Nothing Special   »   [go: up one dir, main page]

EP3898248B1 - Im thz-bereich wirkendes sicherheitselement und verfahren zu dessen herstellung - Google Patents

Im thz-bereich wirkendes sicherheitselement und verfahren zu dessen herstellung Download PDF

Info

Publication number
EP3898248B1
EP3898248B1 EP19831592.1A EP19831592A EP3898248B1 EP 3898248 B1 EP3898248 B1 EP 3898248B1 EP 19831592 A EP19831592 A EP 19831592A EP 3898248 B1 EP3898248 B1 EP 3898248B1
Authority
EP
European Patent Office
Prior art keywords
grating structure
line grating
layer
security element
thz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19831592.1A
Other languages
English (en)
French (fr)
Other versions
EP3898248A1 (de
Inventor
Hans Lochbihler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Giesecke and Devrient Currency Technology GmbH
Original Assignee
Giesecke and Devrient Currency Technology GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Giesecke and Devrient Currency Technology GmbH filed Critical Giesecke and Devrient Currency Technology GmbH
Publication of EP3898248A1 publication Critical patent/EP3898248A1/de
Application granted granted Critical
Publication of EP3898248B1 publication Critical patent/EP3898248B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/20Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof characterised by a particular use or purpose
    • B42D25/29Securities; Bank notes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/328Diffraction gratings; Holograms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/373Metallic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/40Manufacture
    • B42D25/405Marking
    • B42D25/425Marking by deformation, e.g. embossing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/40Manufacture
    • B42D25/45Associating two or more layers
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/003Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using security elements
    • G07D7/0032Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using security elements using holograms
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/06Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using wave or particle radiation
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/06Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using wave or particle radiation
    • G07D7/12Visible light, infrared or ultraviolet radiation
    • G07D7/1205Testing spectral properties

Definitions

  • the invention relates to a security element that acts in the THz range for the production of ID cards, cards, passports or documents of value, such as banknotes, checks or the like, which has a lattice structure that is not visible to the naked eye and is formed, for example, by a metal layer.
  • the invention further relates to a method for producing such a security element.
  • the invention further relates to a document of value with such a security element.
  • Security elements are used to protect documents of value, such as banknotes, checks or the like, against counterfeiting.
  • covert security elements which are not readily recognizable to a user of the value document and are generally subjected to a machine authenticity check
  • open security elements which are recognizable to a user.
  • An example of overt security elements are holograms.
  • the invention is therefore based on the object of creating a security element that can be detected with THz radiation and is therefore covered, which has even more favorable properties in the THz range and requires little additional effort in series production. It should also be able to be combined particularly advantageously with overt security features.
  • a security element for the production of documents of value, such as banknotes, checks or the like, which has a grid structure that is not visible to the naked eye and is formed in a first layer, preferably a metal layer, which is arranged in a dielectric and is opaque to THz radiation is, wherein the first layer is in a first plane and has, for example, a layer thickness between 6 nm and 1 micron.
  • the first layer In the first layer there are longitudinal slits that are transparent to THz radiation and are next to one another educated.
  • the first layer is embedded in a dielectric that is transparent to THz radiation.
  • the longitudinal slits are arranged next to one another periodically or quasi-periodically with a period, for example between 8 ⁇ m and 200 ⁇ m.
  • the width of the longitudinal slits is not more than 1/5, preferably 1/10, of the period.
  • the slots are at least 5 times as long as the period.
  • a second layer is also arranged in the dielectric in a second plane, which is parallel to the first plane. This is also formed from a layer material that is opaque to THz radiation and has a second line grating structure. This is inverted to the first line grating structure and offset by half a period. As a result, the second line lattice structure forms longitudinal webs which, when viewed from above, exactly fill the gaps left by the first longitudinal slots in the first layer.
  • the second line lattice structure is formed from longitudinal webs running in parallel, with one of the longitudinal webs of the second layer lying under each of the longitudinal slots of the first layer.
  • the superimposed pairs of longitudinal slots and longitudinal webs each have essentially (i.e. within the scope of manufacturing tolerances, which can be e.g. 5-10%) the same width, so that the mentioned gap filling is realized.
  • the distance between the first and second levels is between 50 nm and 100 ⁇ m, particularly preferably between 500 nm and 5 ⁇ m.
  • the period is more preferably in the same interval.
  • Quasi-periodic means that the grating period fluctuates around a mean value. This fluctuation can preferably be up to half a period, particularly preferably up to 1/10 period.
  • periodic structures are covered by a quasi-periodic arrangement, in which the period varies due to production.
  • Such quasi-periodic arrangements of slot structures also have an increased TM transmission in the THz range.
  • the first and/or the second layer comprises a color-shift coating. This improves visual recognition - in addition to machine evaluation, which takes place in the THZ area.
  • DE 102015009584 A1 Next are those from the DE 102015009584 A1 known combinations with security features that can be seen with the naked eye.
  • hologram structures, sub-wavelength gratings with periods between 200 nm and 500 nm, sawtooth structures, etc. come into question DE 102015009584 A1 is fully integrated here in this regard.
  • a first layer which is formed from a layer material that is opaque to THz radiation, is arranged in a first plane in a dielectric that is transparent to THz radiation. It has a periodic or quasi-periodic first line lattice structure, which cannot be seen with the naked eye, and consists of parallel longitudinal slits, which produce longitudinal slits in the first layer. A width of the longitudinal slits is not larger than 1/5 of the period, preferably not larger than 1/10 of the period.
  • a second layer which is also formed from a layer material that is opaque to THz radiation, is arranged in the dielectric in a second plane, which is parallel to the first plane.
  • a second line grating structure is formed. It is inverted to the first line grating structure and offset by half a period. This in turn ensures that the longitudinal webs, which are formed in the second layer, exactly fill the longitudinal slots in a plan view.
  • the security element according to the invention can be checked in the THz range, since the slot structure is transparent for THz radiation with TM polarization, but opaque for TE polarization, or vice versa. Due to the slit structure, the security feature acts as a polarizer that lets through THz radiation with one polarization. If the incident THz radiation is correspondingly polarized, a large proportion of this polarization component passes through the security element. The security element can thus be subjected to a machine authenticity check very easily.
  • a THz radiation source and a THz detector are used for this purpose. Ideally, the THz radiation is polarized, with the security element also being able to be detected with unpolarized THz radiation.
  • a polarizer which acts as an analyzer, must be arranged in front of the detector.
  • the authenticity check can be carried out with a measurement in transmission as well as in reflection.
  • the security element acts as a polarizer that lets the THz radiation with TM polarization through. If the THz radiation is correspondingly linearly polarized, this component passes through the security element for the most part and becomes polarized with the same polarization completely detected by the analyzer. If the polarization directions of the radiation source and detector are perpendicular to one another, the trivial case of a hole in the security element can be ruled out. This would also be visually verifiable.
  • a vertically polarized THz radiation is rotated when passing through the security element and the analyzer with horizontal polarization can receive the THz signal.
  • the contrast can be increased by recording with two or more different polarization directions.
  • the machine authenticity check can thus be carried out both with parallel orientation of the polarization of beam source and detector and with crossed orientation.
  • the rotation of the security feature is a rotation of the security feature in the plane that is defined by the periodically or quasi-periodically adjacent longitudinal slots.
  • the slit structure cannot be seen with the naked eye, at least for an inexperienced observer and/or in a mere top view, since the width of the longitudinal slits is not greater than 1/5 of the period. If this upper limit is lowered, the slit structure becomes very difficult or impossible to recognize even for a practiced observer who is looking for the slit structure and/or when using special viewing techniques (e.g. certain tilting and rotating of the security element). It is particularly preferred that the width of the longitudinal slits is not greater than 1/10 of the period, since the slit structure then produces a security feature that is particularly well concealed.
  • the double structure which provides longitudinal webs under the slits that are formed in the first layer, which exactly match the slit width, the transmission and reflection properties in the THz range are improved.
  • the security element is designed in such a way that the layer comprises a plurality of fields, between which a longitudinal direction of the longitudinal slits differs. So the fields have an individual angular orientation of their directions of the longitudinal slots. Such individual fields then appear with different brightness depending on the rotational position and/or orientation to the THz detector.
  • the configuration of the lattice structure in the layer is virtually imperceptible to the naked eye. A potential counterfeiter thus receives no indication of the presence of such a security feature.
  • the layer hardly differs from a layer that is formed without the longitudinal slits.
  • it is possible to combine the security element with a visually visible structure e.g. by additionally providing the areas of the layer between the longitudinal slits with a further security feature that can be seen with the naked eye.
  • the security element has covert properties that can be seen with THz radiation and additional ones that can be seen with the naked eye, i. H. open security properties.
  • the additional security feature that can be seen with the naked eye can be, in particular, a metalized hologram, a sub-wavelength grating with periods of 200 nm to 500 nm, a sawtooth structure and/or a color-shift coating.
  • the production method according to the invention can be designed in such a way that the preferred configurations and embodiments of the security element described are produced.
  • the security element 4 is designed in such a way that it filters radiation in the THz range in a specific way and at the same time is designed in such a way that it cannot be seen with the naked eye.
  • the security element 4 thus provides a concealed security feature that can be read with a corresponding detector.
  • the THz structure is im visible wavelength range almost opaque or at least not recognizable. This does not preclude the structure from being combined or overlaid with a visually transparent structure, as in the embodiments of FIGS Figures 2B to 2D the case is.
  • the security element 4 can be open on both sides (eg when used as an element spanning a window) or on one side. In addition, it can be completely embedded in the substrate, which is transparent to THz radiation. Examples of the substrate or the dielectric are paper or plastic.
  • FIG. 1 shows a sectional representation of the security element 4, which has a dielectric 6 arranged on a carrier, which is not described in more detail.
  • a first line grating structure 8 is embedded in the dielectric 6 , which is transparent to THz radiation, and is made up of a coating that absorbs THz radiation and is located in a first plane 10 .
  • a second plane 12 parallel thereto, which is a distance h lower there is a second line grating structure 14 in the dielectric 6, which is also made of a THz radiation-absorbing material, preferably made of the same material as the first line grating structure 8.
  • the first and the second line grating structure 8.14 form a bi-layer grating 16.
  • the first and the second line grating structure 8.14 are inverted to each other.
  • the first line grating structure 8 consists of metallic strips 18 which are spaced apart from one another by longitudinal slots 20 . This structure is arranged according to a period p.
  • the second line grating structure 14 is inverted for this purpose. It has longitudinal slits 24 at those points where the first line grating structure 8 has the strips 18 and strips 22 at the points of the longitudinal slits 20.
  • the layer that forms the strips 18 has a thickness t1, for example, the layer that forms the strips . 22 forms a thickness t2.
  • the strips 18, 22, and thus the line grating structures 8,14 have a refractive index n and are completely surrounded by the dielectric 6, which preferably and optionally has the same refractive index n above and below the line grating structures 8,14.
  • the refractive indices in the dielectric 6 can also vary.
  • the inverted shape that the second line grating structure 14 has in relation to the first line grating structure 8 means that the width d of the strips 18 of the first line grating structure 8 corresponds exactly to the width of the longitudinal slots 24 of the second line grating structure 14. The same applies to the width s of the longitudinal slots 20 of the first line grating structure 8 and the strips 22 of the second line grating structure 14.
  • the inverted line gratings are also shifted relatively by half a period in the plane 10 or 12 so that in a top view of the security element 4 (according to the viewing direction in Figure 2A from top to bottom) a gapless layer is formed by the strips 18 and 22.
  • FIG 2A it is shown that a plane wave is incident on the security element 4 at an azimuth angle ph and an elevation angle th.
  • This incident radiation S is partially transmitted as transmitted radiation T and partially reflected as reflected radiation R.
  • the properties of this effect on radiation in the THz range are described below on the basis of Figures 3 to 7 explained in more detail.
  • Figures 2B to 2D differ from those of Figure 2A by the design of the strips 18. They are used to additionally create a visually perceptible effect. Despite this visually perceptible effect, the structure effective in the THz range cannot be recognized. The covert security property is therefore retained.
  • the structure described above for authenticity detection in the THz range is preferably produced on film substrates and can then be applied to banknotes 2, for example.
  • a metallically reflective surface is not very attractive to an observer. It is possible to overprint this area.
  • FIG. 2B A superimposition with various metalized security features known per se is therefore advantageous.
  • Such an overlay can be done with embossed holograms, as in Figure 2B is shown schematically.
  • the strips of the first line grating structure 8 consist of a hologram structure 26. It is opaque to THz radiation, so that the hidden security property of the security element 4 is retained.
  • Such holograms consist of grating arrangements with periods of about 500 nm to 1500 nm.
  • the grating profile has a sinusoidal or rectangular shape with pitches of about 100 nm to 300 nm.
  • the structure is metallized over the entire surface. Aluminum, silver or copper with layer thicknesses of approx.
  • the superimposition with the THz structure described above means that narrow periodic regions of the embossed hologram or mirror strips lie on the lower level 12 . Since the period of the hologram grating is significantly smaller than the grating period of the THz structure, there is no additional interaction in the THz range with this structure. This is because the period of the hologram is orders of magnitude smaller than the wavelength of the THz radiation. There is therefore a comparable transmission in the THz range as in the case of the bi-layer grating 16 described above.
  • the strips include a color-shift coating 28, which can optionally also be applied to the strips of the second line grating structure 14.
  • the color shift coatings 28, 30 produce a visually perceptible effect. Since they include a metal layer or another coating that is opaque to THz radiation, the effect of the security element 4 as a covered security feature is retained here as well.
  • the color-shift structure consists, for example, of a semi-transparent chromium layer, a dielectric spacer layer, preferably made of silicon dioxide, and a metallic mirror layer underneath, e.g. e.g. aluminium. This layer structure is finally formed as a bi-layer structure 16 .
  • the surface area of the underlying structure is small compared to the total area. Therefore, the visual impression of these security features is hardly affected by the overlay with the THz structure.
  • the strips of the first line grating structure 8 are in the form of a sawtooth structure 32 . So there is a superimposition with a sawtooth structure such.
  • Known sawtooth arrangements have a lateral extent of between 1 ⁇ m and 10 ⁇ m and a height of between approximately 0.3 ⁇ m and 4 ⁇ m. Such arrangements are used to create motion and spatial effects in reflection. They are either covered with a simple metal layer or they are vaporized with a so-called color-shift structure in order to create an additional color effect.
  • the metallized structure is interrupted by the periodic arrangement of the longitudinal slots 20, under which the strips 22 lie on the lower level. In the THz range, only this combination affects the transmission, since the interaction with the sawtooth structure 32 itself is low.
  • the overlay can also be performed with (optical) sub-wavelength structures. These are 1-dimensional or 2-dimensional periodic gratings with periods between 100 nm and 500 nm, which are metallized. It remains to be mentioned that so-called metallic moth-eye structures, which can serve as an absorbent background, can also be overlaid with the structure explained above. Also, the metalized ridges will be raised instead of recessed as in the drawings above. The transmission in the THz range is identical with this vertically mirrored arrangement.
  • the above-mentioned coatings that absorb THz radiation are not limited to a simple metal layer or color-shift structures.
  • Other multilayer coatings can also be used as long as they are opaque to THz radiation - either in combination or due to an absorbing component or layer.
  • the transmission for these ridge widths is approximately zero.
  • the contrast of transmission between TM and TE polarization is in Figure 3C ) shown.
  • the calculated degree of polarization (T TM -T TE ) / (T TM + T TE ) is plotted as a function of frequency. The more these values differ from zero, the stronger the polarization effect of the bi-layer grating 16. It can be seen that the grating as a whole frequency range shown has pronounced polarization properties.
  • the other parameters are identical to those of Figures 3A-C .
  • the figure labeled A shows the transmission for TM polarization
  • the figure labeled B shows the transmission for TE polarization
  • the figure labeled C shows the contrast.
  • a variation of the height difference h does not have a significant effect on the transmission behavior in the THz range.
  • the polarization properties are hardly affected. This means that the process window in series production is not critical with regard to this parameter.
  • Figures 5A and 5B it can be seen that the spectral characteristic of the transmission is shifted towards lower frequencies for increasing periods.
  • Figure 5C it can be seen that the polarizing effect of the grating is very good for these periods in the entire spectral range shown. This shows that the transmission characteristics can be adjusted for the desired frequency band by appropriately selecting the grating period.
  • bi-layer grating 16 with periods d>50 ⁇ m can hardly be distinguished from a smooth metallic surface by an observer. This is all the less the case when such bi-layer gratings 16 are overlaid with other structures such as hologram gratings.
  • the structure corresponds schematically to the drawing of Figure 2B .
  • the structure consists of a 60 nm thick aluminum film embedded in UV varnish between two PET foils.
  • the embossed hologram consists of gratings of different azimuthal orientation with periods between 500 nm and 2 ⁇ m.
  • the profile shape is sinusoidal.
  • Figure 7A shows the spectral transmission in the range from 0.1 to 3 THz for TM and TE polarization.
  • this approach can be used to encode information that can be evaluated automatically in the THz range.
  • An example is the coding of the denomination or the value of banknotes, e.g. 5, 10, 20, 50 and 100. These numerical values (or other values) can be encoded by differently oriented areas of bi-layer gratings, preferably with areas rotated by 90°.
  • the security element can simply be subjected to an authenticity check by examining its polarization properties for radiation in the THz spectral range. Possible devices are shown in FIGS. 13 and 14 of FIG DE 102015009584 A1 .
  • the security feature 4 acts as a polarizer that lets through THz radiation with TM polarization. If the THz radiation is correspondingly linearly polarized, this component mostly passes through.
  • the THz source can be followed by a polarizer; this can be omitted if the THz source already emits the corresponding polarized radiation. After passage through the security element 4 z. B.
  • an analyzer that filters the direction of polarization according to the THz detector.
  • the contrast can be increased, ie the device is first set in the configuration with the same alignment of source radiation and detector and then with mutually orthogonal alignment. If the security element has 4 areas with differently oriented slit structures, a spatially resolving detector measures different intensities for the individual areas. This increases the reliability of the authentication of this feature.
  • a THz radiation source and a THz detector are used, which are arranged opposite one another.
  • the security element 4 is located in between and is preferably irradiated approximately perpendicularly.
  • the radiation from the THz radiation source is preferably linearly polarized and the detector is also polarization-sensitive.
  • the security element 4 is arranged in such a way that TM polarization is present for at least one area of the bi-layer grating 16 and the THz radiation reaches the detector there almost unhindered. In contrast, the transmission for the grating areas in TE polarization is blocked.
  • the polarization directions of the radiation source and detector are perpendicular to one another.
  • THz analysis can be performed at a single frequency or in a single frequency band, as well as for multiple frequencies or separate frequency bands. The latter two embodiments refine the authenticity check.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Computer Security & Cryptography (AREA)
  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • Credit Cards Or The Like (AREA)

Description

  • Die Erfindung betrifft ein im THz-Bereich wirkendes Sicherheitselement zur Herstellung von ID-Ausweisen, Karten, Pässen oder Wertdokumenten, wie Banknoten, Schecks oder dergleichen, das eine mit dem bloßen Auge nicht erkennbare Gitterstruktur aufweist, die z.B. durch eine Metallschicht gebildet ist. Die Erfindung betrifft weiter ein Verfahren zur Herstellung eines solchen Sicherheitselementes. Die Erfindung betrifft schließlich weiter ein Wertdokument mit einem solchen Sicherheitselement.
  • Zur Sicherung von Wertdokumenten, wie Banknoten, Schecks oder dergleichen, gegen Fälschung werden Sicherheitselemente verwendet. Hierbei sind grundsätzlich zwei Arten von Sicherheitselementen zu unterscheiden, verdeckte Sicherheitselemente, die für einen Benutzer des Wertdokumentes nicht ohne Weiteres zu erkennen sind und in der Regel einer maschinellen Echtheitsprüfung unterzogen werden, und offene Sicherheitselemente, die für einen Benutzer erkennbar sind. Ein Beispiel für offene Sicherheitselemente sind Hologramme. Es ist aber auch bekannt, ein Sicherheitsmerkmal so auszubilden, dass es sowohl ein offenes Sicherheitsmerkmal, also einen von einem Benutzer erkennbares Sicherheitsmerkmal, als auch ein verdecktes Sicherheitsmerkmal, das mit dem unbewaffneten Auge in der Regel nur mit einer Maschine überprüfbar ist und einem Benutzer eventuell gar nicht auffällt, aufweist. Neben Hologrammen werden im Stand der Technik gemäß DE 102015009584 A1 , das ein Sicherheitselement nach dem Oberbegriff des Anspruchs 1 offenbart, beispielsweise offene Sicherheitsmerkmale auf Basis metallisierter Sägezahnstrukturen oder Color-Shift-Beschriftungen oder Prägestrukturen, die mit einer dünnen Metallschicht überzogen sind, mit THz-Bereich wirkenden Gitterstrukturen kombiniert. Diese Gitterstrukturen haben eine Periode von ca. 20 µm - 100 µm und bestehen aus metallisierten Streifen, welche durch schmale Schlitze beabstandet sind. Solche Strukturen können auch mit metallischen Reliefstrukturen überlagert werden. Nachteilhaft ist, dass die schmalen Schlitze im Metallfilm durch einen zusätzlichen Ätzschritt oder durch Laserdemetallisierung realisiert werden müssen. Da diese Schlitze bevorzugt eine Breite von ca. 1 µm haben, ist dieser Arbeitsgang in der industriellen Produktion herausfordernd.
  • Generell müssen Sicherheitselemente für Wertdokumente mehrere Anforderungen erfüllen. Zum einen sollen sie mit einfachen Mitteln schwer oder gar nicht nachzubilden sein, d. h. der Aufwand für eine einmalige Herstellung sollte möglichst hoch liegen. Zum anderen sollte die Herstellung in der Serienproduktion dagegen möglichst wenig Aufwand bereiten.
  • Der Erfindung liegt deshalb die Aufgabe zugrunde, ein mit THz-Strahlung erfassbares und somit verdecktes Sicherheitselement zu schaffen, welches noch günstigere Eigenschaften im THz-Bereich hat und wenig Zusatzaufwand in der Serienproduktion erfordert. Es sollte zudem mit offenen Sicherheitsmerkmalen besonders vorteilhaft kombiniert werden können.
  • Die Erfindung ist in den unabhängigen Ansprüchen definiert. Die abhängigen Ansprüche betreffen bevorzugte Weiterbildungen.
  • Es ist vorgesehen ein Sicherheitselement zur Herstellung von Wertdokumenten, wie Banknoten, Schecks oder dergleichen, das eine mit dem bloßen Auge nicht erkennbare Gitterstruktur aufweist, die in einer in einem Dielektrikum angeordneten, für THz-Strahlung opaken, ersten Schicht, bevorzugt einer Metallschicht, gebildet ist, wobei die erste Schicht in einer ersten Ebene liegt und z.B. eine Schichtdicke zwischen 6 nm und 1 µm aufweist. In der ersten Schicht sind für THz-Strahlung transparente, nebeneinanderliegende Längsschlitze ausgebildet. Die erste Schicht ist in ein für THz-Strahlung transparentes Dielektrikum eingebettet. Die Längsschlitze sind nebeneinander periodisch oder quasiperiodisch mit einer Periode, z.B. zwischen 8 µm und 200 µm angeordnet. Die Breite der Längsschlitze ist nicht größer als 1/5, bevorzugt 1/10, der Periode. Bevorzugt sind die Schlitze mindestens 5-mal so lang wie die Periode. Im Dielektrikum ist weiter in einer zweiten Ebene, die zur ersten Ebene parallel ist, eine zweite Schicht angeordnet. Diese ist ebenfalls aus einem für THz-Strahlung opaken Schichtmaterial gebildet und weist eine zweite Liniengitterstruktur auf. Diese ist zur ersten Liniengitterstruktur invertiert ausgestaltet und um eine halbe Periode versetzt. Dadurch bildet die zweite Liniengitterstruktur Längsstege, welche in Draufsicht exakt die Lücken ausfüllen, welche von den ersten Längsschlitzen in der ersten Schicht gelassen werden.
  • Damit ist es insbesondere vorgesehen, die zweite Liniengitterstruktur aus parallel verlaufenden Längsstegen zu bilden, wobei unter jedem der Längsschlitze der ersten Schicht einer der Längsstege der zweiten Schicht liegt. Die übereinanderliegenden Paare aus Längsschlitze und Längsstege haben jeweils im Wesentlichen (d.h. im Rahmen von Fertigungstoleranzen, die z.B. 5-10% betragen können) die gleiche Breite, so dass die erwähnte Lückenfüllung realisiert ist.
  • In einer besonders bevorzugten Ausgestaltung beträgt der Abstand zwischen erster und zweiter Ebene zwischen 50 nm und 100 µm, besonders bevorzugt zwischen 500 nm und 5 µm. Im gleichen Intervall liegt weiter bevorzugt die Periode.
  • Quasiperiodisch bedeutet, dass die Gitterperiode um einen Mittelwert schwankt. Bevorzugt kann diese Schwankung bis zu einer halben Periode, besonders bevorzugt bis zu 1/10 Periode betragen. Mit quasiperiodischer Anordnung sind insbesondere periodische Strukturen abgedeckt, bei denen die Periode fertigungsbedingt schwankt. Auch solche quasiperiodischen Anordnungen von Schlitz-Strukturen weisen eine erhöhte TM-Transmission in THz-Bereich auf.
  • In einer bevorzugten Ausgestaltung umfasst die erste und/oder die zweite Schicht eine Color-Shift-Beschichtung. Hierdurch wird eine visuelle Erkennbarkeit verbessert - zusätzlich zur Maschinenauswertbarkeit, die im THZ-Bereich erfolgt.
  • Weiter sind die aus der DE 102015009584 A1 bekannten Kombinationen mit Sicherheitsmerkmalen, die mit dem bloßen Auge wahrnehmbar sind, möglich. Hierbei kommen insbesondere in Frage, Hologrammstrukturen, Subwellenlängengitter mit Perioden zwischen 200 nm und 500 nm, Sägezahnstrukturen etc. Der Offenbarungsgehalt der DE 102015009584 A1 wird diesbezüglich vollumfänglich hier eingebunden.
  • Das Verfahren zur Herstellung eines Sicherheitselementes erzeugt das beschriebene Sicherheitselement. Dazu wird in einem für THz-Strahlung transparentem Dielektrikum in einer ersten Ebene eine erste Schicht angeordnet, die aus einem für THz-Strahlung opaken Schichtmaterial gebildet wird. Sie weist eine mit dem bloßen Auge nicht erkennbare, periodische oder quasiperiodische, erste Liniengitterstruktur aus parallel verlaufenden Längsschlitzen auf, die in der ersten Schicht Längsschlitze erzeugen. Eine Breite der Längsschlitze ist nicht größer als 1/5 der Periode, bevorzugt nicht größer als 1/10 der Periode. Im Dielektrikum wird in einer zweiten Ebene, die zur ersten Ebene parallel ist, eine zweite Schicht angeordnet, die ebenfalls aus einem für THz-Strahlung opaken Schichtmaterial gebildet wird. In der zweiten Schicht wird eine zweite Liniengitterstruktur ausgebildet. Sie ist zur ersten Liniengitterstruktur invertiert und um eine halbe Periode versetzt. Hierdurch wird wiederum erreicht, dass die Längsstege, welche in der zweiten Schicht gebildet sind, in Draufsicht exakt die Längsschlitze füllen.
  • Die bereits genannten Ausgestaltungen des Sicherheitselementes können natürlich auch in Weiterbildungen des Verfahrens realisiert werden.
  • Schließlich ist weiter ein Wertdokument vorgesehen, das mit einem Sicherheitselement der genannten Eigenschaften versehen ist.
  • Das erfindungsgemäße Sicherheitselement ist im THz-Bereich überprüfbar, da die Schlitz-Struktur für THz-Strahlung mit TM-Polarisation transparent, für TE-Polarisation hingegen opak ist oder umgekehrt. Das Sicherheitsmerkmal wirkt auf Grund der Schlitz-Struktur als Polarisator, der THz-Strahlung mit einer Polarisation durchlässt. Ist die einfallende THz-Strahlung entsprechend polarisiert, tritt ein großer Anteil dieser Polarisationskomponente durch das Sicherheitselement hindurch. Das Sicherheitselement lässt sich somit sehr einfach einer maschinellen Echtheitsüberprüfung unterziehen. Dazu werden eine THz-Strahlungsquelle und ein THz-Detektor verwendet. Idealerweise ist die THz-Strahlung polarisiert, wobei das Sicherheitselement auch mit unpolarisierter THz-Strahlung erkannt werden kann. In diesem Fall ist dann zwingend vor dem Detektor ein Polarisator angeordnet, der als Analysator wirkt. Die Echtheitsüberprüfung lässt sich sowohl mit einer Messung in Transmission als auch in Reflexion durchführen. Im beispielhaften Fall der Transmission wirkt das Sicherheitselement als Polarisator, der die THz-Strahlung mit TM-Polarisation durchlässt. Ist die THz-Strahlung entsprechend linear polarisiert, so tritt diese Komponente zum Großteil durch das Sicherheitselement hindurch und wird bei gleicher Polarisation des Analysators vollständig detektiert. Stehen die Polarisationsrichtungen von Strahlungsquelle und Detektor senkrecht aufeinander, so kann der triviale Fall eines Loches im Sicherheitselement ausgeschlossen werden. Dieser wäre auch visuell überprüfbar. Bei einer verdrehten Anordnung des Sicherheitsmerkmals wird eine senkrecht polarisierte THz-Strahlung beim Hindurchtreten durch das Sicherheitselement gedreht und der Analysator mit waagerechter Polarisierung kann das THz-Signal empfangen. Durch die Aufnahme bei zwei oder mehreren unterschiedlichen Polarisationsrichtungen kann der Kontrast verstärkt werden. Die maschinelle Echtheitsüberprüfung kann damit sowohl bei paralleler Orientierung der Polarisation von Strahlquelle und Detektor als auch bei gekreuzter Orientierung ausgeführt werden. Die Verdrehung des Sicherheitsmerkmals ist eine Rotation des Sicherheitsmerkmals in der Ebene, die von den periodisch bzw. quasiperiodisch nebeneinanderliegenden Längsschlitzen definiert wird.
  • Die Schlitz-Struktur ist mit dem bloßen Auge zumindest für einen ungeübten Betrachter und/oder in bloßer Draufsicht nicht erkennbar, da die Breite der Längsschlitze nicht größer als 1/5 der Periode ist. Senkt man diese Obergrenze, wird die Schlitz-Struktur auch für einen geübten Beobachter, der nach der Schlitz-Struktur sucht und/ oder bei der Anwendung besonderer Betrachtungstechniken (beispielsweise bestimmtes Kippen und Drehen des Sicherheitselementes), nur sehr schwer oder gar nicht mehr erkennbar. Es ist besonders bevorzugt, dass die Breite der Längsschlitze nicht größer ist als 1/10 der Periode, da dann die Schlitz-Struktur ein besonders gut verdecktes Sicherheitsmerkmal erzeugt.
  • Durch die Doppelstruktur, welche unter den Schlitzen, die in der ersten Schicht ausgebildet sind, exakt zur Schlitzbreite passende Längsstege vorsieht, sind die Transmissions- und Reflexionseigenschaften im THz-Bereich verbessert.
  • In einer Weiterbildung ist das Sicherheitselement so ausgebildet, dass die Schicht mehrere Felder umfasst, zwischen denen sich eine Längsrichtung der Längsschlitze unterscheidet. Die Felder haben also eine individuelle Winkelorientierung ihrer Richtungen der Längsschlitze. Solche einzelnen Felder erscheinen in Abhängigkeit von der Drehlage und/oder Orientierung zum THz-Detektor dann unterschiedlich hell.
  • Die Ausgestaltung der Gitterstruktur in der Schicht ist für das bloße Auge so gut wie nicht wahrnehmbar. Somit erhält ein potentieller Fälscher kein Indiz für das Vorhandensein eines solchen Sicherheitsmerkmals. Die Schicht unterscheidet sich in Reflexion und Transmission so gut wie nicht von einer Schicht, die ohne die Längsschlitze ausgebildet ist. Insbesondere ist es möglich, das Sicherheitselement mit einer visuell sichtbaren Struktur kombiniert, z.B. indem die zwischen den Längsschlitzen liegenden Bereiche der Schicht zusätzlich mit einem weiteren Sicherheitsmerkmal versehen werden, das mit dem bloßen Auge wahrnehmbar ist. Auf diese Weise hat das Sicherheitselement verdeckte Eigenschaften, die mit THz-Strahlung erkennbar sind, und zusätzliche, mit dem bloßen Auge erkennbare, d. h. offene Sicherheitseigenschaften. Das mit dem bloßen Auge wahrnehmbare weitere Sicherheitsmerkmal kann insbesondere ein metallisiertes Hologramm, ein Subwellenlängengitter mit Perioden von 200 nm bis 500 nm, eine Sägezahnstruktur und/ oder eine Color-Shift-Beschichtung sein.
  • Das erfindungsgemäße Herstellungsverfahren kann so ausgebildet werden, dass die beschriebenen bevorzugten Ausbildungen und Ausführungsformen des Sicherheitselementes hergestellt werden.
  • Nachfolgend wird die Erfindung beispielshalber anhand der beigefügten Zeichnungen, die auch erfindungswesentliche Merkmale offenbaren, noch näher erläutert ist. Es zeigen:
  • Fig. 1
    eine Schemadarstellung einer Banknote mit einem Sicherheitselement,
    Fig. 2A bis 2D
    Schnittdarstellungen durch das Sicherheitselement der Fig. 1 in verschiedenen Ausführungsformen,
    Fig. 3A bis 7B
    Kurven zur Veranschaulichung der Wirkung des Sicherheitselementes der Fig. 2A bis 2D auf Strahlung im THz-Bereich,
    Fig. 8
    eine Draufsicht auf eine Ausführungsform des Sicherheitselementes mit Feldern unterschiedlicher Längsausrichtung einer THz-Strahlung beeinflussenden Struktur und
    Fig. 9
    verschiedene Ausführungsformen eines Feldes zur Codierung verdeckter Informationen mit einem der Sicherheitselemente der Figuren 2A bis 2D.
  • Fig. 1 zeigt in Draufsicht eine Banknote 2, die mit einem Sicherheitselement 4 versehen ist. Das Sicherheitselement 4 ist in allen Ausführungsformen so ausgestaltet, dass es Strahlung im THz-Bereich auf bestimmte Art und Weise filtert und zugleich so ausgebildet ist, dass es mit dem unbewaffneten Auge nicht erkennbar ist. Das Sicherheitselement 4 stellt somit ein verdecktes Sicherheitsmerkmal bereits, das mit einem entsprechenden Detektor ausgelesen werden kann. Damit das Sicherheitselement 4 hinsichtlich der Strukturen, die die Wirkung im THz-Bereich wirksam machen, visuell möglichst nicht wahrgenommen werden kann, um einem potentiellen Fälscher kein Indiz für das Vorhandensein einer im THz-Bereich wirksamen Struktur zu geben, ist die THz-Struktur im sichtbaren Wellenlängenbereich annähernd opak oder mindestens nicht zu erkennen. Dies schließt nicht aus, dass die Struktur mit einer visuell transparenten Struktur kombiniert oder überlagert ist, wie dies in den Ausführungsformen der Figuren 2B bis 2D der Fall ist. Das Sicherheitselement 4 kann sowohl beidseitig offenliegend sein (z.B. bei der Verwendung als ein Fester überspannendes Element) als auch einseitig. Es kann zudem komplett in das für THz-Strahlung transparente Substrat eingebettet sein. Beispiele für das Substrat oder das Dielektrikum sind Papier oder Kunststoff.
  • Die Figuren 2A bis 2D zeigen in Schnittdarstellung das Sicherheitselement 4, das ein auf einem nicht näher bezeichneten Träger angeordnetes Dielektrikum 6 hat. In das für THz-Strahlung transparente Dielektrikum 6 ist eine erste Liniengitterstruktur 8 eingebettet, die aus einer THz-Strahlung absorbierenden Beschichtung aufgebaut ist, welche sich in einer ersten Ebene 10 befindet. In einer parallel dazu um einen Abstand h tiefer liegenden zweiten Ebene 12 befindet sich im Dielektrikum 6 eine zweite Liniengitterstruktur 14, die ebenfalls aus einem THz-Strahlung absorbierenden Material aufgebaut ist, bevorzugt aus demselben Material, wie die erste Liniengitterstruktur 8.
  • Die erste und die zweite Liniengitterstruktur 8,14 bilden ein Bi-Layer-Gitter 16. Die erste und die zweite Liniengitterstruktur 8,14 sind invertiert zueinander ausgebildet. Die erste Liniengitterstruktur 8 besteht aus metallischen Streifen 18, die durch Längsschlitze 20 voneinander beabstandet sind. Diese Struktur ist gemäß einer Periode p angeordnet. Die zweite Liniengitterstruktur 14 ist dazu invertiert ausgebildet. Sie hat an denjenigen Stellen, in denen die erste Liniengitterstruktur 8 die Streifen 18 hat, Längsschlitze 24 und an den Stellen der Längsschlitze 20 Streifen 22. Die Schicht, welche die Streifen 18 ausbildet, hat beispielsweise eine Dicke t1, die Schicht, welche die Streifen . 22 ausbildet, eine Dicke t2. Die Streifen 18, 22, und damit die Liniengitterstrukturen 8,14, haben einen Brechungsindex n und sind vollständig von dem Dielektrikum 6 umgeben, das bevorzugt und optional oberhalb und unterhalb der Liniengitterstrukturen 8,14 denselben Brechungsindex n hat. Die Brechungsindices im Dielektrikum 6 können auch variieren.
  • Wie zu sehen ist, hat die invertierte Form, die die zweite Liniengitterstruktur 14 zur ersten Liniengitterstruktur 8 hat, zur Folge, dass die Breite d der Streifen 18 der ersten Liniengitterstruktur 8 exakt der Breite der Längsschlitze 24 der zweiten Liniengitterstruktur 14 entspricht. Analoges gilt für die Breite s der Längsschlitze 20 der ersten Liniengitterstruktur 8 und der Streifen 22 der zweiten Liniengitterstruktur 14. Die invertierten Liniengitter sind darüber hinaus so um eine halbe Periode in der Ebene 10 bzw. 12 relativ verschoben, dass in Draufsicht auf das Sicherheitselement 4 (entsprechend der Sichtrichtung in Fig. 2A von oben nach unten) eine lückenlose Schicht durch die Streifen 18 und 22 gebildet wird.
  • In Fig. 2A ist gezeigt, dass eine ebene Welle unter einem Azimutwinkel ph und einem Elevationswinkel th auf das Sicherheitselement 4 fällt. Diese einfallende Strahlung S wird teilweise als transmittierte Strahlung T transmittiert und teilweise als reflektierte Strahlung R reflektiert. Die Eigenschaften dieser Wirkung auf Strahlung im THz-Bereich werden nachfolgend anhand der Figuren 3 bis 7 noch näher erläutert.
  • Die Ausführungsformen der Figuren 2B bis 2D unterscheiden sich von denen der Fig. 2A durch die Ausgestaltung der Streifen 18. Sie werden dazu genutzt, um zusätzlich einen visuell wahrnehmbaren Effekt zu erzeugen. Trotz dieses visuell wahrnehmbaren Effekts ist die im THz-Bereich wirksame Struktur nicht zu erkennen. Die verdeckte Sicherheitseigenschaft bleibt also erhalten. In diesem Zusammenhang wird ausdrücklich auf die DE 102015009584 A1 verwiesen, deren Offenbarungsgehalt hinsichtlich der Kombination einer im THz-Bereich wirksamen Struktur und einer visuell wahrnehmbaren Struktur hier vollumfänglich eingebunden wird.
  • Die oben beschriebene Struktur zur Echtheitserkennung im THz-Bereich wird bevorzugt auf Folien-Substraten hergestellt und kann dann beispielsweise auf Banknoten 2 aufgebracht werden. Jedoch ist eine metallisch spiegelnde Fläche wenig attraktiv für einen Betrachter. Es ist zwar möglich, diese Fläche zu überdrucken. Jedoch ist es vorteilhaft, diese Struktur mit anderen auf Folien-Elementen basierenden Sicherheitsmerkmalen zu überlagern. Denn es handelt sich bei bekannten metallisierten Sicherheitsfeatures, wie Hologrammen, Mikrospiegelanordnungen bzw. metallischen Subwellenlängengittern in erster Linie um Humanmerkmale, die sich nur schwierig maschinell auf Echtheit überprüfen lassen. Durch die Überlagerung dieser Strukturen mit dem oben beschriebenen THz-Feature ist eine maschinelle Überprüfung dieser Strukturen im THz-Bereich möglich.
  • Eine Überlagerung mit verschiedenen, für sich bekannten metallisierten Sicherheitsfeatures ist deshalb vorteilhaft. Eine derartige Überlagerung kann mit Präge-Hologrammen erfolgen, wie in Fig. 2B schematisch dargestellt ist. In Fig. 2B bestehen die Streifen der ersten Liniengitterstruktur 8 aus einer Hologrammstruktur 26. Sie ist für THz-Strahlung opak, so dass die verdeckte Sicherheitseigenschaft des Sicherheitselementes 4 erhalten bleibt. Solche Hologramme bestehen aus Gitteranordnungen mit Perioden von etwa 500 nm bis 1500 nm. Bei bekannten Präge-Hologrammen hat das Gitterprofil eine Sinusform oder eine Rechteckform mit Ganghöhen von etwa 100 nm bis 300 nm. Die Struktur ist vollflächig metallisiert. Als Metalle werden bevorzugt Aluminium, Silber oder Kupfer mit Schichtdicken von ca. 30 nm bis 80 nm verwendet. Die Überlagerung mit der oben beschriebenen THz-Struktur bedeutet in diesem Fall, dass schmale periodisch Bereiche des Präge-Hologramms oder Spiegelstreifen auf der tieferen Ebene 12 liegen. Da die Periode der Hologramm-Gitter wesentlich kleiner als die Gitterperiode der THz-Struktur ist, tritt keine zusätzliche Wechselwirkung im THz-Bereich mit dieser Struktur auf. Denn die Periode des Hologramms ist um Größenordnungen kleiner als die Wellenlänge der THz-Strahlung. Es liegt daher eine vergleichbare Transmission im THz-Bereich wie bei dem oben beschriebenen Bi-Layer-Gitter 16 vor.
  • In Fig. 2C umfassen die Streifen eine Color-Shift-Beschichtung 28, die optional zusätzlich auch auf den Streifen der zweiten Liniengitterstruktur 14 aufgebracht werden kann. Die Color-Shift-Beschichtungen 28, 30 erzeugen einen visuell wahrnehmbaren Effekt. Da sie eine Metallschicht oder eine andere für THz-Strahlung opake Beschichtung umfassen, ist auch hier die Wirkung des Sicherheitselementes 4 als verdecktes Sicherheitsmerkmal erhalten. Der Color-Shift-Aufbau besteht beispielsweise aus einer halbtransparenten Chromschicht, einer dielektrischen Abstandsschicht bevorzugt aus Siliziumdioxid und einer darunter befindlichen, metallischen Spiegelschicht, z. B. Aluminium. Dieser Schichtaufbau wird schließlich als Bi-Layer-Struktur 16 ausgebildet. Der Flächenanteil der tieferliegenden Struktur ist klein im Vergleich zur Gesamtfläche. Daher wird der visuelle Eindruck dieser Sicherheitsfeatures durch die Überlagerung mit der THz Struktur kaum beeinträchtigt.
  • In Fig. 2D sind die Streifen der ersten Liniengitterstruktur 8 als Sägezahnstruktur 32 ausgebildet. Es erfolgt also eine Überlagerung mit einer Sägezahnstruktur wie z. B. Fresnelstrukturen. Bekannte Sägezahnanordnungen haben eine laterale Ausdehnung zwischen 1 µm und 10 µm bei einer Höhe zwischen ca. 0.3 µm und 4 µm. Solche Anordnungen werden benutzt, um Bewegungs- und räumliche Effekte in Reflexion zu erzeugen. Sie sind entweder mit einer einfachen Metallschicht überzogen oder sie sind mit einem sogenannten Color-Shift-Aufbau bedampft, um zusätzlich einen Farbeffekt zu erzeugen. Die metallisierte Struktur ist durch die periodische Anordnung der Längsschlitze 20 unterbrochen, unter denen die Streifen 22 auf der tieferen Ebene liegen. Im THz-Bereich wirkt sich nur diese Kombination auf die Transmission aus, da die Wechselwirkung mit der Sägezahnstruktur 32 selbst gering ist.
  • Die Überlagerung kann auch mit (optischen) Subwellenlängen-Strukturen vorgenommen werden. Hier handelt es sich um 1-dimensionale oder 2-dimensionale periodische Gitter mit Perioden zwischen 100 nm und 500 nm, welche metallisch bedampft sind. Es bleibt zu erwähnen, dass auch sogenannte metallische Mottenaugenstrukturen, die als absorbierender Untergrund dienen können, ebenfalls mit der oben erläuterten Struktur überlagert werden können. Außerdem die metallisierten Stege erhöht anstelle wie in den obigen Zeichnungen vertieft sein. Die Transmission im THz-Bereich ist bei dieser vertikal gespiegelten Anordnung identisch.
  • Ferner sind die oben genannten, THz-Strahlung absorbierenden Beschichtungen nicht auf eine einfache Metallschicht oder Color-Shift-Aufbauten eingeschränkt. Es sind auch andere Multilayerschichten verwendbar, solange diese für THz-Strahlung opak sind - entweder in Kombination, oder auf Grund eines absorbierenden Bestandteils oder einer Schicht.
  • Nachfolgend wird die Wirkung des Sicherheitselementes 4 auf Strahlung im THz-Bereich, also auf Strahlungen zwischen beispielsweise 1 und 12 THz, am Beispiel des Sicherheitselementes der Fig. 2A erläutert. Da die visuell wahrnehmbaren Strukturen der Streifen der ersten Liniengitterstruktur 8 in den Ausführungsformen gemäß Fig. 2B bis 2D keine Auswirkung auf die Wirkung im THz-Bereich haben, gelten die Ausführungsformen analog auch hierfür.
  • Die folgenden Berechnungen beziehen sich auf ein Aluminium-Gitter mit rechteckigem Querschnitt. Der Brechungsindex des umgebenden Dielektrikums ist n=1,4. Fig. 3A-C zeigen die spektrale Transmission für TM- (Fig. 3A) und TE-Polarisationen (Fig. 3B) sowie den Polarisationsgrad für ein Bi-Layer-Gitter 16 mit unterschiedlich breiten Stegen s=2; 4; 6 µm bei konstanter Periode d=50 µm. Für die Frequenz 1 THz beträgt die Transmission bei TM-Polarisation 32%, 43% bzw. 49% für die Stegbreite s=2 µm, 4 µm bzw. 6 µm. Für TE-Polarisation ist die Transmission für diese Stegbreiten annährend Null. Die Dicke t1 = t2 der Beschichtung betrug 50 nm, der Abstand der Ebenen h = 2 µm. Der Kontrast der Transmission zwischen TM- und TE-Polarisation ist in Fig. 3C) dargestellt. Hier ist jeweils der berechnete Polarisationsgrad (TTM - TTE) / (TTM + TTE) als Funktion der Frequenz aufgetragen. Je stärker diese Werte von Null verschieden sind, umso stärker ist die Polarisationswirkung des Bi-Layer-Gitters 16. Es zeigt sich, dass das Gitter im gesamten dargestellten Frequenzbereich ausgeprägte Polarisationseigenschaften aufweist.
  • Nun wird der Einfluss des Höhenabstands h auf das Transmissionsverhalten im THz-Bereich erläutert. Fig. 4A-C zeigen die Transmission bei senkrechtem Einfall für ein Aluminiumgitter mit einer Periode d=50 µm, s=2 µm, t=50 nm für die Höhenabstände 0,5 µm, 1 µm, 1,5 µm und 2 µm. Die übrigen Parameter sind identisch mit denen von Fig. 3A-C. Wiederum zeigt die mit A bezeichnete Figur die Transmission für TM-Polarisation, die mit B bezeichnete Figur die Transmission für TE-Polarisation und die mit C bezeichnete Figur den Kontrast. Hier zeigt sich, dass eine Variation des Höhenabstands h sich nicht wesentlich auf das Transmissionsverhalten im THz-Bereich auswirkt. Die Polarisationseigenschaften werden kaum beeinflusst. Dies bedeutet, dass das Prozessfenster bei einer Serienfertigung hinsichtlich dieses Parameters unkritisch ist.
  • Nun wird der Einfluss der Gitterperiode auf die Transmission im THz-Bereich untersucht. In Fig. 5A-C ist die Transmission für Gitter mit den Perioden d=25 µm, 50 µm, 75 µm und 100 µm dargestellt. Das Verhältnis der Spaltbreite zur Periode ist dabei konstant und beträgt s=0.04 * d. Aus Fig. 5A und 5B ist ersichtlich, dass die spektrale Charakteristik der Transmission für zunehmende Perioden zu niedrigen Frequenzen hin verschoben wird. Fig. 5C kann entnommen werden, dass sich die polarisierende Wirkung des Gitters für diese Perioden im gesamten dargestellten Spektralbereich sehr gut ist. Dies zeigt, dass die Transmissions-Charakteristik durch die entsprechende Wahl der Gitterperiode für das gewünschte Frequenzband angepasst werden kann. Es ist noch zu erwähnen, dass die hier dargestellten Transmissions- bzw. Polarisationseigenschaften kaum beeinflusst werden, wenn das Gitterprofil von der idealen Rechteckform abweicht. Daher sind bei der Herstellung solcher Gitter keine hohen Anforderungen zu erfüllen, um den gewünschten Transmissions- bzw. Polarisations-Effekt im THz-Bereich zu erfüllen. Den Figuren liegt hier eine Höhe von h=1,8 µm und eine Dicke der Metallschicht (hier Al) von t=50 nm zugrunde.
  • Fig. 6 zeigt die berechnete spektrale Reflexion eines Bi-Layer-Gitters 16, eines einfachen Drahtgitters und eines glatten 60 nm dicken Aluminiumfilmes - im sichtbaren Spektralbereich. Alle Strukturen sind ein Dielektrikum mit Brechungsindex 1,52 eingebettet. Das senkrecht einfallende Licht ist unpolarisiert. Die Reflexion in der nullten Ordnung beträgt für beide Gittertypen im Mittel ca. 73% gegenüber 82% einer glatten 60 nm dicken Aluminiumschicht, welche ebenfalls in ein Dielektrikum mit n=1,52 eingebettet ist. Für größere Perioden verringert sich der Unterschied zwischen der Reflexion am Bi-Layer-Gitter 16 und einer glatten Oberfläche zunehmend. Dies bedeutet, dass ein Bi-Layer-Gitter 16 mit Perioden d>50 µm kaum mehr von einem Betrachter von einer glatten metallischen Oberfläche unterschieden werden kann. Dies ist umso weniger der Fall, wenn solche Bi-Layer-Gitter 16 mit anderen Strukturen wie Hologrammgitter überlagert sind.
  • Schließlich wurde ein metallisiertes Prägehologramm, das mit einem Bi-Layer-Gitter 16 überlagert ist, experimentell analysiert. Die Struktur entspricht schematisch der Zeichnung von Fig. 2B. Die Struktur umfasst einen 60 nm dicken Aluminiumfilm, der in UV-Lack zwischen zwei PET Folien eingebettet ist. Das Prägehologramm besteht aus Gittern unterschiedlicher azimutaler Orientierung mit Perioden zwischen 500 nm und 2 µm. Die Profilform ist sinusförmig. Die Parameter des Bi-Layer Gitters sind: d=50 µm, h=1,8 µm, s=2 µm und t=60 nm. Fig. 7A zeigt die spektrale Transmission im Bereich von 0,1 bis 3 THz für TM- und TE-Polarisation. Daraus wurde der Polarisationsgrad berechnet und in Fig. 7B dargestellt. Die Struktur ist hier in einen UV-aushärtbaren Prägelack mit Brechungsindex von 1,4 eingebettet. Die Messung bestätigt die davor präsentierten Eigenschaften der Bi-Layer-Gitter 16. Die unerwartete hohe Transmission ist auch für überlagerte Gitterstrukturen vorhanden. Die Sperrwirkung für TE-Polarisation ist dieser Probe etwas geringer. Dies liegt jedoch an kleinen Defekten der Probe, durch die die THz-Strahlung ungehindert hindurchdringt. Trotzdem ist der Polarisationsgrad der Probe hoch. Eine Detektion des im Hologramm überlagerten Bi-Layer-Gitters 16 kann zuverlässig erfolgen.
  • Wie bereits erwähnt, kommen die Überlagerungen, die aus der DE 102015009584 A1 (dort für ein anderes verdecktes Sicherheitsmerkmal) auch hier in Frage. Die Überlagerung eines Motivs mit der oben beschriebenen THz-Struktur wird anhand des Beispiels von Fig. 8 erläutert. Das Motiv "Schmetterling" mit Zahl "25" ist vor einem Hintergrund durch ein metallisches Prägehologramm ausgebildet. Hier ist die gesamte Fläche mit einem Bi-Layer-Gitter 16 überlagert. Die Längsschlitze 20, 24 sind im Hintergrund 34 horizontal und in den Flächen 36-42 vertikal orientiert. Dieses Sicherheitselement 4 zeigt im THz-Bereich eine unterschiedliche Transmission in den Bereichen 34 einerseits und 36-42 andererseits. Mit einem ortauflösenden Detektor kann das Motiv im THz-Bereich entsprechend nachgewiesen werden.
  • Des Weiteren kann dieser Ansatz genutzt werden, um Informationen zu kodieren, welche im THz-Bereich maschinell ausgewertet werden können. Ein Beispiel ist die Kodierung der Stückelung bzw. der Wert von Banknoten, z. B. 5,10, 20, 50 und 100. Diese Zahlenwerte (oder andere Werte) können durch unterschiedlich orientierte Bereiche von Bi-Layer-Gittern, bevorzugt mit um 90° verdrehten Bereichen kodiert werden. Ein Beispiel mit vier Feldern 46, welche vor einem Hintergrund 48 mit horizontaler Längsschlitzrichtung mehrere Kodier-Felder 50-56 mit vertikaler Längsschlitzrichtung haben, zeigt Fig. 9.
  • Das Sicherheitselement 4 kann durch bekannte Verfahren großtechnisch hergestellt werden. Dabei sind die wesentlichen Schritte in der Herstellung:
    1. a) Prägen der Struktur in UV-Lack auf Folien,
    2. b) vollflächige gerichtete Metall-Bedampfung, wobei die Flanken der Stege nicht mit Metall bedeckt werden,
    3. c) Kaschierung mit Deckfolie.
  • Das Grundprinzip entspricht insofern dem aus der genannten
  • DE 102015009584 A1 , wobei nun der Vorteil erreicht ist, dass in den vertieft geprägten Längsschlitze 20 kein Metall entfernt werden muss. Die Längsschlitze 20 entstehen durch die entsprechende Prägestruktur als Vertiefungen, und auch in den Vertiefungen wird das Metall abgeschieden, um dort die Streifen 22 auszubilden.
  • Wie bereits im allgemeinen Teil der Beschreibung erläutert, kann das Sicherheitselement einfach einer Echtheitsüberprüfung unterzogen werden, indem seine Polarisationseigenschaften auf Strahlung im THz-Spektralbereich untersucht werden. Mögliche Vorrichtungen zeigen die Fig. 13 und Fig. 14 der DE 102015009584 A1 . Das Sicherheitsmerkmal 4 wirkt dabei als Polarisator, der THz-Strahlung mit TM-Polarisation durchlässt. Ist die THz-Strahlung entsprechend linear polarisiert, so tritt diese Komponente zum Großteil hindurch. Um linear polarisierte Strahlung mit TM-Polarisation auf das Sicherheitselement 4 zu richten, kann der THz-Quelle ein Polarisator nachgeordnet sein; dieser kann entfallen, wenn die THz-Quelle bereits die entsprechende polarisierte Strahlung abgibt. Nach Durchtritt durch das Sicherheitselement 4 ist z. B. ein Analysator vorgesehen, der die Polarisationsrichtung entsprechend für den THz-Detektor filtert. Durch die Aufnahme eines Signals aus zwei oder mehreren unterschiedlichen Polarisationsrichtungen kann der Kontrast verstärkt werden, d. h. die Vorrichtung ist zuerst in die Konfiguration mit gleicher Ausrichtung von Quellstrahlung und Detektor und dann mit zueinander orthogonaler Ausrichtung eingestellt. Hat das Sicherheitselement 4 Bereiche mit unterschiedlich orientierten Schlitz-Strukturen, misst ein ortsauflösender Detektor unterschiedliche Intensitäten für die einzelnen Bereiche. Dies erhöht die Zuverlässigkeit der Authentifizierung dieses Merkmals.
  • Zur Echtheitsprüfung des oben beschriebenen Sicherheitselementes 4 wird also eine THz-Strahlungsquelle und ein THz-Detektor verwendet, welche gegenüberliegend angeordnet sind. Das Sicherheitselement 4 befindet sich dazwischen und wird bevorzugt annährend senkrecht bestrahlt. Bevorzugt ist die Strahlung der THz-Strahlquelle linear polarisiert und der Detektor ist ebenfalls polarisationsempfindlich. Das Sicherheitselement 4 ist so angeordnet, dass für mindestens einen Bereich des Bi-Layer-Gitters 16 TM-Polarisation vorliegt und dort die THz-Strahlung annährend ungehindert zum Detektor gelangt. Dagegen wird die Transmission für die Gitterbereiche in TE-Polarisation blockiert. In einer alternativen Anordnung stehen die Polarisationsrichtungen von Strahlungsquelle und Detektor senkrecht aufeinander. So kann der triviale Fall eines Loches im Sicherheitselement ausgeschlossen werden, durch das die THz-Strahlung ebenfalls ungehindert passieren würde. Bei einer verdrehten Anordnung des THz-Gitters wird eine senkrecht polarisierte THz-Strahlung beim Hindurchtreten gedreht und der Analysator mit waagerechter Polarisation kann das THz-Signal empfangen. Durch die Aufnahme eines Signals bei zwei oder mehreren unterschiedlichen Polarisationsrichtungen kann der Kontrast noch verstärkt werden.
  • Die THz-Analyse kann sowohl bei einer einzigen Frequenz oder in einem einzigen Frequenzband als auch für mehrere Frequenzen oder getrennte Frequenzbänder erfolgen. Die beiden letzteren Ausführungsformen verfeinern die Echtheitsüberprüfung.
  • Bezugszeichenliste
  • 2
    Banknote
    4
    Sicherheitselement
    6
    Dielektrikum
    8
    erste Liniengitterstruktur
    10
    erste Ebene
    12
    zweite Ebene
    14
    zweite Liniengitterstruktur
    16
    Bi-Layer-Gitter
    18, 22
    Streifen
    20,24
    Längsschlitze
    26
    Hologramm
    28, 30
    Color-Shift-Schicht
    32
    Sägezahnstruktur
    34, 56
    Hintergrund
    36-44, 46, 50-56
    Feld
    S, T, R
    Strahlung
    h
    Abstand
    p
    Periode
    t1, t2
    Dicke
    n, nM
    Brechungsindex
    th
    Elevationswinkel
    ph
    Azimutwinkel
    s, d
    Breite

Claims (11)

  1. Sicherheitselement zur Herstellung von Wertdokumenten, wie Banknoten, Schecks oder dergleichen, wobei in einem für THz-Strahlung transparenten Dielektrikum (6) in einer ersten Ebene (10) eine erste Schicht angeordnet ist, die aus einem für THz-Strahlung opaken Schichtmaterial gebildet ist und eine mit dem bloßen Auge nicht erkennbare, periodische oder quasiperiodische erste Liniengitterstruktur (8) aus parallel verlaufenden, in der ersten Schicht Lücken erzeugende Längsschlitze (20) bildet, wobei eine Breite der Längsschlitze (20) nicht größer als 1/5 der Periode (p), bevorzugt nicht größer als 1/10 der Periode (p) ist,
    dadurch gekennzeichnet, dass
    im Dielektrikum (10) in einer zweiten Ebene (12), die zur ersten Ebene (10) parallel ist, eine zweite Schicht angeordnet ist, die ebenfalls aus einem für THz-Strahlung opaken Schichtmaterial gebildet ist und eine zweite Liniengitterstruktur (14) bildet, die zur ersten Liniengitterstruktur (8) invers ist.
  2. Sicherheitselement nach Anspruch 1, dadurch gekennzeichnet, dass die zweite Liniengitterstruktur (14) aus parallel verlaufenden Längsstegen (22) gebildet ist, wobei unter jedem der Längsschlitze (20) der ersten Liniengitterstruktur (8) einer der Längsstege (22) der zweiten Liniengitterstruktur (14) liegt und die darüber liegenden Längsschlitze (20, 24) und Längsstege (18, 22) jeweils im Wesentlichen die gleiche Breite (d, s) haben, so dass die Längsstege (24) der zweiten Liniengitterstruktur (14) in Draufsicht auf die erste Ebene (10) die Längsschlitze (20) in der ersten Liniengitterstruktur (8) überdecken.
  3. Sicherheitselement nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass ein Abstand (h) zwischen erster und zweiter Ebene (10, 12) zwischen 50 nm und 100 µm beträgt.
  4. Sicherheitselement nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Periode (p) zwischen 10 µm und 100 µm beträgt.
  5. Sicherheitselement nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass erste und/oder zweite Liniengitterstruktur (8, 14) eine für THz-Strahlung opake Multilayer-Beschichtung, insbesondere eine Color-Shift-Beschichtung (28, 30), aufweisen.
  6. Verfahren zur Herstellung eines Sicherheitselementes zur Herstellung von Wertdokumenten, wie Banknoten, Schecks oder dergleichen, wobei in einem für THz-Strahlung transparenten Dielektrikum (6) in einer ersten Ebene (10) eine erste Schicht angeordnet wird, die aus einem für THz-Strahlung opaken Schichtmaterial gebildet wird und mit einer mit dem bloßen Auge nicht erkennbaren, periodischen oder quasiperiodischen, ersten Liniengitterstruktur (8) aus parallel verlaufenden, in der ersten Schicht Lücken erzeugenden Längsschlitze (20) versehen wird, wobei eine Breite der Längsschlitze (20) nicht größer als 1/5 der Periode (p), bevorzugt nicht größer als 1/10 der Periode (p) ist,
    dadurch gekennzeichnet, dass
    im Dielektrikum (6) in einer zweiten Ebene (12), die zur ersten Ebene (10) parallel ist, eine zweite Schicht angeordnet wird, die ebenfalls aus einem für THz-Strahlung opaken Schichtmaterial gebildet wird und mit einer zweiten Liniengitterstruktur (14) versehen wird, die zur ersten Liniengitterstruktur (8) invers ist.
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die zweite Liniengitterstruktur (14) aus parallel verlaufenden Längsstegen (22) gebildet wird, wobei unter jedem der Längsschlitze (20) der ersten Liniengitterstruktur (8) einer der Längsstege (22) der zweiten Liniengitterstruktur (14) angeordnet wird und die darüber liegenden Längsschlitze (20, 24) und Längsstege (18, 22) jeweils im Wesentlichen die gleiche Breite (d, s) haben, so dass die Längsstege (24) der zweiten Liniengitterstruktur (14) in Draufsicht auf die erste Ebene (10) die Längsschlitze (20) in der ersten Liniengitterstruktur (8) überdecken.
  8. Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass ein Abstand (h) zwischen erster und zweiter Ebene (10, 12) zwischen 50 nm und 100 µm beträgt.
  9. Verfahren nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass die Periode (p) zwischen 10 µm und 100 µm beträgt.
  10. Verfahren nach einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, dass erste und/oder zweite Liniengitterstruktur (8, 14) eine Color-Shift-Beschichtung (28, 30) aufweisen.
  11. Wertdokument mit einem Sicherheitselement nach einem der Ansprüche 1 bis 5.
EP19831592.1A 2018-12-17 2019-12-13 Im thz-bereich wirkendes sicherheitselement und verfahren zu dessen herstellung Active EP3898248B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018132516.9A DE102018132516A1 (de) 2018-12-17 2018-12-17 Im THz-Bereich wirkendes Sicherheitselement und Verfahren zu dessen Herstellung
PCT/EP2019/000339 WO2020126065A1 (de) 2018-12-17 2019-12-13 Im thz-bereich wirkendes sicherheitselement und verfahren zu dessen herstellung

Publications (2)

Publication Number Publication Date
EP3898248A1 EP3898248A1 (de) 2021-10-27
EP3898248B1 true EP3898248B1 (de) 2023-02-08

Family

ID=69104338

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19831592.1A Active EP3898248B1 (de) 2018-12-17 2019-12-13 Im thz-bereich wirkendes sicherheitselement und verfahren zu dessen herstellung

Country Status (4)

Country Link
EP (1) EP3898248B1 (de)
CN (1) CN113195239B (de)
DE (1) DE102018132516A1 (de)
WO (1) WO2020126065A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021002600A1 (de) 2021-05-18 2022-11-24 Giesecke+Devrient Currency Technology Gmbh Wertdokument und Verfahren zur Herstellung eines Wertdokuments

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011115589A1 (de) * 2011-10-11 2013-04-11 Giesecke & Devrient Gmbh Sicherheitselement
DE102014010751A1 (de) * 2014-07-21 2016-01-21 Giesecke & Devrient Gmbh Sicherheitselement mit Subwellenlängengitter
JP6484049B2 (ja) * 2015-02-03 2019-03-13 凸版印刷株式会社 偽造防止構造体、偽造防止媒体、及び、真贋判別装置
DE102015009584A1 (de) 2015-07-23 2017-02-09 Giesecke & Devrient Gmbh Sicherheitselement und Verfahren zu dessen Herstellung
DE102015010191A1 (de) * 2015-08-06 2017-02-09 Giesecke & Devrient Gmbh Sicherheitselement mit Subwellenlängengitter
DE102016013690A1 (de) * 2016-11-16 2018-05-17 Giesecke+Devrient Currency Technology Gmbh Sicherheitselement mit Subwellenlängengitter

Also Published As

Publication number Publication date
EP3898248A1 (de) 2021-10-27
DE102018132516A1 (de) 2020-06-18
CN113195239A (zh) 2021-07-30
WO2020126065A1 (de) 2020-06-25
CN113195239B (zh) 2022-09-27

Similar Documents

Publication Publication Date Title
DE3206062C2 (de)
EP2228672B1 (de) Sicherheitselement mit mehrfarbigem Bild
EP2228671B1 (de) Sicherheitselement
EP2633345B1 (de) Sicherheitselement mit optisch variablem flächenmuster
WO2003059643A1 (de) Diffraktives sicherheitselement mit integriertem optischen wellenleiter
EP1713645B1 (de) Gitterbild mit mehreren variierten gitterfeldern
EP2198407A1 (de) Gitterbild
WO1995016574A1 (de) Visuell identifizierbares, optisches sicherheitselement für wertdokumente
EP3331709B1 (de) Sicherheitselement mit subwellenlängengitter
EP2126615B1 (de) Gitterbild
EP2335100B1 (de) Gitterbild mit achromatischen gitterfeldern
EP3325279B1 (de) Sicherheitselement und verfahren zu dessen herstellung
EP3898248B1 (de) Im thz-bereich wirkendes sicherheitselement und verfahren zu dessen herstellung
EP2086769B1 (de) Sicherheitsfolie
AT518938A2 (de) Ein Sicherheitsdokument oder -token
EP3332278B1 (de) Sicherheitselement
EP3184319B1 (de) Sicherheitselement für sicherheitspapiere, wertdokumente oder dergleichen und verfahren zum herstellen eines sicherheitselementes
WO2018188787A1 (de) Sicherheitselement und herstellungsverfahren hierfür
DE102017006421A1 (de) Optisch variable Sicherheitsanordnung
WO2012055544A1 (de) Gitterbild mit aneinandergrenzenden gitterfeldern

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210719

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220829

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1547364

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019006966

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: GIESECKE+DEVRIENT CURRENCY TECHNOLOGY GMBH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230208

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230208

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230609

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230508

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230208

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230208

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230208

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230208

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230208

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230208

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230608

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230509

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230208

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230208

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230208

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230208

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230208

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019006966

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230208

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20231109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230208

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231220

Year of fee payment: 5

Ref country code: DE

Payment date: 20231231

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231229

Year of fee payment: 5

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230208

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20231213

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20231231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230208

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231213

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231213

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231213

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231231