Nothing Special   »   [go: up one dir, main page]

EP3807205B1 - Method for operating a lift facility - Google Patents

Method for operating a lift facility Download PDF

Info

Publication number
EP3807205B1
EP3807205B1 EP19728088.6A EP19728088A EP3807205B1 EP 3807205 B1 EP3807205 B1 EP 3807205B1 EP 19728088 A EP19728088 A EP 19728088A EP 3807205 B1 EP3807205 B1 EP 3807205B1
Authority
EP
European Patent Office
Prior art keywords
construction phase
elevator
drive
drive system
guide rail
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19728088.6A
Other languages
German (de)
French (fr)
Other versions
EP3807205A1 (en
Inventor
Christian Studer
Stefan Weber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inventio AG
Original Assignee
Inventio AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inventio AG filed Critical Inventio AG
Publication of EP3807205A1 publication Critical patent/EP3807205A1/en
Application granted granted Critical
Publication of EP3807205B1 publication Critical patent/EP3807205B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B19/00Mining-hoist operation
    • B66B19/005Mining-hoist operation installing or exchanging the elevator drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B19/00Mining-hoist operation
    • B66B19/002Mining-hoist operation installing or exchanging guide rails
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B7/00Other common features of elevators
    • B66B7/02Guideways; Guides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B9/00Kinds or types of lifts in, or associated with, buildings or other structures
    • B66B9/02Kinds or types of lifts in, or associated with, buildings or other structures actuated mechanically otherwise than by rope or cable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B11/00Main component parts of lifts in, or associated with, buildings or other structures
    • B66B11/04Driving gear ; Details thereof, e.g. seals
    • B66B11/043Driving gear ; Details thereof, e.g. seals actuated by rotating motor; Details, e.g. ventilation
    • B66B11/0461Driving gear ; Details thereof, e.g. seals actuated by rotating motor; Details, e.g. ventilation with rack and pinion gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B9/00Kinds or types of lifts in, or associated with, buildings or other structures
    • B66B9/02Kinds or types of lifts in, or associated with, buildings or other structures actuated mechanically otherwise than by rope or cable
    • B66B9/022Kinds or types of lifts in, or associated with, buildings or other structures actuated mechanically otherwise than by rope or cable by rack and pinion drives

Definitions

  • the invention relates to a method for erecting an elevator system in an elevator shaft of a new building, in which method a construction phase elevator system with a self-propelled construction phase elevator car is installed for the duration of the construction phase of the building in the elevator shaft that increases with increasing building height, the usable Lifting height of the construction phase elevator car is gradually adapted to a currently existing elevator shaft height.
  • an indoor construction elevator is known to be installed in an elevator shaft of a building under construction.
  • the installation of this elevator takes place synchronously with the erection of the building, ie the usable lifting height of the indoor construction elevator increases with the increasing height of the building or the elevator shaft.
  • Such an adjustment of the usable lifting height serves on the one hand to transport construction workers and building materials to the currently top part of the building during the construction progress, and on the other hand such a lift can be used as a passenger and goods lift for residential or commercial premises already used during the construction phase of the building floors are used.
  • its elevator car is designed as a self-propelled elevator car that is moved up and down by a drive system that includes a rack and pinion attached to the elevator car and interacting with the rack and pinion.
  • a guide system for the elevator car is installed along the elevator shaft, and the rack and pinion strand is fixed to this guide system parallel to its guide direction with a length that can also be adjusted to the current elevator shaft height.
  • the pinion cooperating with said rack and pinion to drive the elevator car is attached to the output shaft of a drive unit arranged on the elevator car. Power is supplied to the drive unit via an electrical conductor line.
  • the Indian CN106006303A The indoor construction elevator described with backpack guidance and rack and pinion drive is not suitable as an elevator with high travel speeds. However, high driving speeds of at least 3 m/s are at final Elevator systems required in buildings whose building height justifies the installation of a construction phase elevator system, the usable lifting height of which can be adjusted as the height of the elevator shaft increases during the construction phase of the building.
  • the invention is based on the object of creating a method of the type described above, with the use of which the disadvantages of the interior construction elevator mentioned as prior art can be avoided.
  • the method is intended to solve the problem that the travel speed that can be achieved by the indoor construction elevator is not sufficient to serve as a normal passenger and goods elevator after the completion of a tall building.
  • a construction phase elevator system is installed in the elevator shaft that increases with increasing building height, which comprises a self-propelled construction phase elevator car whose usable lifting height is increasing Elevator shaft height can be adjusted, at least one guide rail run being installed in the elevator shaft to guide the construction phase elevator car along its route, with a drive system being installed to drive the construction phase elevator car, which has a primary part attached to the construction phase elevator car and a primary part along the route of the construction phase -Elevator car attached secondary part includes, wherein the guide rail track and the secondary part of the drive system are gradually extended upwards during the construction phase of the increasing elevator shaft height, the self-propelled construction phase elevator car both for transport animals and/or material for the construction of the building, as well as a passenger and freight elevator for floors already used as residential or commercial premises during the construction phase of the building, and where, after the elevator shaft has reached its final height, instead of the Construction phase elevator system a final elevator system
  • Possible modifications can consist, for example, in using a drive motor and/or an associated speed control device with higher power, in changing transmission ratios in drive components or in diameters of traction sheaves or friction wheels, in installing elevator cars with reduced weight or other dimensions and equipment , or that a counterweight is integrated into the final elevator system.
  • a final elevator system is installed in the elevator shaft, in which a drive system of an elevator car is modified compared to the drive system of the construction phase elevator car.
  • the drive system of the elevator car of the final elevator system is based on a different operating principle than the drive system of the construction phase elevator car. Because the final elevator system and thus the associated drive system do not meet the requirement have to be adaptable to an increasing building height, the use of a drive system based on a different operating principle enables an optimal adaptation of the final elevator system to requirements regarding travel speed, transport performance and travel comfort.
  • the term "effective principle" is to be understood as meaning the type of generation of a force for lifting an elevator car and its transmission to the elevator car.
  • Preferred drive systems with a different operating principle than in the self-propelled construction phase elevator car are drives with flexible suspension means - such as wire ropes or belts - which carry and drive the elevator car of a final elevator system in different arrangement variants of the drive machine and the suspension means.
  • all drive systems - for example electric linear motor drives, hydraulic drives, ball screw drives, etc. - can be used whose operating principle differs from the operating principle of the drive system of the self-propelled construction phase elevator car, and which are suitable for relatively large lifting heights and generate sufficiently high travel speeds of the elevator car be able.
  • a final elevator car of the final elevator system is guided on the same at least one guide rail track on which the construction phase elevator car was guided. This avoids the large amount of work, the high costs and, in particular, the long interruption time in elevator operation for replacing the at least one guide rail run.
  • the construction phase elevator car is used during the construction phase of the building both to transport people and/or material for the construction of the building and as a passenger and freight elevator for during the construction phase of the building already as a residential or Floors used for business premises.
  • construction workers and building materials can be transported with the construction phase elevator car during almost the entire construction period of the building.
  • users of apartments or business premises that have already been occupied before completion of the building can be transported between at least the floors assigned to these rooms in accordance with regulations, without business interruptions lasting for days when the lifting height of the construction phase elevator car is adjusted required are.
  • an assembly platform and/or a protective platform is/are temporarily installed above a current travel path upper limit of the construction phase elevator car, after which the assembly platform and/or a protective platform or the protective platform can be raised to a higher elevator shaft level by means of the self-propelled construction phase elevator car.
  • the protective platform that can be raised by means of the self-propelled construction phase elevator car is designed as an assembly platform from which at least the at least one guide rail strand mentioned is extended upwards.
  • the combination of protective platform and assembly platform results in cost savings for their manufacture.
  • the protective platform and the assembly platform can each be brought into a new position in the elevator shaft suitable for the assembly work to be carried out and fixed there in a single step and without additional lifting equipment by lifting using the self-propelled construction phase elevator car.
  • the primary part of the drive system mounted to drive the construction phase elevator car comprises a plurality of driven friction wheels, the construction phase elevator car being driven by interaction of the driven friction wheels with the secondary part of the drive system attached along the route of the construction phase elevator car .
  • friction wheels as the primary part of a drive of a construction phase elevator car is advantageous because a corresponding secondary part, which extends along the entire travel route, consists of simple and inexpensive elements can be produced, and because relatively high speeds with low noise development can be achieved with friction wheel drives.
  • the at least one guide rail track is used as a secondary part of the drive system of the self-propelled construction phase elevator car.
  • At least two driven friction wheels are pressed against each of two opposite guide surfaces of the at least one guide rail run, with the friction wheels acting on the same guide surface in each case being arranged at a distance from one another in the direction of the guide rail run.
  • At least one of the friction wheels is rotatably mounted at one end of a pivoting lever, which is pivotally mounted at its other end on a pivoting axis fixed to the construction phase elevator car, the pivoting axis of the pivoting lever being arranged in such a way that the Center of the friction wheel is below the center of the pivot axis when the friction wheel is applied or pressed against the associated guide surface of the guide rail strand.
  • Such an arrangement of the at least one friction wheel ensures that when the construction phase elevator car is driven in the upward direction, a contact pressure force is automatically established between the friction wheel and the guide surface, which is approximately proportional to the drive force that is transmitted from the guide surface to the friction wheel . This avoids the friction wheels always having to be pressed so hard that a driving force required for the maximum total weight of the construction phase elevator car can be transmitted.
  • the at least one friction wheel is pressed at all times with a minimum contact pressure against a guide surface of a guide rail strand by the action of a spring element—for example a helical compression spring.
  • the minimum contact force means that as soon as the friction wheels start to drive the elevator car during the construction phase in the upwards direction, contact pressure forces are automatically set between the friction wheels and the guide surfaces of the guide rail run, which approximately correspond to the current total weight of the Construction phase elevator car are proportional.
  • the at least one friction wheel is driven by an electric motor assigned exclusively to this friction wheel or by a hydraulic motor assigned exclusively to this friction wheel.
  • Such a drive arrangement enables a very simple and compact drive configuration.
  • the at least one friction wheel and the electric motor assigned to it or the friction wheel and the assigned hydraulic motor are arranged on the same axis.
  • the electric motors of the Friction wheels acting on a guide surface of a guide rail run are arranged offset by about the length of an electric motor in relation to the electric motors of the friction wheels acting on the other guide surface in the axial direction of the friction wheels and electric motors.
  • the electric motors whose diameter is significantly larger than the diameter of the friction wheels, are offset from one another in their axial direction ensures that the installation spaces for the electric motors of the friction wheels acting on one guide surface of the guide rail run do not overlap with the installation spaces for the electric motors of the friction wheels acting on the other guide surface of the guide rail run, even if the friction wheels arranged on one side of the guide rail run are positioned in such a way that their mutual distances, measured in the direction of the guide rail run, are not significantly greater than the diameter of the electric motors.
  • the height of the installation space required for the drive system is minimized by this arrangement of the drive system—in particular when using drive electric motors with a relatively large diameter.
  • At least one group of several friction wheels is driven by a single electric motor assigned to the group or by a single hydraulic motor assigned to the group, with torque being transmitted to the friction wheels of the group by means of a mechanical transmission.
  • a simplification of the electrical or the hydraulic part of the drive can be achieved with such a drive concept.
  • a chain wheel drive, a belt drive, a toothed wheel drive or a combination of such drives is used as the mechanical drive for the torque transmission to the friction wheels.
  • Such transmissions make it possible to drive the friction wheels of a group of several friction wheels from a single drive motor.
  • each of the electric motors driving at least one friction wheel and/or an electric motor driving a hydraulic pump which feeds at least one hydraulic motor driving at least one friction wheel is fed by at least one frequency converter controlled by a controller of the construction phase elevator system .
  • a power supply device is installed for the construction phase elevator car, which power supply device comprises a conductor line installed along the elevator shaft, which is lengthened in accordance with the increasing elevator shaft height during the construction phase.
  • a holding brake acting between the construction phase elevator car and the at least one guide rail run is activated during each standstill of the self-propelled construction phase elevator car of the construction phase elevator system, and in the case of at least one friction wheel, this is used to generate driving force from the associated drive motor at least reduced torque transmitted to the at least one friction wheel.
  • Such an embodiment has the advantage that the friction wheels do not have to apply the required vertical holding force while the elevator car during the construction phase is at a standstill. They therefore do not have to be pressed against the guide surfaces of the guide rail train with corresponding force. As a result, the problem of flattening of the periphery of the friction linings when the friction wheels are at a standstill can be largely alleviated. Since each friction wheel is pressed against the guide surface approximately proportionally to the drive force transmitted between it and the guide surface thanks to the type of arrangement described above, it is necessary to at least reduce this drive force or the torque transmitted from the drive motor to the friction wheel.
  • a primary part of an electric linear drive is used as the primary part of the drive system for driving the construction phase elevator car and a secondary part of the named electric linear drive fixed along the elevator shaft is used as the secondary part of the named drive system.
  • Such an embodiment of the method according to the invention has the advantage that the drive of the construction phase elevator car is realized without contact and without wear, and the Traction ability of the drive cannot be impaired by dirt.
  • At least one electric motor or hydraulic motor driving a pinion and speed-controlled by means of a frequency converter is used as the primary part of the drive system for driving the construction phase elevator car, and at least one rack and pinion system fixed along the elevator shaft along the elevator shaft.
  • Such an embodiment of the method according to the invention has the advantage that, in the case of a rack and pinion drive, the driving force is transmitted in a form-fitting manner and a holding brake on the construction-phase elevator car is not absolutely necessary. In addition, relatively few driven pinions are required for the transmission of the entire driving force.
  • speed control by means of a frequency converter, in which the frequency converter acts either on the electric motor driving at least one pinion or on an electric motor that controls the speed of a hydraulic pump that feeds the hydraulic motor, the travel speed of the elevator car during the construction phase can be continuously controlled.
  • FIG. 1 shows schematically a construction phase elevator system 3.1, which is installed in an elevator shaft 1 of a building 2 in its construction phase, and a construction phase elevator car 4 includes, the usable lifting height is gradually adapted to an increasing elevator shaft height.
  • the construction phase elevator car 4 comprises a car frame 4.1 and a car body 4.2 mounted in the car frame.
  • the car frame has car guide shoes 4.1.1, over which the construction phase elevator car 4 is guided on guide rail strands 5.
  • These guide rail strands are extended upwards from time to time according to the construction progress above the construction phase elevator car and, after a final elevator shaft height has been reached, also serve to guide a final elevator car (not shown) of a final elevator system replacing the construction phase elevator car 4 .
  • the construction phase elevator car 4 is designed as a self-propelled elevator car and includes a drive system 7, which is preferably installed within the car frame 4.1.
  • the construction-phase elevator car 4 can be equipped with different drive systems, these drive systems each comprising a primary part attached to the construction-phase elevator car 4 and a secondary part attached along the route of the construction-phase elevator car.
  • the primary part of the drive system 7 is shown schematically by several friction wheels 8 driven by drive motors (not shown), which interact with the at least one guide rail track 5 forming the secondary part in order to move the construction-phase elevator car 4 up and down within its currently usable lifting height.
  • the drive motors driving the friction wheels 8 can preferably be present in the form of electric motors or in the form of hydraulic motors.
  • Electric motors are preferably powered by at least one frequency converter system to allow regulation of the speed of the electric motors. What is thereby achieved is that the travel speed of the construction phase elevator car 4 can be continuously regulated, so that any travel speed that lies between a minimum speed and a maximum speed can be controlled.
  • the minimum speed is used, for example, to control stopping positions or for manually controlled travel to lift assembly aids using the construction phase elevator car
  • the maximum speed is used, for example, to operate an elevator for construction workers and for users or residents of the floors that have already been built.
  • a corresponding control of the speed of hydraulic motors can be done either by being fed by a hydraulic pump preferably installed on the construction phase elevator car 4, the flow rate of which can be regulated electrohydraulically at a constant speed, or by being fed by a hydraulic pump which is driven by an electric motor that can be speed-controlled by means of frequency conversion.
  • the drive motors of the drive system 7 of the construction phase elevator car 4 can be controlled either by a conventional elevator control (not shown) or by means of a mobile manual control 10—preferably with wireless signal transmission.
  • the electric motors of the drive system of the construction phase elevator car 4 can be fed via a conductor line 11 routed along the elevator shaft 1 .
  • a frequency converter 13 arranged on the construction phase elevator car 4 can be supplied with alternating current via the conductor line 11 and corresponding sliding contacts 12, with the frequency converter feeding the electric motors driving the friction wheels 8 or at least one electric motor driving a hydraulic pump with variable speed.
  • a stationary AC-DC converter can feed direct current into such a conductor line, which is tapped on the construction phase elevator car by means of the sliding contacts and fed to the variable-speed electric motors of the drive system via at least one inverter with a controllable output frequency. If the friction wheels 8 are driven by hydraulic motors, which are fed by a hydraulic pump with a flow rate that can be regulated at a constant speed, no frequency conversion is required.
  • the construction phase elevator car 4 is equipped with a car door system 4.2.1 controlled by the elevator control system, which interacts with shaft doors 20, which in each case before an adjustment of the usable lifting height of the construction phase elevator car 4 be installed along the additional travel area in elevator shaft 1.
  • a mounting platform 22 is arranged above the currently usable lifting height of the construction phase elevator car 4, which assembly platform can be moved up and down along an upper section of the elevator shaft 1. From such a mounting platform 22 , the at least one guide rail run 5 is extended above the currently usable lifting height of the elevator car 4 during the construction phase, although other elevator components can also be installed in the elevator shaft 1 .
  • a first protective platform 25 is temporarily fixed in the uppermost area of the currently existing elevator shaft 1 .
  • this has the task of people and facilities in the elevator shaft 1 - in particular in the assembly platform mentioned 22 - to protect against objects that may fall during the construction work taking place on Building 2.
  • the first protective platform 25 can serve as a support element for a lifting device 24 with which the assembly platform 22 can be raised or lowered.
  • the first protective platform 25 with the assembly platform 22 suspended from it must be raised from time to time by means of a construction crane to a higher level corresponding to the construction progress in the currently uppermost area of the elevator shaft, where the first protective platform 25 is then temporarily fixed.
  • the self-propelled construction phase elevator car 4 and its drive system 7 are dimensioned such that at least the second protective platform 23 mentioned can be raised in the elevator shaft 1 by means of the self-propelled construction phase elevator car 4 after the first protective platform 25 was lifted by the construction crane with the assembly platform 22 hanging on this.
  • the car frame 4.1 of the construction phase elevator car 4 is designed with support elements 4.1.2, which are preferably provided with damping elements 4.1.3.
  • both the second protective platform 23 and the assembly platform 22 can be raised together by the construction phase elevator car 4 to a level desired for specific assembly work, fixed there temporarily in the elevator shaft 1 or by the construction phase elevator car be held temporarily. Since there is no lifting device for lifting the assembly platform 22 in this case, this embodiment assumes that the construction phase elevator car, in addition to its function of ensuring the mentioned elevator operation for construction workers and floor users, is used sufficiently frequently and for a sufficiently long time for the lifting and, if necessary, for the Holding the mounting platform 22 may be available.
  • FIG. 2 shows a construction phase elevator system 3.2, which differs from the construction phase elevator system 3.1 1 differs in that no construction crane is required is to raise the first protection platform 25 and the mounting platform 22.
  • the three components mentioned - first protective platform 25, assembly platform 22 and second protective platform 23 - are raised with the aid of the self-propelled construction phase elevator car 4, which is equipped with a correspondingly powerful drive system, after which the first protective platform 25 in fixed again at a higher position above the currently uppermost travel area of the construction phase elevator car.
  • At least one spacer element 26 is fixed between the assembly platform 22 and the first protective platform 25 in such a way that there is a specified distance between the first protective platform 25 and the assembly platform 22 before the three components are lifted.
  • the assembly platform 22 used to lengthen the at least one guide rail run 5 and to assemble further elevator components and the second protective platform 23 can be moved with the aid of the lifting device 24.
  • the lower end of the at least one spacer element 26 is advantageously fastened to the assembly platform 22, and when the assembly platform is moved by means of the lifting device 24 towards the first protective platform 25, the at least one spacer element 26 can be pushed through at least one opening 27 in the first protective platform 25, which is assigned to the at least one spacer element Protective platform 25 slide through.
  • the assembly platform 22 and the at least one spacer element 26 are lowered by means of the lifting device 24 to such an extent that the upper end of the spacer element is just inside the opening mentioned 27 is located in the first protective platform 25. Thereafter, the upward sliding of the at least one spacer element 26 through the first protective platform 25 is prevented by means of a blocking device - for example by means of a locking pin 28 - so that when the assembly platform 22 is raised again by the self-propelled construction phase elevator car 4, the first protective platform 25 with the intended distance to the mounting platform 22 is raised.
  • the second protective platform 23 and the assembly platform 22 can advantageously form a unit that can be raised by means of the self-propelled construction phase elevator car 4 by the in 1 shown second protection platform 23 to the in 2 assembly platform 22 shown is formed, from which assembly platform 22 at least the at least one guide rail strand 5 can be extended upwards.
  • the protective platform and assembly platform are not absolutely necessary.
  • FIG 3A shows a side view of a construction phase elevator car 4 suitable for use in the method according to the invention
  • FIG Figure 3B shows this construction phase elevator car in a front view.
  • the construction phase elevator car 4 comprises a car frame 4.1 with car guide shoes 4.1.1 and a car body 4.2 which is mounted in the car frame and is intended for accommodating passengers and objects 4.
  • the car frame 4.1 and thus also the car body 4.2 are guided via car guide shoes 4.1.1 on guide rail strands 5, which guide rail strands are preferably attached to walls of the elevator shaft and - as explained above - form the secondary part of the drive system 7.1 of the construction phase elevator car 4 and later for Serve guiding the final elevator car of a final elevator system.
  • the illustrated drive system 7.1 comprises a plurality of driven friction wheels 8 which interact with the guide rail strands 5 in order to move the self-propelled construction phase elevator car 4 along an elevator shaft of a building which is in its construction phase.
  • the friction wheels are arranged inside the car frame 4.1 of the construction phase elevator car 4 above and below the car body 4.2, with at least one friction wheel acting on each of the opposite guide surfaces 5.1 of the guide rail strands 5. If there is sufficient space for the drive motors between the cabin body and the cabin frame, the friction wheels can also be attached to the side of the cabin body.
  • each of the friction wheels 8 is driven by an associated electric motor 30.1, with the friction wheel and the associated electric motor preferably being arranged on the same axis (coaxially).
  • Each of the friction wheels 8 is rotatably mounted coaxially with the rotor of the associated electric motor 30.1 at one end of a pivoted lever 32.
  • the pivot lever 32 assigned to one of the friction wheels is pivoted at its other end on a pivot axis 33 fixed to the car frame 4.1 of the construction phase elevator car 4 in such a way that the center of the friction wheel 8 lies below the axis line of the pivot axis 33 of the pivot lever 32 when the friction wheel 8 is pressed against the guide surface 5.1 assigned to it of the at least one guide rail strand.
  • the pivoting lever 32 and the friction wheel 8 are arranged in such a way that a straight line extending from the pivot axis 33 to the point of contact between the friction wheel 8 and the guide surface 5.1 is preferably at an angle of 15° is inclined to 30 ° to a normal to the guide surface 5.1.
  • the pivoting lever 32 is loaded by a prestressed compression spring 34 in such a way that the friction wheel 8 mounted at the end of the pivoting lever is pressed with a minimum contact pressure against the guide surface 5.1 assigned to it.
  • An additional measure to prevent flattening of the plastic friction linings of the friction wheels 8 is that during each standstill of the construction phase elevator car 4, the friction wheels 8 are relieved by a pressure between the construction phase elevator car and the elevator shaft—preferably between the construction phase elevator car and the at least one guide rail track 5 - acting holding brake 37 is activated and the torque transmitted from the drive motors 30 to the friction wheels is at least reduced.
  • a brake used only for this purpose or a controllable safety brake can be used as a holding brake.
  • the electric motors 30.1 are fed via a frequency converter 13, which is controlled by an elevator control (not shown).
  • the diameters of the electric motors 30.1 are significantly larger than the diameters of the friction wheels 8 driven by the electric motors. This is necessary so that the electric motors can generate sufficiently high torques to drive the friction wheels. So that there is sufficient installation space for the electric motors 30.1 arranged on both sides of the guide rail track 5, relatively large vertical distances are required between the individual friction wheel arrangements. This has the consequence that the installation spaces for the drive system 7.1 and thus the entire Cab frame 4.1 are correspondingly high.
  • the Figures 4A and 4B show a self-propelled construction phase elevator car 4, which in the Figures 3A and 3B shown construction phase elevator car is very similar in function and appearance.
  • a drive system 7.2 with driven friction wheels 8 is shown, which enables the use of electric motors whose diameters correspond, for example, to three to four times the friction wheel diameter, without their vertical distance from one another having to be greater than the motor diameter. The height of the installation spaces for the drive system 7.2 can thus be minimized. This is achieved in that the electric motors 30.2 of the friction wheels 8 acting on one guide surface 5.1 of a guide rail run 5 are arranged offset by about one motor length in the axial direction of the electric motors in relation to the electric motors of the friction wheels acting on the other guide surface 5.1.
  • FIG. 5A and 5B is a self-propelled construction phase elevator car 4 shown in the Figures 3A, 3B and 4A, 4B is very similar in function and appearance to the construction phase elevator cars shown.
  • the height of the installation spaces for the drive system 7.3 and thus the overall height of the construction phase elevator car is reduced by the fact that smaller drive motors are used for the friction wheels 8 .
  • the vertical distances between the individual friction wheel arrangements are no longer determined by the installation spaces for the drive motors.
  • hydraulic motors 30.3 instead of electric motors to drive the friction wheels 8.
  • Hydraulic motors can therefore also be used to drive friction wheels with larger diameters, which allow a higher contact pressure and can therefore transmit a higher traction force.
  • Hydraulic drives require at least one hydraulic unit 36, which preferably includes an electrically driven hydraulic pump.
  • an electrically driven hydraulic pump For the supply of the friction wheels 8 speed variable driving hydraulic motors 30.3, for example, by a a hydraulic pump driven by an electric motor at a constant speed with an electro-hydraulically controllable delivery volume or a hydraulic pump with a constant delivery volume driven by an electric motor whose speed is controlled by a frequency converter.
  • the hydraulic motors are preferably operated in a hydraulic parallel connection. However, series connection is also possible.
  • the power supply to the hydraulic unit 36 is preferably via a conductor line, as is the case for the supply of electric motors in connection with the Figures 1 and 2 was explained.
  • the construction phase elevator car 4 according to the Figures 5A and 5B is locked during standstill by holding brakes 37 in the elevator shaft, the drive torques exerted by the hydraulic motors 30.3 on the friction wheels 8 being at least reduced.
  • FIG. 6 shows a part of a drive system 7.4 of this construction phase elevator car arranged below the car body 4.2 of a self-propelled construction phase elevator car. Shown is an arrangement of a group of several friction wheels 8.1-8.6 rotatably mounted on pivoting levers 32.1-32.6 and pressed by means of compression springs 34.1-34.6 on a guide rail track 5, which arrangement has already been described above in connection with the Figures 3A and 3B was explained.
  • each of the friction wheels 8.1 - 8.6 is driven individually by a drive motor assigned to the friction wheel, but the friction wheels 8.1 - 8.6 are driven by a common drive motor 30.4 assigned to the group of friction wheels via a gear train 38 with two counter-rotating drive sprockets 38.1, 38.2 and driven via a mechanical transmission in the form of a chain transmission arrangement 40.
  • a speed-controllable electric motor or a speed-controllable hydraulic motor for example, can be used as a common drive motor.
  • chain gear arrangement 40 other types of gears can also be used, for example belt gears, preferably toothed belt gears, toothed gears, bevel gears and shaft gears or combinations of such gears.
  • the part of the chain gear arrangement 40 shown on the left side of the drive system 7.4 comprises a first chain strand 40.1, which transmits the rotational movement from the drive chain wheel 38.1 of the gear mechanism 38 to a triple chain wheel 40.5 mounted on the fixed pivot axis of the top pivot lever 32.1. From this triple sprocket 40.5, the rotational movement is on the one hand by means of a second chain strand 40.2 to a chain wheel fixed on the axis of rotation of the friction wheel 8.1 and thus to the friction wheel 8.1. On the other hand, the rotational movement is transmitted from the triple chain wheel 40.5 by means of a third chain strand 40.3 to a triple chain wheel 40.6 arranged underneath and mounted on the fixed pivot axis of the central pivot lever 32.2.
  • the rotational movement is transmitted on the one hand by means of a fourth chain strand 40.4 to a chain wheel fixed on the axis of rotation of the friction wheel 8.2 and thus to the friction wheel 8.2.
  • the rotational movement is transmitted from the triple chain wheel 40.6 by means of a fifth chain strand 40.5 to a triple chain wheel 40.7 arranged underneath and mounted on the fixed pivot axis of the lowest pivot lever 32.3.
  • the rotational movement is transmitted by means of a sixth chain strand 40.6 to a chain wheel fixed on the axis of rotation of the lowest friction wheel 8.2 and thus to the friction wheel 8.2.
  • the part of the chain transmission arrangement 40 shown on the right-hand side of the drive system 7.4 is arranged essentially symmetrically to the part of the chain transmission 40 described above and shown on the left-hand side of the drive system 7 and has the same functions and effects.
  • This construction phase elevator car 54 comprises a car frame 54.1 and a car body 54.2 mounted in the car frame with a car door system 54.2.1.
  • the car frame 54.1 and thus also the car body 54.2 are guided via car guide shoes 54.1.1 on guide rail tracks 5, which guide rail tracks are preferably fastened to the walls of an elevator shaft.
  • At least one electric linear motor preferably a reluctance linear motor, serves as the drive system 57 for the construction phase elevator car 54, which linear motor has at least one primary part 57.1 attached to the car frame 54.1 and at least one secondary part 57.2, which extends along the route of the construction phase elevator car 54 and is fixed to the elevator shaft includes.
  • the construction phase elevator car 54 is equipped with a drive system 57, which comprises a reluctance linear motor on two sides of the construction phase elevator car 54, each with a primary part 57.1 and a secondary part 57.2.
  • a drive system 57 which comprises a reluctance linear motor on two sides of the construction phase elevator car 54, each with a primary part 57.1 and a secondary part 57.2.
  • Each primary part 57.1 contains rows of electrically controllable electromagnets which are arranged on two sides of the associated secondary part and are not shown here.
  • the secondary part 57.2 is a rail made of soft-magnetic Material which has protruding areas 57.2.1 at regular intervals on both sides facing the electromagnets of the primary part 57.1.
  • linear motors with a large number of permanent magnets arranged along the secondary part as opposite poles to the electromagnets controlled with changing current strength in the primary part.
  • reluctance linear motors can be implemented with the lowest costs.
  • Frequency converters are advantageously used to drive such electric linear motors.
  • Such a frequency converter 13 is in 7 attached below the cabin body 54.2 on the cabin frame 54.1.
  • a holding brake 37 acting between the construction phase elevator car 54 and the guide rail track 5 also arrests the construction phase elevator car in this embodiment 3 64 during its standstill, so that the linear motor of the drive system 17 does not have to be permanently activated and does not overheat to an impermissible extent.
  • This construction phase elevator car 64 comprises a car frame 64.1 and a car body 64.2 mounted in the car frame.
  • This cabin body is also equipped with a Car door system 24.2.1 provided, which interacts with landing doors on the floors of the building under construction.
  • the car frame 64.1 and thus also the car body 64.2 are guided via car guide shoes 64.1.1 on guide rail tracks 5, which guide rail tracks are preferably fastened to the walls of an elevator shaft.
  • a drive system 67 for the construction phase elevator car 64 is a rack and pinion system, which has at least one toothed pinion 67.1.1 driven by an electric motor or electric geared motor 67.1.2 as the primary part 67.1 and at least one as the secondary part 67.2 along the route of the construction phase includes a toothed rack 67.2.1 that extends into the elevator car 64 and is temporarily fixed in the elevator shaft during the construction phase of the building.
  • the construction phase elevator car 64 is equipped with a drive system 67, which comprises a toothed rack 67.2.1 fixed in the elevator shaft on two sides of the construction phase elevator car 64, each of the toothed racks having teeth on two opposite sides.
  • a total of four pairs of driven pinions 67.1.1 work together with the two toothed racks 67.2.1 in order to move the self-propelled construction phase elevator car 64 up and down in the elevator shaft.
  • Each of the four pairs of pinions 67.1.1 is preferably driven by an electric geared motor 67.1.2 installed in the cabin frame 64.1, which preferably has two output shafts 67.1.3 arranged next to one another and driven via a distribution gear.
  • Each of the two output shafts is connected via a torsionally flexible coupling 67.1.4 to a respective shaft of the assigned pinion 67.1.1, which is mounted in the cabin frame 64.1.
  • This embodiment allows the use of standard motors with sufficient power even when the axes of a pair of pinions are close together.
  • all of the pinions 67.1.1 can be driven by an electric motor or electric geared motor that is assigned to one of the pinions.
  • the use of asynchronous motors ensures that all pinions are driven with the same high torque at all times. It goes without saying that such a construction phase elevator car 64 can also be equipped with more than four pairs of pinions and associated drive devices. This may be necessary in particular if the construction phase elevator car has to lift assembly aids in addition to its own weight, as described above in the description of the Figures 1 and 2 is described.
  • FIG. 9 shows a vertical section through a final elevator system 70 created in the elevator shaft 1 according to the method according to the invention.
  • This includes an elevator car 70.1 and a counterweight 70.2, which are suspended from flexible suspension means 70.3 and are driven via this suspension means by a stationary drive machine 70.4 with a traction sheave 70.5.
  • the drive machine 70.4 is preferably installed in a machine room 70.8 arranged above the elevator shaft 1. After the elevator shaft 1 reached its final height, the construction phase self-propelled elevator car (4; 54; 64, Figures 1-7 ) has been dismantled.
  • Reference numeral 70.6 designates compensating traction means—for example compensating ropes or compensating chains—with which a final elevator installation 70 is preferably equipped.
  • Such compensating traction means 70.6 are preferably guided around a tension roller, which is not visible here and is arranged in the foot of the elevator shaft. However, they can also hang freely in the elevator shaft 1 between the elevator car 70.1 and the counterweight 70.2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Structural Engineering (AREA)
  • Types And Forms Of Lifts (AREA)
  • Cage And Drive Apparatuses For Elevators (AREA)
  • Lift-Guide Devices, And Elevator Ropes And Cables (AREA)
  • Drying Of Solid Materials (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Errichten einer Aufzugsanlage in einem Aufzugsschacht eines neuen Gebäudes, bei welchem Verfahren für die Dauer der Bauphase des Gebäudes in dem mit zunehmender Gebäudehöhe höher werdenden Aufzugsschacht ein Bauphase-Aufzugssystem mit einer selbstfahrenden Bauphase-Aufzugskabine installiert wird, wobei die nutzbare Hubhöhe der Bauphase-Aufzugskabine schrittweise an eine aktuell vorhandene Aufzugsschachthöhe angepasst wird.The invention relates to a method for erecting an elevator system in an elevator shaft of a new building, in which method a construction phase elevator system with a self-propelled construction phase elevator car is installed for the duration of the construction phase of the building in the elevator shaft that increases with increasing building height, the usable Lifting height of the construction phase elevator car is gradually adapted to a currently existing elevator shaft height.

Aus der CN106006303 A ist ein Innen-Bauaufzug bekannt, der in einem Aufzugsschacht eines sich in seiner Bauphase befindenden Gebäudes installiert wird. Die Installation dieses Aufzugs findet synchron mit der Errichtung des Gebäudes statt, d. h., die nutzbare Hubhöhe des Innen-Bauaufzugs wächst mit der zunehmenden Höhe des Gebäudes bzw. des Aufzugsschachts. Eine solche Anpassung der nutzbaren Hubhöhe dient einerseits dazu, während des Baufortschritts Baufachleute und Baumaterial in den aktuell obersten Teil des Gebäudes zu transportieren, und andererseits kann ein solcher Aufzug als Personen- und Lastenaufzug für während der Bauphase des Gebäudes bereits als Wohn- oder Geschäftsräume genutzte Stockwerke verwendet werden.From the CN106006303A an indoor construction elevator is known to be installed in an elevator shaft of a building under construction. The installation of this elevator takes place synchronously with the erection of the building, ie the usable lifting height of the indoor construction elevator increases with the increasing height of the building or the elevator shaft. Such an adjustment of the usable lifting height serves on the one hand to transport construction workers and building materials to the currently top part of the building during the construction progress, and on the other hand such a lift can be used as a passenger and goods lift for residential or commercial premises already used during the construction phase of the building floors are used.

Um eine zunehmende nutzbare Hubhöhe des Aufzugs auf einfache Weise realisieren zu können, ist dessen Aufzugskabine als selbstfahrende Aufzugskabine ausgestaltet, die durch ein Antriebssystem auf und ab bewegt wird, das einen Zahnstangenstrang und ein an der Aufzugskabine angebrachtes, mit dem Zahnstangenstrang zusammenwirkendes Zahnritzel umfasst. Entlang des Aufzugsschachts wird ein in seiner Länge der aktuellen Aufzugsschachthöhe anpassbares Führungssystem für die Aufzugskabine installiert, und an diesem Führungssystem wird parallel zu dessen Führungsrichtung der Zahnstangenstrang mit einer ebenfalls der aktuellen Aufzugsschachthöhe anpassbaren Länge fixiert. Das zum Antreiben der Aufzugskabine mit dem genannten Zahnstangenstrang zusammenwirkende Zahnritzel ist auf der Abtriebswelle einer an der Aufzugskabine angeordneten Antriebseinheit befestigt. Die Energiezufuhr zur Antriebseinheit erfolgt über eine elektrische Schleifleitung.In order to be able to achieve an increasing usable lifting height of the elevator in a simple manner, its elevator car is designed as a self-propelled elevator car that is moved up and down by a drive system that includes a rack and pinion attached to the elevator car and interacting with the rack and pinion. A guide system for the elevator car, the length of which can be adjusted to the current elevator shaft height, is installed along the elevator shaft, and the rack and pinion strand is fixed to this guide system parallel to its guide direction with a length that can also be adjusted to the current elevator shaft height. The pinion cooperating with said rack and pinion to drive the elevator car is attached to the output shaft of a drive unit arranged on the elevator car. Power is supplied to the drive unit via an electrical conductor line.

Der in der CN106006303 A beschriebene Innen-Bauaufzug mit Rucksackführung und Zahnstangenantrieb eignet sich nicht als Aufzug mit hoher Fahrgeschwindigkeit. Hohe Fahrgeschwindigkeiten von beispielsweise mindestens 3 m/s sind jedoch bei finalen Aufzugssystemen erforderlich in Gebäuden, deren Gebäudehöhe den Einbau eines Bauphase-Aufzugssystems rechtfertigt, dessen nutzbare Hubhöhe einer während der Bauphase des Gebäudes zunehmenden Höhe des Aufzugsschachts angepasst werden kann.The Indian CN106006303A The indoor construction elevator described with backpack guidance and rack and pinion drive is not suitable as an elevator with high travel speeds. However, high driving speeds of at least 3 m/s are at final Elevator systems required in buildings whose building height justifies the installation of a construction phase elevator system, the usable lifting height of which can be adjusted as the height of the elevator shaft increases during the construction phase of the building.

Aus der US 2016/0304317 A1 ist ein Verfahren zum Errichten einer Aufzugsanlage in einem Aufzugsschacht eines neuen Gebäudes bekannt geworden, bei welchem die Aufzugskabinen eines als Bauphase-Aufzugs genutzten Umlaufaufzugs gereinigt und wiederaufbereitet oder durch neue ersetzt werden können, und die Struktur und der stationäre Teil im Aufzugschacht bestehen bleiben.From the U.S. 2016/0304317 A1 a method for erecting an elevator system in an elevator shaft of a new building has become known, in which the elevator cars of a circulation elevator used as a construction-phase elevator can be cleaned and refurbished or replaced with new ones, and the structure and the stationary part in the elevator shaft remain.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs beschriebenen Art zu schaffen, mit dessen Anwendung die Nachteile des als Stand der Technik genannten Innen-Bauaufzugs vermieden werden können. Insbesondere soll durch das Verfahren das Problem gelöst werden, dass die durch den Innen-Bauaufzug erreichbare Fahrgeschwindigkeit nicht ausreicht, um nach Fertigstellung eines hohen Gebäudes als normaler Personen- und Güteraufzug zu dienen.The invention is based on the object of creating a method of the type described above, with the use of which the disadvantages of the interior construction elevator mentioned as prior art can be avoided. In particular, the method is intended to solve the problem that the travel speed that can be achieved by the indoor construction elevator is not sufficient to serve as a normal passenger and goods elevator after the completion of a tall building.

Die Aufgabe wird durch ein Verfahren der vorstehend beschriebenen Art gelöst, bei dem für die Dauer der Bauphase des Gebäudes in dem mit zunehmender Gebäudehöhe höher werdenden Aufzugsschacht ein Bauphase-Aufzugssystem installiert wird, das eine selbstfahrende Bauphase-Aufzugskabine umfasst, deren nutzbare Hubhöhe an eine zunehmende Aufzugsschachthöhe anpassbar ist, wobei zum Führen der Bauphase-Aufzugskabine entlang ihres Fahrwegs im Aufzugsschacht mindestens ein Führungsschienenstrang installiert wird, wobei zum Antreiben der Bauphase-Aufzugskabine ein Antriebssystem montiert wird, das einen an der Bauphase-Aufzugskabine angebrachten Primärteil und einen entlang des Fahrwegs der Bauphase-Aufzugskabine angebrachten Sekundärteil umfasst, wobei der Führungsschienenstrang und der Sekundärteil des Antriebssystems während der Bauphase schrittweise der zunehmenden Aufzugsschachthöhe entsprechend nach oben verlängert werden, wobei die selbstfahrende Bauphase-Aufzugskabine sowohl zum Transportieren von Personen und/oder Material für den Bau des Gebäudes als auch als Personen- und Lastenaufzug für während der Bauphase des Gebäudes bereits als Wohn- oder Geschäftsräume genutzte Stockwerke verwendet wird, und wobei, nachdem der Aufzugsschacht seine finale Höhe erreicht hat, anstelle des Bauphase-Aufzugssystems ein finales Aufzugssystem im Aufzugsschacht installiert wird, das gegenüber dem Bauphase-Aufzugssystem modifiziert ist.The object is achieved by a method of the type described above, in which, for the duration of the construction phase of the building, a construction phase elevator system is installed in the elevator shaft that increases with increasing building height, which comprises a self-propelled construction phase elevator car whose usable lifting height is increasing Elevator shaft height can be adjusted, at least one guide rail run being installed in the elevator shaft to guide the construction phase elevator car along its route, with a drive system being installed to drive the construction phase elevator car, which has a primary part attached to the construction phase elevator car and a primary part along the route of the construction phase -Elevator car attached secondary part includes, wherein the guide rail track and the secondary part of the drive system are gradually extended upwards during the construction phase of the increasing elevator shaft height, the self-propelled construction phase elevator car both for transport animals and/or material for the construction of the building, as well as a passenger and freight elevator for floors already used as residential or commercial premises during the construction phase of the building, and where, after the elevator shaft has reached its final height, instead of the Construction phase elevator system a final elevator system in Elevator shaft is installed, which is modified from the construction phase elevator system.

Die Vorteile des erfindungsgemässen Verfahrens sind insbesondere darin zu sehen, dass einerseits während der Bauphase ein für diese Phase optimaler Aufzug zur Verfügung steht, mit dem ohne mehrmaliges Anheben eines verschiebbaren Maschinenraums die bereits erstellten Stockwerke erreichbar sind, um Baufachleute, Baumaterial und Bewohner von bereits fertiggestellten unteren Stockwerken zu befördern, und dass andererseits, nachdem der Aufzugsschacht seine finale Höhe erreicht hat, ein insbesondere bezüglich Fahrgeschwindigkeit für das Gebäude geeignetes finales Aufzugssystem genutzt werden kann. Mögliche Modifikationen können beispielsweise darin bestehen, dass ein Antriebsmotor und/oder eine zugeordnete Drehzahl-Regeleinrichtung mit höherer Leistung zur Anwendung kommen, dass Übersetzungsverhältnisse in Antriebskomponenten oder Durchmesser von Treibscheiben oder Reibrädern geändert werden, dass Aufzugskabinen mit reduziertem Gewicht oder anderen Abmessungen und Ausstattungen installiert werden, oder dass ein Gegengewicht in das finale Aufzugssystem integriert wird.The advantages of the method according to the invention can be seen in particular in the fact that, on the one hand, an elevator that is optimal for this phase is available during the construction phase, with which the floors that have already been built can be reached without repeated lifting of a displaceable machine room, in order to allow building professionals, building materials and residents of already finished floors to be reached lower floors, and that on the other hand, after the elevator shaft has reached its final height, a final elevator system suitable for the building, in particular with regard to travel speed, can be used. Possible modifications can consist, for example, in using a drive motor and/or an associated speed control device with higher power, in changing transmission ratios in drive components or in diameters of traction sheaves or friction wheels, in installing elevator cars with reduced weight or other dimensions and equipment , or that a counterweight is integrated into the final elevator system.

Erfindungsgemäss wird anstelle des Bauphase-Aufzugssystems ein finales Aufzugssystem im Aufzugsschacht installiert, bei dem ein Antriebssystem einer Aufzugskabine gegenüber dem Antriebssystem der Bauphase-Aufzugskabine modifiziert ist.According to the invention, instead of the construction phase elevator system, a final elevator system is installed in the elevator shaft, in which a drive system of an elevator car is modified compared to the drive system of the construction phase elevator car.

Mit einer Modifikation des Antriebssystems der Aufzugskabine des finalen Aufzugssystems kann mindestens die erforderliche hohe Fahrgeschwindigkeit der Aufzugskabine des finalen Aufzugssystems erreicht werden. Beispiele möglicher Modifikationen des Aufzugssystems sind eine Erhöhung der Antriebsleistung des Antriebsmotors und der zugehörigen Geschwindigkeitsregeleinrichtung, die Veränderung von Übersetzungsverhältnissen bei Antriebskomponenten, der Einsatz einer anderen Antriebsart, beispielsweise einer nicht für eine selbstfahrende Aufzugskabine geeignete Antriebsart, etc.With a modification of the drive system of the elevator car of the final elevator system, at least the required high travel speed of the elevator car of the final elevator system can be achieved. Examples of possible modifications to the elevator system are an increase in the drive power of the drive motor and the associated speed control device, changing transmission ratios in drive components, using a different type of drive, for example a type of drive that is not suitable for a self-propelled elevator car, etc.

In einer weiteren möglichen Ausgestaltung des erfindungsgemässen Verfahrens beruht das Antriebssystem der Aufzugskabine des finalen Aufzugssystems auf einem anderen Wirkprinzip als das Antriebssystem der Bauphase-Aufzugskabine. Da das finale Aufzugssystem und damit das zugehörige Antriebssystem nicht die Anforderung erfüllen müssen, an eine zunehmende Gebäudehöhe anpassbar zu sein, ermöglicht die Anwendung eines auf einem anderen Wirkprinzip beruhenden Antriebssystems eine optimale Anpassung des finalen Aufzugssystems an Anforderungen betreffend Fahrgeschwindigkeit, Transportleistung und Fahrkomfort. Unter dem Begriff «Wirkprinzip» ist im vorliegenden Zusammenhang die Art der Erzeugung einer Kraft zum Anheben einer Aufzugskabine und deren Übertragung auf die Aufzugskabine zu verstehen. Bevorzugte Antriebssysteme mit einem anderen Wirkprinzip als bei der selbstfahrenden Bauphase-Aufzugskabine sind Antriebe mit flexiblen Tragmitteln - wie beispielsweise Drahtseile oder Riemen - die in unterschiedlichen Anordnungsvarianten der Antriebsmaschine und der Tragmittel die Aufzugskabine eines finalen Aufzugssystems tragen und antreiben. Generell sind jedoch alle Antriebssysteme - beispielsweise auch elektrische Linearmotorantriebe, hydraulische Antriebe, Kugelumlaufspindelantriebe, etc. - anwendbar, deren Wirkprinzip sich vom Wirkprinzip des Antriebssystems der selbstfahrenden Bauphase-Aufzugskabine unterscheidet, und die sich für relativ grossen Hubhöhen eignen und ausreichend hohe Fahrgeschwindigkeiten der Aufzugskabine generieren können.In a further possible embodiment of the method according to the invention, the drive system of the elevator car of the final elevator system is based on a different operating principle than the drive system of the construction phase elevator car. Because the final elevator system and thus the associated drive system do not meet the requirement have to be adaptable to an increasing building height, the use of a drive system based on a different operating principle enables an optimal adaptation of the final elevator system to requirements regarding travel speed, transport performance and travel comfort. In the present context, the term "effective principle" is to be understood as meaning the type of generation of a force for lifting an elevator car and its transmission to the elevator car. Preferred drive systems with a different operating principle than in the self-propelled construction phase elevator car are drives with flexible suspension means - such as wire ropes or belts - which carry and drive the elevator car of a final elevator system in different arrangement variants of the drive machine and the suspension means. In general, however, all drive systems - for example electric linear motor drives, hydraulic drives, ball screw drives, etc. - can be used whose operating principle differs from the operating principle of the drive system of the self-propelled construction phase elevator car, and which are suitable for relatively large lifting heights and generate sufficiently high travel speeds of the elevator car be able.

In einer weiteren möglichen Ausgestaltung des erfindungsgemässen Verfahrens wird eine finale Aufzugskabine des finalen Aufzugssystems an demselben mindestens einen Führungsschienenstrang geführt, an dem die Bauphase-Aufzugskabine geführt wurde. Dadurch werden der grosse Arbeitsaufwand, die hohen Kosten und insbesondere die lange Unterbrechungszeit des Aufzugsbetriebs für einen Austausch des mindestens einen Führungsschienenstrangs vermieden.In a further possible embodiment of the method according to the invention, a final elevator car of the final elevator system is guided on the same at least one guide rail track on which the construction phase elevator car was guided. This avoids the large amount of work, the high costs and, in particular, the long interruption time in elevator operation for replacing the at least one guide rail run.

In einer weiteren möglichen Ausgestaltung des erfindungsgemässen Verfahrens wird die Bauphase-Aufzugskabine während der Bauphase des Gebäudes sowohl zum Transport von Personen und/oder Material für den Bau des Gebäudes als auch als Personen- und Lastenaufzug für während der Bauphase des Gebäudes bereits als Wohn- oder Geschäftsräume genutzte Stockwerke verwendet.In a further possible embodiment of the method according to the invention, the construction phase elevator car is used during the construction phase of the building both to transport people and/or material for the construction of the building and as a passenger and freight elevator for during the construction phase of the building already as a residential or Floors used for business premises.

Damit wird erreicht, dass einerseits während beinahe der gesamten Bauzeit des Gebäudes mit der Bauphase-Aufzugskabine Bauarbeiter und Baumaterial befördert werden können. Andererseits können Benutzer von bereits vor Fertigstellung des Gebäudes bezogenen Wohnungen oder Geschäftsräumen zwischen mindestens den diesen Räumen zugeordneten Stockwerken vorschriftenkonform befördert werden, ohne dass bei Anpassungen der Hubhöhe der Bauphase-Aufzugskabine tagelange Betriebsunterbrechungen erforderlich sind.This means that, on the one hand, construction workers and building materials can be transported with the construction phase elevator car during almost the entire construction period of the building. On the other hand, users of apartments or business premises that have already been occupied before completion of the building can be transported between at least the floors assigned to these rooms in accordance with regulations, without business interruptions lasting for days when the lifting height of the construction phase elevator car is adjusted required are.

In einer weiteren möglichen Ausgestaltung des erfindungsgemässen Verfahrens wird/werden oberhalb einer momentanen Fahrweg-Obergrenze der Bauphase-Aufzugskabine eine Montageplattform und/oder eine Schutzplattform temporär installiert, wonach bei der Anpassung der nutzbaren Hubhöhe der Bauphase-Aufzugskabine an eine zunehmende Aufzugsschachthöhe die Montageplattform und/oder die Schutzplattform mittels der selbstfahrenden Bauphase-Aufzugskabine auf ein höheres Aufzugsschachtniveau angehoben werden kann/können.In a further possible embodiment of the method according to the invention, an assembly platform and/or a protective platform is/are temporarily installed above a current travel path upper limit of the construction phase elevator car, after which the assembly platform and/or a protective platform or the protective platform can be raised to a higher elevator shaft level by means of the self-propelled construction phase elevator car.

Damit wird erreicht, dass die als Schutz gegen herunterfallende Gegenstände zwingend erforderliche und relativ schwere mindestens eine Schutzplattform und gegebenenfalls auch eine Montageplattform mit geringem Aufwand an Arbeitszeit und Hebeeinrichtungen entlang des neu entstandenen Aufzugsschachts angehoben und in einer neuen Position fixiert werden kann/können.This means that the relatively heavy at least one protective platform and possibly also an assembly platform that is absolutely necessary as protection against falling objects can be raised along the newly created elevator shaft and fixed in a new position with little effort in terms of working time and lifting equipment.

In einer weiteren möglichen Ausgestaltung des erfindungsgemässen Verfahrens wird die mittels der selbstfahrenden Bauphase-Aufzugskabine anhebbare Schutzplattform als Montageplattform ausgestaltet, von der aus zumindest der genannte mindestens eine Führungsschienenstrang nach oben verlängert wird.In a further possible embodiment of the method according to the invention, the protective platform that can be raised by means of the self-propelled construction phase elevator car is designed as an assembly platform from which at least the at least one guide rail strand mentioned is extended upwards.

Durch die Kombination aus Schutzplattform und Montageplattform werden einerseits Kosteneinsparungen für deren Herstellung erreicht. Andererseits können damit die Schutzplattform und die Montageplattform jeweils in einem einzigen Arbeitsschritt und ohne zusätzliche Hebeeinrichtung durch Anheben mittels der selbstfahrenden Bauphase-Aufzugskabine in eine für die auszuführenden Montagearbeiten geeignete neue Position im Aufzugsschacht gebracht und dort fixiert werden.On the one hand, the combination of protective platform and assembly platform results in cost savings for their manufacture. On the other hand, the protective platform and the assembly platform can each be brought into a new position in the elevator shaft suitable for the assembly work to be carried out and fixed there in a single step and without additional lifting equipment by lifting using the self-propelled construction phase elevator car.

In einer weiteren möglichen Ausgestaltung des erfindungsgemässen Verfahrens umfasst der Primärteil des zum Antreiben der Bauphase-Aufzugskabine montierten Antriebssystems mehrere angetriebene Reibräder, wobei die Bauphase-Aufzugskabine durch ein Zusammenwirken der angetriebenen Reibräder mit dem entlang des Fahrwegs der Bauphase-Aufzugskabine angebrachten Sekundärteil des Antriebssystems angetrieben wird.In a further possible embodiment of the method according to the invention, the primary part of the drive system mounted to drive the construction phase elevator car comprises a plurality of driven friction wheels, the construction phase elevator car being driven by interaction of the driven friction wheels with the secondary part of the drive system attached along the route of the construction phase elevator car .

Die Anwendung von Reibrädern als Primärteil eines Antriebs einer Bauphase-Aufzugskabine ist vorteilhaft, weil ein entsprechender, sich entlang des gesamten Fahrwegs erstreckender Sekundärteil aus einfachen und preisgünstigen Elementen herstellen lässt, und weil mit Reibradantrieben relativ hohe Geschwindigkeiten bei geringer Lärmentwicklung realisierbar sind.The use of friction wheels as the primary part of a drive of a construction phase elevator car is advantageous because a corresponding secondary part, which extends along the entire travel route, consists of simple and inexpensive elements can be produced, and because relatively high speeds with low noise development can be achieved with friction wheel drives.

In einer weiteren möglichen Ausgestaltung des erfindungsgemässen Verfahrens wird als Sekundärteil des Antriebssystems der selbstfahrenden Bauphase-Aufzugskabine der mindestens eine Führungsschienenstrang genutzt.In a further possible embodiment of the method according to the invention, the at least one guide rail track is used as a secondary part of the drive system of the self-propelled construction phase elevator car.

Durch die Verwendung des sowohl für die Bauphase-Aufzugskabine als auch für die finale Aufzugskabine ohnehin erforderlichen Führungsschienenstrangs als Sekundärteil des Antriebssystems lassen sich sehr hohe Kosten für die Herstellung und insbesondere für die Installation und Justierung eines solchen, sich über die gesamte Aufzugsschachthöhe erstreckenden Sekundärteils einsparen.By using the guide rail track, which is required anyway for the elevator car construction phase and for the final elevator car, as a secondary part of the drive system, very high costs for the production and, in particular, for the installation and adjustment of such a secondary part, which extends over the entire elevator shaft height, can be saved.

In einer weiteren möglichen Ausgestaltung des erfindungsgemässen Verfahrens werden zum Antreiben der Bauphase-Aufzugskabine mindestens je zwei angetriebene Reibräder gegen jede von zwei einander gegenüberliegenden Führungsflächen des mindestens einen Führungsschienenstrangs gepresst, wobei die auf jeweils dieselbe Führungsfläche wirkenden Reibräder in Richtung des Führungsschienenstrangs voneinander beabstandet angeordnet sind.In a further possible embodiment of the method according to the invention, to drive the construction phase elevator car, at least two driven friction wheels are pressed against each of two opposite guide surfaces of the at least one guide rail run, with the friction wheels acting on the same guide surface in each case being arranged at a distance from one another in the direction of the guide rail run.

Durch eine solche Anordnung von jeweils mindestens vier auf jeden Führungsschienenstrang wirkenden, angetriebenen Reibrädern kann die erforderliche hohe Antriebskraft zum Anheben von mindestens der Bauphase-Aufzugskabine und der Schutzplattform bzw. der Kombination aus Schutzplattform und Montageplattform erreicht werden.With such an arrangement of at least four driven friction wheels acting on each guide rail run, the required high driving force for lifting at least the construction phase elevator car and the protective platform or the combination of protective platform and assembly platform can be achieved.

In einer weiteren möglichen Ausgestaltung des erfindungsgemässen Verfahrens wird mindestens eines der Reibräder an einem Ende eines Schwenkhebels drehbar gelagert, der an seinem anderen Ende auf einer an der Bauphase-Aufzugskabine fixierten Schwenkachse schwenkbar gelagert ist, wobei die Schwenkachse des Schwenkhebels so angeordnet wird, dass das Zentrum des Reibrads unterhalb des Zentrums der Schwenkachse liegt, wenn das Reibrad an die ihm zugeordnete Führungsfläche des Führungsschienenstrangs angelegt bzw. angepresst wird.In a further possible embodiment of the method according to the invention, at least one of the friction wheels is rotatably mounted at one end of a pivoting lever, which is pivotally mounted at its other end on a pivoting axis fixed to the construction phase elevator car, the pivoting axis of the pivoting lever being arranged in such a way that the Center of the friction wheel is below the center of the pivot axis when the friction wheel is applied or pressed against the associated guide surface of the guide rail strand.

Durch eine solche Anordnung des mindestens einen Reibrads wird erreicht, dass sich beim Antreiben der Bauphase-Aufzugskabine in Aufwärtsrichtung zwischen dem Reibrad und der Führungsfläche selbsttätig eine Anpresskraft einstellt, die in etwa proportional zu der Antriebskraft ist, die von der Führungsfläche auf das Reibrad übertragenen wird. Damit wird vermieden, dass die Reibräder stets so stark angepresst werden müssen, dass eine für das maximale Gesamtgewicht der Bauphase-Aufzugskabine erforderliche Antriebskraft übertragen werden kann.Such an arrangement of the at least one friction wheel ensures that when the construction phase elevator car is driven in the upward direction, a contact pressure force is automatically established between the friction wheel and the guide surface, which is approximately proportional to the drive force that is transmitted from the guide surface to the friction wheel . This avoids the friction wheels always having to be pressed so hard that a driving force required for the maximum total weight of the construction phase elevator car can be transmitted.

In einer weiteren möglichen Ausgestaltung des erfindungsgemässen Verfahrens wird das mindestens eine Reibrad durch die Wirkung eines Federelements - beispielsweise einer Schraubendruckfeder - jederzeit mit einer Mindest-Anpresskraft gegen eine Führungsfläche eines Führungsschienenstrangs gepresst.In a further possible embodiment of the method according to the invention, the at least one friction wheel is pressed at all times with a minimum contact pressure against a guide surface of a guide rail strand by the action of a spring element—for example a helical compression spring.

In Kombination mit der beschriebenen Anordnung der Reibräder wird durch die Mindest-Anpresskraft bewirkt, dass, sobald die Reibräder die Bauphase-Aufzugskabine in Aufwärtsrichtung anzutreiben beginnen, sich selbsttätig Anpresskräfte zwischen den Reibrädern und den Führungsflächen des Führungsschienenstrangs einstellen, die in etwa zum aktuellen Gesamtgewicht der Bauphase-Aufzugskabine proportional sind.In combination with the described arrangement of the friction wheels, the minimum contact force means that as soon as the friction wheels start to drive the elevator car during the construction phase in the upwards direction, contact pressure forces are automatically set between the friction wheels and the guide surfaces of the guide rail run, which approximately correspond to the current total weight of the Construction phase elevator car are proportional.

In einer weiteren möglichen Ausgestaltung des erfindungsgemässen Verfahrens wird das mindestens eine Reibrad durch einen ausschliesslich diesem Reibrad zugeordneten Elektromotor oder durch einen ausschliesslich diesem Reibrad zugeordneten Hydraulikmotor angetrieben.In a further possible embodiment of the method according to the invention, the at least one friction wheel is driven by an electric motor assigned exclusively to this friction wheel or by a hydraulic motor assigned exclusively to this friction wheel.

Durch eine solche Antriebsanordnung wird eine sehr einfache und kompakte Antriebskonfiguration ermöglicht.Such a drive arrangement enables a very simple and compact drive configuration.

In einer weiteren möglichen Ausgestaltung des erfindungsgemässen Verfahrens werden das mindestens eine Reibrad und der diesem zugeordnete Elektromotor bzw. das Reibrad und der zugeordnete Hydraulikmotor auf derselben Achse angeordnet.In a further possible embodiment of the method according to the invention, the at least one friction wheel and the electric motor assigned to it or the friction wheel and the assigned hydraulic motor are arranged on the same axis.

Mit einer solchen Anordnung von Reibrad und Antriebsmotor kann eine weitere Vereinfachung der gesamten Antriebskonfiguration realisiert werden.With such an arrangement of friction wheel and drive motor, a further simplification of the entire drive configuration can be realized.

In einer weiteren möglichen Ausgestaltung des erfindungsgemässen Verfahrens werden bei einem Antriebssystem, bei welchem mindestens je zwei angetriebene Reibräder gegen jede von zwei einander gegenüberliegenden Führungsflächen des mindestens einen Führungsschienenstrangs gepresst und jedes Reibrad und sein zugeordneter Elektromotor auf derselben Achse angeordnet werden, die Elektromotoren der auf die eine Führungsfläche eines Führungsschienenstrangs wirkenden Reibräder gegenüber den Elektromotoren der auf die andere Führungsfläche wirkenden Reibräder in Achsrichtung der Reibräder und Elektromotoren um etwa eine Länge eines Elektromotors versetzt angeordnet.In a further possible embodiment of the method according to the invention, in a drive system in which at least two driven friction wheels are pressed against each of two opposite guide surfaces of the at least one guide rail run and each friction wheel and its associated electric motor are arranged on the same axis, the electric motors of the Friction wheels acting on a guide surface of a guide rail run are arranged offset by about the length of an electric motor in relation to the electric motors of the friction wheels acting on the other guide surface in the axial direction of the friction wheels and electric motors.

Dadurch, dass die Elektromotoren, deren Durchmesser wesentlich grösser ist als die Durchmesser der Reibräder, in ihrer Achsrichtung gegeneinander versetzt angeordnet werden, wird erreicht, dass die Einbauräume der Elektromotoren der auf die eine Führungsfläche des Führungsschienenstrangs wirkenden Reibräder sich nicht mit den Einbauräumen der Elektromotoren der auf die andere Führungsfläche des Führungsschienenstrangs wirkenden Reibräder überdecken, auch wenn die auf jeweils einer Seite des Führungsschienenstrangs angeordneten Reibräder so positioniert werden, dass ihre gegenseitigen, in Richtung des Führungsschienenstrangs gemessenen Abstände nicht wesentlich grösser sind als die Durchmesser der Elektromotoren. Die erforderliche Höhe des Einbauraums für das Antriebssystem wird durch diese Anordnung des Antriebssystems - insbesondere bei Verwendung von Antriebs-Elektromotoren mit relativ grossem Durchmesser - minimiert.The fact that the electric motors, whose diameter is significantly larger than the diameter of the friction wheels, are offset from one another in their axial direction ensures that the installation spaces for the electric motors of the friction wheels acting on one guide surface of the guide rail run do not overlap with the installation spaces for the electric motors of the friction wheels acting on the other guide surface of the guide rail run, even if the friction wheels arranged on one side of the guide rail run are positioned in such a way that their mutual distances, measured in the direction of the guide rail run, are not significantly greater than the diameter of the electric motors. The height of the installation space required for the drive system is minimized by this arrangement of the drive system—in particular when using drive electric motors with a relatively large diameter.

In einer weiteren möglichen Ausgestaltung des erfindungsgemässen Verfahrens wird mindestens eine Gruppe von mehreren Reibrädern durch einen einzigen, der Gruppe zugeordneten Elektromotor oder durch einen einzigen, der Gruppe zugeordneten Hydraulikmotor angetrieben, wobei eine Drehmomentübertragung auf die Reibräder der Gruppe mittels eines mechanischen Getriebes bewirkt wird.In a further possible embodiment of the method according to the invention, at least one group of several friction wheels is driven by a single electric motor assigned to the group or by a single hydraulic motor assigned to the group, with torque being transmitted to the friction wheels of the group by means of a mechanical transmission.

Mit einem solchen Antriebskonzept kann eine Vereinfachung des elektrischen bzw. des hydraulischen Teils des Antriebs erreicht werden.A simplification of the electrical or the hydraulic part of the drive can be achieved with such a drive concept.

In einer weiteren möglichen Ausgestaltung des erfindungsgemässen Verfahrens wird als mechanisches Getriebe für die Drehmomentübertragung auf die Reibräder ein Kettenradgetriebe, ein Riemengetriebe, ein Zahnradgetriebe oder eine Kombination solcher Getriebe verwendet.In a further possible embodiment of the method according to the invention, a chain wheel drive, a belt drive, a toothed wheel drive or a combination of such drives is used as the mechanical drive for the torque transmission to the friction wheels.

Solche Getriebe ermöglichen es, von einem einzigen Antriebsmotor aus die Reibräder einer Gruppe von mehreren Reibrädern anzutreiben.Such transmissions make it possible to drive the friction wheels of a group of several friction wheels from a single drive motor.

In einer weiteren möglichen Ausgestaltung des erfindungsgemässen Verfahrens wird jeder der mindestens ein Reibrad antreibenden Elektromotoren und/oder ein Elektromotor, der eine Hydraulikpumpe antreibt, welche mindestens einen mindestens ein Reibrad antreibenden Hydraulikmotor speist, durch mindestens einen von einer Steuerung des Bauphase-Aufzugssystems gesteuerten Frequenzumrichter gespeist.In a further possible embodiment of the method according to the invention, each of the electric motors driving at least one friction wheel and/or an electric motor driving a hydraulic pump which feeds at least one hydraulic motor driving at least one friction wheel is fed by at least one frequency converter controlled by a controller of the construction phase elevator system .

Mit einem solchen Antriebskonzept wird eine perfekte Regelung der Fahrgeschwindigkeit der Bauphase-Aufzugskabine ermöglicht.With such a drive concept, perfect control of the travel speed of the construction phase elevator car is made possible.

In einer weiteren möglichen Ausgestaltung des erfindungsgemässen Verfahrens wird eine Stromzufuhreinrichtung zur Bauphase-Aufzugskabine installiert, welche Stromzufuhreinrichtung eine entlang des Aufzugsschachts installierte Schleifleitung umfasst, die der während der Bauphase zunehmenden Aufzugsschachthöhe entsprechend verlängert wird. Damit kann eine einfach an die aktuelle Aufzugsschachthöhe anpassbare Stromzufuhr zur Bauphase-Aufzugskabine realisiert werden, welche auch die erforderliche elektrische Leistung übertragen kann, die zum Anheben der Bauphase-Aufzugskabine und der Schutzplattform, oder gegebenenfalls zum Anheben der Bauphase-Aufzugskabine und der Kombination aus Schutzplattform und Montageplattform erforderlich ist.In a further possible embodiment of the method according to the invention, a power supply device is installed for the construction phase elevator car, which power supply device comprises a conductor line installed along the elevator shaft, which is lengthened in accordance with the increasing elevator shaft height during the construction phase. This means that a power supply to the construction phase elevator car that can be easily adapted to the current elevator shaft height can be implemented, which can also transmit the electrical power required to raise the construction phase elevator car and the protective platform, or, if necessary, to raise the construction phase elevator car and the combination of protective platform and mounting platform is required.

In einer weiteren möglichen Ausgestaltung des erfindungsgemässen Verfahrens wird während jedem Stillstand der selbstfahrenden Bauphase-Aufzugskabine des Bauphase-Aufzugssystems eine zwischen der Bauphase-Aufzugskabine und dem mindestens einen Führungsschienenstrang wirkende Haltebremse aktiviert, und bei mindestens einem Reibrad wird das zur Erzeugung von Antriebskraft vom zugeordneten Antriebsmotor auf das mindestens eine Reibrad übertragene Drehmoment zumindest reduziert.In a further possible embodiment of the method according to the invention, a holding brake acting between the construction phase elevator car and the at least one guide rail run is activated during each standstill of the self-propelled construction phase elevator car of the construction phase elevator system, and in the case of at least one friction wheel, this is used to generate driving force from the associated drive motor at least reduced torque transmitted to the at least one friction wheel.

Eine solche Ausführungsform hat den Vorteil, dass während des Stillstands der Bauphase-Aufzugskabine nicht die Reibräder die erforderliche vertikale Haltekraft aufbringen müssen. Sie müssen daher auch nicht entsprechend stark an die Führungsflächen des Führungsschienenstrangs angepresst werden. Dadurch kann bei den Reibrädern das Problem der Abplattung der Peripherie der Reibbeläge bei Stillstand weitgehend entschärft werden. Da jedes Reibrad dank der vorstehend beschriebenen Art seiner Anordnung in etwa proportional zu der zwischen ihm und der Führungsfläche übertragenen Antriebskraft an die Führungsfläche angepresst wird, ist es erforderlich, diese Antriebskraft bzw. das vom Antriebsmotor auf das Reibrad übertragene Drehmoment mindestens zu reduzieren.Such an embodiment has the advantage that the friction wheels do not have to apply the required vertical holding force while the elevator car during the construction phase is at a standstill. They therefore do not have to be pressed against the guide surfaces of the guide rail train with corresponding force. As a result, the problem of flattening of the periphery of the friction linings when the friction wheels are at a standstill can be largely alleviated. Since each friction wheel is pressed against the guide surface approximately proportionally to the drive force transmitted between it and the guide surface thanks to the type of arrangement described above, it is necessary to at least reduce this drive force or the torque transmitted from the drive motor to the friction wheel.

In einer weiteren möglichen Ausgestaltung des erfindungsgemässen Verfahrens werden als Primärteil des Antriebssystems zum Antreiben der Bauphase-Aufzugskabine ein Primärteil eines elektrischen Linearantriebs und als Sekundärteil des genannten Antriebssystems ein entlang des Aufzugsschachts fixierter Sekundärteil des genannten elektrischen Linearantriebs verwendet.In a further possible embodiment of the method according to the invention, a primary part of an electric linear drive is used as the primary part of the drive system for driving the construction phase elevator car and a secondary part of the named electric linear drive fixed along the elevator shaft is used as the secondary part of the named drive system.

Eine solche Ausgestaltung des erfindungsgemässen Verfahrens hat den Vorteil, dass der Antrieb der Bauphase-Aufzugskabine berührungs- und verschleissfrei realisiert, und die Traktionsfähigkeit des Antriebs nicht durch Verschmutzung beeinträchtigt werden kann.Such an embodiment of the method according to the invention has the advantage that the drive of the construction phase elevator car is realized without contact and without wear, and the Traction ability of the drive cannot be impaired by dirt.

In einer weiteren möglichen Ausgestaltung des erfindungsgemässen Verfahrens werden als Primärteil des Antriebssystems zum Antreiben der Bauphase-Aufzugskabine mindestens ein ein Zahnritzel antreibender und mittels Frequenzumrichter drehzahlgeregelter Elektromotor oder Hydraulikmotor, und als Sekundärteil des genannten Antriebssystems mindestens ein entlang des Aufzugsschachts an diesem fixierter Zahnstangenstrang verwendet.In a further possible embodiment of the method according to the invention, at least one electric motor or hydraulic motor driving a pinion and speed-controlled by means of a frequency converter is used as the primary part of the drive system for driving the construction phase elevator car, and at least one rack and pinion system fixed along the elevator shaft along the elevator shaft.

Eine solche Ausgestaltung des erfindungsgemässen Verfahrens hat den Vorteil, dass bei einem Zahnritzel-Zahnstangen-Antrieb die Antriebskraft formschlüssig übertragen wird und eine Haltebremse an der Bauphase-Aufzugskabine nicht zwingend erforderlich ist. Ausserdem sind für die Übertragung der gesamten Antriebskraft relativ wenige angetriebene Zahnritzel erforderlich. Mit der Drehzahlregelung mittels Frequenzumformer, bei welcher der Frequenzumformer entweder auf den mindestens ein Zahnritzel antreibenden Elektromotor oder auf einen Elektromotor wirkt, der die Drehzahl einer den Hydraulikmotor speisenden Hydraulikpumpe regelt, kann die Fahrgeschwindigkeit der Bauphase-Aufzugskabine stufenlos geregelt werden.Such an embodiment of the method according to the invention has the advantage that, in the case of a rack and pinion drive, the driving force is transmitted in a form-fitting manner and a holding brake on the construction-phase elevator car is not absolutely necessary. In addition, relatively few driven pinions are required for the transmission of the entire driving force. With speed control by means of a frequency converter, in which the frequency converter acts either on the electric motor driving at least one pinion or on an electric motor that controls the speed of a hydraulic pump that feeds the hydraulic motor, the travel speed of the elevator car during the construction phase can be continuously controlled.

Im Folgenden sind Ausführungsbeispiele der Erfindung anhand der beigefügten Zeichnungen erläutert. Es zeigen:

Fig. 1
einen Vertikalschnitt durch einen Aufzugsschacht mit einer zur Durchführung des erfindungsgemässen Verfahrens geeigneten selbstfahrenden Bauphase-Aufzugskabine mit Reibradantrieb als Antriebssystem und mit einer ersten Ausführungsform von Montagehilfseinrichtungen.
Fig. 2
einen Vertikalschnitt durch einen Aufzugsschacht mit einer zur Durchführung des erfindungsgemässen Verfahrens geeigneten selbstfahrenden Bauphase-Aufzugskabine mit Reibradantrieb als Antriebssystem und mit einer zweiten Ausführungsform von Montagehilfseinrichtungen.
Fig. 3A
eine Seitenansicht einer zur Durchführung des erfindungsgemässen Verfahrens geeigneten selbstfahrenden Bauphase-Aufzugskabine mit einer ersten Ausführungsform des Reibradantriebs.
Fig. 3B
eine Frontansicht der Bauphase-Aufzugskabine gemäss Fig. 3A.
Fig. 4A
eine Seitenansicht einer zur Durchführung des erfindungsgemässen Verfahrens geeigneten selbstfahrenden Bauphase-Aufzugskabine mit einer zweiten Ausführungsform des Reibradantriebs.
Fig. 4B
eine Frontansicht der Bauphase-Aufzugskabine gemäss Fig. 4A.
Fig. 5A
eine Seitenansicht einer zur Durchführung des erfindungsgemässen Verfahrens geeigneten selbstfahrenden Bauphase-Aufzugskabine mit einer dritten Ausführungsform des Reibradantriebs.
Fig. 5B
eine Frontansicht der Bauphase-Aufzugskabine gemäss Fig. 5A.
Fig. 6
eine Detailansicht einer vierten Ausführungsform des Reibradantriebs einer zur Durchführung des erfindungsgemässen Verfahrens geeigneten selbstfahrenden Bauphase-Aufzugskabine mit einem Schnitt durch den von der Detailansicht gezeigten Bereich.
Fig. 7
eine Seitenansicht einer zur Durchführung des erfindungsgemässen Verfahrens geeigneten selbstfahrenden Bauphase-Aufzugskabine mit einer weiteren Ausführungsform ihres Antriebssystems, sowie einen Schnitt durch den Bereich des Antriebssystems.
Fig. 8
eine Seitenansicht einer zur Durchführung des erfindungsgemässen Verfahrens geeigneten selbstfahrenden Bauphase-Aufzugskabine mit einer weiteren Ausführungsform ihres Antriebssystems, sowie einen Schnitt durch den Bereich des Antriebssystems.
Fig. 9
einen Vertikalschnitt durch eine nach dem erfindungsgemässen Verfahren erstellte finale Aufzugsanlage mit einer Aufzugskabine und einem Gegengewicht, wobei die Aufzugskabine und das Gegengewicht an flexiblen Tragmitteln hängen und über diese Tragmittel durch eine Antriebsmaschine angetrieben werden.
Exemplary embodiments of the invention are explained below with reference to the accompanying drawings. Show it:
1
a vertical section through an elevator shaft with a self-propelled construction phase elevator car suitable for carrying out the method according to the invention with a friction wheel drive as the drive system and with a first embodiment of assembly aids.
2
a vertical section through an elevator shaft with a self-propelled construction phase elevator car suitable for carrying out the method according to the invention with a friction wheel drive as the drive system and with a second embodiment of assembly aids.
Figure 3A
a side view of a self-propelled construction phase elevator car suitable for carrying out the method according to the invention with a first embodiment of the friction wheel drive.
Figure 3B
a front view of the construction phase elevator car according to FIG Figure 3A .
Figure 4A
a side view of a self-propelled construction phase elevator car suitable for carrying out the method according to the invention with a second embodiment of the friction wheel drive.
Figure 4B
a front view of the construction phase elevator car according to FIG Figure 4A .
Figure 5A
a side view of a self-propelled construction phase elevator car suitable for carrying out the method according to the invention with a third embodiment of the friction wheel drive.
Figure 5B
a front view of the construction phase elevator car according to FIG Figure 5A .
6
a detailed view of a fourth embodiment of the friction wheel drive of a self-propelled construction phase elevator car suitable for carrying out the method according to the invention, with a section through the area shown in the detailed view.
7
a side view of a self-propelled construction phase elevator car suitable for carrying out the method according to the invention with a further embodiment of its drive system, and a section through the area of the drive system.
8
a side view of a self-propelled construction phase elevator car suitable for carrying out the method according to the invention with a further embodiment of its drive system, and a section through the area of the drive system.
9
a vertical section through a final elevator system created according to the method according to the invention with an elevator car and a counterweight, the elevator car and the counterweight hanging on flexible suspension means and being driven by a drive machine via this suspension means.

Fig. 1 zeigt schematisch ein Bauphase-Aufzugssystem 3.1, das in einem Aufzugsschacht 1 eines sich in seiner Bauphase befindenden Gebäudes 2 installiert ist und eine Bauphase-Aufzugskabine 4 umfasst, deren nutzbare Hubhöhe schrittweise an eine zunehmende Aufzugsschachthöhe angepasst wird. Die Bauphase-Aufzugskabine 4 umfasst einen Kabinenrahmen 4.1 und einen im Kabinenrahmen gelagerten Kabinenkörper 4.2. Der Kabinenrahmen weist Kabinenführungsschuhe 4.1.1 auf, über welche die Bauphase-Aufzugskabine 4 an Führungsschienensträngen 5 geführt wird. Diese Führungsschienenstränge werden entsprechend dem Baufortschritt von Zeit zu Zeit oberhalb der Bauphase-Aufzugskabine nach oben verlängert und dienen nach Erreichen einer finalen Aufzugsschachthöhe auch zum Führen einer die Bauphase-Aufzugskabine 4 ersetzenden, finalen Aufzugskabine (nicht dargestellt) einer finalen Aufzugsanlage. Die Bauphase-Aufzugskabine 4 ist als selbstfahrende Aufzugskabine konzipiert und umfasst ein Antriebssystem 7, das vorzugsweise innerhalb des Kabinenrahmens 4.1 eingebaut ist. Die Bauphase-Aufzugskabine 4 kann mit unterschiedlichen Antriebssystemen ausgerüstet sein, wobei diese Antriebssysteme jeweils einen an der Bauphase-Aufzugskabine 4 angebrachten Primärteil und einen entlang des Fahrwegs der Bauphase-Aufzugskabine angebrachten Sekundärteil umfassen. In Fig. 1 ist der Primärteil des Antriebssystem 7 schematisch durch mehrere von (nicht dargestellten) Antriebsmotoren angetriebene Reibräder 8 dargestellt, die mit dem mindestens einen, den Sekundärteil bildenden Führungsschienenstrang 5 zusammenwirken, um die Bauphase-Aufzugskabine 4 innerhalb ihrer aktuell nutzbaren Hubhöhe aufwärts und abwärts zu bewegen. Die die Reibräder 8 antreibenden Antriebsmotoren können vorzugsweise in Form von Elektromotoren oder in Form von Hydraulikmotoren vorhanden sein. Elektromotoren werden vorzugsweise durch mindestens ein Frequenzumrichter-System gespeist, um eine Regulierung der Drehzahl der Elektromotoren zu ermöglichen. Damit wird erreicht, dass die Fahrgeschwindigkeit der Bauphase-Aufzugskabine 4 stufenlos geregelt werden kann, so dass jede Fahrgeschwindigkeit ansteuerbar ist, die zwischen einer Minimalgeschwindigkeit und einer Maximalgeschwindigkeit liegt. Dabei kommt die Minimalgeschwindigkeit beispielsweise zum Ansteuern von Anhaltepositionen oder zum handgesteuerten Fahren zum Anheben von Montagehilfseinrichtungen mittels der Bauphase-Aufzugskabine zur Anwendung, und die Maximalgeschwindigkeit kommt beispielsweise zum Betreiben eines Aufzugsbetriebs für Bauarbeiter und für Benutzer bzw. Bewohner der bereits erstellten Stockwerke zur Anwendung. Eine entsprechende Regelung der Drehzahl von Hydraulikmotoren kann entweder dadurch erfolgen, dass diese durch eine vorzugsweise auf der Bauphase-Aufzugskabine 4 installierte Hydraulikpumpe gespeist werden, deren Förderstrom bei konstanter Drehzahl elektrohydraulisch geregelt werden kann, oder dadurch, dass sie durch eine Hydraulikpumpe gespeist werden, die durch einen mittels Frequenzumrichtung drehzahlregelbaren Elektromotor angetrieben wird. 1 shows schematically a construction phase elevator system 3.1, which is installed in an elevator shaft 1 of a building 2 in its construction phase, and a construction phase elevator car 4 includes, the usable lifting height is gradually adapted to an increasing elevator shaft height. The construction phase elevator car 4 comprises a car frame 4.1 and a car body 4.2 mounted in the car frame. The car frame has car guide shoes 4.1.1, over which the construction phase elevator car 4 is guided on guide rail strands 5. These guide rail strands are extended upwards from time to time according to the construction progress above the construction phase elevator car and, after a final elevator shaft height has been reached, also serve to guide a final elevator car (not shown) of a final elevator system replacing the construction phase elevator car 4 . The construction phase elevator car 4 is designed as a self-propelled elevator car and includes a drive system 7, which is preferably installed within the car frame 4.1. The construction-phase elevator car 4 can be equipped with different drive systems, these drive systems each comprising a primary part attached to the construction-phase elevator car 4 and a secondary part attached along the route of the construction-phase elevator car. In 1 the primary part of the drive system 7 is shown schematically by several friction wheels 8 driven by drive motors (not shown), which interact with the at least one guide rail track 5 forming the secondary part in order to move the construction-phase elevator car 4 up and down within its currently usable lifting height. The drive motors driving the friction wheels 8 can preferably be present in the form of electric motors or in the form of hydraulic motors. Electric motors are preferably powered by at least one frequency converter system to allow regulation of the speed of the electric motors. What is thereby achieved is that the travel speed of the construction phase elevator car 4 can be continuously regulated, so that any travel speed that lies between a minimum speed and a maximum speed can be controlled. The minimum speed is used, for example, to control stopping positions or for manually controlled travel to lift assembly aids using the construction phase elevator car, and the maximum speed is used, for example, to operate an elevator for construction workers and for users or residents of the floors that have already been built. A corresponding control of the speed of hydraulic motors can be done either by being fed by a hydraulic pump preferably installed on the construction phase elevator car 4, the flow rate of which can be regulated electrohydraulically at a constant speed, or by being fed by a hydraulic pump which is driven by an electric motor that can be speed-controlled by means of frequency conversion.

Die Steuerung der Antriebsmotoren des Antriebssystems 7 der Bauphase-Aufzugskabine 4 kann wahlweise durch eine übliche Aufzugssteuerung (nicht dargestellt) oder mittels einer mobilen Handsteuerung 10 - vorzugsweise mit drahtloser Signalübertragung - erfolgen.The drive motors of the drive system 7 of the construction phase elevator car 4 can be controlled either by a conventional elevator control (not shown) or by means of a mobile manual control 10—preferably with wireless signal transmission.

Die Speisung der Elektromotoren des Antriebssystems der Bauphase-Aufzugskabine 4 kann über eine entlang des Aufzugsschachts 1 geführte Schleifleitung 11 erfolgen. Dabei kann ein auf der Bauphase-Aufzugskabine 4 angeordneter Frequenzumrichter 13 über die Schleifleitung 11 und entsprechende Schleifkontakte 12 mit Wechselstrom versorgt werden, wobei der Frequenzumrichter die die Reibräder 8 antreibenden Elektromotoren oder mindestens einen eine Hydraulikpumpe mit variabler Drehzahl antreibenden Elektromotor speist. Alternativ kann ein stationärer AC-DC-Wandler Gleichstrom in eine solche Schleifleitung einspeisen, der auf der Bauphase-Aufzugskabine mittels der Schleifkontakte abgegriffen wird und über mindestens einen Wechselrichter mit steuerbarer Ausgangsfrequenz den drehzahlvariablen Elektromotoren des Antriebssystems zugeführt wird. Falls die Reibräder 8 durch Hydraulikmotoren angetrieben werden, welche durch eine Hydraulikpumpe mit bei konstanter Drehzahl regelbarem Förderstrom gespeist werden, ist keine Frequenzumrichtung erforderlich.The electric motors of the drive system of the construction phase elevator car 4 can be fed via a conductor line 11 routed along the elevator shaft 1 . A frequency converter 13 arranged on the construction phase elevator car 4 can be supplied with alternating current via the conductor line 11 and corresponding sliding contacts 12, with the frequency converter feeding the electric motors driving the friction wheels 8 or at least one electric motor driving a hydraulic pump with variable speed. Alternatively, a stationary AC-DC converter can feed direct current into such a conductor line, which is tapped on the construction phase elevator car by means of the sliding contacts and fed to the variable-speed electric motors of the drive system via at least one inverter with a controllable output frequency. If the friction wheels 8 are driven by hydraulic motors, which are fed by a hydraulic pump with a flow rate that can be regulated at a constant speed, no frequency conversion is required.

Um den vorstehend bereits erwähnten Aufzugsbetrieb für Bauarbeiter und Stockwerksbenutzer zu ermöglichen, ist die Bauphase-Aufzugskabine 4 mit einem von der Aufzugssteuerung gesteuerten Kabinentürsystem 4.2.1 ausgerüstet, welches mit Schachttüren 20 zusammenwirkt, die jeweils vor einer Anpassung der nutzbaren Hubhöhe der Bauphase-Aufzugskabine 4 entlang des zusätzlichen Fahrbereichs im Aufzugsschacht 1 installiert werden.In order to enable the above-mentioned elevator operation for construction workers and floor users, the construction phase elevator car 4 is equipped with a car door system 4.2.1 controlled by the elevator control system, which interacts with shaft doors 20, which in each case before an adjustment of the usable lifting height of the construction phase elevator car 4 be installed along the additional travel area in elevator shaft 1.

Bei dem in Fig. 1 dargestellten Bauphase-Aufzugssystem 3.1 ist oberhalb der aktuell nutzbaren Hubhöhe der Bauphase-Aufzugskabine 4 eine Montageplattform 22 angeordnet, die entlang eines oberen Abschnitts des Aufzugsschachts 1 aufwärts und abwärts bewegt werden kann. Von einer solchen Montageplattform 22 aus wird oberhalb der aktuell nutzbaren Hubhöhe der Bauphase-Aufzugskabine 4 der mindestens eine Führungsschienenstrang 5 verlängert, wobei aber auch andere Aufzugskomponenten im Aufzugsschacht 1 montiert werden können.At the in 1 In the illustrated construction phase elevator system 3.1, a mounting platform 22 is arranged above the currently usable lifting height of the construction phase elevator car 4, which assembly platform can be moved up and down along an upper section of the elevator shaft 1. From such a mounting platform 22 , the at least one guide rail run 5 is extended above the currently usable lifting height of the elevator car 4 during the construction phase, although other elevator components can also be installed in the elevator shaft 1 .

Im obersten Bereich des aktuell vorhandenen Aufzugsschachts 1 ist eine erste Schutzplattform 25 temporär fixiert. Diese hat einerseits die Aufgabe, Personen und Einrichtungen im Aufzugsschacht 1 - insbesondere in der genannten Montageplattform 22 - vor Gegenständen zu schützen, die bei den am Gebäude 2 stattfindenden Bauarbeiten herunterfallen können. Andererseits kann die erste Schutzplattform 25 als Tragelement für eine Hebevorrichtung 24 dienen, mit welcher die Montageplattform 22 angehoben oder abgesenkt werden kann. Bei der in Fig. 1 gezeigten Ausführungsform des Bauphase-Aufzugssystems muss die erste Schutzplattform 25 mit der daran aufgehängten Montageplattform 22 von Zeit zu Zeit mittels eines Baukrans auf ein dem Baufortschritt entsprechend höheres Niveau im aktuell obersten Bereich des Aufzugsschachts angehoben werden, wo die erste Schutzplattform 25 anschliessend temporär fixiert wird.A first protective platform 25 is temporarily fixed in the uppermost area of the currently existing elevator shaft 1 . On the one hand, this has the task of people and facilities in the elevator shaft 1 - in particular in the assembly platform mentioned 22 - to protect against objects that may fall during the construction work taking place on Building 2. On the other hand, the first protective platform 25 can serve as a support element for a lifting device 24 with which the assembly platform 22 can be raised or lowered. At the in 1 In the embodiment of the construction phase elevator system shown, the first protective platform 25 with the assembly platform 22 suspended from it must be raised from time to time by means of a construction crane to a higher level corresponding to the construction progress in the currently uppermost area of the elevator shaft, where the first protective platform 25 is then temporarily fixed.

Unterhalb der Montageplattform 22 ist in Fig. 1 eine temporär im Aufzugsschacht 1 fixierte zweite Schutzplattform 23 dargestellt, welche Personen und Einrichtungen im Aufzugsschacht 1 vor Gegenständen schützt, die von der genannten Montageplattform 22 herunterfallen.Below the assembly platform 22 is in 1 a second protective platform 23 temporarily fixed in the elevator shaft 1, which protects people and equipment in the elevator shaft 1 from objects falling off the assembly platform 22 mentioned.

Bei dem in Fig. 1 dargestellten Bauphase-Aufzugssystem 3.1 sind die selbstfahrende Bauphase-Aufzugskabine 4 und deren Antriebssystem 7 so dimensioniert, dass zumindest die genannte zweite Schutzplattform 23 mittels der selbstfahrenden Bauphase-Aufzugskabine 4 im Aufzugsschacht 1 anhebbar ist, nachdem zwecks Erhöhung der nutzbaren Hubhöhe der Bauphase-Aufzugskabine die erste Schutzplattform 25 mit der an dieser hängenden Montageplattform 22 durch den Baukran angehoben wurde. Der Kabinenrahmen 4.1 der Bauphase-Aufzugskabine 4 ist zu diesem Zweck mit Stützelementen 4.1.2 ausgebildet, die vorzugsweise mit Dämpfungselementen 4.1.3 versehen sind.At the in 1 In the construction phase elevator system 3.1 illustrated, the self-propelled construction phase elevator car 4 and its drive system 7 are dimensioned such that at least the second protective platform 23 mentioned can be raised in the elevator shaft 1 by means of the self-propelled construction phase elevator car 4 after the first protective platform 25 was lifted by the construction crane with the assembly platform 22 hanging on this. For this purpose, the car frame 4.1 of the construction phase elevator car 4 is designed with support elements 4.1.2, which are preferably provided with damping elements 4.1.3.

Bei einer weiteren möglichen Ausführungsform des Bauphase-Aufzugssystems 3.1 können sowohl die zweite Schutzplattform 23 als auch die Montageplattform 22 gemeinsam durch die Bauphase-Aufzugskabine 4 auf jeweils ein für bestimmte Montagearbeiten gewünschtes Niveau angehoben, dort temporär im Aufzugsschacht 1 fixiert oder durch die Bauphase-Aufzugskabine temporär gehalten werden. Da in diesem Fall keine Hebevorrichtung zum Anheben der Montageplattform 22 vorhanden ist, setzt diese Ausführungsform voraus, dass die Bauphase-Aufzugskabine neben ihrer Funktion, den genannten Aufzugsbetrieb für Bauarbeiter und Stockwerksbenutzer zu gewährleisten, ausreichend häufig und ausreichend lange für das Anheben und gegebenenfalls für das Halten der Montageplattform 22 zur Verfügung stehen kann.In a further possible embodiment of the construction phase elevator system 3.1, both the second protective platform 23 and the assembly platform 22 can be raised together by the construction phase elevator car 4 to a level desired for specific assembly work, fixed there temporarily in the elevator shaft 1 or by the construction phase elevator car be held temporarily. Since there is no lifting device for lifting the assembly platform 22 in this case, this embodiment assumes that the construction phase elevator car, in addition to its function of ensuring the mentioned elevator operation for construction workers and floor users, is used sufficiently frequently and for a sufficiently long time for the lifting and, if necessary, for the Holding the mounting platform 22 may be available.

Fig. 2 zeigt ein Bauphase-Aufzugssystem 3.2, das sich von dem Bauphase-Aufzugssystem 3.1 gemäss Fig. 1 dadurch unterscheidet, dass kein Baukran erforderlich ist, um die erste Schutzplattform 25 und die Montageplattform 22 anzuheben. Vor jeder Vergrösserung der Hubhöhe der Bauphase-Aufzugskabine 4 werden die genannten drei Komponenten - erste Schutzplattform 25, Montageplattform 22 und zweite Schutzplattform 23 - mit Hilfe der mit einem entsprechend starken Antriebssystem ausgerüsteten, selbstfahrenden Bauphase-Aufzugskabine 4 angehoben, wonach die erste Schutzplattform 25 in einer höheren Position oberhalb des aktuell obersten Fahrbereichs der Bauphase-Aufzugskabine wieder fixiert wird. Zwischen der Montageplattform 22 und der ersten Schutzplattform 25 wird mindestens ein Distanzelement 26 so fixiert, dass vor dem Anheben der drei Komponenten zwischen der ersten Schutzplattform 25 und der Montageplattform 22 eine vorgesehene Distanz vorhanden ist. In dem jeweils nach einem Anheben der genannten drei Komponenten innerhalb dieser Distanz liegenden Abschnitt des Aufzugsschachts 1 können die zum Verlängern des mindestens einen Führungsschienenstrangs 5 und zum Montieren weiterer Aufzugskomponenten dienende Montageplattform 22 und die zweite Schutzplattform 23 mit Hilfe der Hebevorrichtung 24 bewegt werden. Vorteilhafterweise ist das mindestens eine Distanzelement 26 an seinem unteren Ende auf der Montageplattform 22 befestigt, und das mindestens eine Distanzelement 26 kann beim Bewegen der Montageplattform mittels der Hebevorrichtung 24 gegen die erste Schutzplattform 25 durch mindestens eine dem mindestens einen Distanzelement zugeordnete Öffnung 27 in der ersten Schutzplattform 25 hindurchgleiten. Vor einem erneuten Anheben der genannten drei Komponenten, um die Hubhöhe der Bauphase-Aufzugskabine zu vergrössern, werden die Montageplattform 22 und das mindestens eine Distanzelement 26 mittels der Hebevorrichtung 24 so weit abgesenkt, dass sich das obere Ende des Distanzelements gerade noch innerhalb der genannten Öffnung 27 in der ersten Schutzplattform 25 befindet. Danach wird das aufwärtsgerichtete Hindurchgleiten des mindestens einen Distanzelements 26 durch die erste Schutzplattform 25 mittels einer Blockiereinrichtung - beispielsweise mittels eines Steckbolzens 28 - verhindert, so dass bei einem erneuten Anheben der Montageplattform 22 durch die selbstfahrende Bauphase-Aufzugskabine 4 auch die erste Schutzplattform 25 mit der vorgesehenen Distanz zur Montageplattform 22 angehoben wird. 2 shows a construction phase elevator system 3.2, which differs from the construction phase elevator system 3.1 1 differs in that no construction crane is required is to raise the first protection platform 25 and the mounting platform 22. Before each increase in the lifting height of the construction phase elevator car 4, the three components mentioned - first protective platform 25, assembly platform 22 and second protective platform 23 - are raised with the aid of the self-propelled construction phase elevator car 4, which is equipped with a correspondingly powerful drive system, after which the first protective platform 25 in fixed again at a higher position above the currently uppermost travel area of the construction phase elevator car. At least one spacer element 26 is fixed between the assembly platform 22 and the first protective platform 25 in such a way that there is a specified distance between the first protective platform 25 and the assembly platform 22 before the three components are lifted. In the section of the elevator shaft 1 that lies within this distance after the three components mentioned have been raised, the assembly platform 22 used to lengthen the at least one guide rail run 5 and to assemble further elevator components and the second protective platform 23 can be moved with the aid of the lifting device 24. The lower end of the at least one spacer element 26 is advantageously fastened to the assembly platform 22, and when the assembly platform is moved by means of the lifting device 24 towards the first protective platform 25, the at least one spacer element 26 can be pushed through at least one opening 27 in the first protective platform 25, which is assigned to the at least one spacer element Protective platform 25 slide through. Before the three components mentioned are raised again in order to increase the lifting height of the construction phase elevator car, the assembly platform 22 and the at least one spacer element 26 are lowered by means of the lifting device 24 to such an extent that the upper end of the spacer element is just inside the opening mentioned 27 is located in the first protective platform 25. Thereafter, the upward sliding of the at least one spacer element 26 through the first protective platform 25 is prevented by means of a blocking device - for example by means of a locking pin 28 - so that when the assembly platform 22 is raised again by the self-propelled construction phase elevator car 4, the first protective platform 25 with the intended distance to the mounting platform 22 is raised.

In Fig. 2 ist ausserdem gezeigt, dass die zweite Schutzplattform 23 und die Montageplattform 22 vorteilhafterweise eine mittels der selbstfahrenden Bauphase-Aufzugskabine 4 anhebbare Einheit bilden können, indem die in Fig. 1 gezeigte zweite Schutzplattform 23 zu der in Fig. 2 dargestellten Montageplattform 22 ausgebildet wird, von welcher Montageplattform 22 aus zumindest der mindestens eine Führungsschienenstrang 5 nach oben verlängert werden kann. Eine solche Kombination von Schutzplattform und Montageplattform ist jedoch nicht zwingend erforderlich.In 2 is also shown that the second protective platform 23 and the assembly platform 22 can advantageously form a unit that can be raised by means of the self-propelled construction phase elevator car 4 by the in 1 shown second protection platform 23 to the in 2 assembly platform 22 shown is formed, from which assembly platform 22 at least the at least one guide rail strand 5 can be extended upwards. Such a combination of However, the protective platform and assembly platform are not absolutely necessary.

Fig. 3A zeigt eine zur Verwendung in dem erfindungsgemässen Verfahren geeignete Bauphase-Aufzugskabine 4 in einer Seitenansicht, und Fig. 3B zeigt diese Bauphase-Aufzugskabine in einer Frontansicht. Die Bauphase-Aufzugskabine 4 umfasst einen Kabinenrahmen 4.1 mit Kabinenführungsschuhen 4.1.1 und einen im Kabinenrahmen gelagerten Kabinenkörper 4.2, der für die Aufnahme von Passagieren und Gegenständen 4 vorgesehen ist. Der Kabinenrahmen 4.1 und damit auch der Kabinenkörper 4.2, sind über Kabinenführungsschuhe 4.1.1 an Führungsschienensträngen 5 geführt, welche Führungsschienenstränge vorzugsweise an Wänden des Aufzugsschachts befestigt sind und - wie vorstehend erläutert - den Sekundärteil des Antriebssystems 7.1 der Bauphase-Aufzugskabine 4 bilden und später zum Führen der finalen Aufzugskabine einer finalen Aufzugsanlage dienen. Figure 3A shows a side view of a construction phase elevator car 4 suitable for use in the method according to the invention, and FIG Figure 3B shows this construction phase elevator car in a front view. The construction phase elevator car 4 comprises a car frame 4.1 with car guide shoes 4.1.1 and a car body 4.2 which is mounted in the car frame and is intended for accommodating passengers and objects 4. The car frame 4.1 and thus also the car body 4.2 are guided via car guide shoes 4.1.1 on guide rail strands 5, which guide rail strands are preferably attached to walls of the elevator shaft and - as explained above - form the secondary part of the drive system 7.1 of the construction phase elevator car 4 and later for Serve guiding the final elevator car of a final elevator system.

Das in den Fig. 3A und 3B dargestellte Antriebssystem 7.1 umfasst mehrere angetriebene Reibräder 8, die mit den Führungsschienensträngen 5 zusammenwirken, um die selbstfahrende Bauphase-Aufzugskabine 4 entlang eines Aufzugsschachts eines sich in seiner Bauphase befindenden Gebäudes zu bewegen. Die Reibräder sind innerhalb des Kabinenrahmens 4.1 der Bauphase-Aufzugskabine 4 jeweils oberhalb und unterhalb des Kabinenkörpers 4.2 angeordnet, wobei mindestens je ein Reibrad auf jede der einander gegenüber liegenden Führungsflächen 5.1 der Führungsschienenstränge 5 wirkt. Falls zwischen dem Kabinenkörper und dem Kabinenrahmen ausreichend Platz für die Antriebsmotoren zur Verfügung steht, können die Reibräder auch seitlich des Kabinenkörpers angebracht werden.That in the Figures 3A and 3B The illustrated drive system 7.1 comprises a plurality of driven friction wheels 8 which interact with the guide rail strands 5 in order to move the self-propelled construction phase elevator car 4 along an elevator shaft of a building which is in its construction phase. The friction wheels are arranged inside the car frame 4.1 of the construction phase elevator car 4 above and below the car body 4.2, with at least one friction wheel acting on each of the opposite guide surfaces 5.1 of the guide rail strands 5. If there is sufficient space for the drive motors between the cabin body and the cabin frame, the friction wheels can also be attached to the side of the cabin body.

Bei der hier gezeigten Ausführungsform des Antriebssystems 7 wird jedes der Reibräder 8 durch einen zugeordneten Elektromotor 30.1 angetrieben, wobei jeweils das Reibrad und der zugeordnete Elektromotor vorzugsweise auf derselben Achse (koaxial) angeordnet sind. Jedes der Reibräder 8 ist koaxial mit dem Rotor des zugeordneten Elektromotors 30.1 drehbar an einem Ende eines Schwenkhebels 32 gelagert. Der jeweils einem der Reibräder zugeordnete Schwenkhebel 32 ist an seinem anderen Ende auf einer am Kabinenrahmen 4.1 der Bauphase-Aufzugskabine 4 fixierten Schwenkachse 33 derart schwenkbar gelagert, dass das Zentrum des Reibrads 8 unterhalb der Achslinie der Schwenkachse 33 des Schwenkhebels 32 liegt, wenn das Reibrad 8 an die ihm zugeordnete Führungsfläche 5.1 des mindestens einen Führungsschienenstrangs angepresst wird. Die Anordnung von Schwenkhebel 32 und Reibrad 8 erfolgt dabei derart, dass eine sich von der Schwenkachse 33 zum Berührungspunkt zwischen Reibrad 8 und Führungsfläche 5.1 erstreckende Gerade vorzugsweise um einen Winkel von 15° bis 30° gegenüber einer Normalen zur Führungsfläche 5.1 geneigt ist. Durch eine vorgespannte Druckfeder 34 wird der Schwenkhebel 32 so belastet, dass das am Ende des Schwenkhebels gelagerte Reibrad 8 mit einer Mindest-Anpresskraft gegen die ihm zugeordnete Führungsfläche 5.1 gepresst wird. Mit der beschriebenen Anordnung der Reibräder und der Schwenkhebel wird erreicht, dass sich beim Antreiben der Bauphase-Aufzugskabine 4 in Aufwärtsrichtung zwischen den Reibrädern 8 und den zugeordneten Führungsflächen 5.1 des Führungsschienenstrangs selbsttätig Anpresskräfte einstellen, die in etwa proportional zu der Antriebskraft ist, die von der Führungsfläche auf das Reibrad übertragenen wird. Damit wird erreicht, dass die Reibräder nicht dauernd so stark angepresst werden müssen, wie dies zum Anheben der mit Maximallast beladenen Bauphase-Aufzugskabine 4 und der vorstehend erläuterten weiteren Komponenten erforderlich wäre. Das Risiko einer Abplattung der Peripherie der kunststoffbeschichteten Reibräder infolge einer lang dauernden Anpressung mit der maximal erforderlichen Anpresskraft wird damit erheblich reduziert.In the embodiment of the drive system 7 shown here, each of the friction wheels 8 is driven by an associated electric motor 30.1, with the friction wheel and the associated electric motor preferably being arranged on the same axis (coaxially). Each of the friction wheels 8 is rotatably mounted coaxially with the rotor of the associated electric motor 30.1 at one end of a pivoted lever 32. The pivot lever 32 assigned to one of the friction wheels is pivoted at its other end on a pivot axis 33 fixed to the car frame 4.1 of the construction phase elevator car 4 in such a way that the center of the friction wheel 8 lies below the axis line of the pivot axis 33 of the pivot lever 32 when the friction wheel 8 is pressed against the guide surface 5.1 assigned to it of the at least one guide rail strand. The pivoting lever 32 and the friction wheel 8 are arranged in such a way that a straight line extending from the pivot axis 33 to the point of contact between the friction wheel 8 and the guide surface 5.1 is preferably at an angle of 15° is inclined to 30 ° to a normal to the guide surface 5.1. The pivoting lever 32 is loaded by a prestressed compression spring 34 in such a way that the friction wheel 8 mounted at the end of the pivoting lever is pressed with a minimum contact pressure against the guide surface 5.1 assigned to it. With the described arrangement of the friction wheels and the pivoted levers, when driving the construction phase elevator car 4 in the upward direction, contact pressure forces are automatically set between the friction wheels 8 and the associated guide surfaces 5.1 of the guide rail run, which are approximately proportional to the driving force that is generated by the Guide surface is transferred to the friction wheel. The result of this is that the friction wheels do not have to be constantly pressed as strongly as would be necessary to lift the elevator car 4 loaded with the maximum load during the construction phase and the other components explained above. The risk of the periphery of the plastic-coated friction wheels flattening out as a result of long-lasting contact with the maximum required contact force is thus considerably reduced.

Eine zusätzliche Massnahme zum Verhindern einer Abplattung der Kunststoff-Reibbeläge der Reibräder 8 besteht darin, dass während jedes Stillstands der Bauphase-Aufzugskabine 4 eine Entlastung der Reibräder 8 stattfindet, indem eine zwischen der Bauphase-Aufzugskabine und dem Aufzugsschacht - vorzugsweise zwischen der Bauphase-Aufzugskabine und dem mindestens einen Führungsschienenstrang 5 - wirkende Haltebremse 37 aktiviert wird und das von den Antriebsmotoren 30 auf die Reibräder übertragene Drehmoment zumindest reduziert wird. Als Haltebremse kann eine nur für diesen Zweck dienende Bremse oder eine steuerbare Fangbremse verwendet werden.An additional measure to prevent flattening of the plastic friction linings of the friction wheels 8 is that during each standstill of the construction phase elevator car 4, the friction wheels 8 are relieved by a pressure between the construction phase elevator car and the elevator shaft—preferably between the construction phase elevator car and the at least one guide rail track 5 - acting holding brake 37 is activated and the torque transmitted from the drive motors 30 to the friction wheels is at least reduced. A brake used only for this purpose or a controllable safety brake can be used as a holding brake.

Zum Regeln der Fahrgeschwindigkeit werden die Elektromotoren 30.1 über einen Frequenzumrichter 13 gespeist, der von einer (nicht dargestellten) Aufzugssteuerung gesteuert wird.To control the driving speed, the electric motors 30.1 are fed via a frequency converter 13, which is controlled by an elevator control (not shown).

Wie aus den Fig. 3A, 3B und dem gezeigten Detail X erkennbar ist, sind die Durchmesser der Elektromotoren 30.1 wesentlich grösser als die Durchmesser der durch die Elektromotoren angetriebenen Reibräder 8. Dies ist erforderlich, damit die Elektromotoren ausreichend hohe Drehmomente zum Antreiben der Reibräder generieren können. Damit für die auf beiden Seiten des Führungsschienenstrangs 5 angeordneten Elektromotoren 30.1 ausreichend Einbauraum zur Verfügung steht, sind relativ grosse vertikale Abstände zwischen den einzelnen Reibradanordnungen erforderlich. Dies hat zur Folge, dass die Einbauräume für das Antriebssystem 7.1 und damit der gesamte Kabinenrahmen 4.1 entsprechend hoch werden.How from the Figures 3A, 3B and the detail X shown, the diameters of the electric motors 30.1 are significantly larger than the diameters of the friction wheels 8 driven by the electric motors. This is necessary so that the electric motors can generate sufficiently high torques to drive the friction wheels. So that there is sufficient installation space for the electric motors 30.1 arranged on both sides of the guide rail track 5, relatively large vertical distances are required between the individual friction wheel arrangements. This has the consequence that the installation spaces for the drive system 7.1 and thus the entire Cab frame 4.1 are correspondingly high.

Die Fig. 4A und 4B zeigen eine selbstfahrende Bauphase-Aufzugskabine 4, die der in den Fig. 3A und 3B gezeigten Bauphase-Aufzugskabine in Funktion und Aussehen sehr ähnlich ist. Dargestellt ist ein Antriebssystem 7.2 mit angetriebenen Reibrädern 8, das die Verwendung von Elektromotoren ermöglicht, deren Durchmesser beispielsweise dem drei- bis vierfachen Reibraddurchmesser entsprechen, ohne dass ihr vertikaler Abstand voneinander grösser als die Motordurchmesser sein muss. Die Höhe der Einbauräume für das Antriebssystem 7.2 können damit minimiert werden. Erreicht wird dies dadurch, dass die Elektromotoren 30.2 der auf die eine Führungsfläche 5.1 eines Führungsschienenstrangs 5 wirkenden Reibräder 8 gegenüber den Elektromotoren der auf die andere Führungsfläche 5.1 wirkenden Reibräder in Achsrichtung der Elektromotoren um etwa eine Motorlänge versetzt angeordnet werden. Obwohl der Abstand zwischen zwei solchen Elektromotoren geringer als deren Durchmesser ist, wird mit dieser Massnahme verhindert, dass die Einbauräume dieser Elektromotoren sich überschneiden. Dies ist insbesondere aus Fig. 4B gut erkennbar, wo auch gezeigt ist, dass die Elektromotoren 30.2 vorzugsweise relativ kurz gebaut sind und relativ grosse Durchmesser haben. Mit grossen Motordurchmessern sind die erforderlichen Antriebsdrehmomente für die Reibräder 8 einfacher zu erzeugen.the Figures 4A and 4B show a self-propelled construction phase elevator car 4, which in the Figures 3A and 3B shown construction phase elevator car is very similar in function and appearance. A drive system 7.2 with driven friction wheels 8 is shown, which enables the use of electric motors whose diameters correspond, for example, to three to four times the friction wheel diameter, without their vertical distance from one another having to be greater than the motor diameter. The height of the installation spaces for the drive system 7.2 can thus be minimized. This is achieved in that the electric motors 30.2 of the friction wheels 8 acting on one guide surface 5.1 of a guide rail run 5 are arranged offset by about one motor length in the axial direction of the electric motors in relation to the electric motors of the friction wheels acting on the other guide surface 5.1. Although the distance between two such electric motors is less than their diameter, this measure prevents the installation spaces of these electric motors from overlapping. This particular is from Figure 4B clearly recognizable, where it is also shown that the electric motors 30.2 are preferably built relatively short and have relatively large diameters. The drive torques required for the friction wheels 8 are easier to generate with large motor diameters.

In den Fig. 5A und 5B ist eine selbstfahrende Bauphase-Aufzugskabine 4 dargestellt, die den in den Fig. 3A, 3B und 4A, 4B gezeigten Bauphase-Aufzugskabinen in Funktion und Aussehen sehr ähnlich ist. Die Höhe der Einbauräume für das Antriebssystem 7.3 und damit die Gesamthöhe der Bauphase-Aufzugskabine wird bei dieser Ausführungsform jedoch dadurch reduziert, dass kleinere Antriebsmotoren für die Reibräder 8 verwendet werden. Die vertikalen Abstände zwischen den einzelnen Reibradanordnungen sind hier nicht mehr durch die Einbauräume für die Antriebsmotoren bestimmt. Erreicht wird dies durch Verwendung von Hydraulikmotoren 30.3 anstelle von Elektromotoren zum Antreiben der Reibräder 8. Bezogen auf das Gesamt-Motorvolumen sind Hydraulikmotoren in der Lage, vielfach höhere Drehmomente zu generieren als Elektromotoren. Mit Hydraulikmotoren lassen sich daher auch Reibräder mit grösseren Durchmessern antreiben, die eine höhere Anpresskraft zulassen und daher eine höhere Traktionskraft übertragen können.In the Figures 5A and 5B is a self-propelled construction phase elevator car 4 shown in the Figures 3A, 3B and 4A, 4B is very similar in function and appearance to the construction phase elevator cars shown. In this embodiment, however, the height of the installation spaces for the drive system 7.3 and thus the overall height of the construction phase elevator car is reduced by the fact that smaller drive motors are used for the friction wheels 8 . The vertical distances between the individual friction wheel arrangements are no longer determined by the installation spaces for the drive motors. This is achieved by using hydraulic motors 30.3 instead of electric motors to drive the friction wheels 8. Based on the total motor volume, hydraulic motors are able to generate much higher torques than electric motors. Hydraulic motors can therefore also be used to drive friction wheels with larger diameters, which allow a higher contact pressure and can therefore transmit a higher traction force.

Hydraulische Antriebe erfordern mindestens ein Hydraulikaggregat 36, das vorzugsweise eine elektrisch angetriebene Hydraulikpumpe umfasst. Für die Speisung der die Reibräder 8 drehzahlvariabel antreibenden Hydraulikmotoren 30.3 kann beispielsweise eine durch einen Elektromotor mit konstanter Drehzahl angetriebene Hydraulikpumpe mit elektrohydraulisch regelbarem Fördervolumen oder eine durch einen mittels Frequenzumrichter drehzahlgeregelten Elektromotor angetriebene Hydraulikpumpe mit konstantem Fördervolumen zur Anwendung kommen. Die Hydraulikmotoren werden dabei vorzugsweise in hydraulischer Parallelschaltung betrieben. Serieschaltung ist jedoch ebenfalls möglich. Die Stromzufuhr zum Hydraulikaggregat 36 erfolgt vorzugsweise über eine Schleifleitung, wie dies für die Speisung der Elektromotoren im Zusammenhang mit den Fig. 1 und 2 erläutert wurde.Hydraulic drives require at least one hydraulic unit 36, which preferably includes an electrically driven hydraulic pump. For the supply of the friction wheels 8 speed variable driving hydraulic motors 30.3, for example, by a a hydraulic pump driven by an electric motor at a constant speed with an electro-hydraulically controllable delivery volume or a hydraulic pump with a constant delivery volume driven by an electric motor whose speed is controlled by a frequency converter. The hydraulic motors are preferably operated in a hydraulic parallel connection. However, series connection is also possible. The power supply to the hydraulic unit 36 is preferably via a conductor line, as is the case for the supply of electric motors in connection with the Figures 1 and 2 was explained.

Auch die Bauphase-Aufzugskabine 4 gemäss den Fig. 5A und 5B wird während eines Stillstands durch Haltebremsen 37 im Aufzugsschacht arretiert, wobei die von den Hydraulikmotoren 30.3 auf die Reibräder 8 ausgeübten Antriebsdrehmomente zumindest reduziert werden.The construction phase elevator car 4 according to the Figures 5A and 5B is locked during standstill by holding brakes 37 in the elevator shaft, the drive torques exerted by the hydraulic motors 30.3 on the friction wheels 8 being at least reduced.

Fig. 6 zeigt einen unterhalb des Kabinenkörpers 4.2 einer selbstfahrenden Bauphase-Aufzugskabine angeordneten Teil eines Antriebssystems 7.4 dieser Bauphase-Aufzugskabine. Gezeigt ist eine Anordnung einer Gruppe von mehreren auf Schwenkhebeln 32.1-32.6 drehbar gelagerten und mittels Druckfedern 34.1-34.6 an einen Führungsschienenstrang 5 gepressten Reibrädern 8.1-8.6, welche Anordnung bereits vorstehend im Zusammenhang mit der Beschreibung zu den Fig. 3A und 3B erläutert wurde. Im Unterschied zu dem in den Fig. 3A, 3B, 4A, 4B und 5A, 5B gezeigten Antriebssystem ist hier jedoch nicht jedes der Reibräder 8.1 - 8.6 einzeln durch jeweils einen dem Reibrad zugeordneten Antriebsmotor angetrieben, sondern die Reibräder 8.1-8.6 werden von einem der Gruppe von Reibrädern zugeordneten gemeinsamen Antriebsmotor 30.4 über ein Zahnradgetriebe 38 mit zwei gegenläufig drehenden Antriebskettenrädern 38.1, 38.2 und über ein mechanisches Getriebe in Form einer Kettengetriebeanordnung 40 angetrieben. Als gemeinsamer Antriebsmotor kann beispielsweise ein drehzahlregelbarer Elektromotor oder ein drehzahlregelbarer Hydraulikmotor verwendet werden. Anstelle der Kettengetriebeanordnung 40 sind auch andere Getriebearten anwendbar, beispielsweise Riemengetriebe, vorzugsweise Zahnriemengetriebe, Zahnradgetriebe, Kegelrad-Welle-Getriebe oder Kombinationen solcher Getriebe. 6 shows a part of a drive system 7.4 of this construction phase elevator car arranged below the car body 4.2 of a self-propelled construction phase elevator car. Shown is an arrangement of a group of several friction wheels 8.1-8.6 rotatably mounted on pivoting levers 32.1-32.6 and pressed by means of compression springs 34.1-34.6 on a guide rail track 5, which arrangement has already been described above in connection with the Figures 3A and 3B was explained. In contrast to that in the Figures 3A, 3B , 4A, 4B and 5A, 5B In the drive system shown, however, not each of the friction wheels 8.1 - 8.6 is driven individually by a drive motor assigned to the friction wheel, but the friction wheels 8.1 - 8.6 are driven by a common drive motor 30.4 assigned to the group of friction wheels via a gear train 38 with two counter-rotating drive sprockets 38.1, 38.2 and driven via a mechanical transmission in the form of a chain transmission arrangement 40. A speed-controllable electric motor or a speed-controllable hydraulic motor, for example, can be used as a common drive motor. Instead of the chain gear arrangement 40, other types of gears can also be used, for example belt gears, preferably toothed belt gears, toothed gears, bevel gears and shaft gears or combinations of such gears.

Der auf der linken Seite des Antriebssystems 7.4 dargestellte Teil der Kettengetriebeanordnung 40 umfasst einen ersten Kettenstrang 40. 1, der die Drehbewegung vom Antriebskettenrad 38.1 des Zahnradgetriebes 38 zu einem auf der feststehenden Schwenkachse des obersten Schwenkhebels 32.1 gelagerten Dreifach-Kettenrad 40.5 überträgt. Von diesem Dreifach-Kettenrad 40.5 aus wird die Drehbewegung einerseits mittels eines zweiten Kettenstrangs 40.2 zu einem auf der Drehachse des Reibrads 8.1 fixierten Kettenrad und damit auf das Reibrad 8.1 übertragen. Andererseits wird die Drehbewegung vom Dreifach-Kettenrad 40.5 aus mittels eines dritten Kettenstrangs 40.3 auf ein darunter angeordnetes, auf der feststehenden Schwenkachse des mittleren Schwenkhebels 32.2 gelagertes Dreifach-Kettenrad 40.6 übertragen. Von diesem Dreifach-Kettenrad 40.6 aus wird die Drehbewegung einerseits mittels eines vierten Kettenstrangs 40.4 zu einem auf der Drehachse des Reibrads 8.2 fixierten Kettenrad und damit auf das Reibrad 8.2 übertragen. Andererseits wird die Drehbewegung vom Dreifach-Kettenrad 40.6 aus mittels eines fünften Kettenstrangs 40.5 auf ein darunter angeordnetes, auf der feststehenden Schwenkachse des untersten Schwenkhebels 32.3 gelagertes Dreifach-Kettenrad 40.7 übertragen. Von diesem Dreifach-Kettenrad 40.7 aus wird die Drehbewegung mittels eines sechsten Kettenstrangs 40.6 zu einem auf der Drehachse des untersten Reibrads 8.2 fixierten Kettenrad und damit auf das Reibrad 8.2 übertragen.The part of the chain gear arrangement 40 shown on the left side of the drive system 7.4 comprises a first chain strand 40.1, which transmits the rotational movement from the drive chain wheel 38.1 of the gear mechanism 38 to a triple chain wheel 40.5 mounted on the fixed pivot axis of the top pivot lever 32.1. From this triple sprocket 40.5, the rotational movement is on the one hand by means of a second chain strand 40.2 to a chain wheel fixed on the axis of rotation of the friction wheel 8.1 and thus to the friction wheel 8.1. On the other hand, the rotational movement is transmitted from the triple chain wheel 40.5 by means of a third chain strand 40.3 to a triple chain wheel 40.6 arranged underneath and mounted on the fixed pivot axis of the central pivot lever 32.2. From this triple chain wheel 40.6, the rotational movement is transmitted on the one hand by means of a fourth chain strand 40.4 to a chain wheel fixed on the axis of rotation of the friction wheel 8.2 and thus to the friction wheel 8.2. On the other hand, the rotational movement is transmitted from the triple chain wheel 40.6 by means of a fifth chain strand 40.5 to a triple chain wheel 40.7 arranged underneath and mounted on the fixed pivot axis of the lowest pivot lever 32.3. From this triple chain wheel 40.7, the rotational movement is transmitted by means of a sixth chain strand 40.6 to a chain wheel fixed on the axis of rotation of the lowest friction wheel 8.2 and thus to the friction wheel 8.2.

Der auf der rechten Seite des Antriebssystems 7.4 dargestellte Teil der Kettengetriebeanordnung 40 ist im Wesentlichen symmetrisch zum vorstehend beschriebenen, auf der linken Seite des Antriebssystems 7 dargestellten Teil des Kettengetriebes 40 angeordnet und hat dieselben Funktionen und Wirkungen.The part of the chain transmission arrangement 40 shown on the right-hand side of the drive system 7.4 is arranged essentially symmetrically to the part of the chain transmission 40 described above and shown on the left-hand side of the drive system 7 and has the same functions and effects.

Fig. 7 zeigt eine weitere mögliche Ausführungsform einer zur Verwendung in dem erfindungsgemässen Verfahren geeigneten, selbstfahrenden Bauphase-Aufzugskabine. Diese Bauphase-Aufzugskabine 54 umfasst einen Kabinenrahmen 54.1 sowie einen im Kabinenrahmen gelagerten Kabinenkörper 54.2 mit einem Kabinentürsystem 54.2.1. Der Kabinenrahmen 54.1 und damit auch der Kabinenkörper 54.2, sind über Kabinenführungsschuhe 54.1.1 an Führungsschienensträngen 5 geführt, welche Führungsschienenstränge vorzugsweise an Wänden eines Aufzugsschachts befestigt sind. Als Antriebssystem 57 für die Bauphase-Aufzugskabine 54 dient mindestens ein elektrischer Linearmotor, vorzugsweise ein Reluktanz-Linearmotor, welcher Linearmotor mindestens einen am Kabinenrahmen 54.1 befestigten Primärteil 57.1 sowie mindestens einen sich entlang des Fahrwegs der Bauphase-Aufzugskabine 54 erstreckenden, am Aufzugsschacht fixierten Sekundärteil 57.2 umfasst. In der in Fig. 8 dargestellten Ausführungsform ist die Bauphase-Aufzugskabine 54 mit einem Antriebssystem 57 ausgerüstet, das auf zwei Seiten der Bauphase-Aufzugskabine 54 je einen Reluktanz-Linearmotor mit je einem Primärteil 57.1 und je einem Sekundärteil 57.2 umfasst. Jeder Primärteil 57.1 enthält auf zwei Seiten des zugeordneten Sekundärteils angeordnete Reihen von elektrisch ansteuerbaren Elektromagneten, die hier nicht dargestellt sind. Beim Reluktanz-Linearmotor ist der Sekundärteil 57.2 eine Schiene aus weichmagnetischem Material, welche auf beiden den Elektromagneten des Primärteils 57.1 zugewandten Seiten in regelmässigen Abständen vorspringende Bereiche 57.2.1 aufweist. Bei geeigneter elektrischer Ansteuerung der Elektromagnete, welche Ansteuerung allgemein bekannt ist, resultieren zwischen jeweils zwei benachbarten, umgekehrt gepolten Elektromagneten dann maximale Magnetflüsse, wenn der vorhandene magnetische Widerstand am geringsten ist, d. h., wenn sich die vorspringenden Bereiche 57.2.1 des Sekundärteils etwa im Zentrum des Magnetflusses zwischen jeweils zwei Elektromagneten befinden. Die Magnetflüsse erzeugen Kräfte, die zu bewirken versuchen, den magnetischen Widerstand (Reluktanz) für die Magnetflüsse zu minimieren, was zur Folge hat, dass die wie Pole wirkenden vorspringenden Bereiche 57.2.1 des Sekundärteils 57.2 zur Mitte zwischen zwei benachbarten, momentan maximal bestromten Elektromagneten gezogen werden. Mehrere Elektromagnetpaare, deren maximale Bestromung bzw. Magnetfluss gegenseitig zeitlich versetzt auftritt, bewirken auf diese Weise eine zum Antreiben der selbstfahrenden Bauphase-Aufzugskabine 54 erforderliche Antriebskraft. 7 shows another possible embodiment of a self-propelled construction phase elevator car suitable for use in the method according to the invention. This construction phase elevator car 54 comprises a car frame 54.1 and a car body 54.2 mounted in the car frame with a car door system 54.2.1. The car frame 54.1 and thus also the car body 54.2 are guided via car guide shoes 54.1.1 on guide rail tracks 5, which guide rail tracks are preferably fastened to the walls of an elevator shaft. At least one electric linear motor, preferably a reluctance linear motor, serves as the drive system 57 for the construction phase elevator car 54, which linear motor has at least one primary part 57.1 attached to the car frame 54.1 and at least one secondary part 57.2, which extends along the route of the construction phase elevator car 54 and is fixed to the elevator shaft includes. in the in 8 In the illustrated embodiment, the construction phase elevator car 54 is equipped with a drive system 57, which comprises a reluctance linear motor on two sides of the construction phase elevator car 54, each with a primary part 57.1 and a secondary part 57.2. Each primary part 57.1 contains rows of electrically controllable electromagnets which are arranged on two sides of the associated secondary part and are not shown here. In the case of the reluctance linear motor, the secondary part 57.2 is a rail made of soft-magnetic Material which has protruding areas 57.2.1 at regular intervals on both sides facing the electromagnets of the primary part 57.1. With suitable electrical control of the electromagnets, which control is generally known, maximum magnetic fluxes result between two adjacent electromagnets of opposite polarity when the existing magnetic resistance is lowest, ie when the protruding areas 57.2.1 of the secondary part are approximately in the center of the magnetic flux between two electromagnets. The magnetic fluxes generate forces that attempt to minimize the magnetic resistance (reluctance) for the magnetic fluxes, with the result that the protruding areas 57.2.1 of the secondary part 57.2, which act like poles, are positioned in the middle between two adjacent electromagnets that are currently maximally energized to be pulled. In this way, several pairs of electromagnets, whose maximum energization or magnetic flux occurs at different times, bring about the driving force required to drive the self-propelled construction-phase elevator car 54 .

Grundsätzlich sind alle bekannten Linearmotor-Prinzipien als Antriebssystem für eine selbstfahrende Bauphase-Aufzugskabine anwendbar, beispielsweise auch Linearmotoren mit einer Vielzahl von entlang des Sekundärteils angeordneten Permanentmagneten als Gegenpole zu im Primärteil mit wechselnder Stromstärke angesteuerten Elektromagneten. Bei selbstfahrenden Bauphase-Aufzugskabinen mit grosser nutzbarer Hubhöhe sind Reluktanz-Linearmotoren jedoch mit den geringsten Kosten realisierbar.In principle, all known linear motor principles can be used as a drive system for a self-propelled construction phase elevator car, for example linear motors with a large number of permanent magnets arranged along the secondary part as opposite poles to the electromagnets controlled with changing current strength in the primary part. However, in the case of self-propelled construction phase elevator cars with a large usable lifting height, reluctance linear motors can be implemented with the lowest costs.

Zum Ansteuern solcher elektrischer Linearmotoren werden vorteilhafterweise Frequenzumrichter verwendet, deren Wirkungsweise allgemein bekannt ist. Ein solcher Frequenzumrichter 13 ist in Fig. 7 unterhalb des Kabinenkörpers 54.2 am Kabinenrahmen 54.1 angebracht. Eine zwischen der Bauphase-Aufzugskabine 54 und dem Führungsschienenstrang 5 wirkende Haltebremse 37 arretiert auch bei dieser Ausführungsform 3 64die Bauphase-Aufzugskabine während ihres Stillstands, so dass der Linearmotor des Antriebssystems 17 nicht dauernd aktiviert sein muss und sich nicht unzulässig stark erwärmt.Frequency converters, the mode of operation of which is generally known, are advantageously used to drive such electric linear motors. Such a frequency converter 13 is in 7 attached below the cabin body 54.2 on the cabin frame 54.1. A holding brake 37 acting between the construction phase elevator car 54 and the guide rail track 5 also arrests the construction phase elevator car in this embodiment 3 64 during its standstill, so that the linear motor of the drive system 17 does not have to be permanently activated and does not overheat to an impermissible extent.

Fig. 8 zeigt eine weitere mögliche Ausführungsform einer zur Verwendung in dem erfindungsgemässen Verfahren geeigneten, selbstfahrenden Bauphase-Aufzugskabine. Diese Bauphase-Aufzugskabine 64 umfasst einen Kabinenrahmen 64.1 sowie einen im Kabinenrahmen gelagerten Kabinenkörper 64.2. Auch dieser Kabinenkörper ist mit einem Kabinentürsystem 24.2.1 versehen, das mit Schachttüren auf den Stockwerken des sich in seiner Bauphase befindenden Gebäudes zusammenwirkt. Der Kabinenrahmen 64.1 und damit auch der Kabinenkörper 64.2, sind über Kabinenführungsschuhe 64.1.1 an Führungsschienensträngen 5 geführt, welche Führungsschienenstränge vorzugsweise an Wänden eines Aufzugsschachts befestigt sind. Als Antriebssystem 67 für die Bauphase-Aufzugskabine 64 dient ein Zahnritzel-Zahnstange-System, das als Primärteil 67.1 mindestens ein durch einen Elektromotor oder Elektro-Getriebemotor 67.1.2 angetriebenes Zahnritzel 67.1.1 und als Sekundärteil 67.2 mindesten eine sich entlang des Fahrwegs der Bauphase-Aufzugskabine 64 erstreckende, während der Bauphase des Gebäudes temporär im Aufzugsschacht fixierte Zahnstange 67.2.1 umfasst. In der in Fig. 8 dargestellten Ausführungsform ist die Bauphase-Aufzugskabine 64 mit einem Antriebssystem 67 ausgerüstet, das auf zwei Seiten der Bauphase-Aufzugskabine 64 je eine im Aufzugsschacht fixierte Zahnstange 67.2.1 umfasst, wobei jede der Zahnstangen auf zwei gegenüberliegenden Seiten eine Verzahnung aufweist. Mit den beiden Zahnstangen 67.2.1 wirken insgesamt vier Paare von angetriebenen Zahnritzeln 67.1.1 zusammen, um die selbstfahrende Bauphase-Aufzugskabine 64 im Aufzugsschacht aufwärts und abwärts zu bewegen. Vorzugsweise wird jedes der vier Paare von Zahnritzeln 67.1.1 durch je einen im Kabinenrahmen 64.1 installierten Elektro-Getriebemotor 67.1.2 angetrieben, der vorzugsweise zwei nebeneinander angeordnete, über ein Verteilgetriebe angetriebene Abtriebswellen 67.1.3 aufweist. Jede der beiden Abtriebswellen ist über eine drehelastische Kupplung 67.1.4 mit jeweils einer Welle des zugeordneten Zahnritzels 67.1.1 verbunden, das im Kabinenrahmen 64.1 gelagert ist. Diese Ausführungsform ermöglicht auch bei nahe beieinanderliegenden Achsen eines Paares von Zahnritzeln die Verwendung von Normmotoren mit ausreichender Leistung. In einer alternativen Ausführungsform des Zahnritzel-Zahnstange-Systems können sämtliche Zahnritzel 67.1.1 durch einen jeweils einem der Zahnritzel zugeordneten Elektromotor oder Elektro-Getriebemotor angetrieben werden. Bei beiden erwähnten Ausführungsformen ist durch die Verwendung von Asynchronmotoren gewährleistet, dass alle Zahnritzel jederzeit mit gleich hohem Drehmoment angetrieben werden. Es versteht sich von selbst, dass eine solche Bauphase-Aufzugskabine 64 auch mit mehr als vier Paaren von Zahnritzeln und zugehörigen Antriebseinrichtungen ausgerüstet werden kann. Dies kann insbesondere dann erforderlich sein, wenn die Bauphase-Aufzugskabine zusätzlich zu ihrem Eigengewicht Montagehilfseinrichtungen anzuheben hat, wie dies vorstehend in der Beschreibung zu den Fig. 1 und 2 beschrieben ist. 8 shows another possible embodiment of a self-propelled construction phase elevator car suitable for use in the method according to the invention. This construction phase elevator car 64 comprises a car frame 64.1 and a car body 64.2 mounted in the car frame. This cabin body is also equipped with a Car door system 24.2.1 provided, which interacts with landing doors on the floors of the building under construction. The car frame 64.1 and thus also the car body 64.2 are guided via car guide shoes 64.1.1 on guide rail tracks 5, which guide rail tracks are preferably fastened to the walls of an elevator shaft. A drive system 67 for the construction phase elevator car 64 is a rack and pinion system, which has at least one toothed pinion 67.1.1 driven by an electric motor or electric geared motor 67.1.2 as the primary part 67.1 and at least one as the secondary part 67.2 along the route of the construction phase includes a toothed rack 67.2.1 that extends into the elevator car 64 and is temporarily fixed in the elevator shaft during the construction phase of the building. in the in 8 In the illustrated embodiment, the construction phase elevator car 64 is equipped with a drive system 67, which comprises a toothed rack 67.2.1 fixed in the elevator shaft on two sides of the construction phase elevator car 64, each of the toothed racks having teeth on two opposite sides. A total of four pairs of driven pinions 67.1.1 work together with the two toothed racks 67.2.1 in order to move the self-propelled construction phase elevator car 64 up and down in the elevator shaft. Each of the four pairs of pinions 67.1.1 is preferably driven by an electric geared motor 67.1.2 installed in the cabin frame 64.1, which preferably has two output shafts 67.1.3 arranged next to one another and driven via a distribution gear. Each of the two output shafts is connected via a torsionally flexible coupling 67.1.4 to a respective shaft of the assigned pinion 67.1.1, which is mounted in the cabin frame 64.1. This embodiment allows the use of standard motors with sufficient power even when the axes of a pair of pinions are close together. In an alternative embodiment of the rack and pinion system, all of the pinions 67.1.1 can be driven by an electric motor or electric geared motor that is assigned to one of the pinions. In both of the mentioned embodiments, the use of asynchronous motors ensures that all pinions are driven with the same high torque at all times. It goes without saying that such a construction phase elevator car 64 can also be equipped with more than four pairs of pinions and associated drive devices. This may be necessary in particular if the construction phase elevator car has to lift assembly aids in addition to its own weight, as described above in the description of the Figures 1 and 2 is described.

Fig. 9 zeigt einen Vertikalschnitt durch eine nach dem erfindungsgemässen Verfahren im Aufzugsschacht 1 erstellte finale Aufzugsanlage 70. Diese umfasst eine Aufzugskabine 70.1 und ein Gegengewicht 70.2, welche an flexiblen Tragmitteln 70.3 hängen und über diese Tragmittel durch eine stationäre Antriebsmaschine 70.4 mit einer Treibscheibe 70.5 angetrieben werden. Die Antriebsmaschine 70.4 ist vorzugsweise in einem oberhalb der Aufzugsschacht 1 angeordneten Maschinenraum 70.8 installiert. Nachdem der Aufzugsschacht 1 seine finale Höhe erreicht hatte, ist die während der Bauphase verwendete selbstfahrende Bauphase-Aufzugskabine (4; 54; 64, Fig. 1-7) demontiert worden. Anschliessend sind die Aufzugskabine 70.1, das Gegengewicht 70.2, die Antriebsmaschine 70.4 und die Tragmittel 70.3 der finalen Aufzugsanlage 70 montiert worden, wobei die Aufzugskabine 70.1 an denselben Führungsschienen 5 geführt ist, an denen auch die Bauphase-Aufzugskabine geführt war. Mit dem Bezugszeichen 70.6 sind Ausgleichszugmittel - beispielsweise Ausgleichsseile oder Ausgleichsketten - bezeichnet, mit denen eine finale Aufzugsanlage 70 vorzugsweise ausgestattet ist. Solche Ausgleichszugmittel 70.6 sind vorzugsweise um eine hier nicht sichtbare, im Aufzugsschachtfuss angeordneten Spannrolle geführt. Sie können jedoch auch zwischen der Aufzugskabine 70.1 und dem Gegengewicht 70.2 frei im Aufzugsschacht 1 hängen. 9 shows a vertical section through a final elevator system 70 created in the elevator shaft 1 according to the method according to the invention. This includes an elevator car 70.1 and a counterweight 70.2, which are suspended from flexible suspension means 70.3 and are driven via this suspension means by a stationary drive machine 70.4 with a traction sheave 70.5. The drive machine 70.4 is preferably installed in a machine room 70.8 arranged above the elevator shaft 1. After the elevator shaft 1 reached its final height, the construction phase self-propelled elevator car (4; 54; 64, Figures 1-7 ) has been dismantled. The elevator car 70.1, the counterweight 70.2, the drive machine 70.4 and the suspension means 70.3 of the final elevator system 70 have then been assembled, with the elevator car 70.1 being guided on the same guide rails 5 on which the construction phase elevator car was also guided. Reference numeral 70.6 designates compensating traction means—for example compensating ropes or compensating chains—with which a final elevator installation 70 is preferably equipped. Such compensating traction means 70.6 are preferably guided around a tension roller, which is not visible here and is arranged in the foot of the elevator shaft. However, they can also hang freely in the elevator shaft 1 between the elevator car 70.1 and the counterweight 70.2.

Claims (14)

  1. Method for erecting a final elevator installation in an elevator shaft (1) of a building (2), in which method a construction phase elevator system (3.1; 3.2) that comprises a self-propelled construction phase elevator cabin (4; 54; 64), the usable lifting height of which can be adapted to an increasing elevator shaft height, is installed in the elevator shaft, which becomes taller with increasing building height, for the duration of the construction phase of the building, wherein at least one guide rail strand (5) is installed for guiding the construction phase elevator cabin (4; 54; 64) along its travel path in the elevator shaft (1), wherein a drive system (7; 7.1-7.4; 57; 67) is assembled for driving the construction phase elevator cabin (4; 54; 64), which drive system comprises a primary part attached to the construction phase elevator cabin and a secondary part attached along the travel path of the construction phase elevator cabin, wherein the guide rail strand (5) and the secondary part of the drive system (7; 7.1; 7.2; 7.3; 7.4; 57; 67) gradually extend upward in accordance with the increasing elevator shaft height during the construction phase, wherein the self-propelled construction phase elevator cabin (4; 54; 64) is used both for transporting persons and/or material for the construction of the building (2) and as a passenger and freight elevator for floors that are already being used as residential or business premises during the construction phase of the building,
    characterized in that,
    after the elevator shaft (1) has reached its final height, instead of the construction phase elevator system (3.1; 3.2), a final elevator system is installed in the elevator shaft (1) which is modified with respect to the construction phase elevator system (3.1; 3.2) and in which a drive system of a elevator cabin is modified with respect to the drive system (7; 7.1-7.4; 57; 67) of the construction phase elevator cabin (4; 54; 64).
  2. Method according to claim 1, characterized in that
    the drive system of the elevator cabin of the final elevator system is based on a different operating principle than the drive system (7; 7.1-7.4; 57; 67) of the construction phase elevator cabin (4; 54; 64).
  3. Method according to either claim 1 or claim 2, characterized in that
    a final elevator cabin of the final elevator system is guided on the same at least one guide rail strand (5) on which the construction phase elevator cabin (4; 54; 64) was guided.
  4. Method according to any of claims 1 to 3, characterized in that an assembly platform (22) and/or a protective platform (23) is/are temporarily installed above a current travel path upper limit of the construction phase elevator cabin (4; 54; 64), wherein, during the adaptation of the usable lifting height of the construction phase elevator cabin to an increasing elevator shaft height, the assembly platform (22) and/or the protective platform (23) can be lifted to a higher elevator shaft level by means of the self-propelled construction phase elevator cabin (4; 54; 64).
  5. Method according to claim 4, characterized in that
    the protective platform (23), which can be lifted by means of the self-propelled construction phase elevator cabin, is configured as an assembly platform (22) from which at least said at least one guide rail strand (5) is extended upward.
  6. Method according to any of claims 1 to 5, characterized in that the primary part of the drive system (7; 7.1; 7.2; 7.3; 7.4) assembled for driving the construction phase elevator cabin (4) comprises a plurality of driven friction wheels (8), wherein the construction phase elevator cabin (4) is driven by an interaction between the driven friction wheels (8) and the secondary part of the drive system (7; 7.1; 7.2; 7.3; 7.4) which is attached along the travel path of the construction phase elevator cabin (4).
  7. Method according to claim 6, characterized in that
    the at least one guide rail strand (5) is used as a secondary part of the drive system (7; 7.1; 7.2; 7.3; 7.4) of the self-propelled construction phase elevator cabin (4).
  8. Method according to claim 7, characterized in that,
    in order to drive the construction phase elevator cabin (4), at least two driven friction wheels (8) are pressed against each of two mutually opposite guide surfaces (5.1) of the at least one guide rail strand (5) in each case, wherein the friction wheels (8) acting on the same guide surface in each case are arranged spaced apart from one another in the direction of the guide rail strand.
  9. Method according to either claim 7 or claim 8, characterized in that at least one of the friction wheels (8) is rotatably mounted at one end of a pivot lever (32), which pivot lever is pivotably mounted at its other end on a pivot shaft (33) that is fixed to the construction phase elevator cabin (4), wherein the pivot shaft (33) of the pivot lever (32) is arranged such that the center of the friction wheel (8) lies below the pivot shaft (33) when the periphery of the friction wheel is placed against the guide surface (5.1) of the at least one guide rail strand (5) which is associated with said friction wheel, wherein the at least one friction wheel (8) is preferably always pressed against a guide surface (5.1) of the at least one guide rail strand (5) with a minimum pressing force by the effect of a spring element (34).
  10. Method according to any of claims 7 to 9, characterized in that the at least one friction wheel (8) is driven by an electric motor (30.1; 30.2) that is exclusively associated with this friction wheel or by a hydraulic motor (30.3) that is exclusively associated with this friction wheel (8), wherein the at least one friction wheel (8) and the associated electric motor (30.1; 30.2) or the associated hydraulic motor (30.3) are preferably arranged on the same shaft, wherein, in a drive system (7.2) in which at least two driven friction wheels (8) are pressed against each of two mutually opposite guide surfaces (5.1) of the at least one guide rail strand (5) in each case and each friction wheel (8) and its associated electric motor (30.2) are arranged on the same shaft, the electric motors (30.2) of the friction wheels (8) acting on the one guide surface (5.1) of a guide rail strand (5) are arranged so as to be offset relative to the electric motors (30.2) of the friction wheels (8) acting on the other guide surface (5.1) by approximately one motor length of an electric motor (30.2) in the axial direction of the friction wheels and electric motors.
  11. Method according to any of claims 7 to 10, characterized in that, in a drive system (7.4) of a construction phase elevator cabin (4), at least one group of a plurality of friction wheels (8.1-8.6) is driven by a single electric motor (30.4) associated with the group or by a single hydraulic motor associated with the group, wherein a torque transmission from the electric motor (30.4) or from the hydraulic motor to the friction wheels (8.1-8.6) of the group is achieved by means of a mechanical transmission (40), wherein a chain transmission (40.1-40.6), a belt transmission, a gear train or a combination of such transmissions is preferably used as the mechanical transmission (40).
  12. Method according to either claim 10 or claim 11, characterized in that each of the electric motors (30.1; 30.2) driving at least one friction wheel (8) and/or an electric motor that drives a hydraulic pump that feeds at least one hydraulic motor (30.3) driving a friction wheel (8) is fed by at least one frequency converter (13) controlled by a controller of the construction phase elevator system (3.1; 3.2).
  13. Method according to any of claims 7 to 12, characterized in that, during a standstill of the self-propelled construction phase elevator cabin (4), a holding brake 37 acting between the construction phase elevator cabin and the at least one guide rail strand (5) is activated and, in the case of at least one friction wheel (8), the torque transmitted from the associated drive motor (30.1-30.3) to the at least one friction wheel (8) in order to generate drive force is at least reduced.
  14. Method according to any of claims 1 to 13, characterized in that a primary part (57.1) of an electric linear drive is used as the primary part of the drive system (57) for driving the construction phase elevator cabin (54) and a secondary part (57.2) of said electric linear drive, which is fixed along the elevator shaft, is used as the secondary part of said drive system (57).
EP19728088.6A 2018-06-14 2019-06-06 Method for operating a lift facility Active EP3807205B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP18177874 2018-06-14
PCT/EP2019/064824 WO2019238530A1 (en) 2018-06-14 2019-06-06 Method for erecting a lift facility

Publications (2)

Publication Number Publication Date
EP3807205A1 EP3807205A1 (en) 2021-04-21
EP3807205B1 true EP3807205B1 (en) 2022-05-18

Family

ID=62684639

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19728088.6A Active EP3807205B1 (en) 2018-06-14 2019-06-06 Method for operating a lift facility

Country Status (11)

Country Link
US (1) US11939187B2 (en)
EP (1) EP3807205B1 (en)
KR (1) KR102692140B1 (en)
CN (1) CN112188990B (en)
AU (1) AU2019284944B2 (en)
BR (1) BR112020018020A2 (en)
CA (1) CA3092640A1 (en)
PL (1) PL3807205T3 (en)
SG (1) SG11202008865QA (en)
WO (1) WO2019238530A1 (en)
ZA (1) ZA202005229B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3691985B1 (en) * 2017-10-06 2021-07-07 Inventio AG Method for constructing a lift assembly with increasing usable lifting height
AU2020403849B2 (en) * 2019-12-18 2024-06-06 Inventio Ag Method for erecting a lift installation
EP3838828B1 (en) * 2019-12-19 2023-02-08 KONE Corporation Elevator arrangement and method
WO2022002701A1 (en) * 2020-06-30 2022-01-06 Inventio Ag Transportation system
US20220033229A1 (en) * 2020-07-28 2022-02-03 Otis Elevator Company Beam climber assembly pod for guide rail and guide beam installation
CN116249668A (en) 2020-10-01 2023-06-09 因温特奥股份公司 Elevator apparatus
AU2023247750A1 (en) 2022-03-30 2024-10-10 Inventio Ag Platform for an elevator system for a building which is under construction
WO2024141252A1 (en) 2022-12-29 2024-07-04 Inventio Ag Platform for an elevator system for a building which is under construction

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2217296A (en) * 1988-03-21 1989-10-25 Rapid Rise N V Lift building construction
AU625660B2 (en) * 1989-06-16 1992-07-16 Boral Johns Perry Industries Pty Ltd Lift shaft construction
HU213428B (en) 1992-10-27 1997-06-30 Inventio Ag Self propelled device mainly for passanger carriing
JPH0733363A (en) 1993-06-25 1995-02-03 Hitachi Building Syst Eng & Service Co Ltd Working floor device for elevator
JPH07237847A (en) 1994-03-01 1995-09-12 Otis Elevator Co Installation method of elevator
DE19634288A1 (en) 1996-08-24 1998-02-26 Metallgesellschaft Ag Reactor for burning or gasifying fine-grained coal
FI101783B1 (en) * 1997-03-07 1998-08-31 Kone Corp Procedure and apparatus for lift installation
DE69810558T2 (en) 1997-09-26 2003-11-20 Kabushiki Kaisha Toshiba, Kawasaki Inserting a drive unit in an elevator shaft
CN1096407C (en) 1999-07-16 2002-12-18 周治梅 Elevator for multistoried building
IL184194A (en) * 2006-07-25 2012-02-29 Inventio Ag Method of modernizing a lift installation
FI118644B (en) * 2006-11-17 2008-01-31 Kone Corp Elevator installing method for use during construction of tall building, involves dismounting machine room of elevator provided with room, and converting elevator into elevator without machine room by placing hoisting machine
FI20070694A0 (en) * 2007-09-11 2007-09-11 Kone Corp Elevator arrangement
KR100930021B1 (en) 2008-02-01 2009-12-07 주식회사 세명엘리베이터 Up / down retractable elevator door device
FI20100223A0 (en) * 2010-05-28 2010-05-28 Kone Corp Procedure and lift arrangement
FI20106273A (en) 2010-12-01 2012-06-02 Kone Corp Elevator system and procedure
DE102012104993A1 (en) 2012-06-11 2013-12-12 Thyssenkrupp Elevator Ag Method and assembly system for mounting elevator components
EP2873638A1 (en) 2013-11-14 2015-05-20 Inventio AG Elevator drive
US9884744B2 (en) * 2013-12-05 2018-02-06 Otis Elevator Company Ropeless high-rise elevator installation approach
EP3188997A4 (en) * 2014-09-01 2018-04-11 KONE Corporation Method and arrangement for installing an elevator
CN107207208B (en) 2015-02-05 2020-05-15 奥的斯电梯公司 Vehicle and method for elevator system installation
EP3085659B1 (en) * 2015-04-23 2017-12-06 KONE Corporation An arrangement and a method for measuring the position of an installation platform in an elevator shaft
EP3085657B1 (en) * 2015-04-23 2017-08-23 KONE Corporation Arrangement and method for aligning guide rails in an elevator shaft
EP3353107A4 (en) * 2015-09-25 2019-06-26 KONE Corporation Method for installing an elevator in the construction phase of a building
ES2748227T3 (en) * 2015-11-19 2020-03-16 Inventio Ag Procedure for determining information on elevator components housed in an elevator shaft and elevator installation
WO2017089855A1 (en) * 2015-11-25 2017-06-01 Otis Elevator Company Machine mounting structure for elevator system
EP3390263B1 (en) * 2015-12-14 2020-03-25 Inventio AG Method for constructing a lift facility
SG11201808460WA (en) * 2016-04-20 2018-11-29 Inventio Ag Method and assembly device for carrying out an installation process in an elevator shaft of an elevator system
CN106006303B (en) 2016-07-12 2018-08-24 天力博达科技有限公司 Interior architecture building hoist
US11167956B2 (en) * 2016-11-24 2021-11-09 Inventio Ag Method for mounting and alignment device for aligning a guide rail of an elevator system
US11186464B2 (en) * 2017-02-08 2021-11-30 Inventio Ag Method for fixing a rail bracket of an elevator system, and elevator system
EP3645443B1 (en) * 2017-06-26 2021-04-21 Inventio AG Elevator system
US11851303B2 (en) * 2017-07-12 2023-12-26 Safe Rack Llc Elevating cage apparatus with alternative powered or manual input
WO2019063277A1 (en) * 2017-09-27 2019-04-04 Inventio Ag Locating system and method for determining a current position in a lift shaft of a lift system
EP3691985B1 (en) * 2017-10-06 2021-07-07 Inventio AG Method for constructing a lift assembly with increasing usable lifting height
CN109205445B (en) * 2018-11-23 2019-08-02 燕山大学 It is a kind of for install cage guide from climbing robot

Also Published As

Publication number Publication date
US11939187B2 (en) 2024-03-26
CN112188990B (en) 2022-08-23
CN112188990A (en) 2021-01-05
KR102692140B1 (en) 2024-08-05
EP3807205A1 (en) 2021-04-21
WO2019238530A1 (en) 2019-12-19
KR20210020863A (en) 2021-02-24
ZA202005229B (en) 2022-01-26
PL3807205T3 (en) 2022-07-25
SG11202008865QA (en) 2020-10-29
US20210206602A1 (en) 2021-07-08
AU2019284944A1 (en) 2020-12-24
BR112020018020A2 (en) 2020-12-22
AU2019284944B2 (en) 2022-06-02
CA3092640A1 (en) 2019-12-19

Similar Documents

Publication Publication Date Title
EP3807205B1 (en) Method for operating a lift facility
EP2331444B1 (en) Tractive device for an elevator system
EP3898490B1 (en) Method for operating a construction site device, and construction site device
EP2210849B1 (en) Double chain hoist assembly
WO2019068469A1 (en) Method for constructing an elevator system having increasing usable lifting height
EP2398729B1 (en) Elevator system having a multi-deck vehicle
EP2082983B1 (en) Lift assembly
EP3478621B1 (en) Method for constructing a lift assembly with an adaptable usable lifting height
EP3668810B1 (en) Elevator system
EP1693331A1 (en) Elevator system with several shafts and with elevator cars that can be coupled and uncoupled from the selected drive system.
DE202018105169U1 (en) Movable passenger lift
EP4077193A1 (en) Method for erecting a lift installation
EP4222097B1 (en) Elevator system
EP2497739A1 (en) Lift
EP1566358B1 (en) Machine room-less traction sheave elevator
EP3931141B1 (en) Elevator system
DE10200874A1 (en) Lift for people and or freight has cage driven by drive unit with drive wheel, power transmission unit, chain with links and shaft
WO2018091597A1 (en) Method for constructing an elevator system having an adaptable usable lifting height
EP2468674A1 (en) Lift facility with double decker
EP3705443A1 (en) Lift system with balanced traction means
EP4344430B1 (en) Machine roomless elevator system
DE3826929C1 (en) Staircase lift for wheelchairs
WO2024156467A1 (en) Machine roomless lift system having a drive on the lift car
EP4406900A1 (en) Method for mounting a lift assembly in a lift shaft without a frame
EP3235770B1 (en) Method for retrofitting an elevator and corresponding elevator

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200827

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220119

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019004423

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1493052

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220615

REG Reference to a national code

Ref country code: FI

Ref legal event code: FGE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: INVENTIO AG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220919

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220818

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220819

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220630

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019004423

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

26N No opposition filed

Effective date: 20230221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220606

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230702

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20240102

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20190606

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240618

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240627

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240625

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240625

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20240527

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20240524

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240701

Year of fee payment: 6