EP3663381A1 - Method for cooling pyrolysis product - Google Patents
Method for cooling pyrolysis product Download PDFInfo
- Publication number
- EP3663381A1 EP3663381A1 EP19852494.4A EP19852494A EP3663381A1 EP 3663381 A1 EP3663381 A1 EP 3663381A1 EP 19852494 A EP19852494 A EP 19852494A EP 3663381 A1 EP3663381 A1 EP 3663381A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- quench tower
- decomposition furnace
- discharge stream
- decomposition
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 57
- 238000000197 pyrolysis Methods 0.000 title claims abstract description 22
- 238000001816 cooling Methods 0.000 title 1
- 238000000354 decomposition reaction Methods 0.000 claims abstract description 176
- 238000010791 quenching Methods 0.000 claims abstract description 158
- 239000007788 liquid Substances 0.000 claims abstract description 33
- 230000000171 quenching effect Effects 0.000 claims abstract description 32
- 150000002430 hydrocarbons Chemical class 0.000 claims description 36
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 claims description 26
- 125000004432 carbon atom Chemical group C* 0.000 claims description 15
- 239000001294 propane Substances 0.000 claims description 13
- 239000001273 butane Substances 0.000 claims description 3
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 claims description 3
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 claims description 3
- 238000005979 thermal decomposition reaction Methods 0.000 description 78
- 239000007789 gas Substances 0.000 description 76
- 230000008569 process Effects 0.000 description 27
- 230000000694 effects Effects 0.000 description 14
- 238000000926 separation method Methods 0.000 description 9
- 238000007906 compression Methods 0.000 description 8
- 230000006835 compression Effects 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 238000007670 refining Methods 0.000 description 6
- 239000012530 fluid Substances 0.000 description 5
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 4
- 241000183024 Populus tremula Species 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 239000003915 liquefied petroleum gas Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 239000000571 coke Substances 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 239000010779 crude oil Substances 0.000 description 2
- 230000001351 cycling effect Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- -1 ethylene, propylene, benzene Chemical class 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G9/00—Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
- C10G9/002—Cooling of cracked gases
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G51/00—Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more cracking processes only
- C10G51/02—Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more cracking processes only plural serial stages only
- C10G51/023—Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more cracking processes only plural serial stages only only thermal cracking steps
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G51/00—Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more cracking processes only
- C10G51/06—Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more cracking processes only plural parallel stages only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G70/00—Working-up undefined normally gaseous mixtures obtained by processes covered by groups C10G9/00, C10G11/00, C10G15/00, C10G47/00, C10G51/00
- C10G70/04—Working-up undefined normally gaseous mixtures obtained by processes covered by groups C10G9/00, C10G11/00, C10G15/00, C10G47/00, C10G51/00 by physical processes
- C10G70/043—Working-up undefined normally gaseous mixtures obtained by processes covered by groups C10G9/00, C10G11/00, C10G15/00, C10G47/00, C10G51/00 by physical processes by fractional condensation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G70/00—Working-up undefined normally gaseous mixtures obtained by processes covered by groups C10G9/00, C10G11/00, C10G15/00, C10G47/00, C10G51/00
- C10G70/04—Working-up undefined normally gaseous mixtures obtained by processes covered by groups C10G9/00, C10G11/00, C10G15/00, C10G47/00, C10G51/00 by physical processes
- C10G70/06—Working-up undefined normally gaseous mixtures obtained by processes covered by groups C10G9/00, C10G11/00, C10G15/00, C10G47/00, C10G51/00 by physical processes by gas-liquid contact
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1037—Hydrocarbon fractions
- C10G2300/1044—Heavy gasoline or naphtha having a boiling range of about 100 - 180 °C
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1081—Alkanes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1088—Olefins
- C10G2300/1092—C2-C4 olefins
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/40—Characteristics of the process deviating from typical ways of processing
- C10G2300/4012—Pressure
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/40—Characteristics of the process deviating from typical ways of processing
- C10G2300/4081—Recycling aspects
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/20—C2-C4 olefins
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/28—Propane and butane
Definitions
- the present invention relates to a method for quenching a pyrolysis product, and more particularly, to a method of quenching a naphtha cracking product.
- Naphtha is a fraction of gasoline obtained in a distillation apparatus of crude oil, and is used as a raw material for producing ethylene, propylene, benzene, and the like which are basic raw materials of petrochemistry by thermal decomposition.
- Preparation of a product by thermal decomposition of the naphtha is performed by introducing a hydrocarbon-based compound such as naphtha as a feedstock, thermally decomposing the hydrocarbon-based compound in a decomposition furnace, and quenching, compressing, and refining the thermally decomposed product.
- a thermal decomposition process of naphtha when a gas decomposition process using ethane, propane, and the like is added, it is preferred to add processes for quenching, compressing, and refining the product produced as a result of thermal decomposition as well; however, only the decomposition furnace is mainly added for the reasons of a space problem to add the processes or reducing investment costs, and the decomposition furnace is added by connecting it to the existing equipment.
- a capacity of a thermal decomposition product supplied to a quench tower is increased by the decomposition furnace added.
- the quench tower has a limited capacity for quenching the pyrolysis product
- the thermal decomposition product supplied in excess of the limited capacity of the quench tower leads to an increase in a differential pressure from an outlet of a decomposition furnace to an inlet of a compressor, which increases the pressure at the outlet of the decomposition furnace to lower a selectivity of a thermal decomposition reaction and to cause a product yield to be lowered.
- the thermal decomposition product supplied in excess of the limited capacity of the quench tower has a problem of lowering separation efficiency of the quench tower.
- the pressure at the inlet of the compressor is increased, density is increased so that more streams may be transported to the same compressor. That is, since the compressor transports the same volume of stream, the mass of stream is increased under higher pressure. Accordingly, generally in the thermal decomposition process of naphtha, the pressure at the inlet of the compressor is adjusted for increasing output at the time of compressing and refining.
- the pressure at the outlet of the decomposition furnace is determined by adding the differential pressure from the outlet of the decomposition furnace to the inlet of the compressor to the pressure at the inlet of the compressor.
- the selectivity of the thermal decomposition reaction is decreased to lower the product yield and to increase a coke production amount, and thus, there is a limitation on maintaining the pressure at the outlet of the decomposition furnace at or below a certain level, and accordingly, there is also a limitation on increasing the pressure of the inlet of the compressor.
- an object of the present invention is to improve process stability and separation efficiency of a quench tower following addition of a feedstock, and further, to improve a differential pressure from an outlet of a decomposition furnace to an inlet of a compressor, at the time of preparing a product by thermal decomposition of naphtha.
- an object of the present invention is to provide a method for quenching a pyrolysis product, in which at the time of preparing a product by thermal decomposition of naphtha, in spite of an increased capacity of the thermal decomposition product due to addition of a feedstock, it is possible to cool a thermal decomposition product within a limited capacity of a quench tower, whereby increased differential pressure from an outlet of a decomposition furnace to an inlet of a compressor is improved, so that process stability and further separation efficiency of the quench tower are improved, and even in the case in which the pressure at the inlet of the compressor is further increased, from the improved differential pressure, pressure at the outlet of the decomposition furnace may be maintained at or below a certain level, so that output of the product by thermal decomposition of naphtha is increased.
- a method for quenching a pyrolysis product includes: supplying a discharge stream from a liquid decomposition furnace to a first quench tower; supplying an upper discharge stream from the first quench tower to a second quench tower; supplying a discharge stream from a first gas decomposition furnace to the second quench tower; and supplying a discharge stream from a second gas decomposition furnace to the second quench tower.
- the term, "stream” may refer to a fluid flow in the process, or may refer to the fluid itself flowing in a pipe. Specifically, the “stream” may refer to both the fluid itself flowing and the fluid flow, in pipes connecting each apparatus. In addition, the fluid may refer to a gas or a liquid.
- the method for quenching a pyrolysis product according to the present invention may include: supplying a discharge stream from a liquid decomposition furnace 10 to a first quench tower 100; supplying an upper discharge stream from the first quench tower 100 to a second quench tower 200; supplying a discharge stream from a first gas decomposition furnace 20 to the second quench tower 200; and supplying a discharge stream from a second gas decomposition furnace 30 to the second quench tower 200.
- a method of preparing a thermal decomposition product to obtain the thermal decomposition product from a feedstock may be performed by including introducing naphtha and the like to feedstocks F1, F2, and F3 and performing thermal decomposition in a plurality of decomposition furnaces 10, 20, and 30 (S1); quenching the pyrolysis product which has been thermally decomposed in each of the decomposition furnaces 10, 20, and 30 (S2); compressing the cooled thermal decomposition product (S3); and refining and separating the compressed thermal decomposition product (S4) .
- thermal decomposition step (S1) when thermal decomposition is performed by a gas decomposition process using a hydrocarbon compound having 2 to 4 carbon atoms as a feedstock F3, there is an effect that supply from the outside is easy due to its low cost and output of the thermal decomposition product is increased while reducing a production cost, as compared with the case of using other feedstocks F1 and F2, for example, the existing naphtha F1 and recycled C2 and C3 hydrocarbon compounds are used as a feedstock F2.
- the thermal decomposition products produced in a plurality of decomposition furnaces 10, 20, and 30 are supplied to the first quench tower 100 all together, the limited capacity of the first quench tower 100 is exceeded due to the increased capacity of the thermal decomposition products. Accordingly, differential pressure from the outlets of the plurality of decomposition furnaces 10, 20, and 30 to the inlet of a compressor P1 is increased, resulting in lowering the process stability from the decomposition furnaces 10, 20, and 30 to the compressor P1.
- the thermal decomposition product supplied in excess of the limited capacity of the first quench tower 100 has a problem of lowering the separation efficiency of the first quench tower 100.
- the discharge stream from the liquid decomposition furnace 10 is supplied to the first quench tower 100, and the discharge stream from the first gas decomposition furnace 20 and the discharge stream from the second gas decomposition furnace 30 are directly supplied to the second quench tower 200, there are effects that in spite of the increased capacity of the thermal decomposition product by addition of the feedstock F3, it is possible to cool the thermal decomposition product within the limited capacity of the first quench tower 100, whereby increased differential pressure from the outlets of the decomposition furnaces 10, 20, and 30 to the inlet of the compressor P1 is improved, so that process stability and also separation efficiency of the first quench tower 100 are improved, and even in the case in which the pressure at the inlet of the compressor P1 is further increased, from the improved differential pressure, the pressures at the outlets of the decomposition furnaces 10, 20, and 30 are maintained at or below a certain level, so that the output of the product by the thermal
- the method for quenching a pyrolysis product according to an exemplary embodiment of the present invention may be applied to a quenching step (S2) of the method of preparing a thermal decomposition product.
- the liquid decomposition furnace 10 may be a decomposition furnace for thermally decomposing a feedstock F1 supplied to a liquid phase.
- a thermal decomposition temperature of the liquid decomposition furnace 10 may be 500°C to 1,000°C, 750°C to 875°C, or 800°C to 850°C, and within the range, there is an effect that the thermal decomposition yield of the feedstock F1 supplied to the liquid decomposition furnace 10 is excellent.
- the feedstock F1 for performing liquid thermal decomposition in the liquid decomposition furnace 10 may include a mixture of hydrocarbon compounds supplied in the form of a liquid phase.
- the feedstock F1 may include naphtha.
- the feedstock F1 may be naphtha.
- the naphtha may be derived from a fraction of gasoline obtained in a distillation apparatus of crude oil.
- the first gas decomposition furnace 20 may be a decomposition furnace for thermally decomposing a feedstock F2 supplied to a gas phase.
- a thermal decomposition temperature of the first gas decomposition furnace 20 may be 500°C to 1,000°C, 750°C to 900°C, or 825°C to 875°C, and within the range, there is an effect that the thermal decomposition yield of the feedstock F2 supplied to the first gas decomposition furnace 20 is excellent.
- the feedstock F2 for performing gas thermal decomposition in the first gas decomposition furnace 20 may include a mixture of hydrocarbon compounds supplied in the form of a gas phase.
- the feedstock F2 may include one or more selected from the group consisting of recycled C2 hydrocarbon compounds and recycled C3 hydrocarbon compounds.
- the feedstock F2 may be one or more selected from the group consisting of recycled C2 hydrocarbon compounds and recycled C3 hydrocarbon compounds.
- the recycled C2 hydrocarbon compound and the recycled C3 hydrocarbon compound may be derived from the C2 hydrocarbon compound and the C3 hydrocarbon compound which are refined and recycled in the refinement step (S4), respectively.
- the recycled C2 hydrocarbon compound may be ethane which is refined and then recycled in the refinement step (S4)
- the recycled C3 hydrocarbon compound may be propane which is refined and then recycled in the refinement step (S4).
- the second gas decomposition furnace 30 may be a decomposition furnace for thermally decomposing a feedstock F3 supplied to a gas phase.
- a thermal decomposition temperature of the second gas decomposition furnace 30 may be adjusted depending on the feedstock F3, and may be specifically 500°C to 1,000°C, 750°C to 875°C, or 825°C to 875°C, and within the range, there is an effect that the thermal decomposition yield of the feedstock F3 supplied to the second gas decomposition furnace 30 is excellent.
- the feedstock F3 for performing gas thermal decomposition in the second gas decomposition furnace 30 may include a mixture of hydrocarbon compounds supplied in the form of a gas phase.
- the feedstock F3 may include a hydrocarbon compound having 2 to 4, or 2 or 3 carbon atoms.
- the feedstock F3 may be one or more selected from the group consisting of propane and butane.
- the feedstock F3 for performing the gas thermal decomposition in the second gas decomposition furnace 30 may be derived from liquefied petroleum gas (LPG) including one or more selected from the group consisting of propane and butane, and the liquefied petroleum gas may be vaporized for supply to the second gas decomposition furnace 30 and supplied to the second gas decomposition furnace 30.
- LPG liquefied petroleum gas
- the first quench tower 100 may be a quench tower for quenching the discharge stream from the liquid decomposition furnace.
- the first quench tower 100 may be a quench oil tower.
- the first quench tower 100 uses oil as a coolant for quenching the pyrolysis product, and the oil may be used by cycling a heavy hydrocarbon compound having 9 to 20 carbon atoms having a boiling point of 200°C or higher which is produced in the thermal decomposition product.
- the first quench tower 100 may cool the thermal decomposition product and also separate the heavy hydrocarbon compound having 9 or more carbon atoms in the thermal decomposition product. Accordingly, the discharge stream from the liquid decomposition furnace 10 supplied to the first quench tower 100 may be separated into a hydrocarbon compound having 8 or less carbon atoms and a hydrocarbon compound having 9 or more carbon atoms in the first quench tower 100.
- the upper discharge stream from the first quench tower 100 may include a hydrocarbon compound having 8 or less carbon atoms
- the lower discharge stream from the first quench tower 100 may include a hydrocarbon compound having 9 or more carbon atoms.
- the second quench tower 200 may be a quench tower for quenching the upper discharge stream from the first quench tower 100, the discharge stream from the first gas decomposition furnace, and the discharge stream from the second gas decomposition furnace.
- the second quench tower 200 may be a quench water tower.
- the second quench tower 200 uses water as a coolant for quenching the pyrolysis product, and the water may be used by cycling water produced by condensing dilution steam which is introduced for increasing thermal decomposition efficiency at the time of the thermal decomposition reaction.
- the second quench tower 200 may cool the thermal decomposition product and also separate a hydrocarbon compound having 6 to 8 carbon atoms in the thermal decomposition product. Accordingly, the upper discharge stream from the first quench tower 100, the discharge stream from the first gas decomposition furnace, and the discharge stream from the second gas decomposition furnace, which are supplied to the second quench tower 200, may be separated into a hydrocarbon compound having 5 or less carbon atoms and a hydrocarbon compound having 6 to 8 carbon atoms in the second quench tower 200.
- the discharge stream from the first gas decomposition furnace 20 and the discharge stream from the second gas decomposition furnace 30, which are supplied to the second quench tower 200 may join the upper discharge stream from the first quench tower 100 and be supplied to the second quench tower 200. That is, the discharge stream from the first gas decomposition furnace 20 and the discharge stream from the second gas decomposition furnace 30 may be supplied to the second quench tower 200 through an inlet of the second quench tower 200 which is the same as the upper discharge stream from the first quench tower 100.
- the discharge stream from the second gas decomposition furnace 30 may join the discharge stream from the first gas decomposition furnace 20, before joining the upper discharge stream from the first quench tower 100, and join the upper discharge stream from the first quench tower 100.
- the discharge stream from the first gas decomposition furnace 20 and the discharge stream from the second gas decomposition furnace 30 which are discharged by thermal decomposition in the first gas decomposition furnace 20 and the second gas decomposition furnace 30, may include an extremely small amount of or not include the heavy hydrocarbon compound having 9 or more carbon atoms in the thermal decomposition product, according to the characteristics of the feedstocks F2 and F3.
- the discharge stream from the first gas decomposition furnace 20 and the discharge stream from the second gas decomposition furnace 30 are not essentially required to be subjected to a process of separating the heavy hydrocarbon compound having 9 or more carbon atoms in the thermal decomposition product simultaneously with quenching, it is possible to supply the discharge streams directly to the second quench tower instead of subjecting the discharge streams to quenching and separating processes in the first quench tower 100, by the method for quenching a pyrolysis product according to the present invention.
- the pressure of the discharge stream from the liquid decomposition furnace 10 at the outlet of the liquid decomposition furnace 10 may be 1.5 bar (a) to 2.0 bar(a), 1.6 bar(a) to 1.9 bar(a), or 1.73 bar(a) to 1.78 bar(a).
- the pressure of the discharge stream from the first gas decomposition furnace 20 at the outlet of the first gas decomposition furnace 20 may be 1.5 bar(a) to 2.5 bar(a), 1.6 bar(a) to 2.0 bar(a), or 1.70 bar(a) to 1.75 bar(a).
- the pressure of the discharge stream from the second gas decomposition furnace 30 at the outlet of the second gas decomposition furnace 30 may be 1.5 bar(a) to 2.5 bar(a), 1.6 bar(a) to 2.0 bar(a), or 1.70 bar(a) to 1.75 bar(a).
- the differential pressure from the outlets of the decomposition furnaces 10, 20, and 30 to the inlet of the compressor P1 is maintained at a level which is preferred for quenching the pyrolysis product, and thus, process stability is excellent.
- the upper discharge stream from the second quench tower 200 may be supplied to the compressor P1.
- the compressor P1 may be a compressor P1 for performing the compression step (S3).
- the compressor P1 may be a first compressor of the multi-stage compressor.
- the compression step (S3) may include a compression process in which compression is performed by multi-stage compression from two or more compressors for refining the thermal decomposition stream which has been cooled in the quenching step (S2).
- the thermal decomposition product which has been compressed by the compression step (S3) may be refined and separated by the refinement step (S4).
- the pressure of the upper discharge stream from the second quench tower 200 at the inlet of the compressor P1 may be 1.1 bar (a) to 2.0 bar (a), 1.1 bar (a) to 1.8 bar(a), or 1.1 bar(a) to 1.5 bar(a).
- the pressure at the inlet of the compressor is increased, density is increased so that more streams may be transported to the same compressor. That is, since the compressor transports the same volume of stream, the mass of stream is increased under higher pressure. Accordingly, generally in the thermal decomposition process of naphtha, the pressure at the inlet of the compressor is adjusted for increasing output at the time of compressing and refining.
- the pressure at the outlet of the decomposition furnace is determined by adding the differential pressure from the outlet of the decomposition furnace to the inlet of the compressor to the pressure at the inlet of the compressor.
- the selectivity of the thermal decomposition reaction is decreased to lower the product yield and to increase a coke production amount, and thus, there is a limitation on maintaining the pressure at the outlet of the decomposition furnace at or below a certain level, and accordingly, there is also a limitation on increasing the pressure of the inlet of the compressor.
- the differential pressure between the pressure of each discharge stream from the decomposition furnaces 10, 20, and 30 at the outlets of the decomposition furnaces 10, 20, and 30 and the pressure of the upper discharge stream from the second quench tower 200 at the inlet of the compressor P1 may be 0.28 bar or less, 0.1 bar to 0.28 bar, or 0.1 bar to 0.23 bar.
- the differential pressure between the pressure of the discharge stream from the liquid decomposition furnace 10 at the outlet of the liquid decomposition furnace and the pressure of the upper discharge stream from the second quench tower at the inlet of the compressor may be 0.28 bar or less, 0.1 bar to 0.28 bar, or 0.1 bar to 0.23 bar.
- the differential pressure between the pressure of the discharge stream from the first gas decomposition furnace 20 at the outlet of the first gas decomposition furnace and the pressure of the upper discharge stream from the second quench tower at the inlet of the compressor may be 0.26 bar or less, 0.1 bar to 0.25 bar, or 0.1 bar to 0.20 bar.
- the differential pressure between the pressure of the discharge stream from the second gas decomposition furnace 30 at the outlet of the second gas decomposition furnace and the pressure of the upper discharge stream from the second quench tower at the inlet of the compressor may be 0.26 bar or less, 0.1 bar to 0.25 bar, or 0.1 bar to 0.20 bar.
- naphtha F1, a recycled hydrocarbon compound F2, and propane F3 were used as feedstocks, and each of the feedstocks F1, F2, and F3 were supplied to the liquid decomposition furnace 10, the first gas decomposition furnace 20, and the second gas decomposition furnace 30, at flow rates of 232,000 kg/hr (F1), 45,500 kg/hr (F2), and 116,000 kg/hr (F3), respectively.
- naphtha F1, a recycled hydrocarbon compound F2, and propane F3 were used as feedstocks, and each of the feedstocks F1, F2, and F3 was supplied to the liquid decomposition furnace 10, the first gas decomposition furnace 20, and the second gas decomposition furnace 30, at flow rates of 255,000 kg/hr (F1), 52,000 kg/hr (F2), and 135,000 kg/hr (F3), respectively.
- Example 2 by increasing flow rates of the feedstocks F1, F2, and F3 for each of the decomposition furnace 10, 20, and 30 in Example 1, the differential pressure between the pressure at the outlet of each decomposition furnace and the pressure at the inlet of the compressor was somewhat increased as compared with the differential pressure of Example 1, but it was confirmed that the output of ethylene which is the product by the thermal decomposition of naphtha was increased by 10% or more as compared with Example 1.
- the present inventors confirmed from the above results that when the method for quenching a pyrolysis product according to the present invention is used, at the time of preparing a product by thermal decomposition of naphtha, in spite of the increased capacity of the thermal decomposition product due to the addition of the feedstock, it was possible to cool the thermal decomposition product within the limited capacity of the quench tower, whereby the increased differential pressure from the outlet of the decomposition furnace to the inlet of the compressor was improved, so that process stability and also separation efficiency of the quench tower are improved.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
Description
- The present application claims the benefit of priority to Korean Patent Application No.
10-2018-0098337 - The present invention relates to a method for quenching a pyrolysis product, and more particularly, to a method of quenching a naphtha cracking product.
- Naphtha is a fraction of gasoline obtained in a distillation apparatus of crude oil, and is used as a raw material for producing ethylene, propylene, benzene, and the like which are basic raw materials of petrochemistry by thermal decomposition. Preparation of a product by thermal decomposition of the naphtha is performed by introducing a hydrocarbon-based compound such as naphtha as a feedstock, thermally decomposing the hydrocarbon-based compound in a decomposition furnace, and quenching, compressing, and refining the thermally decomposed product.
- Recently, in a thermal decomposition method using a hydrocarbon-based compound such as naphtha as a feedstock, a method in which a decomposition process of gas using ethane, propane, and the like as a feedstock is added, in addition to a decomposition process of a liquid using naphtha as a feedstock, in order to increase output of the product. Here, among the thermal decomposition products produced by decomposition of naphtha, ethane which is cycled after refinement is used as a feedstock, and among the thermal decomposition products produced by decomposition of naphtha, propane which is cycled after refinement and the like are used as a feedstock, or propane which is introduced from the outside is used as a feedstock. In particular, since the cost of propane is lower than the cost of other feedstocks, it is easy to supply propane from the outside, and the cost of production thereof is reduced due to its low cost.
- Meanwhile, for a thermal decomposition process of naphtha, when a gas decomposition process using ethane, propane, and the like is added, it is preferred to add processes for quenching, compressing, and refining the product produced as a result of thermal decomposition as well; however, only the decomposition furnace is mainly added for the reasons of a space problem to add the processes or reducing investment costs, and the decomposition furnace is added by connecting it to the existing equipment.
- Here, in the case in which the decomposition furnace is added as described above, and propane and the like are further introduced from the outside as a feedstock to the decomposition furnace, a capacity of a thermal decomposition product supplied to a quench tower is increased by the decomposition furnace added. However, since the quench tower has a limited capacity for quenching the pyrolysis product, the thermal decomposition product supplied in excess of the limited capacity of the quench tower leads to an increase in a differential pressure from an outlet of a decomposition furnace to an inlet of a compressor, which increases the pressure at the outlet of the decomposition furnace to lower a selectivity of a thermal decomposition reaction and to cause a product yield to be lowered. In addition, the thermal decomposition product supplied in excess of the limited capacity of the quench tower has a problem of lowering separation efficiency of the quench tower.
- In addition, when the pressure at the inlet of the compressor is increased, density is increased so that more streams may be transported to the same compressor. That is, since the compressor transports the same volume of stream, the mass of stream is increased under higher pressure. Accordingly, generally in the thermal decomposition process of naphtha, the pressure at the inlet of the compressor is adjusted for increasing output at the time of compressing and refining.
- In this connection, the pressure at the outlet of the decomposition furnace is determined by adding the differential pressure from the outlet of the decomposition furnace to the inlet of the compressor to the pressure at the inlet of the compressor. However, as the pressure at the outlet of the decomposition furnace is increased, the selectivity of the thermal decomposition reaction is decreased to lower the product yield and to increase a coke production amount, and thus, there is a limitation on maintaining the pressure at the outlet of the decomposition furnace at or below a certain level, and accordingly, there is also a limitation on increasing the pressure of the inlet of the compressor.
- In order to solve the problems mentioned above in the Background Art, an object of the present invention is to improve process stability and separation efficiency of a quench tower following addition of a feedstock, and further, to improve a differential pressure from an outlet of a decomposition furnace to an inlet of a compressor, at the time of preparing a product by thermal decomposition of naphtha.
- That is, an object of the present invention is to provide a method for quenching a pyrolysis product, in which at the time of preparing a product by thermal decomposition of naphtha, in spite of an increased capacity of the thermal decomposition product due to addition of a feedstock, it is possible to cool a thermal decomposition product within a limited capacity of a quench tower, whereby increased differential pressure from an outlet of a decomposition furnace to an inlet of a compressor is improved, so that process stability and further separation efficiency of the quench tower are improved, and even in the case in which the pressure at the inlet of the compressor is further increased, from the improved differential pressure, pressure at the outlet of the decomposition furnace may be maintained at or below a certain level, so that output of the product by thermal decomposition of naphtha is increased.
- In one general aspect, a method for quenching a pyrolysis product includes: supplying a discharge stream from a liquid decomposition furnace to a first quench tower; supplying an upper discharge stream from the first quench tower to a second quench tower; supplying a discharge stream from a first gas decomposition furnace to the second quench tower; and supplying a discharge stream from a second gas decomposition furnace to the second quench tower.
- When the method for quenching a pyrolysis product according to the present invention is used, there are effects that at the time of preparing a product by thermal decomposition of naphtha, in spite of an increased capacity of the thermal decomposition product due to addition of a feedstock, it is possible to cool a thermal decomposition product within a limited capacity of a quench tower, whereby increased differential pressure from an inlet of a decomposition furnace to an inlet of a compressor is improved, so that process stability and also separation efficiency of the quench tower are improved, and even in the case in which the pressure at the inlet of the compressor is further increased, from the improved differential pressure, pressure at the outlet of the decomposition furnace may be maintained at or below a certain level, so that output of the product by thermal decomposition of naphtha is increased.
-
-
FIG. 1 is a flowchart of a method for quenching a pyrolysis product according to an exemplary embodiment of the present invention. -
FIG. 2 is a flowchart of a method for quenching a pyrolysis product according to a comparative example of the present invention. - The terms and words used in the description and claims of the present invention are not to be construed as general or dictionary meanings but are to be construed as meanings and concepts meeting the technical ideas of the present invention based on a principle that the inventors can appropriately define the concepts of terms in order to describe their own inventions in the best mode.
- In the present invention, the term, "stream" may refer to a fluid flow in the process, or may refer to the fluid itself flowing in a pipe. Specifically, the "stream" may refer to both the fluid itself flowing and the fluid flow, in pipes connecting each apparatus. In addition, the fluid may refer to a gas or a liquid.
-
- Hereinafter, the present invention will be described in more detail for understanding the present invention.
- The method for quenching a pyrolysis product according to the present invention may include: supplying a discharge stream from a
liquid decomposition furnace 10 to afirst quench tower 100; supplying an upper discharge stream from thefirst quench tower 100 to asecond quench tower 200; supplying a discharge stream from a firstgas decomposition furnace 20 to thesecond quench tower 200; and supplying a discharge stream from a secondgas decomposition furnace 30 to thesecond quench tower 200. - According to an exemplary embodiment of the present invention, a method of preparing a thermal decomposition product to obtain the thermal decomposition product from a feedstock may be performed by including introducing naphtha and the like to feedstocks F1, F2, and F3 and performing thermal decomposition in a plurality of
decomposition furnaces decomposition furnaces - Specifically, in the thermal decomposition step (S1), when thermal decomposition is performed by a gas decomposition process using a hydrocarbon compound having 2 to 4 carbon atoms as a feedstock F3, there is an effect that supply from the outside is easy due to its low cost and output of the thermal decomposition product is increased while reducing a production cost, as compared with the case of using other feedstocks F1 and F2, for example, the existing naphtha F1 and recycled C2 and C3 hydrocarbon compounds are used as a feedstock F2.
- However, when a hydrocarbon compound having 2 to 4 carbon atoms is added as a feedstock F3, a capacity of the thermal decomposition product is increased to lower process stability of a quenching step (S2) and to lower separation efficiency of a quench tower for performing the quenching step (S2).
- Specifically, as shown in
FIG. 2 , when the thermal decomposition products produced in a plurality ofdecomposition furnaces first quench tower 100 all together, the limited capacity of thefirst quench tower 100 is exceeded due to the increased capacity of the thermal decomposition products. Accordingly, differential pressure from the outlets of the plurality ofdecomposition furnaces decomposition furnaces first quench tower 100 has a problem of lowering the separation efficiency of thefirst quench tower 100. - However, according to the method for quenching a pyrolysis product of the present invention, when in a plurality of decomposition furnaces, the discharge stream from the
liquid decomposition furnace 10 is supplied to thefirst quench tower 100, and the discharge stream from the firstgas decomposition furnace 20 and the discharge stream from the secondgas decomposition furnace 30 are directly supplied to thesecond quench tower 200, there are effects that in spite of the increased capacity of the thermal decomposition product by addition of the feedstock F3, it is possible to cool the thermal decomposition product within the limited capacity of thefirst quench tower 100, whereby increased differential pressure from the outlets of thedecomposition furnaces first quench tower 100 are improved, and even in the case in which the pressure at the inlet of the compressor P1 is further increased, from the improved differential pressure, the pressures at the outlets of thedecomposition furnaces - That is, the method for quenching a pyrolysis product according to an exemplary embodiment of the present invention may be applied to a quenching step (S2) of the method of preparing a thermal decomposition product. According to an exemplary embodiment of the present invention, the
liquid decomposition furnace 10 may be a decomposition furnace for thermally decomposing a feedstock F1 supplied to a liquid phase. Here, a thermal decomposition temperature of theliquid decomposition furnace 10 may be 500°C to 1,000°C, 750°C to 875°C, or 800°C to 850°C, and within the range, there is an effect that the thermal decomposition yield of the feedstock F1 supplied to theliquid decomposition furnace 10 is excellent. - In addition, according to an exemplary embodiment of the present invention, the feedstock F1 for performing liquid thermal decomposition in the
liquid decomposition furnace 10 may include a mixture of hydrocarbon compounds supplied in the form of a liquid phase. As a specific example, the feedstock F1 may include naphtha. As a more specific example, the feedstock F1 may be naphtha. The naphtha may be derived from a fraction of gasoline obtained in a distillation apparatus of crude oil. - According to an exemplary embodiment of the present invention, the first
gas decomposition furnace 20 may be a decomposition furnace for thermally decomposing a feedstock F2 supplied to a gas phase. Here, a thermal decomposition temperature of the firstgas decomposition furnace 20 may be 500°C to 1,000°C, 750°C to 900°C, or 825°C to 875°C, and within the range, there is an effect that the thermal decomposition yield of the feedstock F2 supplied to the firstgas decomposition furnace 20 is excellent. - In addition, according to an exemplary embodiment of the present invention, the feedstock F2 for performing gas thermal decomposition in the first
gas decomposition furnace 20 may include a mixture of hydrocarbon compounds supplied in the form of a gas phase. As a specific example, the feedstock F2 may include one or more selected from the group consisting of recycled C2 hydrocarbon compounds and recycled C3 hydrocarbon compounds. As a more specific example, the feedstock F2 may be one or more selected from the group consisting of recycled C2 hydrocarbon compounds and recycled C3 hydrocarbon compounds. The recycled C2 hydrocarbon compound and the recycled C3 hydrocarbon compound may be derived from the C2 hydrocarbon compound and the C3 hydrocarbon compound which are refined and recycled in the refinement step (S4), respectively. - In addition, according to an exemplary embodiment of the present invention, the recycled C2 hydrocarbon compound may be ethane which is refined and then recycled in the refinement step (S4), and the recycled C3 hydrocarbon compound may be propane which is refined and then recycled in the refinement step (S4).
- According to an exemplary embodiment of the present invention, the second
gas decomposition furnace 30 may be a decomposition furnace for thermally decomposing a feedstock F3 supplied to a gas phase. Here, a thermal decomposition temperature of the secondgas decomposition furnace 30 may be adjusted depending on the feedstock F3, and may be specifically 500°C to 1,000°C, 750°C to 875°C, or 825°C to 875°C, and within the range, there is an effect that the thermal decomposition yield of the feedstock F3 supplied to the secondgas decomposition furnace 30 is excellent. - In addition, according to an exemplary embodiment of the present invention, the feedstock F3 for performing gas thermal decomposition in the second
gas decomposition furnace 30 may include a mixture of hydrocarbon compounds supplied in the form of a gas phase. As a specific example, the feedstock F3 may include a hydrocarbon compound having 2 to 4, or 2 or 3 carbon atoms. As a more specific example, the feedstock F3 may be one or more selected from the group consisting of propane and butane. - In addition, according to an exemplary embodiment of the present invention, the feedstock F3 for performing the gas thermal decomposition in the second
gas decomposition furnace 30 may be derived from liquefied petroleum gas (LPG) including one or more selected from the group consisting of propane and butane, and the liquefied petroleum gas may be vaporized for supply to the secondgas decomposition furnace 30 and supplied to the secondgas decomposition furnace 30. - According to an exemplary embodiment of the present invention, the
first quench tower 100 may be a quench tower for quenching the discharge stream from the liquid decomposition furnace. Specifically, the first quenchtower 100 may be a quench oil tower. Thefirst quench tower 100 uses oil as a coolant for quenching the pyrolysis product, and the oil may be used by cycling a heavy hydrocarbon compound having 9 to 20 carbon atoms having a boiling point of 200°C or higher which is produced in the thermal decomposition product. - According to an exemplary embodiment of the present invention, the first quench
tower 100 may cool the thermal decomposition product and also separate the heavy hydrocarbon compound having 9 or more carbon atoms in the thermal decomposition product. Accordingly, the discharge stream from theliquid decomposition furnace 10 supplied to the first quenchtower 100 may be separated into a hydrocarbon compound having 8 or less carbon atoms and a hydrocarbon compound having 9 or more carbon atoms in the first quenchtower 100. Specifically, the upper discharge stream from the first quenchtower 100 may include a hydrocarbon compound having 8 or less carbon atoms, and the lower discharge stream from the first quenchtower 100 may include a hydrocarbon compound having 9 or more carbon atoms. - According to an exemplary embodiment of the present invention, the second quench
tower 200 may be a quench tower for quenching the upper discharge stream from the first quenchtower 100, the discharge stream from the first gas decomposition furnace, and the discharge stream from the second gas decomposition furnace. Specifically, the second quenchtower 200 may be a quench water tower. The second quenchtower 200 uses water as a coolant for quenching the pyrolysis product, and the water may be used by cycling water produced by condensing dilution steam which is introduced for increasing thermal decomposition efficiency at the time of the thermal decomposition reaction. - According to an exemplary embodiment of the present invention, the second quench
tower 200 may cool the thermal decomposition product and also separate a hydrocarbon compound having 6 to 8 carbon atoms in the thermal decomposition product. Accordingly, the upper discharge stream from the first quenchtower 100, the discharge stream from the first gas decomposition furnace, and the discharge stream from the second gas decomposition furnace, which are supplied to the second quenchtower 200, may be separated into a hydrocarbon compound having 5 or less carbon atoms and a hydrocarbon compound having 6 to 8 carbon atoms in the second quenchtower 200. - According to an exemplary embodiment of the present invention, the discharge stream from the first
gas decomposition furnace 20 and the discharge stream from the secondgas decomposition furnace 30, which are supplied to the second quenchtower 200, may join the upper discharge stream from the first quenchtower 100 and be supplied to the second quenchtower 200. That is, the discharge stream from the firstgas decomposition furnace 20 and the discharge stream from the secondgas decomposition furnace 30 may be supplied to the second quenchtower 200 through an inlet of the second quenchtower 200 which is the same as the upper discharge stream from the first quenchtower 100. - In addition, according to an exemplary embodiment of the present invention, the discharge stream from the second
gas decomposition furnace 30 may join the discharge stream from the firstgas decomposition furnace 20, before joining the upper discharge stream from the first quenchtower 100, and join the upper discharge stream from the first quenchtower 100. - Meanwhile, according to an exemplary embodiment of the present invention, the discharge stream from the first
gas decomposition furnace 20 and the discharge stream from the secondgas decomposition furnace 30 which are discharged by thermal decomposition in the firstgas decomposition furnace 20 and the secondgas decomposition furnace 30, may include an extremely small amount of or not include the heavy hydrocarbon compound having 9 or more carbon atoms in the thermal decomposition product, according to the characteristics of the feedstocks F2 and F3. Accordingly, since the discharge stream from the firstgas decomposition furnace 20 and the discharge stream from the secondgas decomposition furnace 30 are not essentially required to be subjected to a process of separating the heavy hydrocarbon compound having 9 or more carbon atoms in the thermal decomposition product simultaneously with quenching, it is possible to supply the discharge streams directly to the second quench tower instead of subjecting the discharge streams to quenching and separating processes in the first quenchtower 100, by the method for quenching a pyrolysis product according to the present invention. - As such, when the discharge stream from the first
gas decomposition furnace 20 and the discharge stream from the secondgas decomposition furnace 30 are supplied to the second quenchtower 200, only the discharge stream from theliquid decomposition furnace 10 is supplied to the first quenchtower 100 and cooled. Accordingly, there are effects that even in the case in which the output of the thermal decomposition product is increased due to the increased supply amounts of the feedstocks F2 and F3 supplied to thegas decomposition furnaces liquid decomposition furnace 10 is supplied to the first quenchtower 100, and thus, it is possible to cool the thermal decomposition product within the limited capacity of the first quenchtower 100, whereby increased differential pressure from the outlets of thedecomposition furnaces tower 100 are improved, and even in the case that the pressure at the inlet of the compressor P1 is further increased, from the improved differential pressure, the pressures at the outlets of thedecomposition furnaces - According to an exemplary embodiment of the present invention, the pressure of the discharge stream from the
liquid decomposition furnace 10 at the outlet of theliquid decomposition furnace 10 may be 1.5 bar (a) to 2.0 bar(a), 1.6 bar(a) to 1.9 bar(a), or 1.73 bar(a) to 1.78 bar(a). - In addition, according to an exemplary embodiment of the present invention, the pressure of the discharge stream from the first
gas decomposition furnace 20 at the outlet of the firstgas decomposition furnace 20 may be 1.5 bar(a) to 2.5 bar(a), 1.6 bar(a) to 2.0 bar(a), or 1.70 bar(a) to 1.75 bar(a). - In addition, according to an exemplary embodiment of the present invention, the pressure of the discharge stream from the second
gas decomposition furnace 30 at the outlet of the secondgas decomposition furnace 30 may be 1.5 bar(a) to 2.5 bar(a), 1.6 bar(a) to 2.0 bar(a), or 1.70 bar(a) to 1.75 bar(a). - According to an exemplary embodiment of the present invention, within the pressure range, there is an effect that the differential pressure from the outlets of the
decomposition furnaces decomposition furnaces - In addition, according to an exemplary embodiment of the present invention, the upper discharge stream from the second quench
tower 200 may be supplied to the compressor P1. The compressor P1 may be a compressor P1 for performing the compression step (S3). When the compression step (S3) is performed by multi-stage compression, the compressor P1 may be a first compressor of the multi-stage compressor. - According to an exemplary embodiment of the present invention, the compression step (S3) may include a compression process in which compression is performed by multi-stage compression from two or more compressors for refining the thermal decomposition stream which has been cooled in the quenching step (S2). In addition, the thermal decomposition product which has been compressed by the compression step (S3) may be refined and separated by the refinement step (S4).
- According to an exemplary embodiment of the present invention, the pressure of the upper discharge stream from the second quench
tower 200 at the inlet of the compressor P1 may be 1.1 bar (a) to 2.0 bar (a), 1.1 bar (a) to 1.8 bar(a), or 1.1 bar(a) to 1.5 bar(a). - According to an exemplary embodiment of the present invention, within the pressure range, there is an effect that the differential pressure from the outlets of the
decomposition furnaces - In addition, as described above, when the pressure at the inlet of the compressor is increased, density is increased so that more streams may be transported to the same compressor. That is, since the compressor transports the same volume of stream, the mass of stream is increased under higher pressure. Accordingly, generally in the thermal decomposition process of naphtha, the pressure at the inlet of the compressor is adjusted for increasing output at the time of compressing and refining.
- In addition, in this connection, the pressure at the outlet of the decomposition furnace is determined by adding the differential pressure from the outlet of the decomposition furnace to the inlet of the compressor to the pressure at the inlet of the compressor. However, as the pressure at the outlet of the decomposition furnace is increased, the selectivity of the thermal decomposition reaction is decreased to lower the product yield and to increase a coke production amount, and thus, there is a limitation on maintaining the pressure at the outlet of the decomposition furnace at or below a certain level, and accordingly, there is also a limitation on increasing the pressure of the inlet of the compressor.
- However, according to the present invention, there are effects that the differential pressure is improved within the pressure range, and thus, even in the case in which the pressure at the inlet of the compressor P1 is further increased, the pressures at the outlets of the
decomposition furnaces - In addition, according to an exemplary embodiment of the present invention, the differential pressure between the pressure of each discharge stream from the
decomposition furnaces decomposition furnaces tower 200 at the inlet of the compressor P1 (= pressure at the outlet of the decomposition furnace - pressure at the inlet of the compressor) may be 0.28 bar or less, 0.1 bar to 0.28 bar, or 0.1 bar to 0.23 bar. - Within the range, there is an effect that even in the case in which the output of the thermal decomposition product is increased due to the increased supply amounts of the feedstocks F2 and F3 supplied to the
gas decomposition furnaces decomposition furnaces - As a specific example, the differential pressure between the pressure of the discharge stream from the
liquid decomposition furnace 10 at the outlet of the liquid decomposition furnace and the pressure of the upper discharge stream from the second quench tower at the inlet of the compressor may be 0.28 bar or less, 0.1 bar to 0.28 bar, or 0.1 bar to 0.23 bar. - In addition, as a specific example, the differential pressure between the pressure of the discharge stream from the first
gas decomposition furnace 20 at the outlet of the first gas decomposition furnace and the pressure of the upper discharge stream from the second quench tower at the inlet of the compressor may be 0.26 bar or less, 0.1 bar to 0.25 bar, or 0.1 bar to 0.20 bar. - In addition, as a specific example, the differential pressure between the pressure of the discharge stream from the second
gas decomposition furnace 30 at the outlet of the second gas decomposition furnace and the pressure of the upper discharge stream from the second quench tower at the inlet of the compressor may be 0.26 bar or less, 0.1 bar to 0.25 bar, or 0.1 bar to 0.20 bar. - Hereinafter, the present invention will be described in more detail by the Examples. However, the following Examples are provided for illustrating the present invention. It is apparent to a person skilled in the art that various modifications and alterations may be made without departing from the scope and spirit of the present invention, and the scope of the present invention is not limited thereto.
- For the flowchart illustrated in
FIG. 1 , the process was simulated using an Aspen Plus simulator available from Aspen Technology, Inc., and the pressures at the positions of each stream are shown in Table 1. The pressure is represented as an absolute pressure (bar(a)) obtained by adding atmospheric pressure to gauge pressure (bar(g)). - Here, naphtha F1, a recycled hydrocarbon compound F2, and propane F3 were used as feedstocks, and each of the feedstocks F1, F2, and F3 were supplied to the
liquid decomposition furnace 10, the firstgas decomposition furnace 20, and the secondgas decomposition furnace 30, at flow rates of 232,000 kg/hr (F1), 45,500 kg/hr (F2), and 116,000 kg/hr (F3), respectively.[Table 1] Classification Pressure (bar(a)) Stream Position Discharge stream from liquid decomposition furnace 10Outlet of liquid decomposition furnace 101.73 Inlet of first quench tower 1001.72 Upper discharge stream from first quench tower 100Upper outlet of first quench tower 1001.70 Inlet of second quench tower 2001.58 Discharge stream from first gas decomposition furnace 20Outlet of first gas decomposition furnace 201.70 Inlet of second quench tower 2001.58 Discharge stream from second gas decomposition furnace 30Outlet of second gas decomposition furnace 301.70 Inlet of second quench tower 2001.58 Upper discharge stream from second quench tower 200Upper outlet of second quench tower 2001.55 Inlet of compressor 1.50 - The process was simulated under the same conditions as Example 1, except that the flowchart illustrated in
FIG. 2 was used instead of the flowchart illustrated inFIG. 1 , and the pressures at the positions of each stream are shown in the following Table 2.[Table 2] Classification Pressure (bar(a)) Stream Position Discharge stream from liquid decomposition Outlet of liquid decomposition furnace 1.78 furnace 1010 Inlet of first quench tower 1001.75 Discharge stream from first gas decomposition furnace 20Outlet of first gas decomposition furnace 201.78 Inlet of first quench tower 1001.75 Discharge stream from second gas decomposition furnace 30Outlet of second gas decomposition furnace 301.78 Inlet of first quench tower 1001.75 Upper discharge stream from first quench tower 100Upper outlet of first quench tower 1001.69 Inlet of second quench tower 2001.58 Upper discharge stream from second quench tower 200Upper outlet of second quench tower 2001.55 Inlet of compressor 1.50 - As shown in the above Tables 1 and 2, it was confirmed that when the thermal decomposition products for each decomposition furnace were all supplied to the first quench tower according to Comparative Example 1 (
FIG. 2 ), the differential pressure between the pressures of the discharge streams from each decomposition furnace at the outlet of the decomposition furnace and at the inlet of the compressor was shown to be 0.28 bar, which is high; however, when the thermal decomposition products for each decomposition furnace were separately supplied to the first quench tower or the second quench tower according to Example 1 (FIG. 1 ) of the present invention, the differential pressure between the pressures of the discharge streams from each decomposition furnace at the outlet of the decomposition furnace and at the inlet of the compressor was maintained between 0.20 bar to 0.23 bar. - For the flowchart illustrated in
FIG. 1 , the process was simulated using the Aspen Plus simulator available from Aspen Technology, Inc., and the pressures at the positions of each stream are shown in Table 3. The pressure is represented as an absolute pressure (bar(g)) obtained by adding atmospheric pressure to gauge pressure (bar(g)). - Here, naphtha F1, a recycled hydrocarbon compound F2, and propane F3 were used as feedstocks, and each of the feedstocks F1, F2, and F3 was supplied to the
liquid decomposition furnace 10, the firstgas decomposition furnace 20, and the secondgas decomposition furnace 30, at flow rates of 255,000 kg/hr (F1), 52,000 kg/hr (F2), and 135,000 kg/hr (F3), respectively.[Table 3] Classification Pressure (bar(a)) Stream Position Discharge stream from liquid decomposition furnace 10Outlet of liquid decomposition furnace 101.78 Inlet of first quench tower 1001.77 Upper discharge stream from first quench tower 100Upper outlet of first quench tower 1001.76 Inlet of second quench tower 2001.60 Discharge stream from first gas decomposition furnace 20Outlet of first gas decomposition furnace 201.75 Inlet of second quench tower 2001.60 Discharge stream from second gas decomposition furnace 30Outlet of second gas decomposition furnace 301.75 Inlet of second quench tower 2001.60 Upper discharge stream from second Upper outlet of second quench tower 2001.56 quench tower 200Inlet of compressor 1.50 - The process was simulated under the same conditions as Example 2, except that the flowchart illustrated in
FIG. 2 was used instead of the flowchart illustrated inFIG. 1 , and the pressure of each stream at each position is shown in the following Table 4.[Table 4] Classification Pressure (bar(a)) Stream Position Discharge stream from liquid decomposition furnace 10Outlet of liquid decomposition furnace 101.85 Inlet of first quench tower 1001.82 Discharge stream from first gas decomposition furnace 20Outlet of first gas decomposition furnace 201.85 Inlet of first quench tower 1001.85 Discharge stream from second gas decomposition furnace 30Outlet of second gas decomposition furnace 301.85 Inlet of first quench tower 1001.82 Upper discharge Upper outlet of first 1.74 stream from first quench tower 100quench tower 100Inlet of second quench tower 2001.60 Upper discharge stream from second quench tower 200Upper outlet of second quench tower 2001.56 Inlet of compressor 1.50 - As shown in the above Tables 3 and 4, it was confirmed that when the thermal decomposition products for each decomposition furnace were all supplied to the first quench tower according to Comparative Example 2 (
FIG. 2 ), the differential pressure between the pressures of the discharge streams from each decomposition furnace at the outlet of the decomposition furnace and at the inlet of the compressor was shown to be 0.35 bar, which is high; however, when the thermal decomposition products for each decomposition furnace were separately supplied to the first quench tower or the second quench tower according to Example 2 (FIG. 1 ) of the present invention, the differential pressure between the pressures of the discharge streams from each decomposition furnace at the outlet of the decomposition furnace and at the inlet of the compressor was maintained between 0.25 bar to 0.28 bar. - In particular, in Example 2, by increasing flow rates of the feedstocks F1, F2, and F3 for each of the
decomposition furnace - However, in Comparative Example 2 in which the feedstocks were supplied at the same flow rate under the same conditions as Example 2, it was confirmed that the differential pressure between the pressure at the outlet of each decomposition furnace and the pressure at the inlet of the compressor was excessively increased, whereby selectivity was lowered at the time of the decomposition reaction in each decomposition furnace, and thus, the output of the product by the thermal decomposition of naphtha was reduced, so that normal operation was impossible.
- The present inventors confirmed from the above results that when the method for quenching a pyrolysis product according to the present invention is used, at the time of preparing a product by thermal decomposition of naphtha, in spite of the increased capacity of the thermal decomposition product due to the addition of the feedstock, it was possible to cool the thermal decomposition product within the limited capacity of the quench tower, whereby the increased differential pressure from the outlet of the decomposition furnace to the inlet of the compressor was improved, so that process stability and also separation efficiency of the quench tower are improved.
Claims (10)
- A method for quenching a pyrolysis product, the method comprising: supplying a discharge stream from a liquid decomposition furnace to a first quench tower;
supplying an upper discharge stream from the first quench tower to a second quench tower;
supplying a discharge stream from a first gas decomposition furnace to the second quench tower; and
supplying a discharge stream from a second gas decomposition furnace to the second quench tower. - The method of claim 1, wherein a feedstock to the liquid decomposition furnace includes naphtha.
- The method of claim 1, wherein the feedstock to the first gas decomposition furnace includes one or more selected from the group consisting of recycled C2 hydrocarbon compounds and recycled C3 hydrocarbon compounds.
- The method of claim 1, wherein the feedstock to the second gas decomposition furnace includes hydrocarbon compounds having 2 to 4 carbon atoms.
- The method of claim 1, wherein the feedstock to the second gas decomposition furnace is one or more selected from the group consisting of propane and butane.
- The method of claim 1, wherein the discharge stream from the first gas decomposition furnace and the discharge stream from the second gas decomposition furnace join the upper discharge stream from the first quench tower, respectively, and are supplied to the second quench tower.
- The method of claim 1, wherein the upper discharge stream from the second quench tower is supplied to a compressor.
- The method of claim 7, wherein a differential pressure between a pressure of the discharge stream from the liquid decomposition furnace at the outlet of the liquid decomposition furnace and a pressure of the upper discharge stream from the second quench tower at the inlet of the compressor is 0.28 bar or less.
- The method of claim 7, wherein a differential pressure between a pressure of the discharge stream from the first gas decomposition furnace at the outlet of the first gas decomposition furnace and a pressure of the upper discharge stream from the second quench tower at the inlet of the compressor is 0.26 bar or less.
- The method of claim 7, wherein a differential pressure between a pressure of the discharge stream from the second gas decomposition furnace at the outlet of the second gas decomposition furnace and a pressure of the upper discharge stream from the second quench tower at the inlet of the compressor is 0.26 bar or less.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180098337A KR102358409B1 (en) | 2018-08-23 | 2018-08-23 | Method for quenching pyrolysis product |
PCT/KR2019/007997 WO2020040421A1 (en) | 2018-08-23 | 2019-07-02 | Method for cooling pyrolysis product |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3663381A1 true EP3663381A1 (en) | 2020-06-10 |
EP3663381A4 EP3663381A4 (en) | 2020-10-07 |
EP3663381B1 EP3663381B1 (en) | 2021-05-12 |
Family
ID=69592041
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19852494.4A Active EP3663381B1 (en) | 2018-08-23 | 2019-07-02 | Method for cooling pyrolysis product |
Country Status (6)
Country | Link |
---|---|
US (1) | US10889764B2 (en) |
EP (1) | EP3663381B1 (en) |
JP (1) | JP6853417B2 (en) |
KR (1) | KR102358409B1 (en) |
CN (1) | CN111094518B (en) |
WO (1) | WO2020040421A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102688678B1 (en) * | 2021-12-13 | 2024-07-26 | 주식회사 켐스 엔바이오 | Dilution Steam System for Ethylene production process to reduce waste water |
KR20240051740A (en) * | 2022-10-13 | 2024-04-22 | 주식회사 엘지화학 | Method for preparing fuel of cracking furnace |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3835029A (en) * | 1972-04-24 | 1974-09-10 | Phillips Petroleum Co | Downflow concurrent catalytic cracking |
US3928173A (en) * | 1974-05-21 | 1975-12-23 | Phillips Petroleum Co | Increased production of diesel oil and fuel oil |
US4143521A (en) | 1977-02-08 | 1979-03-13 | Stone & Webster Engineering Corporation | Process for the production of ethylene |
JPS61176692A (en) | 1985-01-31 | 1986-08-08 | Mitsui Eng & Shipbuild Co Ltd | Cooling of thermally cracked gas of hydrocarbon |
US4693808A (en) * | 1986-06-16 | 1987-09-15 | Shell Oil Company | Downflow fluidized catalytic cranking reactor process and apparatus with quick catalyst separation means in the bottom thereof |
CN1004878B (en) * | 1987-08-08 | 1989-07-26 | 中国石油化工总公司 | Hydrocarbon catalytic conversion method for preparing low-carbon olefin |
DE19716092A1 (en) | 1997-04-17 | 1998-10-22 | Linde Ag | Process for the production of ethylene from a hydrocarbon feed |
EP0909804B1 (en) * | 1997-10-15 | 2010-09-08 | China Petro-Chemical Corporation | A process for production of ethylene and propylene by catalytic pyrolysis of heavy hydrocarbons |
US7019187B2 (en) * | 2002-09-16 | 2006-03-28 | Equistar Chemicals, Lp | Olefin production utilizing whole crude oil and mild catalytic cracking |
KR100526017B1 (en) * | 2002-11-25 | 2005-11-08 | 한국에너지기술연구원 | Apparatus and method for recovery of non-condensing pyrolysis gas |
US7582201B2 (en) | 2006-12-05 | 2009-09-01 | Exxonmobil Chemical Patents Inc. | Controlling tar by quenching cracked effluent from a liquid fed gas cracker |
US7628197B2 (en) * | 2006-12-16 | 2009-12-08 | Kellogg Brown & Root Llc | Water quench fitting for pyrolysis furnace effluent |
US7914667B2 (en) | 2007-06-04 | 2011-03-29 | Exxonmobil Chemical Patents Inc. | Pyrolysis reactor conversion of hydrocarbon feedstocks into higher value hydrocarbons |
US8545581B2 (en) * | 2007-08-01 | 2013-10-01 | Virginia Tech Intellectual Properties, Inc. | Production of stable biomass pyrolysis oils using fractional catalytic pyrolysis |
US9175229B2 (en) * | 2010-01-26 | 2015-11-03 | Shell Oil Company | Method and apparatus for quenching a hot gaseous stream |
CN102604662B (en) * | 2012-03-21 | 2014-01-15 | 河北工业大学 | Process for finely recovering and recycling oil products from pyrolysis gas in process of converting waste plastic into oil |
JP2015531838A (en) | 2012-08-03 | 2015-11-05 | シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー | Method for power recovery |
HUE026632T2 (en) | 2012-08-09 | 2016-06-28 | Linde Ag | Method for converting hydrocarbon feedstocks by means of thermal steam cracking |
KR102117730B1 (en) | 2012-08-09 | 2020-06-01 | 린데 악티엔게젤샤프트 | Method for producing olefins by thermal steam-cracking |
US10190060B2 (en) | 2014-02-25 | 2019-01-29 | Saudi Basic Industries Corporation | Process for increasing process furnaces energy efficiency |
US9790179B2 (en) * | 2014-07-01 | 2017-10-17 | Anellotech, Inc. | Processes for recovering valuable components from a catalytic fast pyrolysis process |
CN106795443B (en) * | 2014-07-17 | 2022-05-13 | 沙特基础全球技术有限公司 | Upgrading hydrogen-depleted streams using hydrogen donor streams in hydropyrolysis processes |
US10336945B2 (en) * | 2014-08-28 | 2019-07-02 | Exxonmobil Chemical Patents Inc. | Process and apparatus for decoking a hydrocarbon steam cracking furnace |
CN104789245B (en) * | 2015-04-07 | 2017-12-05 | 太原理工大学 | A kind of pyrolysis gasifying device and technique |
CN105439408A (en) * | 2015-12-22 | 2016-03-30 | 北京神雾环境能源科技集团股份有限公司 | Sludge electricity generation system and electricity generation method thereof |
KR20200000218A (en) * | 2018-06-22 | 2020-01-02 | 주식회사 에코인에너지 | Waste plastic, Spent fishing nets and waste vinyl total Liquefaction Equipment by low temperature Pyrolysis Procedures |
-
2018
- 2018-08-23 KR KR1020180098337A patent/KR102358409B1/en active IP Right Grant
-
2019
- 2019-07-02 US US16/645,647 patent/US10889764B2/en active Active
- 2019-07-02 JP JP2020517183A patent/JP6853417B2/en active Active
- 2019-07-02 CN CN201980004329.6A patent/CN111094518B/en active Active
- 2019-07-02 WO PCT/KR2019/007997 patent/WO2020040421A1/en unknown
- 2019-07-02 EP EP19852494.4A patent/EP3663381B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
US20200263095A1 (en) | 2020-08-20 |
KR20200022583A (en) | 2020-03-04 |
CN111094518A (en) | 2020-05-01 |
US10889764B2 (en) | 2021-01-12 |
EP3663381A4 (en) | 2020-10-07 |
JP6853417B2 (en) | 2021-03-31 |
KR102358409B1 (en) | 2022-02-03 |
JP2020535258A (en) | 2020-12-03 |
CN111094518B (en) | 2022-03-11 |
EP3663381B1 (en) | 2021-05-12 |
WO2020040421A1 (en) | 2020-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102316686B1 (en) | Method for separating a hydrocarbon mixture containing hydrogen, separating device, and olefin plant | |
KR101655557B1 (en) | A method for preparing butadiene using oxidative dehydrogenation | |
EP3663381B1 (en) | Method for cooling pyrolysis product | |
CN103936542B (en) | A kind of olefins by catalytic cracking system and method improving alkene total conversion rate | |
CN109651041A (en) | The preparation method of low-carbon alkene | |
CN111356752B (en) | Method for producing ethylene and apparatus for producing ethylene | |
KR102462290B1 (en) | Method for improving propylene recover from fluid catalytic cracker unit | |
EP3390462B1 (en) | Olefin polymerization process | |
EP3666855B1 (en) | Method for producing ethylene | |
EP3892606B1 (en) | Oligomer preparation method and oligomer preparation apparatus | |
KR102513945B1 (en) | Method for vaporizing liquid propane and apparatus used for the method | |
CN104449808B (en) | A kind of system and method reducing ethylene unit quench oil viscosity | |
KR102579492B1 (en) | Method for recovering aromatic hydrocarbon compound | |
CN210065671U (en) | Device for producing white oil by direct coal liquefaction | |
CN210458013U (en) | Recovery system of ethylene in crude hydrogen | |
CN112920008A (en) | Method and device for separating hydrocarbon pyrolysis gas and producing ethylbenzene by using hydrocarbon pyrolysis gas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20200302 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20200909 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C10G 9/00 20060101AFI20200903BHEP Ipc: C10G 70/06 20060101ALI20200903BHEP Ipc: C10G 70/04 20060101ALI20200903BHEP Ipc: C10G 51/06 20060101ALI20200903BHEP Ipc: C10G 51/02 20060101ALI20200903BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C10G 51/06 20060101ALI20210128BHEP Ipc: C10G 70/04 20060101ALI20210128BHEP Ipc: C10G 9/00 20060101AFI20210128BHEP Ipc: C10G 51/02 20060101ALI20210128BHEP Ipc: C10G 70/06 20060101ALI20210128BHEP |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
INTG | Intention to grant announced |
Effective date: 20210303 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: LEE, SEOK GOO Inventor name: LEE, SUNG KYU Inventor name: KIM, IN SEOP Inventor name: SHIN, JOON HO Inventor name: KIM, TAE WOO |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602019004604 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1392184 Country of ref document: AT Kind code of ref document: T Effective date: 20210615 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1392184 Country of ref document: AT Kind code of ref document: T Effective date: 20210512 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210512 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210812 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210913 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210812 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210912 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210813 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602019004604 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210731 |
|
26N | No opposition filed |
Effective date: 20220215 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210912 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210702 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210702 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210731 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220731 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20190702 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240620 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240624 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240620 Year of fee payment: 6 |