Nothing Special   »   [go: up one dir, main page]

EP3826789A1 - Cobalthaltige metallschaumkörper und verfahren zu ihrer herstellung - Google Patents

Cobalthaltige metallschaumkörper und verfahren zu ihrer herstellung

Info

Publication number
EP3826789A1
EP3826789A1 EP20775651.1A EP20775651A EP3826789A1 EP 3826789 A1 EP3826789 A1 EP 3826789A1 EP 20775651 A EP20775651 A EP 20775651A EP 3826789 A1 EP3826789 A1 EP 3826789A1
Authority
EP
European Patent Office
Prior art keywords
metal foam
foam body
aluminum
metal
catalytically active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20775651.1A
Other languages
English (en)
French (fr)
Inventor
René Poss
Meike Roos
Monika BERWEILLER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Evonik Operations GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Operations GmbH filed Critical Evonik Operations GmbH
Publication of EP3826789A1 publication Critical patent/EP3826789A1/de
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0225Coating of metal substrates
    • B01J37/0226Oxidation of the substrate, e.g. anodisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8913Cobalt and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/892Nickel and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/397Egg shell like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0205Impregnation in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0209Impregnation involving a reaction between the support and a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/12Oxidising
    • B01J37/14Oxidising with gases containing free oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/114Making porous workpieces or articles the porous products being formed by impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1143Making porous workpieces or articles involving an oxidation, reduction or reaction step
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1146After-treatment maintaining the porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores
    • C22C1/083Foaming process in molten metal other than by powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/241Chemical after-treatment on the surface
    • B22F2003/242Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/241Chemical after-treatment on the surface
    • B22F2003/244Leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • B22F2007/042Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal characterised by the layer forming method
    • B22F2007/045Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal characterised by the layer forming method accompanied by fusion or impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • B22F2007/042Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal characterised by the layer forming method
    • B22F2007/047Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal characterised by the layer forming method non-pressurised baking of the paste or slurry containing metal powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/05Light metals
    • B22F2301/052Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1121Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
    • B22F3/1137Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers by coating porous removable preforms

Definitions

  • the present invention relates to processes for the production of supported catalysts, which comprise the following steps: coating of metal foam bodies made of metallic cobalt, an alloy of nickel and cobalt, or an arrangement of superimposed layers of nickel and cobalt with aluminum, subsequent thermal treatment in order to form an alloy achieve between metal foam and aluminum, subsequent oxidative treatment of the aluminum surface, as well as application of a catalytically active layer, which comprises at least one carrier oxide and at least one catalytically active component.
  • the present invention also relates to the supported catalysts obtainable by the process and their use in chemical transformations.
  • the use of metal foams as support bodies for catalytically active coatings is known from the prior art.
  • the catalytically active coatings on the metallic support bodies are typically composed of a carrier oxide which enlarges the microscopic surface and catalytically active metals which are applied to the carrier oxide (cf. e.g. WO 9511752 A1).
  • the monolithic supported catalysts obtained in this way can be used in a wide variety of applications, but their usability is limited by the extremely poor adhesion of the catalytically active coating, which is mainly composed of oxidic components, to the metallic support body.
  • sol-gel processes are used as catalyst support bodies for coating metal foams.
  • these processes require special equipment and the use of expensive reagents, which have a high hazard potential and are difficult to handle.
  • ALD atomic layer deposition
  • US 20120329889 A1 discloses a method for producing metal foam support catalysts for the Fischer-Tropsch synthesis, in which a thin ALOs film is produced on a metal foam by “atomic layer deposition” (ALD) and then an oxidic coating by dip coating, drying and subsequent calcination is applied.
  • US 20120329889 A1 explicitly points out that a stable coupling between the metal foam surface and the oxidic coating is difficult to achieve (cf. paragraphs [0068] - [0069]), and that this is achieved by applying the oxidic intermediate layer by means of ALD.
  • the present invention is a.
  • Processes according to the invention for the production of supported catalysts comprise the following steps:
  • a catalytically active layer comprising at least one carrier oxide and at least one catalytically active component, to at least part of the surface of metal foam body C, so that a supported catalyst is obtained.
  • nickel foam bodies onto which aluminum is first applied, alloyed and then partially leached again, are known as an alternative to classic Raney-type catalysts (cf., for example, EP 2764916 A1).
  • the foam bodies thus obtained are activated all-metal catalysts of the Raney type, which are typically used in hydrogenation reactions.
  • Metal foam bodies are also known from the prior art, onto which aluminum is first applied and alloyed and which are then oxidized (cf. Wen-Wen Zeng et al. “Synthesis and compression property of oxidation-resistant Ni-Al foams”, Acta metallurgica Sinica, Volume 30, No. 10, October 1, 2017, pages 965-972).
  • Wen-Wen Zeng et al. “Synthesis and compression property of oxidation-resistant Ni-Al foams”, Acta metallurgica Sinica, Volume 30, No. 10, October 1, 2017, pages 965-972).
  • the alloy formation is limited to the upper layers of the metal foam, so that unalloyed areas remain in central regions of the metal foam.
  • metal foam body A is understood to mean a foam-shaped metal body.
  • Foam-shaped metal bodies are disclosed, for example, in Ullmann's Encyclopedia of Industrial Chemistry, chapter “Metallic Foams”, published online on July 15, 2012, DOI: 10.1002 / 14356007. c16_c01 pub2.
  • metal foams with various morphological properties with regard to pore size and shape, layer thickness, surface density, geometric surface, porosity, etc. are suitable.
  • Metal foam A preferably has a density in the range from 400 to 1500 g / m 2 , a pore size from 400 to 3000 ⁇ m, preferably from 400 to 800 ⁇ m and a thickness in the range from 0.5 to 10 mm, preferably from 1.0 to 5.0 mm.
  • the production can take place in a manner known per se.
  • a foam can be made from an organic polymer are first coated with a metal and then the polymer is removed by thermolysis to obtain a metal foam.
  • the foam composed of the organic polymer can be brought into contact with a solution or suspension which contains the first metal. This can e.g. B. be done by spraying or dipping.
  • a polymer foam suitable for producing moldings in the form of a foam preferably has a pore size in the range from 100 to 5000 ⁇ m, particularly preferably from 450 to 4000 ⁇ m and in particular from 450 to 3000 ⁇ m.
  • a suitable polymer foam preferably has a layer thickness of 0.5 to 10 mm, particularly preferably from 1.0 to 5.0 mm.
  • a suitable polymer foam preferably has a density of 300 to 1200 kg / m 3 .
  • the specific surface area is preferably in a range from 100 to 20,000 m 2 / m 3 , particularly preferably from 1000 to 6000 m 2 / m 3 .
  • the porosity is preferably in a range from 0.50 to 0.95.
  • the metal foam bodies A used in step (a) of the method according to the invention can have any shape, for example cubic, cuboid, cylindrical, etc.
  • the metal foam bodies can, however, also be shaped, for example, into monoliths.
  • step (b) of the process according to the invention can be carried out in a variety of ways, e.g. B. by bringing metal foam body A into contact with a composition of the aluminum-containing powder MP by rolling or dipping, or by applying a composition of the aluminum-containing powder MP by spraying, sprinkling or pouring.
  • the composition of the aluminum-containing powder MP can be present as a suspension or in the form of a powder.
  • step (b) of the method according to the invention is preferably preceded by a prior impregnation of metal foam body A with a binder.
  • the impregnation can take place, for example, by spraying the binder or dipping metal foam body A into the binder, but is not limited to these possibilities.
  • the composition of the metal-containing powder MP can then be applied to the metal foam body A prepared in this way.
  • the binder and composition of the aluminum-containing powder MP can be applied in one step.
  • the composition of the aluminum-containing powder MP is either suspended in the liquid binder itself before application, or the composition of the aluminum-containing powder MP and the binder are suspended in an auxiliary liquid F.
  • the binder is a composition that can be completely converted into gaseous products by thermal treatment in the temperature range from 100 to 400 ° C, comprising an organic compound that promotes adhesion of the composition of the aluminum-containing powder MP to the metal foam body.
  • the organic compound is preferably selected from the following group: polyethyleneimine (PEI),
  • the molecular weight of the polyethyleneimine is preferably in a range from 10,000 to 1,300,000 g / mol.
  • the molecular weight of the polyethyleneimine (PEI) is preferably in a range from 700,000 to 800,000 g / mol.
  • Auxiliary liquid F must be suitable to suspend the composition of the aluminum-containing powder MP and the binder and to be able to be converted completely into gaseous products by thermal treatment in the temperature range from 100 to 400 ° C.
  • Auxiliary liquid F is preferably selected from the following group: water, ethylene glycol, PVP and mixtures of these compounds. If auxiliary liquid is used, the binder is typically suspended in water at a concentration in the range from 1 to 10% by weight, and the composition of the aluminum-containing powder MP is then suspended in this suspension.
  • the aluminum-containing powder MP used in step (b) of the process according to the invention comprises pulverulent aluminum, but can also contain additives which contribute to increasing the flowability or water resistance. Such additives must be able to be converted completely into gaseous products by thermal treatment in the temperature range from 100 to 400 ° C.
  • the aluminum-containing powder MP preferably has an aluminum content in the range from 80 to 99.8% by weight. Powders in which the aluminum particles have a particle size of not less than 5 ⁇ m and not greater than 200 ⁇ m are preferred. Powders in which 95% of the aluminum particles have a particle size of not less than 5 ⁇ m and not greater than 75 ⁇ m are particularly preferred. It is possible that the aluminum-containing powder MP also contains aluminum components in oxidized form in addition to the aluminum component in elemental form. This oxidized fraction is usually in the form of oxidic compounds such as oxides, hydroxides and / or carbonates. The mass fraction of oxidized aluminum is typically in the range from 0.05 to 10% by weight of the total mass of the aluminum-containing powder MP.
  • step (c) of the method according to the invention a thermal treatment takes place in order to achieve the formation of one or more alloys.
  • step (c) of the method according to the invention metal foam body AX is thermally treated in order to achieve alloy formation between metal foam body A and aluminum-containing powder MP, so that metal foam body B is obtained, the highest temperature of the thermal treatment of metal foam body AX in the range from 680 to 715 ° C., and the total duration of the thermal treatment in the temperature range from 680 to 715 ° C. being between 5 and 240 seconds.
  • the thermal treatment usually comprises the step-by-step heating of the metal foam body AX and the subsequent cooling to room temperature.
  • the thermal treatment takes place under inert gas or under reductive conditions.
  • Reductive conditions are understood to mean the presence of a gas mixture which contains hydrogen and at least one gas which is inert under the reaction conditions. Suitable is z. B. a gas mixture that contains 50 vol% N2 and 50 vol% H2.
  • the inert gas used is preferably nitrogen.
  • the heating can, for. B. be done in a belt furnace. Suitable heating rates are in the range from 10 to 200 K / min, preferably 20 to 180 K / min.
  • the temperature is typically first increased from room temperature to about 300 to 400 ° C.
  • the temperature is then increased to in the range from 680 to 715 ° C. and an alloy is formed between the metal foam body A and the aluminum-containing powder MP.
  • the metal foam body is then quenched by contact with the protective gas environment at a temperature of approx. 200 ° C.
  • the highest temperature of the thermal treatment of metal foam body AX in step (c) is in the range from 680 to 715 ° C, and that the total duration of the thermal treatment in the temperature range from 680 to 715 ° C is between 5 and 240 seconds.
  • the duration of the thermal treatment can compensate for the level of the highest treatment temperature and vice versa;
  • the frequency of experiments in which alloying is achieved in the upper area of the metal foam while unalloyed areas remain inside the metal foam decreases sharply if the temperature interval between 680 and 715 ° C at the maximum temperature of the thermal treatment is left and / or the duration of the thermal treatment in the temperature interval between 680 and 715 ° C is outside the range of 5 to 240 seconds. If the maximum temperature is too high and / or if the metal foam body remains in the region of the maximum temperature for too long, the alloy formation progresses into the deepest layers of the metal foam and no unalloyed areas remain. Too low a maximum temperature and / or too short If the metal foam body remains in the range of the maximum temperature, the alloy formation does not even begin.
  • the thermal treatment of the metal foam in step (c) of the process according to the invention leads to the formation of aluminum-containing phases.
  • the ratio V of the masses of metal foam body B to metal foam body A, V m (metal foam body B) / m (metal foam body A), is a measure of how much aluminum was alloyed into the foam in step (c) of the process according to the invention.
  • step (d) of the method according to the invention an oxidative treatment of metal foam body B takes place, so that metal foam body C is obtained.
  • the aim of the oxidative treatment of metal foam body B in step (d) of the method according to the invention is to provide the aluminum present on the surface of metal foam body B with an external aluminum oxide layer.
  • This goal can be achieved, for example, by exposing the metal foam body B either in a heated state to an oxidative gas atmosphere (e.g. air), or by first forming aluminum hydroxide on the surface of the metal foam body B, e.g. by bringing it into contact with an alkaline solution, and then applying the aluminum hydroxide thermal treatment under oxidizing conditions is converted into aluminum oxide.
  • an oxidative gas atmosphere e.g. air
  • the temperature should be selected between 200 ° C and 1200 ° C, or between 200 ° C and 1000 ° C, or between 200 ° C and 750 ° C.
  • the thermal oxidation is preferably carried out over a period of 1 to 60 minutes at a temperature of 200 ° C. to 700 ° C. in air.
  • metal foam body B If aluminum hydroxide is initially formed on the surface of metal foam body B, e.g. by bringing it into contact with an alkaline solution and only then thermally treated, at least some of the aluminum on the surface is first converted to aluminum hydroxide and then at least some of the aluminum hydroxide formed on the surface is converted to aluminum oxide.
  • the conversion of at least part of the aluminum lying on the surface to aluminum hydroxide is preferably achieved by bringing the metal foam body into contact with an aqueous alkaline solution.
  • the aqueous alkaline solution particularly preferably contains sodium hydroxide, potassium hydroxide, lithium hydroxide or a combination thereof in a concentration of 0.05 to 30% by weight, preferably 0.5 to 5% by weight, and metal foam body B is with the aqueous alkaline solution over a period of Brought into contact for 5 to 120 minutes, preferably a maximum of 30 minutes and particularly preferably a maximum of 10 minutes.
  • This treatment can take place in a temperature range between 10 ° C and 110 ° C. Treatment at 20 ° C. (room temperature) is preferred.
  • the aluminum hydroxide formed on the surface is thermally converted to aluminum oxide in an oxidizing atmosphere.
  • the mixture is heated to a temperature of 20 ° C (room temperature) to 700 ° C over a period of 1 minute to 8 hours with the admission of air.
  • the thermal oxidation is preferably carried out over a period of 1 to 60 minutes at a temperature of 200 ° C. to 700 ° C. in air.
  • Metal foam body C serves as a support body for a suitable catalyst, which can be specifically selected for the particular reaction that is to be catalyzed.
  • a catalytically active layer comprising at least one carrier oxide and at least one catalytically active component, is applied to at least part of the surface of metal body C, so that a supported catalyst is obtained.
  • Metal foam bodies C according to the invention can be equipped particularly well with a catalytically active layer according to the invention, since the aluminum oxide skin produced on the surface of metal foam body C ensures extremely good binding of the carrier oxides and a long durability and service life as well as extremely high mechanical stability, in particular abrasion resistance , causes.
  • the catalytically active layer comprising at least one carrier oxide and at least one catalytically active component, can be applied, for example, to metal foam body C by sucking or pumping a coating suspension through the continuous cavities of open-pore metal foam body C.
  • metal foam body C is similar to the monolithic substrates used in car exhaust catalysis.
  • the application of a coating suspension in dipping processes is similar to the monolithic substrates used in car exhaust catalysis.
  • spray coating in spraying processes
  • which of the application methods known in principle in the prior art is to be preferred depends on the one hand on the composition and the flow properties of the coating suspension and on the other hand on the actual structure of the metal foam body according to the invention. Dip coating has the highest possible tolerance to varying properties of the coating suspension and is therefore suitable for coating all metal foam bodies according to the invention.
  • step (e) following the bringing into contact with the coating suspension, the coated metal foam body is calcined and the supported catalyst is thus obtained.
  • the catalytically active layer comprises at least one carrier oxide.
  • carrier oxides are inorganic oxides with high specific surface areas, which are typically between 50 and 200 m 2 / g. These carrier oxides have several functions in the finished catalyst: On the one hand, they serve to enlarge the macroscopic, ie geometric surface provided by the metal foam bodies according to the invention, which in the context of this invention is referred to as the contact surface of the catalyst with the reaction medium, in the microscopic level. On the other hand, they can interact with the catalytically active species and thus influence the course of the reaction.
  • the choice of carrier oxide influences the selectivity of complex hydrogenation reactions in which several functional groups of organic substrate molecules can react with hydrogen. Furthermore, they provide the microscopic surface on which the catalytically active components are distributed. They also form a matrix in which further functional components and additives can be distributed, which are used to set special functions of the catalytic converter when it is adapted to a specific application.
  • Carrier oxides are preferably selected from the group consisting of aluminum oxide, silicon dioxide, titanium oxide and mixtures thereof.
  • Transition metals or compounds of transition metals are used as catalytically active components of the catalytically active layer, the transition metals preferably being selected from the group consisting of iron, ruthenium, osmium, cobalt, rhodium, iridium, nickel, palladium, platinum, cerium, copper, Silver, gold and mixtures thereof.
  • the catalytically active layer can contain inorganic oxides, preferably selected from the oxides of the alkaline earth metals, the oxides of the transition metals, the rare earths, the oxides of aluminum and gallium, the oxides of silicon, germanium and tin and / or mixtures thereof.
  • the catalytically active layers according to the present invention can contain one or more carrier oxides, one or more catalytically active components and, if appropriate, further functional components and additives.
  • a coating suspension is produced by introducing the constituents into water.
  • the application of the catalytic components to the carrier oxides takes place either by prior impregnation of the carrier oxides with appropriate metal salt solutions (precursor solutions) or by adding precursor solutions directly to the coating suspension and optionally precipitation or chemically induced deposition or decomposition of the precursor compound on the / the already suspended carrier oxide / s.
  • Functional components and additives can also be introduced in this way or added directly as oxidic solids.
  • all of the constituents of the catalyst resulting from soluble precursors can be added by post-impregnation processes after the carrier oxides have been applied to the metal foam bodies according to the invention.
  • the choice of the preparation method is determined by the target composition and the properties of the resulting catalyst to be set.
  • the catalytically active layer applied to the metal foam bodies in step (e) of the process according to the invention is preferably fixed by calcination in air.
  • this calcination is carried out over a period of 1 minute to 8 hours at a temperature of 200 ° C. to 800 ° C. in air.
  • the calcination is preferably carried out over a period of 1 to 480 minutes at a temperature of 200 ° C. to 680 ° C. in air.
  • the calcination is particularly preferably carried out over a period of 1 to 480 minutes at a temperature of 300 ° C. to 650 ° C. in air.
  • step (d) over a period of 1 to 60 minutes at a temperature of 200 ° C. to 680 ° C. in air and the calcination in step (e) over a period of 1 to 480 minutes at a Temperature from 200 ° C to 680 ° C carried out in air.
  • a metal foam body according to the invention forms a pure aluminum oxide layer on the surface due to its excess of Al, which means a diffusion barrier between the carrier material and the catalytic layer.
  • Catalytic layers based on the carrier oxide aluminum oxide and the aluminum oxide on the surface of the metal foam body are systems of the same type.
  • the expansion coefficients are therefore similar, spalling under thermal loads is low and the connection resistance due to a calcination process is very good.
  • the supported catalysts themselves obtainable by these processes and their use in chemical transformations are also a subject of the present invention.
  • Supported catalysts according to the invention can, for example, advantageously be used in chemical fixed bed processes.
  • Binder solution was then sprayed onto metal foam bodies a, b, c, d, e, f (polyethyleneimine (2.5% by weight) in water) and then powdered aluminum (manufacturer: AMG, average particle size: ⁇ 63 ⁇ m, with 3% by weight) % Addition of ethylene bis (stearamide)) applied as a dry powder (approx. 400 g / m 2 ).
  • metal foam bodies a, b, c, d, e were subjected to a thermal treatment in an oven under a nitrogen atmosphere. It was initially heated from room temperature to the maximum temperature in about 15 minutes, this was maintained for a defined period of time and then quenched by contacting with a nitrogen atmosphere of 200 ° C.
  • the extent of the alloy formation in the metal foam bodies was then determined. For this purpose, cross sections of the metal foam bodies were examined under a microscope and a scanning electron microscope. While with the metal foam bodies a, d, e superficial alloy formation has taken place, but unalloyed areas inside the Metal foam have remained, no alloy formation has taken place in metal foam body b, and in metal foam body c the alloy formation has progressed so far that no unalloyed areas remain in the interior of the metal foam.
  • Metal foam body a was exposed to an oxidative gas atmosphere in a heated state.
  • the metal foam body was heated to 700 ° C. in an oven with admission of air.
  • Metal foam body d was first brought into contact with an alkaline solution (5% by weight aqueous NaOH for 10 min at 20 ° C.). A white precipitate forms on the foam. The precipitate is the conversion of aluminum to aluminum hydroxide. Metal foam body d was then dried in air. The dried metal foam body with the white precipitate is pre-oxidized in a preheated oven at 700 ° C. and normal atmosphere, in which the aluminum hydroxide is converted into aluminum oxide.
  • the oxidic pretreatment has several functions:
  • Metal foam body f which had previously remained untreated, was provided with an aluminum oxide layer, as described in the prior art (cf. WO95 / 11752A1, Example 3).
  • metal foam bodies f were completely immersed in a saturated sodium aluminate solution for 3 hours, then swiveled in deionized water until the hydrolysis reaction had subsided, and finally heated at 500 ° C. for 3 hours with access to air.
  • a catalytically active layer was then applied to metal foam bodies a, d, e and f by spraying.
  • the metal foam body was moistened with water.
  • a 2.5% polyethyleneimine suspension was then mixed with c-aluminum oxide with a high surface area.
  • the mixture of water / polyethyleneimine and aluminum oxide was sprayed on.
  • the spraying was followed by a drying process at 140 ° C. for 30 minutes in air in a drying oven.
  • For calcination the sample was baked in an oven at 650 ° C. for 5 hours. The process of coating, drying and calcination was repeated several times until the desired amount of coating was applied. 8. Investigation of the supported catalyst obtained
  • the supported catalysts obtained were examined, among other things the resistance of the catalytically active layer on the metal foam bodies to mechanical stress was examined.
  • a scratch test can be carried out in order to determine the bonding quality of the oxidic, catalytically active layer to the carrier foam. In the present case, however, this test is not possible due to the irregular structure of the foam. Therefore, to investigate the mechanical stability of the catalytically active layer, a temperature change test was carried out, which provides a measure of the quality of the bond between the oxidic layer and the carrier foam.
  • metal foam bodies a, d, e and f were heated to 500 ° C. and then quenched in cold water. The amount lost, i.e. the mass of the flaked catalytic layer of each sample, was then determined by filtering off, drying and weighing the flaked material.
  • Metal foam body a and d 3 mg loss
  • metal foam body f 10 mg loss
  • metal foam body e 50 mg loss
  • Binder solution was then sprayed onto metal foam bodies a, b, c, d, e, f (polyethyleneimine (2.5% by weight) in water) and then powdered aluminum (manufacturer: AMG, average particle size: ⁇ 63 ⁇ m, with 3% by weight) % Addition of ethylene bis (stearamide)) applied as a dry powder (approx. 400 g / m 2 ).
  • metal foam bodies a, b, c, d, e were subjected to a thermal treatment in an oven under a nitrogen atmosphere. It was initially heated from room temperature to the maximum temperature in about 15 minutes, this was maintained for a defined period of time and then quenched by contacting with a nitrogen atmosphere of 200 ° C.
  • the extent of the alloy formation in the metal foam bodies was then determined. For this purpose, cross sections of the metal foam bodies were examined under a microscope and a scanning electron microscope. While with the metal foam bodies a, d, e superficial alloy formation has taken place, but unalloyed areas have remained inside the metal foam, with metal foam body b no alloy formation has taken place, and with metal foam body c the alloy formation has progressed so far that no unalloyed areas inside the Metal foam are left.
  • Metal foam body a was exposed to an oxidative gas atmosphere in a heated state.
  • the metal foam body was heated to 700 ° C. in an oven with admission of air.
  • Metal foam body d was first brought into contact with an alkaline solution (5% by weight aqueous NaOH for 10 min at 20 ° C.). A white precipitate forms on the foam. The precipitate is the conversion of aluminum to aluminum hydroxide. Metal foam body d was then dried in air. The dried metal foam body with the white precipitate is pre-oxidized in a preheated oven at 700 ° C. and normal atmosphere, in which the aluminum hydroxide is converted into aluminum oxide.
  • the oxidic pretreatment has several functions:
  • Metal foam body f which had previously remained untreated, was provided with an aluminum oxide layer, as described in the prior art (cf. WO95 / 11752A1, Example 3).
  • metal foam bodies f were completely immersed in a saturated sodium aluminate solution for 3 hours, then swiveled in deionized water until the hydrolysis reaction had subsided, and finally heated at 500 ° C. for 3 hours with access to air.
  • a catalytically active layer was then applied to metal foam bodies a, d, e and f by spraying.
  • the metal foam body was moistened with water.
  • a 2.5% polyethyleneimine suspension was then mixed with c-aluminum oxide with a high surface area.
  • the mixture of water / polyethyleneimine and aluminum oxide was sprayed on.
  • the spraying was followed by a drying process at 140 ° C. for 30 minutes in air in a drying oven.
  • For calcination the sample was baked in an oven at 650 ° C. for 5 hours. The process of coating, drying and calcination was repeated several times until the desired amount of coating was applied.
  • the supported catalysts obtained were examined, among other things the resistance of the catalytically active layer on the metal foam bodies to mechanical stress was examined.
  • a scratch test can be carried out in order to determine the bonding quality of the oxidic, catalytically active layer to the carrier foam. In the present case, however, this test is not possible due to the irregular structure of the foam. Therefore, to investigate the mechanical stability of the catalytically active layer, a temperature change test was carried out, which provides a measure of the quality of the bond between the oxidic layer and the carrier foam.
  • metal foam bodies a, d, e and f were heated to 500 ° C. and then quenched in cold water. The amount lost, i.e. the mass of the flaked catalytic layer of each sample, was then determined by filtering off, drying and weighing the flaked material.
  • Metal foam body a and d 4 mg loss
  • metal foam body f 12 mg loss
  • metal foam body e 48 mg loss

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

Die vorliegende Erfindung betrifft Verfahren zur Herstellung von Trägerkatalysatoren, umfassend Bereitstellen eines Metallschaumkörpers A, der aus metallischem Cobalt, einer Legierung aus Nickel und Cobalt, oder einer Anordnungen von übereinanderliegenden Schichten von Nickel und Cobalt besteht, Aufbringen eines Aluminium-haltigen Pulvers MP auf Metallschaumkörper A, so dass Metallschaumkörper AX erhalten wird, thermische Behandlung von Metallschaumkörper AX, um Legierungsbildung zu erreichen zwischen Metallschaumkörper A und Aluminium-haltigem Pulver MP, so dass Metallschaumkörper B erhalten wird, oxidative Behandlung von Metallschaumkörper B, so dass 10 Metallschaumkörper C erhalten wird, sowie Aufbringen einer katalytisch aktiven Schicht, umfassend mindestens ein Trägeroxid und mindestens eine katalytisch aktive Komponente, auf zumindest einen Teil der Oberfläche von Metallschaumkörper C, so dass ein Trägerkatalysator erhalten wird. Die vorliegende Erfindung betrifft ferner die Trägerkatalysatoren, die nach dem Verfahren erhältlich sind, sowie deren Verwendung in chemischen Transformationen.

Description

Cobalthaltige Metallschaumkörper und Verfahren zu ihrer Herstellung
Hintergrund
Die vorliegende Erfindung betrifft Verfahren zur Herstellung von Trägerkatalysatoren, die die folgenden Schritte umfassen: Beschichten von Metallschaumkörpern aus metallischem Cobalt, einer Legierung aus Nickel und Cobalt, oder einer Anordnungen von übereinanderliegenden Schichten von Nickel und Cobalt mit Aluminium, anschließende thermische Behandlung, um Legierungsbildung zu erreichen zwischen Metallschaum und Aluminium, darauffolgende oxidative Behandlung der Aluminiumoberfläche, sowie Aufbringen einer katalytisch aktiven Schicht, die mindestens ein Trägeroxid und mindestens eine katalytisch aktive Komponente, umfasst. Die vorliegende Erfindung betrifft ferner die Trägerkatalysatoren, die nach dem Verfahren erhältlich sind, sowie deren Verwendung in chemischen Transformationen.
Stand der Technik
Aus dem Stand der Technik ist die Verwendung von Metallschäumen als Tragkörper für katalytisch aktive Beschichtungen bekannt. Die katalytisch aktiven Beschichtungen auf den metallischen Tragkörpern sind typischerweise zusammengesetzt aus einem die mikroskopische Oberfläche vergrößernden Trägeroxid und katalytisch aktiven Metallen, die auf dem Trägeroxid aufgebracht sind (vgl. z.B. WO 9511752 A1). Die so erhaltenen monolithischen Trägerkatalysatoren, können in vielfältigen Anwendungen zum Einsatz kommen, ihre Verwendbarkeit wird jedoch durch die ausgesprochen schlechte Haftung der mehrheitlich aus oxidischen Komponenten zusammengesetzten, katalytisch aktiven Beschichtung auf dem metallischen Tragkörper eingeschränkt. Die schlechte Haftung führt bei mechanischer Belastung und gegebenenfalls auch bei Betrieb des Trägerkatalysators in durchströmten Reaktoren zum Ablösen von Teilen der katalytisch aktiven Schicht mit entsprechend verringerter Lebensdauer des Katalysators und gegebenenfalls Störungen im Anlagenbetrieb durch abgelöste Feststoffpartikel.
Alternativ werden zur Beschichtung von Metallschäumen als Katalysatortrag körper Sol-Gel- Verfahren angewendet. Diese Verfahren erfordern jedoch spezielle Apparaturen und den Einsatz teurer Reagenzien, die hohes Gefährdungspotential aufweisen und schwierig zu handhaben sind.
Ein weiteres aus dem Stand der Technik bekanntes Verfahren zur Herstellung von Metallschaumträgerkatalysatoren nutzt aus, dass sich relativ stabile Oxidschichten auf Metalloberflächen durch „atomic layer deposition“ (ALD) erzeugen lassen. So offenbart beispielsweise US 20120329889 A1 eine Methode zur Herstellung von Metallschaumträgerkatalysatoren für die Fischer-Tropsch-Synthese, bei der auf einem Metallschaum ein dünner ALOs-Film durch „atomic layer deposition“ (ALD) erzeugt und anschließend eine oxidische Beschichtung per dip coating, Trocknung und anschließende Kalzination aufgetragen wird. In US 20120329889 A1 wird explizit darauf hingewiesen, dass eine stabile Kopplung zwischen Metallschaumoberfläche und oxidischer Beschichtung schwierig zu erreichen ist (vgl. Absätze [0068] - [0069]), und dass dies durch das Aufbringen der oxidischen Zwischenschicht mittels ALD erreicht wird. Das in US 20120329889 A1 offenbarte Verfahren ist allerdings apparativ extrem aufwändig. Im Hinblick auf den schlechten Zugang zu stabilen Metallschaumträgerkatalysatoren bestand die Aufgabe der vorliegenden Erfindung darin, ein möglichst einfaches und für die Herstellung großer Mengen geeignetes Verfahren bereitzustellen, um aus einem katalytisch inerten Metallschaumkörper einen Trägerkatalysator mit einer katalytischen Beschichtung herzustellen. Dabei sollten die durch die Schaumgrundstruktur bereitgestellten Poren nicht verstopfen und die katalytische Beschichtung sollte möglichst einfach aufzubringen sein, sich aber dennoch durch eine sehr gute Haftung auf dem Metallschaumkörper auszeichnen. Die Verfahren der vorliegenden Erfindung und die mit diesen Verfahren erhaltenen Erzeugnisse erfüllen dieses Bedürfnis.
Die vorliegende Erfindung
Erfindungsgemäße Verfahren zur Herstellung von Trägerkatalysatoren umfassen die folgenden Schritte:
(a) Bereitstellen eines Metallschaumkörpers A, der aus metallischem Cobalt, einer Legierung aus Nickel und Cobalt, oder einer Anordnung von übereinanderliegenden Schichten von Nickel und Cobalt besteht,
(b) Aufbringen eines Aluminium-haltigen Pulvers MP auf Metallschaumkörper A, so dass Metallschaumkörper AX erhalten wird,
(c) thermische Behandlung von Metallschaumkörper AX, um Legierungsbildung zu erreichen zwischen Metallschaumkörper A und Aluminium-haltigem Pulver MP, so dass Metallschaumkörper B erhalten wird, wobei die höchste Temperatur der thermischen Behandlung von Metallschaumkörper AX im Bereich von 680 bis 715 °C liegt, und wobei die Gesamtdauer der thermischen Behandlung im Temperaturbereich von 680 bis 715 °C zwischen 5 und 240 Sekunden liegt,
(d) oxidative Behandlung von Metallschaumkörper B, so dass Metallschaumkörper C erhalten wird,
(e) Aufbringen einer katalytisch aktiven Schicht, umfassend mindestens ein Trägeroxid und mindestens eine katalytisch aktive Komponente, auf zumindest einen Teil der Oberfläche von Metallschaumkörper C, so dass ein Trägerkatalysator erhalten wird.
Aus dem Stand der Technik sind Nickelschaumkörper, auf die zunächst Aluminium aufgebracht, einlegiert und anschließend zum Teil wieder ausgelaugt wird, als Alternative zu klassischen Raney- Typ Katalysatoren bekannt (vgl. z.B. EP 2764916 A1). Die so erhaltenen Schaumkörper sind aktivierte Vollmetallkatalysatoren des Raney-Typs, die typischerweise bei Hydrierreaktionen eingesetzt werden.
Aus dem Stand der Technik sind ferner Metallschaumkörper bekannt, auf die zunächst Aluminium aufgebracht und einlegiert wird und welche anschließend oxidiert werden (vgl. Wen-Wen Zeng et al. „Synthesis and compression property of oxidation-resistant Ni-Al foams”, Acta metallurgica Sinica, Band 30, Nr. 10, 1. Oktober 2017, Seiten 965-972). Allerdings wird bei dem Verfahren von Wen-Wen Zeng et al. der gesamte Querschnitt des ursprünglich vorliegenden Metallschaums mit Aluminium legiert (vgl. Seite 972, Conclusion) während bei den Verfahren der vorliegenden Erfindung die Legierungsbildung auf die oberen Schichten des Metallschaums begrenzt wird, so dass unlegierte Bereiche in zentralen Regionen des Metallschaums verbleiben.
Experimentelle Ergebnisse, die im Zusammenhang mit der vorliegenden Erfindung erhoben wurden, zeigen, dass die Wahl der Temperaturbedingungen für die thermische Behandlung zur Legierungsbildung erheblichen Einfluss auf das Ergebnis hat. Die erfindungsgemäßen Verfahren erlauben es, die Legierungsbildung auf die oberen Schichten des Metallschaums zu begrenzen, so dass unlegierte Bereiche in zentralen Regionen des Metallschaums verbleiben. Das Vorhandensein dieser unlegierten Bereiche wirkt sich unter anderem auf die mechanische Stabilität des erhaltenen Trägerkatalysators aus. Die BruclWDruckfestigkeit nimmt mit zunehmendem Legierungsgrad deutlich ab und ein vollständiges Durchlegieren des Metallschaums führt zu sehr spröden Trägerkatalysatoren, die bei mechanischer Belastung zum Bruch neigen. Dieser Umstand hat erhebliche praktische Bedeutung, denn großtechnisch eingesetzte, kontinuierlich betriebene Festbettreaktoren können Festbettvolumina von bis zu 100 m3 aufweisen, so dass je nach Schüttdichte und Höhe des eingesetzten Festbetts auf dessen unteren Schichten gegebenenfalls mehrere metrische Tonnen an Gewicht lasten. Verfügt der zum Aufbau des Festbetts eingesetzte Trägerkatalysator nicht über eine hinreichende mechanische Stabilität und Belastbarkeit, um diese Gewichte über mehrere tausend Betriebsstunden zu tragen, kann es zum Bruch der Trägerstrukturen und somit zur mechanischen Zerstörung der katalytisch aktiven Bereiche kommen (Katalysatorbruch). Bruchmaterial kann mit dem Fluid aus dem Reaktor in angrenzende Anlagenteile ausgetragen werden und/oder zu Verbackungen im Festbett führen. In beiden Fällen sind erhebliche Störungen des Anlagenbetriebes die Folge.
Im Zusammenhang mit der vorliegenden Erfindung wird unter Metallschaumkörper A ein schaumförmiger Metallkörper verstanden. Schaumförmige Metallkörper werden z.B. offenbart in Ullmann's Encyclopedia of Industrial Chemistry, Kapitel „Metallic Foams“, veröffentlicht online am 15.07.2012, DOI: 10.1002/14356007. c16_c01 pub2. Geeignet sind prinzipiell Metallschäume mit verschiedenen morphologischen Eigenschaften bezüglich Porengröße und -form, Schichtdicke, Flächendichte, geometrische Oberfläche, Porosität, etc. Bevorzugt weist Metallschaum A eine Dichte im Bereich von 400 bis 1500 g/m2, eine Porengröße von 400 bis 3000 pm, bevorzugt von 400 bis 800 pm und eine Dicke im Bereich von 0,5 bis 10 mm, bevorzugt von 1 ,0 bis 5,0 mm auf. Die Herstellung kann in an sich bekannterWeise erfolgen. Beispielsweise kann ein Schaum aus einem organischen Polymer zunächst mit einem Metall beschichtet werden und dann das Polymer durch Thermolyse entfernt werden, wobei ein Metallschaum erhalten wird. Zum Beschichten mit wenigstens einem ersten Metall oder einem Vorläufer davon kann der Schaum aus dem organischen Polymer mit einer Lösung oder Suspension, die das erste Metall enthält, in Kontakt gebracht werden. Dies kann z. B. durch Sprühen oder Tauchen erfolgen. Möglich ist auch eine Abscheidung mittels Chemical vapordeposition (CVD). Ein zur Herstellung von Formkörpern in Form eines Schaums geeigneter Polymerschaum hat vorzugsweise eine Porengröße im Bereich von 100 bis 5000 pm, besonders bevorzugt von 450 bis 4000 pm und insbesondere von 450 bis 3000 pm. Ein geeigneter Polymerschaum hat vorzugsweise eine Schichtdicke von 0,5 bis 10 mm, besonders bevorzugt von 1 ,0 bis 5,0 mm. Ein geeigneter Polymerschaum hat vorzugsweise ein Raumgewicht von 300 bis 1200 kg/m3. Die spezifische Oberfläche liegt vorzugsweise in einem Bereich von 100 bis 20000 m2/m3, besonders bevorzugt 1000 bis 6000 m2/m3. Die Porosität liegt vorzugsweise in einem Bereich von 0,50 bis 0,95.
Die in Schritt (a) des erfindungsgemäßen Verfahrens verwendeten Metallschaumkörper A können jede beliebige Form aufweisen, z.B. kubisch, quaderförmig, zylindrisch etc. Die Metallschaumkörper können aber auch z.B. zu Monolithen verformt sein.
Das Aufbringen des Aluminium-haltigen Pulvers MP in Schritt (b) des erfindungsgemäßen Verfahrens kann in vielfältiger Weise erfolgen, z. B. indem man Metallschaumkörper A mit einer Zusammensetzung des Aluminium-haltigen Pulvers MP durch Rollen oder Tauchen in Kontakt bringt oder eine Zusammensetzung des Aluminium-haltigen Pulvers MP durch Sprühen, Bestreuen oder Gießen aufträgt. Dazu kann die Zusammensetzung des Aluminium-haltigen Pulvers MP als Suspension oder in Form eines Pulvers vorliegen.
Dabei geht bevorzugt dem eigentlichen Aufbringen der Zusammensetzung des Aluminium-haltigen Pulvers MP auf Metallschaumkörper A in Schritt (b) des erfindungsgemäßen Verfahrens ein vorheriges Imprägnieren von Metallschaumkörpers A mit einem Binder voraus. Das Imprägnieren kann beispielweise durch Aufsprühen des Binders oder Eintauchen von Metallschaumkörper A in den Binder erfolgen, ist aber nicht auf diese Möglichkeiten beschränkt. Auf den so vorbereiteten Metallschaumkörper A kann anschließend die Zusammensetzung des metallhaltigen Pulvers MP aufgebracht werden.
Alternativ dazu können Binder und Zusammensetzung des Aluminium-haltigen Pulvers MP in einem Schritt aufgebracht werden. Hierfür wird die Zusammensetzung des Aluminium-haltigen Pulvers MP vor dem Aufbringen entweder in flüssigem Binder selbst suspendiert, oder die Zusammensetzung des Aluminium-haltigen Pulvers MP und der Binder werden in einer Hilfsflüssigkeit F suspendiert.
Der Binder ist eine Zusammensetzung, die sich durch thermische Behandlung im Temperaturbereich von 100 bis 400 °C vollständig in gasförmige Produkte überführen lässt, umfassend eine organische Verbindung, die ein Anhaften der Zusammensetzung des Aluminiumhaltigen Pulvers MP auf dem Metallschaumkörper begünstigt. Bevorzugt ist die organische Verbindung dabei ausgewählt aus der folgenden Gruppe: Polyethylenimin (PEI),
Polyvinylpyrrolidon (PVP), Ethylenglycol, Gemische dieser Verbindungen. Besonders bevorzugt ist PEI. Das Molekulargewicht des Polyethylenimins liegt vorzugsweise in einem Bereich von 10000 bis 1 300000 g/mol. Das Molekulargewicht des Polyethylenimins (PEI) liegt vorzugsweise in einem Bereich von 700.000 bis 800.000 g/mol.
Hilfsflüssigkeit F muss geeignet sein, um die Zusammensetzung des Aluminium-haltigen Pulvers MP und den Binder zu suspendieren und sich durch thermische Behandlung im Temperaturbereich von 100 bis 400 °C vollständig in gasförmige Produkte überführen lassen. Bevorzugt wird Hilfsflüssigkeit F ausgewählt aus der folgenden Gruppe: Wasser, Ethylenglycol, PVP und Gemische dieser Verbindungen. Typischerweise wird, wenn Hilfsflüssigkeit verwendet wird, der Binder mit einer Konzentration im Bereich von 1 bis 10 Gew% in Wasser suspendiert, anschließend wird in dieser Suspension die Zusammensetzung des Aluminium-haltigen Pulvers MP suspendiert.
Das in Schritt (b) des erfindungsgemäßen Verfahrens verwendete Aluminium-haltigen Pulver MP umfasst pulverförmiges Aluminium, kann aber außerdem Zusätze, die zur Steigerung der Rieselfähigkeit oder Wasserbeständigkeit beitragen, enthalten. Derartige Zusätze müssen sich durch thermische Behandlung im Temperaturbereich von 100 bis 400 °C vollständig in gasförmige Produkte überführen lassen.
Das Aluminium-haltige Pulver MP weist bevorzugt einen Aluminiumgehalt im Bereich von 80 bis 99,8 Gew% auf. Bevorzugt sind dabei Pulver, bei denen die Aluminiumpartikel eine Teilchengröße von nicht kleiner 5 pm und nicht größer 200 gm aufweisen. Besonders bevorzugt sind Pulver bei denen 95 % der Aluminiumpartikel eine Teilchengröße von nicht kleiner 5 pm und nicht größer 75 pm aufweisen. Es kann sein, dass das Aluminium-haltige Pulver MP neben der Aluminiumkomponente in elementarer Form noch Aluminiumkomponente in oxidierter Form enthält. Dieser oxidierte Anteil liegt üblicherweise in Form von oxidischen Verbindungen wie z.B. Oxiden, Hydroxiden und/oder Carbonaten vor. Typischerweise liegt der Masseanteil von oxidiertem Aluminium im Bereich von 0,05 bis 10 Gew.-% der Gesamtmasse des Aluminium-haltigen Pulvers MP.
In Schritt (c) des erfindungsgemäßen Verfahrens erfolgt eine thermische Behandlung, um das Ausbilden einer oder mehrerer Legierungen zu erreichen.
Experimentelle Ergebnisse, die im Zusammenhang mit der vorliegenden Erfindung erhoben wurden, zeigen, dass die Wahl der Temperaturbedingungen für die thermische Behandlung zur Legierungsbildung erheblichen Einfluss auf den Verlauf der Legierungsbildung hat. Die erfindungsgemäßen Verfahren erlauben es, die Legierungsbildung auf die oberen Schichten des Metallschaums zu begrenzen, so dass unlegierte Bereiche in zentralen Regionen des Metallschaums verbleiben.
In Schritt (c) des erfindungsgemäßen Verfahrens wird Metallschaumkörper AX thermisch behandelt, um Legierungsbildung zu erreichen zwischen Metallschaumkörper A und Aluminiumhaltigem Pulver MP, so dass Metallschaumkörper B erhalten wird, wobei die höchste Temperatur der thermischen Behandlung von Metallschaumkörper AX im Bereich von 680 bis 715 °C liegt, und wobei die Gesamtdauer der thermischen Behandlung im Temperaturbereich von 680 bis 715 °C zwischen 5 und 240 Sekunden liegt.
Die thermische Behandlung umfasst das üblicherweise stufenweise Aufheizen des Metallschaumkörpers AX und das anschließende Abkühlen auf Raumtemperatur. Die thermische Behandlung findet unter Inertgas oder unter reduktiven Bedingungen statt. Unter reduktiven Bedingungen ist die Gegenwart eines Gasgemisches, das Wasserstoff und wenigstens ein unter den Reaktionsbedingungen inertes Gas enthält, zu verstehen. Geeignet ist z. B. ein Gasgemisch, das 50 Vol% N2 und 50 Vol% H2 enthält. Als inertes Gas wird vorzugsweise Stickstoff eingesetzt. Das Aufheizen kann z. B. in einem Bandofen erfolgen. Geeignete Aufheizraten liegen im Bereich von 10 bis 200 K/min, bevorzugt 20 bis 180 K/min. Während der thermischen Behandlung wird typischerweise zunächst die Temperatur von Raumtemperatur auf etwa 300 bis 400 °C erhöht und bei dieser Temperatur für einen Zeitraum von etwa 2 bis 30 Minuten Feuchtigkeit, und organische Bestandteile aus der Beschichtung entfernt. Anschließend wird die Temperatur bis in den Bereich von 680 bis 715 °C erhöht und es erfolgt Legierungsbildung zwischen Metallschaumkörper A und Aluminium-haltigem Pulver MP. Anschließend wird der Metallschaumkörper durch Kontakt mit Schutzgasumgebung bei einer Temperatur von ca. 200 °C abgeschreckt.
Um bei den erfindungsgemäß beteiligten Metallen die Legierungsbildung auf die oberen Bereiche des Metallschaums zu beschränken und unlegierte Bereiche im Inneren des Metallschaums zu belassen, ist es notwendig, dass die höchste Temperatur der thermischen Behandlung von Metallschaumkörper AX in Schritt (c) im Bereich von 680 bis 715 °C liegt, und dass außerdem die Gesamtdauer der thermischen Behandlung im Temperaturbereich von 680 bis 715 °C zwischen 5 und 240 Sekunden liegt. Bis zu einem gewissen Grad kann zwar die Dauer der thermischen Behandlung die Höhe der höchsten Behandlungstemperatur ausgleichen und umgekehrt; es wird jedoch festgestellt, dass die Häufigkeit der Experimente, bei denen eine Legierungsbildung im oberen Bereich des Metallschaums bei gleichzeitigem Verbleib unlegierter Bereiche im Inneren des Metallschaums erreicht wird, stark abnimmt, wenn bei der Höchsttemperatur der thermischen Behandlung das Temperaturintervall zwischen 680 und 715 °C verlassen wird und/oder die Dauer der thermischen Behandlung im Temperaturintervall zwischen 680 und 715 °C außerhalb des Bereichs von 5 bis 240 Sekunden liegt. Eine zu hohe Höchsttemperatur und/oder ein zu langes Verbleiben des Metallschaumkörpers im Bereich der Höchsttemperatur führen dazu, dass die Legierungsbildung bis in die tiefsten Schichten des Metallschaums fortschreitet und keine unlegierten Bereiche verbleiben. Eine zu niedrige Höchsttemperatur und/oder ein zu kurzes Verbleiben des Metallschaumkörpers im Bereich der Höchsttemperatur führen dazu, dass die Legierungsbildung gar nicht beginnt.
Die thermische Behandlung des Metallschaums in Schritt (c) des erfindungsgemäßen Verfahrens führt zur Ausbildung Aluminium-haltiger Phasen. Das Verhältnis V der Massen von Metallschaumkörper B zu Metallschaumkörper A, V = m(Metallschaumkörper B) / m(Metallschaumkörper A), ist ein Maß dafür wie viel Aluminium in Schritt (c) des erfindungsgemäßen Verfahrens in den Schaum einlegiert wurde.
In einer bevorzugten Ausführungsform liegt das Verhältnis V der Massen von Metallschaumkörper B zu Metallschaumkörper A, V = m(Metallschaumkörper B) / m(Metallschaumkörper A) im Bereich von 1.1 :1 bis 1 .5:1. In einer weiteren bevorzugten Ausführungsform liegt das Verhältnis V der Massen von Metallschaumkörper B zu Metallschaumkörper A, V = m(Metallschaumkörper B) / m(Metallschaumkörper A) im Bereich von 1.2:1 bis 1.4:1.
In Schritt (d) des erfindungsgemäßen Verfahrens erfolgt eine oxidative Behandlung von Metallschaumkörper B, so das Metallschaumkörper C erhalten wird.
Das Ziel der oxidativen Behandlung von Metallschaumkörper B in Schritt (d) des erfindungsgemäßen Verfahrens besteht darin, das an der Oberfläche von Metallschaumkörper B vorliegende Aluminium mit einer außen liegenden Aluminiumoxidschicht zu versehen. Dieses Ziel kann z.B. erreicht werden, indem Metallschaumkörper B entweder in erhitztem Zustand einer oxidativen Gasatmosphäre (z.B. Luft) ausgesetzt wird, oder indem auf Metallschaumkörper B zunächst oberflächlich Aluminiumhydroxid ausgebildet wird, z.B. durch in Kontakt bringen mit einer alkalischen Lösung, und anschließend das Aluminiumhydroxid durch thermische Behandlung unter oxidierenden Bedingungen in Aluminiumoxid umgewandelt wird.
Um Metallschaumkörper B in erhitztem Zustand einer oxidativen Gasatmosphäre auszusetzen, genügt es z.B., den Metallschaumkörper unter Luftzutritt in einem Ofen auf eine geeignete Temperatur zu erhitzen.
Wird Metallschaumkörper B ohne vorhergehende Ausbildung von Aluminiumhydroxid unter Luftzutritt erhitzt, sollte die Temperatur gewählt werden zwischen 200°C und 1200°C, oder zwischen 200°C und 1000°C, oder zwischen 200°C und 750°C. Erfindungsgemäß bevorzugt wird die thermische Oxidation über einen Zeitraum von 1 bis 60 Minuten bei einer Temperatur von 200 °C bis 700 °C in Luft ausgeführt.
Wird auf Metallschaumkörper B zunächst oberflächlich Aluminiumhydroxid ausgebildet, z.B. durch in Kontakt bringen mit einer alkalischen Lösung und erst anschließend thermisch behandelt, wird zunächst zumindest ein Teil des an der Oberfläche liegenden Aluminiums zu Aluminiumhydroxid umgewandelt und anschließend zumindest ein Teil des oberflächlich entstandenen Aluminiumhydroxids zu Aluminiumoxid. Bevorzugt wird die Umwandlung zumindest eines Teils des an der Oberfläche liegenden Aluminiums zu Aluminiumhydroxid erreicht, indem der Metallschaumkörper in Kontakt mit einer wässrigen alkalischen Lösung gebracht wird.
Besonders bevorzugt enthält die wässrige alkalische Lösung Natriumhydroxid, Kaliumhydroxid, Lithiumhydroxid oder eine Kombination davon in einer Konzentration von 0,05 bis 30 Gew%, bevorzugt 0,5 bis 5 Gew%, und Metallschaumkörper B wird mit der wässrigen alkalischen Lösung über einen Zeitraum von 5 bis 120 Minuten, bevorzugt maximal 30 Minuten und besonders bevorzugt maximal 10 min in Kontakt gebracht. Diese Behandlung kann in einem Temperaturbereich zwischen 10°C und 110°C stattfinden. Bevorzugt ist die Behandlung bei 20°C (Raumtemperatur).
Im Anschluss daran wird zumindest ein Teil des oberflächlich entstandenen Aluminiumhydroxids thermisch in einer oxidierenden Atmosphäre zu Aluminiumoxid umgewandelt. Dazu wird unter Luftzutritt über einen Zeitraum von 1 Minute bis 8 Stunden auf eine Temperatur von 20 °C (Raumtemperatur) bis 700 °C erhitzt. Erfindungsgemäß bevorzugt wird die thermische Oxidation über einen Zeitraum von 1 bis 60 Minuten bei einer Temperatur von 200 °C bis 700 °C in Luft ausgeführt.
Metallschaumkörper C dient als Tragkörper für einen geeigneten Katalysator, der für die jeweilige Reaktion, die katalysiert werden soll, gezielt ausgewählt werden kann.
In Schritt (e) des erfindungsgemäßen Verfahrens erfolgt das Aufbringen einer katalytisch aktiven Schicht, umfassend mindestens ein Trägeroxid und mindestens eine katalytisch aktive Komponente, auf zumindest einen Teil der Oberfläche von Metallkörper C, so dass ein Trägerkatalysator erhalten wird.
Erfindungsgemäße Metallschaumkörper C lassen sich besonders gut mit einer erfindungsgemäßen katalytisch aktiven Schicht ausstatten, da die auf der Oberfläche von Metallschaumkörper C erzeugte Aluminiumoxid-Haut für eine ausgesprochen gute Anbindung der Trägeroxide sorgt und eine lange Haltbarkeit und Lebensdauer sowie eine ausgesprochen hohe mechanische Stabilität, insbesondere Abriebstabilität, bewirkt.
Die katalytisch aktive Schicht, umfassend mindestens ein Trägeroxid und mindestens eine katalytisch aktive Komponente, kann z.B. auf Metallschaumkörper C aufgebracht werden, indem eine Beschichtungssuspension durch die durchgängigen Hohlräume des offenporigen Metallschaumkörpers C hindurchgesaugt oder -gepumpt wird. Denn in Bezug auf durchgängige Hohlräume und hohe Formstabilität ist Metallschaumkörper C den bei der Autoabgaskatalyse verwendeten monolithischen Substraten ähnlich. Auch das Aufbringen einer Beschichtungssuspension in Tauchverfahren (sogenanntes „Dip Coating“) oder in Sprühverfahren (sogenanntes „Spray Coating“) ist möglich. Welches der im Stand der Technik grundsätzlich bekannten Aufbringungsverfahren zu bevorzugen ist, hängt einerseits von der Zusammensetzung und den Fließeigenschaften der Beschichtungssuspension, und andererseits von der tatsächlichen Struktur des erfindungsgemäßen Metallschaumkörpers ab. Dip Coating weist die höchstmögliche Toleranz gegenüber variierenden Eigenschaften der Beschichtungssuspension auf und ist deshalb zur Beschichtung aller erfindungsgemäßen Metallschaumkörper geeignet.
Gemäß vorliegender Erfindung wird in Schritt (e) im Anschluss an das in Kontakt bringen mit Beschichtungssuspension eine Kalzinierung des beschichteten Metallschaumkörpers ausgeführt und damit der Trägerkatalysator erhalten.
Erfindungsgemäß umfasst die katalytisch aktive Schicht mindestens ein Trägeroxid. Trägeroxide im Sinne der vorliegenden Erfindung sind anorganische Oxide mit hohen spezifischen Oberflächen, die typischerweise zwischen 50 und 200 m2/g liegen. Diese Trägeroxide haben im fertigen Katalysator mehrere Funktionen: Zum einen dienen sie dazu, die durch die erfindungsgemäßen Metallschaumkörper bereitgestellte makroskopische, d.h. geometrische Oberfläche, die im Kontext dieser Erfindung als Kontaktfläche des Katalysators mit dem Reaktionsmedium bezeichnet wird, in der mikroskopischen Ebene zu vergrößern. Zum anderen können sie ihrerseits in Wechselwirkung mit den katalytisch aktiven Spezies treten und so den Reaktionsverlauf beeinflussen.
Beispielsweise beeinflusst die Wahl des Trägeroxids die Selektivität komplexer Hydrierreaktionen, bei denen mehrere funktionelle Gruppen organischer Substratmoleküle mit Wasserstoff reagieren können. Des Weiteren stellen sie die mikroskopische Oberfläche bereit, auf der die katalytisch aktiven Komponenten verteilt werden. Sie bilden weiterhin eine Matrix, in der weitere Funktionskomponenten und Zuschlagstoffe verteilt werden können, die zur Einstellung spezieller Funktionen des Katalysators bei dessen Adaption auf eine spezifische Anwendung dienen.
Bevorzugt werden Trägeroxide ausgewählt aus der Gruppe bestehend aus Aluminiumoxid, Siliziumdioxid, Titanoxid und Mischungen davon.
Als katalytisch aktive Komponenten der katalytisch aktiven Schicht, werden Übergangsmetalle oder Verbindungen von Übergangsmetallen eingesetzt, wobei die Übergangsmetalle bevorzugt ausgewählt sind aus der Gruppe bestehend aus Eisen, Ruthenium, Osmium, Kobalt, Rhodium, Iridium, Nickel, Palladium, Platin, Cer, Kupfer, Silber, Gold und Mischungen davon.
Als weitere Funktionskomponenten und Zuschlagstoffe kann die katalytisch aktive Schicht anorganische Oxide enthalten, bevorzugt ausgewählt aus den Oxiden der Erdalkalimetalle, den Oxiden der Übergangsmetalle, der Seltenen Erden, aus den Oxiden des Aluminiums und Galliums, den Oxiden des Siliziums, Germaniums und des Zinns und/oder Mischungen davon.
Die katalytisch aktiven Schichten gemäß vorliegender Erfindung können ein oder mehrere Trägeroxide, ein oder mehrere katalytisch aktive Komponenten und gegebenenfalls weitere Funktionskomponenten und Zuschlagstoffe enthalten. Um den Katalysator auf die erfindungsgemäßen Metallschaumkörper aufzubringen, wird eine Beschichtungssuspension durch Einbringen der Bestandteile in Wasser hergestellt. Das Aufbringen der katalytischen Komponenten auf die Trägeroxide erfolgt dabei entweder durch vorhergehende Imprägnierung der Trägeroxide mit entsprechenden Metallsalzlösungen (Precursor- Lösungen) oder durch Zugabe von Precursor-Lösungen direkt in die Beschichtungssuspension und gegebenenfalls Ausfällung oder chemisch induzierte Abscheidung oder Zersetzung der Precursor- Verbindung auf das/die bereits suspendierte/n Trägeroxid/e. Auch Funktionskomponenten und Zuschlagstoffe können auf diese Weise eingebracht oder direkt als oxidische Feststoffe hinzugefügt werden. Alternativ können alle aus löslichen Precursoren resultierenden Bestandteile des Katalysators nach Aufbringen der Trägeroxide auf die erfindungsgemäßen Metallschaumkörper durch Nachimprägnierverfahren hinzugefügt werden. Die Wahl der Präparationsmethode wird von der Zielzusammensetzung und den einzustellenden Eigenschaften des resultierenden Katalysators bestimmt.
Vorzugsweise erfolgt die Fixierung der in Schritt (e) des erfindungsgemäßen Verfahrens auf den Metallschaumkörpern aufgebrachten katalytisch aktiven Schicht durch Kalzinierung an Luft.
Erfindungsgemäß wird diese Kalzinierung über einen Zeitraum von 1 Minute bis 8 Stunden bei einer Temperatur von 200 °C bis 800 °C, in Luft ausgeführt. Erfindungsgemäß bevorzugt wird die Kalzinierung über einen Zeitraum von 1 bis 480 Minuten bei einer Temperatur von 200 °C bis 680 °C in Luft ausgeführt. Besonders bevorzugt wird die Kalzinierung über einen Zeitraum von 1 bis 480 Minuten bei einer Temperatur von 300 °C bis 650 °C in Luft ausgeführt.
Erfindungsgemäß bevorzugt wird die thermische Oxidation in Schritt (d) über einen Zeitraum von 1 bis 60 Minuten bei einer Temperatur von 200 °C bis 680 °C in Luft und die Kalzinierung in Schritt (e) über einen Zeitraum von 1 bis 480 Minuten bei einer Temperatur von 200 °C bis 680 °C in Luft ausgeführt.
Das erfindungsgemäße Verfahren zur Herstellung von Trägerkatalysatoren ist deutlich preisgünstiger als bestehende Verfahren. Des Weiteren bildet ein erfindungsgemäßer Metallschaumkörper durch seinen Überschuss an AI an der Oberfläche eine reine Aluminiumoxidschicht aus, die eine Diffusionssperre zwischen Trägermaterial und katalytischer Schicht bedeutet.
Katalytische Schichten auf Basis des Trägeroxids Aluminiumoxid und das Aluminiumoxid an der Oberfläche des Metallschaumkörpers sind artgleiche Systeme. Daher sind die Ausdehnungskoeffizienten ähnlich, Abplatzungen bei thermischen Belastungen gering und die Verbindungbeständigkeit durch einen Kalzinationsvorgang sehr gut. Neben den erfindungsgemäßen Verfahren zur Herstellung von Trägerkatalysatoren, sind auch die durch diese Verfahren erhältlichen Trägerkatalysatoren selbst, sowie deren Verwendung in chemischen Transformationen Gegenstand der vorliegenden Erfindung.
Erfindungsgemäße Trägerkatalysatoren können beispielsweise vorteilhaft in chemischen Festbettprozessen eingesetzt werden.
Beispiel für Co-Schaum
1. Bereitstellen von Metallschaumkörpern
Es wurden sechs Metallschaumkörper (a - f) aus Cobalt bereitgestellt, (Hersteller: AATM, Abmessungen: 100 mm x 100 mm x 2 mm, Flächengewicht: 1000 g/m2, durchschnittlicher Porendurchmesser: 580 pm), die durch galvanisches Abscheiden von Cobalt auf einem Polyurethanschaum und anschließende Thermolyse der Kunststoffanteile hergestellt worden waren.
2. Aufbringen von Aluminium
Anschließend wurde auf Metallschaumkörper a, b, c, d, e, f zunächst Binderlösung aufgesprüht (Polyethylenimin- (2,5 Gew%) in Wasser) und dann pulverförmiges Aluminium (Hersteller: AMG, durchschnittliche Korngröße: < 63 pm, mit 3 Gew% Zusatz von Ethylen-bis(stearamid-)) als trockenes Pulver aufgebracht (ca. 400 g/m2).
3. Thermische Behandlung
Danach wurden Metallschaumkörper a, b, c, d, e in einem Ofen unter Stickstoff-Atmosphäre einer thermischen Behandlung unterzogen. Dabei wurde zunächst in ca. 15 min von Raumtemperatur auf die Höchsttemperatur aufgeheizt, diese wurde für einen definierten Zeitraum gehalten und anschließend durch Kontaktieren mit Stickstoff-Atmosphäre von 200 °C abgeschreckt.
Höchsttemperatur für Metallschaumkörper a, d, e:
700 °C für 2 Minuten
Temperaturverlauf Metallschaumkörper b:
600 °C für 2 Minuten
Temperaturverlauf Metallschaumkörper c:
750 °C für 2 Minuten
4. Bestimmung des Legierungsausmaßes
Anschließend wurde das Ausmaß der Legierungsbildung in den Metallschaumkörpern bestimmt. Dazu wurden Querschliffe der Metallschaumkörper unter Mikroskop und Rasterelektronenmikroskop untersucht. Während bei den Metallschaumkörpern a, d, e oberflächliche Legierungsbildung stattgefunden hat, aber unlegierte Bereiche im Inneren des Metallschaums verblieben sind, hat bei Metallschaumkörper b keine Legierungsbildung stattgefunden, und bei Metallschaumkörper c ist die Legierungsbildung so weit fortgeschritten, dass keine unlegierten Bereiche im Inneren des Metallschaums verblieben sind.
5. Oxidative Behandlung
Anschließend wurde eine oxidative Behandlung der Metallschaumkörper a und d durchgeführt.
Metallschaumkörper a wurde in erhitztem Zustand einer oxidativen Gasatmosphäre ausgesetzt. Dazu wurde der Metallschaumkörper unter Luftzutritt in einem Ofen auf 700 °C erhitzt.
Metallschaumkörper d wurde zunächst mit einer alkalischen Lösung (5 Gew% wässrige NaOH für 10 min bei 20 °C) in Kontakt gebracht. Es entsteht ein weißer Niederschlag auf dem Schaum. Der Niederschlag ist die Umwandlung vom Aluminium zum Aluminiumhydroxid. Anschließend wurde Metallschaumkörper d an Luft getrocknet. Der getrocknete Metallschaumkörper mit dem weißen Niederschlag wird in einem vorgeheizten Ofen bei 700 °C und normaler Atmosphäre voroxidiert, in dem das Aluminiumhydroxid in Aluminiumoxid umgewandelt wird.
Die oxidische Vorbehandlung hat mehrere Funktionen:
Schutz des Trägermaterials gegen weitere Oxidation Haftvermittler zwischen metallischem und keramischem System Diffusionssperre von Legierungselementen auf dem Trägermaterial in die katalytische keramische Schicht
6. Vergleichsbehandlung
Metallschaumkörper f, der bisher unbehandelt geblieben war, wurde, wie im Stand der Technik beschrieben (vgl. W095/11752A1 , Beispiel 3), mit einer Aluminiumoxidschicht versehen. Dazu wurde Metallschaumkörper f für 3 Stunden vollständig in eine gesättigte Natriumaluminat-Lösung eingetaucht, anschließend bis zum Abklingen der Hydrolysereaktion in entionisiertem Wasser geschwenkt, und zum Schluss unter Luftzutritt für 3 Stunden bei 500 °C erhitzt.
7. Aufbringen der katalytisch aktiven Schicht
Danach wurde eine katalytisch aktive Schicht durch Sprühen auf Metallschaumkörper a, d, e und f aufgebracht. Dazu wurde der Metallschaumkörper mit Wasser angefeuchtet. Anschließend wurde eine 2,5 % Polyethylenimin-Suspension - mit hochoberflächigem c-Aluminiumoxid angerührt. Das Gemisch aus Wasser/Polyethylenimin und Aluminiumoxid wurde aufgesprüht. Nach dem Aufsprühen folgte ein Trocknungsprozess bei 140 °C für 30 min an Luft im Trocknungsofen. Zur Kalzination wurde die Probe für 5 h bei 650 °C im Ofen gebrannt. Der Prozess aus Beschichten, Trocknen und Kalzination wurde mehrfach wiederholt, bis die gewünschte Beschichtungsmenge aufgetragen war. 8. Untersuchung des erhaltenen Trägerkatalysators
Zum Schluss wurden die erhaltenen Trägerkatalysatoren untersucht, unter anderem wurde dabei die Beständigkeit der katalytisch aktiven Schicht auf den Metallschaumkörpern gegenüber mechanischer Beanspruchung untersucht. In vielen Fällen kann ein Kratztest durchgeführt werden, um die Anbindungsqualität der oxidischen, katalytisch aktiven Schicht an den Trägerschaum zu bestimmen. Dieser Test ist im vorliegenden Fall allerdings auf Grund der unregelmäßigen Struktur des Schaumes nicht möglich. Daher wurde zur Untersuchung der mechanischen Stabilität der katalytisch aktiven Schicht ein Temperaturwechseltest durchgeführt, der ein Maß für die Anbindungsqualität der oxidischen Schicht an den Trägerschaum liefert. Dazu wurden Metallschaumkörper a, d, e und f auf 500 °C erhitzt, und anschließend in kaltem Wasser abgeschreckt. Die Verlustmenge, also die Masse der abgeplatzten katalytischen Schicht jeder Probe, wurde anschließend durch Abfiltrieren, Trocknen und Wiegen des abgeplatzten Materials bestimmt.
Es ergab sich folgendes Ergebnis:
Metallschaumkörper a und d: 3 mg Verlust Metallschaumkörper f: 10 mg Verlust Metallschaumkörper e: 50 mg Verlust
Während die katalytisch aktive Schicht auf den Metallschaumkörpern a und d eine hohe Beständigkeit gegenüber mechanischer Beanspruchung aufwies, war die Beständigkeit der katalytisch aktiven Schicht auf Metallschaumkörper f deutlich geringer und auf Metallschaumkörper e sehr gering.
Beispiel für NiCo-Schaum
2. Bereitstellen von Metallschaumkörpern
Es wurden sechs Metallschaumkörper (a - f) aus Nickel-Cobalt bereitgestellt, (Hersteller: AATM, Abmessungen: 100 mm x 100 mm x 2 mm, Flächengewicht: 1000 g/m2, durchschnittlicher Porendurchmesser: 580 pm), die durch galvanisches Abscheiden von Nickel auf einem Polyurethanschaum, weiterhin wurde Cobalt auf Nickel abgeschieden und anschließende Thermolyse der Kunststoffanteile hergestellt worden waren.
2. Aufbringen von Aluminium
Anschließend wurde auf Metallschaumkörper a, b, c, d, e, f zunächst Binderlösung aufgesprüht (Polyethylenimin- (2,5 Gew%) in Wasser) und dann pulverförmiges Aluminium (Hersteller: AMG, durchschnittliche Korngröße: < 63 pm, mit 3 Gew% Zusatz von Ethylen-bis(stearamid-)) als trockenes Pulver aufgebracht (ca. 400 g/m2).
3. Thermische Behandlung Danach wurden Metallschaumkörper a, b, c, d, e in einem Ofen unter Stickstoff-Atmosphäre einer thermischen Behandlung unterzogen. Dabei wurde zunächst in ca. 15 min von Raumtemperatur auf die Höchsttemperatur aufgeheizt, diese wurde für einen definierten Zeitraum gehalten und anschließend durch Kontaktieren mit Stickstoff-Atmosphäre von 200 °C abgeschreckt.
Höchsttemperatur für Metallschaumkörper a, d, e:
700 °C für 2 Minuten
Temperaturverlauf Metallschaumkörper b:
600 °C für 2 Minuten
Temperaturverlauf Metallschaumkörper c:
750 °C für 2 Minuten
4. Bestimmung des Legierungsausmaßes
Anschließend wurde das Ausmaß der Legierungsbildung in den Metallschaumkörpern bestimmt. Dazu wurden Querschliffe der Metallschaumkörper unter Mikroskop und Rasterelektronenmikroskop untersucht. Während bei den Metallschaumkörpern a, d, e oberflächliche Legierungsbildung stattgefunden hat, aber unlegierte Bereiche im Inneren des Metallschaums verblieben sind, hat bei Metallschaumkörper b keine Legierungsbildung stattgefunden, und bei Metallschaumkörper c ist die Legierungsbildung so weit fortgeschritten, dass keine unlegierten Bereiche im Inneren des Metallschaums verblieben sind.
5. Oxidative Behandlung
Anschließend wurde eine oxidative Behandlung der Metallschaumkörper a und d durchgeführt.
Metallschaumkörper a wurde in erhitztem Zustand einer oxidativen Gasatmosphäre ausgesetzt. Dazu wurde der Metallschaumkörper unter Luftzutritt in einem Ofen auf 700 °C erhitzt.
Metallschaumkörper d wurde zunächst mit einer alkalischen Lösung (5 Gew% wässrige NaOH für 10 min bei 20 °C) in Kontakt gebracht. Es entsteht ein weißer Niederschlag auf dem Schaum. Der Niederschlag ist die Umwandlung vom Aluminium zum Aluminiumhydroxid. Anschließend wurde Metallschaumkörper d an Luft getrocknet. Der getrocknete Metallschaumkörper mit dem weißen Niederschlag wird in einem vorgeheizten Ofen bei 700 °C und normaler Atmosphäre voroxidiert, in dem das Aluminiumhydroxid in Aluminiumoxid umgewandelt wird.
Die oxidische Vorbehandlung hat mehrere Funktionen:
Schutz des Trägermaterials gegen weitere Oxidation Haftvermittler zwischen metallischem und keramischem System Diffusionssperre von Legierungselementen auf dem Trägermaterial in die katalytische keramische Schicht 6 Vergleichsbehandlung
Metallschaumkörper f, der bisher unbehandelt geblieben war, wurde, wie im Stand der Technik beschrieben (vgl. W095/11752A1 , Beispiel 3), mit einer Aluminiumoxidschicht versehen. Dazu wurde Metallschaumkörper f für 3 Stunden vollständig in eine gesättigte Natriumaluminat-Lösung eingetaucht, anschließend bis zum Abklingen der Hydrolysereaktion in entionisiertem Wasser geschwenkt, und zum Schluss unter Luftzutritt für 3 Stunden bei 500 °C erhitzt.
7. Aufbringen der katalytisch aktiven Schicht
Danach wurde eine katalytisch aktive Schicht durch Sprühen auf Metallschaumkörper a, d, e und f aufgebracht. Dazu wurde der Metallschaumkörper mit Wasser angefeuchtet. Anschließend wurde eine 2,5 % Polyethylenimin-Suspension - mit hochoberflächigem c-Aluminiumoxid angerührt. Das Gemisch aus Wasser/Polyethylenimin und Aluminiumoxid wurde aufgesprüht. Nach dem Aufsprühen folgte ein Trocknungsprozess bei 140 °C für 30 min an Luft im Trocknungsofen. Zur Kalzination wurde die Probe für 5 h bei 650 °C im Ofen gebrannt. Der Prozess aus Beschichten, Trocknen und Kalzination wurde mehrfach wiederholt, bis die gewünschte Beschichtungsmenge aufgetragen war.
8. Untersuchung des erhaltenen Trägerkatalysators
Zum Schluss wurden die erhaltenen Trägerkatalysatoren untersucht, unter anderem wurde dabei die Beständigkeit der katalytisch aktiven Schicht auf den Metallschaumkörpern gegenüber mechanischer Beanspruchung untersucht. In vielen Fällen kann ein Kratztest durchgeführt werden, um die Anbindungsqualität der oxidischen, katalytisch aktiven Schicht an den Trägerschaum zu bestimmen. Dieser Test ist im vorliegenden Fall allerdings auf Grund der unregelmäßigen Struktur des Schaumes nicht möglich. Daher wurde zur Untersuchung der mechanischen Stabilität der katalytisch aktiven Schicht ein Temperaturwechseltest durchgeführt, der ein Maß für die Anbindungsqualität der oxidischen Schicht an den Trägerschaum liefert. Dazu wurden Metallschaumkörper a, d, e und f auf 500 °C erhitzt, und anschließend in kaltem Wasser abgeschreckt. Die Verlustmenge, also die Masse der abgeplatzten katalytischen Schicht jeder Probe, wurde anschließend durch Abfiltrieren, Trocknen und Wiegen des abgeplatzten Materials bestimmt.
Es ergab sich folgendes Ergebnis:
Metallschaumkörper a und d: 4 mg Verlust Metallschaumkörper f: 12 mg Verlust Metallschaumkörper e: 48 mg Verlust
Während die katalytisch aktive Schicht auf den Metallschaumkörpern a und d eine hohe Beständigkeit gegenüber mechanischer Beanspruchung aufwies, war die Beständigkeit der katalytisch aktiven Schicht auf Metallschaumkörper f deutlich geringer und auf Metallschaumkörper e sehr gering.

Claims

Patentansprüche
1. Verfahren zur Herstellung eines Trägerkatalysators umfassend die folgenden Schritte:
(a) Bereitstellen eines Metallschaumkörpers A, der aus metallischem Cobalt, einer Legierung aus Nickel und Cobalt, oder einer Anordnung von übereinanderliegenden Schichten von Nickel und Cobalt besteht,
(b) Aufbringen eines Aluminium-haltigen Pulvers MP auf Metallschaumkörper A, so dass Metallschaumkörper AX erhalten wird,
(c) thermische Behandlung von Metallschaumkörper AX, um Legierungsbildung zu erreichen zwischen Metallschaumkörper A und Aluminium-haltigem Pulver MP, so dass Metallschaumkörper B erhalten wird, wobei die höchste Temperatur der thermischen Behandlung von Metallschaumkörper AX im Bereich von 680 bis 715 °C liegt, und wobei die Gesamtdauer der thermischen Behandlung im Temperaturbereich von 680 bis 715 °C zwischen 5 und 240 Sekunden liegt,
(d) oxidative Behandlung von Metallschaumkörper B, so dass Metallschaumkörper C erhalten wird,
(e) Aufbringen einer katalytisch aktiven Schicht, umfassend mindestens ein Trägeroxid und mindestens eine katalytisch aktive Komponente, auf zumindest einen Teil der Oberfläche von Metallschaumkörper C, so dass ein Trägerkatalysator erhalten wird.
2. Verfahren gemäß Anspruch 1 , wobei die oxidative Behandlung von Metallschaumkörper B in Schritt (d) ausgewählt wird aus den folgenden:
Erhitzen von Metallschaumkörper B in Kontakt mit einer oxidativen Gasatmosphäre, ohne vorhergehende Ausbildung von Aluminiumhydroxid an der Oberfläche des Metallschaumkörpers,
Erhitzen von Metallschaumkörper B in Kontakt mit einer oxidativen Gasatmosphäre, nachdem vorher Aluminiumhydroxid an der Oberfläche des Metallschaumkörpers ausgebildet wurde.
3. Verfahren gemäß einem der Ansprüche 1 bis 2, wobei zur oxidativen Behandlung von Metallschaumkörper B in Schritt (d) Metallschaumkörper B in Kontakt mit einer oxidativen Gasatmosphäre, ohne vorhergehende Ausbildung von Aluminiumhydroxid an der Oberfläche des Metallschaumkörpers, erhitzt wird.
4. Verfahren gemäß Anspruch 3, wobei das Erhitzen in Kontakt mit einer oxidativen
Gasatmosphäre über einen Zeitraum von 1 bis 60 Minuten bei einer Temperatur von 200 °C bis 700 °C in Luft ausgeführt wird.
5. Verfahren gemäß einem der Ansprüche 1 bis 2, wobei zur oxidativen Behandlung von Metallschaumkörper B in Schritt (d) Metallschaumkörper B in Kontakt mit einer oxidativen Gasatmosphäre, erhitzt wird, nachdem vorher Aluminiumhydroxid an der Oberfläche des Metallschaumkörpers ausgebildet wurde.
6. Verfahren gemäß Anspruch 5, wobei Aluminiumhydroxid an der Oberfläche ausgebildet wird, indem der Metallschaumkörper in Kontakt mit einer wässrigen alkalischen Lösung gebracht wird.
7. Verfahren gemäß Anspruch 6, wobei die wässrige alkalische Lösung Natriumhydroxid, Kaliumhydroxid, Lithiumhydroxid oder Kombinationen derselben enthält und der Metallschaumkörper mit der wässrigen alkalischen Lösung über einen Zeitraum von maximal 30 Minuten in Kontakt gebracht wird.
8. Verfahren gemäß einem der Ansprüche 5 bis 7, wobei das Erhitzen in Kontakt mit einer oxidativen Gasatmosphäre, nachdem vorher Aluminiumhydroxid an der Oberfläche des Metallschaumkörpers ausgebildet wurde, über einen Zeitraum von 1 bis 60 Minuten bei einer Temperatur von 200 °C bis 700 °C in Luft ausgeführt wird.
9. Verfahren gemäß einem der Ansprüche 1 bis 8, wobei das Trägeroxid der in Schritt (e) aufgebrachten katalytisch aktiven Schicht ausgewählt ist aus der Gruppe bestehend aus Aluminiumoxid, Siliziumdioxid, Titanoxid und Mischungen davon.
10. Verfahren gemäß einem der Ansprüche 1 bis 9, wobei die katalytisch aktive Komponente ein Übergangsmetall oder die Verbindung eines Übergangsmetalls ist, wobei das Übergangsmetall ausgewählt ist aus der Gruppe bestehend aus Eisen, Ruthenium, Osmium, Kobalt, Rhodium, Iridium, Nickel, Palladium, Platin, Cer, Kupfer, Silber, Gold und Mischungen davon.
11. T rägerkatalysator erhältlich nach einem Verfahren gemäß einem der Ansprüche 1 bis 10.
12. Verwendung eines Trägerkatalysators gemäß einem der Ansprüche 1 bis 10 in chemischen Transformationen.
EP20775651.1A 2019-09-25 2020-09-25 Cobalthaltige metallschaumkörper und verfahren zu ihrer herstellung Pending EP3826789A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP19199651 2019-09-25
PCT/EP2020/076854 WO2021058719A1 (de) 2019-09-25 2020-09-25 Cobalthaltige metallschaumkörper und verfahren zu ihrer herstellung

Publications (1)

Publication Number Publication Date
EP3826789A1 true EP3826789A1 (de) 2021-06-02

Family

ID=68069598

Family Applications (2)

Application Number Title Priority Date Filing Date
EP20775651.1A Pending EP3826789A1 (de) 2019-09-25 2020-09-25 Cobalthaltige metallschaumkörper und verfahren zu ihrer herstellung
EP20775649.5A Pending EP3826788A1 (de) 2019-09-25 2020-09-25 Metallschaumträgerkatalysatoren und verfahren zu ihrer herstellung

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP20775649.5A Pending EP3826788A1 (de) 2019-09-25 2020-09-25 Metallschaumträgerkatalysatoren und verfahren zu ihrer herstellung

Country Status (6)

Country Link
US (2) US20220362757A1 (de)
EP (2) EP3826789A1 (de)
JP (2) JP2022549860A (de)
KR (2) KR20220069941A (de)
CN (2) CN114531855A (de)
WO (2) WO2021058705A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3300799A1 (de) 2016-09-30 2018-04-04 Evonik Degussa GmbH Verfahren und katalysator zur herstellung von 1,4-butandiol
EP3300798A1 (de) 2016-09-30 2018-04-04 Evonik Degussa GmbH Katalysatorfestbett enthaltend metallschaumkörper
WO2019158456A1 (en) 2018-02-14 2019-08-22 Evonik Degussa Gmbh Method for the preparation of c3-c12-alcohols by catalytic hydrogenation of the corresponding aldehydes
ES2896334T3 (es) 2019-09-25 2022-02-24 Evonik Operations Gmbh Cuerpos esponjados metálicos y procedimiento para su producción
PL3817852T3 (pl) 2019-09-25 2022-08-01 Evonik Operations Gmbh Reaktor katalityczny
CN115305427B (zh) * 2022-09-05 2024-04-05 常德力元新材料有限责任公司 一种铝镍泡沫合金生产装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020015944A1 (de) * 2018-07-20 2020-01-23 Alantum Europe Gmbh Verfahren zur herstellung eines offenporigen metallkörpers mit einer oxidschicht und ein mit dem verfahren hergestellter metallkörper

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995011752A1 (en) 1993-10-27 1995-05-04 Scientific Dimensions Usa, Inc. Open cell foam structures, catalysts supported thereby and method of producing the same
ATE311425T1 (de) * 1999-08-17 2005-12-15 Battelle Memorial Institute Katalysatorstruktur und fischer- tropschsyntheseverfahren
GB0312968D0 (en) * 2003-06-05 2003-07-09 Bp Chem Int Ltd Process for the production of olefins
JP2005205265A (ja) * 2004-01-20 2005-08-04 Materials & Energy Research Institute Tokyo Ltd 触媒体、その製造方法及び水素発生方法
CN101391222A (zh) * 2007-09-21 2009-03-25 汉能科技有限公司 一种泡沫金属改性用混合浆料及其应用
CN101537360B (zh) * 2008-03-17 2012-07-04 汉能科技有限公司 一种固定床雷尼镍催化剂的制备方法
CN101537361B (zh) * 2008-03-21 2012-09-05 汉能科技有限公司 一种固定床雷尼镍催化剂的制备方法
CN101254466A (zh) * 2008-03-25 2008-09-03 浙江大学 负载型雷尼催化剂的制备方法
CN101549297B (zh) * 2008-03-31 2012-09-05 汉能科技有限公司 一种固定床雷镍催化剂的制备方法
KR101094077B1 (ko) * 2010-02-16 2011-12-15 한국에너지기술연구원 금속 폼 표면에 코발트 촉매 분말이 코팅된 코발트 금속 폼 촉매의 제조방법 및 그 코발트 금속 폼 촉매, 이 코발트 금속 폼 촉매를 이용한 열매체 순환 열교환형 반응기 및 이 열매체 순환 열교환형 반응기를 이용한 피셔-트롭쉬 합성 반응에 의한 액체 연료의 생산 방법
KR101212786B1 (ko) * 2010-08-10 2012-12-14 프라운호퍼-게젤샤프트 츄어 푀르더룽 데어 안게반텐 포르슝에.파우. 개방-다공성 금속폼 및 그의 제조방법
EP2764916B1 (de) * 2013-02-06 2017-06-28 Alantum Europe GmbH Oberflächenmodifizierter Metallschaumkörper, Verfahren zu seiner Herstellung und Verwendung dafür
FR3009973B1 (fr) * 2013-08-30 2023-06-09 Air Liquide Materiau de pre-revetement d’un substrat metallique d’un materiau catalytique a base de ceramique
EP3300798A1 (de) * 2016-09-30 2018-04-04 Evonik Degussa GmbH Katalysatorfestbett enthaltend metallschaumkörper
DE102017202404A1 (de) * 2017-02-15 2018-08-16 Evonik Degussa Gmbh Verfahren zur Herstellung von Isophoronaminoalkohol (IPAA)

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020015944A1 (de) * 2018-07-20 2020-01-23 Alantum Europe Gmbh Verfahren zur herstellung eines offenporigen metallkörpers mit einer oxidschicht und ein mit dem verfahren hergestellter metallkörper

Also Published As

Publication number Publication date
US20220395816A1 (en) 2022-12-15
KR20220069941A (ko) 2022-05-27
KR20220068221A (ko) 2022-05-25
JP2022549861A (ja) 2022-11-29
WO2021058719A1 (de) 2021-04-01
JP2022549860A (ja) 2022-11-29
US20220362757A1 (en) 2022-11-17
CN114531855A (zh) 2022-05-24
WO2021058705A1 (de) 2021-04-01
EP3826788A1 (de) 2021-06-02
CN114466698A (zh) 2022-05-10

Similar Documents

Publication Publication Date Title
EP3826789A1 (de) Cobalthaltige metallschaumkörper und verfahren zu ihrer herstellung
EP0879642B1 (de) Polybetain-stabilisierte, palladiumhaltige Nanopartikel, ein Verfahren zu ihrer Herstellung sowie daraus hergestellte Katalysatoren zur Gewinnung von Vinylacetat.
EP1278600B1 (de) Schalenkatalysatoren, verfahren zu ihrer herstellung, sowie ihre verwendung
DE3115032C2 (de)
EP1965911B1 (de) Schalenkatalysator, insbesondere zur oxidation von methanol zu formaldehyd sowie verfahren zu dessen herstellung
EP0904838A2 (de) Verfahren zur Herstellung eines Schalenkatalysators
DE102009031305A1 (de) Katalysatorbeschichteter Träger, Verfahren zu dessen Herstellung, ein damit ausgestatteter Reaktor und dessen Verwendung
EP3817852B1 (de) Katalytischer reaktor
EP3797901B1 (de) Metallschaumkörper und verfahren zu seiner herstellung
DE102004032089B3 (de) Verfahren zur Herstellung offenporiger Metallschaumkörper
DE19827385A1 (de) Tränkverfahren zur Aufbringung von Aktivmasse auf strukturierte Träger oder Monolithe
EP0803470A1 (de) Verfahren zur Herstellung katalytisch wirksamer Beschichtungen für die Synthese von Cyanwasserstoff
DE10208113A1 (de) Verfahren zur Herstellung von Schalenkatalysatoren
EP3823780B1 (de) Verfahren zur herstellung eines offenporigen metallkörpers mit einer oxidschicht und ein mit dem verfahren hergestellter metallkörper
EP1599613B1 (de) Verfahren zur beschichtung eines substrates
EP3684531A1 (de) Verfahren zur herstellung eines offenporösen formkörpers mit modifizierter oberfläche, der mit einem metall gebildet ist und einen mit dem verfahren hergestellten formkörper
DE102007031537B4 (de) Verfahren zur Herstellung poröser SiC-Komposite und mit diesem Verfahren hergestelltes SiC-Komposit
WO2019057624A1 (de) Verfahren zur herstellung eines offenporösen formkörpers, der mit einem metall gebildet ist und einen mit dem verfahren hergestellten formkörper
DE19819396C2 (de) Katalysator zur selektiven Hydrierung von ungesättigten Alkoholen seine Herstellung und Verwendung
DE2507636A1 (de) Katalysatoren und verfahren zu ihrer herstellung
EP0730903A1 (de) Poröser wirkstoff

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210225

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220121

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)