ranges in length from about 2 cm to at least 5 cm. According to some embodiments the soft, flexible portion ranges in length from at least 2 cm to at least 5 cm. According to some embodiments, the soft, flexible portion is at least 2 cm in length. According to some embodiments, the soft, flexible portion is at least 3 cm in length. According to some embodiments, the soft, flexible portion is at least 4 cm in length. According to some embodiments, the soft, flexible portion is at least 5 cm in length. According to some embodiments, the soft, flexible portion is located at the distal end of the support lumen 110.
  • the second segment 330 is rigid. According to some embodiments, the second segment 330 comprises a soft, flexible portion. According to some embodiments the soft, flexible portion ranges in length from about 0.5 cm to about 20 cm.
  • the soft, flexible portion ranges in length from about 0.5 cm to at least 20 cm. According to some embodiments the soft, flexible portion ranges in length from at least 0.5 cm to at least 20 cm. According to some embodiments, the soft, flexible portion is at least 0.5 cm in length. According to some embodiments, the soft, flexible portion is at least 0.6 cm in length. According to some embodiments, the soft, flexible portion is at least 0.7 cm in length. According to some embodiments, the soft, flexible portion is at least 0.8 cm in length. According to some embodiments, the soft, flexible portion is at least 0.9 cm in length. According to some embodiments, the soft, flexible portion is at least 1 cm in length. According to some embodiments, the soft, flexible portion is at least 2 cm in length. According to some
  • the soft, flexible portion is at least 3 cm in length. According to some embodiments, the soft, flexible portion is at least 3 cm in length. According to some embodiments, the soft, flexible portion is at least 3 cm in length. According to some embodiments, the soft, flexible portion is at least 3 cm in length. According to some embodiments, the soft, flexible portion is at least 3 cm in length. According to some embodiments, the soft, flexible portion is at least 3 cm in length. According to some embodiments, the soft, flexible portion is at least 3 cm in length. According to some embodiments, the soft, flexible portion is at least 3 cm in length. According to some embodiments, the soft, flexible portion is at least 3 cm in length.
  • the soft, flexible portion is at least 4 cm in length. According to some embodiments, the soft, flexible portion is at least 4 cm in length. According to some embodiments, the soft, flexible portion is at least 4 cm in length. According to some embodiments, the soft, flexible portion is at least 4 cm in length. According to some embodiments, the soft, flexible portion is at least 4 cm in length. According to some embodiments, the soft, flexible portion is at least 4 cm in length. According to some embodiments, the soft, flexible portion is at least 4 cm in length.
  • the soft, flexible portion is at least 5 cm in length. According to some embodiments, the soft, flexible portion is at least 5 cm in length. According to some embodiments, the soft, flexible portion is at least 5 cm in length. According to some embodiments, the soft, flexible portion is at least 5 cm in length. According to some embodiments, the soft, flexible portion is at least 5 cm in length. According to some embodiments, the soft, flexible portion is at least 5 cm in length. According to some embodiments, the soft, flexible portion is at least 5 cm in length.
  • the soft, flexible portion is at least 6 cm in length. According to some embodiments, the soft, flexible portion is at least 6 cm in length. According to some embodiments, the soft, flexible portion is at least 6 cm in length. According to some embodiments, the soft, flexible portion is at least 6 cm in length. According to some embodiments, the soft, flexible portion is at least 6 cm in length. According to some embodiments, the soft, flexible portion is at least 6 cm in length. According to some embodiments, the soft, flexible portion is at least 6 cm in length. According to some embodiments, the soft, flexible portion is at least 6 cm in length.
  • the soft, flexible portion is at least 7 cm in length. According to some embodiments, the soft, flexible portion is at least 7 cm in length. According to some embodiments, the soft, flexible portion is at least 7 cm in length. According to some embodiments, the soft, flexible portion is at least 7 cm in length. According to some embodiments, the soft, flexible portion is at least 7 cm in length. According to some embodiments, the soft, flexible portion is at least 7 cm in length. According to some embodiments, the soft, flexible portion is at least 7 cm in length. According to some embodiments, the soft, flexible portion is at least 7 cm in length.
  • the soft, flexible portion is at least 8 cm in length. According to some embodiments, the soft, flexible portion is at least 8 cm in length. According to some embodiments, the soft, flexible portion is at least 8 cm in length. According to some embodiments, the soft, flexible portion is at least 8 cm in length. According to some embodiments, the soft, flexible portion is at least 8 cm in length. According to some embodiments, the soft, flexible portion is at least 8 cm in length. According to some embodiments, the soft, flexible portion is at least 8 cm in length.
  • the soft, flexible portion is at least 9 cm in length. According to some embodiments, the soft, flexible portion is at least 9 cm in length. According to some embodiments, the soft, flexible portion is at least 9 cm in length. According to some embodiments, the soft, flexible portion is at least 9 cm in length. According to some embodiments, the soft, flexible portion is at least 9 cm in length. According to some embodiments, the soft, flexible portion is at least 9 cm in length. According to some embodiments, the soft, flexible portion is at least 9 cm in length. According to some embodiments, the soft, flexible portion is at least 9 cm in length.
  • the soft, flexible portion is at least 10 cm in length. According to some embodiments, the soft, flexible portion is at least 10 cm in length. According to some embodiments, the soft, flexible portion is at least 10 cm in length. According to some embodiments, the soft, flexible portion is at least 10 cm in length. According to some embodiments, the soft, flexible portion is at least 10 cm in length. According to some embodiments, the soft, flexible portion is at least 10 cm in length. According to some embodiments, the soft, flexible portion is at least 10 cm in length. According to some embodiments, the soft, flexible portion is at least 10 cm in length.
  • the soft, flexible portion is at least 11 cm in length. According to some embodiments, the soft, flexible portion is at least 11 cm in length. According to some embodiments, the soft, flexible portion is at least 11 cm in length. According to some embodiments, the soft, flexible portion is at least 11 cm in length. According to some embodiments, the soft, flexible portion is at least 11 cm in length. According to some embodiments, the soft, flexible portion is at least 11 cm in length. According to some embodiments, the soft, flexible portion is at least 11 cm in length. According to some embodiments, the soft, flexible portion is at least 11 cm in length.
  • the soft, flexible portion is at least 12 cm in length. According to some embodiments, the soft, flexible portion is at least 12 cm in length. According to some embodiments, the soft, flexible portion is at least 12 cm in length. According to some embodiments, the soft, flexible portion is at least 12 cm in length. According to some embodiments, the soft, flexible portion is at least 12 cm in length. According to some embodiments, the soft, flexible portion is at least 12 cm in length. According to some embodiments, the soft, flexible portion is at least 12 cm in length. According to some embodiments, the soft, flexible portion is at least 12 cm in length.
  • the soft, flexible portion is at least 13 cm in length. According to some embodiments, the soft, flexible portion is at least 13 cm in length. According to some embodiments, the soft, flexible portion is at least 13 cm in length. According to some embodiments, the soft, flexible portion is at least 13 cm in length. According to some embodiments, the soft, flexible portion is at least 13 cm in length. According to some embodiments, the soft, flexible portion is at least 13 cm in length. According to some embodiments, the soft, flexible portion is at least 13 cm in length. According to some embodiments, the soft, flexible portion is at least 13 cm in length.
  • the soft, flexible portion is at least 14 cm in length. According to some embodiments, the soft, flexible portion is at least 14 cm in length. According to some embodiments, the soft, flexible portion is at least 14 cm in length. According to some embodiments, the soft, flexible portion is at least 14 cm in length. According to some embodiments, the soft, flexible portion is at least 14 cm in length. According to some embodiments, the soft, flexible portion is at least 14 cm in length. According to some embodiments, the soft, flexible portion is at least 14 cm in length. According to some embodiments, the soft, flexible portion is at least 14 cm in length. According to some embodiments, the soft, flexible portion is at least 14 cm in length.
  • the soft, flexible portion is at least 15 cm in length. According to some embodiments, the soft, flexible portion is at least 16 cm in length. According to some embodiments, the soft, flexible portion is at least 17 cm in length. According to some
  • the soft, flexible portion is at least 18 cm in length. According to some embodiments, the soft, flexible portion is at least 18 cm in length. According to some embodiments, the soft, flexible portion is at least 18 cm in length. According to some embodiments, the soft, flexible portion is at least 18 cm in length. According to some embodiments, the soft, flexible portion is at least 18 cm in length. According to some embodiments, the soft, flexible portion is at least 18 cm in length. According to some embodiments, the soft, flexible portion is at least 18 cm in length. According to some embodiments, the soft, flexible portion is at least 18 cm in length. According to some embodiments, the soft, flexible portion is at least 18 cm in length. According to some embodiments, the soft, flexible portion is at least 18 cm in length.
  • the soft, flexible portion is at least 19 cm in length. According to some embodiments, the soft, flexible portion is at least 19 cm in length. According to some embodiments, the soft, flexible portion is at least 19 cm in length. According to some embodiments, the soft, flexible portion is at least 19 cm in length. According to some embodiments, the soft, flexible portion is at least 19 cm in length. According to some embodiments, the soft, flexible portion is at least 19 cm in length. According to some embodiments, the soft, flexible portion is at least 19 cm in length. According to some embodiments, the soft, flexible portion is at least 19 cm in length. According to some embodiments, the soft, flexible portion is at least 19 cm in length. According to some embodiments, the soft, flexible portion is at least 19 cm in length.
  • the soft, flexible portion is at least 20 cm in length. According to some embodiments, the soft, flexible portion is at least 20 cm in length. According to some embodiments, the soft, flexible portion is at least 20 cm in length. According to some embodiments, the soft, flexible portion is at least 20 cm in length. According to some embodiments, the soft, flexible portion is at least 20 cm in length. According to some embodiments, the soft, flexible portion is at least 20 cm in length. According to some embodiments, the soft, flexible portion is at least 20 cm in length. According to some embodiments, the soft, flexible portion is at least 20 cm in length. According to some embodiments, the soft, flexible portion is at least 20 cm in length. According to some embodiments, the soft, flexible portion is at least 20 cm in length.
  • the soft, flexible portion is located at the end 350.
  • the working (or non-support) lumen 120 comprises a device separate from the endovascular device 100.
  • the separate device is capable of being advanced into a blood vessel through the working (or non-support) lumen 120.
  • the blood vessel is an artery or a vein.
  • the separate device is a diagnostic catheter.
  • the diagnostic catheter comprises an angled extension.
  • the angle of the angled extension ranges from about 10 degrees to about 180 degrees.
  • the angle of the angled extension ranges from about 10 degrees to at least 180 degrees.
  • the angle of the angled extension ranges from at least 10 degrees to at least 180 degrees. According to some embodiments, the angle of angled extension is at least 10 degrees. According to some embodiments, the angle of angled extension is at least 20 degrees. According to some embodiments, the angle of angled extension is at least 30 degrees. According to some embodiments, the angle of angled extension is at least 40 degrees. According to some embodiments, the angle of angled extension is at least 50 degrees. According to some embodiments, the angle of angled extension is at least 60 degrees. According to some embodiments, the angle of angled extension is at least 70 degrees. According to some embodiments, the angle of angled extension is at least 80 degrees. According to some embodiments, the angle of angled extension is at least 90 degrees.
  • the angle of angled extension is at least 100 degrees. According to some embodiments, the angle of angled extension is at least 110 degrees. According to some embodiments, the angle of angled extension is at least 120 degrees. According to some embodiments, the angle of angled extension is at least 130 degrees. According to some embodiments, the angle of angled extension is at least 140 degrees. According to some embodiments, the angle of angled extension is at least 150 degrees. According to some embodiments, the angle of angled extension is at least 160 degrees. According to some embodiments, the angle of angled extension is at least 170 degrees. According to some embodiments, the angle of angled extension is at least 180 degrees. According to some embodiments, the angled extension is soft. According to some embodiments, the angled extension is flexible. According to some embodiments, the angled extension is adjustable.
  • the angled extension comprises a shape memory polymer (SMP).
  • SMP shape memory polymers include, but are not limited to methacrylates, polyurethanes, blends of polystyrene and polyurethane, and polyvinylchloride.
  • the angled extension of the catheter comprises a shape memory alloy (SMA).
  • shape memory alloys include nickel-titanium (i.e., nitinol).
  • Diagnostic catheters include, but are not limited to, angiography catheters,
  • electrophysiology catheters intravenous ultrasound catheters and the like.
  • Catheter angiography can be performed using such techniques as, for example, X-rays, computed tomography (CT) and magnetic resonance imaging (MRI).
  • CT computed tomography
  • MRI magnetic resonance imaging
  • a catheter is inserted into a blood vessel (e.g., an artery) through a small incision in the skin.
  • the catheter is guided to the area being examined, a contrast material is injected through the catheter and images are acquired using a small dose of ionizing radiation (e.g., X-rays).
  • Contrast agents include, but are not limited to, iodinated low-osmolar contrast media (LOCM) and high-osmolar contrast media (HOCM).
  • Low-osmolar contrast media include, but are not limited to, ioxaglate, iopamidol, iohexol, ioidixanol, iotrolan, ioxaglate, ioxilan, iopromide, ioversol and iomeprol.
  • Non-limiting examples of high-osmolar contrast media include diatrizoate, metrizoate and iothalamate.
  • Catheter electrophysiology is an invasive heart catheterization that is designed to evaluate the electrical system of the heart. This test evaluates if there is a need for implantation of a pacemaker or defibrillator or to perform a catheter ablation which is a procedure that uses radiofrequency energy (similar to microwave heat) to destroy small areas of heart tissue that cause rapid or irregular heartbeats. In this procedure, a catheter is introduced into a blood vessel and placed under X-ray guidance into the heart. For example, catheter electrophysiology is used for evaluating patients who have concerning symptoms such as fainting, episodes of almost fainting, sensations of rapid heartbeats, or excessively slow.
  • Ultrasound catheterization, or intravascular ultrasound is an imaging procedure using a catheter with a miniaturized ultrasound probe attached to the distal end.
  • the proximal end of the catheter is attached to computerized ultrasound equipment which measure how sound waves reflect off blood vessels and converts these measurements into images.
  • IVUS is used to determine, among others, the accumulation of plaque in an artery and the correct placement of a stent.
  • the diagnostic catheter ranges in diameter from about 0.2 French (Fr) to about 12 French (Fr). According to some embodiments, the diagnostic catheter ranges in diameter from about 0.2 French (Fr) to at least 12 French (Fr). According to some embodiments, the diagnostic catheter ranges in diameter from at least 0.2 French (Fr) to at least 12 French (Fr). According to some embodiments, the diagnostic catheter is at least 0.2 French (Fr) in diameter. According to some embodiments, the diagnostic catheter is at least 0.3 French (Fr) in diameter. According to some embodiments, the diagnostic catheter is at least 0.4 French (Fr) in diameter. According to some embodiments, the diagnostic catheter is at least 0.5 French (Fr) in diameter.
  • the diagnostic catheter is at least 0.6 French (Fr) in diameter. According to some embodiments, the diagnostic catheter is at least 0.7 French (Fr) in diameter. According to some embodiments, the diagnostic catheter is at least French (Fr) in diameter. According to some embodiments, the diagnostic catheter is at least 0.9 French (Fr) in diameter. According to some embodiments, the diagnostic catheter is at least 1 French (Fr) in diameter. According to some embodiments, the diagnostic catheter is at least 2 French (Fr) in diameter. According to some embodiments, the diagnostic catheter is at least 3 French (Fr) in diameter. According to some embodiments, the diagnostic catheter is at least 4 French (Fr) in diameter. According to some embodiments, the diagnostic catheter is at least 5 French (Fr) in diameter.
  • the diagnostic catheter is at least 6 French (Fr) in diameter. According to some embodiments, the diagnostic catheter is at least 7 French (Fr) in diameter. According to some embodiments, the diagnostic catheter is at least 8 French (Fr) in diameter. According to some embodiments, the diagnostic catheter is at least 9 French (Fr) in diameter. According to some embodiments, the diagnostic catheter is at least 10 French (Fr) in diameter. According to some embodiments, the diagnostic catheter is at least 11 French (Fr) in diameter. According to some embodiments, the diagnostic catheter is at least 12 French (Fr) in diameter.
  • the working (or non-support) lumen 120 comprises a device separate from the endovascular device 100.
  • the separate device is capable of being advanced into a blood vessel through the working (or non-support) lumen 120.
  • the blood vessel is an artery or a vein.
  • the separate device is a therapeutic catheter.
  • the separate device is a diagnostic catheter.
  • the separate device is a microcatheter.
  • the working lumen formed by the side-hole 310 and the first segment 320 comprises a device separate from the endovascular device 300.
  • the working lumen formed by the side-hole 310 and the first segment 320 facilitates delivery within a blood vessel of a device separate from the endovascular device 300.
  • the device separate from the endovascular device 300 is capable of being advanced into a blood vessel through the side-hole 310.
  • the blood vessel is an artery or a vein.
  • the device separate from the endovascular device 300 is a diagnostic catheter.
  • the device separate from the endovascular device 300 is a therapeutic catheter.
  • the therapeutic catheter comprises an angled extension.
  • the angle of the angled extension ranges from about 10 degrees to about 180 degrees.
  • the angle of the angled extension ranges from about 10 degrees to at least 180 degrees.
  • the angle of the angled extension ranges from at least 10 degrees to at least 180 degrees.
  • the angle of angled extension is at least 10 degrees.
  • the angle of angled extension is at least 20 degrees.
  • the angle of angled extension is at least 30 degrees.
  • the angle of angled extension is at least 40 degrees.
  • the angle of angled extension is at least 50 degrees.
  • the angle of angled extension is at least 60 degrees. According to some embodiments, the angle of angled extension is at least 70 degrees. According to some embodiments, the angle of angled extension is at least 80 degrees. According to some embodiments, the angle of angled extension is at least 90 degrees. According to some embodiments, the angle of angled extension is at least 100 degrees. According to some embodiments, the angle of angled extension is at least 110 degrees. According to some embodiments, the angle of angled extension is at least 120 degrees. According to some embodiments, the angle of angled extension is at least 130 degrees. According to some embodiments, the angle of angled extension is at least 140 degrees. According to some embodiments, the angle of angled extension is at least 150 degrees.
  • the angle of angled extension is at least 160 degrees. According to some embodiments, the angle of angled extension is at least 170 degrees. According to some embodiments, the angle of angled extension is at least 180 degrees. According to some embodiments, the angled extension is soft. According to some embodiments, the angled extension is flexible. According to some embodiments, the angled extension is adjustable.
  • the angled extension comprises a shape memory polymer (SMP).
  • SMP shape memory polymers include, but are not limited to methacrylates, polyurethanes, blends of polystyrene and polyurethane, and polyvinylchloride.
  • the angled extension of the catheter comprises a shape memory alloy (SMA).
  • shape memory alloys include nickel-titanium (i.e., nitinol).
  • the term“therapeutic catheter” includes, but is not limited to, a endovascular thrombectomy catheter, a distal endovascular thrombectomy catheter, a self-expanding stent catheter, a retrievable thrombectomy stent catheter, an ablation catheter, a percutaneous transluminal angioplasty (PTCA) catheter, an embolization catheter, a coil, a liquid embolic, a stent, a flow-diverting stent, an intravascular web device, and the like.
  • PTCA percutaneous transluminal angioplasty
  • PTCA is a minimally invasive procedure to open blocked coronary arteries, allowing blood to circulate unobstructed to the heart muscle.
  • the procedure begins with the injection of local anesthesia into the groin area and putting a needle into the femoral artery.
  • a guide wire is placed through the needle and the needle is removed.
  • An introducer is then placed over the guide wire, after which the wire is removed.
  • a different sized guide wire is then put in its place.
  • a diagnostic catheter is advanced through the introducer over the guide wire, into the blood vessel. This catheter is then guided to the aorta and the guide wire is removed.
  • a contrast dye is injected and an x-ray is taken.
  • the first catheter is exchanged for a guiding catheter. Once the guiding catheter is in place, a guide wire is advanced across the blockage, then a balloon catheter is advanced to the blockage site. The balloon is inflated for a few seconds to compress the blockage against the artery wall. Then the balloon is deflated.
  • Catheter embolization is a minimally invasive treatment that occludes or blocks one or more blood vessels or vascular channels of malformations (abnormalities).
  • medications or synthetic materials embolic agents
  • image-guidance a catheter is inserted through the skin to the treatment site.
  • a contrast material is then injected through the catheter and a series of x-rays are taken to locate the exact site of bleeding or abnormality.
  • a medication or an embolic agent is injected through the catheter. Additional x-rays are taken to ensure the loss of blood flow in the target vessel or malformation.
  • Uses of catheter include, but are not limited, control or prevention of abnormal bleeding, including bleeding that results from an injury, tumor or gastrointestinal tract lesions such as an ulcer or diverticular disease;
  • aneurysms a bulge or sac formed in a weak artery wall
  • the various components of the described invention may be comprised of one or more materials.
  • the components can comprise one or more of a thermoplastic, a thermoset, a composite or a radiopaque filler.
  • Thermoplastics include, but are not limited to, nylon, polyethylene terephthalate (PET), urethane, polyethylene, polyvinyl chloride (PVC) and polyether ether ketone (PEEK).
  • Thermosets include, but are not limited to, silicone, polytetrafluoroethylene (PTFE) and polyimide.
  • Composites include, but are not limited to, liquid crystal polymers (LCP).
  • LCPs are partially crystalline aromatic polyesters based on p-hydroxybenzoic acid and related monomers. LCPs are highly ordered structures when in the liquid phase, but the degree of order is less than that of a regular solid crystal. LCPs can be substituted for such materials as ceramics, metals, composites and other plastics due to their strength at extreme temperatures and resistance to chemicals, weathering, radiation and heat.
  • Non-limiting examples of LCPs include wholly or partially aromatic polyesters or copolyesters such as XYDAR® (Amoco) or VECTRA® (Hoechst Celanese).
  • liquid crystal polymers include SUMIKOSUPERTM and EKONOLTM (Sumitomo Chemical), DuPont HXTM and DuPont ZENITETM (E.I. DuPont de Nemours), RODRUNTM (Unitika) and GRANLARTM (Grandmont).
  • Radiopaque fillers include barium sulfate, bismuth oxychloride, tantalum and the like.
  • the working lumen formed by the side-hole 310 and the first segment 320 comprises a device separate from the endovascular device 300.
  • the separate device is capable of being advanced into a blood vessel through the side-hole 310.
  • the blood vessel is an artery or a vein.
  • the separate device is an introducer.
  • the introducer is rigid.
  • the introducer is effective to straighten a catheter comprising a soft angled extension.
  • the introducer and the straightened catheter comprising the soft angled extension are advanced through the working lumen formed by the side-hole 310 and the first segment 320; the introducer is removed from the working lumen formed by the side-hole 310 and the first segment 320; and the soft angled extension of the catheter pushes through the side-hole 310.
  • the side-hole 310 directs the soft angled extension of the catheter into a blood vessel.
  • the blood vessel is an artery or a vein.
  • diameter of the side-hole 310 is larger than diameter of the soft angled extension of the catheter.
  • the side-hole 310 ranges in diameter from about 0.3 French (Fr) to about 12 French (Fr).
  • the side-hole 310 ranges in diameter from about 0.3 French (Fr) to at least 12 French (Fr).
  • the side-hole 310 ranges in diameter from at least 0.3 French (Fr) to at least 12 French (Fr).
  • the side-hole 310 is at least 0.3 French (Fr) in diameter.
  • the side-hole 310 is at least 0.4 French (Fr) in diameter.
  • the side-hole 310 is at least 0.5 French (Fr) in diameter. According to some embodiments, the side-hole 310 is at least 0.6 French (Fr) in diameter. According to some embodiments, the side-hole 310 is at least 0.7 French (Fr) in diameter. According to some embodiments, the side-hole 310 is at least 0.8 French (Fr) in diameter. According to some embodiments, the side-hole 310 is at least 0.9 French (Fr) in diameter. According to some embodiments, the side-hole 310 is at least 1 French (Fr) in diameter. According to some embodiments, the side-hole 310 is at least 2 French (Fr) in diameter.
  • the side-hole 310 is at least 3 French (Fr) in diameter. According to some embodiments, the side-hole 310 is at least 4 French (Fr) in diameter. According to some embodiments, the side-hole 310 is at least 5 French (Fr) in diameter. According to some embodiments, the side-hole 310 is at least 6 French (Fr) in diameter. According to some embodiments, the side-hole 310 is at least 7 French (Fr) in diameter. According to some embodiments, the side-hole 310 is at least 8 French (Fr) in diameter. According to some embodiments, the side-hole 310 is at least 9 French (Fr) in diameter. According to some embodiments, the side-hole 310 is at least 10 French (Fr) in diameter. According to some embodiments, the side-hole 310 is at least 11 French (Fr) in diameter. According to some embodiments, the side-hole 310 is at least 12 French (Fr) in diameter.
  • the side-hole 310 comprises an angled extension.
  • the primary opening 160 comprises an angled extension.
  • the angle of the angled extension is fixed. According to some embodiments, the angle of the angled extension ranges from about 0 degrees to about 359 degrees. According to some embodiments, the angle of the angled extension ranges from about 0 degrees to at least 359 degrees. According to some embodiments, the angle of the angled extension ranges from at least 0 degrees to at least 359 degrees. According to some embodiments,
  • the angle of the angled extension is at least 0 degrees. According to some embodiments, the angle of the angled extension is at least 10 degrees. According to some embodiments, the angle of the angled extension is at least 20 degrees. According to some embodiments, the angle of the angled extension is at least 30 degrees. According to some embodiments, the angle of the angled extension is at least 40 degrees. According to some embodiments, the angle of the angled extension is at least 50 degrees. According to some embodiments, the angle of the angled extension is at least 60 degrees. According to some embodiments, the angle of the angled extension is at least 70 degrees. According to some embodiments, the angle of the angled extension is at least 80 degrees. According to some embodiments, the angle of the angled extension is at least 90 degrees.
  • the angle of the angled extension is at least 100 degrees. According to some embodiments, the angle of the angled extension is at least 110 degrees. According to some embodiments, the angle of the angled extension is at least 120 degrees. According to some embodiments, the angle of the angled extension is at least 130 degrees. According to some embodiments, the angle of the angled extension is at least 140 degrees. According to some embodiments, the angle of the angled extension is at least 150 degrees. According to some embodiments, the angle of the angled extension is at least 160 degrees. According to some embodiments, the angle of the angled extension is at least 170 degrees. According to some embodiments, the angle of the angled extension is at least 180 degrees. According to some embodiments, the angle of the angled extension is at least 190 degrees.
  • the angle of the angled extension is at least 200 degrees. According to some embodiments, the angle of the angled extension is at least 210 degrees. According to some embodiments, the angle of the angled extension is at least 220 degrees. According to some embodiments, the angle of the angled extension is at least 230 degrees. According to some embodiments, the angle of the angled extension is at least 240 degrees. According to some embodiments, the angle of the angled extension is at least 250 degrees. According to some embodiments, the angle of the angled extension is at least 260 degrees. According to some embodiments, the angle of the angled extension is at least 270 degrees. According to some embodiments, the angle of the angled extension is at least 280 degrees.
  • the angle of the angled extension is at least 290 degrees. According to some embodiments, the angle of the angled extension is at least 300 degrees. According to some embodiments, the angle of the angled extension is at least 310 degrees. According to some embodiments, the angle of the angled extension is at least 320 degrees. According to some embodiments, the angle of the angled extension is at least 330 degrees. According to some embodiments, the angle of the angled extension is at least 340 degrees. According to some embodiments, the angle of the angled extension is at least 350 degrees. According to some embodiments, the angle of the angled extension is at least 359 degrees.
  • the angle of the angled extension is adjustable. According to some embodiments, the angle of the angled extension is adjustable from about 0 degrees to about 359 degrees. According to some embodiments, the angle of the angled extension is adjustable from about 0 degrees to at least 359 degrees. According to some embodiments, the angle of the angled extension is adjustable from at least 0 degrees to at least 359 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 0 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 10 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 20 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 30 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 40 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 50 degrees. According to some embodiments,
  • the angle of the angled extension is adjustable to at least 60 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 70 degrees.
  • the angle of the angled extension is adjustable to at least 80 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 90 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 100 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 110 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 120 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 130 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 140 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 150 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 160 degrees.
  • the angle of the angled extension is adjustable to at least 170 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 180 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 190 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 200 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 210 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 220 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 230 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 240 degrees.
  • the angle of the angled extension is adjustable to at least 250 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 260 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 270 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 280 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 290 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 300 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 310 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 320 degrees.
  • the angle of the angled extension is adjustable to at least 330 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 340 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 350 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 359 degrees. According to some embodiments, the angled extension is adjusted after the endovascular device 300 is inserted into a blood vessel.
  • the angled extension comprises a shape memory polymer (SMP).
  • SMP shape memory polymers include, but are not limited to methacrylates, polyurethanes, blends of polystyrene and polyurethane, and polyvinylchloride.
  • the angled extension of the catheter comprises a shape memory alloy (SMA).
  • shape memory alloys include nickel-titanium (i.e., nitinol).
  • Embolic agents include, but are not limited to, gelatin foam, polyvinyl alcohol (PVA) particles, tris-acryl gelatin microspheres (TAGM), amplatzer vascular plugs, N-butyl-2 cyanoacrylate (NBCA), ethylene vinyl alcohol (EVOH) copolymer, calcium alginate gel, absolute alcohol, precipitating hydrophobic injectable liquid (PHIL) (Microvention Inc., CA), Onyx® liquid (EVOH copolymer in dimethyl sulfoxide (DMSO) and suspended micronized tantalum powder)(ev3 Neurovascular, Irvine CA), and coils.
  • Non-limiting examples of coils include pushable coils, injectable coils, liquid coils, detachable coils, hydrogel coils and the like.
  • the described invention can be used to advance a separate device through a blood vessel to access an intracranial lesion in a blood vessel branching off at an acute angle.
  • the separate device is advanced through the working lumen.
  • the separate device is a catheter.
  • the catheter is used to treat the intracranial
  • the described invention can be used in an
  • the blood vessel comprises an anatomical variation comprising tortuosity.
  • the blood vessel comprises an anatomical variation comprising an acute angulation.
  • the acute angulation is an aortic arch variation.
  • the aortic arch variation is a bovine arch variation.
  • the acute angulation is a vertebral artery variation.
  • the described invention can be used in an
  • the blood vessel comprises an anatomical variation comprising tortuosity.
  • the blood vessel comprises an anatomical variation comprising an acute angulation.
  • the acute angulation is an aortic arch variation.
  • the aortic arch variation is a bovine arch variation.
  • the acute angulation is a vertebral artery variation.
  • the support lumen 110 is advanced through the Subclavian artery into the arm, or alternatively, into the external carotid artery.
  • the support lumen 110 provides support for a catheter, a wire or a combination thereof, advanced through the working (or non-support) lumen 120 and into a blood vessel.
  • the blood vessel is the left internal carotid artery.
  • the blood vessel is the distal vertebral artery.
  • the support lumen 110 prevents kickback of an advancing catheter, an advancing wire or a combination thereof.
  • the second segment 330 is advanced through the Subclavian artery into the arm, or alternatively, into the external carotid artery.
  • the second segment 330 provides support for a catheter, a wire or combination thereof, advanced through the working lumen formed by the side-hole 310 and the first segment 320 and into a blood vessel.
  • the blood vessel is the left internal carotid artery.
  • the blood vessel is the distal vertebral artery.
  • the second segment 330 prevents kickback of an advancing catheter, an advancing wire or a combination thereof.
  • the present invention teaches the use of the embodiments described herein.
  • the following information concerning the method is useful for teaching said method.
  • the method employs a catheter with a side hole medical device, such as a medical catheter which has a segment distal to the side hole for use as anchor segments, and using the proximal segment and side-hole as a working or non-support lumen to help advance a second medical device while eliminating or ameliorating kickback of the first catheter with the side-hole.
  • a valve would be located at both ends of the support segment, so once a wire over which the current invention is delivered and positioned is removed, both valves will close and prevent blood from entering said support lumen, thereby preventing blood from stagnating in said support lumen, which could result in the formation of blood clots and subsequent injury to the patient. While this the preferred embodiment is a balloon which requires no wire, other embodiments would allow other options, such as a balloon which does require wires to operate it.
  • a side-hole medical device consist of a tube comprising:
  • first segment extends from said primary opening to said side-hole and said second segment extends from said side-hole to said secondary opening; the steps comprising: (i) positioning said side-hole medical device wherein said side-hole is adjacent to a target area, and the end of said second segment is inside of an anchor vessel; and (ii) advancing at least one second medical device to said target area.
  • the method provides for at least one second medical device to be advanced through a non-support lumen and out the side-hole into proximity of said target area.
  • the at least one second medical device is advanced through a support lumen to the anchor vessel.
  • a multiplicity of second medical devices may be deployed including, without limitation, at least one balloon; supplemental supports; a third medical device is deployed via a support lumen.
  • the method includes using a side-hole lumen medical device wherein said side- hole lumen medical device is any medical device which uses a side to deliver medical treatment to a target area which uses a non-support lumen and a support lumen.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Anesthesiology (AREA)
  • Pulmonology (AREA)
  • Biophysics (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Vascular Medicine (AREA)
  • Prostheses (AREA)

Abstract

Methods of using a medical device comprising a tube having first segment comprising a primary opening at the proximal end nearest an external termination device; and a second segment comprising a secondary opening at the distal end; and a side-hole dividing the first segment and the second segment, wherein the internal diameter of the first segment is greater than the internal diameter of the second segment, and the tube has no pre-formed curved configuration. The first segment extends from the primary opening to the side-hole and the second segment extends from the side-hole to the secondary opening. The side-hole and first segment form a non-support lumen, and the second segment forms a support lumen. The support lumen is effective to provide stability to the non-support lumen of the tube, to anchor the tube within an anchor area, and to prevent prolapse of the medical device elements due to a counterforce against the tube by the second device(s) being delivered through the tube to a more distal location of a target area; and to facilitate placement of the second medical device into the target area.

Description

U.S. NONPROVISIONAL UTILITY PATENT APPLICATION
(Divisional Application)
Title Vessel Access Catheter Method of Use
Attorney Docket No. WAL238-269677
GAU Kathleen Sonnett Holwerda/3771
Federal R&D n/a
Appl. Serial No. n/a
Appl. Filing Date 04/14/20 (14-APR-2020)
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This is a divisional application of U.S. Non-Provisional Application No.: 15/732,733 filed Dec. 21, 2017, which is a continuation-in-part application claiming the benefit of priority to Appl. Ser. No.: 15/250,693 filed Aug. 29, 2016, which in turn claims priority to Appl. No.
15/158,341 filed on May 18, 2016, the entire contents of which are incorporated by reference.
FIELD OF THE INVENTION
[0002] The described invention relates generally to endovascular devices.
BACKGROUND OF THE INVENTION
Blood Vessel Structure and Function
[0003] Blood vessels are dynamic structures that constrict, relax, pulsate, and proliferate. Within the body, blood vessels form a closed delivery system that begins and ends at the heart. There are three major types of blood vessels: (i) arteries; (ii) capillaries and (iii) veins. As the heart contracts, it forces blood into the large arteries leaving the ventricles. Blood then moves into smaller arteries successively, until finally reaching the smallest branches, the arterioles, which feed into the capillary beds of organs and tissues. Blood drains from the capillaries into venules, the smallest veins, and then into larger veins that merge and ultimately empty into the heart.
[0004] Arteries carry blood away from the heart and“branch” as they form smaller and smaller divisions. In contrast, veins carry blood toward the heart and“merge” into larger and larger vessels approaching the heart. In the systemic circulation, arteries carry oxygenated blood and veins carry oxygen-poor blood. In the pulmonary circulation, the opposite is true. The arteries (still defined as the vessels leading away from the heart), carry oxygen-poor blood to the lungs, and the veins carry oxygen-rich blood from the lungs to the heart.
[0005] The only blood vessels that have intimate contact with tissue cells in the human body are capillaries. In this way, capillaries help serve cellular needs. Exchanges between the blood and tissue cells occur primarily through the thin capillary walls.
[0006] The walls of most blood vessels (the exception being the smallest vessels, e.g., venules), have three layers, or tunics, that surround a central blood-containing space called the vessel lumen.
[0007] The innermost tunic (layer) is the tunica intima. The tunica intima contains endothelium, the simple squamous epithelium that lines the lumen of all vessels. The endothelium is continuous with the endocardial lining of the heart, and its flat cells fit closely together, forming
larger than 1 mm in diameter, a sub-endothelial layer, consisting of a basement membrane and loose connective tissue, supports the endothelium.
[0008] The middle tunic (layer), the tunica media, is mostly circularly arranged smooth muscle cells and sheets of elastin. The activity of the smooth muscle is regulated by sympathetic vasomotor nerve fibers of the autonomic nervous system. Depending on the body’s needs at any given time, regulation causes either vasoconstriction (lumen diameter decreases) or vasodilation (lumen diameter increases). The activities of the tunica media are critical in regulating the circulatory system because small changes in vessel diameter greatly influence blood flow and blood pressure. Generally, the tunica media is the bulkiest layer in arteries, which bear the chief responsibility for maintaining blood pressure and proper circulation.
[0009] The outer layer of a blood vessel wall, the tunica externa, is primarily composed of collagen fibers that protect the vessel, reinforce the vessel, and anchor the vessel to surrounding structures. The tunica externa contains nerve fibers, lymphatic vessels, and elastic fibers (e.g., in large veins). In large vessels, the tunica externa contains a structure known as the vasa vasorum, which literally means“vessels of vessels”. The vasa vasorum nourishes external tissues of the blood vessel wall. Interior layers of blood vessels receive nutrients directly from blood in the lumen (See, e.g., The Cardiovascular System at a Glance, 4th Edition, Philip I. Aaronson, Jeremy P. T. Ward, Michelle J. Connolly, November 2012, © 2012, Wiley-Blackwell, Hoboken, NJ).
Cerebral Arteries
[0010] Figures 8 and 9 show schematic illustrations of the brain’s blood vessels. Each cerebral hemisphere is supplied by an internal carotid artery, which arises from a common carotid artery beneath the angle of the jaw, enters the cranium through the carotid foramen, traverses the cavemosus sinus (giving off the ophthalmic artery), penetrates the dura and divides into the anterior and middle cerebral arteries. The large surface branches of the anterior cerebral artery supply the cortex and white matter of the inferior frontal lobe, the medial surface of the frontal and parietal lobes and the anterior corpus callosum. Smaller penetrating branches supply the deeper cerebrum and diencephalon, including limbic structures, the head of the caudate, and the anterior limb of the internal capsule. The large surface branches of the middle cerebral artery supply most of the cortex and white matter of the hemisphere’s convexity, including the frontal, parietal, temporal and occipital lobes, and the insula. Smaller penetrating branches supply the deep white matter and diencephalic structures such as the posterior limb of the internal capsule, the putamen, the outer globus pallidus, and the body of the caudate. After the internal carotid artery emerges from the cavernous sinus, it also gives off the anterior choroidal artery, which supplies the anterior hippocampus and, at a caudal level, the posterior limb of the internal capsule. Each vertebral artery arises from a subclavian artery, enters the cranium through the foramen magnum, and gives off an anterior spinal artery and a posterior inferior cerebellar artery. The vertebral arteries join at the junction of the pons and the medulla to form the basilar artery, which at the level of the pons gives off the anterior inferior cerebellar artery and the internal auditory artery, and, at the midbrain, the superior cerebellar artery. The basilar artery then divides into the two posterior cerebral arteries. The large surface branches of the posterior cerebral arteries supply the inferior temporal and medial occipital lobes and the posterior corpus callosum; the smaller penetrating branches of these arteries supply diencephalic structures, including the thalamus and the subthalamic nuclei, as well as part of the midbrain (see Principles of Neural Sciences, 2d Ed., Eric R. Kandel and James H. Schwartz, Elsevier Science Publishing Co, Inc, New York, pp. 854-56 (1985)). [0011] Interconnections between blood vessels (anastomoses) protect the brain when part of its vascular supply is compromised. Anastomoses are interconnections between blood vessels that protect the brain when part of its vascular supply is compromised. At the circle of Willis, the two anterior cerebral arteries are connected by the anterior communicating artery and the posterior cerebral arteries are connected to the internal carotid arteries by the posterior
communicating arteries. Other important anastomoses include connections between the ophthalmic artery and branches of the external carotid artery through the orbit, and connections at the brain surface between branches of the middle, anterior, and posterior cerebral arteries (Principles of Neural Sciences, 2d Ed., Eric R. Kandel and James H. Schwartz, Elsevier Science Publishing Co., Inc., New York, pp. 85456 (1985)).
Femoral Artery
[0012] The femoral artery is the main artery that provides oxygenated blood to the tissues of the leg. It passes through the deep tissues of the femoral (or thigh) region of the leg parallel to the femur.
[0013] The common femoral artery is the largest artery found in the femoral (thigh) region of the body. It begins as a continuation of the external iliac artery at the inguinal ligament which serves as the dividing line between the pelvis and the leg. From the inguinal ligament, the femoral artery follows the medial side of the head and neck of the femur inferiorly and laterally before splitting into the deep femoral artery and the superficial femoral artery.
[0014] The superficial femoral artery flexes to follow the femur inferiorly and medially. At its distal end, it flexes again and descends posterior to the femur before forming the popliteal artery of the posterior knee and continuing on into the lower leg and foot. Several smaller arteries branch off from the superficial femoral artery to provide blood to the skin and superficial muscles of the thigh.
[0015] The deep femoral artery follows the same path as the superficial branch, but follows a deeper path through the tissues of the thigh, closer to the femur. It branches off into the lateral and medial circumflex arteries and the perforating arteries that wrap around the femur and deliver blood to the femur and deep muscles of the thigh. Unlike the superficial femoral artery, none of the branches of the deep femoral artery continue into the lower leg or foot.
[0016] Like most blood vessels, the femoral artery is made of several distinct tissue layers that help it to deliver blood to the tissues of the leg. The innermost layer, known as the endothelium or tunica intima, is made of thin, simple squamous epithelium that holds the blood inside the hollow lumen of the blood vessel and prevents platelets from sticking to the surface and forming blood clots. Surrounding the tunica intima is a thicker middle layer of connective tissues known as the tunica media. The tunica media contains many elastic and collagen fibers that give the femoral artery its strength and elasticity to withstand the force of blood pressure inside the vessel. Visceral muscle in the tunica media may contract or relax to help regulate the amount of blood flow. Finally, the tunica externa is the outermost layer of the femoral artery that contains many collagen fibers to reinforce the artery and anchor it to the surrounding tissues so that it remains stationary.
[0017] The femoral artery is classified as an elastic artery, meaning that it contains many elastic fibers that allow it to stretch in response to blood pressure. Every contraction of the heart causes a sudden increase in the blood pressure in the femoral artery, and the artery wall expands to accommodate the blood. This property allows the femoral artery to be used to detect a person’s pulse through the skin (See, e.g., The Cardiovascular System at a Glance, 4th Edition, Philip I. Aaronson, Jeremy P. T. Ward, Michelle J. Connolly, November 2012, © 2012, Wiley-Blackwell, Hoboken, NJ).
Use of the Femoral Artery for Endovascular Procedures
[0018] Endovascular diagnostic and therapeutic procedures are generally performed through the femoral artery. Some of the reasons for this generalized approach include its location, easy approach for puncture and hemostasis, low rate of complications, technical ease, wide applicability and relative patient comfort (Alvarez-Tostado J.A. et al. Journal of Vascular Surgery 2009; 49(2): 378-385). Femoral puncture also allows access to virtually all of the arterial territories and affords favorable ergonomics for the operator in most instances (Alvarez-Tostado J.A. et al. Journal of Vascular Surgery 2009; 49(2): 378-385).
Brachial Artery [0019] The brachial artery is a major blood vessel located in the upper arm and is the main supplier of blood to the arm and hand. It continues from the axillary artery at the shoulder and travels down the underside of the arm. Along with the medial cubital vein and bicep tendon, it forms the cubital fossa, a triangular pit on the inside of the elbow. Below the cubital fossa, the brachial artery divides into two arteries running down the forearm: the ulnar and the radial; the two main branches of the brachial artery. Other branches of the brachial artery include the inferior ulnar collateral, profunda brachii, and superior ulnar arteries (See, e.g., The
Cardiovascular System at a Glance, 4th Edition, Philip I. Aaronson, Jeremy P. T. Ward, Michelle J. Connolly, November 2012, © 2012, Wiley-Blackwell, Hoboken, NJ).
Use of the Brachial Artery for Endovascular Procedures
[0020] Brachial artery access is a critical component of complex endovascular procedures, especially in instances where femoral access is difficult or contraindicated, such as the absence of palpable femoral pulses, severe common femoral occlusive disease, recent femoral intervention or surgery or femoral aneurysms/pseudoaneurysms. It is a straightforward procedure with a high success rate for percutaneous cannulation (Alvarez-Tostado J.A. et al. Journal of Vascular Surgery 2009; 49(2): 378-385). However, there is a general reluctance to puncture the right brachial artery due to the need to navigate through the innominate artery and arch and due to the risk for complications such as direct nerve trauma and ischemic occlusion resulting in long-term disability (Alvarez-Tostado J.A. et al. Journal of Vascular Surgery 2009; 49(2): 378- 385; Cousins T.R. and O’Donnell J.M. AANA Journal 2004; 72(4): 267-271).
Endovascular Intervention
[0021] The current standard for therapeutic recanalization and reperfusion in vascular disease and acute stroke is to perform endovascular interventions via a transfemoral approach, meaning, starting a catheter in the femoral artery at the groin, proceeding through the aorta and carotid artery to the affected blood vessel. All existing devices are designed to be used from this starting point and surgeons are most familiar and comfortable with this route.
Mechanical Endovascular Intervention in Coronary Artery Disease (CAD)
Percutaneous Coronary Intervention (PCD [0022] Percutaneous coronary intervention (PCI) is a nonsurgical method for coronary artery revascularization. PCI methods include balloon angioplasty, coronary stenting, atherectomy (devices that ablate plaque), thrombectomy (devices that remove clots from blood vessels) and embolic protection (devices that capture and remove embolic debris).
Balloon Angioplasty
[0023] Balloon angioplasty involves advancing a balloon-tipped catheter to an area of narrowing, inflating the balloon, and then removing the catheter after deflation. Angioplasty can reduce the severity of coronary stenosis, improve coronary flow, and diminish or eliminate objective and subjective manifestations of ischemia (Losordo D.W. et al. Circulation 1992 Dec. 86(6): 1845- 58). The mechanism of balloon angioplasty action involves three events: plaque fracture, compression of the plaque, and stretching of the vessel wall. These lead to expansion of the external elastic lumina and axial plaque redistribution along the length of the vessel (Losordo D.W. et al. Circulation 1992 Dec. 86(6): 1845-58).
Coronary Stenting
[0024] Coronary stents are metallic scaffolds that are deployed within a diseased coronary artery segment to maintain wide luminal patency. They were devised as permanent endoluminal prostheses that could seal dissections, create a predictably large initial lumen, and prevent early recoil and late vascular remodeling (Krajcer Z. and Howell M.H. Tex Heart Inst J. 2000; 27(4): 369-385).
[0025] Drug-eluting stents (DES s) elute medication to reduce restenosis (the recurrence of abnormal narrowing of a blood vessel) within the stents. Local release of rapamycin and its derivatives or of paclitaxel from a polymer matrix on the stent during the 30 days after implantation has been shown to reduce inflammation and smooth muscle cell proliferation within the stent, decreasing in-stent late loss of luminal diameter from the usual 1 mm to as little as 0.2 mm (Stone G.W. et al. N Engl J Med. 2007 Mar 8. 356(10):998-1008). This dramatically lowers the restenosis rate after initial stent implantation or after secondary implantation of a DES for an in-stent restenosis (Stone G.W. et al. N Engl J Med. 2007 Mar 8. 356(10):998-1008).
[0026] Coronary stents are used in about 90% of interventional procedures. Stent-assisted coronary intervention has replaced coronary artery bypass graft (CABG) as the most common revascularization procedure in patients with coronary artery disease (CAD) and is used in patients with multi-vessel disease and complex coronary anatomy (Kalyanasundaram A. et al. Medscape December 16, 2014; article 164682: emedicine.medscape.com/article/164682- overview#a3).
Atherectomy
[0027] The directional coronary atherectomy (DCA) catheter was first used in human peripheral vessels in 1985 and in coronary arteries in 1986. In this procedure, a low-pressure positioning balloon presses a windowed steel housing against a lesion; any plaque that protrudes into the window is shaved from the lesion by a spinning cup-shaped cutter and trapped in the device’s nose cone (Hinohara T. et al. Circulation 1990 Mar. 81(3 Suppl):IV79-91).
[0028] Rotational atherectomy uses a high-speed mechanical rotational stainless-steel burr with a diamond chip— embedded surface. The burr is attached to a hollow flexible drive shaft that permits it to be advanced over a steerable guide wire with a platinum coil tip. The drive shaft is encased within a Teflon® sheath through which a flush solution is pumped to lubricate and cool the drive shaft and burr. A compressed air turbine rotates the drive shaft at 140,000-200,000 rpm during advancement across a lesion (Hinohara T. et al. Circulation 1990 Mar. 81(3 Suppl): IV79- 91).
Laser Ablation
[0029] In laser ablation, an intense light beam travels via optical fibers within a catheter and enters the coronary lumen. After the target lesion is crossed with the guide wire, the laser catheter is advanced to the proximal end of the lesion. Blood and contrast medium are removed from the target vessel by flushing with saline before activating the laser (Kalyanasundaram A. et al. Medscape December 16, 2014; article 164682: emedicine.medscape.com/article/164682- overview#a3).
Mechanical Thrombectomy
[0030] Intracoronary thrombi may be treated with mechanical thrombectomy devices. These include rheolytic, suction and ultrasonic thrombectomy devices.
[0031] In rheolytic thrombectomy, high-speed water jets create suction via the Bernoulli- Venturi effect. The jets exit orifices near the catheter tip and spray back into the mouth of the catheter, creating a low-pressure region and intense suction. This suction pulls surrounding blood, thrombus, and saline into the tip opening and propels particles proximally through the catheter lumen and out of the body (Kalyanasundaram A. et al. Medscape December 16, 2014; article 164682; emedicine.medscape.com/article/164682-overview#a3 .
[0032] The catheters used for suction thrombectomy act via manual aspiration. These catheters are advanced over a wire to the intracoronary thrombus then passed through the thrombus while suction is applied to a hole in the catheter tip. Large intact thrombus fragments can be removed by means of this technique (Kalyanasundaram A. et al. Medscape December 16, 2014; article 164682; emedicine.medscape.com/article/164682-overview#a3).
[0033] Ultrasonic thrombectomy involves the use of ultrasonic vibration to induce cavitation that can fragment a thrombus into smaller components (Choi S.W. et al. J. Intery Cardiol. 2006 Feb. 19(1): 87-92).
Embolization Protection
[0034] Embolization (the passage of an embolus (blood clot) within the blood stream) can be caused by the manipulation of guidewires, balloons, and stents across complex atherosclerotic carotid artery lesions (Krajcer Z. and Howell M.H. Tex Heart Inst J. 2000; 27(4): 369-385). Several devices have been developed to trap such embolic material and remove it from the circulation.
[0035] The PercuSurge Guardwire is a device that consists of a 0.014- or 0.018-inch angioplasty guidewire constructed of a hollow nitinol hypotube. Incorporated into the distal wire segment is an inflatable balloon capable of occluding vessel flow. The proximal end of the wire incorporates a Microseal™ that allows inflation and deflation of the distal occlusion balloon. When the Microseal adapter is detached, the occlusion balloon remains inflated, at which time angioplasty and stenting are performed. An aspiration catheter can be advanced over the wire into the vessel, and manual suction is applied to retrieve particulate debris (Krajcer Z. and Howell M.H. Tex [0036] The Medicorp device consists of a protection balloon and a dilation balloon that can be used over a 0.014-inch coronary guidewire. Occlusion above the lesion and below the lesion creates a dilation zone without a flow, which is aspirated and cleared of atherosclerotic debris (Krajcer Z. and Howell M.H. Tex Heart Inst J. 2000; 27(4): 369-385).
Endovascular Treatment of Abdominal Aortic Aneurysms (AAA)
[0037] Two endoluminal AAA exclusion stent graft systems have received FDA approval: (i) the Ancure™ Endograft System (Guidant/EVT; Menlo Park, Calif); and (ii) the AneuRx™ device (Medtronic AVE; Santa Rosa, Calif) (Krajcer Z. and Howell M.H. Tex Heart Inst J. 2000; 27(4): 369-385). Both are over-the-wire systems that require bilateral femoral artery access.
[0038] The Ancure™ stent graft is an unsupported, single piece of woven Dacron® fabric. The graft is bifurcated and has no intra-graft junctions. The main device is delivered through a 24-Fr introducer sheath; a 12-Fr sheath is required to facilitate the deployment of the contralateral iliac limb. The graft is attached via a series of hooks that are located at the proximal aortic end and at both iliac ends. The hooks are seated transmurally (passing through the vessel wall) in the aorta and the iliac arteries, initially by minimal radial force, and then affixed by low-pressure balloon dilation. Radiopaque markers are located on the body of the graft for correct alignment and positioning (Krajcer Z. and Howell M.H. Tex Heart Inst J. 2000; 27(4): 369-385).
[0039] The AneuRx™ device is a modular 2-piece system composed of a main bifurcation segment and a contralateral iliac limb. The graft is made of thin-walled woven polyester that is fully supported by a self-expanding nitinol exoskeleton. Attachment is accomplished by radial force at the attachment sites, which causes a frictional seal. The main bifurcated body is delivered through a 21-Fr sheath, and the contralateral limb requires a 16-Fr sheath. The body of the graft has radiopaque markers that facilitate correct alignment and positioning (Krajcer Z. and Howell M.H. Tex Heart Inst J. 2000; 27(4): 369-385).
Mechanical Endovascular Neurointervention.
Mechanical Thrombectomy
[0040] Mechanical thrombectomy (excision of a clot from a blood vessel) devices remove occluding thrombi (blood clots) from the target vessel by a catheter. Subgroups include (1) suction thrombectomy devices that remove occlusions from the cerebral vessels by aspiration (Proximal Thrombectomy) and (2) clot removal devices that physically seize cerebral thrombi and drag them out of the cerebral vessels (Distal Thrombectomy) (Gralla J. et al. Stroke 2006; 37: 3019-24; Brekenfeld C. et al. Stroke 2008; 39: 1213-9).
Proximal Endovascular Thrombectomy
[0041] Manual suction thrombectomy is performed by moving forward an aspiration catheter at the proximal surface of the thrombus (Singh P. et al. J Neurosci Rural Pract. 2013 Jul-Sep; 4(3): 298-303). Manual aspiration is then carried out and the aspiration catheter is taken back under continuous negative pressure. The Penumbra System (Penumbra, Almeda, CA USA) is a variation of the manual proximal aspiration method which comprises a dedicated reperfusion catheter attached to a pumping system applying constant aspiration. A second retriever device is similar to a stent and is utilized to take out the resistant clot (Singh P. et al. J Neurosci Rural Pract. 2013 Jul-Sep; 4(3): 298-303). The time window for neuroradiological intervention is 8 hours after stroke onset in patients not eligible for intravenous thrombolysis or in patients where intravenous thrombolysis was unsuccessful (Singh P. et al. J Neurosci Rural Pract. 2013 Jul-Sep; 4(3): 298-303).
[0042] The Penumbra System™ has been examined in a number of clinical trials. The Penumbra Pivotal Stroke Trial was a prospective, single-arm, multicenter study that recruited 125 stroke patients (mean NIHSS 18) within 8 hours of symptom onset and was successful in 81.6% of treated vessels (Penumbra Pivotal Stroke Trial Investigators: The Penumbra pivotal stroke trial: Safety and effectiveness of a new generation of mechanical devices for clot removal in intracranial large vessel occlusive disease. Stroke 2009; 40: 2761-8). However, a good clinical outcome at 90 days was attained in only 25% of patients and in 29% of patients with successful recanalization (the process of restoring flow to or reuniting an interrupted channel such as a blood vessel) of the target vessel (Penumbra Pivotal Stroke Trial Investigators: The penumbra pivotal stroke trial: Safety and effectiveness of a new generation of mechanical devices for clot removal in intracranial large vessel occlusive disease. Stroke. 2009; 40: 2761-8). Poor clinical results occurred despite comparatively better recanalization rates as evidenced by a mortality rate of 32.8% and the occurrence of symptomatic intracerebral hemorrhage (ICH) in 11.2%
(Penumbra Pivotal Stroke Trial Investigators: The penumbra pivotal stroke trial: Safety and effectiveness of a new generation of mechanical devices for clot removal in intracranial large vessel occlusive disease. Stroke. 2009; 40: 2761-8).
Distal Endovascular Thrombectomy
[0043] Distal thrombectomy is a technically difficult procedure (Singh P. et al. J Neurosci Rural Pract. 2013 Jul-Sep; 4(3): 298-303). A number of clinical studies have been carried out using the MERCI (Mechanical Embolus Removal in Cerebral Ischemia) Retriever® device (Concentric Medical, Mountain View, USA), which was the earliest distal thrombectomy device approved by the United States Food and Drug Administration (FDA) (Singh P. et al. J Neurosci Rural Pract. 2013 Jul-Sep; 4(3): 298-303). In the initial stage of the procedure, the occlusion site must be traversed with a microcatheter so as to deploy the device beyond the thrombus. The MERCI Retriever® device is pulled back into the thrombus and positioned within the clot. Next, the MERCI Retriever® and the trapped clot are withdrawn, initially into the positioning catheter and then out of the patient’s body (Singh P. et al. J Neurosci Rural Pract. 2013 Jul-Sep; 4(3): 298 303). Proximal balloon occlusion by means of a balloon guide catheter and aspiration during retrieval of the Merci device is done for the majority of cases in order to prevent thromboembolic complications (Nogueira R.G. et al. Am J Neuroradiol. 2009; 30: 649-61; Nogueira R.G. et al. Am J Neuroradiol. 2009; 30: 859-7). During in vivo experimental studies, the distal technique was shown to be more efficient as compared to proximal manual aspiration (Gralla J. et al.
Stroke 2006; 37: 3019-24).
[0044] The MERCI Retriever® clinical trial was a 25 -site, uncontrolled, technical efficacy trial (Smith W.S. et al. Stroke 2005; 36: 1432-8). The trial incorporated 151 patients with occlusion of the internal carotid artery or vertebral and basilar arteries, who did not qualify for intra-arterial therapy (IAT) within 8 hours of symptom onset (Smith W.S. et al. Stroke 2005; 36: 1432-8). Successful recanalization was accomplished in 46%, with excellent clinical outcome in 27.7% of patients (Smith W.S. et al. Stroke 2005; 36: 1432-1438). Successful recanalization was linked with distinctly better clinical outcomes. Average procedure time was 2.1 hours, with clinically noteworthy procedural complications occurring in 7.1% and a rate of symptomatic intracranial hemorrhage (ICH) occurring in 7.8% of patients (Smith W.S. et al. Stroke 2005; 36: 1432-1438). Despite good clinical outcome, limitations of this device include operator learning curve, the need to traverse the occluded artery to deploy the device distal to the occlusion, the duration required to perform multiple passes with device, clot fragmentation and passage of an embolus within the bloodstream (Meyers P.M. et al. Circulation 2011; 123: 2591-2601). Self-expanding Stents
[0045] Until recently, intracranial stenting was restricted to off-label use of balloon-mounted stents intended for cardiac circulation (Singh P. et al. J Neurosci Rural Pract. 2013 Jul-Sep; 4(3): 298-303). These stents are not ideal for treating intracranial disease due to their rigidity which makes navigation in the convoluted intracranial vessels difficult (Singh P. et al. J Neurosci Rural Pract. 2013 Jul-Sep; 4(3): 298-303). Self-expanding intracranial stents permit stenting in acute stroke that is unmanageable with conventional treatment regimens. The clot occluding the vessel is outwardly displaced by the side of the vessel wall and becomes trapped in the interstices of a self-expanding stent (SES). Wingspan™ (Stryker), Neuroform® (Stryker, Kalamazoo, MI), and Cordis Enterprise™ (Cordis Neurovascular, Fremont, CA) self-expanding stenting systems have improved steering, cause a reduced amount of vasospasm, and cause a reduced amount of side- branch occlusions as compared to balloon-inflated stents Singh P et al. J Neurosci Rural Pract. 2013 Jul-Sep; 4(3): 298-303). Drawbacks of this method include delayed in-stent thrombosis, the use of platelet inhibitors which may cause intracerebral hemorrhage (ICH) and perforator occlusion from relocation of the thrombus after stent placement (Samaniego E.A. et al Front Neurol. 2011; 2: 1-7; Fitzsimmons B.F. et al. Am J Neuroradiol. 2006; 27: 1132-4; Levy E.I. et al. Neurosurgery 2006; 58: 458-63; Zaidat O.O. et al. Stroke 2008; 39: 2392-5).
Retrievable Thrombectomy Stents
[0046] Retrievable thrombectomy stents are self-expandable, re-sheathable, and re-constrainable stent-like thrombectomy devices which combine the advantages of intracranial stent deployment with immediate reperfusion and subsequent retrieval with definitive clot removal from the occluded artery (Singh P. et al. J Neurosci Rural Pract. 2013 Jul-Sep; 4(3): 298-303). Removal of the device circumvents the drawbacks associated with permanent stent implantation. These include the requirement for double anti-platelet medication, which potentially adds to the risk of hemorrhagic complications and the risk of in-stent thrombosis or stenosis. The application of retrievable thrombectomy stents is analogous to that of intracranial stents. Under general anesthesia, using a transfemoral approach, a guide catheter is positioned in the proximal internal carotid artery. A guide wire is advanced coaxially over a microcatheter within the blocked intracranial vessel and navigated past the thrombus. The microcatheter is then advanced over the wire through the clot, and the guide wire is substituted for the embolectomy device Singh P. et al. J Neurosci Rural Pract. 2013 Jul-Sep; 4(3): 298-303). The revascularization device is placed with the middle third of the device residing within the thrombus formation. The radial force of the stent retriever is able to create a channel by squeezing the thrombus and is able to partially restore blood flow to the distal territory in the majority of cases, producing a channel for a temporary bypass (Singh P. et al. J Neurosci Rural Pract. 2013 Jul-Sep; 4(3): 298-303). The device is usually left in place for an embedding time of up to 10 minutes, permitting entrapment of the thrombus within the stent struts. To extract the thrombus, the unfolded stent and the microcatheter are slowly dragged into the guide catheter with flow reversal by continuous aspiration with a 50-ml syringe from the guide catheter Singh P. et al. J Neurosci Rural Pract. 2013 Jul-Sep; 4(3): 298-303). The designs of these stents differ in terms of radial strength, design of the proximal and distal stent aperture, stent cell design, material and supplementary intraluminal struts (Mordasini P. et al. Am J Neuroradiol 2011; 32: 294-300; Brekenfeld C. et al. Am J Neuroradiol. 201; 2: 1269-73; Mordasini P. et al. Am J Neuroradiol. 2013; 34: 153-8). Despite the potential to diminish procedure time and to improve recanalization rates, drawbacks to using these devices remain. For example, the TREVO 2 study (Thrombectomy
Revascularisation of Large Vessel Occlusions in AIS) was an open label, multi-center trial evaluating the efficacy of the Trevo Pro retriever (Stryker Neurovascular, Fremont, USA) with the Merci device in patients with large vessel ischemic stroke (Nogueira R.G. et al. Lancet 2012; 380: 1231-40). Symptomatic ICH occurred in 6.8% in the Trevo group and in 8.9% of the Merci group, with mortality rates of 33% an 24% respectively. The outcome of this trial sustains the supposition that there are unique mechanical mechanisms of action and consequently dissimilar success and efficacy rates depending on the thrombectomy approaches applied (Singh P. et al. J Neurosci Rural Pract. 2013 Jul-Sep; 4(3): 298-303).
[0047] Although mechanical endovascular neurointerventions using a transfemoral approach are the current standard for the treatment of acute stroke, it is difficult to access the left internal carotid artery via these transfemoral techniques when an aortic arch variation occurs. A similar transfemoral access problem can occur when vertebral arteries arise at an acute angle from the subclavian artery.
Aortic Arch
Normal Anatomy
[0048] The most common aortic arch branching pattern in humans consists of three great vessels originating from the arch of the aorta. The first branch is the innominate artery (brachiocephalic artery), which branches into the right subclavian artery and the right common carotid artery. The second branch in the most common pattern is the left common carotid artery, and the last branch is the left subclavian artery (Layton K.F. Am J Neuroradiol. 2006; 27: 1541-1542)
Variant Anatomy of the Aortic Arch
Hypoplastic Ascending Aorta
[0049] Hypoplasia (underdevelopment or incomplete development) of the ascending aorta usually occurs concomitant with hypoplastic left heart syndrome (HLHS). HLHS comprises a wide spectrum of cardiac malformations, including hypoplasia or atresia (abnormal opening or failure of a structure to be tubular) of the aortic and mitral valves and hypoplasia of the left ventricle and ascending aorta. The great vessels are normally related in this congenital anomaly. HLHS has a reported prevalence of 0.2 per 1000 live births and occurs twice as often in boys as in girls. Left untreated, HLHS is lethal (Kau T. et al. Semin Intervent Radiol. 2007; 24(2): 141 152).
Coarctation of the Aorta
[0050] Coarctation of the aorta accounts for about 5 to 7% of all congenital heart disease. It is defined as a discrete stenosis in the proximal descending thoracic aorta. Only those with the most severe obstruction (e.g., aortic arch atresia or interruption) or associated cardiac defects invariably present in infancy (Jenkins N.R, Ward C. QJM. 1999; 92: 365-371). Most other cases are identified because of a murmur or hypertension found on routine examination. Age at presentation is related to the severity rather than the site of obstruction, as a result of cardiac failure or occasionally cerebrovascular accident, aortic dissection, or endocarditis (Jenkins N.R, Ward C. QJM. 1999; 92: 365-371). Aortic coarctation may be subclassified into isolated coarctation, coarctation with ventricular septal defect, and coarctation with complex intracardiac anomalies (Backer C.L. et al. Ann Thorac Surg. 2000; 69: S308— S318). An exceedingly rare congenital anomaly is coarctation of a right aortic arch (Maxey T.S. et al. J Card Surg. 2006; 21 : 261-263).
Interrupted Aortic Arch
[0051] Interrupted aortic arch is defined as the loss of luminal continuity between the ascending and descending aorta and is associated with a multitude of lesions ranging from isolated ventricular septal defects to complex ones (Kau T. et al. Semin Intervent Radiol. 2007; 24(2): 141-152). An interrupted aortic arch may be subclassified into anatomical types based on the location of the interruption (Maxey T.S. et al. J Card Surg. 2006; 21 : 261-263). Although results have improved, repair of this abnormality is associated with a significant mortality and morbidity (Tchervenkov C.I. et al. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2005: 92-102).
Patent Ductus Arteriosus
[0052] A ductus arteriosus Botalli permits blood flow between the aorta (distal to the left subclavian artery) and the pulmonary artery. In a full-term infant, the ductus usually closes within the first 2 days of life. Persistent patency beyond that point is generally permanent, being two to three times as common in girls as in boys. Most of the cases occur as isolated defects. Typical concomitant findings are left ventricle hypertrophy and pulmonary artery dilation.
Persistent ductus arteriosus may also be associated with coarctation of the aorta, transposition of the great vessels, and ventricular septal defect (Campbell M. Br Heart J. 1968; 30:4-13).
Thyroid Ima Artery
[0053] The thyroid IMA artery is a collateral vessel feeding the thyroid gland (Wolpert S.M. Radiology 1969; 92: 333-334). This vessel occurs in up to 16.9% of the population (Vasovic L. et al. Ital J Anat Embryol. 2004; 109 : 189- 197). It may be a branch of the aortic arch between the brachiocephalic and left subclavian arteries. However, more frequently it is a branch of the brachiocephalic artery. A further variant of origin is from the right common carotid artery. In the remaining cases, it may originate from the internal mammary, subclavian, or inferior thyroid arteries (Kadir S. In: Kadir S, editor. Atlas of Normal and Variant Angiographic Anatomy. Philadelphia: WB Saunders; 1991. Regional anatomy of the thoracic aorta, pp. 19-54).
Aberrant Right Subclavian or Brachiocephalic Artery
[0054] The right subclavian artery is the last branch of the aortic arch in approximately 1% of individuals (Richardson J.V. et al. Ann Thorac Surg. 1981; 31: 426-432). It courses to the right behind the esophagus in approximately 80% of these cases, between the esophagus and trachea in 15%, and anterior to the trachea or mainstem bronchus in 5% (Kadir S. In: Kadir S, editor. Atlas of Normal and Variant Angiographic Anatomy. Philadelphia: WB Saunders; 1991.
Regional anatomy of the thoracic aorta pp. 19-54).
Right Aortic Arch
[0055] Right aortic arch is an uncommon anatomical anomaly that occurs in < 0.1% of the population (Cina C.S. et al. J Vase Surg. 2004; 39: 131-139). It results from the persistence of the right fourth branchial arch (Kadir S. In: Kadir S, editor. Atlas of Normal and Variant
Angiographic Anatomy. Philadelphia: WB Saunders; 1991. Regional anatomy of the thoracic aorta pp. 19-54). The most common type is the right aortic arch with an aberrant left subclavian artery. The vessels originate in the following order: left common carotid, right common carotid, right subclavian, and left subclavian artery. This type is rarely associated with congenital heart disease. However, symptoms may arise from vascular ring formation (Son J.A. et al. J Card Surg. 1999; 14: 98-102). The mirror-image type (left brachiocephalic trunk, right common carotid and subclavian arteries) is almost always associated with congenital heart disease, especially the cyanotic type (McElhinney D.B. et al. Pediatr Cardiol. 2001; 22:285-291).
Ductus Diverticulum
[0056] The aortic isthmus in adults has a variable appearance. Its configuration may show a concavity, a straightening or slight convexity, or a discrete focal bulge. The latter finding represents a ductus diverticulum, present in about 9% of individuals. Representing the most distal segment of the embryonic right arch, the ductus diverticulum is a fiisiform dilation of the ventromedial portion of the proximal descending thoracic aorta. At times a prominent ductus diverticulum may resemble a traumatic pseudoaneurysm of the aortic isthmus (Goodman PC. et al. Cardiovasc Intervent Radiol. 1982; 5: 1-4). Double Aortic Arch
[0057] The double aortic arch is a rare anomaly caused by persistence (to varying degrees) of the fetal double aortic arch system (Kadir S. In: Kadir S, editor. Atlas of Normal and Variant Angiographic Anatomy. Philadelphia: WB Saunders; 1991. Regional anatomy of the thoracic aorta pp. 19-54). The ascending aorta divides into two arches that pass to either side of the esophagus and trachea and reunite to form the descending aorta. Therefore, it is a form of complete vascular ring, resulting in noncardiac morbidity, but rarely associated with intracardiac defects (Alsenaidi K. et al. Pediatrics. 2006; 118: el336— el341). The descending aorta is usually on the left side. Most commonly, one arch is dominant, whereas the other may be of small caliber or represented by a fibrous band.
Cervical Aortic Arch
[0058] The cervical aortic arch refers to an unusually high location of the aortic arch in the low or mid-neck region (Kadir S. In: Kadir S, editor. Atlas of Normal and Variant Angiographic Anatomy. Philadelphia: WB Saunders; 1991. Regional anatomy of the thoracic aorta pp. 19-54). This rare type of aortic arch anomaly is presumed to result from persistence of the third aortic arch and regression of the normal fourth arch. Abnormalities of brachiocephalic arterial branching and arch laterality are common in patients with a cervical aortic arch (McElhinney D.B. et al. Pediatr Cardiol. 2001; 22:285-291). There is no association with congenital heart disease, and the anomaly occurs most frequently in association with a right aortic arch. Most of the patients with this anomaly are asymptomatic, but symptoms of dysphagia and respiratory distress due to the compression by the vascular ring have been reported (Acikel U. et al.
Angiology 1997; 48: 659-662).
Bovine Aortic Arch
[0059] A common brachiocephalic trunk (also known as the innominate artery), in which both common carotid arteries and the right subclavian artery arise from a single trunk off the arch, is the most frequent normal variant of aortic arch branching (Kadir S. In: Kadir S, editor. Atlas of Normal and Variant Angiographic Anatomy. Philadelphia: WB Saunders; 1991. Regional anatomy of the thoracic aorta, pp. 19-54) (Figure 4). The innominate artery and the left common carotid artery have a common origin. Therefore, only 2 great vessels originate from the aortic arch (Layton K.F. et al. Am J Neuroradiol. 2006; 27: 1541-1542). Overall, this pattern of branching is seen in approximately 13% of patients (Lippert H, Pabst R. Aortic arch. In: Arterial Variations in Man: Classification and Frequency. Munich, Germany: JF Bergmann-Verlag;1985 :3-10). Although the term bovine aortic arch is ascribed to this anomaly, it is not commonly found in cattle (Layton K.F. et al. Am J Neuroradiol. 2006; 27:1541-1542).
Other Variant Branching
[0060] Variations in the sequence of branching of the major arch vessels also occur (< 0.5%) (Kadir S. In: Kadir S, editor. Atlas of Normal and Variant Angiographic Anatomy. Philadelphia: WB Saunders; 1991. Regional anatomy of the thoracic aorta pp. 19-54). For example, the left subclavian artery may be the second branch (before the left common carotid), or the internal and external carotid arteries may originate independently from the aortic arch (Nelson M.L., Sparks C.D. Clin Anat. 2001; 14: 62-65).
Variant Origin of Vertebral Arteries
[0061] Various unusual vertebral artery origins exist (Yamaki K. et al. Anat Sci Int. 2006; 81: 100-106; Koenigsberg R.A. et al. Catheter Cardiovasc Interv. 2003;59:244-250). For example, the left vertebral artery arises from the aortic arch, with reported prevalences of 2.4 to 5.8% (Lemke A.J. et al. Am J Neuroradiol. 1999; 20: 1318-1321). The most frequent location is between the left common carotid and subclavian arteries (Kadir S. In: Kadir S, editor. Atlas of Normal and Variant Angiographic Anatomy. Philadelphia: WB Saunders; 1991. Regional anatomy of the thoracic aorta, pp. 19-54). Rarely, the proximal left vertebral artery is duplicated in which one part arises from the arch and the other from the left subclavian, or both originate from the aortic arch. Occasionally, the left vertebral artery is the last branch of the aortic arch, which is rarely true for both vertebral arteries (Goray V.B. et al. Am J Neuroradiol. 2005; 26: 93- 95).
[0062] The existence of aortic and vertebral artery variations inhibits the treatment of diseases that require endovascular intervention via a transfemoral approach. For example, the acute angle at which the left common carotid artery branches from the aortic arch in the bovine arch configuration makes mechanical endovascular neurointervention difficult, especially when additional tortuosity (i.e., twists) in the aorta and/or the carotid artery are present. Currently, catheters exist that can access the origin of the left common carotid artery when arterial variations exist. However, when a wire is advanced through these catheters in order to achieve distal access to the artery head, these catheters lack adequate support which results in kickback of the advancing wire into the aortic arch. The lack of adequate support and the resulting kick- back of the advancing wire make effective treatment impossible. Even when catheterization is achieved in these situations, the process of arriving at the correct combination of catheters and wires results in long treatment delays. In cases of acute stroke, long delays in obtaining access to arteries often leads to additional irreversible cell death with additional permanent neurologic injury.
[0063] Therefore, a need exists for an endovascular device capable of treating diseases that require endovascular intervention in a patient suffering from a blood vessel anomaly. The described invention provides a dual lumen endovascular device capable of effectively treating such patients by providing support and thus preventing kickback of an advancing wire, resulting in distal blood vessel access, clot retrieval, embolization of an aneurysm and/or embolization of an arteriovenous malformation (AVM).
SUMMARY OF THE INVENTION
[0064] According to one aspect, the described invention provides an endovascular device including a tube comprising a first end comprising a bifurcation; and a second end comprising an opening, wherein the bifurcation at the first end comprises a first branch comprising a diameter of the first branch and a second branch comprising a diameter of the second branch, the diameter of the first branch is greater than the diameter of the second branch, the opening at the second end comprises a primary opening comprising a diameter of the primary opening and secondary opening comprising a diameter of the secondary opening, the diameter of the primary opening is greater than the diameter of the secondary opening, the first branch comprising the diameter of the first branch and the primary opening comprising the diameter of the primary opening, form a non-support lumen comprising a diameter of the non-support lumen and a length of the non- support lumen, wherein the diameter of the non-support lumen comprises the diameter of the fust branch and the diameter of the primary opening, and the second branch comprising the diameter of the second branch and secondary opening comprising the diameter of the secondary opening form a support lumen comprising a diameter of the support lumen and a length of the support lumen, wherein the diameter of the support lumen comprises the diameter of the second branch and the diameter of the secondary opening, the diameter of the nonsupport lumen is greater than the diameter of the support lumen, and the support lumen is effective to provide stability to the endovascular device; and to prevent kickback of the endovascular device. A nonsupport lumen is one which allows the movement of wires within it and allows communication between the external attachment device and the target area for treatment. Non-support lumens are directly involved with treatment whereas support lumens such as balloon lumens yield indirect assistance in facilitating the work of non-support lumens.
[0065] According to one embodiment, the support lumen is a conduit through which a second device is advanced into a blood vessel; or the non-support lumen (also referred to as a working lumen) is a conduit through which a second device is advanced into a blood vessel; or a combination thereof.
[0066] According to another embodiment, the second device is a diagnostic catheter, a therapeutic catheter, a therapeutic balloon, a retrievable balloon, a therapeutic stent, a retrievable stent, a flow-diverting stent, a coil, a wire, an endoluminal mesh, an embolic agent, another endovascular device or a combination thereof.
[0067] The present invention at a minimum contains one first lumen. A second lumen (located either inside the inner diameter of said first lumen or between the outer diameter and the inner diameter of the first lumen or outside of the outer diameter of the first lumen) may be used to operate a balloon element of the present invention. It should be noted that the first lumen is composed of two parts, namely the support lumen and the non-support lumen (also referred to as a“working lumen”). According to another embodiment, the length of the support lumen ranges from at least 90.05 cm to at least 200 cm; or the length of the working lumen ranges from at least 20 cm to at least 160 cm, or the length of the support lumen ranges from at least 100.1% to at least 120% of the length of the working lumen.
[0068] According to another embodiment, inner diameter (ID) of the working lumen ranges from at least 0.1 French (Fr) (0.001 inches) to at least 30 French (Fr) (0.394 inches).
[0069] According to another embodiment, the support lumen comprises an inflatable balloon. According to another embodiment, the inflatable balloon is attached to the distal portion of the support lumen. Balloon elements associated with the current invention do not require wires to operate them. Balloon elements associated with the current invention may use additional lumen. Balloon elements associated with the current invention may be located before, at and after the side hole, and since the side hole is a significant structural element uniquely one embodiment should be opposite the side hole.
[0070] The present invention can use a catheter that has a longer length outside the body of the patient than inside, so location of Luer-Lock location is not related to a position relative to the patient. More particularly the external termination device is preferably located on the end of the tube that remains outside the patient’s body. The present invention will locate the Luer Lock and other terminal devices at the proximal end-hole which is both external to the patient and the hole furthest from a balloon deployment location, if any. According to another embodiment, the support lumen comprises an additional lumen that fills and empties a balloon. According to another embodiment, the balloon is positioned along a length of the endovascular device; or the balloon is adapted to be filled from the working lumen when an appropriate sized wire or catheter or device is inserted through the working lumen; or the additional lumen comprises an external termination device (e.g., Luer Lock or other medical fittings external to the patient for whom device is being used to eliminate or ameliorate a medical difficulty) attached at a proximal end; or a combination thereof.
[0071] According to another embodiment, the endovascular device comprises a separate lumen adapted to fill and empty into a balloon positioned along a length of the endovascular device [0072] According to another embodiment, the support lumen comprises a device separate from the endovascular device that provides added support. According to another embodiment, the device separate from the endovascular device that provides added support is a stent, a retrievable stent, a balloon, a retrievable balloon, a wire or combination thereof.
[0073] According to another embodiment, the endovascular device further comprises an external termination device attached to a proximal end of the working lumen and an external termination device attached to a proximal end of the support lumen.
[0074] According to another embodiment, the primary opening comprises an extension at an angle. According to another embodiment, the angle is fixed or adjustable; or the angle of the extension ranges from an angle of at least 1 degree to an angle of at least 359 degrees.
[0075] According to another aspect, the described invention provides an endovascular device including a tube comprising a side-hole; said side-hole is symmetrical without a directional element and uniform perimeter, a first segment comprising a primary opening; and a second segment, wherein the first segment extends from the primary opening to the side-hole; the second segment extends from the side-hole and tapers to an end, the side-hole and the first segment form a working lumen comprising a diameter of the working lumen and a length of the working lumen, and the second segment forms a support lumen comprising a diameter of the support lumen and a length of the support lumen, and the support lumen is effective: to provide stability to the endovascular device; and to prevent kickback of the endovascular device.
[0076] According to one embodiment, the support lumen is a conduit through which a second device is advanced into a blood vessel; or the working lumen is a conduit through which a second device is advanced into a blood vessel; or a combination thereof.
[0077] According to another embodiment, the second device is a diagnostic catheter, a therapeutic catheter, a therapeutic balloon, a retrievable balloon, a therapeutic stent, a retrievable stent, a flow-diverting stent, a coil, a wire, an endoluminal mesh, an embolic agent, another endovascular device or a combination thereof.
[0078] According to another embodiment, the length of the support lumen ranges from at least0.05 cm to at least 32 cm; or the diameter of the working lumen is equal to or greater than diameter of the support lumen; or the length of the working lumen ranges from at least 20 cm to at least 160 cm; or the length of the support lumen ranges from at least 0.1% to at least 20% of the length of the working lumen. [0079] According to another embodiment, the inner diameter (ID) of the working lumen ranges from at least 0.1 French (Fr) (0.001 inches) to at least 30 French (Fr) (0.394 inches).
[0080] According to another embodiment, the endovascular device comprises an inflatable balloon. According to another embodiment, the inflatable balloon is attached to the distal portion of the support lumen.
[0081] According to another embodiment, wherein the inflatable balloon is attached proximal to the side-hole; or distal to the side-hole; or opposite the side-hole.
[0082] According to another embodiment, the inflatable balloon spans a length of the side-hole from a distal portion of the side-hole to a proximal portion of the side-hole.
[0083] According to another embodiment, the support lumen comprises an additional lumen that fills and empties a balloon.
[0084] According to another embodiment, the balloon is positioned along a length of the endovascular device; or the balloon is adapted to be filled from the working lumen when an appropriate sized wire or catheter or device is inserted through the working lumen; or the additional lumen comprises an external termination device (e.g., Luer Lock attached at a proximal end; or a combination thereof.
[0085] According to another embodiment, the endovascular device comprises a separate lumen adapted to fill and empty into a balloon positioned along a length of the endovascular device.
[0086] According to another embodiment, the support lumen comprises a device separate from the endovascular device that provides added support.
[0087] According to another embodiment, the device separate from the endovascular device that provides added support is a stent, a retrievable stent, a balloon, a retrievable balloon, a wire or combination thereof.
[0088] According to another embodiment the endovascular device further comprises an external termination device attached to a proximal end of the working lumen and an external termination device attached to a proximal end of the support lumen.
[0089] According to another embodiment, the side-hole comprises an extension at an angle. According to another embodiment, the angle is fixed or adjustable; or the angle of the extension ranges from an angle of at least 1 degree to an angle of at least 359 degrees.
[0090] According to another embodiment, the endovascular device is an intracranial endovascular device or a peripheral blood vessel endovascular device.
BRIEF DESCRIPTION OF THE DRAWINGS
[0091] Fig. 1 shows an illustration of a side view of some embodiments of a dual lumen catheter of the described invention.
[0092] Fig. 2 shows an illustration of a cross-sectional view of some embodiments of a dual lumen catheter of the described invention.
[0093] Fig. 3 shows an illustration of a side view of some embodiments of a single lumen catheter of the described invention.
[0094] Fig. 4 shows an illustration of the most common aortic arch branching pattern found in humans (from Layton K.F. et al. Am J Neuroradiol. 2006; 27: 141-1542).
[0095] Fig. 5 shows an illustration of the aortic arch branching pattern in bovine arch variation (from Layton K.F. et al. Am J Neuroradiol. 2006; 27: 141-1542).
[0096] Fig. 6 shows an illustration of a side view of some embodiments of a support lumen of the described invention.
[0097] Fig. 7 shows an illustration of some embodiments of the endovascular device of the described invention comprising an“S”-shape support lumen inserted into an aortic arch.
[0098] Fig. 8 shows an illustrative view of the cerebral arteries.
[0099] Fig. 9 shows an illustrative view of the cerebral arteries (from Netter FH. The CIBA Collection of Medical Illustrations: Volumes 1, Nervous System. Vol. 1. Part I. CIBA: USA. 1986. pp. 256).
[00100] Fig. 10 shows an illustrative embodiment of an endovascular device according to the described invention. The device is depicted inserted in the left middle cerebral artery (L- MCA) with the side-hole oriented to access an acutely angled branch feeder of an arteriovenous malformation (AVM).
[00101] Fig. 11 shows an illustration of a cross-sectional view of some embodiments of a dual lumen endovascular device 1100 according to the described invention. 1101 is an illustration of a cross-sectional view of a working lumen of a dual lumen endovascular device 1100 according to the described invention. 1102 is an illustration of a cross-sectional view of a support lumen of a dual lumen endovascular device 1100 according to the described invention.
[00102] Fig. 12 shows and illustrative embodiment of an endovascular device according to the described invention. The device is depicted inserted in the left middle cerebral artery (L- MCA) with the side-hole oriented to access an acutely angled branch feeder of an arteriovenous malformation (AVM). The device is depicted with an angled extension protruding from the side- hole.
DETAILED DESCRIPTION OF THE INVENTION
Glossary
[00103] The term“ablation” as used herein, refers to a procedure that uses radiofrequency energy (e.g., microwave heat) to destroy a small area of heart tissue that is causing rapid and irregular heartbeats. Destroying this tissue restores the heart’s regular rhythm. The procedure is also called radiofrequency ablation.
[00104] The terms“acute angle” and“acute angulation” are used interchangeably herein to refer to a sharp, obstructive or abnormal angle or bend (e.g., less than 90 degrees) in an organ, artery, vessel, etc.
Anatomical Terms:
[00105] When referring to animals that typically have one end with a head and mouth, with the opposite end often having the anus and tail, the head end is referred to as the cranial end, while the tail end is referred to as the caudal end. Within the head itself, rostral refers to the direction toward the end of the nose, and caudal is used to refer to the tail direction. The surface or side of an animal’s body that is normally oriented upwards, away from the pull of gravity, is the dorsal side; the opposite side, typically the one closest to the ground when walking on all legs, swimming or flying, is the ventral side. On the limbs or other appendages, a point closer to the main body is“proximal”; a point farther away is“distal”. Three basic reference planes are used in zoological anatomy. A“sagittal” plane divides the body into left and right portions. The “midsagittal” plane is in the midline, i.e. it would pass through midline structures such as the spine, and all other sagittal planes are parallel to it. A“coronal” plane divides the body into dorsal and ventral portions. A“transverse” plane divides the body into cranial and caudal portions.
[00106] When referring to humans, the body and its parts are always described using the assumption that the body is standing upright. Portions of the body which are closer to the head end are“superior” (corresponding to cranial in animals), while those farther away are“inferior” (corresponding to caudal in animals). Objects near the front of the body are referred to as “anterior” (corresponding to ventral in animals); those near the rear of the body are referred to as “posterior” (corresponding to dorsal in animals). A transverse, axial, or horizontal plane is an X- Y plane, parallel to the ground, which separates the superior/head from the inferior/feet. A coronal or frontal plane is a Y-Z plane, perpendicular to the ground, which separates the anterior from the posterior. A sagittal plane is an X-Z plane, perpendicular to the ground and to the coronal plane, which separates left from right. The midsagittal plane is the specific sagittal plane that is exactly in the middle of the body.
[00107] Structures near the midline are called medial and those near the sides of animals are called lateral. Therefore, medial structures are closer to the midsagittal plane, lateral structures are further from the midsagittal plane. Structures in the midline of the body are median. For example, the tip of a human subject’s nose is in the median line.
[00108] Ipsilateral means on the same side, contralateral means on the other side and bilateral means on both sides. Structures that are close to the center of the body are proximal or central, while ones more distant are distal or peripheral. For example, the hands are at the distal end of the arms, while the shoulders are at the proximal ends.
[00109] The terms“anomaly”,“variation”,“abnormality”, and“aberration” are used
interchangeably herein to refer to a deviation from what is standard, normal or expected. For example,“bovine arch variation” is an anatomical deviation from the most common aortic arch branching pattern in humans. By way of additional example, an anomaly can occur in a blood vessel having tortuosity.
[00110]The term“aneurysm”, as used herein, refers to a localized widening (dilatation)of an artery, a vein, or the heart. At the point of an aneurysm, there is typically a bulge, where the wall of the blood vessel or organ is weakened and may rupture.
[00111]Blood flow in most aneurysms is regular and predictable primarily according to the geometric relationship between the aneurysm and its parent artery. As blood flows within the parent artery with an aneurysm, divergence of blood flow, as occurs at the inlet of the aneurysm, leads to dynamic disturbances, producing increased lateral pressure and retrograde vortices that are easily converted to turbulence. Blood flow proceeds from the parent vessel into the aneurysm at the distal or downstream extent of the aneurysm neck (i.e., the transition from the sac to the parent artery), circulates around the periphery along the aneurysm wall from the neck to the top of the fundus (i.e., aneurysm sac) (downstream to upstream), returning in a type of“isotropic shower” along the aneurysm wall toward the neck region, and exits the closest of the aneurysm neck into the parent vessel (See, e.g., Strother C.M. Neuroradiology 1994; 36: 530-536; Moulder P. V. Physiology and biomechanics of aneurysms. In: Kerstein MD, Moulder PV, Webb WR, eds. Aneurysms. Baltimore, Md: Williams & Wilkins; 1983:20).
[00112] As flow persists, areas of stagnation or vortices develop within a central zone of the aneurysm. These rotating vortices, formed at the entrance to the aneurysm at each systole (i.e., ventricle contraction) and then circulated around the aneurysm, are caused by the slipstreams or regions of recirculating flow rolling upon themselves when they enter the aneurysm at its downstream wall during systole. The stagnant vortex zone occurs in the center and at the fimdus or upper portion of the aneurysm and becomes more pronounced in larger aneurysms. It is this stagnant zone that is believed to promote the formation of thrombi or blood clots, particularly in giant aneurysms (See, e.g., Gobin Y.P et al. Neuroradiology 1994; 36: 530 536; Hademenos G.J. and Massoud T.F. Stroke 1997; 28: 2067-2077).
[00113]The term“abdominal aortic aneurysm” or“AAA”, as used herein refers to an aortic diameter at least one and one-half times the normal diameter at the level of the renal arteries, which is approximately 2.0 cm. Generally, a segment of abdominal aorta with a diameter of greater than 3.0 cm is considered an aortic aneurysm. Aortic aneurysms constitute the 14th leading cause of death in the United States. Risk factors associated with AAA include age, sex, ethnicity, smoking, hypertension and atherosclerosis, among others (See, e.g., Aggarwal S. et al. Exp Clin Cardiol. 2011; 16(1): 11-15; Ouriel K. et al. J Vase Surg. 1992; 15: 12-18; Silverberg E. et al. CA Cancer J Clin. 1990; 40: 9-26).
[00114] The term“arteriovenous malformation” (“AVM”), as used herein, refers to a tangle of abnormal and poorly formed blood vessels (e.g., arteries and veins) which have a higher than normal rate of bleeding compared to normal blood vessels.
[00115] AVMs are congenital vascular lesions that occur as a result of capillary mal-development between the arterial and venous systems. Approximately 0.14% of the United States population has an intracranial AVM that poses a significant risk and represents a major life threat, particularly to persons under the age of 50 years. The vessels constituting the AVM are weak and enlarged and serve as direct shunts for blood flow between the high-pressure arterial system and the low-pressure venous system, corresponding to a large pressure gradient and small vascular resistance. The abnormal low-resistance, high-flow shunting of blood within the brain AVM without an intervening capillary bed causes the fragile dilated vessels in the nidus (i.e., tangle of blood vessels) to become structurally abnormal and fatigued, to further enlarge, and to rupture (See, e.g., Wilkins R.H. Neurosurgery 1985; 16:421-430; Graves V.B. et al. Invest Radiol. 1990; 25: 952-960; Hademenos G.J. et al., Neurosurgery 1996; 38: 1005-1015).
[00116] The abnormal micro-vessels of an AVM serve as passive conduits for blood flow from the arterial circulation directly to the venous circulation, by-passing their normal physiological function of brain tissue perfusion. The hemodynamic consequences of an AVM occur as a result of two interdependent circulatory mechanisms involved in the shunting of blood between artery and vein (See, e.g., Hademenos G.J. and Massoud T.F. Stroke 1996; 27: 1072 1083).
[00117] In the normal cerebral circulation, blood flows under a high cerebrovascular resistance and high cerebral perfusion pressure. However, the presence of a brain AVM in the normal circulation introduces a second abnormal circuit of cerebral blood flow where the blood flow is continuously shunted under a high perfusion pressure through the AVM, possessing a low cerebrovascular resistance and low venous pressure. The clinical consequence of the abnormal shunt is a significant increase in blood returning to the hea (approximately 4 to 5 times the original amount, depending on the diameter and size of the shunt), resulting in a dangerous overload of the heart and cardiac failure. Volumetric blood flow through an AVM ranges from 200 mL/min to 800 mL/min and increases according to nidus size (See, e.g., Yamada S. Neurol Res. 1993; 15: 379-383).
[00118] The abnormal shunting of blood flow by brain AVMs rapidly removes or“steals” blood from the normal cerebral circulation and substantially reduces the volume of blood reaching the surrounding normal brain tissue. This phenomenon, known as cerebrovascular steal, depends on the size of the AVM and is the most plausible explanation for the development of progressive neurological deficits. Cerebrovascular steal could translate into additional neurological complications developed as a result of cerebral ischemia or stroke in neuronal territories adjacent to an AVM (See, e.g., Manchola I.F. et al. Neurosurgery 1993; 33: 556-562; Hademenos G.J. and Massoud T.F. Stroke 1997; 28: 2067-2077).
[00119] The term“atherectomy”, as used herein, refers to a minimally invasive endovascular surgery technique for removing atherosclerosis from blood vessels within the body by cutting plaque from the walls of a blood vessel.
[00120] The term“atherosclerosis” (also known as“hardening of the arteries”), as used herein, refers to a pathological process in which calcified lipid or fatty deposits from flowing blood accumulate along the innermost intimal layer of a vessel wall. Atherosclerotic plaques are found almost exclusively at the outer wall of one or both daughter vessels at major arterial bifurcations, including the carotid. Atherosclerosis and the development of arterial plaques are the products of a host of independent biochemical processes including the oxidation of low-density lipoproteins, formation of fatty streaks, and the proliferation of smooth muscle cells. As the plaques form, the walls become thick, fibrotic, and calcified. As a result, the lumen narrows, reducing the flow of blood to the tissues supplied by the artery (See, e.g., Hademenos G.J. and Massoud T.F. Stroke 1997; 28: 2067-2077; Hademenos G.J. Am Scientist 1997; 85: 226-235; Woolf N., Davies M.J. Sci Am Science & Medicine 1994; 1 : 38-47).
[00121] Atherosclerotic deposits promote the development of blood clots or the process of thrombosis, due in part, to flow obstruction and to high shear stresses exerted on the vessel wall by the blood. High wall shear stress mechanically damages the inner wall of the artery, initiating a lesion. Low wall shear stress encourages the deposition of particles on the artery wall, promoting the accumulation of plaque. Turbulence has also been implicated in atherosclerotic disease because it can increase the kinetic energy deposited in the vessel walls and because it can lead to areas of stasis, or stagnant blood flow, that promote clotting. The presence of
atherosclerotic lesions introduces an irregular vessel surface, resulting in turbulent blood flow, thus causing the dislodgment of plaques of varying size into the bloodstream. Subsequently, the dislodged plaque lodges into a vessel of smaller size, preventing further passage of blood flow (See, e.g., Hademenos G J. and Massoud T.F. Stroke 1997; 28: 2067-2077).
[00122] The term“atresia”, as used herein, refers to the absence or abnormal narrowing of an opening or passage in the body. For example, aortic atresia refers to a rare congenital anomaly in which the aortic orifice is absent or closed.
[00123] The term“atrial fibrillation”, as used herein, refers to an irregular and often fast heart rate which may cause symptoms such as heart palpitations, fatigue, and shortness of breath.
Atrial fibrillation weakens the cardiac wall and introduces abnormalities in the physiological function of the heartbeat, which ultimately result in reduced systemic pressure, conditions of ischemia and stroke.
[00124] The term“brachiocephalic trunk”, also known as“innominate artery”, as used herein, refers to a major vessel that supplies the head, neck and right arm. It is the first of three main branches of the aortic arch, which originates from the upward convexity. After arising in the midline, it courses upwards to the right, crossing the trachea, and bifurcates posteriorly to the right sternoclavicular joint into the right subclavian and right common carotid arteries. It typically measures 4-5 cm in length with a diameter of approximately 12 mm.
[00125]The term“brain aneurysm”, as used herein, refers to a cerebrovascular disease that manifests as a pouching or ballooning of the vessel wall (i.e., vascular dilation). The vascular dilatation develops at a diseased site along the arterial wall into a distended sac of stressed and thinned arterial tissue. The fully developed cerebral aneurysm typically ranges in size from a few millimeters to 15 mm but can attain sizes greater than 2.5 cm. If left untreated, the aneurysm may continue to expand until it ruptures, causing hemorrhage, severe neurological complications and deficits, and possibly death (Hademenos G.J. and Massoud T.F. Stroke 1997; 28: 2067-2077; Hademenos G.J. Phys Today 1995; 48: 24-30).
[00126] The two main treatment options for a patient suffering from a brain aneurysm (i) surgical clipping; and (ii) endovascular coiling. Surgical clipping is an intracranial procedure in which a small metallic clip is placed along the neck of the aneurysm. The clip prevents blood from entering into the aneurysm sac so that it no longer poses a risk for bleeding. The clip remains in place, causing the aneurysm to shrink and permanently scar. Endovascular coiling is a minimally invasive technique in which a catheter is inserted into the femoral artery and navigated through the blood vessels to the vessels of the brain and into the aneurysm. Coils are then packed into the aneurysm to the point where it arises from the blood vessel, thus preventing blood flow from entering the aneurysm. Additional devices, such as a stent or balloon, for example, may be needed to keep the coils in place.
[00127] The term“branch”, as used herein, refers to something that extends from or enters into a main body or source; a division or offshoot from a main stem (e.g., blood vessels); one of the primary divisions of a blood vessel.
[00128] The term“coarctation” or“coarctation of the aorta”, as used herein, refers to a congenital narrowing of a short section of the aorta.
[00129] The terms“compound curves” and“multi-curves” are used interchangeably herein to refer to multiple deflection points along the length of a catheter. By way of example, two deflection points allow a catheter to be deflected into an“S” shape or the shape of a shepherd’s hook.
[00130] The term“conduit”, as used herein, refers to a tube through which passes.
[00131] The term“curve diameter”, as used herein, refers to the furthest distance a catheter moves from its straight axis as it is being deflected. The curve diameter does not always remain constant during deflection and does not necessarily indicate the location of the catheter tip.
[00132]The term“dilator”, as used herein, refers to a long, tapered device adapted stretch an opening in skin and/or to stretch a blood vessel to allow for insertion of a larger device, e.g., a sheath, catheter, etc.
[00133] The term“distal”, as used herein, refers to the state of being situated away from the interface or entry point of the device of the current invention and the patient.
[00134] The term“deflection”, as used herein, refers to movement of a catheter independent of the rest of the catheter.
[00135] The term“deployment point” refers to a location on the outside of the tube element of the invention, within the tube element of the invention, or inside of the tube element of the invention which is located within 6 cm of the edge of a side-hole and/or located at the end-hole, or within 3 cm of the end hole.
[00136] The term“embolus” (plural“emboli”), as used herein, refers to a gaseous particulate matter that acts as a traveling“clot”. A common example of an embolus is an aggregate dislodged from an atherosclerotic lesion. The dislodged platelet aggregate is transported by the bloodstream through the cerebrovasculature until it reaches a vessel too small for further propagation. The clot remains there, clogging the vessel and preventing blood flow from entering the distal vasculature. Emboli can originate from distant sources such as the heart, lungs, and peripheral circulation, which could eventually travel within the cerebral blood vessels, obstructing flow and causing stroke. Other sources of emboli include atrial fibrillation and valvular disease. The severity of stroke depends on the size of the embolus and the location of the obstruction. The bigger the embolus and the larger the vessel obstruction, the larger the territory of brain at risk (Hademenos G.J. and Massoud T.F. Stroke 1997; 28: 2067-2077).
[00137] The term“endoluminal”, as used herein, refers to the state of being within a tubular organ or structure (e.g., blood vessel, duct, gastrointestinal tract, etc.) or within a lumen. The term“lumen”, as used herein, refers to the inner open space or cavity of a tubular structure.
[00138] The term“French” (abbreviated“Fr” or“F” or“Ga” or“CH” or“Ch”), as used herein, is a system used to measure the diameter of a catheter. The French unit of measure is equivalent to three times the diameter in millimeters (mm). For example, 9 Fr is equivalent to a diameter of 3 mm.
[00139] The term“hemorrhage”, as used herein, refers to the escape of blood from ruptured blood vessel.
[00140] Blood vessels are typically structurally adept to withstand the dynamic quantities required to maintain circulatory function. For reasons that are not entirely understood, the vessel wall can become fatigued and abnormally weak and possibly rupture. With vessel rupture, hemorrhage occurs with blood seeping into the surrounding brain tissue. As the blood accumulates within the brain, the displaced volume causes the blood, now thrombosed, to ultimately compress the surrounding vessels. The compression of vessels translates into a reduced vessel diameter and a corresponding reduction in flow to surrounding tissue, thereby enlarging the insult (See, e.g., Hademenos GJ. and Massoud T.F. Stroke 1997; 28: 2067-2077).
[00141] In the brain, hemorrhage may occur at the brain surface (extraparenchymal), for example, from the rupture of congenital aneurysms at the circle of Willis, causing subarachnoid hemorrhage (SAH). Hemorrhage also may be intraparenchymal, for example, from rupture of vessels damaged by long-standing hypertension, and may cause a blood clot (intracerebral hematoma) within the cerebral hemispheres, in the brain stem, or in the cerebellum. Hemorrhage may be accompanied by ischemia or infarction. The mass effect of an intracerebral hematoma may compromise the blood supply of adjacent brain tissue; or SAH may cause reactive vasospasm of cerebral surface vessels, leading to further ischemic brain damage. Infarcted tissue may also become secondarily hemorrhagic. Among the vascular lesions that can lead to hemorrhagic strokes are aneurysms and arteriovenous malformations (AVMs) (See, e.g., Hademenos GJ. and Massoud T.F. Stroke 1997; 28: 2067-2077).
[00142] The term“hypoplasia”, as used herein, refers to a condition of arrested development in which an organ or other part of the body remains below the normal size or in an immature state, usually due to a deficiency in the number of cells; atrophy due to destruction of some of the elements and not merely to their general reduction in size.
[00143] The term“introducer”, as used herein, refers to an instrument such as a tube or sheath that is placed within a vein or artery for introduction of a flexible device, for example, a catheter, needle, wire, etc.
[00144] The term“inflatable balloon element”, as used herein, refers to a combination of balloons that may be used, and may be positioned along a length of the medical device, and adapted to be filled from the lumen of said device when an appropriately sized wire or catheter or device is inserted through the lumen; a combination thereof; inflatable balloon elements may be located proximal to the side-hole, distal to the side-hole, or at the side-hole. Inflatable balloon elements must be operated, using a channel which houses wires, tubes and other communicating means for inflating and deflating a balloon or more than one several balloon, including covering the use and deployment of two or more separate additional lumens adapted to fill and empty into two or more balloons positioned along a length of the medical device; the selective inflation of select balloons is effective to position the medical device in a desired position within the cross- sectional diameter of the vessel.
[00145]The term“kickback”, as used herein refers to the phenomenon of catheter prolapse (slipping forward or down) due to a counterforce against the catheter by the prolapsed coil tail. The counterforce may be due to a lack of available space to insert the last coil. This lack of space may be the result of, for example, a blood vessel variation such as a bovine arch variation, a vertebral artery variation, a thrombus, an embolus, an arteriovenous malformation and the like.
[00146] The term“medical device elements” means a catheter, a coil, a second catheter, and/or aother medical devices. For the purposes of the present invention a“second device” or second medical device refers to an anchoring device or any of the following devices; diagnostic catheter, a therapeutic catheter, a therapeutic balloon, a retrievable balloon, a therapeutic stent, a retrievable stent, a flow-diverting stent, a coil, a wire, an endoluminal mesh, an embolic agent, another medical device or a combination thereof. For the purposes of the present invention, references to a“third device” or third medical device means a diagnostic catheter, a therapeutic catheter, a therapeutic balloon, a retrievable balloon, a therapeutic stent, a retrievable stent, a flow-diverting stent, a coil, a wire, an endoluminal mesh, an embolic agent, another medical device or a combination thereof.
[00147] The term“proximal”, as used herein, refers to the state of being situated next to or nearest the point of attachment or origin.
[00148] The term“round” or“round segment”, refers a round element for ease of movement in the patient, relying on an anchoring element to keep the catheter in place, in distinction from the prior art which teaches a flat element to help secure a catheter in place.
[00149] The term“reperfusion”, as used herein, refers to restoration of the flow of blood to a previously ischemic organ or tissue (e.g., heart or brain).
[00150] The term“restenosis”, as used herein, refers to the recurrence of narrowing of a blood vessel (e.g., artery or vein) or valve.
[00151] The term“steerability”, as used herein, refers to an ability to turn or rotate the distal end of a catheter with like-for-like movement of the proximal section or the catheter
handle.
[00152] The term“supplemental support” refers to a stent, a retrievable stent, a balloon, a retrievable balloon, a wire or combination thereof; and that supplemental support may be incorporated into the medical device that provides added support and the incorporated supplemental support may be a stent, a retrievable stent, a balloon, a retrievable balloon, a wire or a combination thereof.
[00153] The term“taper”, as used herein, refers to the reduction of thickness toward end; the gradual diminution of width or thickness in an elongated object; i.e., to become more slender toward one end.
[00154]The term“thrombectomy”, as used herein, refers to the surgical excision of a thrombus.
[00155]The term“thrombus”, as used herein, refers to an internal physiological mechanism responsible for the clotting of blood. A thrombus is a blood clot, an aggregation of platelets and fibrin formed in response either to an atherosclerotic lesion or to vessel injury. In response to vessel or tissue injury, the blood coagulation system is activated, which initiates a cascade of processes, transforming prothrombin, ultimately resulting in a fibrin clot.
[00156] (Prothrombin > Thrombin >Fibrinogen > Fibrin > FibriirClot) (Se^e.g., Hademenos G.J. and Massoud T.F. Stroke 1997; 28: 2067-2077).
[00157] Although a host of mechanisms and causes are responsible for vessel injury, vessel injury can occur as a result of forces (e.g., shear stresses) coupled with excess energy created by the turbulent flow exerted against the inner (intimal) lining of the vessel wall, particularly an atherosclerotic vessel wall (See, e.g., Fry D.L. Circ Res. 1968; 22: 165-197; Stein P.D. and Sabbah H.N. Circ Res. 1974; 35: 608-614; Mustard J.F. et al. Am J Med. 1962; 33: 621- 647; Goldsmith H.L. et al. Thromb Haemost 1986; 55: 415-435).
[00158] The term“tortuosity” and other grammatical forms of the term“tortuous” herein is used as it is commonly understood to refer to a property of a tube, passage or blood vessel (e.g., an artery or a vein) being twisted, crooked or having many turns.
[00159] The term“vasospasm”, as used herein, refers to the sudden constriction of a blood vessel, reducing its diameter and flow rate. When bleeding occurs in the subarachnoid space, the arteries in the subarachnoid space can become spastic with a muscular contraction, known as cerebral vasospasm. The contraction from vasospasm can produce a focal constriction of sufficient severity to cause total occlusion. The length of time that the vessel is contracted during vasospasm varies from hours to days. However, regardless of the duration of vessel constriction, reduction of blood flow induces cerebral ischemia, thought to be reversible within the first 6 hours and irreversible thereafter. It has been shown that vasospasm is maximal between 5 and 10 days after subarachnoid hemorrhage and can occur up to 2 weeks after subarachnoid hemorrhage (See, e.g., Wilkins R.H. Contemp Neurosurg. 1988;10:1-66; Hademenos G.J. and Massoud T.F. Stroke 1997; 28: 2067-2077).
[00160] In the various views of the drawings, like reference characters designate like or similar parts.
[00161] Figures 1 and 2 show an exemplary and non-limiting example of some embodiments of the endovascular device 100 of the described invention. According to one possible configuration, Figure 1 illustrates a side view of the endovascular device 100 comprising a tube 130 comprising a bifurcation 180 at a first end and an opening 190 (also termed an“end-hole”) at a second end. The bifurcation 180 is located outside the body of the patient. Bifurcation 180 is comprised of a first branch which runs from entry-hole 140 to the junction of second branch 150 and tube 130, and a second branch 150 that runs from the tip of 150 to the tube 130. Bifurcation 180 is entirely outside the body of the patient with whom the device of the present invention has been inserted. The opening 190 is located at the location most proximal to entry-hole 140. In a typical embodiment End-hole 190 comprises a primary opening 160 and a secondary opening 170. In the preferred embodiment, end-hole 190 is composed completely of primary opening 160.
However, in an alternate embodiment, an additional lumen 170 (also termed a“second opening”) is present. The first branch and the primary opening form a working or non-support lumen 120. Working or non-support lumen 120 runs from entry hole 140 to side-hole 310. The second branch and the secondary opening form a support lumen 110. Support lumen runs from side- hole 310 to distal end-hole 190. According to some embodiments, an external termination device (e.g., Luer Lock) is attached to the proximal end of each lumen. In a preferred embodiment, the external termination device is located near the patient-catheter interface (entry point), preferably within 6 cm. Figure 2 illustrates a cross-sectional view 200 of the endovascular device 100 comprising a cross-sectional view of the primary opening 210 at the second end of the device and a cross-sectional view of the secondary opening 220 at the second end of the device. The external termination device may be a Luer Lock or a hub. The medical device of the preferred embodiments may be an intracranial endovascular device, a peripheral blood vessel endovascular device, or a cardiac blood vessel device]
[00162] The present invention, in some embodiments, employs valves inside tube 130. See Figure 1 showing valve 135 and valve 136 in cross-section. In the preferred embodiment of the present invention employing valves, valve 135 is located proximal to side-hole 310, and valve 136 proximal to end-hole 190. A valve near the side hole, i.e., within 6 cm of the edge of the side, is useful for controlling blood flow associated with the side hole; and a valve near the end hole (at the end-hole or within 6 cm of end-hole 190) is useful for controlling blood flow associated with the end-hole. In this configuration, once a wire is delivered, positioned and removed using the current invention, both valves 135 and 136 will close to prevent blood from entering the support lumen 110, thereby preventing blood from stagnating in said support lumen 110. Stagnation could result in the formation of blood clots and subsequent injury to the patient. In alternative embodiments of the present invention, more than one valve 135, 136 may be used simultaneously, including one valve at end-hole 190 and one valve at the side-hole 310, or one valve proximal to the side-hole 310 and one valve distal from the side-hole 310. [00163] The preferred embodiments of the present invention do not use pre-formed, curved configurations to keep the catheter in place as taught in the prior art. In the prior art, different pre-formed curved configurations are required for different target areas. Instead, the present invention teaches away from pre-formed curved configuration to facilitate each of positioning, increasing flexibility of use of the present invention due to the ability to use the same
configuration for all target areas.
[00164] According to some embodiments, the length of the working (or non-support) lumen 120 of the endovascular device ranges from about 20 cm to about 160 cm. According to
embodiments, the length of the working (or non-support) lumen 120 of the endovascular device ranges from about 20 cm to at least 160 cm. According to some embodiments, the length of the working (or non-support) lumen 120 of the endovascular device ranges from at least 20 cm to at least 160 cm. According to some embodiments, the length of the working (or non-support) lumen 120 of the endovascular device is about 20 cm. According to some embodiments, the length of the working (or non-support) lumen 120 of the endovascular device is about 25 cm. According to some embodiments, the length of the working (or non-support) lumen 120 of the endovascular device is about 30 cm. According to some embodiments, the length of the working (or nonsupport) lumen 120 of the endovascular device is about 35 cm. According to some embodiments, the length of the working (or non-support) lumen 120 of the endovascular device is about 40 cm. According to some embodiments, the length of the working (or non-support) lumen 120 of the endovascular device is about 45 cm. According to some embodiments, the length of the working (or non-support) lumen 120 of the endovascular device is about 50 cm. According to some embodiments, the length of the working (or non-support) lumen 120 of the endovascular device is about 55 cm. According to some embodiments, the length of the working (or non-support) lumen 120 of the endovascular device is about 60 cm. According to some embodiments, the length of the working (or non-support) lumen 120 of the endovascular device is at least 65 cm. According to some embodiments, the length of the working (or non-support) lumen 120 of the endovascular device is at least 70 cm. According to some embodiments, the length of the working (or non-support) lumen 120 of the endovascular device is at least 75 cm. According to embodiments, the length of the working (or non-support) lumen 120 of the endovascular device is at least 80 cm. According to some embodiments, the length of the working (or non-support) lumen 120 of the endovascular device is at least 85 cm. According to some embodiments, the length of the working (or non-support) lumen 120 of the endovascular device is at least 90 cm. According to some embodiments, the length of the working (or non-support) lumen 120 of the endovascular device is at least 95 cm. According to some embodiments, the length of the working (or non-support) lumen 120 of the endovascular device is at least 100 cm. According to some embodiments, the length of the working (or non-support) lumen 120 of the device is at least 105 cm. According to some embodiments, the length of the working (or non-support) lumen 120 of the endovascular device is at least 110 cm. According to some embodiments, the length of the working (or non-support) lumen 120 of the endovascular device is at least 115 cm. According to some embodiments, the length of the working (or non-support) lumen 120 of the endovascular device is at least 120 cm. According to some embodiments, the length of the working (or nonsupport) lumen 120 of the endovascular device is at least 125 cm. According to some embodiments, the length of the working (or non-support) lumen 120 of the endovascular device is at least 130 cm. According to some embodiments, the length of the working (or non-support) lumen 120 of the endovascular device is at least 135 cm. According to some embodiments, the length of the working (or non-support) lumen 120 of the endovascular device is at least 140 cm. According to some embodiments, the length of the working (or non-support) lumen 120 of the endovascular device is at least 145 cm. According to some embodiments, the length of the working (or non-support) lumen 120 of the endovascular device is at least 150 cm. According to some embodiments, the length of the working (or non-support) lumen 120 of the endovascular device is at least 155 cm. According to some embodiments, the length of the working (or nonsupport) lumen 120 of the endovascular device is at least 160 cm. According to some embodiments, the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device ranges from about 0.1 French (Fr) (0.001 inches) to about 30 French (Fr) (0.394 inches). According to some embodiments, the inner diameter (ID) of the working (or nonsupport) lumen 120 of the endovascular device ranges from about 0.1 French (Fr) (0.001 inches) to at least 30 French (Fr) (0.394 inches). According to some embodiments, the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device ranges from at least 0.1 French (Fr) (0.001 inches) to at least 30 French (Fr) (0.394 inches). According to some embodiments, the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device is at least 0.1 French (Fr) (0.001 inches). According to some embodiments, the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device is at least 0.2 French (Fr) (0.002 inches). According to some embodiments, the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device is at least 0.3 French (Fr) (0.003 inches). According to some embodiments, the inner diameter (ID) of the working (or nonsupport) lumen 120 of the endovascular device is at least 0.4 French (Fr) (0.005 inches).
According to some embodiments, the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device is at least 0.5 French (Fr) (0.007 inches). According to some embodiments, the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device is at least 0.6 French (Fr) (0.008 inches). According to some embodiments, the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device is at least 0.7 French (Fr) (0.009 inches). According to some embodiments, the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device is at least 0.8 French (Fr) (0.01 inches). According to some embodiments, the inner diameter (ID) of the working (or nonsupport) lumen 120 of the endovascular device is at least 0.9 French (Fr) (0.012 inches).
According to some embodiments, the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device is at least 1 French (Fr) (0.013 inches). According to some embodiments, the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device is at least 2 French (Fr) (0.026 inches). According to some embodiments, the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device is at least 3 French (Fr) (0.039 inches). According to some embodiments, the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device is at least 4 French (Fr) (0.052 inches). According to some embodiments, the inner diameter (ID) of the working (or nonsupport) lumen 120 of the endovascular device is at least 5 French (Fr) (0.066 inches). According to some embodiments, the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device is at least 6 French (Fr) (0.079 inches). According to some embodiments, the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device is at least 7 French (Fr) (0.092 inches). According to some embodiments, the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device is at least 8 French (Fr) (0.105 inches). According to some embodiments, the inner diameter (ID) of the working (or nonsupport) lumen 120 of the endovascular device is at least 9 French (Fr) (0.118 inches). According to some embodiments, the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device is at least 10 French (Fr) (0.131 inches). According to some embodiments, the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device is at least 11 French (Fr) (0.144 inches). According to some embodiments, the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device is at least 12 French (Fr) (0.157 inches). According to some embodiments, the inner diameter (ID) of the working (or nonsupport) lumen 120 of the endovascular device is at least 13 French (Fr) (0.171 inches).
According to some embodiments, the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device is at least 14 French (Fr) (0.184 inches). According to some embodiments, the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device is at least 15 French (Fr) (0.197 inches). According to some embodiments, the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device is at least 16 French (Fr) (0.210 inches). According to some embodiments, the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device is at least 17 French (Fr) (0.223 inches). According to some embodiments, the inner diameter (ID) of the working (or nonsupport) lumen 120 of the endovascular device is at least 18 French (Fr) (0.236 inches).
According to some embodiments, the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device is at least 19 French (Fr) (0.249 inches). According to some embodiments, the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device is at least 20 French (Fr) (0.262 inches). According to some embodiments, the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device is at least 21 French (Fr) (0.276 inches). According to some embodiments, the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device is at least 22 French (Fr) (0.289 inches). According to some embodiments, the inner diameter (ID) of the working (or nonsupport) lumen 120 of the endovascular device is at least 23 French (Fr) (0.302 inches).
According to some embodiments, the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device is at least 24 French (Fr) (0.315 inches). According to some embodiments, the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device is at least 25 French (Fr) (0.328 inches). According to some embodiments, the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device is at least 26 French (Fr) (0.341 inches). According to some embodiments, the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device is at least 27 French (Fr) (0.354 inches). According to some embodiments, the inner diameter (ID) of the working (or nonsupport) lumen 120 of the endovascular device is at least 28 French (Fr) (0.367 inches).
According to some embodiments, the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device is at least 29 French (Fr) (0.381 inches). According to some embodiments, the inner diameter (ID) of the working (or non-support) lumen 120 of the endovascular device is at least 30 French (Fr) (0.394 inches).
[00165] According to some embodiments, the length of the support lumen 110 of the
endovascular device ranges from about 100.1% to about 120% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device ranges from about 100.1% to at least 120% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device ranges from at least 100.1% to at least 120% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 100.1% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 100.2% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 100.3% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some
embodiments, the length of the support lumen 110 of the endovascular device is at least 100.4% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 100.5% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 100.6% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the
endovascular device is at least 100.7% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 100.8% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 100.9% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 101% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 101.1% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some
embodiments, the length of the support lumen 110 of the endovascular device is at least 101.2% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 101.3% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 101.4% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the
endovascular device is at least 101.5% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 101.6% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 101.7% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 101.8% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some
embodiments, the length of the support lumen 110 of the endovascular device is at least 101.9% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 102% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 102.1% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the
endovascular device is at least 102.2% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 102.3% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 102.4% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 102.5% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some
embodiments, the length of the support lumen 110 of the endovascular device is at least 102.6% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 102.7% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 102.8% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 102.9% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some
embodiments, the length of the support lumen 110 of the endovascular device is at least 103% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 103.1% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 103.2% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the
endovascular device is at least 103.3% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 103.4% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 103.5% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 103.6% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some
embodiments, the length of the support lumen 110 of the endovascular device is at least 103.7% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 103.8% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 103.9% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the
endovascular device is at least 104% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 104.1% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 104.2% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 104.3% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some
embodiments, the length of the support lumen 110 of the endovascular device is at least 104.4% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some
embodiments, the length of the support lumen 110 of the endovascular device is at least 104.5% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 104.6% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 104.7% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the
endovascular device is at least 104.8% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 104.9% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 105% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 105.1% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some
embodiments, the length of the support lumen 110 of the endovascular device is at least 105.2% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 105.3% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 105.4% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the
endovascular device is at least 105.5% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 105.6% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 105.7% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 105.8% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some
embodiments, the length of the support lumen 110 of the endovascular device is at least 105.9% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 106% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 106.1% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the
endovascular device is at least 106.2% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 106.3% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 106.4% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 106.5% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some
embodiments, the length of the support lumen 110 of the endovascular device is at least 106.6% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 106.7% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 106.8% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the
endovascular device is at least 106.9% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 107% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 107.1% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 107.2% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some
embodiments, the length of the support lumen 110 of the endovascular device is at least 107.3% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 107.4% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 107.5% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the
endovascular device is at least 107.6% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 107.7% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 107.8% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 107.9% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some
embodiments, the length of the support lumen 110 of the endovascular device is at least 108% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 108.1% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 108.2% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the
endovascular device is at least 108.3% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 108.4% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 108.5% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 108.6% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some
embodiments, the length of the support lumen 110 of the endovascular device is at least 108.7% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 108.8% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 108.9% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the
endovascular device is at least 109% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 109.1% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 109.2% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 109.3% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 109.4% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 109.5% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 109.6% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the
endovascular device is at least 109.7% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 109.8% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 109.9% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 110% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 110.1% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some
embodiments, the length of the support lumen 110 of the endovascular device is at least 110.2% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 110.3% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 110.4% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the
endovascular device is at least 110.5% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 110.6% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 110.7% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 110.8% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some
embodiments, the length of the support lumen 110 of the endovascular device is at least 110.9% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 111% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 111.1% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the
endovascular device is at least 111.2% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 111.3% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 111.4% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 111.5% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some
embodiments, the length of the support lumen 110 of the endovascular device is at least 111.6% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 111.7% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 111.8% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the
endovascular device is at least 111.9% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 112% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 112.1% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 112.2% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some
embodiments, the length of the support lumen 110 of the endovascular device is at least 112.3% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 112.4% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 112.5% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the
endovascular device is at least 112.6% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 112.7% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 112.8% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 112.9% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some
embodiments, the length of the support lumen 110 of the endovascular device is at least 113% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 113.1% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 113.2% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 113.3% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 113.4% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 113.5% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 113.6% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some
embodiments, the length of the support lumen 110 of the endovascular device is at least 113.7% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 113.8% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 113.9% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the
endovascular device is at least 114% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 114.1% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 114.2% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 114.3% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some
embodiments, the length of the support lumen 110 of the endovascular device is at least 114.4% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 110.5% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 114.6% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the
endovascular device is at least 114.7% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 114.8% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 114.9% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 115% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 115.1% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some
embodiments, the length of the support lumen 110 of the endovascular device is at least 115.2% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 115.3% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 115.4% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the
endovascular device is at least 115.5% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 115.6% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 115.7% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 115.8% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 115.9% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 116% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 116.1% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the
endovascular device is at least 116.2% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 116.3% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 116.4% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 116.5% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some
embodiments, the length of the support lumen 110 of the endovascular device is at least 116.6% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 116.7% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 116.8% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the
endovascular device is at least 116.9% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 117% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 117.1% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 117.2% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some
embodiments, the length of the support lumen 110 of the endovascular device is at least 117.3% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 117.4% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 117.5% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the
endovascular device is at least 117.6% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 117.7% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 117.8% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 117.9% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some
embodiments, the length of the support lumen 110 of the endovascular device is at least 118% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 118.1 % of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 118.2% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the
endovascular device is at least 118.3% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 118.4% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 118.5% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 118.6% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some
embodiments, the length of the support lumen 110 of the endovascular device is at least 118.7% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 118.8% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 118.9% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the
endovascular device is at least 119% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 119.1% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 119.2% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 119.3% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some
embodiments, the length of the support lumen 110 of the endovascular device is at least 119.4% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 119.5% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 119.6% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the
endovascular device is at least 119.7% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 119.8% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 119.9% of the length of the working (or non-support) lumen 120 of the endovascular device. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 120% of the length of the working (or non-support) lumen 120 of the endovascular device.
[00166] According to some embodiments, the length of the support lumen 110 of the endovascular device ranges from about 90.05 cm to about 200 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device ranges from about 90.05 cm to at least 200 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device ranges from at least 90.05 cm to at least 200 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 90.05 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 90.1 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 90.2 cm. According to some
embodiments, the length of the support lumen 110 of the endovascular device is at least 90.3 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 90.4 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 90.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 90.6 cm. According to some
embodiments, the length of the support lumen 110 of the endovascular device is at least 90.7 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 90.8 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 90.9 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 91 cm. According to some
embodiments, the length of the support lumen 110 of the endovascular device is at least 91.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 92 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 92.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 93 cm. According to some
embodiments, the length of the support lumen 110 of the endovascular device is at least 93.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 94 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 94.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 95 cm. According to some
embodiments, the length of the support lumen 110 of the endovascular device is at least 95.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 96 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 96.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 97 cm. According to some
embodiments, the length of the support lumen 110 of the endovascular device is at least 97.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 98 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 98.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 99 cm. According to some
embodiments, the length of the support lumen 110 of the endovascular device is at least 99.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 100 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 100.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 101 cm. According to some
embodiments, the length of the support lumen 110 of the endovascular device is at least 101.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 102 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 102.5 cm. According to some embodiments, the support lumen 110 of the endovascular device is at least 103 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 103.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 104 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 104.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 105 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 105.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 106 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 106.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 107 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 107.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 108 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 108.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 109 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 109.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 110 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 110.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 111 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 111.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 112 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 112.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 113 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 113.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 114 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 115 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 115.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 116 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 116.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 117 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 117.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 118 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 118.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 119 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 119.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 120 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 120.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 121 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 121.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 122 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 122.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 123 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 123.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 124 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 124.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 125 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 125.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 126 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 127 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 127.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 128 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 128.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 129 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 129.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 130 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 130.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 131 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 131.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 132 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 132.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 133 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 133.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 134 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 134.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 135 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 135.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 136 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 136.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 137 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 137.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 138 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 139 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 139.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 140 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 140.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 141 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 141.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 142 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 142.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 143 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 143.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 144 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 144.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 145 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 145.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 146 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 146.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 147 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 147.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 148 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 148.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 149 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 149.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 150 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 151 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 151.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 152 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 152.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 153 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 153.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 154 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 154.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 155 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 155.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 156 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 156.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 157 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 157.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 158 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 158.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 159 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 159.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 160 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 160.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 161 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 161.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 162 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 163 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 163.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 164 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 164.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 165 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 165.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 166 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 166.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 167 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 167.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 168 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 168.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 169 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 169.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 170 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 170.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 171 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 171.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 172 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 172.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 173 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 173.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 174 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 175 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 175.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 176 cm. According to some
embodiments, the length of the support lumen 110 of the endovascular device is at least 176.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 177 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 177.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 178 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 178.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 179 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 179.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 180 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 180.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 181 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 181.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 182 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 182.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 183 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 183.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 184 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 184.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 185 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 185.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 186 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 187 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 187.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 188 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 188.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 189 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 189.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 190 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 190.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 191 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 191.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 192 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 192.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 193 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 193.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 194 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 194.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 195 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 195.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 196 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 196.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 197 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 197.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 198 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 199 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 199.5 cm. According to some embodiments, the length of the support lumen 110 of the endovascular device is at least 200 cm.
[00167] According to some embodiments, the support lumen 110 of the endovascular device comprises an inflatable balloon. According to some embodiments, the inflatable balloon is attached to the distal portion of the support lumen 110 of the endovascular device, to some embodiments, the inflatable balloon is attached to a device separate from the endovascular device 100. According to some embodiments, the separate device is a lumen of an inflatable balloon catheter. According to some embodiments, the lumen of the inflatable balloon catheter comprises an external termination device (e.g., Luer Lock) on its proximal end. According to some embodiments, the device separate from the endovascular device 100 is capable of being advanced into a blood vessel through the support lumen 110 of the endovascular device.
According to some embodiments, the inflatable balloon anchors the support lumen 110 of the endovascular device to a blood vessel. According to some embodiments, the blood vessel is an artery. According to some embodiments, the blood vessel is a vein.
[00168] According to some embodiments, the support lumen 110 of the endovascular device comprises a stent. According to some embodiments, the stent provides additional support to the endovascular device 100.
[00169] According to some embodiments, the stent is retrievable. According to some embodiments, the retrievable stent is attached to the distal portion of the support lumen 110 of the endovascular device. According to some embodiments, the retrievable stent is attached to a device separate from the endovascular device 100. According to some embodiments, the separate device is capable of being advanced into a blood vessel through the support lumen 110 of the endovascular device. According to some embodiments, the retrievable stent anchors the support lumen 110 of the endovascular device to a blood vessel. According to some embodiments, the blood vessel is an artery. According to some embodiments, the blood vessel is a vein.
[00170] According to some embodiments, the shape of the support lumen 110 is an“S” shape. According to some embodiments, the“S” shape is a shepherd’s hook shape. Figure 6 shows an exemplary and non-limiting example of some embodiments of“S”-shaped support lumen 610.
[00171] According to some embodiments, the“S”-shaped support lumen 610 can be used to access difficult innominate arteries; to subsequently access the right common carotid artery and its distal branches; and/or to subsequently access the right subclavian artery and/or its branches. By way of non-limiting example, in a subject with an overgrown, tortuous and/or long aortic arch, and/or an elongated, straightened and/or tortuous innominate artery, the“S”-shaped support lumen 610 can be used to distally access the right subclavian artery and right common carotid artery. According to some embodiments, the“S”-shaped support lumen 610 can be used at least at the intracranial carotid terminus.
[00172] According to some embodiments, the“S” shape is a pre-shaped configuration.
According to some embodiments, the“S”-shaped support lumen 610 is inserted into the body of a subject in a straight configuration and is subsequently re-shaped into a pre-shaped“S” configuration. According to some embodiments, the“S”-shaped support lumen 610 is inserted into the body of a subject in a straight configuration, into the aortic arch in a straight
configuration, and the distal portion 630 of the“S”-shaped support lumen 610 curves back across the aortic arch to provide support for the endovascular device 100 to facilitate placement of the endovascular device 100, to anchor the endovascular device 100 within a blood vessel, to prevent kickback of the endovascular device 100, or a combination thereof (Figure 7). According to some embodiments, the“S”-shaped support lumen 610 is inserted into the body of a subject in a straight configuration, into the aortic arch in a straight configuration, and the distal portion 630 of the“S”-shaped support lumen 610 curves back across the aortic arch and down the descending aorta to provide support for the endovascular device 100, to facilitate placement of the endovascular device 100, to anchor the endovascular device 100 within a blood vessel, to prevent kickback of the endovascular device 100, or a combination thereof (Figure 7). According to some embodiments, the placement of the endovascular device 100 is with the primary opening (end hole) 160 positioned at the origin of the innominate artery.
[00173] According to some embodiments, the“S”-shaped support lumen 610 comprises shape memory polymer (SMP). Shape memory polymers include, but are not limited to methacrylates, polyurethanes, blends of polystyrene and polyurethane, and polyvinylchloride. According to some embodiments, the“S”-shaped support lumen 610 comprises a shape memory alloy (SMA). Non-limiting examples of shape memory alloys include nickel-titanium (i.e., nitinol).
[00174] According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 4% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 4.5% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 5% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 5.5% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”- shaped support lumen 610 is at least 6% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 6.5% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 7% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 7.5% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 8% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 8.5% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 9% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”- shaped support lumen 610 is at least 9.5% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 10% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 20% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 30% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 40% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 50% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 60% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 70% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 80% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 90% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 100% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 110% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 120% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 130% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 140% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 150% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 160% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 170% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 180% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”- shaped support lumen 610 is at least 190% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 200% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 210% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 220% longer than the length of the working (or non-support) lumen 120. According to some“S”-shaped support lumen 610 is at least 230% longer than the length of the working (or non-support) lumen 120.
According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 240% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 250% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 260% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 270% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 280% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 290% longer than the length of the working (or non-support) lumen 120. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 300% longer than the length of the working (or non-support) lumen 120.
[00175] According to some embodiments, the“S”-shaped support lumen 610 comprises a curve diameter 620. According to some embodiments, the curve diameter ranges from about 1 mm to about 10 cm. According to some embodiments, the curve diameter ranges from about 1 mm to at least 10 cm. According to some embodiments, the curve diameter ranges from at least 1 mm to at least 10 cm. According to some embodiments, the curve diameter is at least 1 mm. According to some embodiments, the curve diameter is at least 2 mm. According to some embodiments, the curve diameter is at least 3 mm. According to some embodiments, the curve diameter is at least 4 mm. According to some embodiments, the curve diameter is at least 5 mm. According to some embodiments, the curve diameter is at least 6 mm. According to some embodiments, the curve diameter is at least 7 mm. According to some embodiments, the curve diameter is at least 8 mm. According to some embodiments, the curve diameter is at least 9 mm. According to some embodiments, the curve diameter is at least 1 cm. According to some embodiments, the curve diameter is at least 2 cm. According to some embodiments, the curve diameter is at least 3 cm. According to some embodiments, the curve diameter is at least 4 cm. According to some embodiments, the curve diameter is at least 5 cm. According to some embodiments, the curve diameter is at least 6 cm. According to some embodiments, the curve diameter is at least 7 cm. According to some embodiments, the curve diameter is at least 8 cm. According to some embodiments, the curve diameter is at least 9 cm. According to some embodiments, the curve diameter is at least 10 cm.
[00176] According to some embodiments, the first branch 140 comprises a luer lock on its proximal end. According to some embodiments, the second branch 150 comprises a luer lock on its proximal end.
[00177] Figure 3 shows an exemplary and non-limiting example of some embodiments of the endovascular device 300 of the described invention. According to another possible configuration, Figure 3 illustrates a side view of the endovascular device 300 comprising a tube comprising a side-hole 310. The side-hole 310 divides the endovascular device 300 into two (2) segments: a first segment 320 and a second segment 330. The first segment 320 comprises a primary opening 340. The first segment 320 extends from the primary opening 340 to the side-hole 310. The side- hole 310 and the first segment 320 form a working lumen. The second segment 330 extends from the side-hole 310 and tapers (i.e., decreases in diameter) to an end or tip 350. The inner diameter of said end 350 comprises end hole 160.
[00178] According to some embodiments, the second segment 330 forms a support lumen. In a preferred embodiment of the present invention, it is significant that the internal diameter of the first segment is greater than the internal diameter of second lumen. In particular, the prior art teaches the use of constant internal lumen diameter to help keep device in place, whereas the present invention teaches internal diameter of the first segment to be greater than the internal diameter of the second lumen to allow better anchoring options in smaller side vessels.
[00179] According to some embodiments, the endovascular device 300 is an endovascular device.
[00180] According to some embodiments, the length of the working lumen formed by the side- hole 310 and the first segment 320 of the endovascular device ranges from about 20 cm to about 160 cm. According to some embodiments, the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device ranges from about 20 cm to at least 160 cm. According to some embodiments, the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device ranges from at least 20 cm to at least 160 cm. According to some embodiments, the length of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 20 cm. According to some embodiments, the length of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 25 cm. According to some embodiments, the length of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 30 cm. According to some embodiments, the length of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 35 cm.
According to some embodiments, the length of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 40 cm. According to some embodiments, the length of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 45 cm. According to some embodiments, the length of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 50 cm. According to some embodiments, the length of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 55 cm. According to some embodiments, the length of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 60 cm. According to some embodiments, the length of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 65 cm. According to some embodiments, the length of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 70 cm. According to some embodiments, the length of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 75 cm. According to some embodiments, the length of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 80 cm. According to some embodiments, the length of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 85 cm. According to some embodiments, the length of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 90 cm. According to some embodiments, the length of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 95 cm. According to some embodiments, the length of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 100 cm. According to some embodiments, the length of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 105 cm. According to some embodiments, the length of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 110 cm. According to some embodiments, the length of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 115 cm. According to some embodiments, the length of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 120 cm. According to some embodiments, the length of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 125 cm. According to some embodiments, the length of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 130 cm. According to some embodiments, the length of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 135 cm. According to some embodiments, the length of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 140 cm. According to some embodiments, the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 145 cm. According to some embodiments, the length of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 150 cm. According to some embodiments, the length of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 155 cm.
According to some embodiments, the length of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 160 cm.
[00181] According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device ranges from about 0.1 French (Fr) (0.001 inches) to about 30 French (Fr) (0.394 inches). According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device ranges from about 0.1 French (Fr) (0.001 inches) to at least 30 French (Fr) (0.394 inches). According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device ranges from at least 0.1 French (Fr) (0.001 inches) to at least 30 French (Fr) (0.394 inches). According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 0.1 French (Fr) (0.001 inches). According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 0.2 French (Fr) (0.003 inches). According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 0.3 French (Fr) (0.004 inches). According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 0.4 French (Fr) (0.005 inches). According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 0.5 French (Fr) (0.007 inches). According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 0.6 French (Fr) (0.008 inches). According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 0.7 French (Fr) (0.009 inches). According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 0.8 French (Fr) (0.01 inches). According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 0.9 French (Fr) (0.012 inches). According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 1 French (Fr) (0.013 inches). According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 2 French (Fr) (0.026 inches). According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 3 French (Fr) (0.039 inches). According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 4 French (Fr) (0.052 inches). According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 5 French (Fr) (0.066 inches). According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 6 French (Fr) (0.079 inches). According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 7 French (Fr)
(0.092 inches). According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 8 French (Fr) (0.105 inches). According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 9 French (Fr) (0.118 inches). According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 10 French (Fr) (0.131 inches). According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 11 French (Fr) (0.144 inches). According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 12 French (Fr) (0.157 inches). According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 13 French (Fr) (0.171 inches). According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 14 French (Fr) (0.184 inches). According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 15 French (Fr) (0.197 inches). According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 16 French (Fr) (0.210 inches). According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 17 French (Fr) (0.223 inches). According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 18 French (Fr) (0.236 inches). According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 19 French (Fr) (0.249 inches). According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 20 French (Fr) (0.262 inches). According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 21 French (Fr) (0.276 inches). According to some embodiments, the inner (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 22 French (Fr) (0.289 inches). According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 23 French (Fr) (0.302 inches). According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 24 French (Fr) (0.315 inches). According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 25 French (Fr) (0.328 inches). According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 26 French (Fr) (0.341 inches). According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 27 French (Fr) (0.354 inches). According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 28 French (Fr) (0.367 inches). According to some embodiments, the inner (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 29 French (Fr) (0.381 inches). According to some embodiments, the inner diameter (ID) of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device is at least 30 French (Fr) (0.394 inches).
[00182] According to some embodiments, the length of the support lumen 330 of the endovascular device ranges from about 0.01% to about 20% of the length formed by the side hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device ranges from about 0.01% to at least 20% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the
endovascular device ranges from at least 0.01% to at least 20% of the length formed by the side- hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 0.1% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 0.2% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the
endovascular device is at least 0.3% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 0.4% of the length formed by the side- hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 0.5% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 0.6% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the
endovascular device is at least 0.7% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 0.8% of the length formed by the side- hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 0.9% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 1% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the
endovascular device is at least 1.1% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 1.2% of the length formed by the side- hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 1.3% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 1.4% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 1.5% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 1.6% of the length formed by the side- hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 1.7% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 1.8% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the
endovascular device is at least 1.9% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 2% of the length formed by the side- hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 2.1% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 2.2% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the
endovascular device is at least 2.3% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 2.4% of the length formed by the side- hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 2.5% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 2.6% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 2.7% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 2.8% of the length formed by the side- hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 2.9% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 3% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the
endovascular device is at least 3.1 % of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 3.2% of the length formed by the side- hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 3.3% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 3.4% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the
endovascular device is at least 3.5% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 3.6% of the length formed by the side- hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 3.7% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 3.8% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the
endovascular device is at least 3.9% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 4% of the length formed by the side- hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 4.1% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 4.2% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the
endovascular device is at least 4.3% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 4.4% of the length formed by the side- hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 4.5% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 4.6% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the
endovascular device is at least 4.7% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 4.8% of the length formed by the side- hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 4.9% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 5% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the
endovascular device is at least 5.1 % of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 5.2% of the length formed by the side- hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 5.3% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 5.4% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the
endovascular device is at least 5.5% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 5.6% of the length formed by the side- hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 5.7% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 5.8% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the
endovascular device is at least 5.9% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 6% of the length formed by the side- hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 6.1% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 6.2% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the
endovascular device is at least 6.3% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 6.4% of the length formed by the side- hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 6.5% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 6.6% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the
endovascular device is at least 6.7% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 6.8% of the length formed by the side- hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 6.9% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 7% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the
endovascular device is at least 7.1% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 7.2% of the length formed by the side- hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 7.3% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 7.4% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the
endovascular device is at least 7.5% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 7.6% of the length formed by the side- hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 7.7% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 7.8% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the
endovascular device is at least 7.9% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 8% of the length formed by the side- hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 8.1% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 8.2% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the
endovascular device is at least 8.3% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 8.4% of the length formed by the side- hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 8.5% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 8.6% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the
endovascular device is at least 8.7% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 8.8% of the length formed by the side- hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 8.9% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 9% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the
endovascular device is at least 9.1 % of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 9.2% of the length formed by the side- hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 9.3% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 9.4% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the
endovascular device is at least 9.5% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 9.6% of the length formed by the side- hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 9.7% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 9.8% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the
endovascular device is at least 9.9% of the length formed by the side-hole 310 and the first segment 320 of the endovascular device. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 10% of the length formed by the side- hole 310 and the first segment 320 of the endovascular device.
[00183] According to some embodiments, the length of the support lumen 330 of the endovascular device ranges from about 0.05 cm to about 32 cm. According to embodiments, the length of the support lumen 330 of the endovascular device ranges from about 0.05 cm to at least 32 cm. According to some embodiments, the length of the support lumen 330 of the
endovascular device ranges from at least 0.05 cm to at least 32 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 0.05 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 0.1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 0.2 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 0.3 cm. According to some
embodiments, the length of the support lumen 330 of the endovascular device is at least 0.4 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 0.5 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 0.6 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 0.7 cm. According to some
embodiments, the length of the support lumen 330 of the endovascular device is at least 0.8 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 0.9 cm. According to some embodiments, the length of the support lumen 330 endovascular device is at least 1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 1.1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 1.2 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 1.3 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 1.4 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 1.5 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 1.6 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 1.7 cm.
According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 1.8 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 1.9 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 2 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 2.1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 2.2 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 2.3 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 2.4 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 2.5 cm. According to some
embodiments, the length of the support lumen 330 of the endovascular device is at least 2.6 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 2.7 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 2.8 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 2.9 cm. According to some
embodiments, the length of the support lumen 330 of the endovascular device is at least 3 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 3.1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 3.2 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 3.3 cm. According to some
embodiments, the length of the support lumen 330 of the endovascular device is at least 3.4 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 3.5 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 3.6 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 3.7 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 3.8 cm.
According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 3.9 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 4 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 4.1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 4.2 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 4.3 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 4.4 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 4.5 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 4.6 cm. According to some
embodiments, the length of the support lumen 330 of the endovascular device is at least 4.7 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 4.8 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 4.9 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 5 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 5.1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 5.2 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 5.3 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 5.4 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 5.5 cm. According to some
embodiments, the length of the support lumen 330 of the endovascular device is at least 5.6 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 5.7 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 5.8 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 5.9 cm. According to some
embodiments, the length of the support lumen 330 of the endovascular device is at least 6 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 6.1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 6.2 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 6.3 cm. According to some
embodiments, the length of the support lumen 330 of the endovascular device is at least 6.4 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 6.5 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 6.6 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 6.7 cm. According to some
embodiments, the length of the support lumen 330 of the endovascular device is at least 6.8 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 6.9 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 7 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 7.1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 7.2 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 7.3 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 7.4 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 7.5 cm. According to some embodiment, the length of the support lumen 330 of the endovascular device is at least 7.6 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 7.7 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 7.8 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 7.9 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 8 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 8.1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 8.2 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 8.3 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 8.4 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 8.5 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 8.6 cm. According to some
embodiments, the length of the support lumen 330 of the endovascular device is at least 8.7 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 8.8 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 8.9 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 9 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 9 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 9.1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 9.2 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 9.3 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 9.4 cm. According to some
embodiments, the length of the support lumen 330 of the endovascular device is at least 9.5 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 9.6 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 9.7 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 9.8 cm. According to some
embodiments, the length of the support lumen 330 of the endovascular device is at least 9.9 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 10 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 10.1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 10.2 cm. According to some
embodiments, the length of the support lumen 330 of the endovascular device is at least 10.3 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 10.4 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 10.5 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 10.6 cm. According to some
embodiments, the length of the support lumen 330 of the endovascular device is at least 10.7 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 10.8 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 10.9 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 11 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 11.1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 11.2 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 11.3 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 11.4 cm. According to some
embodiments, the length of the support lumen 330 of the endovascular device is at least 11.5 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 11.6 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 11.7 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 11.8 cm. According to some
embodiments, the length of the support lumen 330 of the endovascular device is at least 11.9 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 12 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 12.1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 12.2 cm. According to some
embodiments, the length of the support lumen 330 of the endovascular device is at least 12.3 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 12.4 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 12.5 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 12.6 cm. According to some
embodiments, the length of the support lumen 330 of the endovascular device is at least 12.7 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 12.8 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 12.9 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 13 cm. According to some
embodiments, the length of the support lumen 330 of the endovascular device is at least 13.1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 13.2 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 13.3 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 13.4 cm. According to some
embodiments, the length of the support lumen 330 of the endovascular device is at least 13.5 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 13.6 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 13.7 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 13.8 cm. According to some
embodiments, the length of the support lumen 330 of the endovascular device is at least 13.9 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 14 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 14.1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 14.2 cm. According to some
embodiments, the length of the support lumen 330 of the endovascular device is at least 14.3 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 14.4 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 14.5 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 14.6 cm. According to some
embodiments, the length of the support lumen 330 of the endovascular device is at least 14.7 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 14.8 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 14.9 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 15 cm. According to some
embodiments, the length of the support lumen 330 of the endovascular device is at least 15.1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 15.2 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 15.3 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 15.4 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 15.5 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 15.6 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 15.7 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 15.8 cm. According to some
embodiments, the length of the support lumen 330 of the endovascular device is at least 15.9 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 16 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 16.1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 16.2 cm. According to some
embodiments, the length of the support lumen 330 of the endovascular device is at least 16.3 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 16.4 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 16.5 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 16.6 cm. According to some
embodiments, the length of the support lumen 330 of the endovascular device is at least 16.7 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 16.8 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 16.9 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 17 cm. According to some
embodiments, the length of the support lumen 330 of the endovascular device is at least 17.1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 17.2 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 17.3 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 17.4 cm. According to some
embodiments, the length of the support lumen 330 of the endovascular device is at least 17.5 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 17.6 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 17.7 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 17.8 cm. According to some
embodiments, the length of the support lumen 330 of the endovascular device is at least 17.9 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 18 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 18.1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 18.2 cm. According to some
embodiments, the length of the support lumen 330 of the endovascular device is at least 18.3 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 18.4 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 18.5 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 18.6 cm. According to some
embodiments, the length of the support lumen 330 of the endovascular device is at least 18.7 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 18.8 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 18.9 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 19 cm. According to some
embodiments, the length of the support lumen 330 of the endovascular device is at least 19.1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 19.2 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 19.3 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 19.4 cm. According to some
embodiments, the length of the support lumen 330 of the endovascular device is at least 19.5 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 19.6 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 19.7 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 19.8 cm. According to some
embodiments, the length of the support lumen 330 of the endovascular device is at least 19.9 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 20 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 20.1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 20.2 cm. According to some
embodiments, the length of the support lumen 330 of the endovascular device is at least 20.3 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 20.4 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 20.5 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 20.6 cm. According to some
embodiments, the length of the support lumen 330 of the endovascular device is at least 20.7 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 20.8 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 20.9 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 21 cm. According to some
embodiments, the length of the support lumen 330 of the endovascular device is at least 21.1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 21.2 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 21.3 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 21.4 cm. According to some
embodiments, the length of the support lumen 330 of the endovascular device is at least 21.5 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 21.6 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 21.7 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 21.8 cm. According to some
embodiments, the length of the support lumen 330 of the endovascular device is at least 21.9 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 22 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 22.1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 22.2 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 22.3 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 22.4 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 22.5 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 22.6 cm. According to some
embodiments, the length of the support lumen 330 of the endovascular device is at least 22.7 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 22.8 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 22.9 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 23 cm. According to some
embodiments, the length of the support lumen 330 of the endovascular device is at least 23.1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 23.2 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 23.3 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 23.4 cm. According to some
embodiments, the length of the support lumen 330 of the endovascular device is at least 23.5 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 23.6 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 23.7 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 23.8 cm. According to some
embodiments, the length of the support lumen 330 of the endovascular device is at least 23.9 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 24 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 24.1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 24.2 cm. According to some
embodiments, the length of the support lumen 330 of the endovascular device is at least 24.3 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 24.4 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 24.5 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 24.6 cm. According to some
embodiments, the length of the support lumen 330 of the endovascular device is at least 24.7 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 24.8 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 24.9 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 25 cm. According to some
embodiments, the length of the support lumen 330 of the endovascular device is at least 25.1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 25.2 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 25.3 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 25.4 cm. According to some
embodiments, the length of the support lumen 330 of the endovascular device is at least 25.5 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 25.6 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 25.7 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 25.8 cm. According to some
embodiments, the length of the support lumen 330 of the endovascular device is at least 25.9 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 26 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 26.1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 26.2 cm. According to some
embodiments, the length of the support lumen 330 of the endovascular device is at least 26.3 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 26.4 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 26.5 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 26.6 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 26.7 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 26.8 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 26.9 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 27 cm. According to some
embodiments, the length of the support lumen 330 of the endovascular device is at least 27.1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 27.2 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 27.3 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 27.4 cm. According to some
embodiments, the length of the support lumen 330 of the endovascular device is at least 27.5 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 27.6 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 27.7 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 27.8 cm. According to some
embodiments, the length of the support lumen 330 of the endovascular device is at least 27.9 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 28 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 28.1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 28.2 cm. According to some
embodiments, the length of the support lumen 330 of the endovascular device is at least 28.3 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 28.4 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 28.5 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 28.6 cm. According to some
embodiments, the length of the support lumen 330 of the endovascular device is at least 28.7 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 28.8 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 28.9 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 29 cm. According to some
embodiments, the length of the support lumen 330 of the endovascular device is at least 29.1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 29.2 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 29.3 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 29.4 cm. According to some
embodiments, the length of the support lumen 330 of the endovascular device is at least 29.5 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 29.6 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 29.7 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 29.8 cm. According to some
embodiments, the length of the support lumen 330 of the endovascular device is at least 29.9 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 30 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 30.1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 30.2 cm. According to some
embodiments, the length of the support lumen 330 of the endovascular device is at least 30.3 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 30.4 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 30.5 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 30.6 cm. According to some
embodiments, the length of the support lumen 330 of the endovascular device is at least 30.7 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 30.8 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 30.9 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 31 cm. According to some
embodiments, the length of the support lumen 330 of the endovascular device is at least 31.1 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 31.2 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 31.3 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 31.4 cm. According to some
embodiments, the length of the support lumen 330 of the endovascular device is at least 31.5 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 31.6 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 31.7 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 31.8 cm. According to some
embodiments, the length of the support lumen 330 of the endovascular device is at least 31.9 cm. According to some embodiments, the length of the support lumen 330 of the endovascular device is at least 32 cm.
[00184] According to some embodiments, the support lumen 330 of the endovascular device comprises an inflatable balloon. According to some embodiments, the inflatable balloon is attached to the distal portion of the support lumen 330 of the endovascular device. According to some embodiments, the inflatable balloon is attached proximal to the side-hole 310. According to some embodiments, the inflatable balloon is attached distal to the side-hole 310. According to some embodiments, the inflatable balloon is attached opposite the side-hole 310. According to some embodiments, the inflatable balloon is attached opposite the side-hole 310 and spans the length of the side-hole 310. According to some embodiments, the inflatable balloon is attached to a device separate from the endovascular device 300. According to some embodiments, the separate device is a lumen of an inflatable balloon catheter. According to some embodiments, the lumen of the inflatable balloon catheter comprises a luer lock on its proximal end. According to some embodiments, the separate device is capable of being advanced into a blood vessel through the support lumen 330 of the endovascular device. According to some embodiments, the inflatable balloon anchors the support lumen 330 of the endovascular device to a blood vessel. According to some embodiments, the blood vessel is an artery. According to some embodiments, the blood vessel is a vein. [00185] According to some embodiments, the support lumen 330 of the endovascular device comprises a stent. According to some embodiments, the stent is a retrievable stent. According to some embodiments, the stent provides additional support to the endovascular device 300.
[00186] According to some embodiments, the endovascular device 300 comprises a separate support lumen. According to some the separate support lumen comprises a wire. According to some embodiments, the wire is capable of being advanced into a blood vessel through the second segment 330. According to some embodiments, the wire provides stability to the endovascular device 300. According to some embodiments, the wire provides strength to the endovascular device 300. According to some embodiments, the wire provides support for the endovascular device 300. According to some embodiments, the wire facilitates placement of the endovascular device 300. According to some embodiments, the wire anchors the endovascular device 300 within a blood vessel. According to some embodiments, the wire provides stability to the working lumen formed by the side-hole 310 and the first segment 320. According to some embodiments, the wire provides strength to the working lumen formed by the side-hole 310 and the first segment 320. According to some embodiments, the wire provides support for the working lumen formed by the side-hole 310 and the first segment 320. According to some embodiments, the wire facilitates placement of the working lumen formed by the side-hole 310 and the first segment 320. According to some embodiments, the wire anchors the working lumen formed by the side-hole 310 and the first segment 320 within a blood vessel. According to some embodiments, the separate support lumen comprises a stent. According to some embodiments, the stent is capable of being advanced into a blood vessel through the second segment 330. According to some embodiments, the stent provides stability to the endovascular device 300. According to some embodiments, the stent provides strength to the endovascular device 300. According to some embodiments, the stent provides support for the endovascular device 300. According to some embodiments, the stent facilitates placement of the endovascular device 300. According to some embodiments, the stent anchors the endovascular device 300 within a blood vessel. According to some embodiments, the stent provides stability to the working lumen formed by the side-hole 310 and the first segment 320. According to some embodiments, the stent provides strength to the working lumen formed by the side-hole 310 and the first segment 320. According to some embodiments, the stent provides support for the working lumen formed by the side-hole 310 and the first segment 320. According to some embodiments, the stent facilitates placement of the working lumen formed by the side-hole 310 and the first segment 320. According to some embodiments, the stent anchors the working lumen formed by the side- hole 310 and the first segment 320 within a blood vessel.
[00187] According to some embodiments, the separate support lumen comprises a luer lock on its proximal end. According to some embodiments, the separate support lumen provides additional support to the endovascular device 300.
[00188] According to some embodiments, the stent is retrievable. According to embodiments, the retrievable stent is attached to the distal portion of the support lumen 330 of the endovascular device. According to some embodiments, the retrievable stent is attached to a device separate from the endovascular device. According to some embodiments, the separate device is capable of being advanced into a blood vessel through the support lumen 330 of the endovascular device. According to some embodiments, the retrievable stent anchors the support lumen 330 of the endovascular device to a blood vessel. According to some embodiments, the blood vessel is an artery. According to some embodiments, the blood vessel is a vein.
[00189] According to some embodiments, the side-hole 310 of the endovascular device comprises an angled extension of the working lumen formed by the side-hole 310 and the first segment 320 of the endovascular device.
[00190] According to some embodiments, the angle of the angled extension is fixed. According to some embodiments, the angle of the angled extension ranges from about 0 degrees to about 359 degrees. According to some embodiments, the angle of the angled extension ranges from about 0 degrees to at least 359 degrees. According to some embodiments, the angle of the angled extension ranges from at least 0 degrees to at least 359 degrees. According to some
embodiments, the angle of the angled extension is at least 0 degrees. According to some embodiments, the angle of the angled extension is at least 10 degrees. According to some embodiments, the angle of the angled extension is at least 20 degrees. According to some embodiments, the angle of the angled extension is at least 30 degrees. According to some embodiments, the angle of the angled extension is at least 40 degrees. According to some embodiments, the angle of the angled extension is at least 50 degrees. According to some embodiments, the angle of the angled extension is at least 60 degrees. According to some embodiments, the angle of the angled extension is at least 70 degrees. According to some embodiments, the angle of the angled extension is at least 80 degrees. According to some embodiments, the angle of the angled extension is at least 90 degrees. According to some embodiments, the angle of the angled extension is at least 100 degrees. According to some embodiments, the angle of the angled extension is at least 110 degrees. According to some embodiments, the angle of the angled extension is at least 120 degrees. According to some embodiments, the angle of the angled extension is at least 130 degrees. According to some embodiments, the angle of the angled extension is at least 140 degrees. According to some embodiments, the angle of the angled extension is at least 150 degrees. According to some embodiments, the angle of the angled extension is at least 160 degrees. According to some embodiments, the angle of the angled extension is at least 170 degrees. According to some embodiments, the angle of the angled extension is at least 180 degrees. According to some embodiments, the angle of the angled extension is at least 190 degrees. According to some embodiments, the angle of the angled extension is at least 200 degrees. According to some embodiments, the angle of the angled extension is at least 210 degrees. According to some embodiments, the angle of the angled extension is at least 220 degrees. According to some embodiments, the angle of the angled extension is at least 230 degrees. According to some embodiments, the angle of the angled extension is at least 240 degrees. According to some embodiments, the angle of the angled extension is at least 250 degrees. According to some embodiments, the angle of the angled extension is at least 260 degrees. According to some embodiments, the angle of the angled extension is at least 270 degrees. According to some embodiments, the angle of the angled extension is at least 280 degrees. According to some embodiments, the angle of the angled extension is at least 290 degrees. According to some embodiments, the angle of the angled extension is at least 300 degrees. According to some embodiments, the angle of the angled extension is at least 310 degrees. According to some embodiments, the angle of the angled extension is at least 320 degrees. According to some embodiments, the angle of the angled extension is at least 330 degrees. According to some embodiments, the angle of the angled extension is at least 340 degrees. According to some embodiments, the angle of the angled extension is at least 350 degrees. According to some embodiments, the angle of the angled extension is at least 359 degrees.
[00191] According to some embodiments, the angle of the angled extension is adjustable.
According to some embodiments, the angle of the angled extension is adjustable from about 0 degrees to about 359 degrees. According to some embodiments, the angle of the angled extension is adjustable from about 0 degrees to at least 359 degrees. According to some embodiments, the angle of the angled extension is adjustable from at least 0 degrees to at least 359 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 0 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 10 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 20 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 30 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 40 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 50 degrees. According to some
embodiments, the angle of the angled extension is adjustable to at least 60 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 70 degrees.
According to some embodiments, the angle of the angled extension is adjustable to at least 80 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 90 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 100 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 110 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 120 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 130 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 140 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 150 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 160 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 170 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 180 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 190 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 200 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 210 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 220 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 230 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 240 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 250 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 260 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 270 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 280 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 290 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 300 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 310 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 320 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 330 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 340 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 350 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 359 degrees. According to some embodiments, the angled extension is adjusted after the endovascular device 300 is inserted into a blood vessel.
[00192] According to some embodiments, the angled extension of the endovascular device 300 is straightened by an introducer upon entry into a blood vessel. According to some embodiments, the introducer is rigid enough to straighten the angled extension, but flexible enough to navigate upper cervical and intracranial blood vessels. According to some embodiments, the introducer comprises a dilator. According to some embodiments, the angled extension of the endovascular device 300 is straightened by the dilator upon entry into a blood vessel. According to some embodiments, the angled extension of the endovascular device 300 protrudes from the side-hole 310 when the endovascular device 300 is in its intended position within the blood vessel, when the dilator is removed from the blood vessel, or both. According to some embodiments, the dilator is an inner dilator.
[00193] According to some embodiments, the diameter of the side-hole 310 of the endovascular device ranges from about 0.1 French (Fr) (0.001 inches) to about 5 French (Fr) (0.066 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device ranges from about 0.1 French (Fr) (0.001 inches) to at least 5 French (Fr) (0.066 inches).
According to some embodiments, the diameter of the side-hole 310 of the endovascular device ranges from at least 0.1 French (Fr) (0.001 inches) to at least 5 French (Fr) (0.066 inches).
According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 0.1 French (Fr) (0.001 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 0.2 French (Fr) (0.002 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 0.3 French (Fr) (0.003 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 0.4 French (Fr) (0.005 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 0.5 French (Fr) (0.007 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 0.6 French (Fr) (0.008 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 0.7 French (Fr) (0.009 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 0.8 French (Fr) (0.01 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 0.9 French (Fr) (0.012 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 1 French (Fr) (0.013 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 1.1 French (Fr) (0.014 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 1.2 French (Fr) (0.016 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 1.3 French (Fr) (0.017 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 1.4 French (Fr) (0.018 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 1.5 French (Fr) (0.02 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 1.6 French (Fr) (0.021 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 1.7 French (Fr) (0.022 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 1.8 French (Fr) (0.024 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 1.9 French (Fr) (0.025 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 2 French (Fr) (0.026 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 2.1 French (Fr) (0.028 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 2.2 French (Fr) (0.029 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 2.3 French (Fr) (0.03 inches).
According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 2.4 French (Fr) (0.031 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 2.5 French (Fr) (0.033 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 2.6 French (Fr) (0.034 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 2.7 French (Fr) (0.035 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 2.8 French (Fr) (0.037 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 2.9 French (Fr) (0.038 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 3 French (Fr) (0.039 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 3.1 French (Fr) (0.041 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 3.2 French (Fr) (0.042 inches).
According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 3.3 French (Fr) (0.043 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 3.4 French (Fr) (0.045 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 3.5 French (Fr) (0.046 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 3.6 French (Fr) (0.047 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 3.7 French (Fr) (0.049 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 3.8 French (Fr) (0.05 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 3.9 French (Fr) (0.051 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 4 French (Fr) (0.052 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 4.1 French (Fr) (0.054 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 4.2 French (Fr) (0.055 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 4.3 French (Fr) (0.056 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 4.4 French (Fr) (0.058 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 4.5 French (Fr) (0.059 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 4.6 French (Fr) (0.06 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 4.7 French (Fr) (0.062 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 4.8 French (Fr) (0.063 inches).
According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 4.9 French (Fr) (0.064 inches). According to some embodiments, the diameter of the side-hole 310 of the endovascular device is at least 5 French (Fr) (0.066 inches).
[00194] According to some embodiments, the side-hole 310 of the endovascular device comprises a length. The length of the side-hole 310 is measured from the proximal portion of the side-hole 310 to the distal portion of the side-hole 310. According to some embodiments, the length of the side-hole 310 of the endovascular device ranges from about 0.02 cm to about 0.34 cm. According to some embodiments, the length of the side-hole 310 of the endovascular device ranges from about 0.02 cm to at least 0.34 cm. According to some embodiments, the length of the side-hole 310 of the endovascular device ranges from at least 0.02 cm to at least 0.34 cm. According to some embodiments, the length of the side-hole 310 of the endovascular device is at least 0.02 cm. According to some embodiments, the length of the side-hole 310 of the endovascular device is at least 0.03 cm. According to some embodiments, the length of the side- hole 310 of the endovascular device is at least 0.04 cm. According to some embodiments, the length of the side-hole 310 of the endovascular device is at least 0.05 cm. According to some embodiments, the length of the side-hole 310 of the endovascular device is at least 0.06 cm. According to some embodiments, the length of the side-hole 310 of the endovascular device is at least 0.07 cm. According to some embodiments, the length of the side-hole 310 of the endovascular device is at least 0.08 cm. According to some embodiments, the length of the side- hole 310 of the endovascular device is at least 0.09 cm. According to some embodiments, the length of the side-hole 310 of the endovascular device is at least 0.10 cm. According to some embodiments, the length of the side-hole 310 of the endovascular device is at least 0.11 cm. According to some embodiments, the length of the side-hole 310 of the endovascular device is at least 0.12 cm. According to some embodiments, the length of the side-hole 310 of the endovascular device is at least 0.13 cm. According to some embodiments, the length of the side- hole 310 of the endovascular device is at least 0.14 cm. According to some embodiments, the length of the side-hole 310 of the endovascular device is at least 0.15 cm. According to some embodiments, the length of the side-hole 310 of the endovascular device is at least 0.16 cm. According to some embodiments, the length of the side-hole 310 of the endovascular device is at least 0.17 cm. According to some embodiments, the length of the side-hole 310 of the endovascular device is at least 0.18 cm. According to some embodiments, the length of the side- hole 310 of the endovascular device is at least 0.19 cm. According to some embodiments, the length of the side-hole 310 of the endovascular device is at least 0.20 cm. According to some embodiments, the length of the side-hole 310 of the endovascular device is at least 0.21 cm. According to some embodiments, the length of the side-hole 310 of the endovascular device is at least 0.22 cm. According to some embodiments, the length of the side-hole 310 of the endovascular device is at least 0.23 cm. According to some embodiments, the length of the side- hole 310 of the endovascular device is at least 0.24 cm. According to some embodiments, the length of the side-hole 310 of the endovascular device is at least 0.25 cm. According to some embodiments, the length of the side-hole 310 of the endovascular device is at least 0.26 cm. According to some embodiments, the length of the side-hole 310 of the endovascular device is at least 0.27 cm. According to some embodiments, the length of the side-hole 310 of the endovascular device is at least 0.28 cm. According to some embodiments, the length of the side- hole 310 of the endovascular device is at least 0.29 cm. According to some embodiments, the length of the side-hole 310 of the endovascular device is at least 0.30 cm. According to some embodiments, the length of the side-hole 310 of the endovascular device is at least 0.31 cm. According to some embodiments, the length of the side-hole 310 of the endovascular device is at least 0.32 cm. According to some embodiments, the length of the side-hole 310 of the endovascular device is at least 0.33 cm. According to some embodiments, the length of the side- hole 310 of the endovascular device is at least 0.34 cm.
[00195] According to some embodiments, the shape of the support lumen 330 is an“S” shape. According to some embodiments, the“S” shape is a shepherd’s hook shape. Figure 6 shows an exemplary and non-limiting example of some embodiments of the“S”-shaped support lumen 610.
[00196] According to some embodiments, the“S”-shaped support lumen 610 can be used to access difficult-to-access innominate arteries; to subsequently access the right common carotid artery and its distal branches; and/or to subsequently access the right subclavian artery and/or its branches. By way of non-limiting example, in a subject with an overgrown, tortuous and/or long aortic arch, and/or an elongated, straightened and/or tortuous innominate artery, the“S”-shaped
support lumen 610 can be used to access distally the right subclavian artery and right common
carotid artery. According to some embodiments, the“S”-shaped support lumen 610 can be used
at least at the intracranial carotid terminus.
[00197] According to some embodiments, the“S” shape is a pre-shaped configuration.
According to some embodiments, the“S”-shaped support lumen 610 is inserted into the body of
a subject in a straight configuration and subsequently re-shaped into its pre-shaped“S”
configuration. According to some embodiments, the“S”-shaped support lumen 610 is inserted
into the body of a subject in a straight configuration, into the aortic arch in a straight
configuration, and the distal portion 630 of the“S”-shaped support lumen 610 curves back across
the aortic arch to provide support for the endovascular device 300, to facilitate placement of the
endovascular device 300, to anchor the endovascular device 300 within a blood vessel, to prevent
kickback of the endovascular device 300, or a combination thereof (Figure 7). According to
some embodiments, the“S”-shaped support lumen 610 is inserted into the body of a subject in a
straight configuration, into the aortic arch in a straight configuration, and the distal portion 630
of the“S”-shaped support lumen 610 curves back across the aortic arch and down the descending
aorta to provide support for the endovascular device 300, to facilitate placement of the
endovascular device 300, to anchor the endovascular device 300 within a blood vessel, to prevent
kickback of the endovascular device 300, or a combination thereof (Figure 7). According to
some embodiments, the placement of the endovascular device 300 is with the side-hole 310/640
positioned at the origin of the innominate artery (Figure 7).
[00198] According to some embodiments, the“S”-shaped support lumen 610 comprises shape
memory polymer (SMP). Shape memory polymers include, but are not limited to methacrylates,
polyurethanes, blends of polystyrene and polyurethane, and polyvinylchloride. According to
some embodiments, the“S”-shaped support lumen 610 comprises a shape memory alloy (SMA).
Non-limiting examples of shape memory alloys include nickel-titanium (i.e., nitinol).
[00199] According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 4% longe lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 5% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 5.5% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 6% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 6.5% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 7% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 7.5% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 8% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 8.5% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 9% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 9.5% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 10% longer than the length of the working lumen. According to some
embodiments, the length of the“S”-shaped support lumen 610 is at least 20% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 30% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 40% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 50% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 60% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 70% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 80% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 90% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 100% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 110% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 120% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 130% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 140% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 150% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 160% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 170% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 180% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 190% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 200% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 210% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 220% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 230% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 240% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 250% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 260% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 270% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 280% longer than the length of the working lumen. According to some embodiments, the length of the“S”-shaped support lumen 610 is at least 290% longer than the length of the working lumen. According to some embodiments, the length of the“S”- shaped support lumen 610 is at least 300% longer than the length of the working lumen.
[00200] According to some embodiments, the“S”-shaped support lumen 610 comprises a curve diameter 620. According to some embodiments, the curve diameter ranges from about 1 cm to about 10 cm. According to some embodiments, the curve diameter ranges from about 1 cm to at least 10 cm. According to some embodiments, the curve diameter ranges from at least 1 cm to at least 10 cm. According to some embodiments, the curve diameter is at least 1 cm. According to some embodiments, the curve diameter is at least 2 cm. According to some embodiments, the curve diameter is at least 3 cm. According to some embodiments, the curve diameter is at least 4 cm. According to some embodiments, the curve diameter is at least 5 cm. According to some embodiments, the curve diameter is at least 6 cm. According to some embodiments, the curve diameter is at least 7 cm. According to some embodiments, the curve diameter is at least 8 cm. According to some embodiments, the curve diameter is at least 9 cm. According to some embodiments, the curve diameter is at least 10 cm.
[00201] According to some embodiments, a luer lock is attached to the proximal end of the working lumen, to the proximal end of the support lumen, or both.
[00202] According to some embodiments, the primary opening 340 comprises a luer lock.
According to some embodiments, the length of the first segment 320 from the luer lock to the side-hole 310 ranges from about 10 cm to about 130 cm. According to some embodiments, the length of the first segment 320 from the luer lock to the side-hole 310 ranges from about 10 cm to at least 130 cm. According to some embodiments, the length of the first segment 320 from the luer lock to the side-hole 310 ranges from at least 10 cm to at least 130 cm. According to some embodiments, the length of the first segment 320 from the luer lock to the side-hole 310 is at least 10 cm. According to some embodiments, the length of the first segment 320 from the luer lock to the side-hole 310 is at least 20 cm. According to some embodiments, the length of the first segment 320 from the luer lock to the side-hole 310 is at least 30 cm. According to some embodiments, the length of the first segment 320 from the luer lock to the side-hole 310 is at least 40 cm. According to some embodiments, the length of the first segment 320 from the luer lock to the side-hole 310 is at least 50 cm. According to some embodiments, the length of the first segment 320 from the luer lock to the side-hole 310 is at least 60 cm. According to some embodiments, the length of the first segment 320 from the luer lock to the side-hole 310 is at least 70 cm. According to some embodiments, the length of the first segment 320 from the luer lock to the side-hole 310 is at least 80 cm. According to some embodiments, the length of the first segment 320 from the luer lock to the side-hole 310 is at least 90 cm. According to some embodiments, the length of the first segment 320 from the luer lock to the side-hole 310 is at least 100 cm. According to some embodiments, the length of the first segment 320 from the luer lock to the side-hole 310 is at least 110 cm. According to some embodiments, the length of the first segment 320 from the luer lock to the side-hole 310 is at least 120 cm. According to some embodiments, the length of the first segment 320 from the luer lock to the side-hole 310 is at least 130 cm.
[00203] According to some embodiments, the length of the second segment 330 ranges from about 10% to about 300% longer than the length of the first segment 320 from the luer lock to the side-hole 310. According to some embodiments, the length of the second segment 330 ranges from about 10% to at least 300% longer than the length of the first segment 320 from the luer lock to the side-hole 310. According to some embodiments, the length of the second segment 330 ranges from at least 10% to at least 300% longer than the length of the first segment 320 from the luer lock to the side-hole 310. According to some embodiments, the length of the second segment 330 is at least 10% longer than the length of the first segment 320 from the luer lock to the side-hole 310. According to some embodiments, the length of the second segment 330 is at least 20% longer than the length of the first segment 320 from the luer lock to the side- hole 310. According to some embodiments, the length of the second segment 330 is at least 30% longer than the length of the first segment 320 from the luer lock to the side-hole 310. According to some embodiments, the length of the second segment 330 is at least 40% longer than the length of the first segment 320 from the luer lock to the side-hole 310. According to some embodiments, the length of the second segment 330 is at least 50% longer than the length of the first segment 320 from the luer lock to the side-hole 310. According to some embodiments, the length of the second segment 330 is at least 60% longer than the length of first segment 320 from the luer lock to the side-hole 310. According to some embodiments, the length of the second segment 330 is at least 70% longer than the length of the first segment 320 from the luer lock to the side-hole 310. According to some embodiments, the length of the second segment 330 is at least 80% longer than the length of the first segment 320 from the luer lock to the side-hole 310. According to some embodiments, the length of the second segment 330 is at least 90% longer than the length of the first segment 320 from the luer lock to the side-hole 310. According to some embodiments, the length of the second segment 330 is at least 100% longer than the length of the first segment 320 from the luer lock to the side-hole 310. According to some
embodiments, the length of the second segment 330 is at least 110% longer than the length of the first segment 320 from the luer lock to the side-hole 310. According to some embodiments, the length of the second segment 330 is at least 120% longer than the length of the first segment 320 from the luer lock to the side-hole 310. According to some embodiments, the length of the second segment 330 is at least 130% longer than the length of the first segment 320 from the luer lock to the side-hole 310. According to some embodiments, the length of the second segment 330 is at least 140% longer than the length of the first segment 320 from the luer lock to the side- hole 310. According to some embodiments, the length of the second segment 330 is at least 150% longer than the length of the first segment 320 from the luer lock to the side-hole 310. According to some embodiments, the length of the second segment 330 is at least 160% longer than the length of the first segment 320 from the luer lock to the side-hole 310. According to some embodiments, the length of the second segment 330 is at least 170% longer than the length of the first segment 320 from the luer lock to the side-hole 310. According to some
embodiments, the length of the second segment 330 is at least 180% longer than the length of the first segment 320 from the luer lock to the side-hole 310. According to some embodiments, the length of the second segment 330 is at least 190% longer than the length of the first segment 320 from the luer lock to the side-hole 310. According to some embodiments, the length of the second segment 330 is at least 200% longer than the length of the first segment 320 from the luer lock to the side-hole 310. According to some embodiments, the length of the second segment 330 is at least 210% longer than the length of the first segment 320 from the luer lock to the side- hole 310. According to some embodiments, the length of the second segment 330 is at least 220% longer than the length of the first segment 320 from the luer lock to the side-hole 310. According to some embodiments, the length of the second segment 330 is at least 230% longer than the length of the first segment 320 from the luer lock to the side-hole 310. According to some embodiments, the length of the second segment 330 is at least 240% longer than the length of the first segment 320 from the luer lock to the side-hole 310. According to some
embodiments, the length of the second segment 330 is at least 250% longer than the length of the first segment 320 from the luer lock to the side-hole 310. According to some embodiments, the length of the second segment 330 is at least 260% longer than the length of the first segment 320 from the luer lock to the side-hole 310. According to some embodiments, the length of the second segment 330 is at least 270% longer than the length of the first segment 320 from the luer lock to the side-hole 310. According to some embodiments, the length of the second segment 330 is at least 280% longer than the length of the first segment 320 from the luer lock to the side- hole 310. According to some embodiments, the length of the second segment 330 is at least 290% longer than the length of the first segment 320 from the luer lock to the side-hole 310. According to some embodiments, the length of the second segment 330 is at least 300% longer than the length of the first segment 320 from the luer lock to the side-hole 310.
[00204] According to some embodiments, the length of the endovascular device 300 from the luer lock to the end hole 350 ranges from about 10 cm to about 520 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end hole 350 ranges from about 10 cm to at least 520 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end hole 350 ranges from at least 10 cm to at least 520 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 10 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 20 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 30 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 40 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 50 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 60 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 70 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 80 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 90 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 100 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 110 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 120 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 130 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 140 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 150 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 160 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 170 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 180 cm. According to some embodiments, the length of device 300 from the luer lock to the end 350 is at least 190 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 200 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 210 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 220 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 230 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 240 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 250 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 260 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 270 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 280 cm. According to some embodiments, the length of the endovascular device 300 from the end 350 is at least 290 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 300 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 310 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 320 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 330 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 340 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 350 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 360 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 370 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 380 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 390 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 400 cm. According to some embodiments, the length of device 300 from the luer lock to the end 350 is at least 410 cm. According to some embodiments, the length of the
endovascular device 300 from the luer lock to the end 350 is at least 420 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 430 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 440 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 450 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 460 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 470 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 480 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 490 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 500 cm. According to some embodiments, the length of the endovascular device 300 from the end 350 is at least 510 cm. According to some embodiments, the length of the endovascular device 300 from the luer lock to the end 350 is at least 520 cm.
[00205] According to some embodiments, the end 350 is open. According to some embodiments, the end 350 is closed.
[00206] According to some embodiments, the support lumen 110 provides stability to the endovascular device 100. According to some embodiments, the support lumen 110 provides strength to the endovascular device 100. According to some embodiments, the support lumen 110 provides support for the endovascular device 100. According to some embodiments, the support lumen 110 facilitates placement of the endovascular device 100. According to some embodiments, the support lumen 110 anchors the endovascular device 100 within a blood vessel. According to some embodiments, the support lumen 110 prevents kickback of the endovascular device 100. According to some embodiments, the blood vessel is an artery. According to some embodiments, the blood vessel is a vein.
[00207] According to some embodiments, the second segment 330 provides stability to the endovascular device 300. According to some embodiments, the second segment 330 provides strength to the endovascular device 300. According to some embodiments, the second segment 330 provides support for the endovascular device 300. According to some embodiments, the second segment 330 facilitates placement of the endovascular device 300. According to some embodiments, the second segment 330 anchors the endovascular device 300 within a blood vessel. According to some embodiments, the second segment 330 prevents kickback of the endovascular device 300. According to some embodiments, the blood vessel is an artery.
According to some embodiments, the blood vessel is a vein.
[00208] According to some embodiments, the support lumen 110 provides stability to the working (or non-support) lumen 120. According to some embodiments, the support lumen 110 provides strength to the working (or non-support) lumen 120. According to some embodiments, the support lumen 110 provides support for the working (or non-support) lumen 120. According to some embodiments, the support lumen 110 facilitates placement of the working (or nonsupport) lumen 120. According to some embodiments, the support lumen 110 anchors the working (or non-support) lumen 120 within a blood vessel. According to some embodiments, the support lumen 110 prevents kickback of the working (or non-support) lumen 120. According to some embodiments, the blood vessel is an artery. According to some embodiments, the blood vessel is a vein.
[00209] According to some embodiments, the second segment 330 provides stability to the working lumen formed by the side-hole 310 and the first segment 320. According to some embodiments, the second segment 330 provides strength to the working lumen formed by the side-hole 310 and the first segment 320. According to some embodiments, the second segment 330 provides support for the working lumen formed by the side-hole 310 and the first segment 320. According to some embodiments, the second segment 330 facilitates placement of the working lumen formed by the side-hole 310 and the first segment 320. According to some embodiments, the second segment 330 anchors the working lumen formed by the side-hole 310 and the first segment 320 within a blood vessel. According to some embodiments, the second segment 330 prevents kickback of the working lumen formed by the side-hole 310 and the first segment 320. According to some embodiments, the blood vessel is an artery. According to some embodiments, the blood vessel is a vein.
[00210] According to some embodiments, the length of the support lumen 110 is than the length of the working (or non-support) lumen 120. Said another way, the length of the working (or nonsupport) lumen 120 is less than the length of the support lumen 110. [00211] According to some embodiments, the length of the support lumen 110 ranges from about 10% to about 200% longer than the working (or non-support) lumen 120. According to some embodiments, the length of the support lumen 110 ranges from about 10% to at least 200% longer than the working (or non-support) lumen 120. According to some embodiments, the length of the support lumen 110 ranges from at least 10% to at least 200% longer than the working (or non-support) lumen 120. According to some embodiments, the support lumen 110 is at least 10% longer than the working (or non-support) lumen 120. According to some
embodiments, the support lumen 110 is at least 20% longer than the working (or non-support) lumen 120. According to some embodiments, the support lumen 110 is at least 30% longer than the working (or non-support) lumen 120. According to some embodiments, the support lumen 110 is at least 40% longer than the working (or non-support) lumen 120. According to some embodiments, the support lumen 110 is at least 50% longer than the working (or non-support) lumen 120. According to some embodiments, the support lumen 110 is at least 60% longer than the working (or non-support) lumen 120. According to some embodiments, the support lumen 110 is at least 70% longer than the working (or non-support) lumen 120. According to some embodiments, the support lumen 110 is at least 80% longer than the working (or non-support) lumen 120. According to some embodiments, the support lumen 110 is at least 90% longer than the working (or non-support) lumen 120. According to some embodiments, the support lumen 110 is at least 100% longer than the working (or non-support) lumen 120. According to some embodiments, the support lumen 110 is at least 110% longer than the working (or non-support) lumen 120. According to some embodiments, the support lumen 110 is at least 120% longer than the working (or non-support) lumen 120. According to some embodiments, the support lumen 110 is at least 130% longer than the working (or non-support) lumen 120. According to some embodiments, the support lumen 110 is at least 140% longer than the working (or non-support) lumen 120. According to some embodiments, the support lumen 110 is at least 150% longer than the working (or non-support) lumen 120. According to some embodiments, the support lumen 110 is at least 160% longer than the working (or non-support) lumen 120. According to some embodiments, the support lumen 110 is at least 170% longer than the working (or non-support) lumen 120. According to some embodiments, the support lumen 110 is at least 180% longer than the working (or non-support) lumen 120. According to some embodiments, the support lumen 110 is at least 190% longer than the working (or non-support) lumen 120. According to some embodiments, the support lumen 110 is at least 200% longer than the working (or non-support) lumen 120.
[00212] According to some embodiments, the length of the support lumen 110 ranges from about 105 cm to about 135 cm. According to some embodiments, the length of the support lumen 110 ranges from about 105 cm to at least 135 cm. According to some embodiments, the length of the support lumen 110 ranges from at least 105 cm to at least 135 cm. According to some embodiments, the length of the support lumen 110 is at least 105 cm. According to some embodiments, the length of the support lumen 110 is at least 106 cm. According to some embodiments, the length of the support lumen 110 is at least 107 cm. According to some embodiments, the length of the support lumen 110 is at least 108 cm. According to some embodiments, the length of the support lumen 110 is at least 109 cm. According to some embodiments, the length of the support lumen 110 is at least 110 cm. According to some embodiments, the length of the support lumen 110 is at least 111 cm. According to some embodiments, the length of the support lumen 110 is at least 112 cm. According to some embodiments, the length of the support lumen 110 is at least 113 cm. According to some embodiments, the length of the support lumen 110 is at least 114 cm. According to some embodiments, the length of the support lumen 110 is at least 115 cm. According to some embodiments, the length of the support lumen 110 is at least 116 cm. According to some embodiments, the length of the support lumen 110 is at least 117 cm. According to some embodiments, the length of the support lumen 110 is at least 118 cm. According to some embodiments, the length of the support lumen 110 is at least 119 cm. According to some embodiments, the length of the support lumen 110 is at least 120 cm. According to some embodiments, the length of the support lumen 110 is at least 121 cm. According to some embodiments, the length of the support lumen 110 is at least 122 cm. According to some embodiments, the length of the support lumen 110 is at least 123 cm. According to some embodiments, the length of the support lumen 110 is at least 130 cm. According to some embodiments, the length of the support lumen 110 is at least 124 cm. According to some embodiments, the length of the support lumen 110 is at least 125 cm. According to some embodiments, the length of the support lumen 110 is at least 126 cm. According to some embodiments, the length of the support lumen 110 is at least 127 cm. According to some embodiments, the length of the support lumen 110 is at least 128 cm. According to some embodiments, the length of the support lumen 110 is at least 129 cm. According to some embodiments, the length of the support lumen 110 is at least 130 cm. According to some embodiments, the length of the support lumen 110 is at least 131 cm. According to some embodiments, the length of the support lumen 110 is at least 132 cm. According to some embodiments, the length of the support lumen 110 is at least 133 cm. According to some embodiments, the length of the support lumen 110 is at least 134 cm. According to some embodiments, the length of the support lumen 110 is at least 135 cm.
[00213] According to some embodiments, the length of the first segment 320 ranges of about 50 cm to about 145 cm. According to some embodiments, the length of the first segment 320 ranges from about 50 cm to at least 145 cm. According to some embodiments, the length of the first segment 320 ranges from at least 50 cm to at least 145 cm. According to some embodiments, the length of the first segment 320 is at least 50 cm. According to some embodiments, the length of the first segment 320 is at least 51 cm. According to some embodiments, the length of the first segment 320 is at least 52 cm. According to some embodiments, the length of the first segment 320 is at least 53 cm. According to some embodiments, the length of the first segment 320 is at least 54 cm. According to some embodiments, the length of the first segment 320 is at least 55 cm. According to some embodiments, the length of the first segment 320 is at least 56 cm.
According to some embodiments, the length of the first segment 320 is at least 57 cm. According to some embodiments, the length of the first segment 320 is at least 58 cm. According to some embodiments, the length of the first segment 320 is at least 59 cm. According to some embodiments, the length of the first segment 320 is at least 60 cm. According to some embodiments, the length of the first segment 320 is at least 61 cm. According to some embodiments, the length of the first segment 320 is at least 62 cm. According to some embodiments, the length of the first segment 320 is at least 63 cm. According to some embodiments, the length of the first segment 320 is at least 64 cm. According to some embodiments, the length of the first segment 320 is at least 65 cm. According to some embodiments, the length of the first segment 320 is at least 66 cm. According to some embodiments, the length of the first segment 320 is at least 67 cm. According to some embodiments, the length of the first segment 320 is at least 68 cm. According to some embodiments, the length of the first segment 320 is at least 69 cm. According to some embodiments, the length of the first segment 320 is at least 70 cm. According to some embodiments, the length of the first segment 320 is at least 71 cm. According to some embodiments, the length of the first segment 320 is at least 72 cm. According to some embodiments, the length of the first segment 320 is at least 73 cm. According to some embodiments, the length of the first segment 320 is at least 74 cm. According to some embodiments, the length of the first segment 320 is at least 75 cm. According to some embodiments, the length of the first segment 320 is at least 76 cm. According to some embodiments, the length of the first segment 320 is at least 77 cm. According to some embodiments, the length of the first segment 320 is at least 78 cm. According to some embodiments, the length of the first segment 320 is at least 79 cm. According to some embodiments, the length of the first segment 320 is at least 80 cm. According to some embodiments, the length of the first segment 320 is at least 81 cm. According to some embodiments, the length of the first segment 320 is at least 82 cm. According to some embodiments, the length of the first segment 320 is at least 83 cm. According to some embodiments, the length of the first segment 320 is at least 84 cm. According to some embodiments, the length of the first segment 320 is at least 85 cm. According to some embodiments, the length of the first segment 320 is at least 86 cm. According to some embodiments, the length of the first segment 320 is at least 87 cm. According to some embodiments, the length of the first segment 320 is at least 88 cm. According to some embodiments, the length of first segment 320 is at least 89 cm. According to some embodiments, the length of the first segment 320 is at least 90 cm. According to some embodiments, the length of the first segment 320 is at least 91 cm. According to some embodiments, the length of the first segment 320 is at least 92 cm. According to some embodiments, the length of the first segment 320 is at least 93 cm. According to some embodiments, the length of the first segment 320 is at least 94 cm. According to some embodiments, the length of the first segment 320 is at least 95 cm. According to some embodiments, the length of the first segment 320 is at least 96 cm.
According to some embodiments, the length of the first segment 320 is at least 97 cm. According to some embodiments, the length of the first segment 320 is at least 98 cm. According to some embodiments, the length of the first segment 320 is at least 99 cm. According to some embodiments, the length of the first segment 320 is at least 100 cm. According to some embodiments, the length of the first segment 320 is at least 101 cm. According to some embodiments, the length of the first segment 320 is at least 102 cm. According to some embodiments, the length of the first segment 320 is at least 103 cm. According to some embodiments, the length of the first segment 320 is at least 104 cm. According to some embodiments, the length of the first segment 320 is at least 105 cm. According to some embodiments, the length of the first segment 320 is at least 106 cm. According to some embodiments, the length of the first segment 320 is at least 107 cm. According to some embodiments, the length of the first segment 320 is at least 108 cm. According to some embodiments, the length of the first segment 320 is at least 109 cm. According to some embodiments, the length of the first segment 320 is at least 110 cm. According to some embodiments, the length of the first segment 320 is at least 111 cm. According to some embodiments, the length of the first segment 320 is at least 112 cm. According to some embodiments, the length of the first segment 320 is at least 113 cm. According to some embodiments, the length of the first segment 320 is at least 114 cm. According to some embodiments, the length of the first segment 320 is at least 115 cm. According to some embodiments, the length of the first segment 320 is at least 116 cm. According to some embodiments, the length of the first segment 320 is at least 117 cm. According to some embodiments, the length of the first segment 320 is at least 118 cm. According to some embodiments, the length of the first segment 320 is at least 119 cm. According to some embodiments, the length of the first segment 320 is at least 120 cm. According to some embodiments, the length of the first segment 320 is at least 121 cm. According to some embodiments, the length of the first segment 320 is at least 122 cm. According to some embodiments, the length of the first segment 320 is at least 123 cm. According to some embodiments, the length of the first segment 320 is at least 124 cm. According to some embodiments, the length of the first segment 320 is at least 125 cm. According to some embodiments, the length of the first segment 320 is at least 126 cm. According to some embodiments, the length of the first segment 320 is at least 127 cm. According to some embodiments, the length of the first segment 320 is at least 128 cm. According to some embodiments, the length of the first segment 320 is at least 129 cm. According to some embodiments, the length of the first segment 320 is at least 130 cm. According to some embodiments, the length of the first segment 320 is at least 131 cm. According to some embodiments, the length of the first segment 320 is at least 132 cm. According to some embodiments, the length of the first segment 320 is at least 133 cm. According to some embodiments, the length of the first segment 320 is at least 134 cm. According to some embodiments, the length of the first segment 320 is at least 135 cm. According to some embodiments, the length of the first segment 320 is at least 136 cm. According to some embodiments, the length of the first segment 320 is at least 137 cm. According to some embodiments, the length of the first segment 320 is at least 138 cm. According to some embodiments, the length of the first segment 320 is at least 139 cm. According to some embodiments, the length of the first segment 320 is at least 140 cm. According to some embodiments, the length of the first segment 320 is at least 141 cm. According to some embodiments, the length of the first segment 320 is at least 142 cm. According to some embodiments, the length of the first segment 320 is at least 143 cm. According to some embodiments, the length of the first segment 320 is at least 144 cm. According to some embodiments, the length of the first segment 320 is at least 145 cm.
[00214] According to some embodiments, the second segment 330 extends from about 3 cm to about 60 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends from about 3 cm to at least 60 cm in length from the side-hole 310.
According to some embodiments, the second segment 330 extends from at least 3 cm to at least 60 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 3 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 4 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 5 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 6 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 7 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 8 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 9 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 10 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 11 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 12 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 13 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 14 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 15 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 16 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 17 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 18 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 19 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 20 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 21 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 22 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 23 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 24 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 25 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 26 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 27 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 28 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 29 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 30 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 31 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 32 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 33 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 34 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 35 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 36 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 37 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 38 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 39 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 40 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 41 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 42 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 43 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 44 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 45 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 46 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 47 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 48 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 49 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 50 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 51 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 52 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 53 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 54 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 55 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 56 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 57 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 58 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 59 cm in length from the side-hole 310. According to some embodiments, the second segment 330 extends at least 60 cm in length from the side-hole 310.
[00215] According to some embodiments, the diameter of the support lumen 110 is less than the diameter of the working (or non-support) lumen 120. Said another way, the diameter of the working (or non-support) lumen 120 is greater than the diameter of the support lumen.
According to some embodiments, the diameter of the support lumen 110 is equal to the diameter of the working (or non-support) lumen 120. Said another way, the diameter of the support lumen 110 is the same as the diameter of the working (or non-support) lumen 120. According to some embodiments, the diameter is an inner diameter (ID). According to some embodiments, the diameter is an outer diameter (OD).
[00216] According to some embodiments, the diameter of the support lumen 110 ranges from about 0.1 French (Fr) to about 8 French (Fr). According to some embodiments, the diameter of the support lumen 110 ranges from about 0.1 French (Fr) to at least 8 French (Fr). According to some embodiments, the diameter of the support lumen 110 ranges from at least 0.1 French (Fr) to at least 8 French (Fr). According to some embodiments, the diameter of the support lumen 110 is at least 0.5 French (Fr). According to some embodiments, the diameter of the support lumen 110 is at least 0.6 French (Fr). According to some embodiments, the diameter of the support lumen 110 is at least 0.7 French (Fr). According to some embodiments, the diameter of the support lumen 110 is at least 0.8 French (Fr). According to some embodiments, the diameter of the support lumen 110 is at least 0.9 French (Fr). According to some embodiments, the diameter of the support lumen 110 is at least 1 French (Fr). According to some embodiments, the diameter of the support lumen 110 is at least 2 French (Fr). According to some embodiments, the diameter of the support lumen 110 is at least 3 French (Fr). According to some embodiments, the diameter of the support lumen 110 is at least 4 French (Fr). According to some embodiments, the diameter of the support lumen 110 is at least 5 French (Fr). According to some embodiments, the diameter of the support lumen 110 is at least 6 French (Fr). According to some embodiments, the diameter of the support lumen 110 is at least 7 French (Fr). According to some embodiments, the diameter of the support lumen 110 is at least 8 French.
[00217] According to some embodiments, the diameter of the support lumen 110 is less than 1 French (Fr). According to some embodiments the diameter of the support lumen 110 ranges from at least 0.0020 cm (at least 0.0008 inches) to at least 0.0305 cm (at least 0.012 inches).
According to some embodiments the diameter of the support lumen 110 is at least 0.0020 cm (at least 0.0008 inches). According to some embodiments, the diameter of the support lumen 110 is at least 0.0023 cm (at least 0.0009 inches). According to some embodiments, the diameter of the support lumen 110 is at least 0.0254 cm (at least 0.010 inches). According to some embodiments, the diameter of the support lumen 110 is at least 0.0279 cm (at least 0.011 inches). According to some embodiments, the diameter of the support lumen 110 is at least 0.0305 cm (at least 0.012 inches).
[00218] According to some embodiments, the diameter of the support lumen 110 ranges from about 0.08 cm to about 0.12 cm. According to some embodiments, the diameter of the support lumen 110 ranges from about 0.08 cm to at least 0.12 cm. According to some embodiments, the diameter of the support lumen 110 ranges from at least 0.08 cm to at least 0.12 cm. According to some embodiments, the diameter of the support lumen 110 is at least 0.08 cm. According to some embodiments, the diameter of the support lumen 110 is at least 0.081 cm. According to some embodiments, the diameter of the support lumen 110 is at least 0.082 cm. According to some embodiments, the diameter of the support lumen 110 is at least 0.083 cm. According to some embodiments, the diameter of the support lumen 110 is at least 0.084 cm. According to some embodiments, the diameter of the support lumen 110 is at least 0.085 cm. According to some embodiments, the diameter of the support lumen 110 is at least 0.086 cm. According to some embodiments, the diameter of the support lumen 110 is at least 0.087 cm. According to some embodiments, the diameter of the support lumen 110 is at least 0.088 cm. According to some embodiments, the diameter of the support lumen 110 is at least 0.089 cm. According to some embodiments, the diameter of the support lumen 110 is at least 0.09 cm. According to some embodiments, the diameter of the support lumen 110 is at least 0.091 cm. According to some embodiments, the diameter of the support lumen 110 is at least 0.092 cm. According to some embodiments, the diameter of the support lumen 110 is at least 0.093 cm. According to some embodiments, the diameter of the support lumen 110 is at least 0.094 cm. According to some embodiments, the diameter of the support lumen 110 is at least 0.095 cm. According to some embodiments, the diameter of the support lumen 110 is at least 0.096 cm. According to some embodiments, the diameter of the support lumen 110 is at least 0.097 cm. According to some embodiments, the diameter of the support lumen 110 is at least 0.098 cm. According to some embodiments, the diameter of the support lumen 110 is at least 0.099 cm. According to some embodiments, the diameter of the support lumen 110 is at least 0.10 cm. According to some embodiments, the diameter of the support lumen 110 is at least 0.11 cm. According to some embodiments, the diameter of the support lumen 110 is at least 0.12 cm.
[00219] According to some embodiments, the diameter of the working (or non-support) lumen 120 ranges from about 1 French (Fr) to about 26 French (Fr). According to some embodiments, the diameter of the working (or non-support) lumen 120 ranges from about 1 French (Fr) to at least 26 French (Fr). According to some embodiments, the diameter of the working (or non- support) lumen 120 ranges from at least 1 French (Fr) to at least 26 French (Fr). According to some embodiments, the diameter of the working (or non-support) lumen 120 is at least 1 French (Fr). According to some embodiments, the diameter of the working (or non-support) lumen 120 is at least 2 French (Fr). According to some embodiments, the diameter of the working (or nonsupport) lumen 120 is at least 3 French (Fr). According to some embodiments, the diameter of the working (or non-support) lumen 120 is at least 4 French (Fr). According to some
embodiments, the diameter of the working (or non-support) lumen 120 is at least 5 French (Fr). According to some embodiments, the diameter of the working (or non-support) lumen 120 is at least 6 French (Fr). According to some embodiments, the diameter of the working (or nonsupport) lumen 120 is at least 7 French (Fr). According to some embodiments, the diameter of the working (or non-support) lumen 120 is at least 8 French (Fr). According to some
embodiments, the diameter of the working (or non-support) lumen 120 is at least 9 French (Fr). According to some embodiments, the diameter of the working (or non-support) lumen 120 is at least 10 French (Fr). According to some embodiments, the diameter of the working (or nonsupport) lumen 120 is at least 11 French (Fr). According to some embodiments, the diameter of the working (or non-support) lumen 120 is at least 12 French (Fr). According to some embodiments, the diameter of the working (or non-support) lumen 120 is at least 13 French (Fr). According to some embodiments, the diameter of the working (or non-support) lumen 120 is at least 14 French (Fr). According to some embodiments, the diameter of the working (or nonsupport) lumen 120 is at least 15 French (Fr). According to some embodiments, the diameter of the working (or non-support) lumen 120 is at least 16 French (Fr). According to some embodiments, the diameter of the working (or non-support) lumen 120 is at least 17 French (Fr). According to some embodiments, the diameter of the working (or non-support) lumen 120 is at least 18 French (Fr). According to some embodiments, the diameter of the working (or nonsupport) lumen 120 is at least 19 French (Fr). According to some embodiments, the diameter of the working (or non-support) lumen 120 is at least 20 French (Fr). According to the diameter of the working (or non-support) lumen 120 is at least 21 French (Fr). According to some embodiments, the diameter of the working (or non-support) lumen 120 is at least 22 French (Fr). According to some embodiments, the diameter of the working (or non-support) lumen 120 is at least 23 French (Fr). According to some embodiments, the diameter of the working (or nonsupport) lumen 120 is at least 24 French (Fr). According to some embodiments, the diameter of the working (or non-support) lumen 120 is at least 25 French (Fr). According to some embodiments, the diameter of the working (or non-support) lumen 120 is at least 26 French (Fr).
[00220] According to some embodiments, the diameter of the working (or non-support) lumen 120 is less than 1 French (Fr). According to some embodiments the diameter of the working (or non-support) lumen 120 ranges from at least 0.0254 cm (at least 0.010 inches) to at least 0.0305 cm (at least 0.012 inches). According to some embodiments, the diameter of the working (or non-support) lumen 120 is at least 0.0254 cm (at least 0.010 inches). According to some embodiments, the diameter of the working (or non-support) lumen 120 is at least 0.0279 cm (at least 0.011 inches). According to some embodiments, the diameter of the working (or nonsupport) lumen 120 is at least 0.0305 cm (at least 0.012 inches).
[00221] According to some embodiments, the diameter of the working (or non-support) lumen 120 ranges from about 0.17 cm to about 0.25 cm. According to some embodiments, the diameter of the working (or non-support) lumen 120 ranges from about 0.17 cm to at least 0.25 cm.
According to some embodiments, the diameter of the working (or non-support) lumen 120 ranges from at least 0.17 cm to at least 0.25 cm. According to some embodiments, the diameter of the working (or non-support) lumen 120 is at least 0.17 cm. According to some embodiments, the diameter of the working (or non-support) lumen 120 is at least 0.18 cm. According to some embodiments, the diameter of the working (or non-support) lumen 120 is at least 0.19 cm.
According to some embodiments, the diameter of the working (or non-support) lumen 120 is at least 0.20 cm. According to some embodiments, the diameter of the working (or non-support) lumen 120 is at least 0.21 cm. According to some embodiments, the diameter of the working (or non-support) lumen 120 is at least 0.22 cm. According to some embodiments, the diameter of the working (or non-support) lumen 120 is at least 0.23 cm. According to some embodiments, the diameter of the working (or non-support) lumen 120 is at least 0.24 cm. According to some embodiments, the diameter of the working (or non-support) lumen 120 is at least 0.25 cm. [00222] According to some embodiments, the first segment 320 ranges in diameter from about 1 French (Fr) to about 26 French (Fr). According to some embodiments, the first segment 320 ranges in diameter from about 1 French (Fr) to at least 26 French (Fr). According to some embodiments, the first segment 320 ranges in diameter from at least 1 French (Fr) to at least 26 French (Fr). According to some embodiments, the diameter of the first segment 320 is at least 1 French (Fr). According to some embodiments, the diameter of the first segment 320 is at least 2 French (Fr). According to some embodiments, the diameter of the first segment 320 is at least 3 French (Fr). According to some embodiments, the diameter of the first segment 320 is at least 4 French (Fr). According to some embodiments, the diameter of the first segment 320 is at least 5 French (Fr). According to some embodiments, the diameter of the first segment 320 is at least 6 French (Fr). According to some embodiments, the diameter of the first segment 320 is at least 7 French (Fr). According to some embodiments, the diameter of the first segment 320 is at least 8 French (Fr). According to some embodiments, the diameter of the first segment 320 is at least 9 French (Fr). According to some embodiments, the diameter of the first segment 320 is at least 10 French (Fr). According to some embodiments, the diameter of the first segment 320 is at least 11 French (Fr). According to some embodiments, the diameter of the first segment 320 is at least 12 French (Fr). According to some embodiments, the diameter of the first segment 320 is at least 13 French (Fr). According to some embodiments, the diameter of the first segment 320 is at least 14 French (Fr). According to some embodiments, the diameter of the first segment 320 is at least 15 French (Fr). According to some embodiments, the diameter of the first segment 320 is at least 16 French (Fr). According to some embodiments, the diameter of the first segment 320 is at least 17 French (Fr). According to some embodiments, the diameter of the first segment 320 is at least 18 French (Fr). According to some embodiments, the diameter of the first segment 320 is at least 19 French (Fr). According to some embodiments, the diameter of the first segment 320 is at least 20 French (Fr). According to some embodiments, the diameter of the first segment 320 is at least 21 French (Fr). According to some embodiments, the diameter of the first segment 320 is at least 22 French (Fr). According to some embodiments, the diameter of the first segment 320 is at least 23 French (Fr). According to some embodiments, the diameter of the first segment 320 is at least 24 French (Fr). According to some embodiments, the diameter of the first segment 320 is at least 25 French (Fr). According to some embodiments, the diameter of the first segment 320 is at least 26 French (Fr).
[00223] According to some embodiments, the diameter of the first segment 320 is less than 1 French (Fr). According to some embodiments the diameter of the first segment 320 ranges from at least 0.0254 cm (at least 0.010 inches) to at least 0.0305 cm (at least 0.012 inches). According to some embodiments, the diameter of the first segment 320 is at least 0.0254 cm (at least 0.010 inches). According to some embodiments, the diameter of the first segment 320 is at least 0.0279 cm (at least 0.011 inches). According to some embodiments, the diameter of the first segment 320 is at least 0.0305 cm (at least 0.012 inches).
[00224] According to some embodiments, the diameter of the second segment 330 ranges from about 1 French (Fr) to about 23 French (Fr). According to some embodiments, the diameter of the second segment 330 ranges from about 1 French (Fr) to at least 23 French (Fr). According to some embodiments, the diameter of the second segment 330 ranges from at least French (Fr) to at least 23 French (Fr). According to some embodiments, the diameter of the second segment 330 is at least 1 French (Fr). According to some embodiments, the diameter of the second segment 330 is at least 2 French (Fr). According to some embodiments, the diameter of the second segment 330 is at least 3 French (Fr). According to some embodiments, the diameter of the second segment 330 is at least 4 French (Fr). According to some embodiments, the diameter of the second segment 330 is at least 5 French (Fr). According to some embodiments, the diameter of the second segment 330 is at least 6 French (Fr). According to some embodiments, the diameter of the second segment 330 is at least 7 French (Fr). According to some
embodiments, the diameter of the second segment 330 is at least 8 French (Fr). According to some embodiments, the diameter of the second segment 330 is at least 9 French (Fr). According to some embodiments, the diameter of the second segment 330 is at least 10 French (Fr).
According to some embodiments, the diameter of the second segment 330 is at least 11 French (Fr). According to some embodiments, the diameter of the second segment 330 is at least 12 French (Fr). According to some embodiments, the diameter of the second segment 330 is at least 13 French (Fr). According to some embodiments, the diameter of the second segment 330 is at least 14 French (Fr). According to some embodiments, the diameter of the second segment 330 is at least 15 French (Fr). According to some embodiments, the diameter of the second segment 330 is at least 16 French (Fr). According to some embodiments, the diameter of the second segment 330 is at least 17 French (Fr). According to some embodiments, the diameter of the second segment 330 is at least 18 French (Fr). According to some embodiments, the diameter of the second segment 330 is at least 19 French (Fr). According to some embodiments, the diameter of the second segment 330 is at least 20 French (Fr). According to some embodiments, the diameter of the second segment 330 is at least 21 French. According to some embodiments, the diameter of the second segment 330 is at least 22 French (Fr). According to some embodiments, the diameter of the second segment 330 is at least 23 French (Fr).
[00225] According to some embodiments, the diameter of the second segment 330 is less than 1 French (Fr). According to some embodiments the diameter of the second segment 330 ranges from at least 0.0020 cm (at least 0.0008 inches) to at least 0.0305 cm (at least 0.012 inches). According to some embodiments the diameter of the second segment 330 is at least 0.0020 cm (at least 0.0008 inches). According to some embodiments, the diameter of the second segment 330 is at least 0.0023 cm (at least 0.0009 inches). According to some embodiments, the diameter of the second segment 330 is at least 0.0254 cm (at least 0.010 inches). According to some embodiments, the diameter of the second segment 330 is at least 0.0279 cm (at least 0.011 inches). According to some embodiments, the diameter of the second segment 330 is at least 0.0305 cm (at least 0.012 inches).
[00226] According to some embodiments, the diameter of the second segment 330 ranges from about 0.008 cm to about 0.5 cm. According to some embodiments, the diameter of the second segment 330 ranges from about 0.008 cm to at least 0.5 cm. According to some embodiments, the diameter of the second segment 330 ranges from at least 0.008 cm to at least 0.5 cm.
According to some embodiments, the diameter of the second segment 330 is at least 0.008 cm. According to some embodiments, the diameter of the second segment 330 is at least 0.081 cm. According to some embodiments, the diameter of the second segment 330 is at least 0.082 cm. According to some embodiments, the diameter of the second segment 330 is at least 0.083 cm. According to some embodiments, the diameter of the second segment 330 is at least 0.084 cm. According to some embodiments, the diameter of the second segment 330 is at least 0.085 cm. According to some embodiments, the diameter of the second segment 330 is at least 0.086 cm. According to some embodiments, the diameter of the second segment 330 is at least 0.087 cm. According to some embodiments, the diameter of the second segment 330 is at least 0.088 cm. According to some embodiments, the diameter of the second segment 330 is at least 0.089 cm. According to some embodiments, the diameter of the second segment 330 is at least 0.09 cm. According to some embodiments, the diameter of the second segment 330 is at least 0.091 cm. According to some embodiments, the diameter of the second segment 330 is at least 0.092 cm. According to some embodiments, the diameter of the second segment 330 is at least 0.093 cm. According to some embodiments, the diameter of the second segment 330 is at least 0.094 cm. According to some embodiments, the diameter of the second segment 330 is at least 0.095 cm. According to some embodiments, the diameter of the second segment 330 is at least 0.096 cm. According to some embodiments, the diameter of the second segment 330 is at least 0.097 cm. According to some embodiments, the diameter of the second segment 330 is at least 0.098 cm. According to some embodiments, the diameter of the second segment 330 is at least 0.099 cm. According to some embodiments, the diameter of the second segment 330 is at least 0.10 cm. According to some embodiments, the diameter of the second segment 330 is at least 0.11 cm. According to some embodiments, the diameter of the second segment 330 is at least 0.12 cm.
[00227] According to some embodiments, the diameter is an inner diameter (ID). According to some embodiments, the diameter is an outer diameter (OD).
[00228] According to some embodiments, the support lumen 110 comprises a device separate from the endovascular device 100. According to some embodiments, the device separate from the endovascular device 100 provides support to the support lumen 110. According to some embodiments, the device separate from the endovascular device is a wire. According to some embodiments, the wire is capable of being advanced into a blood vessel through the support lumen 110. According to some embodiments, the wire provides stability to the endovascular device 100. According to some embodiments, the wire provides strength to the endovascular device 100. According to some embodiments, the wire provides support for the endovascular device 100. According to some embodiments, the wire facilitates placement of the endovascular device 100. According to some embodiments, the wire anchors the endovascular device 100 within a blood vessel. According to some embodiments, the wire provides stability to the working (or non-support) lumen 120. According to some embodiments, the wire provides strength to the working (or non-support) lumen 120. According to some embodiments, the wire provides support for the working (or non-support) lumen 120. According to some embodiments, the wire facilitates placement of the working (or non-support) lumen 120. According to some embodiments, the wire anchors the working (or non-support) lumen 120 within a blood vessel. According to some embodiments, the blood vessel is an artery. According to some embodiments, the blood vessel is a vein.
[00229] According to some embodiments, the endovascular device 300 comprises a separate device. According to some embodiments, the separate device is a wire. According to some embodiments, the wire is capable of being advanced through the first segment 320 and into the second segment 330. According to some embodiments, the wire is capable of being advanced into a blood vessel through the second segment 330. According to some embodiments, the wire provides stability to the endovascular device 300. According to some embodiments, the wire provides strength to the endovascular device 300. According to some embodiments, the wire provides support for the endovascular device 300. According to some embodiments, the wire facilitates placement of the endovascular device 300. According to some embodiments, the wire anchors the endovascular device 300 within a blood vessel. According to some embodiments, the wire provides stability to the working lumen formed by the side-hole 310 and the first segment 320. According to some embodiments, the wire provides strength to the working lumen formed by the side-hole 310 and the first segment 320. According to some embodiments, the wire provides support for the working lumen formed by the side-hole 310 and the first segment 320. According to some embodiments, the wire facilitates placement of the working lumen formed by the side-hole 310 and the first segment 320. According to some embodiments, the wire anchors the working lumen formed by the side-hole 310 and the first segment 320 within a blood vessel. According to some embodiments, the blood vessel is an artery. According to some embodiments, the blood vessel is a vein.
[00230] According to some embodiments, the diameter of the wire ranges from about 0.002 cm to about 0.5 cm. According to some embodiments, the diameter of the wire ranges from about 0.002 cm to at least 0.5 cm. According to some embodiments, the diameter of the wire ranges from at least 0.002 cm to at least 0.5 cm. According to some embodiments, the diameter of the wire is at least 0.002 cm. According to some embodiments, the diameter of the wire is at least 0.003 cm. According to some embodiments, the diameter of the wire is at least 0.004 cm.
According to some embodiments, the diameter of the wire is at least 0.005 cm. According to some embodiments, the diameter of the wire is at least 0.006 cm. According to some
embodiments, the diameter of the wire is at least 0.007 cm. According to some embodiments, the diameter of the wire is at least 0.008 cm. According to some embodiments, the diameter of the wire is at least 0.009 cm. According to some embodiments, the diameter of the wire is at least 0.01 cm. According to some embodiments, the diameter of the wire is at least 0.02 cm.
According to some embodiments, the diameter of the wire is at least 0.03 cm. According to some embodiments, the diameter of the wire is at least 0.04 cm. According to some embodiments, the diameter of the wire is at least 0.05 cm. According to some embodiments, the diameter of the wire is at least 0.06 cm. According to some embodiments, the diameter of the wire is at least 0.07 cm. According to some embodiments, the diameter of the wire is at least 0.08 cm. According to some embodiments, the diameter of the wire is at least 0.09 cm. According to some
embodiments, the diameter of the wire is at least 0.10 cm. According to some embodiments, the diameter of the wire is at least 0.20 cm. According to some embodiments, the diameter of the wire is at least 0.30 cm. According to some embodiments, the diameter of the wire is at least 0.40 cm. According to some embodiments, the diameter of the wire is at least 0.50 cm.
[00231] According to some embodiments, the wire is rigid. According to some embodiments, the wire is flexible.
[00232] According to some embodiments, the wire is comprised of a core material which includes, but is not limited to, stainless steel, nitinol or a combination thereof. In general, stainless steel is easier to torque and is more rigid, providing better columnar support. Nitinol is more flexible and kink resistant. Developments such as high-tensile-strength stainless steel and combinations of stainless steel with nitinol have been utilized. High-tensile-strength stainless steel provides more column strength and torquability than original stainless steel. The use of hybrid wires incorporates high-tensile stainless-steel shafts with nitinol tips to impart high torquability and columnar shaft strength with kink-resistance tips.
[00233] According to some embodiments, the wire comprises a core taper. The core tapers are areas where the core of the wire changes over a set distance. There may be several tapers in a wire. Long, gradual tapers track well around bends, but do not provide as much support in short distances. Broad, gradual, or long tapers offer acute vessel access and improved tracking.
Devices with abrupt or short tapers create support in shorter distances and have a greater tendency to prolapse.
[00234] According to some embodiments, the wire comprises a core grind (i.e., constant diameter).
[00235] According to some embodiments, the wire comprises a core that extends to the tip. A core that extends to the tip of the wire increases the transmission of force, is more durable and steerable, improves tactile feedback, and is used in peripheral vessels. According to some embodiments, the wire comprises a core that does not extend to the tip. A core that does not extend to the tip (i.e., shaping ribbon design) is delicate, flexible, and soft. This kind of tip is also easier to shape, can be easily prolapsed, and is less likely to inadvertently injure distal vessels.
[00236] According to some embodiments, the wire comprises a cover covers included, but are not limited to, a polymer or a plastic. A sleeve of polymer or plastic placed over the wire core enhances lubricity which results in less drag, enhanced lesion crossing, and smooth tracking in tortuous vessels. According to some embodiments, the wire comprises a coating. Non-limiting examples of a coating include a hydrophobic coating and a hydrophilic coating. Hydrophobic coatings reduce friction and improve device trackability by repelling water to create a smooth, “wax-like” surface, with no water actuation required. Hydrophilic coatings attract water to create a slippery,“gel-like” surface.
[00237] According to some embodiments, the wire is a guide wire.
[00238] According to some embodiments, the support lumen 110 comprises an inflatable balloon. According to some embodiments, the inflatable balloon is attached to the distal portion of the support lumen 110. According to some embodiments, the inflatable balloon is attached to a device separate from the endovascular device 100. According to some embodiments, the separate device is capable of being advanced into a blood vessel through the support lumen 110. According to some embodiments, the inflatable balloon anchors the support lumen 110 to a blood vessel. According to some embodiments, the blood vessel is an artery. According to some embodiments, the blood vessel is a vein.
[00239] According to some embodiments, the diameter of the inflatable balloon ranges from about 1 mm to about 80 mm. According to some embodiments, the diameter of the inflatable balloon ranges from about 1 mm to at least 80 mm. According to some embodiments, the diameter of the inflatable balloon ranges from at least 1 mm to at least 80 mm. According to some embodiments, the diameter of the inflatable balloon is at least 1 mm. According to some embodiments, the diameter of the inflatable balloon is at least 2 mm. According to some embodiments, the diameter of the inflatable balloon is at least 3 mm. According to some embodiments, the diameter of the inflatable balloon is at least 4 mm. According to some embodiments, the diameter of the inflatable balloon is at least 5 mm. According to some embodiments, the diameter of the inflatable balloon is at least 10 mm. According to some embodiments, the diameter of the inflatable balloon is at least 15 mm. According to some embodiments, the diameter of the inflatable balloon is at least 20 mm. According to some embodiments, the diameter of the inflatable balloon is at least 25 mm. According to some embodiments, the diameter of the inflatable balloon is at least 30 mm. According to some embodiments, the diameter of the inflatable balloon is at least 35 mm. According to some embodiments, the diameter of the inflatable balloon is at least 40 mm. According to some embodiments, the diameter of the inflatable balloon is at least 45 mm. According to some embodiments, the diameter of the inflatable balloon is at least 50 mm. According to some embodiments, the diameter of the inflatable balloon is at least 55 mm. According to some embodiments, the diameter of the inflatable balloon is at least 60 mm. According to some embodiments, the diameter of the inflatable balloon is at least 65 mm. According to some embodiments, the diameter of the inflatable balloon is at least 70 mm. According to some embodiments, the diameter of the inflatable balloon is at least 75 mm. According to some embodiments, the diameter of the inflatable balloon is at least 80 mm.
[00240] According to some embodiments, the length of the balloon ranges from about 1 mm to about 300 mm. According to some embodiments, the length of the balloon ranges from about 1 mm to at least 300 mm. According to some embodiments, the length of the balloon ranges from at least 1 mm to at least 300 mm. According to some embodiments, the length of the inflatable balloon is at least 1 mm. According to some embodiments, the length of the inflatable balloon is at least 2 mm. According to some embodiments, the length of the inflatable balloon is at least 3 mm. According to some embodiments, the length of the inflatable balloon is at least 4 mm. According to some embodiments, the length of the inflatable balloon is at least 5 mm. According to some embodiments, the length of the inflatable balloon is at least 6 mm. According to some embodiments, the length of the inflatable balloon is at least 7 mm. According to some embodiments, the length of the inflatable balloon is at least 8 mm. According to some embodiments, the length of the inflatable balloon is at least 9 mm. According to some embodiments, the length of the inflatable balloon is at least 10 mm. According to some embodiments, the length of the inflatable balloon is at least 20 mm. According to some embodiments, the length of the inflatable balloon is at least 30 mm. According to some embodiments, the length of the inflatable balloon is at least 40 mm. According to some embodiments, the length of the inflatable balloon is at least 50 mm. According to some embodiments, the length of the inflatable balloon is at least 60 mm. According to some embodiments, the length of the inflatable balloon is at least 70 mm. According to some embodiments, the length of the inflatable balloon is at least 80 mm. According to some embodiments, the length of the inflatable balloon is at least 90 mm. According to some embodiments, the length of the inflatable balloon is at least 100 mm. According to some embodiments, the length of the inflatable balloon is at least 110 mm. According to some embodiments, the length of the inflatable balloon is at least 120 mm. According to some embodiments, the length of the inflatable balloon is at least 130 mm. According to some embodiments, the length of the inflatable balloon is at least 140 mm. According to some embodiments, the length of the inflatable balloon is at least 150 mm. According to some embodiments, the length of the inflatable balloon is at least 160 mm. According to some embodiments, the length of the inflatable balloon is at least 170 mm. According to some embodiments, the length of the inflatable balloon is at least 180 mm. According to some embodiments, the length of the inflatable balloon is at least 190 mm. According to some embodiments, the length of the inflatable balloon is at least 200 mm. According to some embodiments, the length of the inflatable balloon is at least 210 mm. According to some embodiments, the length of the inflatable balloon is at least 220 mm. According to some embodiments, the length of the inflatable balloon is at least 230 mm. According to some embodiments, the length of the inflatable balloon is at least 240 mm. According to some embodiments, the length of the inflatable balloon is at least 250 mm. According to some embodiments, the length of the inflatable balloon is at least 260 mm. According to some embodiments, the length of the inflatable balloon is at least 270 mm. According to some embodiments, the length of the inflatable balloon is at least 280 mm. According to some embodiments, the length of the inflatable balloon is at least 290 mm. According to some embodiments, the length of the inflatable balloon is at least 300 mm.
[00241] According to some embodiments, the inflatable balloon is comprised of various shapes including, but not limited to, cylindrical, spherical, oval, conical, stepped, tapered and dog bone.
[00242] According to some embodiments, the inflatable balloon is comprised of a material such as, for example, a polyamide, polyethylene terephthalate (PET), polyurethane, composites, and engineered nylons. Engineered nylons include, but are not limited to, Pebax®, Grilamid®, and Vestamid®.
[00243] According to some embodiments, the inflatable balloon ends are comprised of various shapes including, but not limited to, conical sharp comer, conical radius comer, offset neck, spherical end and square.
[00244] According to some embodiments, the inflatable balloon is filled with a fluid. Nonlimiting examples of fluid include sterile water and saline.
[00245] According to some embodiments, the support lumen 110 comprises a stent.
[00246] According to some embodiments, the stent is retrievable. According to some
embodiments, the retrievable stent is attached to the distal portion of the support lumen 110. According to some embodiments, the retrievable stent is attached to a device separate from the endovascular device. According to some embodiments, the separate device is capable of being advanced into a blood vessel through the support lumen 110. According to some embodiments, the retrievable stent anchors the support lumen 110 to a blood vessel. According to some embodiments, the blood vessel is an artery. According to some embodiments, the blood vessel is a vein.
[00247] According to some embodiments, the stent is self-expanding. According to some embodiments, the self-expanding stent is attached to the distal portion of the support lumen 110. According to some embodiments, the self-expanding stent is attached to a device separate from the endovascular device. According to some embodiments, the separate device is capable of being advanced into a blood vessel through the support lumen 110. According to some embodiments, the self-expanding stent anchors the support lumen 110 to a blood vessel.
According to some embodiments, the blood vessel is an artery. According to some embodiments, the blood vessel is a vein.
[00248] According to some embodiments, the support lumen 110 is rigid. According to some embodiments, the support lumen 110 comprises a soft, flexible portion. According to some embodiments the soft, flexible portion ranges in length from about 2 cm to about 5 cm.
According to some embodiments the soft, flexible portion ranges in length from about 2 cm to at least 5 cm. According to some embodiments the soft, flexible portion ranges in length from at least 2 cm to at least 5 cm. According to some embodiments, the soft, flexible portion is at least 2 cm in length. According to some embodiments, the soft, flexible portion is at least 3 cm in length. According to some embodiments, the soft, flexible portion is at least 4 cm in length. According to some embodiments, the soft, flexible portion is at least 5 cm in length. According to some embodiments, the soft, flexible portion is located at the distal end of the support lumen 110.
[00249] According to some embodiments, the second segment 330 is rigid. According to some embodiments, the second segment 330 comprises a soft, flexible portion. According to some embodiments the soft, flexible portion ranges in length from about 0.5 cm to about 20 cm.
According to some embodiments the soft, flexible portion ranges in length from about 0.5 cm to at least 20 cm. According to some embodiments the soft, flexible portion ranges in length from at least 0.5 cm to at least 20 cm. According to some embodiments, the soft, flexible portion is at least 0.5 cm in length. According to some embodiments, the soft, flexible portion is at least 0.6 cm in length. According to some embodiments, the soft, flexible portion is at least 0.7 cm in length. According to some embodiments, the soft, flexible portion is at least 0.8 cm in length. According to some embodiments, the soft, flexible portion is at least 0.9 cm in length. According to some embodiments, the soft, flexible portion is at least 1 cm in length. According to some embodiments, the soft, flexible portion is at least 2 cm in length. According to some
embodiments, the soft, flexible portion is at least 3 cm in length. According to some
embodiments, the soft, flexible portion is at least 4 cm in length. According to some
embodiments, the soft, flexible portion is at least 5 cm in length. According to some
embodiments, the soft, flexible portion is at least 6 cm in length. According to some
embodiments, the soft, flexible portion is at least 7 cm in length. According to some
embodiments, the soft, flexible portion is at least 8 cm in length. According to some
embodiments, the soft, flexible portion is at least 9 cm in length. According to some
embodiments, the soft, flexible portion is at least 10 cm in length. According to some
embodiments, the soft, flexible portion is at least 11 cm in length. According to some
embodiments, the soft, flexible portion is at least 12 cm in length. According to some
embodiments, the soft, flexible portion is at least 13 cm in length. According to some
embodiments, the soft, flexible portion is at least 14 cm in length. According to some
embodiments, the soft, flexible portion is at least 15 cm in length. According to some embodiments, the soft, flexible portion is at least 16 cm in length. According to some embodiments, the soft, flexible portion is at least 17 cm in length. According to some
embodiments, the soft, flexible portion is at least 18 cm in length. According to some
embodiments, the soft, flexible portion is at least 19 cm in length. According to some
embodiments, the soft, flexible portion is at least 20 cm in length. According to some
embodiments, the soft, flexible portion is located at the end 350.
[00250] According to some embodiments, the working (or non-support) lumen 120 comprises a device separate from the endovascular device 100. According to some embodiments, the separate device is capable of being advanced into a blood vessel through the working (or non-support) lumen 120. According to some embodiments, the blood vessel is an artery or a vein. According to some embodiments, the separate device is a diagnostic catheter.
[00251] According to some embodiments, the diagnostic catheter comprises an angled extension. According to some embodiments, the angle of the angled extension ranges from about 10 degrees to about 180 degrees. According to some embodiments, the angle of the angled extension ranges from about 10 degrees to at least 180 degrees. According to some
embodiments, the angle of the angled extension ranges from at least 10 degrees to at least 180 degrees. According to some embodiments, the angle of angled extension is at least 10 degrees. According to some embodiments, the angle of angled extension is at least 20 degrees. According to some embodiments, the angle of angled extension is at least 30 degrees. According to some embodiments, the angle of angled extension is at least 40 degrees. According to some embodiments, the angle of angled extension is at least 50 degrees. According to some embodiments, the angle of angled extension is at least 60 degrees. According to some embodiments, the angle of angled extension is at least 70 degrees. According to some embodiments, the angle of angled extension is at least 80 degrees. According to some embodiments, the angle of angled extension is at least 90 degrees. According to some embodiments, the angle of angled extension is at least 100 degrees. According to some embodiments, the angle of angled extension is at least 110 degrees. According to some embodiments, the angle of angled extension is at least 120 degrees. According to some embodiments, the angle of angled extension is at least 130 degrees. According to some embodiments, the angle of angled extension is at least 140 degrees. According to some embodiments, the angle of angled extension is at least 150 degrees. According to some embodiments, the angle of angled extension is at least 160 degrees. According to some embodiments, the angle of angled extension is at least 170 degrees. According to some embodiments, the angle of angled extension is at least 180 degrees. According to some embodiments, the angled extension is soft. According to some embodiments, the angled extension is flexible. According to some embodiments, the angled extension is adjustable.
[00252] According to some embodiments, the angled extension comprises a shape memory polymer (SMP). Shape memory polymers include, but are not limited to methacrylates, polyurethanes, blends of polystyrene and polyurethane, and polyvinylchloride. According to some embodiments, the angled extension of the catheter comprises a shape memory alloy (SMA). Non-limiting examples of shape memory alloys include nickel-titanium (i.e., nitinol).
[00253] Diagnostic catheters include, but are not limited to, angiography catheters,
electrophysiology catheters, intravenous ultrasound catheters and the like.
[00254] Catheter angiography can be performed using such techniques as, for example, X-rays, computed tomography (CT) and magnetic resonance imaging (MRI). In catheter angiography, a catheter is inserted into a blood vessel (e.g., an artery) through a small incision in the skin. The catheter is guided to the area being examined, a contrast material is injected through the catheter and images are acquired using a small dose of ionizing radiation (e.g., X-rays). Contrast agents include, but are not limited to, iodinated low-osmolar contrast media (LOCM) and high-osmolar contrast media (HOCM). Low-osmolar contrast media include, but are not limited to, ioxaglate, iopamidol, iohexol, ioidixanol, iotrolan, ioxaglate, ioxilan, iopromide, ioversol and iomeprol. Non-limiting examples of high-osmolar contrast media include diatrizoate, metrizoate and iothalamate.
[00255] Catheter electrophysiology is an invasive heart catheterization that is designed to evaluate the electrical system of the heart. This test evaluates if there is a need for implantation of a pacemaker or defibrillator or to perform a catheter ablation which is a procedure that uses radiofrequency energy (similar to microwave heat) to destroy small areas of heart tissue that cause rapid or irregular heartbeats. In this procedure, a catheter is introduced into a blood vessel and placed under X-ray guidance into the heart. For example, catheter electrophysiology is used for evaluating patients who have concerning symptoms such as fainting, episodes of almost fainting, sensations of rapid heartbeats, or excessively slow.
[00256] Ultrasound catheterization, or intravascular ultrasound (IVUS) is an imaging procedure using a catheter with a miniaturized ultrasound probe attached to the distal end. The proximal end of the catheter is attached to computerized ultrasound equipment which measure how sound waves reflect off blood vessels and converts these measurements into images. IVUS is used to determine, among others, the accumulation of plaque in an artery and the correct placement of a stent.
[00257] According to some embodiments, the diagnostic catheter ranges in diameter from about 0.2 French (Fr) to about 12 French (Fr). According to some embodiments, the diagnostic catheter ranges in diameter from about 0.2 French (Fr) to at least 12 French (Fr). According to some embodiments, the diagnostic catheter ranges in diameter from at least 0.2 French (Fr) to at least 12 French (Fr). According to some embodiments, the diagnostic catheter is at least 0.2 French (Fr) in diameter. According to some embodiments, the diagnostic catheter is at least 0.3 French (Fr) in diameter. According to some embodiments, the diagnostic catheter is at least 0.4 French (Fr) in diameter. According to some embodiments, the diagnostic catheter is at least 0.5 French (Fr) in diameter. According to some embodiments, the diagnostic catheter is at least 0.6 French (Fr) in diameter. According to some embodiments, the diagnostic catheter is at least 0.7 French (Fr) in diameter. According to some embodiments, the diagnostic catheter is at least French (Fr) in diameter. According to some embodiments, the diagnostic catheter is at least 0.9 French (Fr) in diameter. According to some embodiments, the diagnostic catheter is at least 1 French (Fr) in diameter. According to some embodiments, the diagnostic catheter is at least 2 French (Fr) in diameter. According to some embodiments, the diagnostic catheter is at least 3 French (Fr) in diameter. According to some embodiments, the diagnostic catheter is at least 4 French (Fr) in diameter. According to some embodiments, the diagnostic catheter is at least 5 French (Fr) in diameter. According to some embodiments, the diagnostic catheter is at least 6 French (Fr) in diameter. According to some embodiments, the diagnostic catheter is at least 7 French (Fr) in diameter. According to some embodiments, the diagnostic catheter is at least 8 French (Fr) in diameter. According to some embodiments, the diagnostic catheter is at least 9 French (Fr) in diameter. According to some embodiments, the diagnostic catheter is at least 10 French (Fr) in diameter. According to some embodiments, the diagnostic catheter is at least 11 French (Fr) in diameter. According to some embodiments, the diagnostic catheter is at least 12 French (Fr) in diameter.
[00258] According to some embodiments, the working (or non-support) lumen 120 comprises a device separate from the endovascular device 100. According to some embodiments, the separate device is capable of being advanced into a blood vessel through the working (or non-support) lumen 120. According to some embodiments, the blood vessel is an artery or a vein. According to some embodiments, the separate device is a therapeutic catheter. According to some embodiments, the separate device is a diagnostic catheter. According to some embodiments, the separate device is a microcatheter.
[00259] According to some embodiments, the working lumen formed by the side-hole 310 and the first segment 320 comprises a device separate from the endovascular device 300. According to some embodiments, the working lumen formed by the side-hole 310 and the first segment 320 facilitates delivery within a blood vessel of a device separate from the endovascular device 300. According to some embodiments, the device separate from the endovascular device 300 is capable of being advanced into a blood vessel through the side-hole 310. According to some embodiments, the blood vessel is an artery or a vein. According to some embodiments, the device separate from the endovascular device 300 is a diagnostic catheter. According to some embodiments, the device separate from the endovascular device 300 is a therapeutic catheter.
[00260] According to some embodiments, the therapeutic catheter comprises an angled extension. According to some embodiments, the angle of the angled extension ranges from about 10 degrees to about 180 degrees. According to some embodiments, the angle of the angled extension ranges from about 10 degrees to at least 180 degrees. According to some embodiments, the angle of the angled extension ranges from at least 10 degrees to at least 180 degrees. According to some embodiments, the angle of angled extension is at least 10 degrees. According to some embodiments, the angle of angled extension is at least 20 degrees. According to some embodiments, the angle of angled extension is at least 30 degrees. According to some embodiments, the angle of angled extension is at least 40 degrees. According to some embodiments, the angle of angled extension is at least 50 degrees. According to some embodiments, the angle of angled extension is at least 60 degrees. According to some embodiments, the angle of angled extension is at least 70 degrees. According to some embodiments, the angle of angled extension is at least 80 degrees. According to some embodiments, the angle of angled extension is at least 90 degrees. According to some embodiments, the angle of angled extension is at least 100 degrees. According to some embodiments, the angle of angled extension is at least 110 degrees. According to some embodiments, the angle of angled extension is at least 120 degrees. According to some embodiments, the angle of angled extension is at least 130 degrees. According to some embodiments, the angle of angled extension is at least 140 degrees. According to some embodiments, the angle of angled extension is at least 150 degrees. According to some embodiments, the angle of angled extension is at least 160 degrees. According to some embodiments, the angle of angled extension is at least 170 degrees. According to some embodiments, the angle of angled extension is at least 180 degrees. According to some embodiments, the angled extension is soft. According to some embodiments, the angled extension is flexible. According to some embodiments, the angled extension is adjustable.
[00261] According to some embodiments, the angled extension comprises a shape memory polymer (SMP). Shape memory polymers include, but are not limited to methacrylates, polyurethanes, blends of polystyrene and polyurethane, and polyvinylchloride. According to some embodiments, the angled extension of the catheter comprises a shape memory alloy (SMA). Non-limiting examples of shape memory alloys include nickel-titanium (i.e., nitinol).
[00262] The term“therapeutic catheter” includes, but is not limited to, a endovascular thrombectomy catheter, a distal endovascular thrombectomy catheter, a self-expanding stent catheter, a retrievable thrombectomy stent catheter, an ablation catheter, a percutaneous transluminal angioplasty (PTCA) catheter, an embolization catheter, a coil, a liquid embolic, a stent, a flow-diverting stent, an intravascular web device, and the like.
[00263] PTCA is a minimally invasive procedure to open blocked coronary arteries, allowing blood to circulate unobstructed to the heart muscle. The procedure begins with the injection of local anesthesia into the groin area and putting a needle into the femoral artery. A guide wire is placed through the needle and the needle is removed. An introducer is then placed over the guide wire, after which the wire is removed. A different sized guide wire is then put in its place. Next, a long narrow tube called a diagnostic catheter is advanced through the introducer over the guide wire, into the blood vessel. This catheter is then guided to the aorta and the guide wire is removed. Once the catheter is placed in the opening (or ostium) of one the coronary arteries, a contrast dye is injected and an x-ray is taken. If a treatable blockage is noted, the first catheter is exchanged for a guiding catheter. Once the guiding catheter is in place, a guide wire is advanced across the blockage, then a balloon catheter is advanced to the blockage site. The balloon is inflated for a few seconds to compress the blockage against the artery wall. Then the balloon is deflated.
[00264] Catheter embolization is a minimally invasive treatment that occludes or blocks one or more blood vessels or vascular channels of malformations (abnormalities). In a catheter embolization procedure, medications or synthetic materials (embolic agents) are placed through a catheter into a blood vessel to prevent blood flow to the area. Using image-guidance, a catheter is inserted through the skin to the treatment site. A contrast material is then injected through the catheter and a series of x-rays are taken to locate the exact site of bleeding or abnormality. Next, a medication or an embolic agent is injected through the catheter. Additional x-rays are taken to ensure the loss of blood flow in the target vessel or malformation. Uses of catheter include, but are not limited, control or prevention of abnormal bleeding, including bleeding that results from an injury, tumor or gastrointestinal tract lesions such as an ulcer or diverticular disease;
controlling bleeding into the abdomen or pelvis caused by traumatic injuries; treatment of long menstrual periods or heavy menstrual bleeding that results from fibroid tumors of the uterus; to occlude or close off vessels that are supplying blood to a tumor; to eliminate an arteriovenous malformation (AVM) or arteriovenous fistula (AVF) (abnormal connection or connections between arteries and veins); and to treat aneurysms (a bulge or sac formed in a weak artery wall) by either blocking an artery supplying the aneurysm or closing the aneurysmal sac itself.
[00265] The various components of the described invention may be comprised of one or more materials. For example, according to some embodiments, the components can comprise one or more of a thermoplastic, a thermoset, a composite or a radiopaque filler.
[00266] Thermoplastics include, but are not limited to, nylon, polyethylene terephthalate (PET), urethane, polyethylene, polyvinyl chloride (PVC) and polyether ether ketone (PEEK).
[00267] Thermosets include, but are not limited to, silicone, polytetrafluoroethylene (PTFE) and polyimide.
[00268] Composites include, but are not limited to, liquid crystal polymers (LCP). LCPs are partially crystalline aromatic polyesters based on p-hydroxybenzoic acid and related monomers. LCPs are highly ordered structures when in the liquid phase, but the degree of order is less than that of a regular solid crystal. LCPs can be substituted for such materials as ceramics, metals, composites and other plastics due to their strength at extreme temperatures and resistance to chemicals, weathering, radiation and heat. Non-limiting examples of LCPs include wholly or partially aromatic polyesters or copolyesters such as XYDAR® (Amoco) or VECTRA® (Hoechst Celanese). Other commercial liquid crystal polymers include SUMIKOSUPERTM and EKONOLTM (Sumitomo Chemical), DuPont HXTM and DuPont ZENITETM (E.I. DuPont de Nemours), RODRUNTM (Unitika) and GRANLARTM (Grandmont).
[00269] Non-limiting examples of radiopaque fillers include barium sulfate, bismuth oxychloride, tantalum and the like.
[00270] According to some embodiments, the working lumen formed by the side-hole 310 and the first segment 320 comprises a device separate from the endovascular device 300. According to some embodiments, the separate device is capable of being advanced into a blood vessel through the side-hole 310. According to some embodiments, the blood vessel is an artery or a vein. According to some embodiments, the separate device is an introducer. According to some embodiments, the introducer is rigid. According to some embodiments, the introducer is effective to straighten a catheter comprising a soft angled extension. According to some embodiments, the introducer and the straightened catheter comprising the soft angled extension are advanced through the working lumen formed by the side-hole 310 and the first segment 320; the introducer is removed from the working lumen formed by the side-hole 310 and the first segment 320; and the soft angled extension of the catheter pushes through the side-hole 310. According to some embodiments, the side-hole 310 directs the soft angled extension of the catheter into a blood vessel. According to some embodiments, the blood vessel is an artery or a vein.
[00271] According to some embodiments, diameter of the side-hole 310 is larger than diameter of the soft angled extension of the catheter. According to some embodiments, the side-hole 310 ranges in diameter from about 0.3 French (Fr) to about 12 French (Fr). According to some embodiments, the side-hole 310 ranges in diameter from about 0.3 French (Fr) to at least 12 French (Fr). According to some embodiments, the side-hole 310 ranges in diameter from at least 0.3 French (Fr) to at least 12 French (Fr). According to some embodiments, the side-hole 310 is at least 0.3 French (Fr) in diameter. According to some embodiments, the side-hole 310 is at least 0.4 French (Fr) in diameter. According to some embodiments, the side-hole 310 is at least 0.5 French (Fr) in diameter. According to some embodiments, the side-hole 310 is at least 0.6 French (Fr) in diameter. According to some embodiments, the side-hole 310 is at least 0.7 French (Fr) in diameter. According to some embodiments, the side-hole 310 is at least 0.8 French (Fr) in diameter. According to some embodiments, the side-hole 310 is at least 0.9 French (Fr) in diameter. According to some embodiments, the side-hole 310 is at least 1 French (Fr) in diameter. According to some embodiments, the side-hole 310 is at least 2 French (Fr) in diameter. According to some embodiments, the side-hole 310 is at least 3 French (Fr) in diameter. According to some embodiments, the side-hole 310 is at least 4 French (Fr) in diameter. According to some embodiments, the side-hole 310 is at least 5 French (Fr) in diameter. According to some embodiments, the side-hole 310 is at least 6 French (Fr) in diameter. According to some embodiments, the side-hole 310 is at least 7 French (Fr) in diameter. According to some embodiments, the side-hole 310 is at least 8 French (Fr) in diameter. According to some embodiments, the side-hole 310 is at least 9 French (Fr) in diameter. According to some embodiments, the side-hole 310 is at least 10 French (Fr) in diameter. According to some embodiments, the side-hole 310 is at least 11 French (Fr) in diameter. According to some embodiments, the side-hole 310 is at least 12 French (Fr) in diameter.
[00272] According to some embodiments, the side-hole 310 comprises an angled extension. According to some embodiments, the primary opening 160 comprises an angled extension.
[00273] According to some embodiments, the angle of the angled extension is fixed. According to some embodiments, the angle of the angled extension ranges from about 0 degrees to about 359 degrees. According to some embodiments, the angle of the angled extension ranges from about 0 degrees to at least 359 degrees. According to some embodiments, the angle of the angled extension ranges from at least 0 degrees to at least 359 degrees. According to some
embodiments, the angle of the angled extension is at least 0 degrees. According to some embodiments, the angle of the angled extension is at least 10 degrees. According to some embodiments, the angle of the angled extension is at least 20 degrees. According to some embodiments, the angle of the angled extension is at least 30 degrees. According to some embodiments, the angle of the angled extension is at least 40 degrees. According to some embodiments, the angle of the angled extension is at least 50 degrees. According to some embodiments, the angle of the angled extension is at least 60 degrees. According to some embodiments, the angle of the angled extension is at least 70 degrees. According to some embodiments, the angle of the angled extension is at least 80 degrees. According to some embodiments, the angle of the angled extension is at least 90 degrees. According to some embodiments, the angle of the angled extension is at least 100 degrees. According to some embodiments, the angle of the angled extension is at least 110 degrees. According to some embodiments, the angle of the angled extension is at least 120 degrees. According to some embodiments, the angle of the angled extension is at least 130 degrees. According to some embodiments, the angle of the angled extension is at least 140 degrees. According to some embodiments, the angle of the angled extension is at least 150 degrees. According to some embodiments, the angle of the angled extension is at least 160 degrees. According to some embodiments, the angle of the angled extension is at least 170 degrees. According to some embodiments, the angle of the angled extension is at least 180 degrees. According to some embodiments, the angle of the angled extension is at least 190 degrees. According to some embodiments, the angle of the angled extension is at least 200 degrees. According to some embodiments, the angle of the angled extension is at least 210 degrees. According to some embodiments, the angle of the angled extension is at least 220 degrees. According to some embodiments, the angle of the angled extension is at least 230 degrees. According to some embodiments, the angle of the angled extension is at least 240 degrees. According to some embodiments, the angle of the angled extension is at least 250 degrees. According to some embodiments, the angle of the angled extension is at least 260 degrees. According to some embodiments, the angle of the angled extension is at least 270 degrees. According to some embodiments, the angle of the angled extension is at least 280 degrees. According to some embodiments, the angle of the angled extension is at least 290 degrees. According to some embodiments, the angle of the angled extension is at least 300 degrees. According to some embodiments, the angle of the angled extension is at least 310 degrees. According to some embodiments, the angle of the angled extension is at least 320 degrees. According to some embodiments, the angle of the angled extension is at least 330 degrees. According to some embodiments, the angle of the angled extension is at least 340 degrees. According to some embodiments, the angle of the angled extension is at least 350 degrees. According to some embodiments, the angle of the angled extension is at least 359 degrees.
[00274] According to some embodiments, the angle of the angled extension is adjustable. According to some embodiments, the angle of the angled extension is adjustable from about 0 degrees to about 359 degrees. According to some embodiments, the angle of the angled extension is adjustable from about 0 degrees to at least 359 degrees. According to some embodiments, the angle of the angled extension is adjustable from at least 0 degrees to at least 359 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 0 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 10 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 20 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 30 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 40 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 50 degrees. According to some
embodiments, the angle of the angled extension is adjustable to at least 60 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 70 degrees.
According to some embodiments, the angle of the angled extension is adjustable to at least 80 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 90 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 100 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 110 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 120 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 130 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 140 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 150 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 160 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 170 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 180 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 190 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 200 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 210 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 220 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 230 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 240 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 250 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 260 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 270 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 280 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 290 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 300 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 310 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 320 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 330 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 340 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 350 degrees. According to some embodiments, the angle of the angled extension is adjustable to at least 359 degrees. According to some embodiments, the angled extension is adjusted after the endovascular device 300 is inserted into a blood vessel.
[00275] According to some embodiments, the angled extension comprises a shape memory polymer (SMP). Shape memory polymers include, but are not limited to methacrylates, polyurethanes, blends of polystyrene and polyurethane, and polyvinylchloride. According to some embodiments, the angled extension of the catheter comprises a shape memory alloy (SMA). Non-limiting examples of shape memory alloys include nickel-titanium (i.e., nitinol).
[00276] According to some embodiments, the described invention can be used with an embolic agent. Embolic agents include, but are not limited to, gelatin foam, polyvinyl alcohol (PVA) particles, tris-acryl gelatin microspheres (TAGM), amplatzer vascular plugs, N-butyl-2 cyanoacrylate (NBCA), ethylene vinyl alcohol (EVOH) copolymer, calcium alginate gel, absolute alcohol, precipitating hydrophobic injectable liquid (PHIL) (Microvention Inc., CA), Onyx® liquid (EVOH copolymer in dimethyl sulfoxide (DMSO) and suspended micronized tantalum powder)(ev3 Neurovascular, Irvine CA), and coils. Non-limiting examples of coils include pushable coils, injectable coils, liquid coils, detachable coils, hydrogel coils and the like.
[00277] According to some embodiments, the described invention can be used to advance a separate device through a blood vessel to access an intracranial lesion in a blood vessel branching off at an acute angle. According to some embodiments, the separate device is advanced through the working lumen. According to another embodiment, the separate device is a catheter. According to another embodiment, the catheter is used to treat the intracranial
[00278] According to some embodiments, the described invention can be used in an
endovascular procedure in a subject suffering from an anatomical variation in a blood vessel. According to some embodiments, the blood vessel comprises an anatomical variation comprising tortuosity. According to some embodiments, the blood vessel comprises an anatomical variation comprising an acute angulation. According to some embodiments, the acute angulation is an aortic arch variation. According to some embodiments, the aortic arch variation is a bovine arch variation. According to some embodiments, the acute angulation is a vertebral artery variation.
[00279] According to some embodiments, the described invention can be used in an
endovascular procedure to treat acute stroke in a subject suffering from an anatomical variation in a blood vessel. According to some embodiments, the blood vessel comprises an anatomical variation comprising tortuosity. According to some embodiments, the blood vessel comprises an anatomical variation comprising an acute angulation. According to some embodiments, the acute angulation is an aortic arch variation. According to some embodiments, the aortic arch variation is a bovine arch variation. According to some embodiments, the acute angulation is a vertebral artery variation.
[00280] According to some embodiments, the support lumen 110 is advanced through the Subclavian artery into the arm, or alternatively, into the external carotid artery. According to some embodiments, the support lumen 110 provides support for a catheter, a wire or a combination thereof, advanced through the working (or non-support) lumen 120 and into a blood vessel. According to some embodiments, the blood vessel is the left internal carotid artery. According to some embodiments, the blood vessel is the distal vertebral artery. According to some embodiments, the support lumen 110 prevents kickback of an advancing catheter, an advancing wire or a combination thereof.
[00281] According to some embodiments, the second segment 330 is advanced through the Subclavian artery into the arm, or alternatively, into the external carotid artery. According some embodiments, the second segment 330 provides support for a catheter, a wire or combination thereof, advanced through the working lumen formed by the side-hole 310 and the first segment 320 and into a blood vessel. According to some embodiments, the blood vessel is the left internal carotid artery. According to some embodiments, the blood vessel is the distal vertebral artery. According to some embodiments, the second segment 330 prevents kickback of an advancing catheter, an advancing wire or a combination thereof.
[00282] The present invention teaches the use of the embodiments described herein. The following information concerning the method is useful for teaching said method. In particular, the method employs a catheter with a side hole medical device, such as a medical catheter which has a segment distal to the side hole for use as anchor segments, and using the proximal segment and side-hole as a working or non-support lumen to help advance a second medical device while eliminating or ameliorating kickback of the first catheter with the side-hole. In the preferred embodiment of the present invention a valve would be located at both ends of the support segment, so once a wire over which the current invention is delivered and positioned is removed, both valves will close and prevent blood from entering said support lumen, thereby preventing blood from stagnating in said support lumen, which could result in the formation of blood clots and subsequent injury to the patient. While this the preferred embodiment is a balloon which requires no wire, other embodiments would allow other options, such as a balloon which does require wires to operate it.
[00283] More particularly, a method is disclosed wherein when using a side-hole medical device consist of a tube comprising:
(a) A first segment comprising a primary opening at the proximal end;
(b) A second segment comprising a secondary opening at the distal end; and
(c) A side-hole dividing said first segment and said second segment,
wherein said first segment extends from said primary opening to said side-hole and said second segment extends from said side-hole to said secondary opening; the steps comprising: (i) positioning said side-hole medical device wherein said side-hole is adjacent to a target area, and the end of said second segment is inside of an anchor vessel; and (ii) advancing at least one second medical device to said target area.
[00284] The method provides for at least one second medical device to be advanced through a non-support lumen and out the side-hole into proximity of said target area. Alternatively or in addition, the at least one second medical device is advanced through a support lumen to the anchor vessel. A multiplicity of second medical devices may be deployed including, without limitation, at least one balloon; supplemental supports; a third medical device is deployed via a support lumen. The method includes using a side-hole lumen medical device wherein said side- hole lumen medical device is any medical device which uses a side to deliver medical treatment to a target area which uses a non-support lumen and a support lumen.
[00285] Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the u6pper and lower limit of that range and any other stated or intervening value in that stated range is encompassed within the invention. The upper and lower limits of these smaller ranges which may independently be included in the smaller ranges is also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either both of those included limits are also included in the invention.
[00286] Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present invention, exemplary methods and materials have been described. All publications mentioned herein are incorporated herein by reference to disclose and described the methods and/or materials in connection with which the publications are cited.
[00287] It must be noted that as used herein and in the appended claims, the singular forms“a”, “an” and“the” include plural references unless the context clearly dictates a, an, or the.
[00288] The publications discussed herein are provided solely for their disclosure prior the filing date of the present application and each is incorporated by reference in its entirety. Nothing herein is to be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention. Further, the dates of publication provided may be different from the actual publication dates which may need to be independently confirmed.
[00289] While the present invention has been described with reference to the specific embodiments thereof it should be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the true spirit and scope of the invention. In addition, many modifications may be made to adopt a particular situation, material, composition of matter, process, process step or steps, to the objective spirit and scope of the present invention. All such modifications are intended to be within the scope of the claims appended hereto.

Claims

CLAIMS [00290] What is claimed is:
1. A method of using a side-hole medical device, said side-hole medical device comprising a tube, comprising:
(a) a first segment having a primary opening at a proximal end;
(b) a second segment having a secondary opening at a distal end; and
(c) a side-hole dividing said first segment and said second segment,
wherein said first segment extends from said primary opening to said side-hole, and said second segment extends from said side-hole to said secondary opening;
said method comprising the steps of
(i) positioning said side-hole medical device such that said side-hole is adjacent to a target area, and
said distal end of said second segment is inside of an anchor vessel; and
(ii) advancing at least one second medical device to said target area.
2. The method of Claim 1 wherein said at least one second medical device is advanced through a non-support lumen and out said side-hole into proximity of said target area.
3. The method of Claim 1 wherein said at least one second medical device is advanced through a support lumen to said anchor vessel.
4. The method of Claim 1 wherein said at least one second medical device comprises at least one balloon.
5. The method of Claim 1 wherein said at least one second medical device is a supplemental support.
6. The method of Claim 1 wherein a third medical device is deployed via a support lumen.
7. The method of using a side-hole lumen medical device as described in Claim 1, wherein said side-hole lumen medical device is any medical device which uses a side to treat said target area using a non-support lumen and a support lumen.
8. The method of using a side-hole lumen medical device as described in Claim 1, wherein said side-hole lumen medical device further comprises:
(a) said proximal end nearest an external termination device;
wherein the internal diameter of said first segment is greater than the internal diameter of said second segment,
(b) said tube has no pre-formed curved configuration,
(c) said first segment extends from said primary opening to said side-hole and said second segment extends from said side-hole to said secondary opening,
(d) said side-hole and said first segment form a non-support lumen, and
(e) said second segment forms a support lumen, wherein said support lumen is effective:
(1) to provide stability to said non-support lumen of said tube,
(2) to anchor said tube within said anchor vessel; and
(3) to prevent prolapse of elements of said medical device elements due to a counterforce against said tube by said second device being delivered through said tube to a more distal location of said target area: and
(4) to facilitate placement of said at least one second medical device into said target area.
9. The method of using a side hole lumen medical device as described in Claim 1, wherein said side-hole has uniform configuration without a directional element; and wherein said side-hole lumen medical device further comprises:
(a) said proximal end nearest an external termination device;
(b) said second segment is round,
(c) said side-hole and said first segment form a non-support lumen,
(d) said second segment forms a support lumen, wherein said support lumen is effective:
(i) to provide stability to said non-support lumen of said tube;
(ii) to anchor said tube within said anchor vessel; (iii)to prevent prolapse of elements of said medical device elements due to a counterforce against said tube by said second device being delivered through said tube to a more distal location of said target area: and
(iv)to facilitate placement of said at least one second medical device into said target area.
10. The method of using a side-hole lumen medical device as described in Claim 1, wherein the internal diameter of said first segment is greater than the internal diameter of second lumen; and
wherein said tube has no pre-formed curved configuration; and
wherein said side-hole and said first segment forms a non-support lumen, and said second segment forms a support lumen,
wherein said support lumen is effective:
(i) to provide stability to said non-support lumen of said tube;
(ii) to anchor said tube within said anchor vessel;
(iii)to prevent prolapse of at least one of: said catheter, a coil, a second
catheter, and said at least one second medical device due to a counterforce against said tube by said second device being delivered through said tube to a more distal location of said target area: and
(iv)to facilitate placement of said at least one second medical device into said target area.
11. The method of using a side-hole lumen medical device as described in Claim 1, wherein said side-hole lumen medical device further comprises at least one valve;
wherein said side-hole and said first segment forms a non-support lumen, and said second segment forms a support lumen, and
wherein said support lumen is effective:
(1) to provide stability to said non-support lumen of said tube;
(2) to anchor said tube within said anchor vessel;
(3) to prevent prolapse of at least one of: said catheter, a coil, a second catheter, and said at least one second medical device due to a counterforce against said tube by said second device being delivered through said tube to a more distal location of said target area: and
4) to facilitate placement of said second medical device into said target area.
EP20821687.9A 2019-06-12 2020-05-28 Vessel access catheter method of use Withdrawn EP3983041A4 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962921378P 2019-06-12 2019-06-12
US16/848,699 US20200246584A1 (en) 2016-11-02 2020-04-14 Vessel Access Catheter Method of Use
PCT/US2020/035012 WO2020251776A1 (en) 2019-06-12 2020-05-28 Vessel access catheter method of use

Publications (2)

Publication Number Publication Date
EP3983041A1 true EP3983041A1 (en) 2022-04-20
EP3983041A4 EP3983041A4 (en) 2023-01-11

Family

ID=73781570

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20821687.9A Withdrawn EP3983041A4 (en) 2019-06-12 2020-05-28 Vessel access catheter method of use

Country Status (2)

Country Link
EP (1) EP3983041A4 (en)
WO (1) WO2020251776A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001089624A1 (en) * 2000-05-19 2001-11-29 C.R. Bard, Inc. Steerable biliary catheter
US8795288B2 (en) * 2006-11-02 2014-08-05 Cook Medical Technologies Llc Access device
WO2008097833A1 (en) * 2007-02-05 2008-08-14 Wilson-Cook Medical Inc. Apparatus and methods for removing relatively large and small stones from a body passage
US20190192830A1 (en) * 2017-12-21 2019-06-27 Daniel Ezra Walzman Vessel access catheter
US20170333670A1 (en) * 2016-05-18 2017-11-23 Daniel Walzman Vessel access catheter

Also Published As

Publication number Publication date
WO2020251776A1 (en) 2020-12-17
EP3983041A4 (en) 2023-01-11

Similar Documents

Publication Publication Date Title
US10307242B2 (en) Simultaneous rotating separator, irrigator microcatheter for thrombectomy and method of use
US20170333237A1 (en) Vessel access catheter
US10299824B2 (en) Rotating separator, irrigator microcatheter for thrombectomy
US20210100986A1 (en) Vessel access catheter
US11672643B2 (en) Endovascular device with expandable filter
US20200222173A1 (en) Vessel access catheter
US20190216499A1 (en) Arch Fulcrum Support Catheter
US20170333670A1 (en) Vessel access catheter
US20240032931A1 (en) Filterless aspiration, irrigating, macerating, rotating microcatheter and method of use
US20180049862A1 (en) Vessel Access Catheter
US20190282265A1 (en) Arm access arch fulcrum support catheter
US20190282266A1 (en) Method of use for an arm access arch fulcrum support catheter
US11259820B2 (en) Methods and devices to ameliorate vascular obstruction
US20170333674A1 (en) Vessel access catheter
US20220240955A1 (en) Methods and devices to ameliorate vascular obstruction
US20210138191A1 (en) Segmented arch fulcrum support catheter and method of use
US20200246584A1 (en) Vessel Access Catheter Method of Use
US20230073895A1 (en) Vessel access catheter
US10258371B2 (en) Arch fulcrum support catheter
WO2020251776A1 (en) Vessel access catheter method of use
US20180125635A1 (en) Vessel access catheter
US12138149B2 (en) Endovascular devices and methods with filtering elements
US20210236257A1 (en) Endovascular devices and methiods with filtering elements

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211220

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20221212

RIC1 Information provided on ipc code assigned before grant

Ipc: A61B 17/00 20060101ALI20221206BHEP

Ipc: A61M 25/00 20060101AFI20221206BHEP

RIC1 Information provided on ipc code assigned before grant

Ipc: A61F 2/954 20130101ALI20230418BHEP

Ipc: A61F 2/962 20130101ALI20230418BHEP

Ipc: A61B 17/00 20060101ALI20230418BHEP

Ipc: A61M 25/00 20060101AFI20230418BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20231114