EP3607562B1 - Dosing of zinc for decontamination of light water reactors - Google Patents
Dosing of zinc for decontamination of light water reactors Download PDFInfo
- Publication number
- EP3607562B1 EP3607562B1 EP18712094.4A EP18712094A EP3607562B1 EP 3607562 B1 EP3607562 B1 EP 3607562B1 EP 18712094 A EP18712094 A EP 18712094A EP 3607562 B1 EP3607562 B1 EP 3607562B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- acid
- decontamination
- zinc
- metal
- decontamination solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005202 decontamination Methods 0.000 title claims description 83
- 230000003588 decontaminative effect Effects 0.000 title claims description 74
- 239000011701 zinc Substances 0.000 title claims description 35
- 229910052725 zinc Inorganic materials 0.000 title claims description 23
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 title claims description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title description 5
- 229910052751 metal Inorganic materials 0.000 claims description 55
- 239000002184 metal Substances 0.000 claims description 55
- 239000000243 solution Substances 0.000 claims description 49
- 238000000034 method Methods 0.000 claims description 38
- 229910052723 transition metal Inorganic materials 0.000 claims description 31
- 150000003624 transition metals Chemical class 0.000 claims description 31
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims description 27
- 150000002500 ions Chemical class 0.000 claims description 25
- 230000002285 radioactive effect Effects 0.000 claims description 21
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 18
- 239000008139 complexing agent Substances 0.000 claims description 17
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 12
- 235000006408 oxalic acid Nutrition 0.000 claims description 9
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 claims description 8
- 230000003647 oxidation Effects 0.000 claims description 8
- 238000007254 oxidation reaction Methods 0.000 claims description 8
- SIOXPEMLGUPBBT-UHFFFAOYSA-N picolinic acid Chemical compound OC(=O)C1=CC=CC=N1 SIOXPEMLGUPBBT-UHFFFAOYSA-N 0.000 claims description 8
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims description 6
- 239000010941 cobalt Substances 0.000 claims description 6
- 229910017052 cobalt Inorganic materials 0.000 claims description 6
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 239000007864 aqueous solution Substances 0.000 claims description 4
- 229940098779 methanesulfonic acid Drugs 0.000 claims description 4
- 229940081066 picolinic acid Drugs 0.000 claims description 4
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 claims description 3
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 claims description 3
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 claims description 3
- HJMZMZRCABDKKV-UHFFFAOYSA-N carbonocyanidic acid Chemical compound OC(=O)C#N HJMZMZRCABDKKV-UHFFFAOYSA-N 0.000 claims description 3
- 150000001735 carboxylic acids Chemical class 0.000 claims description 3
- 235000015165 citric acid Nutrition 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 150000003839 salts Chemical class 0.000 claims description 3
- 239000011975 tartaric acid Substances 0.000 claims description 3
- 235000002906 tartaric acid Nutrition 0.000 claims description 3
- -1 60Co ions Chemical class 0.000 claims description 2
- 230000001590 oxidative effect Effects 0.000 claims 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 11
- 239000002253 acid Substances 0.000 description 9
- 239000003456 ion exchange resin Substances 0.000 description 9
- 229920003303 ion-exchange polymer Polymers 0.000 description 9
- 150000001768 cations Chemical class 0.000 description 7
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 5
- 239000011651 chromium Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 4
- 239000011572 manganese Substances 0.000 description 4
- 239000012286 potassium permanganate Substances 0.000 description 4
- 229910052566 spinel group Inorganic materials 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- ONDPHDOFVYQSGI-UHFFFAOYSA-N zinc nitrate Chemical compound [Zn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ONDPHDOFVYQSGI-UHFFFAOYSA-N 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 229910001417 caesium ion Inorganic materials 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 150000003682 vanadium compounds Chemical class 0.000 description 2
- 150000003752 zinc compounds Chemical class 0.000 description 2
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 2
- 229960001763 zinc sulfate Drugs 0.000 description 2
- 229910000368 zinc sulfate Inorganic materials 0.000 description 2
- MKRZFOIRSLOYCE-UHFFFAOYSA-L zinc;methanesulfonate Chemical compound [Zn+2].CS([O-])(=O)=O.CS([O-])(=O)=O MKRZFOIRSLOYCE-UHFFFAOYSA-L 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910019589 Cr—Fe Inorganic materials 0.000 description 1
- DBVJJBKOTRCVKF-UHFFFAOYSA-N Etidronic acid Chemical compound OP(=O)(O)C(O)(C)P(O)(O)=O DBVJJBKOTRCVKF-UHFFFAOYSA-N 0.000 description 1
- VEQPNABPJHWNSG-UHFFFAOYSA-N Nickel(2+) Chemical compound [Ni+2] VEQPNABPJHWNSG-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 description 1
- LKVDKMLTMVKACQ-UHFFFAOYSA-I [V+5].[O-]C=O.[O-]C=O.[O-]C=O.[O-]C=O.[O-]C=O Chemical compound [V+5].[O-]C=O.[O-]C=O.[O-]C=O.[O-]C=O.[O-]C=O LKVDKMLTMVKACQ-UHFFFAOYSA-I 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 239000003729 cation exchange resin Substances 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 238000009390 chemical decontamination Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 229960004106 citric acid Drugs 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 229910001453 nickel ion Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229940116315 oxalic acid Drugs 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000000941 radioactive substance Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F9/00—Treating radioactively contaminated material; Decontamination arrangements therefor
- G21F9/001—Decontamination of contaminated objects, apparatus, clothes, food; Preventing contamination thereof
- G21F9/002—Decontamination of the surface of objects with chemical or electrochemical processes
- G21F9/004—Decontamination of the surface of objects with chemical or electrochemical processes of metallic surfaces
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F9/00—Treating radioactively contaminated material; Decontamination arrangements therefor
- G21F9/04—Treating liquids
- G21F9/06—Processing
- G21F9/12—Processing by absorption; by adsorption; by ion-exchange
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F9/00—Treating radioactively contaminated material; Decontamination arrangements therefor
- G21F9/28—Treating solids
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F9/00—Treating radioactively contaminated material; Decontamination arrangements therefor
- G21F9/28—Treating solids
- G21F9/30—Processing
Definitions
- the present invention relates to a method for the decontamination of radioactive metal surfaces by means of the decontamination solution and the use of the decontamination solution for this purpose.
- radioactive contamination of metal components occurs. Such contamination occurs regularly in the regular operation of reactors and particularly affects metal components that are in the primary circuit, for example a pressurized water reactor. Radioactive substances are deposited in the oxide layers formed on the surface of the components, causing them to become radioactively contaminated.
- mechanical means can be used to remove such deposits, in which case, for example, the oxide layers and thus the contaminated areas are abraded. This is particularly disadvantageous in the case of components which, due to their dimensions or their positioning, are difficult to access for the grinding tool.
- a decontamination of the components with a decontamination solution having a complexing agent including various carboxylic acids, such as oxalic acid
- a decontamination solution having a complexing agent including various carboxylic acids, such as oxalic acid
- the sparingly soluble components of the oxide layers are first oxidized or reduced, with Cr-III being oxidized to Cr-VI using permanganates (potassium permanganate, permanganic acid), for example.
- the oxide layer consisting mainly of iron and nickel ions, is then dissolved with the aid of the complexing agent and the cations released, including 60 Co 2+ or 58 Co 2+ , are removed from the decontamination solution by ion exchange.
- This decontamination process is usually carried out in several rounds, with the oxide layer being broken down in layers.
- inactive ions are always released into the decontamination solution, which are also removed from the decontamination solution via the ion exchange resins. Furthermore, the radioactive ions in the decontamination solution cause recontamination of the components during the decontamination process. This reduces the efficiency of the decontamination process, which on the one hand leads to the need for a larger number of decontamination cycles, which are time-consuming and costly, and on the other hand results in an increased amount of contaminated ion exchange resins that have to be disposed of with immense effort .
- the WO 00/78403 A1 describes a process for the decontamination of radioactively contaminated metal surfaces in which zinc and a complexing agent are used.
- Diphosphonic acids in particular etidronic acid, are used as complexing agents.
- this object is achieved by a method having the features specified in claim 1. Furthermore, this object is achieved by the use according to claim 11. Advantageous refinements are given in the subclaims.
- the method according to the invention is a method for decontaminating a radioactively contaminated metal surface, comprising the step of bringing at least a section of the radioactively contaminated metal surface into contact with a decontamination solution, comprising a complexing agent and a transition metal.
- a decontamination solution comprising a complexing agent and a transition metal.
- the transition metal added to the decontamination solution competes with the released radioactive isotopes for (renewed) storage in the metal surface (or the oxide layer on it).
- a larger amount of radioactive isotopes can advantageously be removed from the decontamination solution via the ion exchange process, which in turn leads to a reduction in the number of rounds of decontamination steps required and / or a reduction in the amount of ion exchange resins to be disposed of.
- the decontamination solution is preferably an aqueous solution. It contains an ion of a transition metal, more preferably a cation of the transition metal, even more preferably a divalent or trivalent cation of the transition metal. Most preferably the transition metal is a divalent cation of the transition metal.
- the transition metal is a depleted transition metal, ie a transition metal with a reduced proportion of isotopes that can be easily activated by neutrons compared to the natural occurrence.
- the use of a depleted transition metal is particularly advantageous if the metal to be decontaminated, for example the component of a reactor, is not to be disposed of after decontamination, but is to be reused and exposed to neutron flux.
- the transition metal is also preferably selected from the group consisting of zinc, nickel, cobalt or mixtures thereof. More preferably, the transition metal is selected from the group consisting of zinc and nickel. Most preferably the transition metal is zinc. The use of zinc in the decontamination solution surprisingly showed the greatest effect in decontaminating the metal surface.
- the transition metal in the decontamination solution is preferably in a concentration in the range from 0.5 mg / kg and 15 mg / kg, more preferably 0.5 mg / kg and 10 mg / kg, more preferably 1.5 mg / kg and ⁇ 5 mg / kg or ⁇ 2 mg / kg and ⁇ 5 mg / kg and most preferably about ⁇ 3 mg / kg and ⁇ 4 mg / kg.
- the mg / kg the mmol / L can also be given, whereby the given mg / kg value has to be divided by the atomic mass of the respective transition metal.
- the transition metal in the decontamination solution is preferably in a concentration in the range of ⁇ 7 ⁇ mol / L and ⁇ 230 pmol / L, more preferably ⁇ 7 ⁇ mol / L and ⁇ 155 pmol / L, more preferably ⁇ 23 ⁇ mol / L and ⁇ 70 ⁇ mol / L or ⁇ 30 ⁇ mol / L and ⁇ 80 ⁇ mol / L and most preferably approximately ⁇ 46 ⁇ mol / L and ⁇ 62 ⁇ mol / L.
- the specified concentration ranges for the concentration of the transition metals at the time when the metal surface is brought into contact with the decontamination solution preferably apply.
- the stated concentrations are likewise preferably the mean concentrations.
- transition metals instead of “transition metals”, reference is only made to the element zinc as an example. As far as applicable, the statements made also apply analogously to transition metals in general and preferably also to nickel and / or cobalt.
- zinc should preferably be understood to mean the zinc ions present in the decontamination solution, more preferably Zn 2+. This can, even more preferably, be depleted zinc, in particular zinc depleted in 64 Zn.
- the zinc is introduced into the decontamination solution by means of a soluble zinc compound.
- Preferred soluble zinc compounds are selected from the groups of acids used and / or the complexing agents used with zinc, including zinc methanesulfonate (Zn (CH 3 SO 3 ) 2 ), zinc nitrate (Zn (NO 3 ) 2 ), zinc permanganate (Zn (MnO 4 ) 2 ), zinc sulfate (ZnSO 4 ) and / or a soluble zinc complex.
- the zinc complex is more preferably a complex of zinc and the complexing agent used.
- decontamination is known to the person skilled in the art. This is to be understood in particular as the reduction and / or removal of radioactivity on the metal surface. In particular, this is to be understood as the removal of a deposited layer of metal oxides on a metal component, the deposited layer having radioactive isotopes, preferably cobalt.
- radioactive isotopes are removed from the metal surface to be decontaminated by means of the method according to the invention.
- These radioactive isotopes are preferably selected from the group consisting of 55 Fe ions, 63 Ni ions, 54 Mn ions, 65 Zn ions, 125 Sb ions, 137 Cs ions, 58 Co ions and 60 Co ions.
- the radioactive isotopes are more preferably selected from the group consisting of 54 Mn ions, 125 Sb ions, 137 Cs ions, 58 Co ions and 60 Co ions. Most preferably, these radioactive isotopes are 58 Co ions and / or 60 Co ions, even more preferably 60 Co ions.
- the decontamination method of the present invention can preferably also be referred to as chemical decontamination. More preferably, the decontamination process can be a decontamination process for a nuclear reactor to be dismantled or for a nuclear reactor to be continued to operate.
- the release of solid and liquid substances is regulated according to the Radiation Protection Ordinance (StrlSchV) and is essentially divided according to the unrestricted release and the release for disposal in landfills. After decontamination of the metal surface, it is preferably a component that is released for disposal in landfills. Even more preferably, after the decontamination of the metal surface, it is a component that is suitable for unrestricted release.
- StrlSchV Radiation Protection Ordinance
- radioactively contaminated metal surface should preferably be understood to mean the surface of a metal component including the radioactively contaminated deposit layer located on it, which is formed, for example, during normal use of the component in a pressurized water reactor.
- a deposit layer preferably consists of sparingly soluble metal oxides.
- the radioactive metal surface to be decontaminated preferably comprises at least one radioactively contaminated layer of sparingly soluble metal oxides arranged on the surface of metal base material.
- the metal of the metal surface to be decontaminated can in principle be any suitable metal.
- the metal is a metal selected from the group consisting of iron, nickel, chromium, manganese, titanium, niobium, copper, cobalt and combinations of at least two of these metals. Even more preferably, the metal is selected from the group consisting of iron, chromium, nickel, cobalt, and combinations of at least two of these metals.
- At least a section of the metal surface is also brought into contact with the decontamination solution.
- several sections, and even more preferably the entire metal surface are brought into contact with the decontamination solution.
- the radioactively contaminated metal surface can be brought into contact with the decontamination solution in any suitable manner.
- the metal surface to be decontaminated is preferably wetted with the decontamination solution.
- the decontamination solution is more preferably introduced into the primary circuit of a reactor.
- the decontamination solution can more preferably be circulated. This advantageously avoids concentration gradients in the area of the metal surface and increases the efficiency of the decontamination process.
- the circulation is more preferably carried out continuously and, likewise preferably, using pumps.
- the metal surface to be decontaminated is also preferably the inner jacket surface of a metal and cylindrical component (such as a pipe of a recuperator) and the decontamination solution is introduced into the cavity of the cylindrical component.
- a metal and cylindrical component such as a pipe of a recuperator
- the method according to the invention preferably has an additional method step for oxidation or reduction of the radioactively contaminated metal surface before the method step of bringing the at least one section of the metal surface into contact with the decontamination solution, i.e. as a first method step.
- this process step can also be referred to as pre-oxidation of the radioactively contaminated metal surface.
- Cr-III is oxidized to Cr-VI in the pre-oxidation.
- the pre-oxidation is preferably carried out by bringing the radioactively contaminated metal surface into contact with nitric acid and potassium permanganate, with sodium hydroxide and potassium permanganate, a vanadium compound (preferably vanadium formate) or with permanganic acid, with permanganic acid treatment being the most preferred.
- the oxidation layer is preferably reduced with the aid of a vanadium compound.
- the dissolved products are preferably complexed with picolinic acid.
- an additional process step for reducing the excess oxidizing agent for example the permanganates (potassium permanganate, permanganic acid), can be carried out.
- the method according to the invention has the further method step of at least partial removal of the radioactive isotopes or their ions contained in the decontamination solution.
- These radioactive isotopes are preferred selected from the group consisting of 55 Fe, 63 Ni, 54 Mn, 65 Zn, 125 Sb, 137 Cs, 58 Co and 60 Co. More preferably, the radioactive isotopes are selected from the group consisting of 54 Mn, 125 Sb, 137 Cs , 58 Co and 60 Co. Most preferably these radioactive isotopes are 58 Co and / or 60 Co, more preferably 60 Co.
- the radioactive isotopes are preferably removed by binding to an ion exchange resin, more preferably a cation exchange resin and / or a synthetic resin ion exchanger.
- the ion exchanger is a strongly acidic cation exchanger in which protons are exchanged for the bound cations.
- Such ion exchange resins are sufficiently known to the person skilled in the art.
- Radioactive isotopes in the decontamination solution More preferably about 50%, even more preferably about 70%, 80%, 90% or 99% of the radioactive isotopes in the decontamination solution are removed. Most preferably, approximately ⁇ 99% and ⁇ 100% of the isotopes in the decontamination solution are removed.
- the method according to the invention is more preferably carried out cyclically. In other words, at least the method steps of bringing the metal surface into contact with the decontamination solution and the subsequent at least partial removal of the radioactive isotopes in the decontamination solution are repeated at least once. Of course, individual or all of the other method steps listed above can also be repeated here.
- the method according to the invention is preferably repeated until a decontamination factor has been reached which corresponds to a reduction in the activity of the radioactively contaminated metal surface by 1 to 3 order (s), more preferably approximately 2 orders of magnitude.
- the The decontamination factor is preferably determined by measuring the activity of the ion exchange resin used to remove the radioactive isotopes in the decontamination solution, or comparing the activity of the ion exchange resin before and after performing the method according to the invention.
- the method according to the invention is likewise preferably repeated cyclically approximately 1 to 30 times, more preferably 10 to 25 times, even more preferably 13 to 20 times. A range from 13 to 17 cycles showed particularly good results when using oxalic acid.
- the decontamination solution comprises at least one complexing agent in addition to the transition metal.
- the complexing agent can also be referred to as a chelating agent.
- Complexing agents form chelate complexes with metal ions.
- Exemplary complexing agents include nitriloacetic acid, ethylenediaminetetraacetic acid, hydrofluoric acid, oxalic acid, tartaric acid, citric acid and their salts.
- the decontamination solution further comprises water, so that the water-soluble constituents of the decontamination solution can be present in their dissolved form.
- the decontamination solution is an aqueous solution.
- the acid is selected from the group consisting of carboxylic acid, methanesulfonic acid, oxalic acid, picolinic acid, and citric acid.
- the acid is preferably a mixture of methanesulfonic acid and oxalic acid. Most preferably the acid is oxalic acid.
- the decontamination solution also comprises an oxidizing agent, more preferably permanganic acid, or a reducing agent.
- the decontamination solution comprises zinc methanesulfonate, Zinc nitrate, zinc permanganate, zinc sulfate and / or a zinc complex of the complexing agent used.
- the complex of the transition metal and the complexing agent used is particularly preferred.
- Example 1 was repeated, the Ni concentration or the Cr concentration being considered instead of the Zn concentration. In each case, a correlation was also found between the concentration of the transition metal and the activity carried out over 60 Co. The correlation determined tended to decrease from Ni to Cr compared to Zn.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Food Science & Technology (AREA)
- Treatment Of Water By Ion Exchange (AREA)
- Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
- Apparatus For Disinfection Or Sterilisation (AREA)
- Detergent Compositions (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Cleaning By Liquid Or Steam (AREA)
- Manufacture And Refinement Of Metals (AREA)
Description
Die vorliegende Erfindung betrifft ein Verfahren zur Dekontamination von radioaktiven Metalloberflächen mittels der Dekontaminationslösung sowie die Verwendung der Dekontaminationslösung dazu.The present invention relates to a method for the decontamination of radioactive metal surfaces by means of the decontamination solution and the use of the decontamination solution for this purpose.
Im Bereich der Kernreaktortechnik kommt es zur radioaktiven Kontamination von metallenen Bauteilen. Eine solche Kontamination erfolgt regelmäßig im regulären Betrieb von Reaktoren und betrifft insbesondere metallene Bauteile, die sich im Primärkreislauf, beispielsweise eines Druckwasserreaktors, befinden. Hierbei lagern sich radioaktive Substanzen in den auf der Oberfläche der Bauteile gebildeten Oxidschichten ab, wodurch diese radioaktiv kontaminiert werden.In the field of nuclear reactor technology, radioactive contamination of metal components occurs. Such contamination occurs regularly in the regular operation of reactors and particularly affects metal components that are in the primary circuit, for example a pressurized water reactor. Radioactive substances are deposited in the oxide layers formed on the surface of the components, causing them to become radioactively contaminated.
Im Falle einer Revision des Kernkraftwerks wird es regelmäßig erforderlich, die kontaminierten Bauteile von der Radioaktivität, d.h. von den Ablagerungen auf der Metalloberfläche zu befreien, um das Revisionspersonal vor Strahlung zu schützen. Hiernach können die Bauteile im Kernkraftwerk weiter betrieben werden. Ähnliches gilt, falls ein Rückbau des Kernkraftwerks durchgeführt werden soll.In the event of an overhaul of the nuclear power plant, it is regularly necessary to remove the contaminated components from radioactivity, i.e. from the deposits on the metal surface, in order to protect the inspection staff from radiation. After this, the components can continue to be operated in the nuclear power plant. The same applies if the nuclear power plant is to be dismantled.
Für die Entfernung solcher Ablagerungen kann grundsätzlich auf mechanische Mittel zurückgegriffen werden, wobei z.B. ein Abschleifen der Oxidschichten und damit der kontaminierten Bereiche erfolgt. Dies ist insbesondere bei Bauteilen nachteilhaft, die aufgrund ihrer Dimensionen oder ihrer Positionierung schlecht für das Schleifwerkzeug zugänglich sind.In principle, mechanical means can be used to remove such deposits, in which case, for example, the oxide layers and thus the contaminated areas are abraded. This is particularly disadvantageous in the case of components which, due to their dimensions or their positioning, are difficult to access for the grinding tool.
Weiterhin ist eine Dekontamination der Bauteile mit einer Dekontaminationslösung aufweisend einen Komplexbildner, darunter verschiedene Carbonsäuren, z.B. Oxalsäure, bekannt. Hierbei werden in einem vorgeschalteten Schritt zunächst die schwerlöslichen Anteile der Oxidschichten oxidiert oder reduziert, wobei beispielsweise unter Verwendung von Permanganaten (Kaliumpermanganat, Permangansäure) Cr-III in Cr-VI aufoxidiert wird. Hiernach wird die hauptsächlich aus Eisen- und Nickelionen bestehende Oxidschicht mit Hilfe des Komplexbildners gelöst und die dabei freiwerdenden Kationen, darunter auch 60Co2+ oder 58Co2+, durch Ionentausch aus der Dekontaminationslösung entfernt. Dieser Dekontaminationsprozess wird üblicherweise in mehreren Runden durchgeführt, wobei die Oxidschicht schichtweise abgebaut wird.Furthermore, a decontamination of the components with a decontamination solution having a complexing agent, including various carboxylic acids, such as oxalic acid, is known. In an upstream step, the sparingly soluble components of the oxide layers are first oxidized or reduced, with Cr-III being oxidized to Cr-VI using permanganates (potassium permanganate, permanganic acid), for example. The oxide layer, consisting mainly of iron and nickel ions, is then dissolved with the aid of the complexing agent and the cations released, including 60 Co 2+ or 58 Co 2+ , are removed from the decontamination solution by ion exchange. This decontamination process is usually carried out in several rounds, with the oxide layer being broken down in layers.
Neben diesen radioaktiven Isotopen werden immer auch inaktive Ionen in die Dekontaminationslösung freigesetzt, die ebenfalls über die Ionenaustauscherharze aus der Dekontaminationslösung entfernt werden. Weiterhin kommt es bereits während des Dekontaminationsvorgangs durch die in der Dekontaminationslösung befindlichen radioaktiven Ionen zu einer Rekontamination der Bauteile. Hierdurch wird die Effizienz des Dekontaminationsprozesses reduziert, was zum einen dazu führt, dass eine größere Anzahl von Dekontaminationszyklen erforderlich werden, die zeit- und kostenintensiv sind und zum anderen dazu führt, dass eine erhöhte Menge kontaminierter Ionenaustauscherharze entsteht, die mit immensem Aufwand entsorgt werden muss.In addition to these radioactive isotopes, inactive ions are always released into the decontamination solution, which are also removed from the decontamination solution via the ion exchange resins. Furthermore, the radioactive ions in the decontamination solution cause recontamination of the components during the decontamination process. This reduces the efficiency of the decontamination process, which on the one hand leads to the need for a larger number of decontamination cycles, which are time-consuming and costly, and on the other hand results in an increased amount of contaminated ion exchange resins that have to be disposed of with immense effort .
Selbstverständlich treten die zuvor geschilderten Probleme nicht ausschließlich in Kernkraftwerken auf, sondern prinzipiell in Situationen, in denen metallene Bauteile mit Radioaktivität in Berührung kommen und eine Dekontamination erforderlich ist.Of course, the problems outlined above do not only occur in nuclear power plants, but principally in situations in which metal components come into contact with radioactivity and decontamination is required.
Dementsprechend besteht der Bedarf nach einem verbesserten Dekontaminationsverfahren von radioaktiv kontaminierten Metalloberflächen. Insbesondere besteht der Bedarf nach einem Dekontaminationsverfahren mit einer gesteigerten Effizienz, bei dem die Dekontamination mit einer verringerten Anzahl von Dekontaminationszyklen und/oder einer verringerten Menge an kontaminierten Ionenaustauscherharzen durchgeführt werden kann.Accordingly, there is a need for an improved method of decontaminating radioactively contaminated metal surfaces. In particular, there is a need for a decontamination process with increased efficiency, in which decontamination can be carried out with a reduced number of decontamination cycles and / or a reduced amount of contaminated ion exchange resins.
Aus der
Die
Die
Diese Aufgabe wird erfindungsgemäß durch ein Verfahren mit den in Anspruch 1 angegebenen Merkmalen gelöst. Weiterhin wird diese Aufgabe durch die Verwendung nach Anspruch 11 gelöst. Vorteilhafte Ausgestaltungen sind in den Unteransprüchen angegeben.According to the invention, this object is achieved by a method having the features specified in
Im Genaueren handelt es sich bei dem erfindungsgemäßen Verfahren um ein Verfahren zur Dekontamination einer radioaktiv kontaminierten Metalloberfläche aufweisend den Schritt des Inkontaktbringens zumindest eines Abschnitts der radioaktiv kontaminierten Metalloberfläche mit einer Dekontaminations-lösung, umfassend einen Komplexbildner und ein Übergangsmetall. Wie überraschenderweise gezeigt werden konnte, wird bei einem Zusatz eines Übergangsmetalls in die Dekontaminationslösung die während des Dekontaminationsprozesses auftretende Rekontamination der Metalloberfläche wirkungsvoll reduziert.More precisely, the method according to the invention is a method for decontaminating a radioactively contaminated metal surface, comprising the step of bringing at least a section of the radioactively contaminated metal surface into contact with a decontamination solution, comprising a complexing agent and a transition metal. As has surprisingly been shown, when a transition metal is added to the decontamination solution, the recontamination of the metal surface that occurs during the decontamination process is effectively reduced.
Ohne hierauf beschränkt zu sein wird angenommen, dass das der Dekontaminationslösung zugesetzte Übergangsmetall mit den freigesetzten radioaktiven Isotopen um die (erneute) Einlagerung in die Metalloberfläche (bzw. die hierauf befindliche Oxidschicht) konkurriert. Infolgedessen kann vorteilhafterweise eine größere Menge an radioaktiven Isotopen über den Ionenaustauschprozess aus der Dekontaminationslösung entfernt werden, was wiederum zu einer Reduktion der benötigten Runden der Dekontaminationsschritte und/oder eine Verringerung der zu entsorgenden Menge an Ionenaustauscherharzen führt.Without being restricted to this, it is assumed that the transition metal added to the decontamination solution competes with the released radioactive isotopes for (renewed) storage in the metal surface (or the oxide layer on it). As a result, a larger amount of radioactive isotopes can advantageously be removed from the decontamination solution via the ion exchange process, which in turn leads to a reduction in the number of rounds of decontamination steps required and / or a reduction in the amount of ion exchange resins to be disposed of.
Bei der Dekontaminationslösung handelt es sich bevorzugt um eine wässrige Lösung. Sie enthält ein Ion eines Übergangsmetalls, bevorzugter ein Kation des Übergangsmetalls, noch bevorzugter ein zweiwertiges oder dreiwertiges Kation des Übergangsmetalls. Am bevorzugtesten handelt es sich bei dem Übergangsmetall um ein zweiwertiges Kation des Übergangsmetalls.The decontamination solution is preferably an aqueous solution. It contains an ion of a transition metal, more preferably a cation of the transition metal, even more preferably a divalent or trivalent cation of the transition metal. Most preferably the transition metal is a divalent cation of the transition metal.
Weiter vorzugsweise handelt es sich bei dem Übergangsmetall um ein abgereichertes Übergangsmetall, d.h. ein Übergangsmetall mit einem gegenüber dem natürlichen Vorkommen reduzierten Anteil an durch Neutronen leicht aktivierbaren Isotopen. Die Verwendung eines abgereicherten Übergangsmetalls ist besonders dann von Vorteil, wenn das zu dekontaminierende Metall, beispielsweise das Bauteil eines Reaktors, nach der Dekontamination nicht entsorgt, sondern wiederverwendet und Neutronenfluss ausgesetzt werden soll.More preferably, the transition metal is a depleted transition metal, ie a transition metal with a reduced proportion of isotopes that can be easily activated by neutrons compared to the natural occurrence. The use of a depleted transition metal is particularly advantageous if the metal to be decontaminated, for example the component of a reactor, is not to be disposed of after decontamination, but is to be reused and exposed to neutron flux.
Ebenfalls bevorzugt ist das Übergangsmetall ausgewählt aus der Gruppe bestehend aus Zink, Nickel, Cobalt oder Mischungen davon. Bevorzugter ist das Übergangsmetall ausgewählt aus der Gruppe bestehend aus Zink und Nickel. Am bevorzugtesten handelt es sich bei dem Übergangsmetall um Zink. Die Verwendung von Zink in der Dekontaminationslösung zeigte überraschenderweise den stärksten Effekt bei der Dekontamination der Metalloberfläche.The transition metal is also preferably selected from the group consisting of zinc, nickel, cobalt or mixtures thereof. More preferably, the transition metal is selected from the group consisting of zinc and nickel. Most preferably the transition metal is zinc. The use of zinc in the decontamination solution surprisingly showed the greatest effect in decontaminating the metal surface.
Bevorzugt liegt das Übergangsmetall in der Dekontaminationslösung in einer Konzentration im Bereich von ≥ 0,5 mg/kg und ≤ 15 mg/kg, weiter bevorzugt ≥ 0,5 mg/kg und ≤ 10 mg/kg, weiter bevorzugt ≥ 1,5 mg/kg und ≤ 5 mg/kg oder ≥ 2 mg/kg und ≤ 5 mg/kg und am bevorzugtesten ungefähr ≥ 3 mg/kg und ≤ 4 mg/kg vor. Anstelle der mg/kg können auch die mmol/L angegeben werden, wobei der angegebene mg/kg-Wert durch die Atommasse des jeweiligen Übergangsmetalls zu teilen ist. Bevorzugt liegt das Übergangsmetall in der Dekontaminationslösung in einer Konzentration im Bereich von ≥ 7 µmol/L und ≤ 230 pmol/L, weiter bevorzugt ≥ 7 µmol/L und ≤ 155 pmol/L, weiter bevorzugt ≥ 23 µmol/L und ≤ 70 µmol/L oder ≥ 30 µmol/L und ≤ 80 µmol/L und am bevorzugtesten ungefähr ≥ 46 µmol/L und ≤ 62 µmol/L vor.The transition metal in the decontamination solution is preferably in a concentration in the range from 0.5 mg / kg and 15 mg / kg, more preferably 0.5 mg / kg and 10 mg / kg, more preferably 1.5 mg / kg and ≤ 5 mg / kg or ≥ 2 mg / kg and ≤ 5 mg / kg and most preferably about ≥ 3 mg / kg and ≤ 4 mg / kg. Instead of the mg / kg, the mmol / L can also be given, whereby the given mg / kg value has to be divided by the atomic mass of the respective transition metal. The transition metal in the decontamination solution is preferably in a concentration in the range of ≥ 7 µmol / L and ≤ 230 pmol / L, more preferably ≥ 7 µmol / L and ≤ 155 pmol / L, more preferably ≥ 23 µmol / L and ≤ 70 µmol / L or ≥ 30 µmol / L and ≤ 80 µmol / L and most preferably approximately ≥ 46 µmol / L and ≤ 62 µmol / L.
Bevorzugt gelten die angegebenen Konzentrationsbereiche für die Konzentration der Übergangsmetalle zum Zeitpunkt des Inkontaktbringens der Metalloberfläche mit der Dekontaminationslösung. Ebenfalls bevorzugt handelt es sich bei den angegebenen Konzentrationen um die mittleren Konzentrationen.The specified concentration ranges for the concentration of the transition metals at the time when the metal surface is brought into contact with the decontamination solution preferably apply. The stated concentrations are likewise preferably the mean concentrations.
Im Folgenden wird sich anstelle auf "Übergangsmetalle" lediglich exemplarisch auf das Element Zink bezogen. Soweit anwendbar gelten die gemachten Ausführungen analog auch für Übergangsmetalle allgemein und bevorzugt auch für Nickel und/oder Cobalt.In the following, instead of "transition metals", reference is only made to the element zinc as an example. As far as applicable, the statements made also apply analogously to transition metals in general and preferably also to nickel and / or cobalt.
Unter dem Begriff "Zink" sollen bevorzugt die in der Dekontaminationslösung vorliegenden Zink-Ionen, weiter bevorzugt Zn2+, verstanden werden. Hierbei kann es sich, noch weiter bevorzugt, um abgereichertes Zink handeln, insbesondere um an 64Zn abgereichertes Zink.The term “zinc” should preferably be understood to mean the zinc ions present in the decontamination solution, more preferably Zn 2+. This can, even more preferably, be depleted zinc, in particular zinc depleted in 64 Zn.
Weiter bevorzugt wird das Zink mittels einer löslichen Zinkverbindung in die Dekontaminationslösung eingebracht. Bevorzugte lösliche Zinkverbindungen sind ausgewählt aus den Gruppen der verwendeten Säuren und/oder den verwendeten Komplexbildnern mit Zink, umfassend Zinkmethansulfonat (Zn(CH3SO3)2), Zinknitrat (Zn(NO3)2), Zinkpermanganat (Zn(MnO4)2), Zinksulfat (ZnSO4) und/oder einem löslichen Zinkkomplex. Bei dem Zinkkomplex handelt es sich weiter bevorzugt um einen Komplex von Zink und dem eingesetzten Komplexbildner.More preferably, the zinc is introduced into the decontamination solution by means of a soluble zinc compound. Preferred soluble zinc compounds are selected from the groups of acids used and / or the complexing agents used with zinc, including zinc methanesulfonate (Zn (CH 3 SO 3 ) 2 ), zinc nitrate (Zn (NO 3 ) 2 ), zinc permanganate (Zn (MnO 4 ) 2 ), zinc sulfate (ZnSO 4 ) and / or a soluble zinc complex. The zinc complex is more preferably a complex of zinc and the complexing agent used.
Der Begriff der Dekontamination ist dem Fachmann bekannt. Hierunter soll insbesondere die Verminderung und/oder Entfernung von an der Metalloberfläche befindlicher Radioaktivität verstanden werden. Insbesondere soll hierunter die Entfernung einer auf einem metallenen Bauteil befindlichen Ablagerungsschicht von Metalloxiden verstanden werden, wobei die Ablagerungsschicht radioaktive Isotope, bevorzugt Cobalt, aufweist. In anderen Worten werden mittels des erfindungsgemäßen Verfahrens radioaktive Isotope aus der zu dekontaminierenden Metalloberfläche entfernt. Bevorzugt sind diese radioaktiven Isotope ausgewählt aus der Gruppe bestehend aus 55Fe Ionen, 63Ni Ionen, 54Mn Ionen, 65Zn Ionen, 125Sb Ionen, 137Cs Ionen, 58Co Ionen und 60Co Ionen. Weiter bevorzugt sind die radioaktiven Isotope ausgewählt aus der Gruppe bestehend aus 54Mn Ionen, 125Sb Ionen, 137Cs Ionen, 58Co Ionen und 60Co Ionen. Am bevorzugtesten handelt es sich bei diesen radioaktiven Isotopen um 58Co Ionen und/oder 60Co Ionen, noch bevorzugter um 60Co Ionen. Das Dekontaminationsverfahren der vorliegenden Erfindung kann vorzugsweise auch als chemische Dekontamination bezeichnet werden. Weiter vorzugsweise kann das Dekontaminierungsverfahren ein Dekontaminierungsverfahren für einen rückzubauenden Kernreaktor oder einen weiter zu betreibenden Kernreaktor sein.The term decontamination is known to the person skilled in the art. This is to be understood in particular as the reduction and / or removal of radioactivity on the metal surface. In particular, this is to be understood as the removal of a deposited layer of metal oxides on a metal component, the deposited layer having radioactive isotopes, preferably cobalt. In other words, radioactive isotopes are removed from the metal surface to be decontaminated by means of the method according to the invention. These radioactive isotopes are preferably selected from the group consisting of 55 Fe ions, 63 Ni ions, 54 Mn ions, 65 Zn ions, 125 Sb ions, 137 Cs ions, 58 Co ions and 60 Co ions. The radioactive isotopes are more preferably selected from the group consisting of 54 Mn ions, 125 Sb ions, 137 Cs ions, 58 Co ions and 60 Co ions. Most preferably, these radioactive isotopes are 58 Co ions and / or 60 Co ions, even more preferably 60 Co ions. The decontamination method of the present invention can preferably also be referred to as chemical decontamination. More preferably, the decontamination process can be a decontamination process for a nuclear reactor to be dismantled or for a nuclear reactor to be continued to operate.
Die Freigabe von festen und flüssigen Stoffen ist nach der Strahlenschutzverordnung (StrlSchV) geregelt und im Wesentlichen aufgeteilt nach der uneingeschränkten Freigabe und der Freigabe zur Beseitigung auf Deponien. Bevorzugt handelt es sich nach der Dekontamination der Metalloberfläche um ein Bauteil, dass zur Beseitigung auf Deponien freigegeben ist. Noch bevorzugter handelt es sich nach der Dekontamination der Metalloberfläche um ein Bauteil, das zur uneingeschränkten Freigabe geeignet ist.The release of solid and liquid substances is regulated according to the Radiation Protection Ordinance (StrlSchV) and is essentially divided according to the unrestricted release and the release for disposal in landfills. After decontamination of the metal surface, it is preferably a component that is released for disposal in landfills. Even more preferably, after the decontamination of the metal surface, it is a component that is suitable for unrestricted release.
Unter dem Begriff der radioaktiv kontaminierten Metalloberfläche soll im Weiteren bevorzugt die Oberfläche eines metallenen Bauteils einschließlich der darauf befindlichen radioaktiv kontaminierten Ablagerungsschicht verstanden werden, die sich beispielsweise während der gewöhnlichen Verwendung des Bauteils in einem Druckwasserreaktor bildet. Eine solche Ablagerungsschicht besteht bevorzugt aus schwerlöslichen Metalloxiden. In anderen Worten umfasst die zu dekontaminierenden radioaktive Metalloberfläche bevorzugt zumindest eine auf der Oberfläche aus metallenem Grundmaterial angeordnete radioaktiv kontaminierte Schicht schwerlöslicher Metalloxide. Noch bevorzugter handelt es sich bei der Ablagerungsschicht um Spinelle, bevorzugt Cr-Ni-Spinelle und/oder Cr-Fe-Spinelle. Bei Spinellen handelt es sich um, für gewöhnlich in Kristallform vorliegende, schwerlösliche Minerale aus der Mineralklasse der Oxide und Hydroxide und bevorzugt um Oxide mit dem Stoffmengenverhältnis
Metall : Sauerstoff = 3 : 4.In the following, the term radioactively contaminated metal surface should preferably be understood to mean the surface of a metal component including the radioactively contaminated deposit layer located on it, which is formed, for example, during normal use of the component in a pressurized water reactor. Such a deposit layer preferably consists of sparingly soluble metal oxides. In other words, the radioactive metal surface to be decontaminated preferably comprises at least one radioactively contaminated layer of sparingly soluble metal oxides arranged on the surface of metal base material. The deposit layer is even more preferably spinels, preferably Cr-Ni spinels and / or Cr-Fe spinels. Spinels are, usually in crystal form, sparingly soluble minerals from the mineral class of oxides and hydroxides and preferably oxides with the molar ratio
Metal: oxygen = 3: 4.
Bei dem Metall der zu dekontaminierenden Metalloberfläche kann es sich prinzipiell um jegliches geeignete Metall handeln. Bevorzugt handelt es sich bei dem Metall um ein Metall ausgewählt aus der Gruppe bestehend aus Eisen, Nickel, Chrom, Mangan, Titan, Niob, Kupfer, Cobalt und Kombinationen zumindest zwei dieser Metalle. Noch bevorzugter ist das Metall ausgewählt aus der Gruppe bestehend aus Eisen, Chrom, Nickel, Cobalt, und Kombinationen zumindest zwei dieser Metalle.The metal of the metal surface to be decontaminated can in principle be any suitable metal. Preferred the metal is a metal selected from the group consisting of iron, nickel, chromium, manganese, titanium, niobium, copper, cobalt and combinations of at least two of these metals. Even more preferably, the metal is selected from the group consisting of iron, chromium, nickel, cobalt, and combinations of at least two of these metals.
Erfindungsgemäß wird weiterhin zumindest ein Abschnitt der Metalloberfläche mit der Dekontaminationslösung in Kontakt gebracht. Bevorzugt werden mehrere Abschnitte und noch bevorzugter die gesamte Metalloberfläche mit der Dekontaminationslösung in Kontakt gebracht. Zur verbesserten Verständlichkeit wird im Folgenden auf die radioaktiv kontaminierte Metalloberfläche Bezug genommen, obgleich damit auch immer ein Abschnitt derselben gemeint ist.According to the invention, at least a section of the metal surface is also brought into contact with the decontamination solution. Preferably, several sections, and even more preferably the entire metal surface, are brought into contact with the decontamination solution. For better understanding, reference is made in the following to the radioactively contaminated metal surface, although this also always refers to a section of the same.
Das Inkontaktbringen der radioaktiv kontaminierten Metalloberfläche mit der Dekontaminationslösung kann auf jegliche geeignete Art und Weise erfolgen. Bevorzugt wird die zu dekontaminierende Metalloberfläche mit der Dekontaminationslösung benetzt. Weiter bevorzugt wird die Dekontaminationslösung in den Primärkreis eines Reaktors eingebracht.The radioactively contaminated metal surface can be brought into contact with the decontamination solution in any suitable manner. The metal surface to be decontaminated is preferably wetted with the decontamination solution. The decontamination solution is more preferably introduced into the primary circuit of a reactor.
Die Dekontaminationslösung kann noch bevorzugter umgewälzt werden. Hierdurch werden vorteilhafterweise Konzentrationsgradienten im Bereich der Metalloberfläche vermieden und die Effizienz des Dekontaminationsprozesses gesteigert. Die Umwälzung erfolgt weiter bevorzugt kontinuierlich und, ebenfalls vorzugsweise, unter Verwendung von Pumpen.The decontamination solution can more preferably be circulated. This advantageously avoids concentration gradients in the area of the metal surface and increases the efficiency of the decontamination process. The circulation is more preferably carried out continuously and, likewise preferably, using pumps.
Ebenfalls bevorzugt handelt es sich bei der zu dekontaminierenden Metalloberfläche um die innere Mantelfläche eines metallenen und zylinderförmigen Bauteils (wie beispielsweise ein Rohr eines Rekuperators) und die Dekontaminationslösung wird in den Hohlraum des zylinderförmigen Bauteils eingeführt.The metal surface to be decontaminated is also preferably the inner jacket surface of a metal and cylindrical component (such as a pipe of a recuperator) and the decontamination solution is introduced into the cavity of the cylindrical component.
Bevorzugt weist das erfindungsgemäße Verfahren vor dem Verfahrensschritt des Inkontaktbringens des zumindest eines Abschnitts der Metalloberfläche mit der Dekontaminationslösung, d.h. als ersten Verfahrensschritt, einen zusätzlichen Verfahrensschritt zur Oxidation oder zur Reduktion der radioaktiv kontaminierten Metalloberfläche auf. Dieser Verfahrensschritt kann im Falle der Oxidation auch als Voroxidation der radioaktiv kontaminierten Metalloberfläche bezeichnet werden. Weiter bevorzugt erfolgt bei der Voroxidation die Aufoxidierung von Cr-III zu Cr-VI. Die Voroxidation wird bevorzugt durch Inkontaktbringen der radioaktiv kontaminierten Metalloberfläche mit Salpetersäure und Kaliumpermanganat, mit Natriumhydroxid und Kaliumpermanganat, einer Vanadium-Verbindung (bevorzugt Vanadium Formiat) oder mit Permangansäure durchgeführt, wobei die Permangansäurebehandlung am bevorzugtesten ist. Im Falle eines vorgelagerten Verfahrensschritts zur Reduktion wird bevorzugt die Oxidationsschicht mit Hilfe einer Vanadiumverbindung reduziert. Im daran anschließenden Verfahrensschritt werden die gelösten Produkte bevorzugt mit Picolinsäure komplexiert.The method according to the invention preferably has an additional method step for oxidation or reduction of the radioactively contaminated metal surface before the method step of bringing the at least one section of the metal surface into contact with the decontamination solution, i.e. as a first method step. In the case of oxidation, this process step can also be referred to as pre-oxidation of the radioactively contaminated metal surface. It is further preferred that Cr-III is oxidized to Cr-VI in the pre-oxidation. The pre-oxidation is preferably carried out by bringing the radioactively contaminated metal surface into contact with nitric acid and potassium permanganate, with sodium hydroxide and potassium permanganate, a vanadium compound (preferably vanadium formate) or with permanganic acid, with permanganic acid treatment being the most preferred. In the case of an upstream process step for reduction, the oxidation layer is preferably reduced with the aid of a vanadium compound. In the subsequent process step, the dissolved products are preferably complexed with picolinic acid.
Weiter bevorzugt kann nach dem Voroxidationsschritt und vor dem Inkontaktbringen des zumindest eines Abschnitts der Metalloberfläche mit der Dekontaminationslösung ein zusätzlicher Verfahrensschritt zur Reduktion des überschüssigen Oxidationsmittels, beispielsweise der Permanganate (Kaliumpermanganat, Permangansäure), durchgeführt werden.More preferably, after the pre-oxidation step and before the at least one section of the metal surface is brought into contact with the decontamination solution, an additional process step for reducing the excess oxidizing agent, for example the permanganates (potassium permanganate, permanganic acid), can be carried out.
Ebenfalls bevorzugt weist das erfindungsgemäße Verfahren nach dem Inkontaktbringen des zumindest eines Abschnitts der Metalloberfläche mit der Dekontaminationslösung den weiteren Verfahrensschritt der zumindest teilweisen Entfernung der in der Dekontaminationslösung befindlichen radioaktiven Isotope, bzw. deren Ionen, auf. Bevorzugt sind diese radioaktiven Isotope ausgewählt aus der Gruppe bestehend aus 55Fe, 63Ni, 54Mn, 65Zn, 125Sb, 137Cs, 58Co und 60Co. Weiter bevorzugt sind die radioaktiven Isotope ausgewählt aus der Gruppe bestehend aus 54Mn, 125Sb, 137Cs, 58Co und 60Co. Am bevorzugtesten handelt es sich bei diesen radioaktiven Isotopen um 58Co und/oder 60Co, noch bevorzugter um 60Co.Likewise preferably, after the at least one section of the metal surface has been brought into contact with the decontamination solution, the method according to the invention has the further method step of at least partial removal of the radioactive isotopes or their ions contained in the decontamination solution. These radioactive isotopes are preferred selected from the group consisting of 55 Fe, 63 Ni, 54 Mn, 65 Zn, 125 Sb, 137 Cs, 58 Co and 60 Co. More preferably, the radioactive isotopes are selected from the group consisting of 54 Mn, 125 Sb, 137 Cs , 58 Co and 60 Co. Most preferably these radioactive isotopes are 58 Co and / or 60 Co, more preferably 60 Co.
Bevorzugt erfolgt die Entfernung der radioaktiven Isotope über Bindung an ein Ionenaustauscherharz, bevorzugter ein Kationenaustauscherharz und/oder einen Kunstharz-Ionenaustauscher. Am bevorzugtesten handelt es sich bei dem Ionenaustauscher um einen starksauren Kationenaustauscher, bei dem Protonen für die gebundenen Kationen getauscht werden. Solche Ionenaustauscherharze sind dem Fachmann hinlänglich bekannt.The radioactive isotopes are preferably removed by binding to an ion exchange resin, more preferably a cation exchange resin and / or a synthetic resin ion exchanger. Most preferably, the ion exchanger is a strongly acidic cation exchanger in which protons are exchanged for the bound cations. Such ion exchange resins are sufficiently known to the person skilled in the art.
Weiter bevorzugt werden ungefähr ≥ 50 %, noch weiter bevorzugt ungefähr ≥ 70 %, ≥ 80 %, ≥ 90 % oder ≥ 99 % der in der Dekontaminationslösung befindlichen radioaktiven Isotope entfernt. Am bevorzugtesten werden ungefähr ≥ 99 % und < 100 % der in der Dekontaminationslösung befindlichen Isotope entfernt.More preferably about 50%, even more preferably about 70%, 80%, 90% or 99% of the radioactive isotopes in the decontamination solution are removed. Most preferably, approximately ≥ 99% and <100% of the isotopes in the decontamination solution are removed.
Weiter bevorzugt erfolgt das erfindungsgemäße Verfahren zyklisch. In anderen Worten werden zumindest die Verfahrensschritte des Inkontaktbringens der Metalloberfläche mit der Dekontaminationslösung und die daran anschließende zumindest teilweise Entfernung der in der Dekontaminationslösung befindlichen radioaktiven Isotope zumindest einmal wiederholt. Selbstverständlich können hierbei auch einzelne oder alle der weiteren zuvor aufgeführten Verfahrensschritte zusätzlich wiederholt werden. Bevorzugt wird das erfindungsgemäße Verfahren solange wiederholt, bis ein Dekontaminationsfaktor erreicht wurde, der einer Reduktion der Aktivität der radioaktiv kontaminierten Metalloberfläche um ≥ 1 bis ≤ 3 Größenordnung(en), weiter bevorzugt ungefähr 2 Größenordnungen entspricht. Die Bestimmung des Dekontaminationsfaktors erfolgt bevorzugt über die Messung der Aktivität des zur Entfernung der in der Dekontaminationslösung befindlichen radioaktiven Isotope verwendeten Ionenaustauscherharzes, bzw. einen Vergleich der Aktivität des Ionenaustauscherharzes vor und nach Durchführung des erfindungsgemäßen Verfahrens.The method according to the invention is more preferably carried out cyclically. In other words, at least the method steps of bringing the metal surface into contact with the decontamination solution and the subsequent at least partial removal of the radioactive isotopes in the decontamination solution are repeated at least once. Of course, individual or all of the other method steps listed above can also be repeated here. The method according to the invention is preferably repeated until a decontamination factor has been reached which corresponds to a reduction in the activity of the radioactively contaminated metal surface by 1 to 3 order (s), more preferably approximately 2 orders of magnitude. the The decontamination factor is preferably determined by measuring the activity of the ion exchange resin used to remove the radioactive isotopes in the decontamination solution, or comparing the activity of the ion exchange resin before and after performing the method according to the invention.
Ebenfalls bevorzugt wird das erfindungsgemäße Verfahren ungefähr 1 bis 30 Mal, bevorzugter 10 bis 25 Mal, noch bevorzugter 13 bis 20 Mal zyklisch wiederholt. Ein Bereich von 13 bis 17 Zyklen zeigte besonders gute Ergebnisse bei Einsatz von Oxalsäure.The method according to the invention is likewise preferably repeated cyclically approximately 1 to 30 times, more preferably 10 to 25 times, even more preferably 13 to 20 times. A range from 13 to 17 cycles showed particularly good results when using oxalic acid.
Erfindungsgemäß umfasst die Dekontaminationslösung neben dem Übergangsmetall zumindest einen Komplexbildner. Der Komplexbildner kann auch als Chelatbildner bezeichnet werden. Komplexbildner bilden mit Metallionen Chelatkomplexe aus. Beispielhafte Komplexbildner umfassen Nitriloessigsäure, Ethylendiamintetraessigsäure, Flußsäure, Oxalsäure, Weinsäure, Citronensäure und deren Salze.According to the invention, the decontamination solution comprises at least one complexing agent in addition to the transition metal. The complexing agent can also be referred to as a chelating agent. Complexing agents form chelate complexes with metal ions. Exemplary complexing agents include nitriloacetic acid, ethylenediaminetetraacetic acid, hydrofluoric acid, oxalic acid, tartaric acid, citric acid and their salts.
Die Dekontaminationslösung umfasst weiterhin Wasser, womit die wasserlöslichen Bestandteile der Dekontaminationslösung in ihrer gelösten Form vorliegen können. In anderen Worten handelt es sich bei der Dekontaminationslösung um eine wässrige Lösung.The decontamination solution further comprises water, so that the water-soluble constituents of the decontamination solution can be present in their dissolved form. In other words, the decontamination solution is an aqueous solution.
Die Säure ist ausgewählt aus der Gruppe bestehend aus Carbonsäure, Methansulfonsäure, Oxalsäure, Picolinsäureund Citronensäure. Bevorzugt ist die Säure eine Mischung aus Methansulfonsäure und Oxalsäure. Am bevorzugtesten ist die Säure Oxalsäure. Weiter bevorzugt umfasst die Dekontaminationslösung weiterhin ein Oxidationsmittel, bevorzugter Permangansäure, oder ein Reduktionsmittel. In weiteren bevorzugten Ausführungsformen umfasst die Dekontaminationslösung Zinkmethansulfonat, Zinknitrat, Zinkpermanganat, Zinksulfat und/oder einen Zinkkomplex des eingesetzten Komplexbildners. Der Komplex aus dem Übergangsmetall und dem eingesetzten Komplexbildner ist besonders bevorzugt.The acid is selected from the group consisting of carboxylic acid, methanesulfonic acid, oxalic acid, picolinic acid, and citric acid. The acid is preferably a mixture of methanesulfonic acid and oxalic acid. Most preferably the acid is oxalic acid. More preferably, the decontamination solution also comprises an oxidizing agent, more preferably permanganic acid, or a reducing agent. In further preferred embodiments, the decontamination solution comprises zinc methanesulfonate, Zinc nitrate, zinc permanganate, zinc sulfate and / or a zinc complex of the complexing agent used. The complex of the transition metal and the complexing agent used is particularly preferred.
Die Verwendung der Dekontaminationslösung zur Durchführung des erfindungsgemäßen Verfahrens ist ebenfalls Bestandteil dieser Erfindung.The use of the decontamination solution for carrying out the method according to the invention is also part of this invention.
Die Figuren zeigen im Einzelnen:
-
die Korrelation von Zn-Konzentration der Dekontaminationslösung und 60Co Dekontamination.Figur 1 -
die Korrelation von Zn-Konzentration der Dekontaminationslösung und 60Co Dekontamination.Figur 2 -
die Korrelation von Fe-Konzentration der Dekontaminationslösung und 60Co Dekontamination.Figur 3
-
Figure 1 the correlation of the Zn concentration of the decontamination solution and 60 Co decontamination. -
Figure 2 the correlation of the Zn concentration of the decontamination solution and 60 Co decontamination. -
Figure 3 the correlation of the Fe concentration of the decontamination solution and 60 Co decontamination.
Es wurden Primärkreisdekomtaminationen eines Leichtwasserreaktors durchgeführt, wobei die mittlere Zn- und Fe-Konzentration im Dekontaminationsmedium und die hierbei über das Ionenaustauscherharz (starksaurer Kationentauscher) aus der Dekontaminationslösung entfernten 60Co bestimmt wurde. Die Primärkreisdekontaminationen wurden über 15 Zyklen durchgeführt.Primary circuit decontamination of a light water reactor was carried out, with the mean Zn and Fe concentration in the decontamination medium and the 60 Co removed from the decontamination solution via the ion exchange resin (strongly acidic cation exchanger) being determined. The primary circuit decontamination was carried out over 15 cycles.
Wie anhand der
Im Vergleich dazu konnte eine solche sehr gute Korrelation zwischen der Fe-Konzentration und 60Co nicht nachgewiesen werden (siehe
Beispiel 1 wurde wiederholt, wobei anstelle der Zn-Konzentration die Ni-Konzentration bzw. die Cr-Konzentration betrachtet wurde. Hierbei zeigte sich jeweils ebenfalls eine Korrelation zwischen Konzentration des Übergangsmetalls und der über 60Co ausgetragenen Aktivität. Die bestimmte Korrelation nahm tendenziell und im Vergleich zu Zn von Ni über Cr ab.Example 1 was repeated, the Ni concentration or the Cr concentration being considered instead of the Zn concentration. In each case, a correlation was also found between the concentration of the transition metal and the activity carried out over 60 Co. The correlation determined tended to decrease from Ni to Cr compared to Zn.
Claims (11)
- Method for the decontamination of a radioactively contaminated metal surface, comprising the step of:- bringing at least a portion of the metal surface into contact with a decontamination solution comprising a complexing agent selected from hydrofluoric acid, methanesulfonic acid and carboxylic acids such as nitriloacetic acid, ethylenediaminetetraacetic acid, oxalic acid, tartaric acid, citric acid and picolinic acid and the salts thereof, and an ion of a transition metal.
- Method according to claim 1, wherein the ion of the transition metal is selected from the group consisting of zinc, nickel, cobalt, or mixtures thereof.
- Method according to at least one of the preceding claims, wherein the concentration of the transition metal is in a range of ≥ 0.5 and ≤ 15 mg/kg.
- Method according to at least one of the preceding claims, wherein the ion of the transition metal is zinc and is present in a concentration in a range of ≥ 2 and ≤ 5 mg/kg.
- Method according to at least one of the preceding claims, wherein 58Co ions and/or 60Co ions are removed from the metal surface.
- Method according to at least one of the preceding claims, wherein the decontamination solution is introduced into the primary circuit of a nuclear reactor.
- Method according to at least one of the preceding claims, wherein the decontamination solution is circulated.
- Method according to at least one of the preceding claims, wherein the method comprises, as a first method step, a pre-oxidation step or a reduction step for respectively oxidizing or reducing the radioactively contaminated metal surface.
- Method according to at least one of the preceding claims, wherein the method further comprises the step of:- at least partially removing the radioactive isotopes present in the decontamination solution.
- Method according to claim 9, wherein all of the method steps are repeated at least once.
- Use of an aqueous solution comprising a complexing agent selected from hydrofluoric acid, methanesulfonic acid and carboxylic acids such as nitriloacetic acid, ethylenediaminetetraacetic acid, oxalic acid, tartaric acid, citric acid and picolinic acid and the salts thereof, and an ion of a transition metal, in a concentration in the range of ≥ 0,5 mg/kg and ≤ 15 mg/kg for decontaminating radioactively contaminated metal surfaces.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102017107584.4A DE102017107584A1 (en) | 2017-04-07 | 2017-04-07 | Zinc dosage for decontamination of light water reactors |
PCT/EP2018/055374 WO2018184780A1 (en) | 2017-04-07 | 2018-03-05 | Zinc dosing for decontaminating light-water reactors |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3607562A1 EP3607562A1 (en) | 2020-02-12 |
EP3607562B1 true EP3607562B1 (en) | 2021-09-22 |
Family
ID=61691927
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18712094.4A Active EP3607562B1 (en) | 2017-04-07 | 2018-03-05 | Dosing of zinc for decontamination of light water reactors |
Country Status (10)
Country | Link |
---|---|
US (1) | US10998106B2 (en) |
EP (1) | EP3607562B1 (en) |
JP (1) | JP6858274B2 (en) |
KR (1) | KR102246411B1 (en) |
CN (1) | CN110494928A (en) |
DE (1) | DE102017107584A1 (en) |
ES (1) | ES2897688T3 (en) |
RU (1) | RU2767977C2 (en) |
UA (1) | UA124477C2 (en) |
WO (1) | WO2018184780A1 (en) |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT9719B (en) | 1901-08-03 | 1902-11-10 | Erminio Ferraris | Ball mill for wet grinding. |
GB2077482B (en) * | 1980-06-06 | 1983-06-08 | Us Energy | Coolant system decontamination |
GB2085215A (en) * | 1980-08-11 | 1982-04-21 | Central Electr Generat Board | An application technique for the decontamination of nuclear reactors |
US5024805A (en) * | 1989-08-09 | 1991-06-18 | Westinghouse Electric Corp. | Method for decontaminating a pressurized water nuclear reactor system |
US5434331A (en) * | 1992-11-17 | 1995-07-18 | The Catholic University Of America | Removal of radioactive or heavy metal contaminants by means of non-persistent complexing agents |
EP0682806B1 (en) * | 1993-11-30 | 1999-03-10 | British Nuclear Fuels PLC | Process for the treatment of particulate material |
GB9610647D0 (en) * | 1996-05-21 | 1996-07-31 | British Nuclear Fuels Plc | Decontamination of metal |
RU2137232C1 (en) * | 1997-07-31 | 1999-09-10 | Государственный научный центр Российской Федерации "Всероссийский научно-исследовательский институт неорганических материалов имени академика А.А.Бочвара" | Method for removing radioactive contaminants |
WO2000078403A1 (en) * | 1999-06-24 | 2000-12-28 | The University Of Chicago | Method for the decontamination of metallic surfaces |
FR2803855B1 (en) * | 2000-01-13 | 2002-05-31 | Usinor | PROCESS FOR OXALATING THE ZINC-PLATED SURFACE OF A SHEET |
TW529041B (en) * | 2000-12-21 | 2003-04-21 | Toshiba Corp | Chemical decontamination method and treatment method and apparatus of chemical decontamination solution |
US6944254B2 (en) * | 2002-09-06 | 2005-09-13 | Westinghouse Electric Co., Llc | Pressurized water reactor shutdown method |
DE102009047524A1 (en) | 2009-12-04 | 2011-06-09 | Areva Np Gmbh | Process for surface decontamination |
US20130251086A1 (en) * | 2010-07-21 | 2013-09-26 | Atomic Energy Of Canada Limited | Reactor decontamination process and reagent |
US9738551B2 (en) * | 2012-04-18 | 2017-08-22 | Westinghouse Electric Company Llc | Additives for heat exchanger deposit removal in a wet layup condition |
KR20140095266A (en) * | 2013-01-24 | 2014-08-01 | 한국원자력연구원 | Chelate free chemical decontamination reagent for removal of the dense radioactive oxide layer on the metal surface and chemical decontamination method using the same |
KR101523763B1 (en) * | 2013-06-19 | 2015-06-01 | 한국원자력연구원 | Oxidation decontamination reagent for removal of the dense radioactive oxide layer on the metal surface and oxidation decontamination method using the same |
US9334579B2 (en) * | 2013-10-29 | 2016-05-10 | Westinghouse Electric Company Llc | Targeted heat exchanger deposit removal by combined dissolution and mechanical removal |
US9793018B2 (en) * | 2013-10-29 | 2017-10-17 | Westinghouse Electric Company Llc | Ambient temperature decontamination of nuclear power plant component surfaces containing radionuclides in a metal oxide |
JP6118278B2 (en) * | 2014-01-31 | 2017-04-19 | 日立Geニュークリア・エナジー株式会社 | Method for attaching noble metals to structural members of nuclear power plants |
-
2017
- 2017-04-07 DE DE102017107584.4A patent/DE102017107584A1/en not_active Withdrawn
-
2018
- 2018-03-05 EP EP18712094.4A patent/EP3607562B1/en active Active
- 2018-03-05 KR KR1020197027140A patent/KR102246411B1/en active IP Right Grant
- 2018-03-05 JP JP2019554828A patent/JP6858274B2/en not_active Expired - Fee Related
- 2018-03-05 CN CN201880023839.3A patent/CN110494928A/en active Pending
- 2018-03-05 UA UAA201910746A patent/UA124477C2/en unknown
- 2018-03-05 RU RU2019134954A patent/RU2767977C2/en active
- 2018-03-05 US US16/603,327 patent/US10998106B2/en active Active
- 2018-03-05 WO PCT/EP2018/055374 patent/WO2018184780A1/en active Application Filing
- 2018-03-05 ES ES18712094T patent/ES2897688T3/en active Active
Also Published As
Publication number | Publication date |
---|---|
DE102017107584A1 (en) | 2018-10-11 |
JP6858274B2 (en) | 2021-04-14 |
US20200051706A1 (en) | 2020-02-13 |
KR102246411B1 (en) | 2021-05-03 |
ES2897688T3 (en) | 2022-03-02 |
RU2019134954A3 (en) | 2021-05-07 |
KR20190132374A (en) | 2019-11-27 |
US10998106B2 (en) | 2021-05-04 |
JP2020516876A (en) | 2020-06-11 |
EP3607562A1 (en) | 2020-02-12 |
RU2019134954A (en) | 2021-05-07 |
UA124477C2 (en) | 2021-09-22 |
CN110494928A (en) | 2019-11-22 |
RU2767977C2 (en) | 2022-03-22 |
WO2018184780A1 (en) | 2018-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2417606B1 (en) | Method for decontaminating surfaces | |
EP2564394B1 (en) | Process for decontamination of surfaces | |
EP1968075B1 (en) | Method for decontaminating an oxidised surface of a component or a system of a nuclear plant | |
DE69312966T2 (en) | METHOD FOR RESOLVING OXYDE DEPOSITED ON A METAL SUBSTRATE | |
EP2923360B1 (en) | Process for decontamination of surfaces of parts of the cooling circuit of a nuclear reactor | |
DE69507709T2 (en) | DECONTAMINATION PROCEDURE | |
EP2787509B1 (en) | Method for decomposing an oxide layer | |
CH625363A5 (en) | ||
EP1082728B1 (en) | Method for reducing the level of radioactivity of a metal part | |
EP2828205B1 (en) | Process for removal of radioactive contamination from wastewater | |
DE69012677T2 (en) | Process for the dissolution of oxides deposited on a substrate and use for decontamination. | |
EP3607562B1 (en) | Dosing of zinc for decontamination of light water reactors | |
WO2013041595A1 (en) | Method for decomposing an oxide layer | |
EP3494579B1 (en) | Process for the removal of a radionuclide containing oxide-layer | |
DE4117625C2 (en) | Cleaning process | |
EP1084078B1 (en) | Method for removing nitrate ions from a solution | |
WO2000028553A2 (en) | Method for disposing of metal cations | |
DE3828489A1 (en) | Process for producing corrosion-inhibiting oxide layers | |
DE4232246A1 (en) | Process for the destruction of an organic substance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20191025 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: RWE POWER AG |
|
17Q | First examination report despatched |
Effective date: 20201102 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20210602 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502018007165 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1432947 Country of ref document: AT Kind code of ref document: T Effective date: 20211015 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: T3 Ref document number: E 38524 Country of ref document: SK |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210922 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210922 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210922 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210922 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210922 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211222 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210922 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211222 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210922 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211223 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2897688 Country of ref document: ES Kind code of ref document: T3 Effective date: 20220302 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220122 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210922 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220124 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210922 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210922 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210922 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210922 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502018007165 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210922 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20220623 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210922 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502018007165 Country of ref document: DE Owner name: RWE NUCLEAR GMBH, DE Free format text: FORMER OWNER: RWE POWER AKTIENGESELLSCHAFT, 45128 ESSEN, DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20220305 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210922 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220305 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210922 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220305 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220305 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230711 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210922 Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210922 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210922 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240321 Year of fee payment: 7 Ref country code: CZ Payment date: 20240223 Year of fee payment: 7 Ref country code: SK Payment date: 20240301 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1432947 Country of ref document: AT Kind code of ref document: T Effective date: 20230305 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20180305 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240320 Year of fee payment: 7 Ref country code: BE Payment date: 20240320 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210922 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20240401 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240417 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230305 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230305 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210922 |