EP3693610B1 - Molecular vacuum pump - Google Patents
Molecular vacuum pump Download PDFInfo
- Publication number
- EP3693610B1 EP3693610B1 EP20153779.2A EP20153779A EP3693610B1 EP 3693610 B1 EP3693610 B1 EP 3693610B1 EP 20153779 A EP20153779 A EP 20153779A EP 3693610 B1 EP3693610 B1 EP 3693610B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- holweck
- intermediate connection
- blocking element
- pump
- rotor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000000903 blocking effect Effects 0.000 claims description 134
- 238000011144 upstream manufacturing Methods 0.000 claims description 28
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 238000010146 3D printing Methods 0.000 claims description 5
- 230000003068 static effect Effects 0.000 claims description 5
- 238000005086 pumping Methods 0.000 description 123
- 239000007789 gas Substances 0.000 description 45
- 239000002245 particle Substances 0.000 description 37
- 230000006835 compression Effects 0.000 description 19
- 238000007906 compression Methods 0.000 description 19
- 239000002826 coolant Substances 0.000 description 9
- 230000000694 effects Effects 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 230000009471 action Effects 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 238000007789 sealing Methods 0.000 description 5
- 125000006850 spacer group Chemical group 0.000 description 5
- 238000013459 approach Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000011161 development Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- FGRBYDKOBBBPOI-UHFFFAOYSA-N 10,10-dioxo-2-[4-(N-phenylanilino)phenyl]thioxanthen-9-one Chemical compound O=C1c2ccccc2S(=O)(=O)c2ccc(cc12)-c1ccc(cc1)N(c1ccccc1)c1ccccc1 FGRBYDKOBBBPOI-UHFFFAOYSA-N 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000000110 selective laser sintering Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/52—Casings; Connections of working fluid for axial pumps
- F04D29/522—Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D19/00—Axial-flow pumps
- F04D19/02—Multi-stage pumps
- F04D19/04—Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
Definitions
- the present invention relates to a molecular vacuum pump with at least one molecular pumping stage, namely a Holweck pumping stage, by means of which a gas can be conveyed from an inlet to an outlet of the molecular vacuum pump, the pumping stage having a pumping direction and a passage cross-section transversely to the pumping direction; and with an intermediate connection which is arranged downstream within the pump stage or the pump stage.
- a molecular vacuum pump with at least one molecular pumping stage, namely a Holweck pumping stage, by means of which a gas can be conveyed from an inlet to an outlet of the molecular vacuum pump, the pumping stage having a pumping direction and a passage cross-section transversely to the pumping direction; and with an intermediate connection which is arranged downstream within the pump stage or the pump stage.
- a passage cross section is the open area within a pumping stage in cross section measured at a selected point along the pumping direction.
- the passage cross-section is thus formed in particular by the sum of the openings in the relevant cross-section through which the gas particles to be conveyed can pass.
- the passage cross section relates in particular to a cross section at a selected point along the rotor axis, the sectional plane running in particular perpendicular to the rotor axis.
- a molecular vacuum pump according to the preamble of claim 1 is in US Pat WO 2006/048603 A1 disclosed.
- a molecular vacuum pump with the features according to claim 1, and in particular in that a preferably static blocking element is arranged in front of the intermediate connection in the pumping direction, by means of which the passage cross-section is locally reduced.
- the pump stage is a Holweck pump stage. Examples are also described below in which a turbo-molecular pumping stage is provided. These are presented because - but not within the scope of the present invention, in addition to the Holweck pump stage defined in claim 1, a turbo-molecular pump stage with an intermediate connection and blocking element can be provided.
- the blocking element reduces, in a structurally simple manner, a backflow of gas starting from the intermediate connection counter to the pumping direction or into an area upstream of the intermediate connection in the pumping direction, and the pumping action for the gas at the intermediate connection is improved.
- the blocking element is a static element and / or is arranged on a stator of the pump, since, in particular, due to dynamic forces on the rotor, its structural change would generally be significantly more complex.
- the invention can thus be implemented by modifying an existing pump without having to change its rotor. In principle, however, a blocking element can also be arranged on the rotor, for example.
- the blocking element is arranged in particular directly in front of the intermediate connection.
- the blocking element can have an advantageous conduction effect and / or screen effect for the gas or for the particles and / or give the particles a preferred direction which runs with at least one component in the pumping direction.
- the blocking element can form a guide and / or diaphragm element, for example.
- the passage cross section of the pumping stage is defined in particular by one or more stator elements, in the case of a turbo-molecular pumping stage which is not stressed, in particular stator disks, namely in particular one or more stator elements which are arranged upstream of the blocking element in the pumping direction.
- the pump stage can in principle have a variable passage cross section along its axial extent. The local reduction before the intermediate connection is decisive.
- the local reduction or downsizing of the passage cross-section is designed in particular in such a way that the compression of the pump stage is locally increased upstream of the intermediate connection.
- the pumping speed can be locally reduced in this area. At least for certain applications, however, this is justifiable in view of the improved pumping effect for the gas present at the intermediate connection.
- the invention is particularly suitable for applications where compression is critical and which in particular do not require a particularly high pumping speed at the main inlet, such as, for example, in a leak detector.
- the passage cross-section is only reduced by the blocking element, but not completely blocked.
- the blocking element can therefore cover part of the passage cross section, for example. It is therefore still possible to convey gas through the pumping stage past the blocking element and to the next pumping stage.
- the reduced passage cross-section thus in particular connects the pump stage with the axial region of the intermediate connection and / or with a further pump stage which is arranged downstream of the intermediate connection and / or the pump stage, in particular in series.
- the intermediate connection can be arranged, for example, in particular axially, within the pump stage between a first section of the pump stage and a second section of the pump stage arranged downstream.
- the intermediate connection can be arranged downstream of the pump stage, in particular axially, and upstream of a second pump stage, in particular axially, arranged downstream of it.
- the pump stages or sections of pump stages can therefore generally be connected in series in particular.
- the pump stages or sections have, in particular, rotors or rotor sections which are arranged on a common rotor shaft.
- the passage cross section is formed in particular by the open area of a cross section through a rotor of the pump in the area of the pumping stage.
- a passage cross-section of a turbostator disk is limited, for example radially outward, by a radially outer boundary of the turbostator blades. Inwardly, the passage cross-section is limited by a radially inner delimitation of the turbostator blades, namely by a so-called blade base.
- the passage cross-section has open sections separated by the blades in the circumferential direction. The same applies to a turbo rotor or a turbo rotor disk.
- the passage cross-section In the case of a Holweck pump, the passage cross-section is limited to the outside or to the inside by a respective base of several Holweck grooves. In the opposite direction, i.e. inwards or outwards, the passage cross-section is limited by a Holweck rotor.
- the passage cross-section has open sections separated by webs in the circumferential direction, the webs separating the Holweck grooves.
- the passage cross-section in a Holweck pumping stage corresponds in particular essentially to the sum of the cross-sections of the Holweck grooves.
- the passage cross-section through the blocking element can be reduced by at least 20%, in particular at least 30%, in particular based on the cross-sectional area of the passage cross-section of the pumping stage before and / or after the intermediate connection, in the case of an unstressed turbo-molecular pump, in particular an upstream stator disk.
- An intermediate connection of a multistage molecular pump is also referred to, for example, as an “interstage port” and a molecular pump with such an intermediate connection is also referred to as a “split-flow vacuum pump”.
- the passage cross section through the blocking element can be locally asymmetrical, in particular with respect to a rotor axis of the pump stage.
- the blocking element can be arranged in such a way that on a side of a rotor shaft of the pump stage facing the intermediate connection the blocking element blocks a larger proportion of the passage cross-section than on a side of the rotor facing away from the intermediate connection.
- the blocking element can be arranged on a side of the rotor shaft facing the intermediate connection.
- the blocking element can only be arranged in a partial angular region with respect to the rotor axis, which is in particular assigned to the intermediate connection.
- the blocking element can block the passage cross section in particular in an area which lies radially between the rotor axis and the intermediate connection.
- the arrangement of the blocking element at the intermediate connection causes, in addition to a reduced backflow from the intermediate connection, a reduction in the probability that gas molecules will escape from the upstream pump stage through the intermediate connection.
- the blocking element is impermeable at least in a circumferential section assigned to the intermediate connection, in particular essentially only in this circumferential section.
- a region radially opposite the intermediate connection can in particular be free of the blocking element or the passage cross section can be open here.
- the stator can in particular be designed to be permeable and generally like a “normal” stator.
- the blocking element can extend over a circumferential area extend, which corresponds at least to the angular range of the intermediate connection and / or at most 180 °.
- the passage cross section can be completely or, in particular radially, partially blocked by the blocking element.
- the geometry of the blocking element can, for example, be changeable. Depending on the geometry selected, a different performance can be set with regard to the return flow from the intermediate connection and also with regard to the pumping stage in the pumping direction.
- the blocking element extends in the radial direction only over part of the passage cross section of the pumping stage, in particular with respect to the adjacent, in particular upstream and / or downstream passage cross section before or after the local reduction.
- the blocking element can, for example, only extend over a radial part of the passage cross section with less compression than the respective other part.
- a radial area left free by the blocking element has, in particular, high compression but possibly low suction capacity. The high compression favors a low backflow, otherwise the blocking element also reduces the backflow.
- the blocking element can cover a radially inner part and / or not cover a radially outer part. For example, a combination with a blocking element or a section of the same blocking element in a different circumferential area extending over the entire radial width is also possible.
- a turbo-molecular pump stage can be provided in an embodiment not claimed, by means of which a gas can be conveyed from the inlet to the outlet of the molecular vacuum pump, the turbo-molecular pump stage having a pumping direction and a passage cross-section transversely to the pumping direction having; wherein a second intermediate connection is arranged within the turbo-molecular pumping stage or downstream of the turbo-molecular pumping stage, a particularly static, second blocking element, by means of which the passage cross-section is locally reduced, is arranged upstream of the second intermediate connection in the pumping direction.
- the turbo-molecular pumping stage can for example have one or more turbo rotor disks and / or one or more turbo stator disks.
- the second intermediate connection can, for example, be arranged downstream of the turbo-molecular pumping stage, in particular a last turbo-stator or turbo-rotor disk in the pumping direction of the turbo-molecular pumping stage.
- the second intermediate connection can be arranged, for example, at the axial height of a turbo rotor disk or open at such a disk, that is to say can be arranged generally within the turbo-molecular pumping stage.
- the second blocking element can, for example, be designed as a wall and / or as a continuous surface element and / or extend transversely to the pumping direction. This is a structurally simple option.
- the second blocking element can in particular extend perpendicularly and / or transversely to the pumping direction and / or to the rotor axis.
- a surface element or a wall can be arranged, for example, parallel to a delimitation of the second intermediate connection and / or obliquely or perpendicularly with respect to the rotor axis.
- the second blocking element is designed as part of a turbostator disk.
- the second blocking element can, for example, be directly connected to a stator disk, in particular a partial stator disk, and / or be axially assigned to such a disk.
- Axially assigned means that the second blocking element is at least partially arranged in the same axial area as the stator disk or partial stator disk.
- the second blocking element can replace a section of the turbostator disk facing the second intermediate connection.
- stator blades can be provided on one side of the rotor shaft, in particular facing away from the second intermediate connection, while the second blocking element and in particular no stator blades are provided on another side of the rotor shaft facing the second intermediate connection.
- the second blocking element can be designed as a sheet metal.
- Turbostator disks are often also designed as sheet metal parts and the second blocking element can generally be produced or configured in a manner similar to a turbostator disk, but in particular no separate blades are provided.
- the second blocking element defines a, in particular radially inner, blade base for some or all of the stator blades of a turbostator disk.
- a blade base diameter defined by the second blocking element can be greater than the blade base diameter of an upstream rotor and / or stator disk; in particular larger by at least 20%.
- the second blocking element can, for example, be shell-shaped and / or funnel-shaped, in particular part-ring, part-shell and / or part-funnel-shaped, the term "partial” referring in particular to an angular range around the rotor axis.
- Such a second blocking element can in particular be arranged between two spaced-apart disk packs and / or pump stages.
- the pump stage is a Holweck pump stage.
- the blocking element is designed as a transverse wall in at least one Holwecknut.
- the blocking element can, for example, be perpendicular to the groove or to the channel, to the pumping direction or to the rotor axis.
- At least one web which laterally delimits a Holweck groove, has a clearance with respect to the intermediate connection in an area downstream of the intermediate connection in the pumping direction.
- the web does not extend against the pumping direction as far as the intermediate connection, at least not with its full radial height, but the web end is spaced from it.
- the clearance facilitates the gas inlet from the intermediate connection into the section of the Holweck pumping stage downstream of the intermediate connection in the pumping direction by providing a better conductance for the gas.
- At least one web which laterally delimits a Holweck groove, is exposed to the blocking element in an area upstream of the blocking element in the pumping direction. This release enables gas particles to be conveyed to pass along the blocking element from one to the next Holwecknut.
- the Holweck groove which has the blocking element, is not blocked in the pumping direction in the sense of a dead end, but the pumping action of the Holweck groove in the area upstream of the blocking element can continue to be used, in that the particles pass through the opening into the next Holweck groove and are pumped further there be able.
- this reduces the probability that a particular particle will pass between the blocking element and the Holweck rotor from the relevant Holweck groove to the intermediate connection, thereby avoiding a cross flow from the main inlet or from the Holweck groove to the intermediate connection.
- the release connects in particular a blocked groove with one in the direction of rotation of the Holweck rotor's next groove, which can also have a corresponding clearance to the next groove, and so on, until a groove passing through the intermediate connection is reached.
- the intermediate connection with its delimitation can extend over several Holweck grooves and / or be assigned to several Holweck grooves.
- the boundary of the intermediate connection is assigned to only one Holweck groove.
- An assignment is seen in the fact that the intermediate connection opens into the relevant Holweck groove.
- An intermediate connection is basically formed on the Holweck stator in that the groove base is open there. The groove base of that Holweck groove to which the intermediate connection is assigned is open. If an intermediate connection is assigned multiple times, the opening extends over several Holweck grooves, in the case of a single assignment only within a Holweck groove.
- the delimitation of the intermediate connection can in particular only be provided within a Holweck groove. In principle, however, it is also conceivable that the delimitation extends into a web area and / or that the web has a lateral recess defining the delimitation.
- the intermediate connection can, for example, be aligned with at least one delimitation and / or a longitudinal extension parallel to a Holweck groove.
- the intermediate connection can also be oriented perpendicular and / or parallel to the rotor axis with at least one delimitation.
- a preferred embodiment provides that the boundary of the intermediate connection is assigned to at least one first Holweck groove and at least one of the next Holweck groove in the direction of rotation of a Holweck rotor is not assigned, a web between the first and the second Holweck groove having a recess that includes the intermediate connection the second Holwecknut connects.
- the recess can in particular be arranged adjacent to the intermediate connection and / or in the axial region of the intermediate connection.
- the blocking element can be designed as a transverse wall in the first Holwecknut.
- the particles can enter the first Holweck groove freely from the intermediate connection in the pumping direction.
- the blocking element blocks in particular the entry of particles into the first Holweck groove against the pumping direction.
- the particles can in particular freely enter the second Holweck groove, in particular with at least one movement component in the pumping direction.
- the first Holweck groove or generally one of the Holweck grooves to which the intermediate connection is assigned with its delimitation can generally preferably be separated from a Holweck groove next to it counter to the direction of rotation of the Holweck rotor, in particular a third Holweck groove, in particular by a web, at least in an axial area of the intermediate connection.
- several intermediate connections can also be provided on a pump stage or between or on several pump stages, in particular Holweck and / or turbo-molecular pump stages.
- the pump can have several, in particular different, pump stages which are preferably connected in series.
- the pump can have, for example, a pumping-active rotor section upstream of the intermediate connection in relation to the pumping direction and a pumping-active rotor section downstream in relation to the pumping direction, wherein in particular both rotor sections can be connected to the same rotor shaft and / or connected in series.
- the vacuum pump can, for example, have only one rotor shaft, wherein in particular all pump stages and pump stage sections can be driven by the rotor shaft and / or can be connected in series.
- the intermediate connection can preferably open into an axial region, in particular in a pump housing, via which the pumping stage or the pumping stage section upstream of the intermediate connection is connected in series with a pumping stage or the pumping stage section downstream of the intermediate connection.
- This axial area can be, for example, an intermediate stage area or an axial area within a pump stage, for example an axial area of a turbo rotor disk.
- the conveyance of gas can take place in particular over the axial region into which the intermediate connection opens and / or over the intermediate stage region.
- the blocking element is passed by the gas through the remaining passage cross section in the pumping direction.
- the blocking element and / or a stator element which is arranged on the intermediate connection and which has the blocking element is produced by means of a generative manufacturing process, in particular 3D printing.
- a generative manufacturing process in particular 3D printing.
- Generative manufacturing processes are understood to mean the manufacture or shaping of a component by joining volume elements, such as layers, for example.
- the generative manufacturing method preferably includes the component being manufactured using at least one of the methods stereolithography, laser melting, laser sintering, selective laser sintering, layer laminate methods, extrusion, fused deposition modeling, laminated object modeling or 3D printing.
- the turbo-molecular pump 111 shown comprises a pump inlet 115 which is surrounded by an inlet flange 113 and to which a recipient (not shown) can be connected in a manner known per se.
- the gas from the recipient can be sucked out of the recipient via the pump inlet 115 and conveyed through the pump to a pump outlet 117 to which a backing pump, such as a rotary vane pump, can be connected.
- the inlet flange 113 forms according to FIG Fig. 1 the upper end of the housing 119 of the vacuum pump 111.
- the housing 119 comprises a lower part 121 on which an electronics housing 123 is arranged laterally.
- the electronics housing 123 are electrical and / or electronic Components of the vacuum pump 111 housed, for. B. for operating an electric motor 125 arranged in the vacuum pump.
- a plurality of connections 127 for accessories are provided on the electronics housing 123.
- a data interface 129 for example in accordance with the RS485 standard, and a power supply connection 131 are arranged on the electronics housing 123.
- a flood inlet 133 in particular in the form of a flood valve, is provided on the housing 119 of the turbo molecular pump 111, via which the vacuum pump 111 can be flooded.
- a barrier gas connection 135, which is also referred to as a purge gas connection via which purge gas to protect the electric motor 125 (see e.g. Fig. 3 ) can be brought into the engine compartment 137, in which the electric motor 125 in the vacuum pump 111 is accommodated, before the gas conveyed by the pump.
- Two coolant connections 139 are also arranged in the lower part 121, one of the coolant connections being provided as an inlet and the other coolant connection being provided as an outlet for coolant, which can be passed into the vacuum pump for cooling purposes.
- the lower side 141 of the vacuum pump can serve as a standing surface, so that the vacuum pump 111 can be operated standing on the lower side 141.
- the vacuum pump 111 can, however, also be attached to a recipient via the inlet flange 113 and can thus be operated in a suspended manner, as it were.
- the vacuum pump 111 can be designed in such a way that it can also be put into operation when it is oriented in a different way than in FIG Fig. 1 is shown.
- Embodiments of the vacuum pump can also be implemented in which the underside 141 cannot be arranged facing downwards, but facing to the side or facing upwards.
- a bearing cap 145 is attached to the underside 141.
- Fastening bores 147 are also arranged on the underside 141, via which the pump 111 can be fastened to a support surface, for example.
- a coolant line 148 is shown, in which the coolant introduced and discharged via the coolant connections 139 can circulate.
- the vacuum pump comprises several process gas pump stages for conveying the process gas present at the pump inlet 115 to the pump outlet 117.
- a rotor 149 is arranged in the housing 119 and has a rotor shaft 153 which is rotatable about an axis of rotation 151.
- the turbo-molecular pump 111 comprises several turbo-molecular pump stages connected in series with one another with several radial rotor disks 155 fastened to the rotor shaft 153 and stator disks 157 arranged between the rotor disks 155 and fixed in the housing 119.
- a rotor disk 155 and an adjacent stator disk 157 each form a turbomolecular one Pumping stage.
- the stator disks 157 are held at a desired axial distance from one another by spacer rings 159.
- the vacuum pump also comprises Holweck pump stages which are arranged one inside the other in the radial direction and are connected in series with one another for effective pumping.
- the rotor of the Holweck pump stages comprises a rotor hub 161 arranged on the rotor shaft 153 and two attached to and supported by the rotor hub 161 Cylinder jacket-shaped Holweck rotor sleeves 163, 165, which are oriented coaxially to the axis of rotation 151 and are nested in one another in the radial direction.
- two cylinder jacket-shaped Holweck stator sleeves 167, 169 are provided, which are also oriented coaxially to the axis of rotation 151 and, viewed in the radial direction, are nested one inside the other.
- the active pumping surfaces of the Holweck pump stages are formed by the jacket surfaces, that is to say by the radial inner and / or outer surfaces, of the Holweck rotor sleeves 163, 165 and the Holweck stator sleeves 167, 169.
- the radial inner surface of the outer Holweck stator sleeve 167 lies opposite the radial outer surface of the outer Holweck rotor sleeve 163 with the formation of a radial Holweck gap 171 and with this forms the first Holweck pump stage following the turbo molecular pumps.
- the radial inner surface of the outer Holweck rotor sleeve 163 faces the radial outer surface of the inner Holweck stator sleeve 169 with the formation of a radial Holweck gap 173 and forms with this a second Holweck pumping stage.
- the radial inner surface of the inner Holweck stator sleeve 169 lies opposite the radial outer surface of the inner Holweck rotor sleeve 165 with the formation of a radial Holweck gap 175 and with this forms the third Holweck pumping stage.
- a radially running channel can be provided, via which the radially outer Holweck gap 171 is connected to the central Holweck gap 173.
- a radially running channel can be provided at the upper end of the inner Holweck stator sleeve 169, via which the middle Holweck gap 173 is connected to the radially inner Holweck gap 175.
- a connecting channel 179 to the outlet 117 can also be provided at the lower end of the radially inner Holweck rotor sleeve 165.
- the aforementioned pump-active surfaces of the Holweck stator sleeves 163, 165 each have a plurality of Holweck grooves running helically around the axis of rotation 151 in the axial direction, while the opposite lateral surfaces of the Holweck rotor sleeves 163, 165 are smooth and the gas for operating the Drive vacuum pump 111 in the Holweck grooves.
- a roller bearing 181 is provided in the area of the pump outlet 117 and a permanent magnetic bearing 183 in the area of the pump inlet 115.
- a conical injection molded nut 185 with an outer diameter that increases towards the roller bearing 181 is provided on the rotor shaft 153.
- the injection-molded nut 185 is in sliding contact with at least one stripper of an operating medium store.
- the operating medium reservoir comprises several absorbent disks 187 stacked on top of one another, which are impregnated with an operating medium for the roller bearing 181, e.g. with a lubricant.
- the operating medium is transferred by capillary action from the operating medium reservoir via the scraper to the rotating injection nut 185 and, as a result of the centrifugal force, is conveyed along the injection nut 185 in the direction of the increasing outer diameter of the injection nut 185 to the roller bearing 181, where it eg fulfills a lubricating function.
- the roller bearing 181 and the operating medium store are enclosed in the vacuum pump by a trough-shaped insert 189 and the bearing cover 145.
- the permanent magnetic bearing 183 comprises a rotor-side bearing half 191 and a stator-side bearing half 193, which each comprise a ring stack of several permanent magnetic rings 195, 197 stacked on top of one another in the axial direction.
- the ring magnets 195, 197 are opposite one another with the formation of a radial bearing gap 199, the rotor-side ring magnets 195 radially outside and the stator-side ring magnets 197 are arranged radially inside.
- the magnetic field present in the bearing gap 199 causes magnetic repulsive forces between the ring magnets 195, 197, which cause the rotor shaft 153 to be supported radially.
- the rotor-side ring magnets 195 are carried by a carrier section 201 of the rotor shaft 153 which surrounds the ring magnets 195 radially on the outside.
- the stator-side ring magnets 197 are carried by a stator-side support section 203 which extends through the ring magnets 197 and is suspended from radial struts 205 of the housing 119.
- the ring magnets 195 on the rotor side are fixed parallel to the axis of rotation 151 by a cover element 207 coupled to the carrier section 203.
- the stator-side ring magnets 197 are fixed parallel to the axis of rotation 151 in one direction by a fastening ring 209 connected to the carrier section 203 and a fastening ring 211 connected to the carrier section 203.
- a plate spring 213 can also be provided between the fastening ring 211 and the ring magnet 197.
- An emergency or backup bearing 215 is provided within the magnetic bearing, which runs idle during normal operation of the vacuum pump 111 without contact and only comes into engagement with an excessive radial deflection of the rotor 149 relative to the stator to create a radial stop for the rotor 149 to form, since a collision of the rotor-side structures with the stator-side structures is prevented.
- the backup bearing 215 is designed as an unlubricated roller bearing and forms a radial gap with the rotor 149 and / or the stator, which has the effect that the backup bearing 215 is disengaged during normal pumping operation.
- the radial deflection at which the backup bearing 215 engages is dimensioned large enough that the backup bearing 215 does not come into engagement during normal operation of the vacuum pump, and at the same time small enough so that a collision of the structures on the rotor side with the structures on the stator side under all circumstances is prevented.
- the vacuum pump 111 comprises the electric motor 125 for rotatingly driving the rotor 149.
- the armature of the electric motor 125 is formed by the rotor 149, the rotor shaft 153 of which extends through the motor stator 217.
- a permanent magnet arrangement can be arranged radially on the outside or embedded on the section of the rotor shaft 153 extending through the motor stator 217.
- the motor stator 217 is fixed in the housing within the motor compartment 137 provided for the electric motor 125.
- a sealing gas which is also referred to as a flushing gas and which can be air or nitrogen, for example, can enter the engine compartment 137 via the sealing gas connection 135.
- the electric motor 125 can be protected from process gas, e.g. from corrosive components of the process gas, via the sealing gas.
- the engine compartment 137 can also be evacuated via the pump outlet 117, i.e. the vacuum pressure produced by the backing pump connected to the pump outlet 117 is at least approximately in the engine compartment 137.
- a so-called labyrinth seal 223, known per se, can also be provided between the rotor hub 161 and a wall 221 delimiting the engine compartment 137, in particular in order to achieve better sealing of the motor compartment 217 from the radially outside Holweck pump stages.
- a vacuum pump 20 is shown, which is designed as a turbo-molecular vacuum pump.
- the schematic illustration shows a rotor shaft 22 to which a plurality of turbo rotor disks 24 are connected and which, during operation, rotates together with the turbo rotor disks 24 about a rotor axis that is perpendicular here.
- Turbostator disks 26 are provided between the turbo rotor disks 24. Together they cause a gas to be conveyed along a pumping direction 28 indicated here by an arrow.
- the vacuum pump 20 comprises an intermediate connection 30, which is indicated here in a simplified manner as an arrow.
- the intermediate connection 30 is arranged approximately at the axial height of one of the turbo rotor disks 24, that is to say opens into its axial or effective area.
- turbo stator disks 26 are shown downstream of the intermediate connection 30 in the pumping direction. It goes without saying, however, that turbostator disks 26 can also be provided there.
- a known stator disk 24 is arranged upstream of the intermediate connection 30 in the pumping direction 28.
- the pump 20 delivers in the pumping direction 28, it is possible to a certain extent that particles of a gas present at the intermediate connection 30 move against the pumping direction 28 after entering the vacuum pump 20.
- the particles can also pass through the turbostator disk 26 arranged upstream of the intermediate connection 30 and, in principle, also through further turbo rotor disks 24 and turbostator disks 26. There is thus a certain return flow 32, which is indicated here by an arrow.
- Fig. 7 shows a spacer ring 34, which can be provided, for example, for mounting two turbostator disks 26 at a distance.
- the spacer ring 34 has a recess 36 which defines a delimitation for an intermediate inlet, for example the intermediate inlet 30 or one of the intermediate inlets described below.
- the gas should be pumped out as well as possible from the intermediate connection 30 and / or should not flow back.
- a structural change to the rotor, in particular the turbo rotor disks 24, can be undesirable. If possible, it should be possible to retain an existing rotor construction.
- the present approach pursues in particular the approach of increasing the internal compression between the intermediate connection and the main inlet, that is to say the first inlet in the pumping direction, and of making a structural change, in particular on static components.
- Fig. 8 is a vacuum pump 20 designed as a turbo molecular pump in one of the Fig. 6 Similar representation shown, the reference numerals being used accordingly.
- a blocking element 38 is provided upstream of the intermediate connection 30 in the pumping direction 28. This is for example as a continuous Surface or wall formed and extends only around a partial angular range of the rotor shaft 22.
- a turbostator disk 26 is provided in the remaining partial angular region of the relevant axial region.
- the blocking element 38 prevents a backflow 32, as shown in FIG Fig. 6 is indicated.
- the movement of the particles is indicated here by an arrow 40.
- Such particles which initially move counter to the pumping direction 28 from the intermediate connection 30, strike the blocking element 38 and cannot move any further counter to the pumping direction 28.
- a respective particle After desorption from the blocking element 38, a respective particle has a fundamentally statistically distributed direction of movement, which, however, runs in the pumping direction 28 with at least one component in particular.
- the blocking element 38 therefore reduces the probability that a particular particle will move in the vacuum pump 20 against the pumping direction 28.
- the turbo stator disks 26 are axially permeable, that is, in the pumping direction 28, although not in such a way that the particles can fly exactly axially, but in such a way that the gas can be conveyed axially between the positioned stator blades.
- the turbostator disks 26 thus have a passage cross section.
- the passage cross-section of the turbostator disks 26 is constant over the axial extent of the only turbomolecular pump stage 41 here, but with the exception of that axial region in which the blocking element 38 is arranged.
- the blocking element 38 is impermeable and / or closed and therefore reduces the passage cross section of the pumping stage in a locally limited axial area, namely in the pumping direction 28 directly in front of the intermediate connection 30.
- the blocking element 28 is shown here significantly thicker than the turbo stator disks 26. However, this only serves to distinguish it from each other.
- the blocking element 38 can, for example, be, in particular thin sheet metal, and in particular even be thinner than the stator disks 26.
- the vacuum pump 20 of the Fig. 9 has two axially spaced disk packs which form a first turbo-molecular pump stage 42 and a second turbo-molecular pump stage 44. Between the pump stages 42 and 44 there is an intermediate stage region 46 into which the intermediate connection 30 opens. Unlike in Fig. 8 The intermediate connection 30 does not open onto a turbo rotor disk 24, for example, but into a free space between the pump stages 42 and 44 Pumping speed is desired and / or the conductance in the area of the intermediate connection 30 should be large.
- a blocking element 38 can, for example, be oriented obliquely to the rotor axis or rotor shaft 22 and / or to the pumping direction 28 with respect to a longitudinal section.
- the blocking element 38 can act as a guide element, in particular it can be designed as a guide plate. In this way, the particles can be guided particularly advantageously in the pumping direction 28.
- a blocking element 38 for example according to Fig. 8 or Fig. 9 , can be designed, for example, as a partial ring, in particular a half ring, which can be arranged on a side of the rotor axis or rotor shaft 22 facing the intermediate connection 30 and / or can be arranged in an angular region associated with the intermediate connection 30 with respect to the rotor axis.
- a typical turbostator disk 26 is shown, for example, shown in FIGS Figures 8 and 9 one of the upper two turbostator disks 26 or in Fig. 6 one of the three illustrated turbostator disks 26 can accordingly.
- the turbostator disk 26 of the Fig. 10 is shown in a top view, with the direction of view runs parallel to the pumping direction and to the rotor axis.
- the turbostator disk 26 comprises a plurality of turbostator blades 48 distributed over its circumference, between which the particles of the gas to be conveyed can pass.
- the spaces between the turbostator blades 48 thus form a passage cross-section, but the spaces are not only formed by the free areas between the stator blades 48 that are visible here, but also partially extend below or above the stator blades 48 due to the angle of incidence of the stator blades 48, which is not visible here Stator blades 48.
- Fig. 11 is one of those who Fig. 10 A similar perspective is chosen, with a turbostator disk 26 being visible, which here only fills a partial angular range. The remaining partial angle range is covered by a blocking element 38. An intermediate connection 30 is indicated, the blocking element 38 being provided upstream of the intermediate connection 30 in the pumping direction. The pumping direction runs towards the viewer here.
- the blocking element 38 is designed as a continuous surface element, for example as a sheet metal. In this example it forms a partial ring, which here extends, for example, over approximately 180 ° around the rotor axis.
- the blocking element 38 itself does not have a passage cross section or is embodied in an impermeable manner.
- the passage cross section of the pump stage is therefore locally reduced in the axial area shown here, namely, by way of example, to that angular area in which the blocking element 38 is not arranged or which the blocking element 38 does not cover.
- the passage cross-section is here, in particular, locally asymmetrical in relation to the rotor axis.
- the blocking element blocks on a side of the rotor axis facing the intermediate connection 30 38 a larger proportion of the passage cross section than on a side of the rotor facing away from the intermediate connection 30.
- the angular area which the blocking element 38 covers is arranged in particular in such a way that the intermediate connection 30 is arranged at least essentially in the middle of the angular area.
- the blocking element 38 according to Fig. 11 can for example in relation to a longitudinal section according to Fig. 8 or Fig. 9 be trained.
- the blocking element 38 can be designed, for example, as a flat surface element and / or extend perpendicular to the rotor axis.
- the blocking element 38 can taper, for example be designed in the form of a part funnel and / or part shell, in particular as a half funnel or half shell.
- the blocking element 38 can in particular be designed in the form of a partial ring.
- the blocking element 38 can, for example, simply be a normal turbostator disk, such as that of the Fig. 10 , cover or replace the corresponding cross-sectional area.
- a partial stator disk 26 is provided, in particular, which is connected in particular to the blocking element 38 and / or is axially assigned to it.
- FIG. 12 Another approach to reducing the backflow is to use a stator disk in the relevant section, which has a particularly high compression and thus a blocking effect.
- Fig. 12 the course of the compression for a typical turbostator disk is plotted qualitatively along the radial extent of a respective turbostator blade.
- the horizontal axis shows the radius R of a radial position and the vertical axis shows the compression K.
- the curve which is shown here in simplified form as a straight line, illustrates that the compression K is greatest in a radially outer region 49.
- the radially outer region 49 of a stator disk can be used. Only particles with a very large momentum pass through the rotor disk into this area; it is an area with high compression. In contrast, the radially inner area has a lower compression, in particular because of the lower peripheral speed. It is therefore preferred to allow only a high level of compression by utilizing a specific radial area.
- a blocking element 38 covers a radially inner region of the rotor blades 48 if it is assumed that the stator disk 26 is otherwise like that of the Fig. 10 is constructed. In principle, however, the stator blades 48 do not have to extend into the radial region of the blocking element 38. Rather, it is intended to illustrate that the blocking element 38 advantageously reduces the passage cross-section locally to a passage cross-section that has a larger internal diameter than the other passage cross-section of the pumping stage or the passage cross-section of an upstream turbo rotor or turbostator disk. In this example, the blocking element 38 thus effectively defines the inside diameter of the passage cross section and the respective blade bases 51 between the turbostator blades 48.
- This example also reduces a backflow of gas particles from the intermediate connection 30. While in the Figures 8, 9 and 11th a blocking element 38 is arranged in particular "in the path" of the particles in order to reduce backflow, in particular a passage cross-section with low compression is covered or only a passage cross-section with high compression is left, even if it extends directly above the intermediate connection.
- the high compression itself means that there is a low likelihood of that a particle passes through the passage cross-section against the pumping direction.
- a region with less compression, namely the radially inner region, would have a relatively high probability of a particle passing through, but is covered by the blocking element 38.
- the blade bases of the individual turbo rotor and turbo stator disks of a pump stage and / or of a pair of rotor disks and stator disks assigned to one another are typically of comparable diameters.
- a blade base diameter is therefore essentially the same or similar.
- the passage cross-sections within a pumping stage are often similar. This is particularly useful so that the discs have approximately the same suction capacity.
- only the radially outer area 49 of the stator disks can preferably be used. This is exemplified in the Fig. 13 the case. In principle, it is possible for this purpose to use existing stator disks, for example as in FIG Fig.
- stator disk can be provided, the stator blades of which only extend over the desired radial area.
- the, in particular effective, blade base diameter of the stator disk upstream of the intermediate connection 30 may differ, preferably significantly, from that of another stator and / or rotor disk, in particular the stator disk and / or rotor disk upstream of this stator disk.
- a Holweck pumping stage 50 is shown in a simplified manner in such a way that a Holweck stator 52 is conceptually developed and shown as a flat surface.
- the Holweck stator 52 comprises a plurality of Holweck grooves 54 which are laterally delimited and separated from one another by webs 56.
- a Holweck rotor (not shown here, in particular a Holweck sleeve) rotates relative to the Holweck stator 52 with a direction of rotation 58 indicated by an arrow.
- the Holweck rotor moves thus with this idealized view from right to left across the stator 52. This produces a pumping effect along a pumping direction 28.
- An intermediate connection 30 is provided within the Holweck pump stage 50, which is designed as a recess, in particular as a milled elongated hole, in the Holweck stator 52.
- the intermediate connection 30 is arranged downstream of a first section of the Holweck pumping stage 50 in the pumping direction 28 and upstream of a second section of the pumping stage 50 in the pumping direction 28.
- the Holweck pumping stage 50 effects a delivery of gas along the pumping direction 28, a movement of gas particles starting from the intermediate connection 30 into the first section of the Holweck pumping stage 50 and thus against the pumping direction 28 is fundamentally possible.
- the pumping stage 50 of the Fig. 14 thus points - similar to that of the Fig. 6 - The risk of a backflow 32, which should be avoided.
- the Holweck pump stage 50 has the Fig. 15 a blocking element 38. Otherwise, the elements shown in a similar manner are constructed accordingly with the same reference numerals.
- the pumping direction 28 and the direction of rotation 58 run according to the arrows in FIG Fig. 14 .
- the blocking element 38 is designed here as a transverse wall which blocks several Holweck grooves 54, namely those to which the intermediate connection 30 is assigned with its delimitation. Particle movement starting from the intermediate connection 30 counter to the pumping direction 28 and into the sections of the Holweck grooves 54 upstream of the intermediate connection 30 is thus effectively restricted.
- the blocking element 38 can be designed, for example, as a horizontal web and / or those directly adjacent to the intermediate connection 30 Shut off Holweck grooves 54 opposite the intermediate connection.
- the blocking element 38 significantly reduces the likelihood of particles flowing back directly from the intermediate connection 30 against the pumping direction 28.
- a turbo-molecular pump stage can be provided upstream of a Holweck pump stage 50.
- the blocking element 38 in the Holweck pump stage 50 thus reduces the risk of a backflow to the turbo molecular pump stage.
- One of the effects is, for example, an increase in the pressure ratio between the intermediate connection and the connection or port that is next opposite to the pumping direction 28.
- This can, for example, be an intermediate connection on or after a turbo-molecular pump stage or, in principle, also a main inlet.
- a passage cross section of the pump stage 50 is formed for a given axial area by the sum of the cross sections of the Holweck grooves 54. Some of the Holweck grooves 54 or their cross sections are blocked by the blocking element 38. The other Holweck grooves 54, however, remain open.
- Figures 14 to 16 show the unwound Holweck stator 52 in particular only partially and that further Holweck grooves 54 and webs 56 are preferably provided. Rather, the illustrations concentrate on the area of the intermediate connection 30, which, however, in particular does not have to extend around almost the entire Holweck stator 52.
- the blocking element 38 blocks the passage cross section, in particular in an angular region associated with the intermediate connection 30 with respect to the rotor axis.
- the intermediate connection 30 is aligned with at least one of its delimitations and with its longitudinal extension perpendicular to the rotor axis. Also other orientations, for example perpendicular to the webs 56 are possible.
- the Holweck webs in particular are specifically removed directly below the intermediate connection.
- the pumping speed to be achieved there is increased in that the inflow area into the section of the Holweck pump stage 50 downstream of the intermediate connection is increased.
- the webs 56 also have a clearance 62 with respect to the blocking element 38 in an area upstream of the blocking element 38.
- the webs 56 therefore do not extend in the pumping direction 28 to the blocking element 38 or end at a certain distance therefrom.
- the clearances 62 form a connection between a Holweck groove 54 blocked by the blocking element 38 and a Holweck groove 54 which is next in the direction of rotation 58 of the Holweck rotor 52.
- the blocking element 38 extends here over several Holweck grooves 54 and so many clearances 62 are provided that all Holweck grooves 54 blocked by the blocking element 38 are connected to an unblocked or free Holweck groove 54.
- the blocking element 38, the clearances in the area 60 and the clearances 62 lead to a particularly strong reduction in the return flow from the intermediate connection 30 in the direction of the high vacuum side, i.e. against the pumping direction 28, with a simultaneous increase in the pumping speed at the intermediate connection 30.
- Fig. 16 shows a further embodiment of a Holweck pumping stage 50 with several Holweck grooves 54 which are laterally limited or separated by webs 56.
- the pumping direction 28 and the direction of rotation 58 of the Holweck rotor, not shown here, are indicated by arrows and run according to the Figures 14 and 15 .
- the embodiment of the Fig. 16 comprises two intermediate connections 30, which are arranged and designed similarly, which is why the following explanations are limited to the left one of the intermediate connections 30 shown here. It goes without saying, however, that in principle one or more such intermediate connections 30 can be provided and the number selected here is an example.
- the intermediate connection 30 is assigned to only one Holweck groove 54. Its delimitation therefore does not extend over several Holweck grooves 54.
- the intermediate connection 30 is advantageously arranged with its delimitation essentially parallel to this Holweck groove 54.
- a blocking element 38 is provided, which prevents a backflow along the relevant Holweck groove 54 restricts.
- the Holweck groove 54 in question is connected to the next Holweck groove 54 in the direction of rotation 58 via an opening 62 of a web 56 laterally delimiting the groove 54, so that gas particles from the Holweck groove 54, which is blocked by the blocking element 38 and to which the intermediate connection 30 is assigned, are not get into a dead end, but are pumped out through the next Holwecknut 54.
- the movement of the gas particles is indicated here schematically by dotted arrows.
- the particles can flow, on the one hand, into a section of the Holweck groove 54 downstream of the intermediate connection 30, to which the intermediate connection 30 is assigned.
- the web 56 which is arranged between the relevant Holweck groove 54 and the next Holweck groove 54 in the direction of rotation 58, has a recess 64 which connects the Holweck grooves 54 to one another.
- a respective particle can also get from the intermediate connection 30 into the Holweck groove 54 which is next in the direction of rotation 58.
- the intermediate connection 30 is thus opposed to a low conductance, so that a flow of gas into the Holweck pump stage 50 is facilitated.
- the aim is in particular to reduce the probability of entry and again immediate exit through the same intermediate connection 30.
- the particles move either directly into the associated Holweck groove 54 or through the preferred direction after hitting the Holweck sleeve into the neighboring Holweck groove 54.
- the blocking element 38 prevents a particle from being transported in the direction of the high vacuum side.
- the exposure 62 advantageously serves to ensure that particles from the Holweck groove 54 blocked by the blocking element 38 get into the neighboring Holweck groove 54, and that the conveyance in the pumping direction can thus be maintained.
- the Holweck stators 52 of Fig. 15 and 16 have a very complex geometry and can therefore preferably be produced in a particularly simple manner by means of 3D printing or generally by a generative manufacturing process.
- the other stators and / or blocking elements presented here can also be produced by means of a generative process, such as, for example, 3D printing.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Non-Positive Displacement Air Blowers (AREA)
Description
Die vorliegende Erfindung betrifft eine Molekularvakuumpumpe mit wenigstens einer molekularen Pumpstufe, nämlich einer Holweckpumpstufe, mittels derer ein Gas von einem Einlass zu einem Auslass der Molekularvakuumpumpe förderbar ist, wobei die Pumpstufe eine Pumprichtung und quer zur Pumprichtung einen Durchlassquerschnitt aufweist; und mit einem Zwischenanschluss, der innerhalb der Pumpstufe oder der Pumpstufe nachgeschaltet angeordnet ist.The present invention relates to a molecular vacuum pump with at least one molecular pumping stage, namely a Holweck pumping stage, by means of which a gas can be conveyed from an inlet to an outlet of the molecular vacuum pump, the pumping stage having a pumping direction and a passage cross-section transversely to the pumping direction; and with an intermediate connection which is arranged downstream within the pump stage or the pump stage.
Ein Durchlassquerschnitt ist die offene Fläche innerhalb einer Pumpstufe im Querschnitt gemessen an einem gewählten Punkt entlang der Pumprichtung. Der Durchlassquerschnitt ist also insbesondere durch die Summe der Öffnungen in dem betreffenden Querschnitt gebildet, durch die zu fördernde Gasteilchen hindurchtreten können. Bei einer rotorbetriebenen Molekularvakuumpumpe bezieht sich der Durchlassquerschnitt insbesondere auf einen Querschnitt an einem gewählten Punkt entlang der Rotorachse, wobei die Schnittebene insbesondere senkrecht zur Rotorachse verläuft.A passage cross section is the open area within a pumping stage in cross section measured at a selected point along the pumping direction. The passage cross-section is thus formed in particular by the sum of the openings in the relevant cross-section through which the gas particles to be conveyed can pass. In the case of a rotor-operated molecular vacuum pump, the passage cross section relates in particular to a cross section at a selected point along the rotor axis, the sectional plane running in particular perpendicular to the rotor axis.
Eine Molekularvakuumpumpe nach dem Oberbegriff des Anspruchs 1 ist in der
Es ist eine Aufgabe der Erfindung, bei einer derartigen Vakuumpumpe das Abpumpen von am Zwischenanschluss anstehendem Gas zu verbessern und/oder ein Rückströmen von Gas ausgehend vom Zwischenanschluss entgegen der Pumprichtung zu reduzieren.It is an object of the invention in such a vacuum pump to improve the pumping off of gas present at the intermediate connection and / or to reduce a backflow of gas starting from the intermediate connection counter to the pumping direction.
Diese Aufgabe wird durch eine Molekularvakuumpumpe mit den Merkmalen gemäß Anspruch 1 gelöst, und insbesondere dadurch, dass in Pumprichtung vor dem Zwischenanschluss ein, bevorzugt statisches, Blockierelement angeordnet ist, durch welches der Durchlassquerschnitt lokal reduziert ist.This object is achieved by a molecular vacuum pump with the features according to claim 1, and in particular in that a preferably static blocking element is arranged in front of the intermediate connection in the pumping direction, by means of which the passage cross-section is locally reduced.
Gemäß Anspruch 1 ist die Pumpstufe eine Holweckpumpstufe. Nachfolgend werden auch Beispiele beschrieben, bei denen eine Turbomolekularpumpstufe vorgesehen ist. Diese werden vorgestellt, weil - allerdings nicht im Rahmen der vorliegenden Erfindungzusätzlich zu der in Anspruch 1 definierten Holweckpumpstufe eine Turbomolekularpumpstufe mit Zwischenanschluss und Blockierelement vorgesehen sein kann.According to claim 1, the pump stage is a Holweck pump stage. Examples are also described below in which a turbo-molecular pumping stage is provided. These are presented because - but not within the scope of the present invention, in addition to the Holweck pump stage defined in claim 1, a turbo-molecular pump stage with an intermediate connection and blocking element can be provided.
Das Blockierelement vermindert auf konstruktiv einfache Weise ein Rückströmen von Gas ausgehend vom Zwischenanschluss entgegen der Pumprichtung bzw. in einen dem Zwischenanschluss in Pumprichtung vorgeordneten Bereich und die Pumpwirkung für das am Zwischenanschluss anstehende Gas wird verbessert. Insbesondere erweist es sich als vorteilhaft, wenn das Blockierelement ein statisches Element ist und/oder an einem Stator der Pumpe angeordnet ist, da insbesondere aufgrund von dynamischen Kräften am Rotor dessen konstruktive Änderung allgemein deutlich aufwendiger wäre. Die Erfindung kann also durch Modifizieren einer bestehenden Pumpe realisiert werden, ohne deren Rotor verändern zu müssen. Grundsätzlich kann ein Blockierelement aber beispielsweise auch am Rotor angeordnet sein.The blocking element reduces, in a structurally simple manner, a backflow of gas starting from the intermediate connection counter to the pumping direction or into an area upstream of the intermediate connection in the pumping direction, and the pumping action for the gas at the intermediate connection is improved. In particular, it proves to be advantageous if the blocking element is a static element and / or is arranged on a stator of the pump, since, in particular, due to dynamic forces on the rotor, its structural change would generally be significantly more complex. The invention can thus be implemented by modifying an existing pump without having to change its rotor. In principle, however, a blocking element can also be arranged on the rotor, for example.
Das Blockierelement ist insbesondere unmittelbar vor dem Zwischenanschluss angeordnet. Somit kann das Blockierelement eine vorteilhafte Leitungswirkung und/oder Blendenwirkung für das Gas bzw. für die Teilchen aufweisen und/oder den Teilchen eine Vorzugsrichtung verleihen, die zumindest mit einer Komponente in Pumprichtung verläuft. Allgemein kann das Blockierelement beispielsweise ein Leit- und/oder Blendenelement bilden.The blocking element is arranged in particular directly in front of the intermediate connection. Thus, the blocking element can have an advantageous conduction effect and / or screen effect for the gas or for the particles and / or give the particles a preferred direction which runs with at least one component in the pumping direction. In general, the blocking element can form a guide and / or diaphragm element, for example.
Der Durchlassquerschnitt der Pumpstufe ist insbesondere durch ein oder mehrere Statorelemente, im Falle einer nicht beanspruchten Turbomolekularpumpstufe insbesondere Statorscheiben, definiert, nämlich insbesondere ein oder mehrere Statorelemente, die dem Blockierelement in Pumprichtung vorgeordnet sind. Die Pumpstufe kann grundsätzlich entlang ihrer axialen Erstreckung einen variablen Durchlassquerschnitt aufweisen. Entscheidend ist die lokale Reduzierung vor dem Zwischenanschluss.The passage cross section of the pumping stage is defined in particular by one or more stator elements, in the case of a turbo-molecular pumping stage which is not stressed, in particular stator disks, namely in particular one or more stator elements which are arranged upstream of the blocking element in the pumping direction. The pump stage can in principle have a variable passage cross section along its axial extent. The local reduction before the intermediate connection is decisive.
Die lokale Reduzierung oder Verkleinerung des Durchlassquerschnitts ist insbesondere derart ausgebildet, dass die Kompression der Pumpstufe vor dem Zwischenanschluss lokal erhöht ist. Dabei kann das Saugvermögen in diesem Bereich zwar lokal reduziert sein. Zumindest für bestimmte Anwendungen ist dies jedoch vertretbar angesichts der verbesserten Pumpwirkung für das am Zwischenanschluss anstehende Gas. Allgemein eignet sich die Erfindung besonders für kompressionskritische Anwendungen, die insbesondere kein besonders großes Saugvermögen am Haupteinlass benötigen, wie z.B. bei einem Lecksuchgerät. Der Durchlassquerschnitt wird durch das Blockierelement erfindungsgemäß lediglich reduziert, nicht aber gänzlich versperrt. Das Blockierelement kann also zum Beispiel einen Teil des Durchlassquerschnitts verdecken. Eine Förderung von Gas durch die Pumpstufe vorbei am Blockierelement und zur nächsten Pumpstufe bleibt somit möglich. Der reduzierte Durchlassquerschnitt verbindet also insbesondere die Pumpstufe mit dem Axialbereich des Zwischenanschlusses und/oder mit einer weiteren Pumpstufe, die dem Zwischenanschluss und/oder der Pumpstufe, insbesondere in Reihenschaltung, nachgeordnet ist.The local reduction or downsizing of the passage cross-section is designed in particular in such a way that the compression of the pump stage is locally increased upstream of the intermediate connection. The pumping speed can be locally reduced in this area. At least for certain applications, however, this is justifiable in view of the improved pumping effect for the gas present at the intermediate connection. In general, the invention is particularly suitable for applications where compression is critical and which in particular do not require a particularly high pumping speed at the main inlet, such as, for example, in a leak detector. According to the invention, the passage cross-section is only reduced by the blocking element, but not completely blocked. The blocking element can therefore cover part of the passage cross section, for example. It is therefore still possible to convey gas through the pumping stage past the blocking element and to the next pumping stage. The reduced passage cross-section thus in particular connects the pump stage with the axial region of the intermediate connection and / or with a further pump stage which is arranged downstream of the intermediate connection and / or the pump stage, in particular in series.
Allgemein kann der Zwischenanschluss z.B., insbesondere axial, innerhalb der Pumpstufe zwischen einem ersten Abschnitt der Pumpstufe und einem in Reihe nachgeordneten, zweiten Abschnitt der Pumpstufe angeordnet sein. Alternativ kann der Zwischenanschluss z.B. der Pumpstufe, insbesondere axial, nachgeordnet und einer in Reihe nachgeordneten, zweiten Pumpstufe, insbesondere axial, vorgeordnet angeordnet sein. Die Pumpstufen bzw. Abschnitte von Pumpstufen können also allgemein insbesondere in Reihe geschaltet sein. Die Pumpstufen bzw. Abschnitte weisen insbesondere Rotoren bzw. Rotorabschnitte auf, die auf einer gemeinsamen Rotorwelle angeordnet sind.In general, the intermediate connection can be arranged, for example, in particular axially, within the pump stage between a first section of the pump stage and a second section of the pump stage arranged downstream. Alternatively For example, the intermediate connection can be arranged downstream of the pump stage, in particular axially, and upstream of a second pump stage, in particular axially, arranged downstream of it. The pump stages or sections of pump stages can therefore generally be connected in series in particular. The pump stages or sections have, in particular, rotors or rotor sections which are arranged on a common rotor shaft.
Der Durchlassquerschnitt ist insbesondere durch den offenen Bereich eines Querschnitts durch einen Rotor der Pumpe im Bereich der Pumpstufe gebildet. Bei einer nicht beanspruchten Turbomolekularpumpe oder -pumpstufe ist ein Durchlassquerschnitt einer Turbostatorscheibe beispielsweise nach radial außen durch eine radial äußere Begrenzung der Turbostatorschaufeln begrenzt. Nach innen ist der Durchlassquerschnitt dabei durch eine radial innere Begrenzung der Turbostatorschaufeln, nämlich durch einen sogenannten Schaufelgrund, begrenzt. Der Durchlassquerschnitt weist in Umfangsrichtung durch die Schaufeln separierte, offene Abschnitte auf. Entsprechendes gilt für einen Turborotor bzw. eine Turborotorscheibe. Bei einer Holweckpumpe ist der Durchlassquerschnitt zum Beispiel nach außen oder nach innen von einem jeweiligen Grund mehrerer Holwecknuten begrenzt. In der entgegengesetzten Richtung, also nach innen bzw. nach außen, ist der Durchlassquerschnitt durch einen Holweckrotor begrenzt. Der Durchlassquerschnitt weist in Umfangsrichtung durch Stege separierte, offene Abschnitte auf, wobei die Stege die Holwecknuten trennen. Allgemein entspricht der Durchlassquerschnitt bei einer Holweckpumpstufe insbesondere im Wesentlichen der Summe der Querschnitte der Holwecknuten.The passage cross section is formed in particular by the open area of a cross section through a rotor of the pump in the area of the pumping stage. In the case of a turbomolecular pump or pump stage that is not stressed, a passage cross-section of a turbostator disk is limited, for example radially outward, by a radially outer boundary of the turbostator blades. Inwardly, the passage cross-section is limited by a radially inner delimitation of the turbostator blades, namely by a so-called blade base. The passage cross-section has open sections separated by the blades in the circumferential direction. The same applies to a turbo rotor or a turbo rotor disk. In the case of a Holweck pump, the passage cross-section is limited to the outside or to the inside by a respective base of several Holweck grooves. In the opposite direction, i.e. inwards or outwards, the passage cross-section is limited by a Holweck rotor. The passage cross-section has open sections separated by webs in the circumferential direction, the webs separating the Holweck grooves. In general, the passage cross-section in a Holweck pumping stage corresponds in particular essentially to the sum of the cross-sections of the Holweck grooves.
Insbesondere kann der Durchlassquerschnitt durch das Blockierelement um mindestens 20%, insbesondere mindestens 30%, reduziert sein, insbesondere bezogen auf die Querschnittsfläche des Durchlassquerschnitt der Pumpstufe vor und/oder nach dem Zwischenanschluss, im Fall einer nicht beanspruchten Turbomolekularpumpe insbesondere einer vorgeschalteten Statorscheibe.In particular, the passage cross-section through the blocking element can be reduced by at least 20%, in particular at least 30%, in particular based on the cross-sectional area of the passage cross-section of the pumping stage before and / or after the intermediate connection, in the case of an unstressed turbo-molecular pump, in particular an upstream stator disk.
Ein Zwischenanschluss einer mehrstufigen Molekularpumpe wird beispielsweise auch als "interstage-port" bezeichnet und eine Molekularpumpe mit einem solchen Zwischenanschluss wird auch als "Splitflow-Vakuumpumpe" bezeichnet.An intermediate connection of a multistage molecular pump is also referred to, for example, as an “interstage port” and a molecular pump with such an intermediate connection is also referred to as a “split-flow vacuum pump”.
Insbesondere kann der Durchlassquerschnitt durch das Blockierelement lokal asymmetrisch, insbesondere in Bezug auf eine Rotorachse der Pumpstufe, sein. Z.B. kann das Blockierelement derart angeordnet sein, dass auf einer dem Zwischenanschluss zugewandten Seite einer Rotorwelle der Pumpstufe das Blockierelement einen größeren Anteil des Durchlassquerschnitts blockiert als auf einer dem Zwischenanschluss abgewandten Seite des Rotors. Allgemein bevorzugt kann das Blockierelement auf einer dem Zwischenanschluss zugewandten Seite der Rotorwelle angeordnet sein. Beispielsweise kann das Blockierelement lediglich in einem Teilwinkelbereich in Bezug auf die Rotorachse angeordnet sein, der insbesondere dem Zwischenanschluss zugeordnet ist. Das Blockierelement kann den Durchlassquerschnitt insbesondere in einem Bereich blockieren, der radial zwischen der Rotorachse und dem Zwischenanschluss liegt. Allgemein bewirkt die Anordnung des Blockierelements beim Zwischenanschluss neben einer verminderten Rückströmung vom Zwischenanschluss auch eine Verringerung der Wahrscheinlichkeit, dass Gasmoleküle aus der vorgeschaltete Pumpstufe durch den Zwischenanschluss austreten.In particular, the passage cross section through the blocking element can be locally asymmetrical, in particular with respect to a rotor axis of the pump stage. For example, the blocking element can be arranged in such a way that on a side of a rotor shaft of the pump stage facing the intermediate connection the blocking element blocks a larger proportion of the passage cross-section than on a side of the rotor facing away from the intermediate connection. Generally preferably, the blocking element can be arranged on a side of the rotor shaft facing the intermediate connection. For example, the blocking element can only be arranged in a partial angular region with respect to the rotor axis, which is in particular assigned to the intermediate connection. The blocking element can block the passage cross section in particular in an area which lies radially between the rotor axis and the intermediate connection. In general, the arrangement of the blocking element at the intermediate connection causes, in addition to a reduced backflow from the intermediate connection, a reduction in the probability that gas molecules will escape from the upstream pump stage through the intermediate connection.
Beispielsweise kann es vorgesehen sein, dass das Blockierelement zumindest in einem dem Zwischenanschluss zugeordneten Umfangsabschnitt, insbesondere im Wesentlichen nur in diesem Umfangsabschnitt, undurchlässig ausgebildet ist. Ein dem Zwischenanschluss radial gegenüberliegender Bereich kann insbesondere frei vom Blockierelement sein bzw. der Durchlassquerschnitt kann hier offen sein. In dem dem Zwischenanschluss radial gegenüberliegenden Bereich kann der Stator insbesondere durchlässig und allgemein wie ein "normaler" Stator ausgebildet sein. Allgemein bevorzugt kann sich das Blockierelement über einen Umfangsbereich erstrecken, der mindestens dem Winkelbereich des Zwischenanschlusses und/oder höchstens 180° entspricht. In diesem Umfangsabschnitt kann der Durchlassquerschnitt durch das Blockierelement vollständig oder, insbesondere radial, teilweise blockiert sein.For example, it can be provided that the blocking element is impermeable at least in a circumferential section assigned to the intermediate connection, in particular essentially only in this circumferential section. A region radially opposite the intermediate connection can in particular be free of the blocking element or the passage cross section can be open here. In the area radially opposite the intermediate connection, the stator can in particular be designed to be permeable and generally like a “normal” stator. Generally preferred, the blocking element can extend over a circumferential area extend, which corresponds at least to the angular range of the intermediate connection and / or at most 180 °. In this circumferential section, the passage cross section can be completely or, in particular radially, partially blocked by the blocking element.
Die Geometrie des Blockierelements kann beispielsweise veränderbar sein. So lässt sich je nach gewählter Geometrie eine unterschiedliche Performance bezüglich der Rückströmung vom Zwischenanschluss und auch bezüglich der Pumpstufe in der Pumprichtung einstellen.The geometry of the blocking element can, for example, be changeable. Depending on the geometry selected, a different performance can be set with regard to the return flow from the intermediate connection and also with regard to the pumping stage in the pumping direction.
Bei einigen Ausführungsformen erstreckt sich das Blockierelement in radialer Richtung nur über einen Teil des Durchlassquerschnitts der Pumpstufe, dies insbesondere in Bezug auf den benachbarten, insbesondere vor- und/oder nachgeordneten, Durchlassquerschnitt vor- bzw. nach der lokalen Reduzierung. Insbesondere kann sich das Blockierelement beispielsweise lediglich über einen radialen Teil des Durchlassquerschnitts mit geringerer Kompression als der jeweils andere Teil erstrecken. Ein vom Blockierelement freigelassener radialer Bereich weist insbesondere eine hohe Kompression aber ggf. ein geringes Saugvermögen auf. Die hohe Kompression begünstigt eine geringe Rückströmung, wobei ansonsten das Blockierelement ebenfalls die Rückströmung vermindert. Insbesondere kann das Blockierelement einen radial inneren Teil verdecken und/oder einen radial äußeren Teil nicht verdecken. Beispielsweise ist auch eine Kombination mit einem Blockierelement bzw. einem Abschnitt desselben Blockierelements in einem anderen Umfangsbereich mit Erstreckung über die gesamte radiale Breite möglich.In some embodiments, the blocking element extends in the radial direction only over part of the passage cross section of the pumping stage, in particular with respect to the adjacent, in particular upstream and / or downstream passage cross section before or after the local reduction. In particular, the blocking element can, for example, only extend over a radial part of the passage cross section with less compression than the respective other part. A radial area left free by the blocking element has, in particular, high compression but possibly low suction capacity. The high compression favors a low backflow, otherwise the blocking element also reduces the backflow. In particular, the blocking element can cover a radially inner part and / or not cover a radially outer part. For example, a combination with a blocking element or a section of the same blocking element in a different circumferential area extending over the entire radial width is also possible.
Zusätzlich zu der erfindungsgemäß vorgesehenen Holweckpumpstufe kann in einer nicht beanspruchten Ausführung eine Turbomolekularpumpstufe vorgesehen sein, mittels derer ein Gas vom Einlass zum Auslass der Molekularvakuumpumpe förderbar ist, wobei die Turbomolekularpumpstufe eine Pumprichtung und quer zur Pumprichtung einen Durchlassquerschnitt aufweist; wobei ein zweiter Zwischenanschluss innerhalb der Turbomolekularpumpstufe oder der Turbomolekularpumpstufe nachgeschaltet angeordnet ist, wobei in Pumprichtung vor dem zweiten Zwischenanschluss ein, insbesondere statisches, zweites Blockierelement angeordnet ist, durch welches der Durchlassquerschnitt lokal reduziert ist. Die Turbomolekularpumpstufe kann beispielsweise ein oder mehrere Turborotorscheiben und/oder ein oder mehrere Turbostatorscheiben aufweisen. Der zweite Zwischenanschluss kann beispielsweise der Turbomolekularpumpstufe, insbesondere einer in Pumprichtung letzten Turbostator- oder Turborotorscheibe der Turbomolekularpumpstufe, nachgeordnet sein. Alternativ kann der zweite Zwischenanschluss beispielsweise auf axialer Höhe einer Turborotorscheibe angeordnet sein bzw. an einer solchen münden, also allgemein innerhalb der Turbomolekularpumpstufe angeordnet sein.In addition to the Holweck pump stage provided according to the invention, a turbo-molecular pump stage can be provided in an embodiment not claimed, by means of which a gas can be conveyed from the inlet to the outlet of the molecular vacuum pump, the turbo-molecular pump stage having a pumping direction and a passage cross-section transversely to the pumping direction having; wherein a second intermediate connection is arranged within the turbo-molecular pumping stage or downstream of the turbo-molecular pumping stage, a particularly static, second blocking element, by means of which the passage cross-section is locally reduced, is arranged upstream of the second intermediate connection in the pumping direction. The turbo-molecular pumping stage can for example have one or more turbo rotor disks and / or one or more turbo stator disks. The second intermediate connection can, for example, be arranged downstream of the turbo-molecular pumping stage, in particular a last turbo-stator or turbo-rotor disk in the pumping direction of the turbo-molecular pumping stage. Alternatively, the second intermediate connection can be arranged, for example, at the axial height of a turbo rotor disk or open at such a disk, that is to say can be arranged generally within the turbo-molecular pumping stage.
Das zweite Blockierelement kann beispielsweise als Wand und/oder als durchgehendes Flächenelement ausgebildet sein und/oder sich quer zur Pumprichtung erstrecken. Dies bildet eine konstruktiv einfache Möglichkeit. Das zweite Blockierelement kann sich insbesondere senkrecht und/oder quer zur Pumprichtung und/oder zur Rotorachse erstrecken. Ein Flächenelement bzw. eine Wand kann beispielsweise parallel zu einer Begrenzung des zweiten Zwischenanschlusses und/oder schräg oder senkrecht in Bezug auf die Rotorachse angeordnet sein.The second blocking element can, for example, be designed as a wall and / or as a continuous surface element and / or extend transversely to the pumping direction. This is a structurally simple option. The second blocking element can in particular extend perpendicularly and / or transversely to the pumping direction and / or to the rotor axis. A surface element or a wall can be arranged, for example, parallel to a delimitation of the second intermediate connection and / or obliquely or perpendicularly with respect to the rotor axis.
Gemäß einer ebenfalls nicht beanspruchten Ausführungsform ist vorgesehen, dass das zweite Blockierelement als Teil einer Turbostatorscheibe ausgebildet ist. Grundsätzlich kann das zweite Blockierelement beispielsweise unmittelbar mit einer Statorscheibe, insbesondere einer Teilstatorscheibe, verbunden und/oder einer solchen axial zugeordnet sein. Axial zugeordnet bedeutet, dass das zweite Blockierelement zumindest teilweise im selben Axialbereich wie die Statorscheibe bzw. Teilstatorscheibe angeordnet ist. Insbesondere kann das zweite Blockierelement einen dem zweiten Zwischenanschluss zugewandten Abschnitt der Turbostatorscheibe ersetzen. Im Querschnitt betrachtet und auf axialer Höhe des zweiten Blockierelements können beispielsweise auf der einen, insbesondere dem zweiten Zwischenanschluss abgewandten, Seite der Rotorwelle Statorschaufeln vorgesehen sein, während auf einer anderen, dem zweiten Zwischenanschluss zugewandten Seite der Rotorwelle das zweite Blockierelement und insbesondere keine Statorschaufeln vorgesehen sind.According to an embodiment that is also not claimed, it is provided that the second blocking element is designed as part of a turbostator disk. In principle, the second blocking element can, for example, be directly connected to a stator disk, in particular a partial stator disk, and / or be axially assigned to such a disk. Axially assigned means that the second blocking element is at least partially arranged in the same axial area as the stator disk or partial stator disk. In particular, the second blocking element can replace a section of the turbostator disk facing the second intermediate connection. Viewed in cross section and at the axial height of the second blocking element, for example stator blades can be provided on one side of the rotor shaft, in particular facing away from the second intermediate connection, while the second blocking element and in particular no stator blades are provided on another side of the rotor shaft facing the second intermediate connection.
Das zweite Blockierelement kann gemäß einem konstruktiv einfachen Ausführungsbeispiel als Blech ausgebildet sein. Turbostatorscheiben sind häufig ebenfalls als Blechteile ausgebildet und das zweite Blockierelement lässt sich allgemein auf ähnliche Weise wie eine Turbostatorscheibe herstellen bzw. ausbilden, wobei aber insbesondere keine separierten Schaufeln vorgesehen werden.According to a structurally simple exemplary embodiment, the second blocking element can be designed as a sheet metal. Turbostator disks are often also designed as sheet metal parts and the second blocking element can generally be produced or configured in a manner similar to a turbostator disk, but in particular no separate blades are provided.
Bei einer Weiterbildung ist vorgesehen, dass das zweite Blockierelement einen, insbesondere radial inneren, Schaufelgrund für einige oder alle Statorschaufeln einer Turbostatorscheibe definiert. Insbesondere kann ein vom zweiten Blockierelement definierter Schaufelgrunddurchmesser größer sein als der Schaufelgrunddurchmesser einer vorgeordneten Rotor- und/oder Statorscheibe; insbesondere um wenigstens 20% größer.In a further development, it is provided that the second blocking element defines a, in particular radially inner, blade base for some or all of the stator blades of a turbostator disk. In particular, a blade base diameter defined by the second blocking element can be greater than the blade base diameter of an upstream rotor and / or stator disk; in particular larger by at least 20%.
Das zweite Blockierelement kann beispielsweise schalen- und/oder trichterförmig ausgebildet sein, insbesondere teilring-, teilschalen- und/oder teiltrichterförmig, wobei sich der Begriff "teil-" insbesondere auf einen Winkelbereich um die Rotorachse bezieht. Ein derartiges zweites Blockierelement kann insbesondere zwischen zwei beabstandeten Scheibenpaketen und/oder Pumpstufen angeordnet sein.The second blocking element can, for example, be shell-shaped and / or funnel-shaped, in particular part-ring, part-shell and / or part-funnel-shaped, the term "partial" referring in particular to an angular range around the rotor axis. Such a second blocking element can in particular be arranged between two spaced-apart disk packs and / or pump stages.
Die oben beschriebenen Beispiele mit einem zweiten Blockierelement sind nicht Teil der Erfindung.The examples described above with a second blocking element do not form part of the invention.
Erfindungsgemäß ist die Pumpstufe eine Holweckpumpstufe.According to the invention, the pump stage is a Holweck pump stage.
Das Blockierelement ist als Querwand in wenigstens einer Holwecknut ausgebildet. Allgemein kann sich das Blockierelement beispielsweise senkrecht zur Nut bzw. zum Kanal, zur Pumprichtung oder zur Rotorachse erstrecken. Nachfolgend wird sich vereinfachend lediglich auf eine Holwecknut bezogen, wobei es sich versteht, dass die jeweiligen Merkmale auch allgemein in Bezug auf einen Holwecckanal Gültigkeit besitzen.The blocking element is designed as a transverse wall in at least one Holwecknut. In general, the blocking element can, for example, be perpendicular to the groove or to the channel, to the pumping direction or to the rotor axis. In the following, for the sake of simplicity, reference is only made to a Holweck groove, it being understood that the respective features are also generally valid with regard to a Holweck canal.
Gemäß einer Weiterbildung ist vorgesehen, dass wenigstens ein Steg, welcher eine Holwecknut seitlich begrenzt, in einem dem Zwischenanschluss in Pumprichtung nachgeordneten Bereich eine Freistellung gegenüber dem Zwischenanschluss aufweist. Der Steg reicht also insbesondere entgegen der Pumprichtung nicht bis zum Zwischenanschluss, zumindest nicht mit seiner vollen radialen Höhe, sondern das Stegende ist hiervon beabstandet. Die Freimachung erleichtert den Gaseinlass vom Zwischenanschluss in den dem Zwischenanschluss in Pumprichtung nachgeordneten Abschnitt der Holweckpumpstufe, indem ein besserer Leitwert für das Gas bereitgestellt wird.According to a further development, it is provided that at least one web, which laterally delimits a Holweck groove, has a clearance with respect to the intermediate connection in an area downstream of the intermediate connection in the pumping direction. In particular, the web does not extend against the pumping direction as far as the intermediate connection, at least not with its full radial height, but the web end is spaced from it. The clearance facilitates the gas inlet from the intermediate connection into the section of the Holweck pumping stage downstream of the intermediate connection in the pumping direction by providing a better conductance for the gas.
Bei einer anderen Weiterbildung ist vorgesehen, dass wenigstens ein Steg, welcher eine Holwecknut seitlich begrenzt, in einem dem Blockierelement in Pumprichtung vorgeordneten Bereich eine Freistellung gegenüber dem Blockierelement aufweist. Diese Freistellung ermöglicht, dass zu fördernde Gasteilchen am Blockierelement entlang von der einen in die nächste Holwecknut gelangen können. Somit wird die Holwecknut, welche das Blockierelement aufweist, in Pumprichtung nicht im Sinne einer Sackgasse blockiert, sondern die Pumpwirkung der Holwecknut im dem Blockierelement vorgeordneten Bereich kann weiterhin ausgenutzt werden, indem die Teilchen durch die Freimachung in eine nächste Holwecknut gelangen und dort weiter gepumpt werden können. Somit wird insbesondere die Wahrscheinlichkeit, dass ein jeweiliges Teilchen zwischen dem Blockierelement und dem Holweckrotor hindurch von der betreffenden Holwecknut zu dem Zwischenanschluss gelangt, reduziert, wodurch eine Querströmung vom Haupteinlass bzw. von der Holwecknut zu dem Zwischenanschluss vermieden wird. Die Freistellung verbindet insbesondere eine blockierte Nut mit einer in Drehrichtung des Holweckrotors nächsten Nut, wobei auch diese eine entsprechende Freistellung zur nächsten Nut aufweisen kann, und so weiter, bis eine den Zwischenanschluss passierende Nut erreicht ist.In another further development, it is provided that at least one web, which laterally delimits a Holweck groove, is exposed to the blocking element in an area upstream of the blocking element in the pumping direction. This release enables gas particles to be conveyed to pass along the blocking element from one to the next Holwecknut. Thus, the Holweck groove, which has the blocking element, is not blocked in the pumping direction in the sense of a dead end, but the pumping action of the Holweck groove in the area upstream of the blocking element can continue to be used, in that the particles pass through the opening into the next Holweck groove and are pumped further there be able. In particular, this reduces the probability that a particular particle will pass between the blocking element and the Holweck rotor from the relevant Holweck groove to the intermediate connection, thereby avoiding a cross flow from the main inlet or from the Holweck groove to the intermediate connection. The release connects in particular a blocked groove with one in the direction of rotation of the Holweck rotor's next groove, which can also have a corresponding clearance to the next groove, and so on, until a groove passing through the intermediate connection is reached.
Grundsätzlich kann sich der Zwischenanschluss mit seiner Begrenzung über mehrere Holwecknuten hinweg erstrecken und/oder mehreren Holwecknuten zugeordnet sein. Bei einer vorteilhaften Ausführungsform ist der Zwischenanschluss mit seiner Begrenzung nur einer Holwecknut zugeordnet. Eine Zuordnung wird dabei darin gesehen, dass der Zwischenanschluss in die betreffende Holwecknut mündet. Ein Zwischenanschluss ist am Holweckstator grundsätzlich dadurch gebildet, dass der Nutgrund dort offen ist. Dabei ist der Nutgrund derjenigen Holwecknut, welcher der Zwischenanschluss zugeordnet ist, offen. Die Öffnung erstreckt sich, bei mehrfacher Zuordnung eines Zwischenanschlusses, über mehrere Holwecknuten, bei einfacher Zuordnung nur innerhalb einer Holwecknut. Die Begrenzung des Zwischenanschlusses kann insbesondere nur innerhalb einer Holwecknut vorgesehen sein. Grundsätzlich ist es aber auch denkbar, dass sich die Begrenzung bis in einen Stegbereich hinein erstreckt und/oder dass der Steg eine die Begrenzung definierende seitliche Ausnehmung aufweist.In principle, the intermediate connection with its delimitation can extend over several Holweck grooves and / or be assigned to several Holweck grooves. In an advantageous embodiment, the boundary of the intermediate connection is assigned to only one Holweck groove. An assignment is seen in the fact that the intermediate connection opens into the relevant Holweck groove. An intermediate connection is basically formed on the Holweck stator in that the groove base is open there. The groove base of that Holweck groove to which the intermediate connection is assigned is open. If an intermediate connection is assigned multiple times, the opening extends over several Holweck grooves, in the case of a single assignment only within a Holweck groove. The delimitation of the intermediate connection can in particular only be provided within a Holweck groove. In principle, however, it is also conceivable that the delimitation extends into a web area and / or that the web has a lateral recess defining the delimitation.
Alternativ oder zusätzlich kann der Zwischenanschluss beispielsweise mit wenigstens einer Begrenzung und/oder einer Längserstreckung parallel zu einer Holwecknut ausgerichtet sein. Grundsätzlich kann der Zwischenanschluss mit wenigstens einer Begrenzung auch senkrecht und/oder parallel zur Rotorachse ausgerichtet sein.As an alternative or in addition, the intermediate connection can, for example, be aligned with at least one delimitation and / or a longitudinal extension parallel to a Holweck groove. In principle, the intermediate connection can also be oriented perpendicular and / or parallel to the rotor axis with at least one delimitation.
Eine bevorzugte Ausführungsform sieht vor, dass der Zwischenanschluss mit seiner Begrenzung wenigstens einer ersten Holwecknut zugeordnet und wenigstens einer in Drehrichtung eines Holweckrotors nächsten, zweiten Holwecknut nicht zugeordnet ist, wobei ein Steg zwischen der ersten und der zweiten Holwecknut eine Ausnehmung aufweist, die den Zwischenanschluss mit der zweiten Holwecknut verbindet. Die Ausnehmung kann insbesondere benachbart zum Zwischenanschluss und/oder im axialen Bereich des Zwischenanschlusses angeordnet sein. Beispielsweise kann das Blockierelement als Querwand in der ersten Holwecknut ausgebildet sein. Insbesondere können die Teilchen frei vom Zwischenanschluss in Pumprichtung in die erste Holwecknut eintreten. Das Blockierelement blockiert insbesondere den Eintritt von Teilchen in die erste Holwecknut entgegen der Pumprichtung. Durch die Ausnehmung können die Teilchen insbesondere frei in die zweite Holwecknut eintreten, insbesondere zumindest mit einer Bewegungskomponente in Pumprichtung.A preferred embodiment provides that the boundary of the intermediate connection is assigned to at least one first Holweck groove and at least one of the next Holweck groove in the direction of rotation of a Holweck rotor is not assigned, a web between the first and the second Holweck groove having a recess that includes the intermediate connection the second Holwecknut connects. The recess can in particular be arranged adjacent to the intermediate connection and / or in the axial region of the intermediate connection. For example, the blocking element can be designed as a transverse wall in the first Holwecknut. In particular, the particles can enter the first Holweck groove freely from the intermediate connection in the pumping direction. The blocking element blocks in particular the entry of particles into the first Holweck groove against the pumping direction. Through the recess, the particles can in particular freely enter the second Holweck groove, in particular with at least one movement component in the pumping direction.
Die erste Holwecknut oder allgemein eine der Holwecknuten, denen der Zwischenanschluss mit seiner Begrenzung zugeordnet ist, kann allgemein bevorzugt von einer entgegen der Drehrichtung des Holweckrotors nächsten, insbesondere dritten, Holwecknut getrennt sein, insbesondere durch einen Steg, zumindest in einem axialen Bereich des Zwischenanschlusses.The first Holweck groove or generally one of the Holweck grooves to which the intermediate connection is assigned with its delimitation can generally preferably be separated from a Holweck groove next to it counter to the direction of rotation of the Holweck rotor, in particular a third Holweck groove, in particular by a web, at least in an axial area of the intermediate connection.
Allgemein können auch mehrere Zwischenanschlüsse an einer Pumpstufe oder auch zwischen oder an mehreren Pumpstufen, insbesondere Holweck- und/oder Turbomolekularpumpstufen, vorgesehen sein. Allgemein kann die Pumpe mehrere, insbesondere verschiedenartige, Pumpstufen aufweisen, die bevorzugt in Reihe geschaltet sind.In general, several intermediate connections can also be provided on a pump stage or between or on several pump stages, in particular Holweck and / or turbo-molecular pump stages. In general, the pump can have several, in particular different, pump stages which are preferably connected in series.
Weiter allgemein kann die Pumpe z.B. einen dem Zwischenanschluss in Bezug auf die Pumprichtung vorgeordneten pumpaktiven Rotorabschnitt und einen in Bezug auf die Pumprichtung nachgeordneten pumpaktiven Rotorabschnitt aufweisen, wobei insbesondere beide Rotorabschnitte mit derselben Rotorwelle verbunden und/oder in Reihe geschaltet sein können. Allgemein kann die Vakuumpumpe zum Beispiel nur eine Rotorwelle aufweisen, wobei insbesondere alle Pumpstufen und Pumpstufenabschnitte von der Rotorwelle angetrieben sein können und/oder in Reihe geschaltet sein können.More generally, the pump can have, for example, a pumping-active rotor section upstream of the intermediate connection in relation to the pumping direction and a pumping-active rotor section downstream in relation to the pumping direction, wherein in particular both rotor sections can be connected to the same rotor shaft and / or connected in series. In general, the vacuum pump can, for example, have only one rotor shaft, wherein in particular all pump stages and pump stage sections can be driven by the rotor shaft and / or can be connected in series.
Generell kann der Zwischenanschluss bevorzugt in einen Axialbereich, insbesondere in einem Pumpengehäuse, münden, über den hinweg die dem Zwischenanschluss vorgeschaltete Pumpstufe bzw. der Pumpstufenabschnitt in Reihe mit einer bzw. der dem Zwischenanschluss nachgeschalteten Pumpstufe bzw. dem Pumpstufenabschnitt verbunden ist. Bei diesem Axialbereich kann es sich beispielsweise um einen Zwischenstufenbereich oder um einen Axialbereich innerhalb einer Pumpstufe, beispielsweise einen Axialbereich einer Turborotorscheibe, handeln. Allgemein kann die Förderung von Gas insbesondere über den Axialbereich, in den der Zwischenanschluss mündet, und/oder über den Zwischenstufenbereich hinweg erfolgen. Insbesondere wird das Blockierelement vom Gas durch den verbleibenden Durchlassquerschnitt in Pumprichtung passiert.In general, the intermediate connection can preferably open into an axial region, in particular in a pump housing, via which the pumping stage or the pumping stage section upstream of the intermediate connection is connected in series with a pumping stage or the pumping stage section downstream of the intermediate connection. This axial area can be, for example, an intermediate stage area or an axial area within a pump stage, for example an axial area of a turbo rotor disk. In general, the conveyance of gas can take place in particular over the axial region into which the intermediate connection opens and / or over the intermediate stage region. In particular, the blocking element is passed by the gas through the remaining passage cross section in the pumping direction.
Gemäß einer weiteren Ausführungsform ist vorgesehen, dass das Blockierelement und/oder ein am Zwischenanschluss angeordnetes Statorelement, welches das Blockierelement aufweist, mittels eines generativen Fertigungsverfahrens, insbesondere 3D-Druck, hergestellt ist. Dies ermöglicht eine weitgehend freie und gezielte Gestaltung des Blockierelements im Hinblick auf seine blockierende Wirkung, sodass die erfindungsgemäßen Vorteile mit einfachen Mitteln effektiv erreicht werden können. Unter generativen Fertigungsverfahren versteht man die Fertigung bzw. Formgebung eines Bauteils durch Aneinanderfügen von Volumenelementen, wie zum Beispiel von Schichten. Bevorzugt umfasst das generative Fertigungsverfahren, dass das Bauteil nach wenigstens einem der Verfahren Stereolithographie, Laserschmelzen, Lasersintern, selektives Lasersintern, Schicht-Laminat-Verfahren, Extrusion, Fused Deposition Modelling, Laminated Object Modelling oder 3D Druck hergestellt wird.According to a further embodiment it is provided that the blocking element and / or a stator element which is arranged on the intermediate connection and which has the blocking element is produced by means of a generative manufacturing process, in particular 3D printing. This enables a largely free and targeted design of the blocking element with regard to its blocking effect, so that the advantages according to the invention can be effectively achieved with simple means. Generative manufacturing processes are understood to mean the manufacture or shaping of a component by joining volume elements, such as layers, for example. The generative manufacturing method preferably includes the component being manufactured using at least one of the methods stereolithography, laser melting, laser sintering, selective laser sintering, layer laminate methods, extrusion, fused deposition modeling, laminated object modeling or 3D printing.
Nachfolgend wird die Erfindung beispielhaft anhand vorteilhafter Ausführungsformen unter Bezugnahme auf die beigefügten Figuren beschrieben. Es zeigen, jeweils schematisch:
- Fig. 1
- eine perspektivische Ansicht einer Turbomolekularpumpe,
- Fig. 2
- eine Ansicht der Unterseite der Turbomolekularpumpe von
Fig. 1 , - Fig. 3
- einen Querschnitt der Turbomolekularpumpe längs der in
Fig. 2 gezeigten Schnittlinie A-A, - Fig. 4
- eine Querschnittsansicht der Turbomolekularpumpe längs der in
Fig. 2 gezeigten Schnittlinie B-B, - Fig. 5
- eine Querschnittsansicht der Turbomolekularpumpe längs der in
Fig. 2 gezeigten Schnittlinie C-C, - Fig. 6
- eine Turbomolekularpumpe des Standes der Technik mit einem Zwischenanschluss,
- Fig. 7
- einen Distanzring für eine Turbomolekularpumpe.
- Fig. 1
- a perspective view of a turbo molecular pump,
- Fig. 2
- a view of the underside of the turbo molecular pump of FIG
Fig. 1 , - Fig. 3
- a cross section of the turbo molecular pump along the in
Fig. 2 shown section line AA, - Fig. 4
- a cross-sectional view of the turbo molecular pump along the line in FIG
Fig. 2 shown section line BB, - Fig. 5
- a cross-sectional view of the turbo molecular pump along the line in FIG
Fig. 2 shown section line CC, - Fig. 6
- a state-of-the-art turbo molecular pump with an intermediate connection,
- Fig. 7
- a spacer ring for a turbo molecular pump.
Die
- Fig. 8
- eine weitere Turbomolekularpumpe,
- Fig. 9
- eine weitere Turbomolekularpumpe,
- Fig. 10
- eine übliche Turbostatorscheibe in einer Draufsicht,
- Fig. 11
- ein Blockierelement für eine Turbomolekularpumpstufe in einer Draufsicht,
- Fig. 12
- eine Auftragung der Kompression einer Turbostatorscheibe in Abhängigkeit von einer radialen Position,
- Fig. 13
- eine Ausführungsform eines Blockierelements.
- Fig. 8
- another turbo molecular pump,
- Fig. 9
- another turbo molecular pump,
- Fig. 10
- a conventional turbostator disk in a top view,
- Fig. 11
- a blocking element for a turbo molecular pumping stage in a plan view,
- Fig. 12
- a plot of the compression of a turbostator disk as a function of a radial position,
- Fig. 13
- an embodiment of a blocking element.
Weiter zeigen:
- Fig. 14
- einen Stator einer bekannten Holweckpumpstufe,
- Fig. 15
- einen Stator einer Holweckpumpstufe gemäß einer Ausführungsform der Erfindung,
- Fig. 16
- einen Stator eine Holweckpumpstufe gemäß einer weiteren Ausführungsform.
- Fig. 14
- a stator from a well-known Holweck pump stage,
- Fig. 15
- a stator of a Holweck pump stage according to an embodiment of the invention,
- Fig. 16
- a stator a Holweck pump stage according to a further embodiment.
Die in
Der Einlassflansch 113 bildet bei der Ausrichtung der Vakuumpumpe gemäß
Am Gehäuse 119 der Turbomolekularpumpe 111 ist ein Fluteinlass 133, insbesondere in Form eines Flutventils, vorgesehen, über den die Vakuumpumpe 111 geflutet werden kann. Im Bereich des Unterteils 121 ist ferner noch ein Sperrgasanschluss 135, der auch als Spülgasanschluss bezeichnet wird, angeordnet, über welchen Spülgas zum Schutz des Elektromotors 125 (siehe z.B.
Die untere Seite 141 der Vakuumpumpe kann als Standfläche dienen, sodass die Vakuumpumpe 111 auf der Unterseite 141 stehend betrieben werden kann. Die Vakuumpumpe 111 kann aber auch über den Einlassflansch 113 an einem Rezipienten befestigt werden und somit gewissermaßen hängend betrieben werden. Außerdem kann die Vakuumpumpe 111 so gestaltet sein, dass sie auch in Betrieb genommen werden kann, wenn sie auf andere Weise ausgerichtet ist als in
An der Unterseite 141, die in
An der Unterseite 141 sind außerdem Befestigungsbohrungen 147 angeordnet, über welche die Pumpe 111 beispielsweise an einer Auflagefläche befestigt werden kann.Fastening bores 147 are also arranged on the
In den
Wie die Schnittdarstellungen der
In dem Gehäuse 119 ist ein Rotor 149 angeordnet, der eine um eine Rotationsachse 151 drehbare Rotorwelle 153 aufweist.A
Die Turbomolekularpumpe 111 umfasst mehrere pumpwirksam miteinander in Serie geschaltete turbomolekulare Pumpstufen mit mehreren an der Rotorwelle 153 befestigten radialen Rotorscheiben 155 und zwischen den Rotorscheiben 155 angeordneten und in dem Gehäuse 119 festgelegten Statorscheiben 157. Dabei bilden eine Rotorscheibe 155 und eine benachbarte Statorscheibe 157 jeweils eine turbomolekulare Pumpstufe. Die Statorscheiben 157 sind durch Abstandsringe 159 in einem gewünschten axialen Abstand zueinander gehalten.The turbo-
Die Vakuumpumpe umfasst außerdem in radialer Richtung ineinander angeordnete und pumpwirksam miteinander in Serie geschaltete Holweck-Pumpstufen. Der Rotor der Holweck-Pumpstufen umfasst eine an der Rotorwelle 153 angeordnete Rotornabe 161 und zwei an der Rotornabe 161 befestigte und von dieser getragene zylindermantelförmige Holweck-Rotorhülsen 163, 165, die koaxial zur Rotationsachse 151 orientiert und in radialer Richtung ineinander geschachtelt sind. Ferner sind zwei zylindermantelförmige Holweck-Statorhülsen 167, 169 vorgesehen, die ebenfalls koaxial zu der Rotationsachse 151 orientiert und in radialer Richtung gesehen ineinander geschachtelt sind.The vacuum pump also comprises Holweck pump stages which are arranged one inside the other in the radial direction and are connected in series with one another for effective pumping. The rotor of the Holweck pump stages comprises a
Die pumpaktiven Oberflächen der Holweck-Pumpstufen sind durch die Mantelflächen, also durch die radialen Innen- und/oder Außenflächen, der Holweck-Rotorhülsen 163, 165 und der Holweck-Statorhülsen 167, 169 gebildet. Die radiale Innenfläche der äußeren Holweck-Statorhülse 167 liegt der radialen Außenfläche der äußeren Holweck-Rotorhülse 163 unter Ausbildung eines radialen Holweck-Spalts 171 gegenüber und bildet mit dieser die der Turbomolekularpumpen nachfolgende erste Holweck-Pumpstufe. Die radiale Innenfläche der äußeren Holweck-Rotorhülse 163 steht der radialen Außenfläche der inneren Holweck-Statorhülse 169 unter Ausbildung eines radialen Holweck-Spalts 173 gegenüber und bildet mit dieser eine zweite Holweck-Pumpstufe. Die radiale Innenfläche der inneren Holweck-Statorhülse 169 liegt der radialen Außenfläche der inneren Holweck-Rotorhülse 165 unter Ausbildung eines radialen Holweck-Spalts 175 gegenüber und bildet mit dieser die dritte Holweck-Pumpstufe.The active pumping surfaces of the Holweck pump stages are formed by the jacket surfaces, that is to say by the radial inner and / or outer surfaces, of the
Am unteren Ende der Holweck-Rotorhülse 163 kann ein radial verlaufender Kanal vorgesehen sein, über den der radial außenliegende Holweck-Spalt 171 mit dem mittleren Holweck-Spalt 173 verbunden ist. Außerdem kann am oberen Ende der inneren Holweck-Statorhülse 169 ein radial verlaufender Kanal vorgesehen sein, über den der mittlere Holweck-Spalt 173 mit dem radial innenliegenden Holweck-Spalt 175 verbunden ist. Dadurch werden die ineinander geschachtelten Holweck-Pumpstufen in Serie miteinander geschaltet. Am unteren Ende der radial innenliegenden Holweck-Rotorhülse 165 kann ferner ein Verbindungskanal 179 zum Auslass 117 vorgesehen sein.At the lower end of the
Die vorstehend genannten pumpaktiven Oberflächen der Holweck-Statorhülsen 163, 165 weisen jeweils mehrere spiralförmig um die Rotationsachse 151 herum in axialer Richtung verlaufende Holweck-Nuten auf, während die gegenüberliegenden Mantelflächen der Holweck-Rotorhülsen 163, 165 glatt ausgebildet sind und das Gas zum Betrieb der Vakuumpumpe 111 in den Holweck-Nuten vorantreiben.The aforementioned pump-active surfaces of the
Zur drehbaren Lagerung der Rotorwelle 153 sind ein Wälzlager 181 im Bereich des Pumpenauslasses 117 und ein Permanentmagnetlager 183 im Bereich des Pumpeneinlasses 115 vorgesehen.For the rotatable mounting of the
Im Bereich des Wälzlagers 181 ist an der Rotorwelle 153 eine konische Spritzmutter 185 mit einem zu dem Wälzlager 181 hin zunehmenden Außendurchmesser vorgesehen. Die Spritzmutter 185 steht mit mindestens einem Abstreifer eines Betriebsmittelspeichers in gleitendem Kontakt. Der Betriebsmittelspeicher umfasst mehrere aufeinander gestapelte saugfähige Scheiben 187, die mit einem Betriebsmittel für das Wälzlager 181, z.B. mit einem Schmiermittel, getränkt sind.In the area of the
Im Betrieb der Vakuumpumpe 111 wird das Betriebsmittel durch kapillare Wirkung von dem Betriebsmittelspeicher über den Abstreifer auf die rotierende Spritzmutter 185 übertragen und in Folge der Zentrifugalkraft entlang der Spritzmutter 185 in Richtung des größer werdenden Außendurchmessers der Spritzmutter 185 zu dem Wälzlager 181 hin gefördert, wo es z.B. eine schmierende Funktion erfüllt. Das Wälzlager 181 und der Betriebsmittelspeicher sind durch einen wannenförmigen Einsatz 189 und den Lagerdeckel 145 in der Vakuumpumpe eingefasst.During operation of the
Das Permanentmagnetlager 183 umfasst eine rotorseitige Lagerhälfte 191 und eine statorseitige Lagerhälfte 193, welche jeweils einen Ringstapel aus mehreren in axialer Richtung aufeinander gestapelten permanentmagnetischen Ringen 195, 197 umfassen. Die Ringmagnete 195, 197 liegen einander unter Ausbildung eines radialen Lagerspalts 199 gegenüber, wobei die rotorseitigen Ringmagnete 195 radial außen und die statorseitigen Ringmagnete 197 radial innen angeordnet sind. Das in dem Lagerspalt 199 vorhandene magnetische Feld ruft magnetische Abstoßungskräfte zwischen den Ringmagneten 195, 197 hervor, welche eine radiale Lagerung der Rotorwelle 153 bewirken. Die rotorseitigen Ringmagnete 195 sind von einem Trägerabschnitt 201 der Rotorwelle 153 getragen, welcher die Ringmagnete 195 radial außenseitig umgibt. Die statorseitigen Ringmagnete 197 sind von einem statorseitigen Trägerabschnitt 203 getragen, welcher sich durch die Ringmagnete 197 hindurch erstreckt und an radialen Streben 205 des Gehäuses 119 aufgehängt ist. Parallel zu der Rotationsachse 151 sind die rotorseitigen Ringmagnete 195 durch ein mit dem Trägerabschnitt 203 gekoppeltes Deckelelement 207 festgelegt. Die statorseitigen Ringmagnete 197 sind parallel zu der Rotationsachse 151 in der einen Richtung durch einen mit dem Trägerabschnitt 203 verbundenen Befestigungsring 209 sowie einen mit dem Trägerabschnitt 203 verbundenen Befestigungsring 211 festgelegt. Zwischen dem Befestigungsring 211 und den Ringmagneten 197 kann außerdem eine Tellerfeder 213 vorgesehen sein.The permanent
Innerhalb des Magnetlagers ist ein Not- bzw. Fanglager 215 vorgesehen, welches im normalen Betrieb der Vakuumpumpe 111 ohne Berührung leer läuft und erst bei einer übermäßigen radialen Auslenkung des Rotors 149 relativ zu dem Stator in Eingriff gelangt, um einen radialen Anschlag für den Rotor 149 zu bilden, da eine Kollision der rotorseitigen Strukturen mit den statorseitigen Strukturen verhindert wird. Das Fanglager 215 ist als ungeschmiertes Wälzlager ausgebildet und bildet mit dem Rotor 149 und/oder dem Stator einen radialen Spalt, welcher bewirkt, dass das Fanglager 215 im normalen Pumpbetrieb außer Eingriff ist. Die radiale Auslenkung, bei der das Fanglager 215 in Eingriff gelangt, ist groß genug bemessen, sodass das Fanglager 215 im normalen Betrieb der Vakuumpumpe nicht in Eingriff gelangt, und gleichzeitig klein genug, sodass eine Kollision der rotorseitigen Strukturen mit den statorseitigen Strukturen unter allen Umständen verhindert wird.An emergency or backup bearing 215 is provided within the magnetic bearing, which runs idle during normal operation of the
Die Vakuumpumpe 111 umfasst den Elektromotor 125 zum drehenden Antreiben des Rotors 149. Der Anker des Elektromotors 125 ist durch den Rotor 149 gebildet, dessen Rotorwelle 153 sich durch den Motorstator 217 hindurch erstreckt. Auf den sich durch den Motorstator 217 hindurch erstreckenden Abschnitt der Rotorwelle 153 kann radial außenseitig oder eingebettet eine Permanentmagnetanordnung angeordnet sein. Zwischen dem Motorstator 217 und dem sich durch den Motorstator 217 hindurch erstreckenden Abschnitt des Rotors 149 ist ein Zwischenraum 219 angeordnet, welcher einen radialen Motorspalt umfasst, über den sich der Motorstator 217 und die Permanentmagnetanordnung zur Übertragung des Antriebsmoments magnetisch beeinflussen können.The
Der Motorstator 217 ist in dem Gehäuse innerhalb des für den Elektromotor 125 vorgesehenen Motorraums 137 festgelegt. Über den Sperrgasanschluss 135 kann ein Sperrgas, das auch als Spülgas bezeichnet wird, und bei dem es sich beispielsweise um Luft oder um Stickstoff handeln kann, in den Motorraum 137 gelangen. Über das Sperrgas kann der Elektromotor 125 vor Prozessgas, z.B. vor korrosiv wirkenden Anteilen des Prozessgases, geschützt werden. Der Motorraum 137 kann auch über den Pumpenauslass 117 evakuiert werden, d.h. im Motorraum 137 herrscht zumindest annäherungsweise der von der am Pumpenauslass 117 angeschlossenen Vorvakuumpumpe bewirkte Vakuumdruck.The
Zwischen der Rotornabe 161 und einer den Motorraum 137 begrenzenden Wandung 221 kann außerdem eine sog. und an sich bekannte Labyrinthdichtung 223 vorgesehen sein, insbesondere um eine bessere Abdichtung des Motorraums 217 gegenüber den radial außerhalb liegenden Holweck-Pumpstufen zu erreichen.A so-called
Die nachfolgend beschriebenen Pumpen und Systeme sind teilweise stark schematisiert und vereinfacht dargestellt. Sie sind zwecks praktischer Umsetzung vorteilhaft mit einzelnen oder mehreren Merkmalen der vorstehend beschriebenen Pumpe ausführbar.The pumps and systems described below are partly shown in a highly schematic and simplified manner. They are advantageous for the purpose of practical implementation executable with one or more features of the pump described above.
In
Die Vakuumpumpe 20 umfasst einen Zwischenanschluss 30, der hier vereinfacht als Pfeil angedeutet ist. Der Zwischenanschluss 30 ist in etwa auf axialer Höhe einer der Turborotorscheiben 24 angeordnet, mündet also in deren axialen bzw. wirksamen Bereich.The
In
Dem Zwischenanschluss 30 ist in Pumprichtung 28 vorgeordnet eine bekannte Statorscheibe 24 angeordnet. Obwohl die Pumpe 20 in Pumprichtung 28 fördert, ist es in gewissem Umfang möglich, dass Teilchen eines am Zwischenanschluss 30 anstehenden Gases sich nach dem Eintritt in die Vakuumpumpe 20 entgegen der Pumprichtung 28 bewegen. Dabei können die Teilchen auch durch die dem Zwischenanschluss 30 vorgeordnete Turbostatorscheibe 26 und grundsätzlich auch durch weitere Turborotorscheiben 24 und Turbostatorscheiben 26 durchtreten. Es ergibt sich somit eine gewisse Rückströmung 32, die hier durch einen Pfeil angedeutet ist.A known
Es ist ein Ziel, die Rückströmung 32 zu reduzieren. Allgemein soll das Gas vom Zwischenanschluss 30 möglichst gut abgepumpt werden und/oder nicht zurückströmen. Insbesondere kann dabei eine konstruktive Änderung des Rotors, insbesondere der Turborotorscheiben 24, unerwünscht sein. Möglichst soll eine bestehende Rotorkonstruktion beibehalten werden können. Der vorliegende Ansatz verfolgt insbesondere den Ansatz, die interne Kompression zwischen dem Zwischenanschluss und dem Haupteinlass, also dem in Pumprichtung ersten Einlass, zu erhöhen und eine konstruktive Änderung insbesondere an statischen Bauteilen vorzunehmen.It is a goal to reduce the
Auswertungen von Messungen haben gezeigt, dass die Einströmverteilung großen Einfluss auf die weitere Rückströmung hat. Meistens strömt bei der hier diskutierten Art von Zwischenanschlüssen das Gas radial auf eine Rotorscheibe, wie es in
In
Das Blockierelement 38 verhindert eine Rückströmung 32, wie sie in
Die Turbostatorscheiben 26 sind axial, also in Pumprichtung 28, durchlässig ausgebildet, zwar nicht derart, dass die Teilchen exakt axial hinfliegen können, jedoch so, dass eine axiale Förderung des Gases zwischen den angestellten Statorschaufeln hindurch möglich ist. Die Turbostatorscheiben 26 weisen also einen Durchlassquerschnitt auf. Der Durchlassquerschnitt der Turbostatorscheiben 26 ist über die axiale Erstreckung der hier einzigen Turbomolekularpumpstufe 41 konstant, jedoch mit Ausnahme desjenigen axialen Bereichs, in dem das Blockierelement 38 angeordnet ist. Das Blockierelement 38 ist undurchlässig und/oder geschlossen ausgebildet und reduziert daher den Durchlassquerschnitt der Pumpstufe in einem lokal begrenzten Axialbereich, nämlich in Pumprichtung 28 unmittelbar vor dem Zwischenanschluss 30.The
Es sei angemerkt, dass das Blockierelement 28 hier deutlich dicker dargestellt ist, als die Turbostatorscheiben 26. Dies dient allerdings nur der unterscheidbaren Darstellung. Tatsächlich kann das Blockierelement 38 beispielsweise als, insbesondere dünnes, Blech ausgebildet sein, und insbesondere sogar dünner als die Statorscheiben 26 sein.It should be noted that the blocking
Die Vakuumpumpe 20 der
Ein Blockierelement 38 kann dabei beispielsweise in Bezug auf einen Längsschnitt schräg zur Rotorachse bzw. Rotorwelle 22 und/oder zur Pumprichtung 28 ausgerichtet sein. Grundsätzlich kann das Blockierelement 38 als Leitelement wirken, insbesondere als Leitblech ausgeführt sein. So können die Teilchen besonders vorteilhaft in Pumprichtung 28 geführt werden.A blocking
Ein Blockierelement 38, beispielsweise gemäß
In
In
Das Blockierelement 38 ist als durchgehendes Flächenelement, beispielsweise als Blech ausgebildet. Es bildet in diesem Beispiel einen Teilring, der sich hier beispielhaft über etwa 180° um die Rotorachse herum erstreckt.The blocking
Das Blockierelement 38 weist selbst keinen Durchlassquerschnitt auf bzw. ist undurchlässig ausgebildet. Der Durchlassquerschnitt der Pumpstufe ist daher lokal im hier dargestellten Axialbereich reduziert, nämlich beispielhaft auf denjenigen Winkelbereich, in dem das Blockierelement 38 nicht angeordnet ist bzw. den das Blockierelement 38 nicht überdeckt.The blocking
Wie anhand von
Das Blockierelement 38 gemäß
Grundsätzlich kann das Blockierelement 38 beispielsweise einfach eine normale Turbostatorscheibe, wie z.B. diejenige der
Ein weiterer Ansatz zur Reduktion der Rückströmung besteht darin, in dem betreffenden Abschnitt eine Statorscheibe zu verwenden, die eine besonders hohe Kompression und somit eine Sperrwirkung aufweist. In
Beispielsweise kann nur der radial äußere Bereich 49 einer Statorscheibe genutzt werden. In diesen Bereich treten nur Teilchen mit einem sehr großen Impuls durch die Rotorscheibe hindurch, es handelt sich um einen Bereich mit einer hohen Kompression. Der radial innenliegende Bereich weist im Gegensatz dazu, insbesondere wegen der geringeren Umfangsgeschwindigkeit, eine niedrigere Kompression auf. Es wird also bevorzugt durch Ausnutzung eines bestimmten radialen Bereiches nur eine hohe Kompression zugelassen.For example, only the radially
Den in
Auch dieses Beispiel vermindert eine Rückströmung von Gasteilchen aus dem Zwischenanschluss 30. Während in den
Typischerweise liegen die Schaufelgründe der einzelnen Turborotor- und Turbostatorscheiben einer Pumpstufe und/oder eines einander zugeordneten Paares von Rotorscheibe und Statorscheibe bei vergleichbaren Durchmessern. Insbesondere ein Schaufelgrunddurchmesser ist also im Wesentlichen gleich oder ähnlich. Grundsätzlich sind die Durchlassquerschnitte innerhalb einer Pumpstufe häufig ähnlich. Dies ist insbesondere deshalb sinnvoll, damit die Scheiben in etwa das gleiche Saugvermögen besitzen. Für Anwendungen, bei denen lediglich oder vornehmlich eine hohe Kompression und/oder nur ein geringes Saugvermögen gefordert sind, kann bevorzugt nur der radial äußere Bereich 49 der Statorscheiben genutzt werden. Dies ist beispielhaft in der
In
Innerhalb der Holweckpumpstufe 50 ist ein Zwischenanschluss 30 vorgesehen, der als Ausnehmung, insbesondere als ausgefrästes Langloch, im Holweckstator 52 ausgebildet ist. Der Zwischenanschluss 30 ist einem in Pumprichtung 28 ersten Abschnitt der Holweckpumpstufe 50 nachgeordnet und einem in Pumprichtung 28 zweiten Abschnitt der Pumpstufe 50 vorgeordnet angeordnet.An
Obwohl die Holweckpumpstufe 50 eine Förderung von Gas entlang der Pumprichtung 28 bewirkt, ist eine Bewegung von Gasteilchen ausgehend vom Zwischenanschluss 30 in den ersten Abschnitt der Holweckpumpstufe 50 und somit entgegen der Pumprichtung 28 grundsätzlich möglich. Die Pumpstufe 50 der
Zu diesem Zweck weist die Holweckpumpstufe 50 der
Das Blockierelement 38 ist hier als Querwand ausgeführt, welche mehrere Holwecknuten 54 blockiert, nämlich diejenigen, denen der Zwischenanschluss 30 mit seiner Begrenzung zugeordnet ist. Eine Teilchenbewegung ausgehend vom Zwischenanschluss 30 entgegen der Pumprichtung 28 und in die dem Zwischenanschluss 30 vorgeordneten Abschnitte der Holwecknuten 54 ist somit wirksam eingeschränkt.The blocking
Grundsätzlich kann das Blockierelement 38 beispielsweise als ein horizontaler Steg ausgebildet sein und/oder die direkt an den Zwischenanschluss 30 angrenzenden Holwecknuten 54 gegenüber dem Zwischenanschluss absperren.In principle, the blocking
Durch das Blockierelement 38 besteht eine deutlich verringerte Wahrscheinlichkeit für Teilchen, direkt vom Zwischenanschluss 30 entgegen der Pumprichtung 28 zurückzuströmen. Insbesondere und generell kann stromaufwärts einer Holweckpumpstufe 50 eine Turbomolekularpumpstufe vorgesehen sein. Somit wird durch das Blockierelement 38 in der Holweckpumpstufe 50 die Gefahr eines Rückströmens zu der Turbomolekularpumpstufe reduziert. Einer der Effekte ist beispielsweise eine Erhöhung des Druckverhältnisses zwischen dem Zwischenanschluss und dem entgegen der Pumprichtung 28 nächsten Anschluss bzw. Port. Dies kann beispielsweise ein Zwischenanschluss an oder nach einer Turbomolekularpumpstufe oder grundsätzlich auch ein Haupteinlass sein.The blocking
Ein Durchlassquerschnitt der Pumpstufe 50 ist für einen gegebenen axialen Bereich durch die Summe der Querschnitte der Holwecknuten 54 gebildet. Einige der Holwecknuten 54 bzw. ihrer Querschnitte sind durch das Blockierelement 38 blockiert. Die übrigen Holwecknuten 54 bleiben dagegen offen. In diesem Zusammenhang sei erwähnt, dass
Das Blockierelement 38 blockiert den Durchlassquerschnitt insbesondere in einem dem Zwischenanschluss 30 zugeordneten Winkelbereich in Bezug auf die Rotorachse.The blocking
Der Zwischenanschluss 30 ist in dieser Ausführungsform mit wenigstens einer seiner Begrenzungen und mit seiner Längserstreckung senkrecht zur Rotorachse ausgerichtet. Auch andere Ausrichtungen, beispielsweise senkrecht zu den Stegen 56 sind möglich.In this embodiment, the
In einem dem Zwischenanschluss 30 in Pumprichtung 28 nachgeordneten Bereich 60 weisen mehrere Stege 56 eine Freistellung gegenüber dem Zwischenanschluss 30 auf, reichen also nicht bis zum Zwischenanschluss 30, sondern enden mit einem gewissen Abstand zum Zwischenanschluss 30, der der Breite des hier gekennzeichneten Bereichs 60 entspricht. Die Freistellungen bzw. der freie Bereich 60 ermöglichen ein erleichtertes Einströmen des Gases vom Zwischenanschluss 30 in die nachgeordneten Abschnitte der Holwecknuten 54, indem der Leitwert erhöht ist. Dies verbessert ebenfalls die Pumpwirkung sowie die Gefahr einer Rückströmung und ergänzt sich vorteilhaft mit der Wirkung des Blockierelements 38.In an
Im Bereich 60 sind insbesondere die Holweckstege direkt unterhalb des Zwischenanschlusses gezielt entfernt. Dadurch wird das dort zu erreichende Saugvermögen erhöht, indem die Einströmfläche in den dem Zwischenanschluss nachgeordneten Abschnitt der Holweckpumpstufe 50 vergrößert wird.In the
Mehrere der Stege 56 weisen zudem in einem dem Blockierelement 38 vorgeordneten Bereich eine Freistellung 62 gegenüber dem Blockierelement 38 auf. Die Stege 56 reichen also in Pumprichtung 28 nicht bis zum Blockierelement 38 bzw. enden mit einem gewissen Abstand hierzu. Die Freistellungen 62 bilden eine Verbindung zwischen einer vom Blockierelement 38 blockierten Holwecknut 54 und einer in Drehrichtung 58 des Holweckrotors 52 nächsten Holwecknut 54.Several of the
Das Blockierelement 38 erstreckt sich hier über mehrere Holwecknuten 54 und es sind so viele Freistellungen 62 vorgesehen, dass alle vom Blockierelement 38 blockierten Holwecknuten 54 mit einer nicht blockierten bzw. freien Holwecknut 54 verbunden sind. Die Holwecknuten 54, die durch das Blockierelement 38 blockiert sind, bilden also keine Sackgasse, sondern die durch sie geförderten Teilchen können zu einer durchgehenden Holwecknut 54 abfließen und dort weiter gepumpt werden. Auf diese Weise kann insbesondere der aus dem Blockierelement 38 gegebenenfalls resultierende Verlust an Saugvermögen zumindest teilweise kompensiert werden.The blocking
Insbesondere in Kombination führen das Blockierelement 38, die Freistellungen im Bereich 60 und die Freistellungen 62 zu einer besonders starken Verringerung der Rückströmung vom Zwischenanschluss 30 in Richtung zur Hochvakuumseite, also entgegen der Pumprichtung 28, bei gleichzeitiger Erhöhung des Saugvermögens am Zwischenanschluss 30.Particularly in combination, the blocking
Die Ausführungsform der
Der Zwischenanschluss 30 ist in dieser Ausführungsform nur einer Holwecknut 54 zugeordnet. Seine Begrenzung verläuft also nicht über mehrere Holwecknuten 54 hinweg. Dabei ist der Zwischenanschluss 30 vorteilhaft mit seiner Begrenzung im Wesentlichen parallel zu dieser Holwecknut 54 angeordnet.In this embodiment, the
In Pumprichtung 28 dem Zwischenanschluss 30 vorgeordnet, ist ein Blockierelement 38 vorgesehen, welches ein Rückströmen entlang der betreffenden Holwecknut 54 einschränkt. Die betreffende Holwecknut 54 ist über eine Freistellung 62 eines die Nut 54 seitlich begrenzenden Steges 56 mit der in Drehrichtung 58 nächsten Holwecknut 54 verbunden, sodass Gasteilchen von der Holwecknut 54, welche durch das Blockierelement 38 blockiert ist und welcher der Zwischenanschluss 30 zugeordnet ist, nicht in eine Sackgasse gelangen, sondern durch die nächste Holwecknut 54 abgepumpt werden.Arranged upstream of the
Die Bewegung der Gasteilchen ist hier schematisch durch gepunktete Pfeile angedeutet. Vom Zwischenanschluss 30 können die Teilchen einerseits in einen dem Zwischenanschluss 30 nachgeordneten Abschnitt der Holwecknut 54, welcher der Zwischenanschluss 30 zugeordnet ist, strömen. Der Steg 56, der zwischen der betreffenden Holwecknut 54 und der in Drehrichtung 58 nächsten Holwecknut 54 angeordnet ist, weist eine Ausnehmung 64 auf, die die Holwecknuten 54 miteinander verbindet. Andererseits kann also ein jeweiliges Teilchen vom Zwischenanschluss 30 auch in die in Drehrichtung 58 nächste Holwecknut 54 gelangen. Dem Zwischenanschluss 30 stellt sich somit ein geringer Leitwert entgegen, sodass ein Einströmen von Gas in die Holweckpumpstufe 50 erleichtert ist.The movement of the gas particles is indicated here schematically by dotted arrows. From the
Prinzipiell ist es insbesondere das Ziel, die Wahrscheinlichkeit des Eintritts und wieder sofortigen Austritts durch denselben Zwischenanschluss 30 zu verringern. Je schräger die Zwischenanschlüsse 30 angeordnet sind, desto geringer ist die Wahrscheinlichkeit, dass ein Teilchen den Zwischenanschluss 30 direkt nach Auftreffen auf die rotierende Holweckhülse wieder verlässt, da die horizontale Breite des Kanals geringer ist, als bei einem Zwischenanschluss gemäß
Generell ist es möglich, die Geometrie eines Blockierelements 38 veränderbar ausführen, insbesondere um eine wahlweise unterschiedliche Performance bezüglich Rückströmung zu realisieren.In general, it is possible to make the geometry of a blocking
Insbesondere die Holweckstatoren 52 der
- 111111
- TurbomolekularpumpeTurbo molecular pump
- 113113
- EinlassflanschInlet flange
- 115115
- PumpeneinlassPump inlet
- 117117
- PumpenauslassPump outlet
- 119119
- Gehäusecasing
- 121121
- UnterteilLower part
- 123123
- ElektronikgehäuseElectronics housing
- 125125
- ElektromotorElectric motor
- 127127
- ZubehöranschlussAccessory connection
- 129129
- DatenschnittstelleData interface
- 131131
- StromversorgungsanschlussPower supply connection
- 133133
- FluteinlassFlood inlet
- 135135
- SperrgasanschlussSealing gas connection
- 137137
- MotorraumEngine compartment
- 139139
- KühlmittelanschlussCoolant connection
- 141141
- Unterseitebottom
- 143143
- Schraubescrew
- 145145
- LagerdeckelBearing cap
- 147147
- BefestigungsbohrungMounting hole
- 148148
- KühlmittelleitungCoolant line
- 149149
- Rotorrotor
- 151151
- RotationsachseAxis of rotation
- 153153
- RotorwelleRotor shaft
- 155155
- RotorscheibeRotor disk
- 157157
- StatorscheibeStator disk
- 159159
- AbstandsringSpacer ring
- 161161
- RotornabeRotor hub
- 163163
- Holweck-RotorhülseHolweck rotor sleeve
- 165165
- Holweck-RotorhülseHolweck rotor sleeve
- 167167
- Holweck-StatorhülseHolweck stator sleeve
- 169169
- Holweck-StatorhülseHolweck stator sleeve
- 171171
- Holweck-SpaltHolweck gap
- 173173
- Holweck-SpaltHolweck gap
- 175175
- Holweck-SpaltHolweck gap
- 179179
- VerbindungskanalConnection channel
- 181181
- Wälzlagerroller bearing
- 183183
- PermanentmagnetlagerPermanent magnet bearings
- 185185
- SpritzmutterInjection nut
- 187187
- Scheibedisc
- 189189
- Einsatzmission
- 191191
- rotorseitige Lagerhälftebearing half on the rotor side
- 193193
- statorseitige Lagerhälftestator-side bearing half
- 195195
- RingmagnetRing magnet
- 197197
- RingmagnetRing magnet
- 199199
- LagerspaltBearing gap
- 201201
- TrägerabschnittBeam section
- 203203
- TrägerabschnittBeam section
- 205205
- radiale Streberadial strut
- 207207
- DeckelelementCover element
- 209209
- StützringSupport ring
- 211211
- BefestigungsringFastening ring
- 213213
- TellerfederDisc spring
- 215215
- Not-bzw. FanglagerEmergency or Catch camp
- 217217
- MotorstatorMotor stator
- 219219
- ZwischenraumSpace
- 221221
- WandungWall
- 223223
- LabyrinthdichtungLabyrinth seal
- 2020th
- VakuumpumpeVacuum pump
- 2222nd
- RotorwelleRotor shaft
- 2424
- TurborotorscheibeTurbo rotor disk
- 2626th
- TurbostatorscheibeTurbo stator disc
- 2828
- PumprichtungPumping direction
- 3030th
- ZwischenanschlussIntermediate connection
- 3232
- RückströmungBackflow
- 3434
- ZwischenanschlussIntermediate connection
- 3636
- Ausnehmung/BegrenzungRecess / limitation
- 3838
- BlockierelementBlocking element
- 4040
- TeilchenbewegungParticle motion
- 4141
- TurbomolekularpumpstufeTurbo molecular pumping stage
- 4242
- erste Pumpstufefirst pumping stage
- 4444
- zweite Pumpstufesecond pumping stage
- 4646
- ZwischenstufenbereichIntermediate level area
- 4848
- TurbostatorschaufelTurbostator vane
- 4949
- BereichArea
- 5050
- HolweckpumpstufeHolweck pumping stage
- 5151
- SchaufelgrundShovel bottom
- 5252
- HolweckstatorHolweck stator
- 5454
- HolwecknutHolwecknut
- 5656
- Stegweb
- 5858
- DrehrichtungDirection of rotation
- 6060
- Bereich/FreistellungArea / exemption
- 6262
- Freistellungexemption
Claims (8)
- A molecular vacuum pump (20) comprisingat least one molecular pump stage (50), namely a Holweck pump stage, by means of which a gas can be conveyed from an inlet to an outlet of the molecular vacuum pump (20),wherein the pump stage (50) has a pump direction (28) and a passage cross-section transverse to the pump direction (28); andan intermediate connection (30) which is arranged within the pump stage (50) or which is arranged downstream of the pump stage (42), wherein a blocking element (38), in particular a static blocking element (38), by which the passage cross-section is locally reduced, is arranged upstream of the intermediate connection (30) in the pump direction (28), characterized in thatthe blocking element (38) is configured as a transverse wall in at least one Holweck groove (54).
- A molecular vacuum pump (20) in accordance with claim 1,wherein the blocking element (38) is arranged on a side of a rotor shaft (22) of the pump stage facing the intermediate connection (30);and/or wherein the geometry of the blocking element (38) is variable.
- A molecular vacuum pump (20) in accordance with at least one of the preceding claims,
wherein the blocking element (38) extends only over a part of the passage cross-section of the pump stage in the radial direction. - A molecular vacuum pump (20) in accordance with at least one of the preceding claims,
wherein at least one web (56), which laterally bounds a Holweck groove (54) and/or separates adjacent Holweck grooves (54) from one another, has a clearance with respect to the intermediate connection (30) in a region (60) arranged downstream of the intermediate connection (30) in the pump direction (28). - A molecular vacuum pump (20) in accordance with at least one of the preceding claims,
wherein at least one web (56), which laterally bounds a Holweck groove (54) and/or separates adjacent Holweck grooves (54) from one another, has a clearance (62) with respect to the blocking element (38) in a region arranged upstream of the blocking element (38) in the pump direction (28). - A molecular vacuum pump (20) in accordance with at least one of the preceding claims,wherein the intermediate connection (30), with its boundary, is associated with only one Holweck groove (54);and/or wherein the intermediate connection (30), with at least one boundary and/or a longitudinal extent, is aligned at least substantially in parallel with a Holweck groove (54).
- A molecular vacuum pump (20) in accordance with at least one of the preceding claims,
wherein the intermediate connection (30), with its boundary, is associated with at least a first Holweck groove (54) and is not associated with at least a second Holweck groove (54) which is next in the direction of rotation of a Holweck rotor, wherein a web (56) between the first and the second Holweck groove has a recess which connects the intermediate connection (30) to the second Holweck groove (54). - A molecular vacuum pump (20) in accordance with at least one of the preceding claims,
wherein the blocking element (38) and/or a stator element (52), which is arranged at the intermediate connection (30) and which has the blocking element (38), is/are produced by means of a generative manufacturing process, in particular 3D printing.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20153779.2A EP3693610B1 (en) | 2020-01-27 | 2020-01-27 | Molecular vacuum pump |
JP2020178180A JP6998439B2 (en) | 2020-01-27 | 2020-10-23 | Molecular vacuum pump |
EP20217527.9A EP3851680B1 (en) | 2020-01-27 | 2020-12-29 | Molecular vacuum pump and method for influencing the suction performance of same |
JP2021009273A JP7252990B2 (en) | 2020-01-27 | 2021-01-25 | Molecular vacuum pump and method of influencing pumping speed of molecular vacuum pump |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20153779.2A EP3693610B1 (en) | 2020-01-27 | 2020-01-27 | Molecular vacuum pump |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3693610A1 EP3693610A1 (en) | 2020-08-12 |
EP3693610B1 true EP3693610B1 (en) | 2021-12-22 |
Family
ID=69326364
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20153779.2A Active EP3693610B1 (en) | 2020-01-27 | 2020-01-27 | Molecular vacuum pump |
EP20217527.9A Active EP3851680B1 (en) | 2020-01-27 | 2020-12-29 | Molecular vacuum pump and method for influencing the suction performance of same |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20217527.9A Active EP3851680B1 (en) | 2020-01-27 | 2020-12-29 | Molecular vacuum pump and method for influencing the suction performance of same |
Country Status (2)
Country | Link |
---|---|
EP (2) | EP3693610B1 (en) |
JP (2) | JP6998439B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3693610B1 (en) * | 2020-01-27 | 2021-12-22 | Pfeiffer Vacuum Technology AG | Molecular vacuum pump |
EP4443007A1 (en) * | 2024-08-09 | 2024-10-09 | Pfeiffer Vacuum Technology AG | Turbomolecular pump |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2657164B1 (en) * | 1990-01-16 | 1992-04-03 | Cit Alcatel | LEAK DETECTION INSTALLATION WITH INTERMEDIATE HOLWECK PUMP. |
DE4228313A1 (en) * | 1992-08-26 | 1994-03-03 | Leybold Ag | Counterflow leak detector with high vacuum pump |
US5733104A (en) * | 1992-12-24 | 1998-03-31 | Balzers-Pfeiffer Gmbh | Vacuum pump system |
JPH11211604A (en) * | 1998-01-22 | 1999-08-06 | Osaka Vacuum Ltd | Helium leak detector |
DE60101898T2 (en) * | 2001-03-15 | 2004-11-18 | Varian S.P.A., Leini | Turbine pump with a stator stage integrated with a spacer ring |
GB0124731D0 (en) | 2001-10-15 | 2001-12-05 | Boc Group Plc | Vacuum pumps |
GB0424199D0 (en) * | 2004-11-01 | 2004-12-01 | Boc Group Plc | Vacuum pump |
DE102007044945A1 (en) * | 2007-09-20 | 2009-04-09 | Pfeiffer Vacuum Gmbh | vacuum pump |
DE102008035891A1 (en) | 2008-07-31 | 2010-02-04 | Oerlikon Leybold Vacuum Gmbh | vacuum pump |
GB2474507B (en) | 2009-10-19 | 2016-01-27 | Edwards Ltd | Vacuum pump |
CN102889219B (en) * | 2011-07-18 | 2016-05-11 | 李晨 | Disk type molecular pump |
DE202013010204U1 (en) | 2013-11-11 | 2015-02-13 | Oerlikon Leybold Vacuum Gmbh | Multi-inlet vacuum pump |
EP3085963B1 (en) * | 2015-04-20 | 2019-09-04 | Pfeiffer Vacuum Gmbh | Vacuum pump |
EP3085964B1 (en) * | 2015-04-21 | 2019-12-11 | Pfeiffer Vacuum Gmbh | Production of a vacuum pump part by metallic additive manufacturing |
EP3693610B1 (en) * | 2020-01-27 | 2021-12-22 | Pfeiffer Vacuum Technology AG | Molecular vacuum pump |
-
2020
- 2020-01-27 EP EP20153779.2A patent/EP3693610B1/en active Active
- 2020-10-23 JP JP2020178180A patent/JP6998439B2/en active Active
- 2020-12-29 EP EP20217527.9A patent/EP3851680B1/en active Active
-
2021
- 2021-01-25 JP JP2021009273A patent/JP7252990B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2021116806A (en) | 2021-08-10 |
EP3851680A1 (en) | 2021-07-21 |
EP3851680B1 (en) | 2023-09-13 |
JP7252990B2 (en) | 2023-04-05 |
EP3693610A1 (en) | 2020-08-12 |
JP2021116814A (en) | 2021-08-10 |
JP6998439B2 (en) | 2022-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2829734B1 (en) | Vacuum pump | |
EP2826999B1 (en) | Vacuum pump | |
EP3657021B1 (en) | Vacuum pump | |
EP3693610B1 (en) | Molecular vacuum pump | |
EP2933497B1 (en) | Vacuum pump | |
EP3608545B1 (en) | Vacuum pump | |
EP3683447B1 (en) | Vacuum pump | |
EP4108932B1 (en) | Recipient and system with recipient and high vacuum pump | |
EP3734078B1 (en) | Turbomolecular pump and method of manufacturing a stator disc for such a pump | |
EP3196471B1 (en) | Vacuum pump | |
EP3135932B1 (en) | Vacuum pump and permanent magnet bearing | |
EP3267040B1 (en) | Turbomolecular pump | |
DE102015113821A1 (en) | vacuum pump | |
EP4155549B1 (en) | Vacuum pump with improved suction capacity of the holweck pump stage | |
EP3767109B1 (en) | Vacuum system | |
EP4194700A1 (en) | Vacuum pump with a holweck pump stage with variable holweck geometry | |
EP3564538B1 (en) | Vacuum system and method for manufacturing the same | |
EP3628883B1 (en) | Vacuum pump | |
EP3845764B1 (en) | Vacuum pump and vacuum pump system | |
EP4293232A1 (en) | Pump | |
EP4273405A1 (en) | Vacuum pump with a holweck pumping stage with a varying holweck geometry | |
EP4443007A1 (en) | Turbomolecular pump | |
EP4379216A1 (en) | Turbomolecular vacuum pump with compact design | |
EP4390144A2 (en) | Vacuum pump | |
EP3926175A1 (en) | Vacuum pump with roller bearing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20210203 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20210324 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20210812 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502020000455 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1457257 Country of ref document: AT Kind code of ref document: T Effective date: 20220115 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211222 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211222 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211222 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220322 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20211222 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211222 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220322 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211222 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211222 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220323 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211222 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211222 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211222 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211222 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220422 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211222 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211222 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211222 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502020000455 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211222 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220422 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20220131 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220127 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211222 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211222 |
|
26N | No opposition filed |
Effective date: 20220923 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220222 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211222 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230131 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211222 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211222 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240326 Year of fee payment: 5 Ref country code: CZ Payment date: 20240119 Year of fee payment: 5 Ref country code: GB Payment date: 20240123 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20200127 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240129 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211222 |