EP3802520A1 - Composition for organic electronic devices - Google Patents
Composition for organic electronic devicesInfo
- Publication number
- EP3802520A1 EP3802520A1 EP19729458.0A EP19729458A EP3802520A1 EP 3802520 A1 EP3802520 A1 EP 3802520A1 EP 19729458 A EP19729458 A EP 19729458A EP 3802520 A1 EP3802520 A1 EP 3802520A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- atoms
- substituted
- aromatic
- group
- organic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 127
- 125000003118 aryl group Chemical group 0.000 claims description 207
- 150000001875 compounds Chemical class 0.000 claims description 164
- 239000010410 layer Substances 0.000 claims description 119
- 239000000463 material Substances 0.000 claims description 103
- 125000004432 carbon atom Chemical group C* 0.000 claims description 92
- -1 NR 2 Inorganic materials 0.000 claims description 88
- 150000003254 radicals Chemical class 0.000 claims description 85
- 125000001424 substituent group Chemical group 0.000 claims description 77
- 239000011159 matrix material Substances 0.000 claims description 48
- 125000002950 monocyclic group Chemical group 0.000 claims description 31
- 125000000217 alkyl group Chemical group 0.000 claims description 29
- 229910052799 carbon Inorganic materials 0.000 claims description 27
- 229910052760 oxygen Inorganic materials 0.000 claims description 24
- 125000001072 heteroaryl group Chemical group 0.000 claims description 23
- 229910052717 sulfur Inorganic materials 0.000 claims description 23
- 229910052739 hydrogen Inorganic materials 0.000 claims description 22
- 125000003367 polycyclic group Chemical group 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 19
- 125000003545 alkoxy group Chemical group 0.000 claims description 18
- 125000004001 thioalkyl group Chemical group 0.000 claims description 18
- 125000001931 aliphatic group Chemical group 0.000 claims description 17
- UJOBWOGCFQCDNV-UHFFFAOYSA-N 9H-carbazole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 claims description 16
- 229910052786 argon Inorganic materials 0.000 claims description 16
- 230000000903 blocking effect Effects 0.000 claims description 16
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 16
- 238000002347 injection Methods 0.000 claims description 16
- 239000007924 injection Substances 0.000 claims description 16
- 239000012044 organic layer Substances 0.000 claims description 16
- 125000004429 atom Chemical group 0.000 claims description 15
- 125000004122 cyclic group Chemical group 0.000 claims description 14
- 230000005525 hole transport Effects 0.000 claims description 11
- 238000004519 manufacturing process Methods 0.000 claims description 11
- 239000002019 doping agent Substances 0.000 claims description 10
- 238000009472 formulation Methods 0.000 claims description 10
- 239000000243 solution Substances 0.000 claims description 10
- 125000003342 alkenyl group Chemical group 0.000 claims description 9
- 125000004104 aryloxy group Chemical group 0.000 claims description 9
- 239000002904 solvent Substances 0.000 claims description 9
- 238000007740 vapor deposition Methods 0.000 claims description 9
- 125000006165 cyclic alkyl group Chemical group 0.000 claims description 8
- 229910052757 nitrogen Inorganic materials 0.000 claims description 8
- 125000005553 heteroaryloxy group Chemical group 0.000 claims description 7
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 7
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 claims description 7
- 125000000304 alkynyl group Chemical group 0.000 claims description 5
- 125000003710 aryl alkyl group Chemical group 0.000 claims description 5
- 125000002529 biphenylenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3C12)* 0.000 claims description 5
- 125000004957 naphthylene group Chemical group 0.000 claims description 5
- 229910052796 boron Chemical group 0.000 claims description 4
- 125000004556 carbazol-9-yl group Chemical group C1=CC=CC=2C3=CC=CC=C3N(C12)* 0.000 claims description 4
- 125000005560 phenanthrenylene group Chemical group 0.000 claims description 4
- 125000004437 phosphorous atom Chemical group 0.000 claims description 4
- 229910006389 Li—N Inorganic materials 0.000 claims description 3
- 230000005669 field effect Effects 0.000 claims description 3
- 230000003287 optical effect Effects 0.000 claims description 3
- 108091008695 photoreceptors Proteins 0.000 claims description 3
- 239000010409 thin film Substances 0.000 claims description 3
- 238000004246 ligand exchange chromatography Methods 0.000 claims description 2
- 238000010791 quenching Methods 0.000 claims description 2
- 238000005191 phase separation Methods 0.000 claims 1
- TXCDCPKCNAJMEE-UHFFFAOYSA-N dibenzofuran Chemical compound C1=CC=C2C3=CC=CC=C3OC2=C1 TXCDCPKCNAJMEE-UHFFFAOYSA-N 0.000 description 30
- IYYZUPMFVPLQIF-UHFFFAOYSA-N dibenzothiophene Chemical compound C1=CC=C2C3=CC=CC=C3SC2=C1 IYYZUPMFVPLQIF-UHFFFAOYSA-N 0.000 description 26
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 20
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 18
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 18
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 14
- 125000005647 linker group Chemical group 0.000 description 14
- 229910052751 metal Inorganic materials 0.000 description 14
- 239000002184 metal Substances 0.000 description 14
- 125000006413 ring segment Chemical group 0.000 description 13
- YJTKZCDBKVTVBY-UHFFFAOYSA-N 1,3-Diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC(C=2C=CC=CC=2)=C1 YJTKZCDBKVTVBY-UHFFFAOYSA-N 0.000 description 10
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 10
- 235000010290 biphenyl Nutrition 0.000 description 10
- 239000004305 biphenyl Substances 0.000 description 10
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N o-biphenylenemethane Natural products C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 description 10
- 150000002739 metals Chemical class 0.000 description 9
- 230000006872 improvement Effects 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 8
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 7
- 238000005424 photoluminescence Methods 0.000 description 7
- 229910052709 silver Inorganic materials 0.000 description 7
- ICPSWZFVWAPUKF-UHFFFAOYSA-N 1,1'-spirobi[fluorene] Chemical compound C1=CC=C2C=C3C4(C=5C(C6=CC=CC=C6C=5)=CC=C4)C=CC=C3C2=C1 ICPSWZFVWAPUKF-UHFFFAOYSA-N 0.000 description 6
- VIJYEGDOKCKUOL-UHFFFAOYSA-N 9-phenylcarbazole Chemical compound C1=CC=CC=C1N1C2=CC=CC=C2C2=CC=CC=C21 VIJYEGDOKCKUOL-UHFFFAOYSA-N 0.000 description 6
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 6
- 150000001716 carbazoles Chemical class 0.000 description 6
- 125000005842 heteroatom Chemical group 0.000 description 6
- 238000004768 lowest unoccupied molecular orbital Methods 0.000 description 6
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 5
- 150000004982 aromatic amines Chemical class 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 5
- 125000005509 dibenzothiophenyl group Chemical group 0.000 description 5
- 238000004770 highest occupied molecular orbital Methods 0.000 description 5
- 238000000103 photoluminescence spectrum Methods 0.000 description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 5
- 238000007639 printing Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- DXBHBZVCASKNBY-UHFFFAOYSA-N 1,2-Benz(a)anthracene Chemical compound C1=CC=C2C3=CC4=CC=CC=C4C=C3C=CC2=C1 DXBHBZVCASKNBY-UHFFFAOYSA-N 0.000 description 4
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 4
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 4
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 4
- IOJUPLGTWVMSFF-UHFFFAOYSA-N benzothiazole Chemical compound C1=CC=C2SC=NC2=C1 IOJUPLGTWVMSFF-UHFFFAOYSA-N 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- AWJUIBRHMBBTKR-UHFFFAOYSA-N isoquinoline Chemical compound C1=NC=CC2=CC=CC=C21 AWJUIBRHMBBTKR-UHFFFAOYSA-N 0.000 description 4
- QPJVMBTYPHYUOC-UHFFFAOYSA-N methyl benzoate Chemical compound COC(=O)C1=CC=CC=C1 QPJVMBTYPHYUOC-UHFFFAOYSA-N 0.000 description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 4
- MPQXHAGKBWFSNV-UHFFFAOYSA-N oxidophosphanium Chemical class [PH3]=O MPQXHAGKBWFSNV-UHFFFAOYSA-N 0.000 description 4
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical compound C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- 150000003918 triazines Chemical class 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 3
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 3
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 125000000732 arylene group Chemical group 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 125000004986 diarylamino group Chemical group 0.000 description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- 230000005284 excitation Effects 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 150000002576 ketones Chemical class 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 239000008204 material by function Substances 0.000 description 3
- 125000002524 organometallic group Chemical group 0.000 description 3
- 125000004430 oxygen atom Chemical group O* 0.000 description 3
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- VNFWTIYUKDMAOP-UHFFFAOYSA-N sphos Chemical class COC1=CC=CC(OC)=C1C1=CC=CC=C1P(C1CCCCC1)C1CCCCC1 VNFWTIYUKDMAOP-UHFFFAOYSA-N 0.000 description 3
- 238000000859 sublimation Methods 0.000 description 3
- 230000008022 sublimation Effects 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 150000003462 sulfoxides Chemical class 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 3
- SLGBZMMZGDRARJ-UHFFFAOYSA-N triphenylene Chemical compound C1=CC=C2C3=CC=CC=C3C3=CC=CC=C3C2=C1 SLGBZMMZGDRARJ-UHFFFAOYSA-N 0.000 description 3
- 238000009827 uniform distribution Methods 0.000 description 3
- CYPYTURSJDMMMP-WVCUSYJESA-N (1e,4e)-1,5-diphenylpenta-1,4-dien-3-one;palladium Chemical compound [Pd].[Pd].C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1.C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1.C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1 CYPYTURSJDMMMP-WVCUSYJESA-N 0.000 description 2
- BFIMMTCNYPIMRN-UHFFFAOYSA-N 1,2,3,5-tetramethylbenzene Chemical compound CC1=CC(C)=C(C)C(C)=C1 BFIMMTCNYPIMRN-UHFFFAOYSA-N 0.000 description 2
- IVSZLXZYQVIEFR-UHFFFAOYSA-N 1,3-Dimethylbenzene Natural products CC1=CC=CC(C)=C1 IVSZLXZYQVIEFR-UHFFFAOYSA-N 0.000 description 2
- CHLICZRVGGXEOD-UHFFFAOYSA-N 1-Methoxy-4-methylbenzene Chemical compound COC1=CC=C(C)C=C1 CHLICZRVGGXEOD-UHFFFAOYSA-N 0.000 description 2
- FCEHBMOGCRZNNI-UHFFFAOYSA-N 1-benzothiophene Chemical compound C1=CC=C2SC=CC2=C1 FCEHBMOGCRZNNI-UHFFFAOYSA-N 0.000 description 2
- QPUYECUOLPXSFR-UHFFFAOYSA-N 1-methylnaphthalene Chemical compound C1=CC=C2C(C)=CC=CC2=C1 QPUYECUOLPXSFR-UHFFFAOYSA-N 0.000 description 2
- WJFKNYWRSNBZNX-UHFFFAOYSA-N 10H-phenothiazine Chemical compound C1=CC=C2NC3=CC=CC=C3SC2=C1 WJFKNYWRSNBZNX-UHFFFAOYSA-N 0.000 description 2
- TZMSYXZUNZXBOL-UHFFFAOYSA-N 10H-phenoxazine Chemical compound C1=CC=C2NC3=CC=CC=C3OC2=C1 TZMSYXZUNZXBOL-UHFFFAOYSA-N 0.000 description 2
- DXYYSGDWQCSKKO-UHFFFAOYSA-N 2-methylbenzothiazole Chemical compound C1=CC=C2SC(C)=NC2=C1 DXYYSGDWQCSKKO-UHFFFAOYSA-N 0.000 description 2
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 2
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Chemical compound CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000006443 Buchwald-Hartwig cross coupling reaction Methods 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- LTEQMZWBSYACLV-UHFFFAOYSA-N Hexylbenzene Chemical compound CCCCCCC1=CC=CC=C1 LTEQMZWBSYACLV-UHFFFAOYSA-N 0.000 description 2
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- URLKBWYHVLBVBO-UHFFFAOYSA-N Para-Xylene Chemical group CC1=CC=C(C)C=C1 URLKBWYHVLBVBO-UHFFFAOYSA-N 0.000 description 2
- PWATWSYOIIXYMA-UHFFFAOYSA-N Pentylbenzene Chemical compound CCCCCC1=CC=CC=C1 PWATWSYOIIXYMA-UHFFFAOYSA-N 0.000 description 2
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 description 2
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 238000006069 Suzuki reaction reaction Methods 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- DZBUGLKDJFMEHC-UHFFFAOYSA-N acridine Chemical compound C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- 125000005577 anthracene group Chemical group 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- ISAOCJYIOMOJEB-UHFFFAOYSA-N benzoin Chemical compound C=1C=CC=CC=1C(O)C(=O)C1=CC=CC=C1 ISAOCJYIOMOJEB-UHFFFAOYSA-N 0.000 description 2
- 230000031709 bromination Effects 0.000 description 2
- 238000005893 bromination reaction Methods 0.000 description 2
- XSIFPSYPOVKYCO-UHFFFAOYSA-N butyl benzoate Chemical compound CCCCOC(=O)C1=CC=CC=C1 XSIFPSYPOVKYCO-UHFFFAOYSA-N 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- WDECIBYCCFPHNR-UHFFFAOYSA-N chrysene Chemical compound C1=CC=CC2=CC=C3C4=CC=CC=C4C=CC3=C21 WDECIBYCCFPHNR-UHFFFAOYSA-N 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- RWGFKTVRMDUZSP-UHFFFAOYSA-N cumene Chemical compound CC(C)C1=CC=CC=C1 RWGFKTVRMDUZSP-UHFFFAOYSA-N 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 2
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 description 2
- 150000007858 diazaphosphole derivatives Chemical class 0.000 description 2
- MHDVGSVTJDSBDK-UHFFFAOYSA-N dibenzyl ether Chemical compound C=1C=CC=CC=1COCC1=CC=CC=C1 MHDVGSVTJDSBDK-UHFFFAOYSA-N 0.000 description 2
- SQNZJJAZBFDUTD-UHFFFAOYSA-N durene Chemical compound CC1=CC(C)=C(C)C=C1C SQNZJJAZBFDUTD-UHFFFAOYSA-N 0.000 description 2
- 238000001194 electroluminescence spectrum Methods 0.000 description 2
- MTZQAGJQAFMTAQ-UHFFFAOYSA-N ethyl benzoate Chemical compound CCOC(=O)C1=CC=CC=C1 MTZQAGJQAFMTAQ-UHFFFAOYSA-N 0.000 description 2
- 230000005281 excited state Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 230000026030 halogenation Effects 0.000 description 2
- 238000005658 halogenation reaction Methods 0.000 description 2
- 125000004475 heteroaralkyl group Chemical group 0.000 description 2
- PQNFLJBBNBOBRQ-UHFFFAOYSA-N indane Chemical compound C1=CC=C2CCCC2=C1 PQNFLJBBNBOBRQ-UHFFFAOYSA-N 0.000 description 2
- WUNJCKOTXFSWBK-UHFFFAOYSA-N indeno[2,1-a]carbazole Chemical compound C1=CC=C2C=C3C4=NC5=CC=CC=C5C4=CC=C3C2=C1 WUNJCKOTXFSWBK-UHFFFAOYSA-N 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 238000007641 inkjet printing Methods 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 2
- 229910052747 lanthanoid Inorganic materials 0.000 description 2
- 150000002602 lanthanoids Chemical class 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 229940095102 methyl benzoate Drugs 0.000 description 2
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N o-dimethylbenzene Natural products CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- 150000002894 organic compounds Chemical group 0.000 description 2
- 239000012074 organic phase Substances 0.000 description 2
- 150000002902 organometallic compounds Chemical class 0.000 description 2
- HFPZCAJZSCWRBC-UHFFFAOYSA-N p-cymene Chemical compound CC(C)C1=CC=C(C)C=C1 HFPZCAJZSCWRBC-UHFFFAOYSA-N 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- RDOWQLZANAYVLL-UHFFFAOYSA-N phenanthridine Chemical compound C1=CC=C2C3=CC=CC=C3C=NC2=C1 RDOWQLZANAYVLL-UHFFFAOYSA-N 0.000 description 2
- 229950000688 phenothiazine Drugs 0.000 description 2
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 2
- 150000003222 pyridines Chemical class 0.000 description 2
- XSCHRSMBECNVNS-UHFFFAOYSA-N quinoxaline Chemical compound N1=CC=NC2=CC=CC=C21 XSCHRSMBECNVNS-UHFFFAOYSA-N 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 238000005092 sublimation method Methods 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 229930192474 thiophene Natural products 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- 125000005259 triarylamine group Chemical group 0.000 description 2
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 2
- 238000001947 vapour-phase growth Methods 0.000 description 2
- LHXDLQBQYFFVNW-OIBJUYFYSA-N (-)-Fenchone Chemical compound C1C[C@@]2(C)C(=O)C(C)(C)[C@@H]1C2 LHXDLQBQYFFVNW-OIBJUYFYSA-N 0.000 description 1
- 229930006729 (1R,4S)-fenchone Natural products 0.000 description 1
- IWZSHWBGHQBIML-ZGGLMWTQSA-N (3S,8S,10R,13S,14S,17S)-17-isoquinolin-7-yl-N,N,10,13-tetramethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-amine Chemical compound CN(C)[C@H]1CC[C@]2(C)C3CC[C@@]4(C)[C@@H](CC[C@@H]4c4ccc5ccncc5c4)[C@@H]3CC=C2C1 IWZSHWBGHQBIML-ZGGLMWTQSA-N 0.000 description 1
- WUOACPNHFRMFPN-SECBINFHSA-N (S)-(-)-alpha-terpineol Chemical compound CC1=CC[C@@H](C(C)(C)O)CC1 WUOACPNHFRMFPN-SECBINFHSA-N 0.000 description 1
- WLALVCDHIGUUDM-UHFFFAOYSA-N 1,1,2,2,3,3-hexamethylindene Chemical compound C1=CC=C2C(C)(C)C(C)(C)C(C)(C)C2=C1 WLALVCDHIGUUDM-UHFFFAOYSA-N 0.000 description 1
- HQDYNFWTFJFEPR-UHFFFAOYSA-N 1,2,3,3a-tetrahydropyrene Chemical compound C1=C2CCCC(C=C3)C2=C2C3=CC=CC2=C1 HQDYNFWTFJFEPR-UHFFFAOYSA-N 0.000 description 1
- ZFXBERJDEUDDMX-UHFFFAOYSA-N 1,2,3,5-tetrazine Chemical compound C1=NC=NN=N1 ZFXBERJDEUDDMX-UHFFFAOYSA-N 0.000 description 1
- FNQJDLTXOVEEFB-UHFFFAOYSA-N 1,2,3-benzothiadiazole Chemical compound C1=CC=C2SN=NC2=C1 FNQJDLTXOVEEFB-UHFFFAOYSA-N 0.000 description 1
- UGUHFDPGDQDVGX-UHFFFAOYSA-N 1,2,3-thiadiazole Chemical compound C1=CSN=N1 UGUHFDPGDQDVGX-UHFFFAOYSA-N 0.000 description 1
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 1
- HTJMXYRLEDBSLT-UHFFFAOYSA-N 1,2,4,5-tetrazine Chemical compound C1=NN=CN=N1 HTJMXYRLEDBSLT-UHFFFAOYSA-N 0.000 description 1
- BBVIDBNAYOIXOE-UHFFFAOYSA-N 1,2,4-oxadiazole Chemical compound C=1N=CON=1 BBVIDBNAYOIXOE-UHFFFAOYSA-N 0.000 description 1
- YGTAZGSLCXNBQL-UHFFFAOYSA-N 1,2,4-thiadiazole Chemical compound C=1N=CSN=1 YGTAZGSLCXNBQL-UHFFFAOYSA-N 0.000 description 1
- FYADHXFMURLYQI-UHFFFAOYSA-N 1,2,4-triazine Chemical compound C1=CN=NC=N1 FYADHXFMURLYQI-UHFFFAOYSA-N 0.000 description 1
- UDGKZGLPXCRRAM-UHFFFAOYSA-N 1,2,5-thiadiazole Chemical compound C=1C=NSN=1 UDGKZGLPXCRRAM-UHFFFAOYSA-N 0.000 description 1
- UXJHQQLYKUVLIE-UHFFFAOYSA-N 1,2-dihydroacridine Chemical class C1=CC=C2N=C(C=CCC3)C3=CC2=C1 UXJHQQLYKUVLIE-UHFFFAOYSA-N 0.000 description 1
- UUSUFQUCLACDTA-UHFFFAOYSA-N 1,2-dihydropyrene Chemical compound C1=CC=C2C=CC3=CCCC4=CC=C1C2=C43 UUSUFQUCLACDTA-UHFFFAOYSA-N 0.000 description 1
- FKASFBLJDCHBNZ-UHFFFAOYSA-N 1,3,4-oxadiazole Chemical compound C1=NN=CO1 FKASFBLJDCHBNZ-UHFFFAOYSA-N 0.000 description 1
- MBIZXFATKUQOOA-UHFFFAOYSA-N 1,3,4-thiadiazole Chemical compound C1=NN=CS1 MBIZXFATKUQOOA-UHFFFAOYSA-N 0.000 description 1
- JIHQDMXYYFUGFV-UHFFFAOYSA-N 1,3,5-triazine Chemical compound C1=NC=NC=N1 JIHQDMXYYFUGFV-UHFFFAOYSA-N 0.000 description 1
- BCMCBBGGLRIHSE-UHFFFAOYSA-N 1,3-benzoxazole Chemical compound C1=CC=C2OC=NC2=C1 BCMCBBGGLRIHSE-UHFFFAOYSA-N 0.000 description 1
- SPPWGCYEYAMHDT-UHFFFAOYSA-N 1,4-di(propan-2-yl)benzene Chemical compound CC(C)C1=CC=C(C(C)C)C=C1 SPPWGCYEYAMHDT-UHFFFAOYSA-N 0.000 description 1
- FLBAYUMRQUHISI-UHFFFAOYSA-N 1,8-naphthyridine Chemical compound N1=CC=CC2=CC=CN=C21 FLBAYUMRQUHISI-UHFFFAOYSA-N 0.000 description 1
- UHXOHPVVEHBKKT-UHFFFAOYSA-N 1-(2,2-diphenylethenyl)-4-[4-(2,2-diphenylethenyl)phenyl]benzene Chemical compound C=1C=C(C=2C=CC(C=C(C=3C=CC=CC=3)C=3C=CC=CC=3)=CC=2)C=CC=1C=C(C=1C=CC=CC=1)C1=CC=CC=C1 UHXOHPVVEHBKKT-UHFFFAOYSA-N 0.000 description 1
- OSIGJGFTADMDOB-UHFFFAOYSA-N 1-Methoxy-3-methylbenzene Chemical compound COC1=CC=CC(C)=C1 OSIGJGFTADMDOB-UHFFFAOYSA-N 0.000 description 1
- LBNXAWYDQUGHGX-UHFFFAOYSA-N 1-Phenylheptane Chemical compound CCCCCCCC1=CC=CC=C1 LBNXAWYDQUGHGX-UHFFFAOYSA-N 0.000 description 1
- HYLLZXPMJRMUHH-UHFFFAOYSA-N 1-[2-(2-methoxyethoxy)ethoxy]butane Chemical compound CCCCOCCOCCOC HYLLZXPMJRMUHH-UHFFFAOYSA-N 0.000 description 1
- SNAQINZKMQFYFV-UHFFFAOYSA-N 1-[2-[2-(2-methoxyethoxy)ethoxy]ethoxy]butane Chemical compound CCCCOCCOCCOCCOC SNAQINZKMQFYFV-UHFFFAOYSA-N 0.000 description 1
- RERATEUBWLKDFE-UHFFFAOYSA-N 1-methoxy-2-[2-(2-methoxypropoxy)propoxy]propane Chemical compound COCC(C)OCC(C)OCC(C)OC RERATEUBWLKDFE-UHFFFAOYSA-N 0.000 description 1
- JCHJBEZBHANKGA-UHFFFAOYSA-N 1-methoxy-3,5-dimethylbenzene Chemical compound COC1=CC(C)=CC(C)=C1 JCHJBEZBHANKGA-UHFFFAOYSA-N 0.000 description 1
- WCOYPFBMFKXWBM-UHFFFAOYSA-N 1-methyl-2-phenoxybenzene Chemical compound CC1=CC=CC=C1OC1=CC=CC=C1 WCOYPFBMFKXWBM-UHFFFAOYSA-N 0.000 description 1
- UDONPJKEOAWFGI-UHFFFAOYSA-N 1-methyl-3-phenoxybenzene Chemical compound CC1=CC=CC(OC=2C=CC=CC=2)=C1 UDONPJKEOAWFGI-UHFFFAOYSA-N 0.000 description 1
- QWENRTYMTSOGBR-UHFFFAOYSA-N 1H-1,2,3-Triazole Chemical compound C=1C=NNN=1 QWENRTYMTSOGBR-UHFFFAOYSA-N 0.000 description 1
- HYZJCKYKOHLVJF-UHFFFAOYSA-N 1H-benzimidazole Chemical compound C1=CC=C2NC=NC2=C1 HYZJCKYKOHLVJF-UHFFFAOYSA-N 0.000 description 1
- BAXOFTOLAUCFNW-UHFFFAOYSA-N 1H-indazole Chemical compound C1=CC=C2C=NNC2=C1 BAXOFTOLAUCFNW-UHFFFAOYSA-N 0.000 description 1
- LPHIYKWSEYTCLW-UHFFFAOYSA-N 1h-azaborole Chemical compound N1B=CC=C1 LPHIYKWSEYTCLW-UHFFFAOYSA-N 0.000 description 1
- USYCQABRSUEURP-UHFFFAOYSA-N 1h-benzo[f]benzimidazole Chemical compound C1=CC=C2C=C(NC=N3)C3=CC2=C1 USYCQABRSUEURP-UHFFFAOYSA-N 0.000 description 1
- JUUZQMUWOVDZSD-UHFFFAOYSA-N 1h-imidazole;pyrazine Chemical compound C1=CNC=N1.C1=CN=CC=N1 JUUZQMUWOVDZSD-UHFFFAOYSA-N 0.000 description 1
- PLJDGKPRGUMSAA-UHFFFAOYSA-N 2,2',7,7'-tetraphenyl-1,1'-spirobi[fluorene] Chemical compound C12=CC=C(C=3C=CC=CC=3)C=C2C=C(C23C(=CC=C4C5=CC=C(C=C5C=C43)C=3C=CC=CC=3)C=3C=CC=CC=3)C1=CC=C2C1=CC=CC=C1 PLJDGKPRGUMSAA-UHFFFAOYSA-N 0.000 description 1
- 125000004206 2,2,2-trifluoroethyl group Chemical group [H]C([H])(*)C(F)(F)F 0.000 description 1
- PFRPMHBYYJIARU-UHFFFAOYSA-N 2,3-diazatetracyclo[6.6.2.04,16.011,15]hexadeca-1(14),2,4,6,8(16),9,11(15),12-octaene Chemical compound C1=CC=C2N=NC3=CC=CC4=CC=C1C2=C43 PFRPMHBYYJIARU-UHFFFAOYSA-N 0.000 description 1
- VEPOHXYIFQMVHW-XOZOLZJESA-N 2,3-dihydroxybutanedioic acid (2S,3S)-3,4-dimethyl-2-phenylmorpholine Chemical compound OC(C(O)C(O)=O)C(O)=O.C[C@H]1[C@@H](OCCN1C)c1ccccc1 VEPOHXYIFQMVHW-XOZOLZJESA-N 0.000 description 1
- YSUIQYOGTINQIN-UZFYAQMZSA-N 2-amino-9-[(1S,6R,8R,9S,10R,15R,17R,18R)-8-(6-aminopurin-9-yl)-9,18-difluoro-3,12-dihydroxy-3,12-bis(sulfanylidene)-2,4,7,11,13,16-hexaoxa-3lambda5,12lambda5-diphosphatricyclo[13.2.1.06,10]octadecan-17-yl]-1H-purin-6-one Chemical compound NC1=NC2=C(N=CN2[C@@H]2O[C@@H]3COP(S)(=O)O[C@@H]4[C@@H](COP(S)(=O)O[C@@H]2[C@@H]3F)O[C@H]([C@H]4F)N2C=NC3=C2N=CN=C3N)C(=O)N1 YSUIQYOGTINQIN-UZFYAQMZSA-N 0.000 description 1
- TVTJUIAKQFIXCE-HUKYDQBMSA-N 2-amino-9-[(2R,3S,4S,5R)-4-fluoro-3-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-7-prop-2-ynyl-1H-purine-6,8-dione Chemical compound NC=1NC(C=2N(C(N(C=2N=1)[C@@H]1O[C@@H]([C@H]([C@H]1O)F)CO)=O)CC#C)=O TVTJUIAKQFIXCE-HUKYDQBMSA-N 0.000 description 1
- UXGVMFHEKMGWMA-UHFFFAOYSA-N 2-benzofuran Chemical compound C1=CC=CC2=COC=C21 UXGVMFHEKMGWMA-UHFFFAOYSA-N 0.000 description 1
- LYTMVABTDYMBQK-UHFFFAOYSA-N 2-benzothiophene Chemical compound C1=CC=CC2=CSC=C21 LYTMVABTDYMBQK-UHFFFAOYSA-N 0.000 description 1
- CRWNQZTZTZWPOF-UHFFFAOYSA-N 2-methyl-4-phenylpyridine Chemical compound C1=NC(C)=CC(C=2C=CC=CC=2)=C1 CRWNQZTZTZWPOF-UHFFFAOYSA-N 0.000 description 1
- 125000004493 2-methylbut-1-yl group Chemical group CC(C*)CC 0.000 description 1
- 125000005916 2-methylpentyl group Chemical group 0.000 description 1
- QCDWFXQBSFUVSP-UHFFFAOYSA-N 2-phenoxyethanol Chemical compound OCCOC1=CC=CC=C1 QCDWFXQBSFUVSP-UHFFFAOYSA-N 0.000 description 1
- TVYVQNHYIHAJTD-UHFFFAOYSA-N 2-propan-2-ylnaphthalene Chemical compound C1=CC=CC2=CC(C(C)C)=CC=C21 TVYVQNHYIHAJTD-UHFFFAOYSA-N 0.000 description 1
- VHMICKWLTGFITH-UHFFFAOYSA-N 2H-isoindole Chemical compound C1=CC=CC2=CNC=C21 VHMICKWLTGFITH-UHFFFAOYSA-N 0.000 description 1
- DMEVMYSQZPJFOK-UHFFFAOYSA-N 3,4,5,6,9,10-hexazatetracyclo[12.4.0.02,7.08,13]octadeca-1(18),2(7),3,5,8(13),9,11,14,16-nonaene Chemical group N1=NN=C2C3=CC=CC=C3C3=CC=NN=C3C2=N1 DMEVMYSQZPJFOK-UHFFFAOYSA-N 0.000 description 1
- CPDDXQJCPYHULE-UHFFFAOYSA-N 4,5,14,16-tetrazapentacyclo[9.7.1.12,6.015,19.010,20]icosa-1(18),2,4,6,8,10(20),11(19),12,14,16-decaene Chemical group C1=CC(C2=CC=CC=3C2=C2C=NN=3)=C3C2=CC=NC3=N1 CPDDXQJCPYHULE-UHFFFAOYSA-N 0.000 description 1
- NCSVCMFDHINRJE-UHFFFAOYSA-N 4-[1-(3,4-dimethylphenyl)ethyl]-1,2-dimethylbenzene Chemical compound C=1C=C(C)C(C)=CC=1C(C)C1=CC=C(C)C(C)=C1 NCSVCMFDHINRJE-UHFFFAOYSA-N 0.000 description 1
- LVUBSVWMOWKPDJ-UHFFFAOYSA-N 4-methoxy-1,2-dimethylbenzene Chemical compound COC1=CC=C(C)C(C)=C1 LVUBSVWMOWKPDJ-UHFFFAOYSA-N 0.000 description 1
- 229940077398 4-methyl anisole Drugs 0.000 description 1
- NSPMIYGKQJPBQR-UHFFFAOYSA-N 4H-1,2,4-triazole Chemical compound C=1N=CNN=1 NSPMIYGKQJPBQR-UHFFFAOYSA-N 0.000 description 1
- IUKNPBPXZUWMNO-UHFFFAOYSA-N 5,12-diazatetracyclo[6.6.2.04,16.011,15]hexadeca-1(15),2,4,6,8(16),9,11,13-octaene Chemical compound N1=CC=C2C=CC3=NC=CC4=CC=C1C2=C43 IUKNPBPXZUWMNO-UHFFFAOYSA-N 0.000 description 1
- NHWJSCHQRMCCAD-UHFFFAOYSA-N 5,14-diazatetracyclo[6.6.2.04,16.011,15]hexadeca-1(14),2,4,6,8(16),9,11(15),12-octaene Chemical compound C1=CN=C2C=CC3=NC=CC4=CC=C1C2=C43 NHWJSCHQRMCCAD-UHFFFAOYSA-N 0.000 description 1
- PODJSIAAYWCBDV-UHFFFAOYSA-N 5,6-diazatetracyclo[6.6.2.04,16.011,15]hexadeca-1(14),2,4(16),5,7,9,11(15),12-octaene Chemical compound C1=NN=C2C=CC3=CC=CC4=CC=C1C2=C43 PODJSIAAYWCBDV-UHFFFAOYSA-N 0.000 description 1
- KJCRNHQXMXUTEB-UHFFFAOYSA-N 69637-93-0 Chemical compound C1=CC=C2N=C(N=C3NC=4C(=CC=CC=4)NC3=N3)C3=NC2=C1 KJCRNHQXMXUTEB-UHFFFAOYSA-N 0.000 description 1
- SNFCXVRWFNAHQX-UHFFFAOYSA-N 9,9'-spirobi[fluorene] Chemical compound C12=CC=CC=C2C2=CC=CC=C2C21C1=CC=CC=C1C1=CC=CC=C21 SNFCXVRWFNAHQX-UHFFFAOYSA-N 0.000 description 1
- BPMFPOGUJAAYHL-UHFFFAOYSA-N 9H-Pyrido[2,3-b]indole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=N1 BPMFPOGUJAAYHL-UHFFFAOYSA-N 0.000 description 1
- 239000005964 Acibenzolar-S-methyl Substances 0.000 description 1
- FMMWHPNWAFZXNH-UHFFFAOYSA-N Benz[a]pyrene Chemical compound C1=C2C3=CC=CC=C3C=C(C=C3)C2=C2C3=CC=CC2=C1 FMMWHPNWAFZXNH-UHFFFAOYSA-N 0.000 description 1
- KHNYNFUTFKJLDD-UHFFFAOYSA-N Benzo[j]fluoranthene Chemical compound C1=CC(C=2C3=CC=CC=C3C=CC=22)=C3C2=CC=CC3=C1 KHNYNFUTFKJLDD-UHFFFAOYSA-N 0.000 description 1
- ROFVEXUMMXZLPA-UHFFFAOYSA-N Bipyridyl Chemical compound N1=CC=CC=C1C1=CC=CC=N1 ROFVEXUMMXZLPA-UHFFFAOYSA-N 0.000 description 1
- XVTPZRQPQPYUKL-UHFFFAOYSA-N C1=CC=CC=2C3=CC=CC=C3C3=CC=CC=C3C12.C1=CC=CC=2OC3=C(C21)C=CC=C3.N3=NN=CC=C3 Chemical group C1=CC=CC=2C3=CC=CC=C3C3=CC=CC=C3C12.C1=CC=CC=2OC3=C(C21)C=CC=C3.N3=NN=CC=C3 XVTPZRQPQPYUKL-UHFFFAOYSA-N 0.000 description 1
- QSBFVAWTPJHOQF-UHFFFAOYSA-N C1=CC=CC=2C3=CC=CC=C3CC12.C1=CC=CC=2OC3=C(C21)C=CC=C3.N3=NN=CC=C3 Chemical class C1=CC=CC=2C3=CC=CC=C3CC12.C1=CC=CC=2OC3=C(C21)C=CC=C3.N3=NN=CC=C3 QSBFVAWTPJHOQF-UHFFFAOYSA-N 0.000 description 1
- CCRBJLSZLVAIIR-UHFFFAOYSA-N C1=CC=CC=2C3=CC=CC=C3NC12.C1=CC=CC=2SC3=C(C21)C=CC=C3.N3=NN=CC=C3 Chemical class C1=CC=CC=2C3=CC=CC=C3NC12.C1=CC=CC=2SC3=C(C21)C=CC=C3.N3=NN=CC=C3 CCRBJLSZLVAIIR-UHFFFAOYSA-N 0.000 description 1
- WMXNJGBMELIFIK-UHFFFAOYSA-N C1=CC=CC=2OC3=C(C21)C=CC=C3.N3=NN=CC=C3.C3=CC=CC=2C1=CC=CC=C1NC32 Chemical class C1=CC=CC=2OC3=C(C21)C=CC=C3.N3=NN=CC=C3.C3=CC=CC=2C1=CC=CC=C1NC32 WMXNJGBMELIFIK-UHFFFAOYSA-N 0.000 description 1
- OJRUSAPKCPIVBY-KQYNXXCUSA-N C1=NC2=C(N=C(N=C2N1[C@H]3[C@@H]([C@@H]([C@H](O3)COP(=O)(CP(=O)(O)O)O)O)O)I)N Chemical compound C1=NC2=C(N=C(N=C2N1[C@H]3[C@@H]([C@@H]([C@H](O3)COP(=O)(CP(=O)(O)O)O)O)O)I)N OJRUSAPKCPIVBY-KQYNXXCUSA-N 0.000 description 1
- ZPIPUFJBRZFYKJ-UHFFFAOYSA-N C1=NC=C2C=CC3=CN=CC4=CC=C1C2=C34 Chemical compound C1=NC=C2C=CC3=CN=CC4=CC=C1C2=C34 ZPIPUFJBRZFYKJ-UHFFFAOYSA-N 0.000 description 1
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical class C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000003775 Density Functional Theory Methods 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 241000628997 Flos Species 0.000 description 1
- 238000003078 Hartree-Fock method Methods 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- AHVYPIQETPWLSZ-UHFFFAOYSA-N N-methyl-pyrrolidine Natural products CN1CC=CC1 AHVYPIQETPWLSZ-UHFFFAOYSA-N 0.000 description 1
- VTEIDKNQGCKBIA-UHFFFAOYSA-N N1=NN=C2N=CC=C12.[B] Chemical class N1=NN=C2N=CC=C12.[B] VTEIDKNQGCKBIA-UHFFFAOYSA-N 0.000 description 1
- ZCQWOFVYLHDMMC-UHFFFAOYSA-N Oxazole Chemical compound C1=COC=N1 ZCQWOFVYLHDMMC-UHFFFAOYSA-N 0.000 description 1
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical compound C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 1
- 241001620634 Roger Species 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- PJANXHGTPQOBST-VAWYXSNFSA-N Stilbene Natural products C=1C=CC=CC=1/C=C/C1=CC=CC=C1 PJANXHGTPQOBST-VAWYXSNFSA-N 0.000 description 1
- 244000028419 Styrax benzoin Species 0.000 description 1
- 235000000126 Styrax benzoin Nutrition 0.000 description 1
- 235000008411 Sumatra benzointree Nutrition 0.000 description 1
- DHXVGJBLRPWPCS-UHFFFAOYSA-N Tetrahydropyran Chemical compound C1CCOCC1 DHXVGJBLRPWPCS-UHFFFAOYSA-N 0.000 description 1
- DPOPAJRDYZGTIR-UHFFFAOYSA-N Tetrazine Chemical compound C1=CN=NN=N1 DPOPAJRDYZGTIR-UHFFFAOYSA-N 0.000 description 1
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 1
- DGEZNRSVGBDHLK-UHFFFAOYSA-N [1,10]phenanthroline Chemical compound C1=CN=C2C3=NC=CC=C3C=CC2=C1 DGEZNRSVGBDHLK-UHFFFAOYSA-N 0.000 description 1
- NFRJPXAEZZYFOQ-UHFFFAOYSA-N [3-(9,9'-spirobi[fluorene]-2-yl)phenyl]boronic acid Chemical compound OB(O)C1=CC=CC(C=2C=C3C4(C5=CC=CC=C5C5=CC=CC=C54)C4=CC=CC=C4C3=CC=2)=C1 NFRJPXAEZZYFOQ-UHFFFAOYSA-N 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- VGRJHHLDEYYRNF-UHFFFAOYSA-N ac1lasce Chemical compound C1C2=CC=CC=C2C(C=2C3=CC=CC=C3CC=22)=C1C1=C2CC2=CC=CC=C21 VGRJHHLDEYYRNF-UHFFFAOYSA-N 0.000 description 1
- 239000000370 acceptor Substances 0.000 description 1
- 150000001251 acridines Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 125000005073 adamantyl group Chemical group C12(CC3CC(CC(C1)C3)C2)* 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910001618 alkaline earth metal fluoride Inorganic materials 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- LHXDLQBQYFFVNW-UHFFFAOYSA-N alpha-fenchone Natural products C1CC2(C)C(=O)C(C)(C)C1C2 LHXDLQBQYFFVNW-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- VVLCNWYWKSWJTG-UHFFFAOYSA-N anthracene-1,2-diamine Chemical compound C1=CC=CC2=CC3=C(N)C(N)=CC=C3C=C21 VVLCNWYWKSWJTG-UHFFFAOYSA-N 0.000 description 1
- 229940058303 antinematodal benzimidazole derivative Drugs 0.000 description 1
- 229940027991 antiseptic and disinfectant quinoline derivative Drugs 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 150000008365 aromatic ketones Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910001632 barium fluoride Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- RFRXIWQYSOIBDI-UHFFFAOYSA-N benzarone Chemical compound CCC=1OC2=CC=CC=C2C=1C(=O)C1=CC=C(O)C=C1 RFRXIWQYSOIBDI-UHFFFAOYSA-N 0.000 description 1
- 150000001556 benzimidazoles Chemical class 0.000 description 1
- 125000005605 benzo group Chemical group 0.000 description 1
- WMUIZUWOEIQJEH-UHFFFAOYSA-N benzo[e][1,3]benzoxazole Chemical compound C1=CC=C2C(N=CO3)=C3C=CC2=C1 WMUIZUWOEIQJEH-UHFFFAOYSA-N 0.000 description 1
- 229960002130 benzoin Drugs 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 239000012964 benzotriazole Substances 0.000 description 1
- KGNDCEVUMONOKF-UGPLYTSKSA-N benzyl n-[(2r)-1-[(2s,4r)-2-[[(2s)-6-amino-1-(1,3-benzoxazol-2-yl)-1,1-dihydroxyhexan-2-yl]carbamoyl]-4-[(4-methylphenyl)methoxy]pyrrolidin-1-yl]-1-oxo-4-phenylbutan-2-yl]carbamate Chemical compound C1=CC(C)=CC=C1CO[C@H]1CN(C(=O)[C@@H](CCC=2C=CC=CC=2)NC(=O)OCC=2C=CC=CC=2)[C@H](C(=O)N[C@@H](CCCCN)C(O)(O)C=2OC3=CC=CC=C3N=2)C1 KGNDCEVUMONOKF-UGPLYTSKSA-N 0.000 description 1
- 125000002619 bicyclic group Chemical group 0.000 description 1
- UORVGPXVDQYIDP-UHFFFAOYSA-N borane Chemical class B UORVGPXVDQYIDP-UHFFFAOYSA-N 0.000 description 1
- 229910000085 borane Inorganic materials 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- 125000004369 butenyl group Chemical group C(=CCC)* 0.000 description 1
- 125000000480 butynyl group Chemical group [*]C#CC([H])([H])C([H])([H])[H] 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- WCZVZNOTHYJIEI-UHFFFAOYSA-N cinnoline Chemical compound N1=NC=CC2=CC=CC=C21 WCZVZNOTHYJIEI-UHFFFAOYSA-N 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000010549 co-Evaporation Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229940125758 compound 15 Drugs 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000002484 cyclic voltammetry Methods 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001162 cycloheptenyl group Chemical group C1(=CCCCCC1)* 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 1
- 125000000596 cyclohexenyl group Chemical group C1(=CCCCC1)* 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- HHNHBFLGXIUXCM-GFCCVEGCSA-N cyclohexylbenzene Chemical compound [CH]1CCCC[C@@H]1C1=CC=CC=C1 HHNHBFLGXIUXCM-GFCCVEGCSA-N 0.000 description 1
- 125000000522 cyclooctenyl group Chemical group C1(=CCCCCCC1)* 0.000 description 1
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000002433 cyclopentenyl group Chemical group C1(=CCCC1)* 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 150000001987 diarylethers Chemical class 0.000 description 1
- IYYZUPMFVPLQIF-ALWQSETLSA-N dibenzothiophene Chemical group C1=CC=CC=2[34S]C3=C(C=21)C=CC=C3 IYYZUPMFVPLQIF-ALWQSETLSA-N 0.000 description 1
- 229940028356 diethylene glycol monobutyl ether Drugs 0.000 description 1
- XXPBFNVKTVJZKF-UHFFFAOYSA-N dihydrophenanthrene Natural products C1=CC=C2CCC3=CC=CC=C3C2=C1 XXPBFNVKTVJZKF-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- KWKXNDCHNDYVRT-UHFFFAOYSA-N dodecylbenzene Chemical compound CCCCCCCCCCCCC1=CC=CC=C1 KWKXNDCHNDYVRT-UHFFFAOYSA-N 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000004836 empirical method Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 150000002220 fluorenes Chemical class 0.000 description 1
- 229910003472 fullerene Inorganic materials 0.000 description 1
- JKFAIQOWCVVSKC-UHFFFAOYSA-N furazan Chemical compound C=1C=NON=1 JKFAIQOWCVVSKC-UHFFFAOYSA-N 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- 235000019382 gum benzoic Nutrition 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 125000006038 hexenyl group Chemical group 0.000 description 1
- 125000005980 hexynyl group Chemical group 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- PJULCNAVAGQLAT-UHFFFAOYSA-N indeno[2,1-a]fluorene Chemical class C1=CC=C2C=C3C4=CC5=CC=CC=C5C4=CC=C3C2=C1 PJULCNAVAGQLAT-UHFFFAOYSA-N 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- RHZWSUVWRRXEJF-UHFFFAOYSA-N indium tin Chemical compound [In].[Sn] RHZWSUVWRRXEJF-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 1
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 1
- HOBCFUWDNJPFHB-UHFFFAOYSA-N indolizine Chemical compound C1=CC=CN2C=CC=C21 HOBCFUWDNJPFHB-UHFFFAOYSA-N 0.000 description 1
- VVVPGLRKXQSQSZ-UHFFFAOYSA-N indolo[3,2-c]carbazole Chemical compound C1=CC=CC2=NC3=C4C5=CC=CC=C5N=C4C=CC3=C21 VVVPGLRKXQSQSZ-UHFFFAOYSA-N 0.000 description 1
- 229960005544 indolocarbazole Drugs 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- ZLTPDFXIESTBQG-UHFFFAOYSA-N isothiazole Chemical compound C=1C=NSC=1 ZLTPDFXIESTBQG-UHFFFAOYSA-N 0.000 description 1
- CTAPFRYPJLPFDF-UHFFFAOYSA-N isoxazole Chemical compound C=1C=NOC=1 CTAPFRYPJLPFDF-UHFFFAOYSA-N 0.000 description 1
- 150000003951 lactams Chemical class 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- IMKMFBIYHXBKRX-UHFFFAOYSA-M lithium;quinoline-2-carboxylate Chemical compound [Li+].C1=CC=CC2=NC(C(=O)[O-])=CC=C21 IMKMFBIYHXBKRX-UHFFFAOYSA-M 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- AUHZEENZYGFFBQ-UHFFFAOYSA-N mesitylene Substances CC1=CC(C)=CC(C)=C1 AUHZEENZYGFFBQ-UHFFFAOYSA-N 0.000 description 1
- 125000001827 mesitylenyl group Chemical group [H]C1=C(C(*)=C(C([H])=C1C([H])([H])[H])C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- 229910003455 mixed metal oxide Inorganic materials 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- 125000003136 n-heptyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 125000005244 neohexyl group Chemical group [H]C([H])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- 125000004365 octenyl group Chemical group C(=CCCCCCC)* 0.000 description 1
- VXNSQGRKHCZUSU-UHFFFAOYSA-N octylbenzene Chemical compound [CH2]CCCCCCCC1=CC=CC=C1 VXNSQGRKHCZUSU-UHFFFAOYSA-N 0.000 description 1
- 125000005069 octynyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C#C* 0.000 description 1
- 238000007645 offset printing Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- WCPAKWJPBJAGKN-UHFFFAOYSA-N oxadiazole Chemical compound C1=CON=N1 WCPAKWJPBJAGKN-UHFFFAOYSA-N 0.000 description 1
- 150000004866 oxadiazoles Chemical class 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- JCGNDDUYTRNOFT-UHFFFAOYSA-N oxolane-2,4-dione Chemical compound O=C1COC(=O)C1 JCGNDDUYTRNOFT-UHFFFAOYSA-N 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- SLIUAWYAILUBJU-UHFFFAOYSA-N pentacene Chemical compound C1=CC=CC2=CC3=CC4=CC5=CC=CC=C5C=C4C=C3C=C21 SLIUAWYAILUBJU-UHFFFAOYSA-N 0.000 description 1
- 125000006340 pentafluoro ethyl group Chemical group FC(F)(F)C(F)(F)* 0.000 description 1
- 125000002255 pentenyl group Chemical group C(=CCCC)* 0.000 description 1
- 125000005981 pentynyl group Chemical group 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- 125000005561 phenanthryl group Chemical group 0.000 description 1
- 125000005562 phenanthrylene group Chemical group 0.000 description 1
- 150000002988 phenazines Chemical class 0.000 description 1
- 229960005323 phenoxyethanol Drugs 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 125000004368 propenyl group Chemical group C(=CC)* 0.000 description 1
- 125000002568 propynyl group Chemical group [*]C#CC([H])([H])[H] 0.000 description 1
- CPNGPNLZQNNVQM-UHFFFAOYSA-N pteridine Chemical compound N1=CN=CC2=NC=CN=C21 CPNGPNLZQNNVQM-UHFFFAOYSA-N 0.000 description 1
- 239000012264 purified product Substances 0.000 description 1
- 150000003216 pyrazines Chemical class 0.000 description 1
- 125000005581 pyrene group Chemical group 0.000 description 1
- BUAWIRPPAOOHKD-UHFFFAOYSA-N pyrene-1,2-diamine Chemical class C1=CC=C2C=CC3=C(N)C(N)=CC4=CC=C1C2=C43 BUAWIRPPAOOHKD-UHFFFAOYSA-N 0.000 description 1
- PBMFSQRYOILNGV-UHFFFAOYSA-N pyridazine Chemical compound C1=CC=NN=C1 PBMFSQRYOILNGV-UHFFFAOYSA-N 0.000 description 1
- GDISDVBCNPLSDU-UHFFFAOYSA-N pyrido[2,3-g]quinoline Chemical compound C1=CC=NC2=CC3=CC=CN=C3C=C21 GDISDVBCNPLSDU-UHFFFAOYSA-N 0.000 description 1
- 229940083082 pyrimidine derivative acting on arteriolar smooth muscle Drugs 0.000 description 1
- 150000003230 pyrimidines Chemical class 0.000 description 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 1
- JWVCLYRUEFBMGU-UHFFFAOYSA-N quinazoline Chemical compound N1=CN=CC2=CC=CC=C21 JWVCLYRUEFBMGU-UHFFFAOYSA-N 0.000 description 1
- 150000003248 quinolines Chemical class 0.000 description 1
- 150000004053 quinones Chemical class 0.000 description 1
- 150000003252 quinoxalines Chemical class 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000010944 silver (metal) Substances 0.000 description 1
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 125000003003 spiro group Chemical group 0.000 description 1
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical compound C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 1
- 235000021286 stilbenes Nutrition 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 125000006836 terphenylene group Chemical group 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000001973 tert-pentyl group Chemical group [H]C([H])([H])C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- IFLREYGFSNHWGE-UHFFFAOYSA-N tetracene Chemical compound C1=CC=CC2=CC3=CC4=CC=CC=C4C=C3C=C21 IFLREYGFSNHWGE-UHFFFAOYSA-N 0.000 description 1
- ZUHZGEOKBKGPSW-UHFFFAOYSA-N tetraglyme Chemical compound COCCOCCOCCOCCOC ZUHZGEOKBKGPSW-UHFFFAOYSA-N 0.000 description 1
- 150000003536 tetrazoles Chemical class 0.000 description 1
- 238000001931 thermography Methods 0.000 description 1
- 125000004055 thiomethyl group Chemical group [H]SC([H])([H])* 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 238000010023 transfer printing Methods 0.000 description 1
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- YFNKIDBQEZZDLK-UHFFFAOYSA-N triglyme Chemical compound COCCOCCOCCOC YFNKIDBQEZZDLK-UHFFFAOYSA-N 0.000 description 1
- 125000005580 triphenylene group Chemical group 0.000 description 1
- 125000003960 triphenylenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3C3=CC=CC=C3C12)* 0.000 description 1
- 229910000404 tripotassium phosphate Inorganic materials 0.000 description 1
- 235000019798 tripotassium phosphate Nutrition 0.000 description 1
- YGPLLMPPZRUGTJ-UHFFFAOYSA-N truxene Chemical compound C1C2=CC=CC=C2C(C2=C3C4=CC=CC=C4C2)=C1C1=C3CC2=CC=CC=C21 YGPLLMPPZRUGTJ-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- 238000002061 vacuum sublimation Methods 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- ABDKAPXRBAPSQN-UHFFFAOYSA-N veratrole Chemical compound COC1=CC=CC=C1OC ABDKAPXRBAPSQN-UHFFFAOYSA-N 0.000 description 1
- PXXNTAGJWPJAGM-UHFFFAOYSA-N vertaline Natural products C1C2C=3C=C(OC)C(OC)=CC=3OC(C=C3)=CC=C3CCC(=O)OC1CC1N2CCCC1 PXXNTAGJWPJAGM-UHFFFAOYSA-N 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
- 150000003754 zirconium Chemical class 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6574—Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D493/00—Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/02—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
- C07D405/04—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
- H10K85/623—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing five rings, e.g. pentacene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
- H10K85/624—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/654—Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6576—Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1003—Carbocyclic compounds
- C09K2211/1007—Non-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1029—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/18—Metal complexes
- C09K2211/185—Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/10—Triplet emission
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/90—Multiple hosts in the emissive layer
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/16—Electron transporting layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/17—Carrier injection layers
- H10K50/171—Electron injection layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/18—Carrier blocking layers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Definitions
- the present invention relates to a composition comprising an electron transporting host and a hole transporting host, their use in electronic devices and electronic devices containing this composition.
- the electron transporting host is most preferably selected from the class of triazine dibenzofuran fluorenyl systems or the class of triazine dibenzothiophene fluorenyl systems.
- the hole transporting host is preferably selected from the class of biscarbazoles.
- organic electroluminescent devices for example OLEDs - organic light-emitting diodes or OLECs-organic light-emitting electrochemical cells
- OLEDs organic light-emitting diodes
- OLECs-organic light-emitting electrochemical cells organic semiconductors
- organic electroluminescent devices are not determined solely by the emitters used.
- the other materials used such as host and matrix materials, hole blocking materials, electron transport materials,
- matrix material is also frequently used in the prior art if a host material for phosphorescent emitters is meant. This use of the term also applies to the present invention. Meanwhile, a variety of host materials for both fluorescent and for
- Another way to improve the performance of electronic devices, in particular of organic electroluminescent devices, is to use combinations of two or more materials, in particular host materials or matrix materials.
- US 6,392,250 B1 discloses the use of a mixture consisting of an electron transport material, a hole transport material and a fluorescent emitter in the emission layer of an OLED. With the help of this mixture, the life of the OLED over the prior art could be improved.
- No. 6,803,720 B1 discloses the use of a mixture comprising a phosphorescent emitter and a hole and an electron transport material in the emission layer of an OLED. Both the hole and the electron transport material are small organic molecules.
- a mixture comprising a phosphorescent emitter and a hole and an electron transport material in the emission layer of an OLED. Both the hole and the electron transport material are small organic molecules.
- triazine-dibenzofuran-carbazole derivatives and triazine-dibenzothiophene-carbazole derivatives can also be used in a mixture.
- the holes and the electron transport material are small organic molecules.
- triazine-dibenzofuran-aryl derivatives and triazine-dibenzothiophene-aryl derivatives can be used in a mixture.
- specific triazine dibenzofuran triphenylene derivatives are combined with a specific biscarbazole and an emitter in an EML.
- the combination of compound 4 with biscarbazole PH-2 and emitter GD-1 is listed, as shown in the following table:
- EP3043398 A1 a combination of specific triazine-dibenzofuran-aryl derivatives or specific triazine-dibenzothiophene-aryl derivatives with specific carbazole derivatives for the preparation of
- a ternary mixture of specific triazine derivatives can be used for the production of organic layers for organic electronic devices, for example the mixture TPMI (compound H8, compound C74 and compound H17) and the mixture of compounds C83, F20 and F18.
- TPMI compound H8, compound C74 and compound H17
- C83, F20 and F18 the mixture of compounds C83, F20 and F18.
- Object of the present invention is therefore to provide materials which are suitable for use in an organic compound
- Electroluminescent devices and in particular in a
- fluorescent or phosphorescent OLED and good device properties, in particular with regard to improved efficiency, improved operating voltage and / or improved
- compositions comprising compounds of the formula (1), for example particularly preferably triazine-dibenzofuran fluorene derivatives or triazine-dibenzothiophene fluorene derivatives, and a hole-transporting host of the formula (2), achieve this object and overcome the disadvantages eliminate the prior art.
- Such compositions lead to very good properties of organic electronic devices, in particular organic electroluminescent devices, in particular in terms of efficiency, operating voltage and / or lifetime, and in particular even in the presence of a light-emitting component in the
- Emission layer at concentrations between 2 and 15 wt .-%.
- a first object of the present invention is therefore a
- Composition comprising at least one compound of the formula (1) and at least one compound of the formula (2)
- X is the same or different CR ° or N at each occurrence, with the proviso that at least two groups X are N;
- Y is selected from O or S
- L is the same or different at each occurrence as a single bond or an aromatic ring system with 6 to 30
- aromatic ring atoms which may be substituted by one or more radicals R 5 ;
- Li , 2 are the same or different at each occurrence
- L 3 is a single bond or an aromatic or heteroaromatic ring system having from 5 to 30 aromatic ring atoms which may be substituted by one or more R 3 radicals; L 3 is a single bond or an aromatic or
- Ring atoms which may be substituted by one or more radicals R 3 , wherein a substituent R 1 on the carbazole with a
- Substituents R 3 can form a ring
- Ar2 are each independently in each occurrence an aryl or heteroaryl group having 5 to 40 aromatic ring atoms, which may be substituted 3 with one or more radicals R;
- RA is H, -L 3 -Ar 4 , -Li-N (Ar) 2 ;
- RB is Ar 3 or -l_ 2 -N (Ar) 2;
- Ar 3 is an aromatic ring system with 6 to 40 aromatic
- Ar 4 is the same or different at each instance and is an unsubstituted or substituted 9-aryl-carbazolyl or unsubstituted or substituted carbazol-9-yl which may be substituted by one or more R 4 radicals and independently of one another, each time two or more radicals R 4 or a radical R 4 together with a radical R 1 can form a monocyclic or polycyclic, aliphatic, aromatic or heteroaromatic ring, wherein aryl denotes an aromatic or heteroaromatic ring system having 5 to 30 aromatic ring atoms which may be substituted by R 3 ;
- R * is the same or different at each occurrence as a straight-chain alkyl group having 1 to 10 C atoms or an aryl group having 6 to 12 C atoms, where two substituents R * together form a monocyclic or polycyclic, aliphatic, aromatic or heteroaromatic ring system which may be substituted with one or more substituents R 5 ;
- Heteroaralkyl having 5 to 40 aromatic ring atoms, which may be substituted by one or more radicals R 2 ; optionally two substituents R ° and / or R and / or R 1 attached to the same carbon atom or to adjacent ones
- Carbon atoms form a monocyclic or polycyclic, aliphatic, aromatic or heteroaromatic ring system which may be substituted by one or more radicals R 2 ;
- R 2 is the same or different on each occurrence selected from the group consisting of H, D, F, Cl, Br, I, CN, NO 2 , N (Ar) 2 , NH 2 ,
- Ring atoms each of which may be substituted with one or more R 3 radicals, an aryloxy or heteroaryloxy group having from 5 to 60 aromatic ring atoms which may be substituted with one or more R 3 radicals, or a combination of these systems optionally with two or more adjacent substituents R 2 may form a monocyclic or polycyclic, aliphatic, aromatic or heteroaromatic ring system which may be substituted by one or more R 3 radicals;
- R 3 is the same or different on each occurrence selected from the group consisting of H, D, F, CN, N (Ar) 2 , an aliphatic
- Hydrocarbon radical having 1 to 20 carbon atoms or an aromatic or heteroaromatic ring system having 5 to 30 aromatic ring atoms, in which one or more H atoms may be replaced by D, F, Cl, Br, I or CN and the may be substituted by one or more alkyl groups each having 1 to 4 carbon atoms; two or more adjacent substituents R 3 may together form a mono- or polycyclic, aliphatic ring system;
- R 4 is identically or differently chosen on each occurrence from the group consisting of H, D, F, CN, an aliphatic hydrocarbon radical having 1 to 20 C atoms or an aromatic or heteroaromatic ring system having 5 to 30 aromatic ring atoms, in which one or more H atoms through D, F, CI, Br,
- Carbon atoms or CN may be replaced; two or more adjacent substituents R 4 may together form a mono- or polycyclic ring system; R 5 is the same or different selected on each occurrence from the group consisting of D, F, CN and an aryl group having 6 to 18 carbon atoms, while two or more adjacent substituents R 5 together with a mono- or polycyclic, ali form a phatic ring system;
- Ar is the same or different at each occurrence, an aromatic or heteroaromatic ring system having 5 to 30 aromatic ring atoms, which may be substituted with one or more non-aromatic radicals R 3 ; in this case, two radicals Ar, which bind to the same N atom, P atom or B atom, also by a single bond or a bridge selected from N (R 3 ), C (R 3 ) 2 , O or S, with each other be bridged and
- n and m independently of each other denote 0, 1, 2 or 3,
- o means independently at each occurrence 0, 1, 2, 3, 4, 5, 6 or 7; q independently of each occurrence represents 0, 1, 2 or 3;
- p independently of each occurrence means 0, 1, 2, 3 or 4.
- compositions in an organic electronic device organic electronic devices, preferred
- Electroluminescent devices containing such compositions preferably containing the composition in a layer, as well as methods for Fier ein of such devices.
- the corresponding preferred embodiments, as described below, are also the subject of the present invention.
- the surprising and beneficial effects are due to specific Selection of known materials achieved, in particular, as regards the selection of the compounds of formula (1).
- the layer comprising the composition comprising at least one
- Compound of the formula (1) and at least one compound of the formula (2), as described above or preferably described below, is in particular an emitting layer (EML), an electron transport layer (ETL), an electron injection layer (EIL) and / or a hole blocking layer (HBL).
- EML emitting layer
- ETL electron transport layer
- EIL electron injection layer
- HBL hole blocking layer
- a phosphorescent layer which is characterized by having, in addition to the composition comprising the matrix materials of the formula (1) and the formula (2) as described above
- Adjacent carbon atoms in the context of the present invention are carbon atoms which are directly linked to one another. Under the formulation that two or more residues together
- An aryl group in the context of this invention contains 6 to 40 aromatic ring atoms, preferably C atoms.
- a heteroaryl group contains 5 to 40 aromatic ring atoms, the ring atoms comprising C atoms and at least one heteroatom, with the proviso that the sum of C atoms and heteroatoms gives at least 5.
- the heteroatoms are preferably selected from N, O and / or S.
- an aryl group or heteroaryl group is either a simple aromatic cycle, ie phenyl, derived from benzene, or a simple heteroaromatic cycle, for example derived from pyridine, pyrimidine or thiophene or a fused aryl or heteroaryl group, for example derived from naphthalene, anthracene, phenanthrene,
- An aryl group having 6 to 18 carbon atoms is therefore preferably phenyl, naphthyl, phenanthryl or
- Triphenylenyl wherein the attachment of the aryl group is not limited as a substituent.
- An arylene group having 6 to 18 carbon atoms is therefore preferably phenylene, naphthylene, phenanthrylene or triphenylenylene, the linking of the arylene group as a linker not
- An aromatic ring system in the context of this invention contains 6 to 40 carbon atoms in the ring system and may be substituted by one or more radicals R 3 , wherein R 3 has a meaning described below.
- An aromatic ring system also contains aryl groups as previously described.
- An aromatic ring system having 6 to 18 carbon atoms is preferably selected from phenylene, biphenylene, naphthylene, phenanthrenylene and
- Triphenylenylene selected, wherein the respective aromatic ring system may be substituted by one or more radicals R 5 .
- a heteroaromatic ring system in the context of this invention contains 5 to 40 ring atoms and at least one heteroatom and may be substituted by one or more radicals R 3 , wherein R 3 is a following
- Ring system has 10 to 40 ring atoms and at least one heteroatom and may be substituted by one or more R 3 radicals, wherein R 3 has a meaning described below.
- R 3 has a meaning described below.
- Ring system also contains heteroaryl groups as previously described.
- the heteroatoms in the heteroaromatic ring system are preferably selected from N, O and / or S.
- an aromatic or heteroaromatic ring system is understood as meaning a system which does not necessarily contain only aryl or heteroaryl groups, but in which also several aryl or heteroaryl groups are present through a non-aromatic unit
- atoms other than H such as.
- a C, N or O atom or a carbonyl group may be interrupted.
- systems such as 9,9'-spirobifluorene, 9,9-diaryl fluorene, triarylamine, diaryl ether, stilbene, etc. as aromatic or
- Heteroaromatic ring systems are understood within the meaning of this invention, and also systems in which two or more aryl groups are interrupted, for example, by a linear or cyclic alkyl group or by a silyl group. Furthermore, systems in which two or more aryl or heteroaryl groups are bonded directly to each other, such as.
- biphenyl, terphenyl, quaterphenyl or bipyridine also included in the definition of the aromatic or heteroaromatic ring system. Under an aromatic or heteroaromatic ring system with 5-40 aromatic ring atoms, which still in each case with the mentioned
- R 3 radicals can be substituted and which can be linked via any position on the aromatic or heteroaromatic, are understood, for example, groups derived from benzene, naphthalene, anthracene, Benzanthracen, phenanthrene, Benzophenanthren, pyrene, chrysene, perylene, fluoranthene , Benzfluoranthene, naphthacene, pentacene, benzpyrene, biphenyl, biphenylene, terphenyl, terphenylene, fluorene, spirobifluorene, dihydrophenanthrene, dihydropyrene, tetrahydropyrene, cis- or trans-indenofluorene, cis- or trans-monobenzoindenofluorene, cis- or trans-dibenzoindenofluorene, Truxene, isotruxene, spirotru
- aromatic ring atoms which may contain one or more non-aromatic aromatic radicals R 3 may be substituted; in this case, two radicals Ar, which bind to the same N atom, P atom or B atom, also by a single bond or a bridge selected from N (R 3 ), C (R 3 ) 2, O or S, with each other be bridged.
- the substituent R 3 has been previously described or will be described below.
- a cyclic alkyl, alkoxy or thioalkyl group in the context of this invention is a monocyclic, a bicyclic or a
- a C 1 - to C 20 -alkyl group in which individual H atoms or C groups can also be substituted by the abovementioned groups for example the radicals methyl, ethyl, n-propyl, i-propyl, Cyclopropyl, n-butyl, i-butyl, s-butyl, t-butyl, cyclobutyl, 2-methylbutyl, n-pentyl, s-pentyl, t-pentyl, 2-pentyl, neo-pentyl, cyclopentyl, n-hexyl, s-hexyl, t -hexyl, 2-hexyl, 3-hexyl, neohexyl, cyclohexyl, 1-methylcyclopentyl, 2-methylpentyl, n-heptyl, 2-heptyl, 3-hept
- alkenyl group is understood as meaning, for example, ethenyl, propenyl, butenyl, pentenyl, cyclopentenyl, hexenyl, cyclohexenyl, heptenyl, cycloheptenyl, octenyl, cyclooctenyl or cyclooctadienyl.
- alkynyl group is meant, for example, ethynyl, propynyl, butynyl, pentynyl, hexynyl, heptynyl or octynyl.
- a C 1 to C 20 alkoxy group is understood as meaning, for example, methoxy, trifluoromethoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, i-butoxy, s-butoxy, t-butoxy or 2-methylbutoxy.
- a C 1 to C 20 thioalkyl group is understood to mean, for example, S-alkyl groups, for example thiomethyl, 1-thioethyl, 1-thio-i-propyl, 1-thio-n-propoyl, 1-thio-i-butyl, 1-thio n-butyl or 1-thio-t-butyl.
- Ring atoms means O-aryl or O-heteroaryl and means that the aryl or heteroaryl group is bonded via an oxygen atom.
- Ring atoms means that an alkyl group as described above is substituted with an aryl group or heteroaryl group.
- a phosphorescent emitter in the context of the present invention is a compound which exhibits luminescence from an excited state with a higher spin multiplicity, ie a spin state> 1, in particular from an excited triplet state.
- a spin state> 1 in particular from an excited triplet state.
- all luminescent complexes with transition metals or lanthanides are to be regarded as phosphorescent emitters. A more precise definition is given below.
- composition comprising at least one compound of formula (1) as described above or preferred below
- the triplet level Ti (emitter) - Ti (matrix) ⁇ 0.2 eV, more preferably ⁇ 0.15 eV, most preferably ⁇ 0.1 eV.
- Ti (matrix) is the triplet level of the matrix material in the emission layer, which condition applies to each of the two matrix materials, and Ti (emitter) is the triplet level of the phosphorescent emitter. If the emission layer contains more than two matrix materials, the above-mentioned relationship preferably also applies to any further matrix material.
- compounds of the formula (1) are selected in which Y is selected from O or S, preferably O means.
- R ° at each occurrence is the same or different preferably selected from the group consisting of H, D, F or an aromatic or heteroaromatic ring system having 5 to 40 aromatic ring atoms. R ° is particularly preferred at each occurrence H.
- At least one compound of formula (1a) is selected for the composition, with substituents previously mentioned
- Another object of the invention is therefore a
- An and Ar 2 are each, independently of one another, preferably an aryl group having from 6 to 40 carbon atoms. Atoms as described above or preferably described, which may be substituted by one or more radicals R 3 , or for a
- Dibenzofuranyl or dibenzothiophenyl group which may be substituted with one or more R 3 radicals.
- Dibenzothiophenyl group is not restricted.
- An and Ar 2 may therefore preferably be selected from the following groups Ar-1 to Ar-12, where R 3 has a meaning given above or preferably indicated:
- At least one An or Ar 2 is phenyl and the other aromatic substituent is an aryl group having from 6 to 40 carbon atoms. Atoms which may be substituted by one or more radicals R 3 or a dibenzofuranyl or a dibenzothiophenyl group, preferably selected from Ar-1 to Ar-12. More preferably, at least one An or Ar 2 is phenyl and the other is aromatic
- Substituent stands for a phenyl group containing one or more
- R 3 may be substituted or for dibenzofuranyl.
- both groups An and Ar2 are the same.
- both groups An and Ar 2 are phenyl or both
- Groups An and Ar2 represent dibenzofuranyl.
- the substituent R 3 is the same or different preferably selected on each occurrence from the group consisting of D, F or an aromatic or heteroaromatic ring system having 5 to 40 aromatic ring atoms.
- the heteroaromatic ring system having 5 to 40 aromatic ring atoms in this case is preferably derived from dibenzofuran or dibenzothiophene for R 3 .
- the aromatic ring system having 6 to 40 aromatic ring atoms in this case is preferably phenyl, biphenyl or terphenyl, particularly preferably phenyl or R 3
- Fleteroaryl group in An and Ar2 each independently substituted once with R 3 .
- Particularly preferred is the aryl group or
- the substituent R 3 on dibenzofuranyl or dibenzothiophenyl is preferably Fl.
- the substituent R 3 on the aryl group having 6 to 40 carbon atoms is preferably phenyl or Fl when it occurs. Most preferably, the aryl group or fleteroaryl group is unsubstituted in An and Ar 2.
- the substituent R * is, identically or differently, a straight-chain alkyl group having 1 to 10 C atoms or an aryl group at each occurrence 6 to 12 carbon atoms, where the two substituents R * may together form a monocyclic or polycyclic, aliphatic, aromatic or heteroaromatic ring system which may be substituted by one or more substituents R 5 .
- R * is preferably the same at each occurrence or two substituents R * together form a monocyclic or polycyclic,
- R * is selected from methyl, ethyl or phenyl. Particularly preferably, two substituents R * together with the C atom to which they are attached form a ring system selected from
- Substituents R 5 may be substituted.
- the ring system formed by two substituents R * particularly preferably corresponds to a spirobifluorene.
- n is preferably 0 or 1, wherein R has the meaning given above or has the meaning given below. N is particularly preferred.
- (1 d), (1e) and (1f) is the sum of n and m, abbreviated (n + m), preferably 0, 1 or 2, wherein R has the meaning given above or has the meaning given below. More preferably, (n + m) is 0 or 1. Most preferably, (n + m) is 0.
- the heteroaromatic ring system with 5 to 40 aromatic ring atoms in this case is preferably derived from R for dibenzofuran or dibenzothiophene.
- the aromatic ring system having 6 to 40 aromatic ring atoms in this case is preferably phenyl, biphenyl or terphenyl, particularly preferably phenyl or [1, 1 ', 2', 1 "] - terphenyl-5'-yl up to 40 carbon atoms in this case,
- R is preferably a linear or branched alkyl group having 1 to 4 C atoms, particularly preferably methyl, ethyl, n-propyl or n-butyl, very particularly preferably methyl.
- (1 d), (1e) and (1f) L is the same or different at each occurrence as a single bond or an aromatic ring system of 6 to 30
- aromatic ring atoms which may be substituted by one or more radicals R 5 , wherein R 5 has a meaning, as before
- R 5 is preferably selected from the group consisting of D or phenyl.
- L is a single bond or an aromatic ring system having 6 to 18 carbon atoms, preferably phenylene, Biphenylene, naphthylene, phenanthrenylene or triphenylenylene, wherein the connection to the other substituents is not limited.
- phenylene can be linked, for example, in the ortho, meta or para position with the dibenzofuran / dibenzothiophene unit and the fluorenyl unit.
- L can therefore preferably be selected from the following linkers L-1 to L-20 which are unsubstituted or may be substituted by R 5 as described above:
- the linkers L-1 to L-20 are unsubstituted.
- linkers L-1 to L-7 are used.
- L is linked as phenylene in the meta position.
- L may be bonded in any position to the fluorenyl.
- L as described above or described as preferred, is more preferably linked to position 2 and 4 of the fluorenyl radical, most preferably linked to position 2 of the fluorenyl radical.
- L is preferably linked in position 2, 3 or 4 of the bispirofluorenyl radical, or very particularly preferably linked in position 2 of the bispirofluorenyl radical.
- Particularly preferred compounds of the formula (1) correspond to the formulas (1d) and (1 f), as described above.
- Another object of the invention are also specific
- Y is selected from O or S
- L is identical or different at each instance and is an aromatic ring system having 6 to 18 C atoms, preferably phenylene, biphenylene, naphthylene, phenanthrenylene or triphenylenylene, which may be substituted by one or more radicals R 5 ;
- An, Ar2 are each independently in each occurrence an aryl or heteroaryl group having 5 to 40 aromatic ring atoms, which may be substituted 3 with one or more radicals R;
- R * is the same or different at each occurrence as a straight-chain alkyl group having 1 to 10 C atoms or an aryl group having 6 to 12 C atoms, where two substituents R * together form a monocyclic or polycyclic, aliphatic, aromatic or heteroaromatic ring system may be substituted with one or more R 5 ;
- R is the same or different at each occurrence selected from the group consisting of D, F, CN or an aryl group having 6 to 10 carbon atoms;
- R 3 in each occurrence is identically or differently selected from the group consisting of H, D, F, CN, N (Ar) 2, an aliphatic hydrocarbon radical having 1 to 20 C atoms or an aromatic or heteroaromatic ring system having 5 to Aromatic ring atoms in which one or more H atoms can be replaced by D, F, Cl, Br, I or CN and which may be substituted by one or more alkyl groups each having 1 to 4 carbon atoms, in which case two or more more adjacent substituents R 3 together form a mono- or polycyclic aliphatic ring system;
- R 5 is the same or different on each occurrence selected from the group consisting of D, F, CN and an aryl group having 6 to 18 carbon atoms, while two or more adjacent substituents R 5 together form a mono- or polycyclic aliphatic ring system ;
- n and m independently of each other denote 0, 1, 2 or 3 and each
- o means independently at each occurrence 0, 1, 2, 3, 4, 5, 6 or 7.
- the meanings given as preferred for Y, L, Ar 1 , Ar 2 , R, R 3 , R 5 , R * , n, m and o apply correspondingly, as described above.
- Y, An, Ar2, R, R 5, n, m, o and p is a defined above or, preferably, have the meaning given and q is 0, 1, 2, 3 or 4. If q is greater than 0, R 5 is preferably D or phenyl.
- Y is preferably O
- Ar 1 and Ar 2 are preferably phenyl, dibenzofuranyl .
- Composition selected, wherein the symbols used have a specified or preferred meaning are the structures of Table 1 below.
- Particularly suitable compounds of formula (1), (1a), (1b), (1c), (1d), (1e), (1f), (1g), (1h), (1i), (1j ) or (1k), which are selected according to the invention, are the compounds 1 to 11 of Table 2.
- RA is H, -L3-Ar 4 or -Li-N (Ar) 2;
- RB is Ar3 or -L2-N (Ar) 2;
- Li , L2 the same or different at each occurrence, a single bond or an aromatic or heteroaromatic ring system having 5 to 30 aromatic ring atoms, which may be substituted by one or more radicals R 3 ;
- L3 is a single bond or an aromatic
- Ring atoms which may be substituted by one or more radicals R 3 , wherein a substituent R 1 on the carbazole with a
- Substituents R 3 can form a ring; AG 3 is an aromatic ring system with 6 to 40 aromatic
- Ar 4 is the same or different at each instance and is an unsubstituted or substituted 9-aryl-carbazolyl or unsubstituted or substituted carbazol-9-yl which may be substituted by one or more R 4 radicals and independently of one another, each time two or more radicals R 4 or a radical R 4 together with a radical R 1 can form a monocyclic or polycyclic, aliphatic, aromatic or heteroaromatic ring, wherein aryl denotes an aromatic or heteroaromatic ring system having 5 to 30 aromatic ring atoms which may be substituted by R 3 ;
- R 1 is the same or different at each occurrence selected from the
- CN or NO2 may be replaced, an aromatic or heteroaromatic ring system with 5 to 40 aromatic
- Ring atoms each of which may be substituted with one or more R 2 , an aryloxy or Fleteroaryloxy distrin having 5 to 40 aromatic ring atoms, which with one or more
- R 2 may be substituted, or an aralkyl or
- Carbon atoms are bonded, a monocyclic or polycyclic, aliphatic, aromatic or heteroaromatic
- Ring atoms which may each be substituted by one or more radicals R 3 , an aryloxy or heteroaryloxy group having 5 to 60 aromatic ring atoms which may be substituted by one or more radicals R 3 , or a combination thereof
- R 2 may form a monocyclic or polycyclic, aliphatic, aromatic or heteroaromatic ring system which may be substituted with one or more R 3 radicals;
- R 3 is the same or different at each occurrence selected from the group consisting of H, D, F, CN, N (A, an aliphatic Hydrocarbon radical having 1 to 20 carbon atoms or an aromatic or heteroaromatic ring system having 5 to 30 aromatic ring atoms, in which one or more H atoms may be replaced by D, F, Cl, Br, I or CN and the may be substituted by one or more alkyl groups each having 1 to 4 carbon atoms; two or more adjacent substituents R 3 may together form a mono- or polycyclic, aliphatic ring system;
- R 4 is identically or differently chosen on each occurrence from the group consisting of H, D, F, CN, an aliphatic hydrocarbon radical having 1 to 20 C atoms or an aromatic or heteroaromatic ring system having 5 to 30 aromatic ring atoms, in which one or more Fl atoms by D, F, CI, Br,
- Carbon atoms or CN may be replaced; two or more adjacent substituents R 4 may together form a mono- or polycyclic ring system;
- Ar is the same or different at each occurrence, an aromatic or heteroaromatic ring system having 5 to 30 aromatic ring atoms, which may be substituted with one or more non-aromatic radicals R 3 ; in this case, two radicals Ar, which bind to the same N atom, P atom or B atom, also by a single bond or a bridge selected from N (R 3 ), C (R 3 ) 2 , O or S, with each other be bridged and
- P independently of each occurrence represents 0, 1, 2, 3 or 4.
- compounds of the formula (2) are selected as described above, which are reacted with compounds of the formulas (1), (1 a), ( 1 b), (1 c), (1 d), (1 e), (1 f), (1 g), (1 h), (1 i), (1 j) and (1 k), as before described or preferably described, or with the compounds of Table 1 or the compounds 1 to 11, are used in the composition.
- Li, L2, L3, Ar, Ar 3, Ar 4, R 1, p and q have a foregoing or the following stated meaning.
- Preferred compounds of the formula (2a) are compounds of the formulas (2e), (2f), (2g), (2h) and (2i),
- aromatic or heteroaromatic ring system with 5 to 30
- R 3 represents aromatic ring atoms which may be substituted by one or more radicals R 3 , where a substituent R 1 on the carbazole with a substituent R 3 may form a ring, r and s are each independently 0, 1, 2, 3 or 4, Z is C (R 1 ) 2, N-Ar, O or S and t is 0 or 1.
- H is excluded from the definition of the substituents R 1 if p, q, r or s are greater than 1.
- Another object of the invention is therefore a
- a substituent R 1 and a substituent R 4 form a ring, for example in formula (2f) also defined by [Z] t, wherein preferably the following rings Z-1 to Z-7 are formed and the dashed lines represent the bond to the carbazoles:
- two substituents R 1 may be used - or several times together form a ring or two substituents R 4 may form one or more times together a ring, which is preferably selected from the following structures (S1) to (S9), where # and # are the respective
- R 2 in the partial structures (S1) to (S9) is preferably H or an aromatic or heteroaromatic ring system having 5 to 40 ring atoms, which may be substituted by R 3 , preferably H or phenyl.
- Single bond are each independently selected from the linkers L-2.1 to L-2.33,
- the linker L-1 to L-33 may be substituted by one or more radicals R 3 and the dashed lines connect to the carbazoles mean.
- a radical R 3 can form a ring on one of the linkers L-2.1 to L-2.33 with a radical R 1 of the carbazole.
- the linkers L-2.1 to L-2.33 are preferably unsubstituted or substituted by a phenyl.
- Preferred linkers for Li are selected from structures L-2.1 to L-2.33 in which W is S or O, more preferably O is.
- Preferred linkers for L3 are selected from structures L-2.1 to L-2.33 in which W is O, S or N-Ar, more preferably O or N-Ar.
- the compounds of formulas (2), (2a), (2b), (2c), (2d), (2e), (2f), (2g), (2h) and (2i) are the two Carbazoles each linked together in 3-position.
- q is 0 or 1. Most preferably, q is 0.
- aromatic ring atoms which may be substituted by one or more R 2 radicals.
- Ring system having 5 to 40 aromatic ring atoms in this R 1 is preferably derived from benzene, dibenzofuran, dibenzothiophene, 9-phenyl-carbazole, biphenyl and terphenyl, which may be substituted by one or more R 2 radicals.
- Substituents [R 1 ] q is position 1, 2, 3 or 4 or the combinations of positions 1 and 4 and 1 and 3, particularly preferably 1 and 3, 2 or 3, very particularly preferably 3, where R 1 is one of the above given preferred meanings and q is greater than 0.
- Particularly preferred substituents R 1 in [R 1 ] q are carbazol-9-yl, biphenyl, terphenyl and dibenzofuranyl.
- r is preferably 0, 1 or 2, wherein R 4 has a meaning given above or has the meaning given below. More preferably, r is 0 or 1, most preferably 0.
- substituent R 4 in each occurrence is the same or different preferably selected from the group consisting of D, F, an alkyl group having 1 to 20 carbon atoms or a aromatic or heteroaromatic ring system with 5 to 30
- Aromatic ring atoms in which one or more Fl atoms by D, F, CI, Br, I, a straight-chain or branched alkyl group having 1 to 4
- Carbon atoms or CN can be replaced.
- Two or more adjacent substituents R 4 may together form a mono- or polycyclic ring system.
- the aromatic or heteroaromatic ring system having 5 to 40 aromatic ring atoms in this R 4 is preferably derived from benzene, dibenzofuran, dibenzothiophene, 9-phenyl-carbazole, biphenyl, terphenyl and triphenylene.
- the preferred position of the substituent [R 4 ] r is position 1, 2 or 3, more preferably 3, wherein R 4 has one of the preferred meanings given above and r is greater than 0.
- s is preferably 0, 1 or 2, wherein R 4 has a meaning given above or has the meaning given below. More preferably, s is 0 or 1, most preferably 0.
- Ar in N (Ar) 2 is preferably derived from benzene, dibenzofuran, fluorene, spirobifluorene, dibenzothiophene, 9-phenyl-carbazole, biphenyl and
- Terphenyl which may be substituted with one or more substituents R 3 .
- Ar is preferably unsubstituted here.
- Ring system as described above, preferably selected from the group carbazole, 9-phenyl-carbazole, dibenzofuran, dibenzothiophene, fluorene, terphenyl or spirobifluorene derived, most preferably derived from a dibenzofuran.
- Ar 3 each independently aromatic ring system having 6 to 40 aromatic ring atoms or a heteroaromatic ring system having 10 to 40 aromatic ring atoms, which may be substituted by one or more radicals R 3 .
- Ar 3 is preferably derived from benzene, dibenzofuran, fluorene,
- heteroaromatic ring systems having 10 to 40 carbon atoms, which may be substituted with one or more of the substituents R 3 , electron-rich ring systems are particularly preferred, the
- R 3 substituted ring system preferably contains in the entirety only one N atom or optionally substituted by R 3 substituted ring system in the entirety one or more O and / or S atoms.
- Ar3 is preferably selected from the aromatic or heteroaromatic ring systems Ar- 1 to Ar-22 selected
- Ar-20 Ar-21 Ar-22 where Y 3 is, identically or differently, O, NR # , S or C (R # ) 2 in each occurrence, the radical R # bound to N not being H and R 3 has the meaning previously mentioned or a preferred below and the dashed bond represents the bond to the N-atom.
- R # is identical or different at each occurrence H, D, F, CI, Br,
- Y 3 is preferably O, S or C (CH 3) 2. Y 3 is most preferably O.
- the substituent R 3 in each occurrence is identically or differently selected from the group consisting of H, D, F, CN, an aliphatic hydrocarbon radical having 1 to 20 C atoms or an aromatic or heteroaromatic Ring system with 5 to 30 aromatic ring atoms in which one or more H atoms are represented by D,
- F, CI, Br, I or CN may be replaced and may be substituted by one or more alkyl groups each having 1 to 4 carbon atoms; two or more adjacent substituents R 3 may together form a mono- or polycyclic aliphatic ring system.
- the substituent R 3 is preferably at each
- the substituent R 3 is preferably the same or different at each occurrence selected from the group consisting of Fl or an aromatic or heteroaromatic ring system having 5 to 30 aromatic ring atoms, as described above, but preferably dibenzofuran,
- the preparation of the compounds of the formula (2) or the preferred compounds of the formulas (2), (2a), (2b), (2c), (2d), (2e), (2f), (2g), (2h) and (2i), as well as the compounds of Table 3 and 4 is known in the art.
- the compounds can be synthesized according to synthetic steps known to those skilled in the art, e.g. Halogenation, preferably bromination, and a subsequent organometallic coupling reaction, e.g.
- Particularly preferred mixtures of the host materials of the formula (1) with the host materials of the formula (2) for the inventive Composition is obtained by combining the compounds 1 to 11 of Table 2 with the compounds of Table 3.
- Composition is obtained by combination of compounds 1 to 11 of Table 2 with compounds 12 to 34 of Table 4, as shown in Table 5 below.
- Table 5 Table 5:
- Composition of the invention ranges from 5% to 90%, preferably from 10% to 85%, more preferably from 20% to 85%, by weight. more preferably in the range of from 30% to 80%, more preferably in the range of from 20% to 60%, and most preferably in the range of from 30% to 50% Wt .-%, based on the total
- Composition is in the range of 10 wt .-% to 95 wt .-%, preferably in the range of 15 wt .-% to 90 wt .-%, more preferably in Range of from 15% to 80%, more preferably in the range of from 20% to 70%, most preferably in the range of from 40% to 80%, by weight most preferably in the range of 50% to 70% by weight, based on the total composition.
- composition according to the invention may, in addition to at least one compound of the formula (1), as described above or described as preferred, be an electron-transporting host or electron-transporting host
- Matrix material and at least one compound of formula (2), as described above or described as preferred, as a hole-transporting floss or hole-transporting matrix material, more
- composition in this embodiment preferably forms an organic layer in an electronic device, as described below.
- the present invention therefore also relates to a composition which, in addition to the abovementioned materials, contains at least one further compound which is selected from the group consisting of hole injection materials, hole transport materials, hole blocking materials, wide band gap materials, fluorescent emitters, phosphorescent materials Emitters, host materials,
- Electron blocking materials electron transport materials and
- Electron injection materials, n-dopants and p-dopants It does not give the skilled person any difficulty to select these from a variety of materials known to him.
- n-dopants are meant herein reducing agents, ie electron donors.
- WO 2007/107306 A1 e.g., EP 2452946 A1, EP 2463927 A1
- pyridines e.g., EP 2452946 A1, EP 2463927 A1
- N-heterocyclic compounds e.g., WO 2009/000237 A1
- acridines e.g., US 2007/145355 A1
- P-dopants are understood here to mean oxidizing agents, ie electron acceptors.
- Preferred examples of p-dopants are F 4 -TCNQ, Fe-TNAP, NDP-2 (Novaled), NDP-9 (Novaled), quinones (eg EP 1538684 A1, WO 2006/081780 A1, WO 2009 / 003455 A1,
- WO 2008/058525 A2 boron tetraazapentalenes (e.g., WO 2007/115540 A1), fullerenes (e.g., DE 102010046040 A1), and main group halides (e.g., WO 2008/128519 A2).
- composition according to the invention comprising a bipolar host and an electron-transporting flost additionally comprises at least one light-emitting compound or an emitter, with phosphorescent emitters being particularly preferred.
- phosphorescent emitter typically includes compounds in which the light emission by a spin-forbidden
- Transition from an excited state with a higher spin multiplicity, ie a spin state> 1, takes place, for example, by a transition from a triplet state or a state with an even higher one
- Spin quantum number for example, a quintet state.
- a transition from a triplet state is preferably understood.
- Preferred phosphorescence emitters are compounds which contain copper, molybdenum, tungsten, rhenium,
- WO2002 / 15645, EP1191613, EP1191612, EP1191614, WO05 / 033244, WO05 / 019373, US2005 / 0258742, WO2009 / 146770, WO2010 / 015307, WO2010 / 031485, WO2010 / 054731, WO 2010/054728, WO 2010/086089, WO 2010/099852, WO 2010/102709, WO 2011/032626, WO 2011/066898, WO 2011/157339, WO 2012/007086, WO 2014/008982, WO 2014/023377, WO 2014/094961, WO 2014/094960, WO 2015/036074, WO 2015/104045, WO 2015/117718, WO 2016/015815, WO 2016/124304, WO 2017/032439, WO 2015/036074, WO 2015/117718 and WO 2016/015815 are taken.
- Preferred examples of phosphorescent emitters are listed in Table 6 below.
- Preferred examples of phosphorescent polypodal emitters are listed in Table 7 below.
- composition according to the invention is preferably each
- composition according to the invention comprising at least one phosphorescent emitter preferably forms an infra-red emitting yellow, orange, red, green, blue or ultraviolet emitting layer, more preferably a yellow or green emitting layer, and most preferably a green emitting layer.
- a yellow-emitting layer is understood as meaning a layer whose photoluminescence maximum lies in the range from 540 to 570 nm.
- An orange-emitting layer is understood as meaning a layer whose photoluminescence maximum lies in the range from 570 to 600 nm.
- a red-emitting layer is understood as meaning a layer whose photoluminescence maximum lies in the range from 600 to 750 nm.
- a green-emitting layer is understood as meaning a layer whose photoluminescence maximum lies in the range from 490 to 540 nm.
- a blue-emitting layer is understood as meaning a layer whose maximum photoluminescence lies in the range from 440 to 490 nm.
- the photoluminescence maximum of the layer is determined by measuring the photoluminescence spectrum of the layer with a layer thickness of 50 nm at room temperature, wherein the layer has the composition according to the invention, ie contains emitter and matrix.
- the photoluminescence spectrum of the selected emitter is usually measured in oxygen-free solution, 10-5 molar, the measurement being carried out at room temperature and any solvent is suitable, in which the selected emitter dissolves in said concentration.
- Particularly suitable solvents are usually toluene or 2-methyl-THF, but also
- the triplet energy T1 in eV is determined from the 25 photoluminescence spectra of the emitter. It will be the first
- preferred phosphorescent emitters are infra-red emitters, preferably from Table 5 or 6, whose triplet energy Ti is preferably from ⁇ 1.9 eV to ⁇ 1.0 eV. Accordingly, preferred phosphorescent emitters are red emitters, preferably from Table 5 or 6, whose triplet energy Ti is preferably from ⁇ 2.1 eV to ⁇ 1.9 eV.
- preferred phosphorescent emitters are yellow emitters, preferably from Table 5 or 6, whose triplet energy Ti is preferably from ⁇ 2.3 eV to ⁇ 2.1 eV.
- preferred phosphorescent emitters are green emitters, preferably from Table 5 or 6, whose triplet energy Ti is preferably from ⁇ 2.5 eV to ⁇ 2.3 eV.
- preferred phosphorescent emitters are blue emitters, preferably from Table 5 or 6, whose triplet energy Ti is preferably ⁇ 3.1 eV to ⁇ 2.5 eV.
- preferred phosphorescent emitters are ultraviolet emitters, preferably from Table 5 or 6, whose triplet energy Ti is preferably ⁇ 4.0 eV to ⁇ 3.1 eV.
- particularly preferred phosphorescent emitters are green or yellow emitters, preferably from Table 6 or 7, as described above.
- Very particularly preferred phosphorescent emitters are accordingly green emitters, preferably from Table 6 or 7, whose triplet energy Ti is preferably from ⁇ 2.5 eV to ⁇ 2.3 eV.
- Preferred fluorescent emitters are selected from the class of arylamines.
- An arylamine or an aromatic amine in the context of this invention is understood as meaning a compound which contains three substituted or unsubstituted aromatic or heteroaromatic ring systems bonded directly to the nitrogen. At least one of these aromatic or heteroaromatic ring systems is preferably a condensed ring system, particularly preferably having at least 14 aromatic ring atoms.
- Preferred examples of these are aromatic anthracene amines, aromatic anthracenediamines, aromatic pyrenamines, aromatic pyrene diamines, aromatic chrysenamines or aromatic
- an aromatic anthracene amine is meant a compound in which a diarylamino group is bonded directly to an anthracene group, preferably in the 9-position.
- An aromatic anthracenediamine is understood to mean a compound in which two diarylamino groups are bonded directly to an anthracene group, preferably in the 9,10-position.
- Aromatic pyrenamines, pyrenediamines, chrysenamines and chrysenediamines are defined analogously thereto, the diarylamino groups being attached to the pyrene preferably in the 1-position or in the 1,6-position.
- fluorescent emitters are indeno-fluorenamines or -diamines, for example according to WO 2006/108497 or WO 2006/122630, benzoindenofluoreneamines or -diamines, for example according to WO 2008/006449, and dibenzoindenofluoreneamines or -diamines, for example according to WO 2007 / 140847, as well as the indenofluorene derivatives with condensed aryl groups disclosed in WO 2010/012328.
- the composition according to the invention is used as a component of mixed-matrix systems.
- the mixed-matrix systems preferably comprise three or four different matrix materials, more preferably three different matrix materials (that is, a further matrix component in addition to the invention
- composition compositions
- Particularly suitable matrix materials which in Combination with the composition according to the invention as
- Matrix components of a mixed-matrix system are selected from wide-band-gap materials,
- ETM Electron Transport Materials
- HTM Hole Transport Materials
- mixed-matrix systems Preference is given to using mixed-matrix systems in phosphorescent organic electroluminescent devices. More detailed information on mixed-matrix systems is contained inter alia in the application WO 2010/108579.
- Particularly suitable matrix materials which can be used in combination with the composition according to the invention as matrix components of a mixed-matrix system in phosphorescent or fluorescent organic electroluminescent devices are selected from the below-mentioned preferred matrix materials for phosphorescent emitters or the preferred matrix materials for fluorescent emitters, as the case may be which type of emitter is used.
- the mixed-matrix system is optimized for an emitter of Table 6 or 7.
- oligoarylenes for example 2,2 ', 7,7'-tetraphenylspirobifluorene according to EP 676461 or US Pat
- the condensed aromatic groups the oligoarylenevinylenes (eg DPVBi or spiro-DPVBi according to EP 676461), the polypodal metal complexes (eg according to WO 2004/081017), the hole-conducting compounds (eg according to WO 2004/058911 ), the electron-conducting compounds, in particular ketones, phosphine oxides, sulfoxides, etc. (for example according to US Pat
- Particularly preferred host materials are selected from the classes of oligoarylenes containing naphthalene, anthracene, Benzanthracen and / or pyrene or atropisomers of these compounds, the oligoarylenevinylenes, the ketones, the phosphine oxides and the sulfoxides.
- Very particularly preferred matrix materials are selected from the classes of oligoarylenes containing anthracene, benzanthracene,
- an oligoarylene is to be understood as meaning a compound in which at least three aryl or arylene groups are bonded to one another.
- matrix materials preferably for phosphorescent emitters, in addition to the composition according to the invention, as described above, comprising a mixture are particularly preferred
- Preferred further matrix materials are selected from the classes of the aromatic amines, in particular triarylamines, z.
- carbazole derivatives for example CBP, N, N-biscarbazolylbiphenyl
- compounds according to WO 2005/039246 are selected from the classes of the aromatic amines, in particular triarylamines, z.
- WO 2011/128017 indenocarbazole derivatives, e.g. B. according to WO 2010/136109 and WO 2011/000455, Azacarbazolderivate, z. B. according to EP 1617710, EP 1617711, EP 1731584, JP 2005/347160, Indolocarbazolderivate, z. B. according to WO 2007/063754 or WO 2008/056746, ketones, z. B. according to WO 2004/093207 or WO 2010/006680, phosphine oxides, sulfoxides and
- Sulfones e.g. B. according to WO 2005/003253, oligophenylenes, bipolar
- Matrix materials e.g. B. according to WO 2007/137725, silanes, z. B. according to WO 2005/111172, azaborole or boronic esters, z. B. according to WO 2006/117052,
- Triazine derivatives e.g. B. according to WO 2010/015306, WO 2007/063754 or WO 2008/056746
- zinc complexes for. B. according to EP 652273 or WO 2009/062578
- aluminum complexes e.g. B. BAIq, Diazasilol- and
- Tetraazasilol derivatives eg. B. according to WO 2010/054729, diazaphosphole derivatives, z. B. according to WO 2010/054730 and aluminum complexes, for. B. BAIQ.
- the composition contains besides the ingredients
- Another object of the invention is therefore a
- a composition consisting of a compound of the formula (1), (1a) to (1 k) or a compound selected from 1 to 11 and a
- composition according to the invention is suitable for use in one
- organic electronic device understood a device which contains at least one layer containing at least one organic compound.
- the device can also be inorganic
- Another object of the invention is therefore the use of a composition as described or preferred
- compositions can be processed by vapor deposition or from solution. If the compositions are applied from solution
- Formulations of the composition according to the invention containing at least one further solvent required may be, for example, solutions, dispersions or emulsions. It may be preferable to use mixtures of two or more solvents for this purpose.
- a further subject of the present invention is therefore a formulation containing a composition according to the invention and at least one solvent.
- Suitable and preferred solvents are, for example, toluene, anisole, o-, m- or p-xylene, methyl benzoate, mesitylene, tetralin, veratrol, THF, methyl-TFIF, THP, chlorobenzene, dioxane, phenoxytoluene, in particular 3-phenoxytoluene, (-) -Fenchone, 1, 2,3,5-tetramethylbenzene, 1, 2,4,5-tetramethylbenzene, 1-methylnaphthalene, 2-methylbenzothiazole, 2-phenoxyethanol, 2-pyrrolidinone, 3-methylanisole, 4-methylanisole, 3,4 Dimethylanisole, 3,5-dimethylanisole, acetophenone, a-terpineol,
- the formulation may also contain at least one further organic or inorganic compound which is also disclosed in the
- an electronic device is used, in particular an emitting compound, in particular a phosphorescent emitter and / or another matrix material.
- Suitable emissive compounds and other matrix materials have already been listed above.
- the present invention also relates to the use of the composition according to the invention in an organic
- the organic electronic device is preferably selected from organic integrated circuits (OlCs), organic field effect transistors (OFETs), organic thin film transistors (OTFTs), organic electroluminescent devices, organic solar cells
- OlCs organic integrated circuits
- OFETs organic field effect transistors
- OTFTs organic thin film transistors
- organic electroluminescent devices organic solar cells
- organic electroluminescent devices are organic light-emitting transistors (OLETs), organic field quench devices (OFQDs), organic light-emitting electrochemical cells (OLECs, LECs, LEECs), organic laser diodes (O-lasers) and organic light-emitting diodes (OLEDs), particularly preferred are OLECs and OLEDs and most preferred are OLEDs.
- OLETs organic light-emitting transistors
- OFQDs organic field quench devices
- OLEDs organic light-emitting electrochemical cells
- O-lasers organic laser diodes
- OLEDs organic light-emitting diodes
- the composition according to the invention is used in an electronic device in a layer with electron-transporting function.
- the layer is preferably an electron-injection layer (EIL), an electron-transport layer (ETL), a hole-blocking layer (HBL) and / or an emission layer (EML), particularly preferably an ETL, EIL and / or an EML.
- EIL electron-injection layer
- ETL electron-transport layer
- HBL hole-blocking layer
- EML emission layer
- the composition according to the invention is used in an EML,
- a further subject of the present invention is therefore an organic electronic device which is selected in particular from one of the abovementioned electronic devices and which contains the inventive composition as described above or preferably described, preferably in an emission layer (EML), in one Electron transport layer (ETL), in one
- a phosphorescent layer which is characterized in that it has, in addition to the composition as described above or preferably described
- phosphorescent emitter in particular together with an emitter of Table 6 or 7 or a preferred emitter, as described above.
- the invention therefore relates to an electronic electroluminescent device in the electronic device, most preferably to an organic light-emitting diode (OLED), the inventive A composition as previously described or preferably described together with a phosphorescent emitter in the electronic device, most preferably to an organic light-emitting diode (OLED), the inventive A composition as previously described or preferably described together with a phosphorescent emitter in the electronic device.
- OLED organic light-emitting diode
- Emissions layer contains.
- the composition according to the invention according to the preferred embodiments and the emissive compound contains.
- the composition preferably contains between 0.1 and 99% by volume, more preferably between 1 and 90% by volume, particularly preferably between 2 and 40% by volume, very particularly preferably between 3 and 20% by volume of Emitters based on the total composition of emitter and matrix material.
- an electronic device may contain further layers. These are, for example, selected from in each case one or more hole injection layers, hole transport layers,
- the sequence of layers in an organic electroluminescent device is preferably the following:
- This sequence of layers is a preferred sequence.
- An organic electroluminescent device containing the composition of the invention may contain a plurality of emitting layers.
- these emission layers particularly preferably have a total of several emission maxima between 380 nm and 750 nm, so that overall white emission results, ie. H.
- various emitting compounds are used which can fluoresce or phosphoresce and which emit blue or yellow or orange or red light.
- three-layer systems that is to say systems having three emitting layers, the three layers exhibiting blue, green and orange or red emission (for the basic structure see, for example, US Pat.
- Emitter compounds may also be a single emitter used, which emits in a wide wavelength range.
- Suitable charge transport materials as used in the hole injection or hole transport layer or in the electron blocking layer or in the electrolysis layer.
- the transport layer of the organic electroluminescent device according to the invention can be used, for example, those disclosed in Y. Shirota et al., Chem. Rev. 2007, 107 (4), 953-1010
- materials for the electron transport layer it is possible to use all materials as used in the prior art as electron transport materials in the electron transport layer.
- aluminum complexes for example Alq3, are suitable.
- Zirconium complexes for example Zrq 4 , benzimidazole derivatives, triazine derivatives, pyrimidine derivatives, pyridine derivatives, pyrazine derivatives, quinoxaline derivatives, quinoline derivatives, oxadiazole derivatives, aromatic ketones,
- Lactams, boranes, diazaphosphole derivatives and phosphine oxide derivatives Lactams, boranes, diazaphosphole derivatives and phosphine oxide derivatives.
- WO 2004/028217, WO 2004/080975 and WO 2010/072300 are disclosed.
- Particularly preferred as hole transport materials are materials which can be used in a hole transport, hole injection or electron blocking layer, such as indenofluorenamine derivatives (for example according to WO 06/122630 or WO 06/100896), the amine derivatives disclosed in EP 1661888 , Hexaazatriphenylene derivatives (for example according to WO 01/049806), fused aromatic amine derivatives (for example according to US Pat. No.
- Dibenzopyran amines eg according to WO 2013/083216
- dihydroacridine derivatives eg WO 2012/150001.
- metals are lower
- alkaline earth metals such as alkaline earth metals, alkali metals, main group metals or lanthanides (eg, Ca, Ba, Mg, Al, In, Mg, Yb, Sm, etc.).
- lanthanides eg, Ca, Ba, Mg, Al, In, Mg, Yb, Sm, etc.
- alloys of an alkali or alkaline earth metal and silver for example an alloy of
- Magnesium and silver In multilayer structures, it is also possible, in addition to the metals mentioned, to use further metals which have a relatively high work function, such as, for example, As Ag or Al, which then usually combinations of metals, such as Ca / Ag, Mg / Ag or Ba / Ag are used. It may also be preferred to introduce between a metallic cathode and the organic semiconductor a thin intermediate layer of a material with a high dielectric constant. For this example, come alkali metal or
- Alkaline earth metal fluorides but also the corresponding oxides or
- Carbonates in question eg LiF, L12O, BaF2, MgO, NaF, CsF, CS2CO3, etc.
- lithium quinolinate LiQ
- Layer thickness of this layer is preferably between 0.5 and 5 nm.
- the anode high workfunction materials are preferred.
- the anode has a work function greater than 4.5 eV. Vacuum up.
- metals with a high redox potential are suitable for this purpose, such as, for example, Ag, Pt or Au.
- metal / metal oxide electrodes eg Al / Ni / NiO x , Al / PtO x ) may also be preferred. For some applications, at least one of the electrodes must be transparent or
- anode materials are conductive mixed metal oxides. Particular preference is given to indium-tin
- ITO indium-zinc oxide
- IZO indium-zinc oxide
- the anode can also consist of several layers, for example of an inner layer of ITO and an outer layer of a metal oxide, preferably tungsten oxide, molybdenum oxide or vanadium oxide.
- the organic electronic device is used in the manufacture
- the organic electronic device containing the composition according to the invention is characterized in that one or more organic layers containing the composition according to the invention are coated with a sublimation method.
- the materials are vacuum deposited in vacuum sublimation at an initial pressure of less than 10 5 mbar, preferably less than 10 6 mbar. However, it is also possible that the initial pressure is even lower, for example less than 10 7 mbar.
- an organic electroluminescent device characterized in that one or more layers are coated with the OVPD (Organic Vapor Phase Deposition) method or with the aid of a carrier gas sublimation.
- the materials are applied at a pressure between 10 5 mbar and 1 bar.
- OVJP Organic Vapor Jet Printing
- the materials are applied directly through a nozzle and thus structured (for example, BMS Arnold et al., Appl. Phys. Lett., 2008, 92, 053301).
- an organic electroluminescent device characterized in that one or more organic layers containing the inventive composition of solution, such. B. by spin coating, or by any printing method, such as.
- any printing method such as.
- screen printing flexographic printing, Nozzle Printing or offset printing, but particularly preferably LITI (Light Induced Thermal Imaging, thermal transfer printing) or ink-jet printing (ink jet printing) are produced.
- LITI Light Induced Thermal Imaging, thermal transfer printing
- ink-jet printing ink jet printing
- Composition of the invention can be applied very easily and inexpensively. This technique is particularly suitable for the mass production of organic electronic devices.
- hybrid processes are possible in which, for example, one or more layers are applied from solution and one or more further layers are vapor-deposited.
- Another object of the invention is therefore a method for
- OVPD Organic Vapor Phase Deposition
- an organic layer which is intended to contain the composition according to the invention and which may comprise a plurality of different constituents, can be applied to any desired substrate or vapor-deposited.
- Another object of the invention is therefore a process, characterized in that the at least one compound of formula (1), as described above or described as preferred, and the at least one compound of formula (2), as described above or described as preferred , successively or simultaneously from at least two sources of material, optionally with further materials, as described above or preferably described, are deposited from the gas phase and form the organic layer.
- the at least one organic layer is applied by means of vapor deposition, wherein the constituents of the composition are premixed and evaporated from a single source of material.
- Another object of the invention is therefore a method, characterized in that the composition of the invention, as described above or preferably described, is used as a material source for vapor deposition of the flea system, and
- Another object of the invention is a method for producing an organic electronic device containing a
- composition according to the invention as previously described or preferably described, characterized in that the
- inventive formulation as previously described, is used to apply the organic layer.
- compositions according to the invention or the
- compositions according to the invention in organic electronic devices, in particular in organic electroluminescent devices, and in particular in an OLED or OLEC, leads to significant increases in the lifetime of the devices.
- compositions according to the invention in organic electronic devices, in particular in an organic electroluminescent device, and in particular in an OLED or OLEC, likewise leads to a significant increase in the efficiency and / or operating voltage of the devices.
- good voltages and efficiencies can be achieved by using compounds according to the prior art, for example compound SoA1, with mean emitter concentrations in the EML of 12%. The life of the components is low.
- the difference from the comparative example lies in the electronic structure of the electron-transporting host of compounds 1 and 6 for comparative compound SoA1, as shown in Table 9.
- Carbazole to a spirobifluorenyl linked directly or via a linker to the dibenzofuran / dibenzothiophene an improvement in the lifetime of electronic devices, especially OLEDs, of about 10 to 40%.
- Dibenzothiophene an improvement in the life of electronic devices.
- compositions according to the invention are very suitable for use in an emission layer and show improved performance data, in particular for the service life, operating voltage and / or
- compositions according to the invention can be easily processed and are therefore very well suited for mass production in commercial applications.
- compositions according to the invention can be premixed and vapor-deposited from a single source of material so that an organic layer with uniform distribution of the components used can be prepared in a simple and rapid manner.
- Multiplicity (multiplicity) 1 performed. This is followed by an energy calculation (single point) for the electronic ground state and the triplet level based on the optimized geometry.
- TDDFT time dependent density functional theory
- M-org. organometallic compounds
- the energy bill is, as described above, analogous to that of the organic substances, with the difference that for the metal atom, the base set "LanL2DZ” and for the ligands of the basic set “6-31 G (d)" is used (Gaussian input line " # B3PW91 / gen
- Cyclic voltammetry calibrated HOMO and LUMO value in electron volts determined as follows:
- HOMO (eV) (HEh * 27.212) * 0.8308-1.118;
- the triplet level T1 of a material is defined as the relative
- Excitation energy (in eV) of the triplet state with the lowest energy which results from the quantum chemical energy calculation.
- the singlet level S1 of a material is defined as the relative
- Excitation energy (in eV) of the singlet state with the second lowest energy which results from the quantum chemical energy calculation.
- the energetically lowest singlet state is called SO.
- the method described here is independent of the software package used and always gives the same results. Examples of frequently used programs for this purpose are “Gaussian09” (Gaussian Inc.) and Q-Chem 4.1 (Q-Chem, Inc.). In the present case, the program package "Gaussian09, Revision D.01" is used to calculate the energies.
- Pretreatment for Examples V1 to E10 Glass slides coated with structured ITO (indium tin oxide) 50 nm thick are first treated with an oxygen plasma followed by an argon plasma prior to coating. These plasma-treated glass slides form the substrates to which the OLEDs are applied.
- the OLEDs have the following layer structure: substrate / hole injection layer (HIL) / hole transport layer (HTL) / electron blocking layer (EBL) / emission layer (EML) / optional hole blocking layer (HBL) / electron transport layer (ETL) / optional electron injection layer (EIL) and finally a cathode.
- the cathode is formed by a 100 nm thick aluminum layer.
- the exact structure of the OLEDs can be found in Table 8. The materials needed to make the OLEDs are shown in Table 9. The data of the OLEDs are listed in Table 10.
- Examples V1-V8 are comparative examples according to the prior art, examples E1 to E10 show data of OLEDs according to the invention.
- the emission layer always consists of at least one matrix material (host material, host material), in the sense of the invention at least two matrix materials, and an emitting dopant (dopant, emitter), which penetrates the matrix material or the matrix materials
- Cover vaporization is mixed in a certain volume fraction.
- the electron transport layer may consist of a mixture of two materials.
- the OLEDs are characterized by default. For this purpose, the
- Electroluminescence spectra are determined at a current density of 10mA / cm 2 and used to calculate the CIE 1931 x and y color coordinates.
- the Specification U 10 in Table 10 indicates the voltage required for a current density of 10mA / cm 2 .
- SE10 denotes the current efficiency achieved at a current density of 10mA / cm 2 .
- the lifetime LD is defined as the time after which the luminance drops from the start luminance to a certain proportion L1 when operating at a constant current density jo.
- An indication L1 80% in Table 10 means that the lifetime given in column LD corresponds to the time after which the luminance drops to 80% of its initial value.
- Emission layer can be used in phosphorescent green OLEDs.
- the combinations according to the invention of compounds 1 and 6 with compound 15, 19, 23, 26 or 27 are used in examples E1 to E10 as matrix material in the emission layer.
- Example 2 Synthesis of compounds of the invention a) 2- ⁇ 12-chloro-8-oxatricyclo [7.4.0.0 2 7 ] trideca-1 (13), 2 (7), 3,5,9,11-hexaen-3-yl ⁇ - 4- ⁇ 8 -oxatricyclo [7.4.0.0 2 7 ] trideca-1 (9), 2,4,6,10,12-hexaen-3-yl ⁇ -6-phenyl-1,3,5-triazine
- Reaction mixture is heated under reflux for 16 h.
- the reaction mixture is cooled to room temperature and phases are separated. After extraction of the aqueous phase, the combined organic phases with saline ou
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Organic Chemistry (AREA)
- Optics & Photonics (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18175234 | 2018-05-30 | ||
PCT/EP2019/063712 WO2019229011A1 (en) | 2018-05-30 | 2019-05-28 | Composition for organic electronic devices |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3802520A1 true EP3802520A1 (en) | 2021-04-14 |
Family
ID=62492532
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19729458.0A Pending EP3802520A1 (en) | 2018-05-30 | 2019-05-28 | Composition for organic electronic devices |
Country Status (5)
Country | Link |
---|---|
US (1) | US20220332724A1 (en) |
EP (1) | EP3802520A1 (en) |
KR (1) | KR20210016423A (en) |
CN (1) | CN112166112A (en) |
WO (1) | WO2019229011A1 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210082300A (en) * | 2019-12-24 | 2021-07-05 | 롬엔드하스전자재료코리아유한회사 | Organic electroluminescent compound, a plurality of host materials and organic electroluminescent device comprising the same |
EP4169082A1 (en) | 2020-06-23 | 2023-04-26 | Merck Patent GmbH | Method for producing a mixture |
WO2024038029A1 (en) | 2022-08-17 | 2024-02-22 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
WO2024038068A1 (en) | 2022-08-19 | 2024-02-22 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
WO2024104934A1 (en) | 2022-11-16 | 2024-05-23 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
WO2024133211A1 (en) | 2022-12-21 | 2024-06-27 | Merck Patent Gmbh | Novel materials for organic electroluminescent devices |
WO2024170609A1 (en) | 2023-02-17 | 2024-08-22 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
WO2024218109A1 (en) | 2023-04-20 | 2024-10-24 | Merck Patent Gmbh | Materials for electronic devices |
Family Cites Families (136)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5831654B2 (en) | 1977-11-26 | 1983-07-07 | 富士通株式会社 | Magnetic disk coating composition |
US4539507A (en) | 1983-03-25 | 1985-09-03 | Eastman Kodak Company | Organic electroluminescent devices having improved power conversion efficiencies |
US5061569A (en) | 1990-07-26 | 1991-10-29 | Eastman Kodak Company | Electroluminescent device with organic electroluminescent medium |
US5151629A (en) | 1991-08-01 | 1992-09-29 | Eastman Kodak Company | Blue emitting internal junction organic electroluminescent device (I) |
US5837166A (en) | 1993-09-29 | 1998-11-17 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence device and arylenediamine derivative |
JPH07133483A (en) | 1993-11-09 | 1995-05-23 | Shinko Electric Ind Co Ltd | Organic luminescent material for el element and el element |
EP0676461B1 (en) | 1994-04-07 | 2002-08-14 | Covion Organic Semiconductors GmbH | Spiro compounds and their application as electroluminescence materials |
DE19652261A1 (en) | 1996-12-16 | 1998-06-18 | Hoechst Ag | Aryl-substituted poly (p-arylenevinylenes), process for their preparation and their use in electroluminescent devices |
JP3302945B2 (en) | 1998-06-23 | 2002-07-15 | ネースディスプレイ・カンパニー・リミテッド | Novel organometallic luminescent material and organic electroluminescent device containing the same |
AU5004700A (en) | 1999-05-13 | 2000-12-05 | Trustees Of Princeton University, The | Very high efficiency organic light emitting devices based on electrophosphorescence |
EP2278637B2 (en) | 1999-12-01 | 2021-06-09 | The Trustees of Princeton University | Complexes of form L2MX |
KR100377321B1 (en) | 1999-12-31 | 2003-03-26 | 주식회사 엘지화학 | Electronic device comprising organic compound having p-type semiconducting characteristics |
TW532048B (en) | 2000-03-27 | 2003-05-11 | Idemitsu Kosan Co | Organic electroluminescence element |
US20020121638A1 (en) | 2000-06-30 | 2002-09-05 | Vladimir Grushin | Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds |
US6392250B1 (en) | 2000-06-30 | 2002-05-21 | Xerox Corporation | Organic light emitting devices having improved performance |
CN100505375C (en) | 2000-08-11 | 2009-06-24 | 普林斯顿大学理事会 | Organometallic compounds and emission-shifting organic electrophosphorescence |
JP4154138B2 (en) | 2000-09-26 | 2008-09-24 | キヤノン株式会社 | Light emitting element, display device and metal coordination compound |
JP4154140B2 (en) | 2000-09-26 | 2008-09-24 | キヤノン株式会社 | Metal coordination compounds |
JP4154139B2 (en) | 2000-09-26 | 2008-09-24 | キヤノン株式会社 | Light emitting element |
US6803720B2 (en) | 2000-12-15 | 2004-10-12 | Universal Display Corporation | Highly stable and efficient OLEDs with a phosphorescent-doped mixed layer architecture |
AU2002306698A1 (en) | 2001-03-14 | 2002-09-24 | The Trustees Of Princeton University | Materials and devices for blue phosphorescence based organic light emitting diodes |
KR100691543B1 (en) | 2002-01-18 | 2007-03-09 | 주식회사 엘지화학 | New material for transporting electron and organic electroluminescent display using the same |
TWI276369B (en) | 2002-09-20 | 2007-03-11 | Idemitsu Kosan Co | Organic electroluminescent device |
KR101030158B1 (en) | 2002-12-23 | 2011-04-18 | 메르크 파텐트 게엠베하 | Organic electroluminescent element |
DE10310887A1 (en) | 2003-03-11 | 2004-09-30 | Covion Organic Semiconductors Gmbh | Matallkomplexe |
EP2174933B1 (en) | 2003-03-13 | 2019-04-03 | Idemitsu Kosan Co., Ltd. | Benzimidazole derivatives for use in organic electroluminescent devices |
JP4411851B2 (en) | 2003-03-19 | 2010-02-10 | コニカミノルタホールディングス株式会社 | Organic electroluminescence device |
EP1618170A2 (en) | 2003-04-15 | 2006-01-25 | Covion Organic Semiconductors GmbH | Mixtures of matrix materials and organic semiconductors capable of emission, use of the same and electronic components containing said mixtures |
US7326475B2 (en) | 2003-04-23 | 2008-02-05 | Konica Minolta Holdings, Inc. | Material for organic electroluminescent device, organic electroluminescent device, illuminating device and display |
EP1644459B1 (en) | 2003-07-07 | 2017-08-23 | Merck Patent GmbH | Mixtures of organic emissive semiconductors and matrix materials, and electronic components comprising said mixtures |
DE10333232A1 (en) | 2003-07-21 | 2007-10-11 | Merck Patent Gmbh | Organic electroluminescent element |
DE10338550A1 (en) | 2003-08-19 | 2005-03-31 | Basf Ag | Transition metal complexes with carbene ligands as emitters for organic light-emitting diodes (OLEDs) |
DE10345572A1 (en) | 2003-09-29 | 2005-05-19 | Covion Organic Semiconductors Gmbh | metal complexes |
US7795801B2 (en) | 2003-09-30 | 2010-09-14 | Konica Minolta Holdings, Inc. | Organic electroluminescent element, illuminator, display and compound |
DE10357044A1 (en) | 2003-12-04 | 2005-07-14 | Novaled Gmbh | Process for doping organic semiconductors with quinonediimine derivatives |
DE102004008304A1 (en) | 2004-02-20 | 2005-09-08 | Covion Organic Semiconductors Gmbh | Organic electronic devices |
DE102004010954A1 (en) | 2004-03-03 | 2005-10-06 | Novaled Gmbh | Use of a metal complex as an n-dopant for an organic semiconductive matrix material, organic semiconductor material and electronic component |
US7790890B2 (en) | 2004-03-31 | 2010-09-07 | Konica Minolta Holdings, Inc. | Organic electroluminescence element material, organic electroluminescence element, display device and illumination device |
KR100787425B1 (en) | 2004-11-29 | 2007-12-26 | 삼성에스디아이 주식회사 | Phenylcarbazole-based compound and Organic electroluminescence display employing the same |
DE102004023277A1 (en) | 2004-05-11 | 2005-12-01 | Covion Organic Semiconductors Gmbh | New material mixtures for electroluminescence |
US7598388B2 (en) | 2004-05-18 | 2009-10-06 | The University Of Southern California | Carbene containing metal complexes as OLEDs |
JP4862248B2 (en) | 2004-06-04 | 2012-01-25 | コニカミノルタホールディングス株式会社 | Organic electroluminescence element, lighting device and display device |
EP1655359A1 (en) | 2004-11-06 | 2006-05-10 | Covion Organic Semiconductors GmbH | Organic electroluminescent device |
JP2008530773A (en) | 2005-02-04 | 2008-08-07 | ノヴァレッド・アクチエンゲゼルシャフト | Additives to organic semiconductors |
US20090066225A1 (en) | 2005-03-18 | 2009-03-12 | Idemitsu Kosan Co., Ltd. | Aromatic amine derivative and organic electroluminescence device utilizing the same |
JP5295756B2 (en) | 2005-04-14 | 2013-09-18 | メルク パテント ゲーエムベーハー | Compounds for organic electronic devices |
KR101289923B1 (en) | 2005-05-03 | 2013-07-25 | 메르크 파텐트 게엠베하 | Organic electroluminescent device and boric acid and borinic acid derivatives used therein |
DE102005023437A1 (en) | 2005-05-20 | 2006-11-30 | Merck Patent Gmbh | Connections for organic electronic devices |
CN102633820B (en) | 2005-12-01 | 2015-01-21 | 新日铁住金化学株式会社 | Compound for organic electroluminescent element and organic electroluminescent element |
US7919010B2 (en) | 2005-12-22 | 2011-04-05 | Novaled Ag | Doped organic semiconductor material |
EP1837927A1 (en) | 2006-03-22 | 2007-09-26 | Novaled AG | Use of heterocyclic radicals for doping of organic semiconductors |
EP1837926B1 (en) | 2006-03-21 | 2008-05-07 | Novaled AG | Heterocyclic radicals or diradicals and their dimers, oligomers, polymers, di-spiro and polycyclic derivatives as well as their use in organic semiconductor materials and electronic devices. |
WO2007115540A1 (en) | 2006-03-30 | 2007-10-18 | Novaled Ag | Use of bora-tetraazapentalenes |
EP1860709B1 (en) | 2006-05-24 | 2012-08-08 | Novaled AG | Use of square planar transition metal complexes as dopants |
DE102006025777A1 (en) | 2006-05-31 | 2007-12-06 | Merck Patent Gmbh | New materials for organic electroluminescent devices |
DE102006025846A1 (en) | 2006-06-02 | 2007-12-06 | Merck Patent Gmbh | New materials for organic electroluminescent devices |
DE102006031990A1 (en) | 2006-07-11 | 2008-01-17 | Merck Patent Gmbh | New materials for organic electroluminescent devices |
WO2008056746A1 (en) | 2006-11-09 | 2008-05-15 | Nippon Steel Chemical Co., Ltd. | Compound for organic electroluminescent device and organic electroluminescent device |
DE102006053320B4 (en) | 2006-11-13 | 2012-01-19 | Novaled Ag | Use of a coordination compound for doping organic semiconductors |
DE102006054523B4 (en) | 2006-11-20 | 2009-07-23 | Novaled Ag | Dithiolene transition metal complexes and selenium-analogous compounds, their use as dopant, organic semiconductive material containing the complexes, and electronic or optoelectronic device containing a complex |
DE102006054524B4 (en) | 2006-11-20 | 2022-12-22 | Novaled Gmbh | Use of dithiolene transition metal complexes and selenium-analogous compounds as dopants |
DE102007002714A1 (en) | 2007-01-18 | 2008-07-31 | Merck Patent Gmbh | New materials for organic electroluminescent devices |
DE102007018456B4 (en) | 2007-04-19 | 2022-02-24 | Novaled Gmbh | Use of main group element halides and/or pseudohalides, organic semiconducting matrix material, electronic and optoelectronic components |
EP1988587B1 (en) | 2007-04-30 | 2016-12-07 | Novaled GmbH | Oxocarbon, pseudo oxocarbon and radialene compounds and their use |
EP1990847B1 (en) | 2007-05-10 | 2018-06-20 | Novaled GmbH | Use of quinoid bisimidazoles and their derivatives as dopant for doping an organic semi-conductor matrix material |
DE102007024850A1 (en) | 2007-05-29 | 2008-12-04 | Merck Patent Gmbh | New materials for organic electroluminescent devices |
EP2009014B1 (en) | 2007-06-22 | 2018-10-24 | Novaled GmbH | Application of a precursor of an n-dopant for doping an organic semi-conducting material, precursor and electronic or optoelectronic component |
DE102007031220B4 (en) | 2007-07-04 | 2022-04-28 | Novaled Gmbh | Quinoid compounds and their use in semiconducting matrix materials, electronic and optoelectronic components |
DE102008051737B4 (en) | 2007-10-24 | 2022-10-06 | Novaled Gmbh | Square-planar transition metal complexes, organic semiconducting materials, and electronic or optoelectronic devices comprising them and use thereof |
DE102007053771A1 (en) | 2007-11-12 | 2009-05-14 | Merck Patent Gmbh | Organic electroluminescent devices |
EP2229699B1 (en) | 2008-01-15 | 2012-05-23 | Novaled AG | Dithiol transition metal complexes, and electronic or optoelectronic components |
US8057712B2 (en) | 2008-04-29 | 2011-11-15 | Novaled Ag | Radialene compounds and their use |
DE102008027005A1 (en) | 2008-06-05 | 2009-12-10 | Merck Patent Gmbh | Organic electronic device containing metal complexes |
DE102008033943A1 (en) | 2008-07-18 | 2010-01-21 | Merck Patent Gmbh | New materials for organic electroluminescent devices |
DE102008035413A1 (en) | 2008-07-29 | 2010-02-04 | Merck Patent Gmbh | Connections for organic electronic devices |
DE102008036247A1 (en) | 2008-08-04 | 2010-02-11 | Merck Patent Gmbh | Electronic devices containing metal complexes |
DE102008036982A1 (en) | 2008-08-08 | 2010-02-11 | Merck Patent Gmbh | Organic electroluminescent device |
DE102008048336A1 (en) | 2008-09-22 | 2010-03-25 | Merck Patent Gmbh | Mononuclear neutral copper (I) complexes and their use for the production of optoelectronic devices |
US8119037B2 (en) | 2008-10-16 | 2012-02-21 | Novaled Ag | Square planar transition metal complexes and organic semiconductive materials using them as well as electronic or optoelectric components |
EP2180029B1 (en) | 2008-10-23 | 2011-07-27 | Novaled AG | Radialene compounds and their use |
DE102008056688A1 (en) | 2008-11-11 | 2010-05-12 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
US8865321B2 (en) | 2008-11-11 | 2014-10-21 | Merck Patent Gmbh | Organic electroluminescent devices |
DE102008057051B4 (en) | 2008-11-13 | 2021-06-17 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
DE102008057050B4 (en) | 2008-11-13 | 2021-06-02 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
DE102008064200A1 (en) | 2008-12-22 | 2010-07-01 | Merck Patent Gmbh | Organic electroluminescent device |
DE102009007038A1 (en) | 2009-02-02 | 2010-08-05 | Merck Patent Gmbh | metal complexes |
EP2401254B1 (en) | 2009-02-26 | 2013-06-19 | Novaled AG | Quinone compounds as dopants in organic electronics |
DE102009011223A1 (en) | 2009-03-02 | 2010-09-23 | Merck Patent Gmbh | metal complexes |
DE102009013041A1 (en) | 2009-03-13 | 2010-09-16 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
DE102009014513A1 (en) | 2009-03-23 | 2010-09-30 | Merck Patent Gmbh | Organic electroluminescent device |
DE102009023155A1 (en) | 2009-05-29 | 2010-12-02 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
DE102009031021A1 (en) | 2009-06-30 | 2011-01-05 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
WO2011134458A1 (en) | 2010-04-27 | 2011-11-03 | Novaled Ag | Organic semiconducting material and electronic component |
DE102009041414A1 (en) | 2009-09-16 | 2011-03-17 | Merck Patent Gmbh | metal complexes |
DE102009057167A1 (en) | 2009-12-05 | 2011-06-09 | Merck Patent Gmbh | Electronic device containing metal complexes |
DE102010005697A1 (en) | 2010-01-25 | 2011-07-28 | Merck Patent GmbH, 64293 | Connections for electronic devices |
DE102010014933A1 (en) | 2010-04-14 | 2011-10-20 | Merck Patent Gmbh | Materials for electronic devices |
WO2011131185A1 (en) | 2010-04-21 | 2011-10-27 | Novaled Ag | Mixture for producing a doped semiconductor layer |
WO2011157339A1 (en) | 2010-06-15 | 2011-12-22 | Merck Patent Gmbh | Metal complexes |
DE102010027317A1 (en) | 2010-07-16 | 2012-01-19 | Merck Patent Gmbh | metal complexes |
EP2614047B8 (en) | 2010-09-10 | 2016-12-14 | Novaled GmbH | Compounds for organic photovoltaic devices |
DE102010045405A1 (en) | 2010-09-15 | 2012-03-15 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
DE102010046040B4 (en) | 2010-09-22 | 2021-11-11 | Novaled Gmbh | Process for the production of fullerene derivatives |
EP2452946B1 (en) | 2010-11-16 | 2014-05-07 | Novaled AG | Pyridylphosphinoxides for organic electronic device and organic electronic device |
EP2463927B1 (en) | 2010-12-08 | 2013-08-21 | Novaled AG | Material for organic electronic device and organic electronic device |
TWI526418B (en) | 2011-03-01 | 2016-03-21 | 諾瓦發光二極體股份公司 | Organic semiconductive materials and organic component |
JP6193215B2 (en) | 2011-05-05 | 2017-09-06 | メルク パテント ゲーエムベーハー | Compounds for electronic devices |
JP2014520394A (en) | 2011-06-09 | 2014-08-21 | ノヴァレッド・アクチエンゲゼルシャフト | Compounds for organic electronic devices |
EP2724388B1 (en) | 2011-06-22 | 2020-03-11 | Novaled GmbH | Electronic device |
US20140203254A1 (en) | 2011-06-22 | 2014-07-24 | Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. | Organic Electronic Component |
KR102310368B1 (en) | 2011-11-17 | 2021-10-07 | 메르크 파텐트 게엠베하 | Spirodihydroacridine derivatives and the use thereof as materials for organic electroluminescent devices |
JP2015529637A (en) | 2012-07-13 | 2015-10-08 | メルク パテント ゲーエムベーハー | Metal complex |
KR102337198B1 (en) | 2012-07-23 | 2021-12-09 | 메르크 파텐트 게엠베하 | Compounds and organic electroluminescent devices |
DE202013012401U1 (en) | 2012-07-23 | 2016-10-12 | Merck Patent Gmbh | Connections and Organic Electronic Devices |
US9768391B2 (en) | 2012-07-23 | 2017-09-19 | Merck Patent Gmbh | Derivatives of 2-diarylaminofluorene and organic electronic compounds containing them |
EP2882763B1 (en) | 2012-08-07 | 2018-08-22 | Merck Patent GmbH | Metal complexes |
JP6556628B2 (en) | 2012-12-21 | 2019-08-07 | メルク パテント ゲーエムベーハー | Metal complex |
KR102188212B1 (en) | 2012-12-21 | 2020-12-08 | 메르크 파텐트 게엠베하 | Metal complexes |
CN105531347B (en) | 2013-09-11 | 2018-09-11 | 默克专利有限公司 | Metal complex |
KR20150074603A (en) | 2013-12-24 | 2015-07-02 | 희성소재 (주) | Fluorene-based compound and organic light emitting device using the same |
CN105829320A (en) * | 2013-12-27 | 2016-08-03 | 罗门哈斯电子材料韩国有限公司 | Novel organic electroluminescent compounds, and multi-component host material and organic electroluminescent device comprising the same |
JP6618927B2 (en) | 2014-01-13 | 2019-12-11 | メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH | Metal complex |
US11393988B2 (en) | 2014-02-05 | 2022-07-19 | Merck Patent Gmbh | Metal complexes |
KR101730779B1 (en) * | 2014-05-05 | 2017-04-26 | 메르크 파텐트 게엠베하 | Materials for organic light emitting devices |
KR101764969B1 (en) | 2014-05-26 | 2017-08-04 | 주식회사 엘지화학 | Hetero-cyclic compound and organic light emitting device comprising the same |
US9853228B2 (en) | 2014-07-28 | 2017-12-26 | Merck Patent Gmbh | Metal complexes |
WO2016015810A1 (en) * | 2014-07-29 | 2016-02-04 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
US10749113B2 (en) | 2014-09-29 | 2020-08-18 | Universal Display Corporation | Organic electroluminescent materials and devices |
US9406892B2 (en) | 2015-01-07 | 2016-08-02 | Universal Display Corporation | Organic electroluminescent materials and devices |
KR102554987B1 (en) | 2015-02-03 | 2023-07-12 | 메르크 파텐트 게엠베하 | Metal complexes |
US11522140B2 (en) | 2015-08-17 | 2022-12-06 | Universal Display Corporation | Organic electroluminescent materials and devices |
JP6946269B2 (en) | 2015-08-25 | 2021-10-06 | メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH | Metal complex |
WO2018016742A1 (en) | 2016-07-20 | 2018-01-25 | 주식회사 엘지화학 | Novel heterocyclic compound and organic light-emitting device using same |
KR101885899B1 (en) * | 2016-11-07 | 2018-08-06 | 주식회사 엘지화학 | Novel hetero-cyclic compound and organic light emitting device comprising the same |
WO2018084423A2 (en) * | 2016-11-07 | 2018-05-11 | 주식회사 엘지화학 | Novel heterocyclic compound and organic light emitting element using same |
KR101856728B1 (en) * | 2017-08-10 | 2018-05-10 | 주식회사 엘지화학 | Organic light emitting device |
-
2019
- 2019-05-28 EP EP19729458.0A patent/EP3802520A1/en active Pending
- 2019-05-28 KR KR1020207037691A patent/KR20210016423A/en not_active Application Discontinuation
- 2019-05-28 WO PCT/EP2019/063712 patent/WO2019229011A1/en unknown
- 2019-05-28 CN CN201980035784.2A patent/CN112166112A/en active Pending
- 2019-05-28 US US15/733,850 patent/US20220332724A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
KR20210016423A (en) | 2021-02-15 |
WO2019229011A1 (en) | 2019-12-05 |
US20220332724A1 (en) | 2022-10-20 |
CN112166112A (en) | 2021-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3649213B1 (en) | Composition for organic electronic devices | |
EP4118696B1 (en) | Organic electroluminescent apparatus | |
EP3649123B1 (en) | Composition for organic electronic devices | |
WO2017148565A1 (en) | Materials for organic electroluminescence devices | |
WO2019229011A1 (en) | Composition for organic electronic devices | |
EP4118695B1 (en) | Organic electroluminescent apparatus | |
WO2015086108A1 (en) | Materials for electronic devices | |
EP3928360A1 (en) | Composition for organic electronic devices | |
WO2014044344A1 (en) | Materials for electronic devices | |
WO2017076485A1 (en) | Materials for organic electroluminescent devices | |
EP3609977A1 (en) | Composition for organic electronic devices | |
EP3710557B1 (en) | Composition for organic electronic devices | |
EP4158704A1 (en) | Organic electroluminescent apparatus | |
WO2018087022A1 (en) | Materials for organic electroluminescent devices | |
WO2014106521A1 (en) | Electronic device | |
EP4055641B1 (en) | Organic electroluminescent apparatus | |
WO2023247662A1 (en) | Composition for organic electronic devices | |
WO2021052921A1 (en) | Mixture of two host materials, and organic electroluminescent device comprising same | |
WO2024133211A1 (en) | Novel materials for organic electroluminescent devices | |
WO2024121133A1 (en) | Organic electronic device and special materials for organic electronic devices | |
WO2024013004A1 (en) | Materials for electronic devices | |
WO2024104934A1 (en) | Materials for organic electroluminescent devices | |
WO2024218109A1 (en) | Materials for electronic devices | |
EP4426701A1 (en) | Benzofuro[3,2-d]pyrimidino-2,4-dicarbonitril derivatives and similar compounds for organic electroluminescence devices | |
WO2024038029A1 (en) | Materials for organic electroluminescent devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20201126 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20230105 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230519 |