EP3507104B1 - Production of cis-1,4-polydienes with multiple silane functional groups prepared byin-situ - Google Patents
Production of cis-1,4-polydienes with multiple silane functional groups prepared byin-situ Download PDFInfo
- Publication number
- EP3507104B1 EP3507104B1 EP17769147.4A EP17769147A EP3507104B1 EP 3507104 B1 EP3507104 B1 EP 3507104B1 EP 17769147 A EP17769147 A EP 17769147A EP 3507104 B1 EP3507104 B1 EP 3507104B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- silane
- polymer
- cis
- neodymium
- bis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical group [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 title claims description 178
- 238000004519 manufacturing process Methods 0.000 title description 7
- 229920000642 polymer Polymers 0.000 claims description 206
- 229910000077 silane Inorganic materials 0.000 claims description 198
- 150000001875 compounds Chemical class 0.000 claims description 187
- -1 hydrocarbyl disilyloxy silane Chemical compound 0.000 claims description 159
- 239000003054 catalyst Substances 0.000 claims description 138
- 239000000203 mixture Substances 0.000 claims description 118
- 238000006116 polymerization reaction Methods 0.000 claims description 111
- 229910052747 lanthanoid Inorganic materials 0.000 claims description 85
- 150000002602 lanthanoids Chemical class 0.000 claims description 79
- 239000003795 chemical substances by application Substances 0.000 claims description 51
- 239000000178 monomer Substances 0.000 claims description 46
- 238000000034 method Methods 0.000 claims description 39
- 229910052736 halogen Inorganic materials 0.000 claims description 34
- 150000002367 halogens Chemical class 0.000 claims description 34
- 125000001183 hydrocarbyl group Chemical group 0.000 claims description 33
- 239000002168 alkylating agent Substances 0.000 claims description 27
- 229940100198 alkylating agent Drugs 0.000 claims description 27
- 125000000962 organic group Chemical group 0.000 claims description 26
- 125000005843 halogen group Chemical group 0.000 claims description 22
- 239000000945 filler Substances 0.000 claims description 20
- 150000001993 dienes Chemical class 0.000 claims description 19
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical compound [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 claims description 19
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 17
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 claims description 12
- 125000004122 cyclic group Chemical group 0.000 claims description 6
- 229910004469 SiHx Inorganic materials 0.000 claims description 5
- ISONASOFFNISKA-UHFFFAOYSA-N trisilyloxysilane Chemical compound [SiH3]O[SiH](O[SiH3])O[SiH3] ISONASOFFNISKA-UHFFFAOYSA-N 0.000 claims description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 113
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 110
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 46
- 125000005389 trialkylsiloxy group Chemical group 0.000 description 41
- 238000006243 chemical reaction Methods 0.000 description 38
- 125000004469 siloxy group Chemical group [SiH3]O* 0.000 description 38
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 37
- 239000002585 base Substances 0.000 description 36
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 33
- 235000010354 butylated hydroxytoluene Nutrition 0.000 description 33
- 229910052799 carbon Inorganic materials 0.000 description 33
- 229920001971 elastomer Polymers 0.000 description 32
- 125000001181 organosilyl group Chemical group [SiH3]* 0.000 description 32
- 239000002904 solvent Substances 0.000 description 32
- 229910052779 Neodymium Inorganic materials 0.000 description 30
- 150000001450 anions Chemical class 0.000 description 29
- 125000002877 alkyl aryl group Chemical group 0.000 description 28
- 239000000243 solution Substances 0.000 description 28
- 239000004615 ingredient Substances 0.000 description 27
- 239000005060 rubber Substances 0.000 description 27
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 26
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 26
- 239000011414 polymer cement Substances 0.000 description 23
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 21
- 239000003921 oil Substances 0.000 description 21
- 235000019198 oils Nutrition 0.000 description 21
- 238000007306 functionalization reaction Methods 0.000 description 20
- 229920013730 reactive polymer Polymers 0.000 description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 20
- 125000000217 alkyl group Chemical group 0.000 description 19
- 125000003710 aryl alkyl group Chemical group 0.000 description 19
- 125000003118 aryl group Chemical group 0.000 description 19
- 239000000377 silicon dioxide Substances 0.000 description 18
- 125000004432 carbon atom Chemical group C* 0.000 description 17
- 125000000753 cycloalkyl group Chemical group 0.000 description 17
- 239000011521 glass Substances 0.000 description 16
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 14
- 229930195733 hydrocarbon Natural products 0.000 description 14
- 150000002430 hydrocarbons Chemical class 0.000 description 14
- 229910052710 silicon Inorganic materials 0.000 description 14
- 229910052757 nitrogen Inorganic materials 0.000 description 13
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 12
- 238000002156 mixing Methods 0.000 description 12
- 150000002901 organomagnesium compounds Chemical class 0.000 description 12
- 239000002243 precursor Substances 0.000 description 12
- 229910052717 sulfur Inorganic materials 0.000 description 12
- 239000011593 sulfur Substances 0.000 description 12
- 125000003545 alkoxy group Chemical group 0.000 description 11
- 125000004104 aryloxy group Chemical group 0.000 description 11
- 125000000000 cycloalkoxy group Chemical group 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 11
- 239000002184 metal Substances 0.000 description 11
- YCWSUKQGVSGXJO-NTUHNPAUSA-N nifuroxazide Chemical group C1=CC(O)=CC=C1C(=O)N\N=C\C1=CC=C([N+]([O-])=O)O1 YCWSUKQGVSGXJO-NTUHNPAUSA-N 0.000 description 11
- QQQSFSZALRVCSZ-UHFFFAOYSA-N triethoxysilane Chemical compound CCO[SiH](OCC)OCC QQQSFSZALRVCSZ-UHFFFAOYSA-N 0.000 description 11
- 239000004594 Masterbatch (MB) Substances 0.000 description 10
- 239000007983 Tris buffer Substances 0.000 description 10
- 238000013019 agitation Methods 0.000 description 10
- 238000009472 formulation Methods 0.000 description 10
- 238000005227 gel permeation chromatography Methods 0.000 description 10
- 125000005119 alkyl cycloalkyl group Chemical group 0.000 description 9
- 125000004350 aryl cycloalkyl group Chemical group 0.000 description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 9
- 239000006229 carbon black Substances 0.000 description 9
- 235000019241 carbon black Nutrition 0.000 description 9
- 125000000392 cycloalkenyl group Chemical group 0.000 description 9
- 125000005842 heteroatom Chemical group 0.000 description 9
- 229910052760 oxygen Inorganic materials 0.000 description 9
- 239000001301 oxygen Substances 0.000 description 9
- 125000004437 phosphorous atom Chemical group 0.000 description 9
- 239000010703 silicon Substances 0.000 description 9
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 8
- 229910052796 boron Inorganic materials 0.000 description 8
- 150000001721 carbon Chemical group 0.000 description 8
- 238000010791 quenching Methods 0.000 description 8
- 230000000171 quenching effect Effects 0.000 description 8
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 7
- 125000002102 aryl alkyloxo group Chemical group 0.000 description 7
- SIPUZPBQZHNSDW-UHFFFAOYSA-N bis(2-methylpropyl)aluminum Chemical compound CC(C)C[Al]CC(C)C SIPUZPBQZHNSDW-UHFFFAOYSA-N 0.000 description 7
- 238000012662 bulk polymerization Methods 0.000 description 7
- 150000004820 halides Chemical class 0.000 description 7
- 239000004215 Carbon black (E152) Substances 0.000 description 6
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 6
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 6
- 150000007942 carboxylates Chemical group 0.000 description 6
- AFZSMODLJJCVPP-UHFFFAOYSA-N dibenzothiazol-2-yl disulfide Chemical compound C1=CC=C2SC(SSC=3SC4=CC=CC=C4N=3)=NC2=C1 AFZSMODLJJCVPP-UHFFFAOYSA-N 0.000 description 6
- 239000003999 initiator Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 150000004756 silanes Chemical class 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 238000004073 vulcanization Methods 0.000 description 6
- UZGARMTXYXKNQR-UHFFFAOYSA-K 7,7-dimethyloctanoate;neodymium(3+) Chemical compound [Nd+3].CC(C)(C)CCCCCC([O-])=O.CC(C)(C)CCCCCC([O-])=O.CC(C)(C)CCCCCC([O-])=O UZGARMTXYXKNQR-UHFFFAOYSA-K 0.000 description 5
- 125000003342 alkenyl group Chemical group 0.000 description 5
- 150000004703 alkoxides Chemical group 0.000 description 5
- 125000005248 alkyl aryloxy group Chemical group 0.000 description 5
- 125000000304 alkynyl group Chemical group 0.000 description 5
- 239000003963 antioxidant agent Substances 0.000 description 5
- 239000012298 atmosphere Substances 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 239000007822 coupling agent Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000000806 elastomer Substances 0.000 description 5
- 238000006459 hydrosilylation reaction Methods 0.000 description 5
- CPOFMOWDMVWCLF-UHFFFAOYSA-N methyl(oxo)alumane Chemical compound C[Al]=O CPOFMOWDMVWCLF-UHFFFAOYSA-N 0.000 description 5
- 239000003960 organic solvent Substances 0.000 description 5
- 230000000379 polymerizing effect Effects 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 241000894007 species Species 0.000 description 5
- 229910052718 tin Inorganic materials 0.000 description 5
- MCULRUJILOGHCJ-UHFFFAOYSA-N triisobutylaluminium Chemical compound CC(C)C[Al](CC(C)C)CC(C)C MCULRUJILOGHCJ-UHFFFAOYSA-N 0.000 description 5
- OWRCNXZUPFZXOS-UHFFFAOYSA-N 1,3-diphenylguanidine Chemical compound C=1C=CC=CC=1NC(=N)NC1=CC=CC=C1 OWRCNXZUPFZXOS-UHFFFAOYSA-N 0.000 description 4
- CMAOLVNGLTWICC-UHFFFAOYSA-N 2-fluoro-5-methylbenzonitrile Chemical compound CC1=CC=C(F)C(C#N)=C1 CMAOLVNGLTWICC-UHFFFAOYSA-N 0.000 description 4
- 239000004606 Fillers/Extenders Substances 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 4
- 125000003277 amino group Chemical group 0.000 description 4
- 230000003078 antioxidant effect Effects 0.000 description 4
- 238000009835 boiling Methods 0.000 description 4
- 150000001768 cations Chemical class 0.000 description 4
- 239000007795 chemical reaction product Substances 0.000 description 4
- 229920003193 cis-1,4-polybutadiene polymer Polymers 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 238000001723 curing Methods 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- YNLAOSYQHBDIKW-UHFFFAOYSA-M diethylaluminium chloride Chemical compound CC[Al](Cl)CC YNLAOSYQHBDIKW-UHFFFAOYSA-M 0.000 description 4
- UAIZDWNSWGTKFZ-UHFFFAOYSA-L ethylaluminum(2+);dichloride Chemical compound CC[Al](Cl)Cl UAIZDWNSWGTKFZ-UHFFFAOYSA-L 0.000 description 4
- 150000004678 hydrides Chemical class 0.000 description 4
- 229920003052 natural elastomer Polymers 0.000 description 4
- 229920001194 natural rubber Polymers 0.000 description 4
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 4
- 125000001424 substituent group Chemical group 0.000 description 4
- 125000003107 substituted aryl group Chemical group 0.000 description 4
- 125000005346 substituted cycloalkyl group Chemical group 0.000 description 4
- 239000011135 tin Substances 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 229910000722 Didymium Inorganic materials 0.000 description 3
- 241000224487 Didymium Species 0.000 description 3
- 244000043261 Hevea brasiliensis Species 0.000 description 3
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 3
- 235000021355 Stearic acid Nutrition 0.000 description 3
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 3
- 150000001336 alkenes Chemical class 0.000 description 3
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 3
- 239000004568 cement Substances 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 238000010924 continuous production Methods 0.000 description 3
- 238000007334 copolymerization reaction Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- QWTDNUCVQCZILF-UHFFFAOYSA-N isopentane Chemical compound CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 3
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 3
- 150000002902 organometallic compounds Chemical class 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 239000008117 stearic acid Substances 0.000 description 3
- 229920003051 synthetic elastomer Polymers 0.000 description 3
- 239000001993 wax Substances 0.000 description 3
- 239000011787 zinc oxide Substances 0.000 description 3
- KVNYFPKFSJIPBJ-UHFFFAOYSA-N 1,2-diethylbenzene Chemical compound CCC1=CC=CC=C1CC KVNYFPKFSJIPBJ-UHFFFAOYSA-N 0.000 description 2
- QWUWMCYKGHVNAV-UHFFFAOYSA-N 1,2-dihydrostilbene Chemical group C=1C=CC=CC=1CCC1=CC=CC=C1 QWUWMCYKGHVNAV-UHFFFAOYSA-N 0.000 description 2
- CBXRMKZFYQISIV-UHFFFAOYSA-N 1-n,1-n,1-n',1-n',2-n,2-n,2-n',2-n'-octamethylethene-1,1,2,2-tetramine Chemical compound CN(C)C(N(C)C)=C(N(C)C)N(C)C CBXRMKZFYQISIV-UHFFFAOYSA-N 0.000 description 2
- HNRMPXKDFBEGFZ-UHFFFAOYSA-N 2,2-dimethylbutane Chemical compound CCC(C)(C)C HNRMPXKDFBEGFZ-UHFFFAOYSA-N 0.000 description 2
- SDJHPPZKZZWAKF-UHFFFAOYSA-N 2,3-dimethylbuta-1,3-diene Chemical compound CC(=C)C(C)=C SDJHPPZKZZWAKF-UHFFFAOYSA-N 0.000 description 2
- ZFFMLCVRJBZUDZ-UHFFFAOYSA-N 2,3-dimethylbutane Chemical group CC(C)C(C)C ZFFMLCVRJBZUDZ-UHFFFAOYSA-N 0.000 description 2
- RCJMVGJKROQDCB-UHFFFAOYSA-N 2-methylpenta-1,3-diene Chemical compound CC=CC(C)=C RCJMVGJKROQDCB-UHFFFAOYSA-N 0.000 description 2
- LQIIEHBULBHJKX-UHFFFAOYSA-N 2-methylpropylalumane Chemical compound CC(C)C[AlH2] LQIIEHBULBHJKX-UHFFFAOYSA-N 0.000 description 2
- CJSBUWDGPXGFGA-UHFFFAOYSA-N 4-methylpenta-1,3-diene Chemical compound CC(C)=CC=C CJSBUWDGPXGFGA-UHFFFAOYSA-N 0.000 description 2
- ZZMVLMVFYMGSMY-UHFFFAOYSA-N 4-n-(4-methylpentan-2-yl)-1-n-phenylbenzene-1,4-diamine Chemical compound C1=CC(NC(C)CC(C)C)=CC=C1NC1=CC=CC=C1 ZZMVLMVFYMGSMY-UHFFFAOYSA-N 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- ZGPFIXGIGHQFMD-UHFFFAOYSA-N C(C)(C)[SiH](O[SiH](C)C)C(C)C Chemical compound C(C)(C)[SiH](O[SiH](C)C)C(C)C ZGPFIXGIGHQFMD-UHFFFAOYSA-N 0.000 description 2
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 2
- 241001441571 Hiodontidae Species 0.000 description 2
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 2
- 239000002879 Lewis base Substances 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical group [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000006057 Non-nutritive feed additive Substances 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- 239000005062 Polybutadiene Substances 0.000 description 2
- 229910052772 Samarium Inorganic materials 0.000 description 2
- 239000006236 Super Abrasion Furnace Substances 0.000 description 2
- QHPQOYBJOOUQPS-UHFFFAOYSA-N [bis[(dimethyl-$l^{3}-silanyl)oxy]-(3,3,3-trifluoropropyl)silyl]oxy-dimethylsilicon Chemical compound C[Si](C)O[Si](O[Si](C)C)(O[Si](C)C)CCC(F)(F)F QHPQOYBJOOUQPS-UHFFFAOYSA-N 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical group [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 239000010692 aromatic oil Substances 0.000 description 2
- 235000010290 biphenyl Nutrition 0.000 description 2
- 239000004305 biphenyl Substances 0.000 description 2
- 125000006267 biphenyl group Chemical group 0.000 description 2
- ILAHWRKJUDSMFH-UHFFFAOYSA-N boron tribromide Chemical compound BrB(Br)Br ILAHWRKJUDSMFH-UHFFFAOYSA-N 0.000 description 2
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 239000004359 castor oil Substances 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- IJOOHPMOJXWVHK-UHFFFAOYSA-N chlorotrimethylsilane Chemical compound C[Si](C)(C)Cl IJOOHPMOJXWVHK-UHFFFAOYSA-N 0.000 description 2
- 239000013066 combination product Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 125000005112 cycloalkylalkoxy group Chemical group 0.000 description 2
- 125000000058 cyclopentadienyl group Chemical group C1(=CC=CC1)* 0.000 description 2
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 2
- 125000004177 diethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- SGFGWXCJHHZQBS-UHFFFAOYSA-N diethylsilyloxy(diethyl)silane Chemical compound CC[SiH](CC)O[SiH](CC)CC SGFGWXCJHHZQBS-UHFFFAOYSA-N 0.000 description 2
- IETCQDCOFQKZIU-UHFFFAOYSA-N diethylsilyloxy(dimethyl)silane Chemical compound CC[SiH](CC)O[SiH](C)C IETCQDCOFQKZIU-UHFFFAOYSA-N 0.000 description 2
- ZTQXGSLESHAWPE-UHFFFAOYSA-N diethylsilyloxy-di(propan-2-yl)silane Chemical compound C(C)[SiH](O[SiH](C(C)C)C(C)C)CC ZTQXGSLESHAWPE-UHFFFAOYSA-N 0.000 description 2
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 2
- ZSWFCLXCOIISFI-UHFFFAOYSA-N endo-cyclopentadiene Natural products C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- MGDOJPNDRJNJBK-UHFFFAOYSA-N ethylaluminum Chemical compound [Al].C[CH2] MGDOJPNDRJNJBK-UHFFFAOYSA-N 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- PYGSKMBEVAICCR-UHFFFAOYSA-N hexa-1,5-diene Chemical group C=CCCC=C PYGSKMBEVAICCR-UHFFFAOYSA-N 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- PSCMQHVBLHHWTO-UHFFFAOYSA-K indium(iii) chloride Chemical compound Cl[In](Cl)Cl PSCMQHVBLHHWTO-UHFFFAOYSA-K 0.000 description 2
- 238000012844 infrared spectroscopy analysis Methods 0.000 description 2
- 239000011256 inorganic filler Substances 0.000 description 2
- 229910001502 inorganic halide Inorganic materials 0.000 description 2
- 239000011630 iodine Substances 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 229910052746 lanthanum Inorganic materials 0.000 description 2
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 2
- 150000007527 lewis bases Chemical class 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- IWCVDCOJSPWGRW-UHFFFAOYSA-M magnesium;benzene;chloride Chemical compound [Mg+2].[Cl-].C1=CC=[C-]C=C1 IWCVDCOJSPWGRW-UHFFFAOYSA-M 0.000 description 2
- LWLPYZUDBNFNAH-UHFFFAOYSA-M magnesium;butane;bromide Chemical compound [Mg+2].[Br-].CCC[CH2-] LWLPYZUDBNFNAH-UHFFFAOYSA-M 0.000 description 2
- QUXHCILOWRXCEO-UHFFFAOYSA-M magnesium;butane;chloride Chemical compound [Mg+2].[Cl-].CCC[CH2-] QUXHCILOWRXCEO-UHFFFAOYSA-M 0.000 description 2
- NXPHGHWWQRMDIA-UHFFFAOYSA-M magnesium;carbanide;bromide Chemical compound [CH3-].[Mg+2].[Br-] NXPHGHWWQRMDIA-UHFFFAOYSA-M 0.000 description 2
- CCERQOYLJJULMD-UHFFFAOYSA-M magnesium;carbanide;chloride Chemical compound [CH3-].[Mg+2].[Cl-] CCERQOYLJJULMD-UHFFFAOYSA-M 0.000 description 2
- FRIJBUGBVQZNTB-UHFFFAOYSA-M magnesium;ethane;bromide Chemical compound [Mg+2].[Br-].[CH2-]C FRIJBUGBVQZNTB-UHFFFAOYSA-M 0.000 description 2
- YCCXQARVHOPWFJ-UHFFFAOYSA-M magnesium;ethane;chloride Chemical compound [Mg+2].[Cl-].[CH2-]C YCCXQARVHOPWFJ-UHFFFAOYSA-M 0.000 description 2
- SCEZYJKGDJPHQO-UHFFFAOYSA-M magnesium;methanidylbenzene;chloride Chemical compound [Mg+2].[Cl-].[CH2-]C1=CC=CC=C1 SCEZYJKGDJPHQO-UHFFFAOYSA-M 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 2
- GDOPTJXRTPNYNR-UHFFFAOYSA-N methylcyclopentane Chemical compound CC1CCCC1 GDOPTJXRTPNYNR-UHFFFAOYSA-N 0.000 description 2
- IUJLOAKJZQBENM-UHFFFAOYSA-N n-(1,3-benzothiazol-2-ylsulfanyl)-2-methylpropan-2-amine Chemical compound C1=CC=C2SC(SNC(C)(C)C)=NC2=C1 IUJLOAKJZQBENM-UHFFFAOYSA-N 0.000 description 2
- 150000002798 neodymium compounds Chemical class 0.000 description 2
- BKIMMITUMNQMOS-UHFFFAOYSA-N nonane Chemical compound CCCCCCCCC BKIMMITUMNQMOS-UHFFFAOYSA-N 0.000 description 2
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 2
- ZQPPMHVWECSIRJ-KTKRTIGZSA-M oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC([O-])=O ZQPPMHVWECSIRJ-KTKRTIGZSA-M 0.000 description 2
- 229940049964 oleate Drugs 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 239000012766 organic filler Substances 0.000 description 2
- 239000010690 paraffinic oil Substances 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N phenylbenzene Natural products C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- ANRQGKOBLBYXFM-UHFFFAOYSA-M phenylmagnesium bromide Chemical compound Br[Mg]C1=CC=CC=C1 ANRQGKOBLBYXFM-UHFFFAOYSA-M 0.000 description 2
- ACVYVLVWPXVTIT-UHFFFAOYSA-M phosphinate Chemical compound [O-][PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-M 0.000 description 2
- XHXFXVLFKHQFAL-UHFFFAOYSA-N phosphoryl trichloride Chemical compound ClP(Cl)(Cl)=O XHXFXVLFKHQFAL-UHFFFAOYSA-N 0.000 description 2
- 238000013031 physical testing Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 230000002028 premature Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 239000012763 reinforcing filler Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000010058 rubber compounding Methods 0.000 description 2
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 229920001059 synthetic polymer Polymers 0.000 description 2
- 239000005061 synthetic rubber Substances 0.000 description 2
- 125000003944 tolyl group Chemical group 0.000 description 2
- FPBPVQQJHHHQQP-UHFFFAOYSA-N tris(diethylsilyloxy)-(3,3,3-trifluoropropyl)silane Chemical compound FC(CC[Si](O[SiH](CC)CC)(O[SiH](CC)CC)O[SiH](CC)CC)(F)F FPBPVQQJHHHQQP-UHFFFAOYSA-N 0.000 description 2
- 235000015112 vegetable and seed oil Nutrition 0.000 description 2
- 239000008158 vegetable oil Substances 0.000 description 2
- 239000012991 xanthate Substances 0.000 description 2
- VNDYJBBGRKZCSX-UHFFFAOYSA-L zinc bromide Chemical compound Br[Zn]Br VNDYJBBGRKZCSX-UHFFFAOYSA-L 0.000 description 2
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 2
- BHHYHSUAOQUXJK-UHFFFAOYSA-L zinc fluoride Chemical compound F[Zn]F BHHYHSUAOQUXJK-UHFFFAOYSA-L 0.000 description 2
- WCFQIFDACWBNJT-UHFFFAOYSA-N $l^{1}-alumanyloxy(2-methylpropyl)aluminum Chemical compound CC(C)C[Al]O[Al] WCFQIFDACWBNJT-UHFFFAOYSA-N 0.000 description 1
- YUHZIUAREWNXJT-UHFFFAOYSA-N (2-fluoropyridin-3-yl)boronic acid Chemical class OB(O)C1=CC=CN=C1F YUHZIUAREWNXJT-UHFFFAOYSA-N 0.000 description 1
- APPOKADJQUIAHP-GGWOSOGESA-N (2e,4e)-hexa-2,4-diene Chemical compound C\C=C\C=C\C APPOKADJQUIAHP-GGWOSOGESA-N 0.000 description 1
- MBULCFMSBDQQQT-UHFFFAOYSA-N (3-carboxy-2-hydroxypropyl)-trimethylazanium;2,4-dioxo-1h-pyrimidine-6-carboxylate Chemical compound C[N+](C)(C)CC(O)CC(O)=O.[O-]C(=O)C1=CC(=O)NC(=O)N1 MBULCFMSBDQQQT-UHFFFAOYSA-N 0.000 description 1
- BOGRNZQRTNVZCZ-AATRIKPKSA-N (3e)-3-methylpenta-1,3-diene Chemical compound C\C=C(/C)C=C BOGRNZQRTNVZCZ-AATRIKPKSA-N 0.000 description 1
- AHAREKHAZNPPMI-AATRIKPKSA-N (3e)-hexa-1,3-diene Chemical compound CC\C=C\C=C AHAREKHAZNPPMI-AATRIKPKSA-N 0.000 description 1
- VQCPDMARLUVHOA-UHFFFAOYSA-N (4-methylphenyl)-(2-methylpropyl)alumane Chemical compound C1(=CC=C(C=C1)[AlH]CC(C)C)C VQCPDMARLUVHOA-UHFFFAOYSA-N 0.000 description 1
- NTIWOYZPHSWEAP-UHFFFAOYSA-M (4-methylphenyl)-(2-methylpropyl)alumanylium;chloride Chemical compound [Cl-].CC(C)C[Al+]C1=CC=C(C)C=C1 NTIWOYZPHSWEAP-UHFFFAOYSA-M 0.000 description 1
- JBMXTJBHVMDDQY-UHFFFAOYSA-N (4-methylphenyl)-octylalumane Chemical compound C1(=CC=C(C=C1)[AlH]CCCCCCCC)C JBMXTJBHVMDDQY-UHFFFAOYSA-N 0.000 description 1
- MYSJAUGCDQAHMZ-UHFFFAOYSA-M (4-methylphenyl)-octylalumanylium;chloride Chemical compound [Cl-].CCCCCCCC[Al+]C1=CC=C(C)C=C1 MYSJAUGCDQAHMZ-UHFFFAOYSA-M 0.000 description 1
- SVJIEGOVQBGOSU-UHFFFAOYSA-N (4-methylphenyl)-propan-2-ylalumane Chemical compound C1(=CC=C(C=C1)[AlH]C(C)C)C SVJIEGOVQBGOSU-UHFFFAOYSA-N 0.000 description 1
- YFZPXQNLKWVZMW-UHFFFAOYSA-M (4-methylphenyl)-propan-2-ylalumanylium;chloride Chemical compound [Cl-].CC(C)[Al+]C1=CC=C(C)C=C1 YFZPXQNLKWVZMW-UHFFFAOYSA-M 0.000 description 1
- PRPLGWFQYUPYBN-UHFFFAOYSA-N (4-methylphenyl)-propylalumane Chemical compound C1(=CC=C(C=C1)[AlH]CCC)C PRPLGWFQYUPYBN-UHFFFAOYSA-N 0.000 description 1
- CHQIVLGTNKFHEO-UHFFFAOYSA-M (4-methylphenyl)-propylalumanylium;chloride Chemical compound [Cl-].CCC[Al+]C1=CC=C(C)C=C1 CHQIVLGTNKFHEO-UHFFFAOYSA-M 0.000 description 1
- PMJHHCWVYXUKFD-SNAWJCMRSA-N (E)-1,3-pentadiene Chemical compound C\C=C\C=C PMJHHCWVYXUKFD-SNAWJCMRSA-N 0.000 description 1
- KWEKXPWNFQBJAY-UHFFFAOYSA-N (dimethyl-$l^{3}-silanyl)oxy-dimethylsilicon Chemical compound C[Si](C)O[Si](C)C KWEKXPWNFQBJAY-UHFFFAOYSA-N 0.000 description 1
- FZBWOOMFOKKXES-SPSNFJOYSA-H (e)-but-2-enedioate;neodymium(3+) Chemical compound [Nd+3].[Nd+3].[O-]C(=O)\C=C\C([O-])=O.[O-]C(=O)\C=C\C([O-])=O.[O-]C(=O)\C=C\C([O-])=O FZBWOOMFOKKXES-SPSNFJOYSA-H 0.000 description 1
- JKOGKIJIPCVHON-TYYBGVCCSA-L (e)-but-2-enedioate;neodymium(3+) Chemical compound [Nd+3].[O-]C(=O)\C=C\C([O-])=O JKOGKIJIPCVHON-TYYBGVCCSA-L 0.000 description 1
- VUYRFIIFTJICNA-LKNRODPVSA-N (e)-n-[[(e)-benzylideneamino]-phenylmethyl]-1-phenylmethanimine Chemical class C=1C=CC=CC=1/C=N/C(C=1C=CC=CC=1)\N=C\C1=CC=CC=C1 VUYRFIIFTJICNA-LKNRODPVSA-N 0.000 description 1
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical compound C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 description 1
- BOGRNZQRTNVZCZ-UHFFFAOYSA-N 1,2-dimethyl-butadiene Natural products CC=C(C)C=C BOGRNZQRTNVZCZ-UHFFFAOYSA-N 0.000 description 1
- OFDISMSWWNOGFW-UHFFFAOYSA-N 1-(4-ethoxy-3-fluorophenyl)ethanamine Chemical compound CCOC1=CC=C(C(C)N)C=C1F OFDISMSWWNOGFW-UHFFFAOYSA-N 0.000 description 1
- DSPXASHHKFVPCL-UHFFFAOYSA-N 1-isocyanocyclohexene Chemical compound [C-]#[N+]C1=CCCCC1 DSPXASHHKFVPCL-UHFFFAOYSA-N 0.000 description 1
- SKYKARIMXZGKOD-UHFFFAOYSA-N 2,2,4,4,6-pentamethyl-1,3,5,2,4,6-trioxatrisilinane Chemical compound C[SiH]1O[Si](C)(C)O[Si](C)(C)O1 SKYKARIMXZGKOD-UHFFFAOYSA-N 0.000 description 1
- BCLFONZIRGMCRV-UHFFFAOYSA-N 2,2-dimethylpropyl(diethoxy)silane Chemical compound CCO[SiH](CC(C)(C)C)OCC BCLFONZIRGMCRV-UHFFFAOYSA-N 0.000 description 1
- ZICOHHFDQHANGC-UHFFFAOYSA-N 2,2-dimethylpropyl(dimethoxy)silane Chemical compound CO[SiH](CC(C)(C)C)OC ZICOHHFDQHANGC-UHFFFAOYSA-N 0.000 description 1
- VWUDIVRRVWKEEJ-UHFFFAOYSA-N 2,2-dimethylpropyl(diphenoxy)silane Chemical compound C(C(C)(C)C)[SiH](OC1=CC=CC=C1)OC1=CC=CC=C1 VWUDIVRRVWKEEJ-UHFFFAOYSA-N 0.000 description 1
- VXVCKHVOUWOGNK-UHFFFAOYSA-N 2,2-dimethylpropyl-bis(dimethylsilyloxy)silane Chemical compound C(C(C)(C)C)[SiH](O[SiH](C)C)O[SiH](C)C VXVCKHVOUWOGNK-UHFFFAOYSA-N 0.000 description 1
- QFQRYDGNEZJGRW-UHFFFAOYSA-N 2,2-dimethylpropyl-bis[di(propan-2-yl)silyloxy]silane Chemical compound C(C(C)(C)C)[SiH](O[SiH](C(C)C)C(C)C)O[SiH](C(C)C)C(C)C QFQRYDGNEZJGRW-UHFFFAOYSA-N 0.000 description 1
- MNNMFPYYIKOPGM-UHFFFAOYSA-N 2,2-dimethylpropyl-ethoxy-methoxysilane Chemical compound C(C(C)(C)C)[SiH](OCC)OC MNNMFPYYIKOPGM-UHFFFAOYSA-N 0.000 description 1
- CVEAVUPWCDCFMW-UHFFFAOYSA-N 2,2-dimethylpropyl-ethoxy-phenoxysilane Chemical compound C(C(C)(C)C)[SiH](OCC)OC1=CC=CC=C1 CVEAVUPWCDCFMW-UHFFFAOYSA-N 0.000 description 1
- HKQXUVOVRCDEIR-UHFFFAOYSA-N 2,2-dimethylpropyl-methoxy-phenoxysilane Chemical compound C(C(C)(C)C)[SiH](OC1=CC=CC=C1)OC HKQXUVOVRCDEIR-UHFFFAOYSA-N 0.000 description 1
- WZBJIDCEZGPVHX-UHFFFAOYSA-N 2,4,6,8,10,12-hexaethyl-1,3,5,7,9,11-hexaoxa-2$l^{3},4$l^{3},6$l^{3},8$l^{3},10$l^{3},12$l^{3}-hexasilacyclododecane Chemical compound CC[Si]1O[Si](CC)O[Si](CC)O[Si](CC)O[Si](CC)O[Si](CC)O1 WZBJIDCEZGPVHX-UHFFFAOYSA-N 0.000 description 1
- UGKULRZSGOCTNI-UHFFFAOYSA-N 2,4,6,8,10-pentaethyl-1,3,5,7,9,2$l^{3},4$l^{3},6$l^{3},8$l^{3},10$l^{3}-pentaoxapentasilecane Chemical compound CC[Si]1O[Si](CC)O[Si](CC)O[Si](CC)O[Si](CC)O1 UGKULRZSGOCTNI-UHFFFAOYSA-N 0.000 description 1
- PUNGSQUVTIDKNU-UHFFFAOYSA-N 2,4,6,8,10-pentamethyl-1,3,5,7,9,2$l^{3},4$l^{3},6$l^{3},8$l^{3},10$l^{3}-pentaoxapentasilecane Chemical compound C[Si]1O[Si](C)O[Si](C)O[Si](C)O[Si](C)O1 PUNGSQUVTIDKNU-UHFFFAOYSA-N 0.000 description 1
- OPSKRIKFYGJQGJ-UHFFFAOYSA-N 2,4,6,8-tetraethyl-1,3,5,7,2$l^{3},4$l^{3},6$l^{3},8$l^{3}-tetraoxatetrasilocane Chemical compound CC[Si]1O[Si](CC)O[Si](CC)O[Si](CC)O1 OPSKRIKFYGJQGJ-UHFFFAOYSA-N 0.000 description 1
- WZJUBBHODHNQPW-UHFFFAOYSA-N 2,4,6,8-tetramethyl-1,3,5,7,2$l^{3},4$l^{3},6$l^{3},8$l^{3}-tetraoxatetrasilocane Chemical compound C[Si]1O[Si](C)O[Si](C)O[Si](C)O1 WZJUBBHODHNQPW-UHFFFAOYSA-N 0.000 description 1
- JVZSBLJUNRGYOH-UHFFFAOYSA-N 2,4,6-triethyl-1,3,5,2$l^{3},4$l^{3},6$l^{3}-trioxatrisilinane Chemical compound CC[Si]1O[Si](CC)O[Si](CC)O1 JVZSBLJUNRGYOH-UHFFFAOYSA-N 0.000 description 1
- VLQZJOLYNOGECD-UHFFFAOYSA-N 2,4,6-trimethyl-1,3,5,2,4,6-trioxatrisilinane Chemical compound C[SiH]1O[SiH](C)O[SiH](C)O1 VLQZJOLYNOGECD-UHFFFAOYSA-N 0.000 description 1
- OVSKIKFHRZPJSS-UHFFFAOYSA-N 2,4-D Chemical compound OC(=O)COC1=CC=C(Cl)C=C1Cl OVSKIKFHRZPJSS-UHFFFAOYSA-N 0.000 description 1
- JRCZSHDOYYZKAW-UHFFFAOYSA-N 2-(4-methylphenyl)ethylalumane Chemical compound C1(=CC=C(C=C1)CC[AlH2])C JRCZSHDOYYZKAW-UHFFFAOYSA-N 0.000 description 1
- VIVBTDXQKVACDD-UHFFFAOYSA-L 2-(4-methylphenyl)ethylaluminum(2+);dichloride Chemical compound [Cl-].[Cl-].CC1=CC=C(CC[Al+2])C=C1 VIVBTDXQKVACDD-UHFFFAOYSA-L 0.000 description 1
- DSLKUVNKEFGKDO-UHFFFAOYSA-L 2-ethylhexanoate;2-methylpropylaluminum(2+) Chemical compound CC(C)C[Al+2].CCCCC(CC)C([O-])=O.CCCCC(CC)C([O-])=O DSLKUVNKEFGKDO-UHFFFAOYSA-L 0.000 description 1
- QBKTXRLYEHZACW-UHFFFAOYSA-K 2-ethylhexanoate;neodymium(3+) Chemical compound [Nd+3].CCCCC(CC)C([O-])=O.CCCCC(CC)C([O-])=O.CCCCC(CC)C([O-])=O QBKTXRLYEHZACW-UHFFFAOYSA-K 0.000 description 1
- YODDHTQHCDVMNQ-UHFFFAOYSA-K 2-ethylhexoxy(2-ethylhexyl)phosphinate neodymium(3+) Chemical compound [Nd+3].CCCCC(CC)COP([O-])(=O)CC(CC)CCCC.CCCCC(CC)COP([O-])(=O)CC(CC)CCCC.CCCCC(CC)COP([O-])(=O)CC(CC)CCCC YODDHTQHCDVMNQ-UHFFFAOYSA-K 0.000 description 1
- JMAUDBDOZRCFHI-UHFFFAOYSA-K 2-ethylhexyl (4-nonylphenyl) phosphate neodymium(3+) Chemical compound [Nd+3].CCCCCCCCCc1ccc(OP([O-])(=O)OCC(CC)CCCC)cc1.CCCCCCCCCc1ccc(OP([O-])(=O)OCC(CC)CCCC)cc1.CCCCCCCCCc1ccc(OP([O-])(=O)OCC(CC)CCCC)cc1 JMAUDBDOZRCFHI-UHFFFAOYSA-K 0.000 description 1
- MLCBESZKRKSVFX-UHFFFAOYSA-K 2-ethylhexyl octan-2-yl phosphate neodymium(3+) Chemical compound [Nd+3].CCCCCCC(C)OP([O-])(=O)OCC(CC)CCCC.CCCCCCC(C)OP([O-])(=O)OCC(CC)CCCC.CCCCCCC(C)OP([O-])(=O)OCC(CC)CCCC MLCBESZKRKSVFX-UHFFFAOYSA-K 0.000 description 1
- YVSMQHYREUQGRX-UHFFFAOYSA-N 2-ethyloxaluminane Chemical compound CC[Al]1CCCCO1 YVSMQHYREUQGRX-UHFFFAOYSA-N 0.000 description 1
- HSULNFGSJFUXON-UHFFFAOYSA-K 2-hydroxypropane-1,2,3-tricarboxylate;neodymium(3+) Chemical compound [Nd+3].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O HSULNFGSJFUXON-UHFFFAOYSA-K 0.000 description 1
- VXDRYJKQOSTIIC-UHFFFAOYSA-K 2-hydroxypropanoate;neodymium(3+) Chemical compound [Nd+3].CC(O)C([O-])=O.CC(O)C([O-])=O.CC(O)C([O-])=O VXDRYJKQOSTIIC-UHFFFAOYSA-K 0.000 description 1
- CEBDXRXVGUQZJK-UHFFFAOYSA-N 2-methyl-1-benzofuran-7-carboxylic acid Chemical compound C1=CC(C(O)=O)=C2OC(C)=CC2=C1 CEBDXRXVGUQZJK-UHFFFAOYSA-N 0.000 description 1
- MPZXOLLYZDBITA-UHFFFAOYSA-K 2-methylprop-2-enoate;neodymium(3+) Chemical compound [Nd+3].CC(=C)C([O-])=O.CC(=C)C([O-])=O.CC(=C)C([O-])=O MPZXOLLYZDBITA-UHFFFAOYSA-K 0.000 description 1
- TUZANDMTFCYPOY-UHFFFAOYSA-N 2-methylpropyl(phenyl)alumane Chemical compound C1(=CC=CC=C1)[AlH]CC(C)C TUZANDMTFCYPOY-UHFFFAOYSA-N 0.000 description 1
- VMIKHUFFDFLOJC-UHFFFAOYSA-M 2-methylpropyl(phenyl)alumanylium;chloride Chemical compound [Cl-].CC(C)C[Al+]C1=CC=CC=C1 VMIKHUFFDFLOJC-UHFFFAOYSA-M 0.000 description 1
- NMVXHZSPDTXJSJ-UHFFFAOYSA-L 2-methylpropylaluminum(2+);dichloride Chemical compound CC(C)C[Al](Cl)Cl NMVXHZSPDTXJSJ-UHFFFAOYSA-L 0.000 description 1
- NQNIMZVWANOKGJ-UHFFFAOYSA-L 2-methylpropylaluminum(2+);diphenoxide Chemical compound CC(C)C[Al+2].[O-]C1=CC=CC=C1.[O-]C1=CC=CC=C1 NQNIMZVWANOKGJ-UHFFFAOYSA-L 0.000 description 1
- GNOMLLKHNCKJRX-UHFFFAOYSA-N 2-phenylethylalumane Chemical compound C1(=CC=CC=C1)CC[AlH2] GNOMLLKHNCKJRX-UHFFFAOYSA-N 0.000 description 1
- XEHKGRUHTSTKKH-UHFFFAOYSA-L 2-phenylethylaluminum(2+);dichloride Chemical compound [Cl-].[Cl-].[Al+2]CCC1=CC=CC=C1 XEHKGRUHTSTKKH-UHFFFAOYSA-L 0.000 description 1
- BYDYILQCRDXHLB-UHFFFAOYSA-N 3,5-dimethylpyridine-2-carbaldehyde Chemical compound CC1=CN=C(C=O)C(C)=C1 BYDYILQCRDXHLB-UHFFFAOYSA-N 0.000 description 1
- IGLWCQMNTGCUBB-UHFFFAOYSA-N 3-methylidenepent-1-ene Chemical compound CCC(=C)C=C IGLWCQMNTGCUBB-UHFFFAOYSA-N 0.000 description 1
- BJEDPZTUMCKCTD-UHFFFAOYSA-N 3-phenylpropylalumane Chemical compound C(C1=CC=CC=C1)CC[AlH2] BJEDPZTUMCKCTD-UHFFFAOYSA-N 0.000 description 1
- YVQGURMFIPHNHD-UHFFFAOYSA-L 3-phenylpropylaluminum(2+);dichloride Chemical compound [Cl-].[Cl-].[Al+2]CCCC1=CC=CC=C1 YVQGURMFIPHNHD-UHFFFAOYSA-L 0.000 description 1
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 1
- OIVUHPTVQVCONM-UHFFFAOYSA-N 6-bromo-4-methyl-1h-indazole Chemical compound CC1=CC(Br)=CC2=C1C=NN2 OIVUHPTVQVCONM-UHFFFAOYSA-N 0.000 description 1
- PNIIGNHJPZVTIY-UHFFFAOYSA-L 7,7-dimethyloctanoate;methylaluminum(2+) Chemical compound [Al+2]C.CC(C)(C)CCCCCC([O-])=O.CC(C)(C)CCCCCC([O-])=O PNIIGNHJPZVTIY-UHFFFAOYSA-L 0.000 description 1
- OSDWBNJEKMUWAV-UHFFFAOYSA-N Allyl chloride Chemical compound ClCC=C OSDWBNJEKMUWAV-UHFFFAOYSA-N 0.000 description 1
- KLZUFWVZNOTSEM-UHFFFAOYSA-K Aluminium flouride Chemical compound F[Al](F)F KLZUFWVZNOTSEM-UHFFFAOYSA-K 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 229910015900 BF3 Inorganic materials 0.000 description 1
- CAHQGWAXKLQREW-UHFFFAOYSA-N Benzal chloride Chemical compound ClC(Cl)C1=CC=CC=C1 CAHQGWAXKLQREW-UHFFFAOYSA-N 0.000 description 1
- SIZXGKFEJUHQFD-UHFFFAOYSA-N C(C)(C)(C)[SiH](OC1=CC=CC=C1)C(C)(C)C Chemical compound C(C)(C)(C)[SiH](OC1=CC=CC=C1)C(C)(C)C SIZXGKFEJUHQFD-UHFFFAOYSA-N 0.000 description 1
- YPZJADYVGGELSW-UHFFFAOYSA-N C(C)[SiH](OC)C(C)C Chemical compound C(C)[SiH](OC)C(C)C YPZJADYVGGELSW-UHFFFAOYSA-N 0.000 description 1
- JJLXCIGSCHGSAJ-GOJQJELCSA-L CC(C)C[Al+2].CCCCCCCC\C=C/CCCCCCCC([O-])=O.CCCCCCCC\C=C/CCCCCCCC([O-])=O Chemical compound CC(C)C[Al+2].CCCCCCCC\C=C/CCCCCCCC([O-])=O.CCCCCCCC\C=C/CCCCCCCC([O-])=O JJLXCIGSCHGSAJ-GOJQJELCSA-L 0.000 description 1
- QYSPFHZZQKFEAB-UHFFFAOYSA-M CCCCCC([O-])=O.[Mg+]CC1=CC=CC=C1 Chemical compound CCCCCC([O-])=O.[Mg+]CC1=CC=CC=C1 QYSPFHZZQKFEAB-UHFFFAOYSA-M 0.000 description 1
- SKTFRBDVEVSJBM-UHFFFAOYSA-M CCCCCC[Mg+].CCCCCC([O-])=O Chemical compound CCCCCC[Mg+].CCCCCC([O-])=O SKTFRBDVEVSJBM-UHFFFAOYSA-M 0.000 description 1
- RBAGLXHHMKDMEV-UHFFFAOYSA-M CCCCCC[Mg+].[O-]C1=CC=CC=C1 Chemical compound CCCCCC[Mg+].[O-]C1=CC=CC=C1 RBAGLXHHMKDMEV-UHFFFAOYSA-M 0.000 description 1
- YQTKLYYISKLJMX-UHFFFAOYSA-N CCCCCC[SiH](OCC)OCC Chemical compound CCCCCC[SiH](OCC)OCC YQTKLYYISKLJMX-UHFFFAOYSA-N 0.000 description 1
- GBOMEDXZGZITPI-UHFFFAOYSA-M CCCC[Mg+].CCCCCC([O-])=O Chemical compound CCCC[Mg+].CCCCCC([O-])=O GBOMEDXZGZITPI-UHFFFAOYSA-M 0.000 description 1
- KVQHGSASPRTPDV-UHFFFAOYSA-M CCCC[Mg+].[O-]C1=CC=CC=C1 Chemical compound CCCC[Mg+].[O-]C1=CC=CC=C1 KVQHGSASPRTPDV-UHFFFAOYSA-M 0.000 description 1
- RYWDKWWDJJOYEA-UHFFFAOYSA-N CCCC[Mg]OCC Chemical compound CCCC[Mg]OCC RYWDKWWDJJOYEA-UHFFFAOYSA-N 0.000 description 1
- QAEXUJDTCZNPKL-UHFFFAOYSA-N CCCC[SiH](OC)CCCC Chemical compound CCCC[SiH](OC)CCCC QAEXUJDTCZNPKL-UHFFFAOYSA-N 0.000 description 1
- NTHKCSDJQGWPJY-UHFFFAOYSA-N CCCC[SiH](OC)OC Chemical compound CCCC[SiH](OC)OC NTHKCSDJQGWPJY-UHFFFAOYSA-N 0.000 description 1
- GFTSBQGETHTIFT-UHFFFAOYSA-N CCCC[SiH](O[Si](C)(C)C)O[Si](C)(C)C Chemical compound CCCC[SiH](O[Si](C)(C)C)O[Si](C)(C)C GFTSBQGETHTIFT-UHFFFAOYSA-N 0.000 description 1
- LZVLUQUTKJNROW-UHFFFAOYSA-N CCCC[SiH](Oc1ccccc1)Oc1ccccc1 Chemical compound CCCC[SiH](Oc1ccccc1)Oc1ccccc1 LZVLUQUTKJNROW-UHFFFAOYSA-N 0.000 description 1
- ABXKXVWOKXSBNR-UHFFFAOYSA-N CCC[Mg]CCC Chemical compound CCC[Mg]CCC ABXKXVWOKXSBNR-UHFFFAOYSA-N 0.000 description 1
- HSXBCEUOBJXQQY-UHFFFAOYSA-N CCO[Mg]C1=CC=CC=C1 Chemical compound CCO[Mg]C1=CC=CC=C1 HSXBCEUOBJXQQY-UHFFFAOYSA-N 0.000 description 1
- MXRNYNIJHVXZAN-UHFFFAOYSA-N CCO[Mg]CC Chemical compound CCO[Mg]CC MXRNYNIJHVXZAN-UHFFFAOYSA-N 0.000 description 1
- OIQLQSDYXFOSHN-UHFFFAOYSA-N CCO[Mg]Cc1ccccc1 Chemical compound CCO[Mg]Cc1ccccc1 OIQLQSDYXFOSHN-UHFFFAOYSA-N 0.000 description 1
- VCOMPTUDBVUXAE-UHFFFAOYSA-N CCO[SiH](C)c1ccccc1 Chemical compound CCO[SiH](C)c1ccccc1 VCOMPTUDBVUXAE-UHFFFAOYSA-N 0.000 description 1
- UGJLGGUQXBCUIA-UHFFFAOYSA-N CCO[SiH](OC)OC Chemical compound CCO[SiH](OC)OC UGJLGGUQXBCUIA-UHFFFAOYSA-N 0.000 description 1
- NKBNCJHAFSMASR-UHFFFAOYSA-L CC[Al+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O Chemical compound CC[Al+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O NKBNCJHAFSMASR-UHFFFAOYSA-L 0.000 description 1
- HPMCBYMCNAWVDY-UHFFFAOYSA-M CC[Mg+].CCCCCC([O-])=O Chemical compound CC[Mg+].CCCCCC([O-])=O HPMCBYMCNAWVDY-UHFFFAOYSA-M 0.000 description 1
- PRGODONYKGPBHC-UHFFFAOYSA-M CC[Mg+].[O-]C1=CC=CC=C1 Chemical compound CC[Mg+].[O-]C1=CC=CC=C1 PRGODONYKGPBHC-UHFFFAOYSA-M 0.000 description 1
- JKHXWHVVCNKKJL-UHFFFAOYSA-N CC[O-].CCCCCC[Mg+] Chemical compound CC[O-].CCCCCC[Mg+] JKHXWHVVCNKKJL-UHFFFAOYSA-N 0.000 description 1
- LHJLWZRHMUMZFS-UHFFFAOYSA-M C[Al+]C.CC(C)(C)CCCCCC([O-])=O Chemical compound C[Al+]C.CC(C)(C)CCCCCC([O-])=O LHJLWZRHMUMZFS-UHFFFAOYSA-M 0.000 description 1
- LUEWUYXEOGZHTH-UHFFFAOYSA-N C[Mg+].CC[O-] Chemical compound C[Mg+].CC[O-] LUEWUYXEOGZHTH-UHFFFAOYSA-N 0.000 description 1
- RIHHBLXRVKFIQL-UHFFFAOYSA-N C[SiH](C)O[SiH](CC)O[SiH](C)C Chemical compound C[SiH](C)O[SiH](CC)O[SiH](C)C RIHHBLXRVKFIQL-UHFFFAOYSA-N 0.000 description 1
- IHALRVHTDUNTHS-UHFFFAOYSA-N C[SiH](O[Si](O[SiH](O[Si](O[SiH](C)C)(C)C)O[Si](O[SiH](C)C)(C)C)(C)C)C Chemical compound C[SiH](O[Si](O[SiH](O[Si](O[SiH](C)C)(C)C)O[Si](O[SiH](C)C)(C)C)(C)C)C IHALRVHTDUNTHS-UHFFFAOYSA-N 0.000 description 1
- GDLCKUMQIRKBLD-UHFFFAOYSA-N C[Si](C)(C)O[SiH](O[Si](C)(C)C)C1CCCCC1 Chemical compound C[Si](C)(C)O[SiH](O[Si](C)(C)C)C1CCCCC1 GDLCKUMQIRKBLD-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- RGHNJXZEOKUKBD-SQOUGZDYSA-M D-gluconate Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O RGHNJXZEOKUKBD-SQOUGZDYSA-M 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 239000006238 High Abrasion Furnace Substances 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 238000004566 IR spectroscopy Methods 0.000 description 1
- 229910021620 Indium(III) fluoride Inorganic materials 0.000 description 1
- QZRGKCOWNLSUDK-UHFFFAOYSA-N Iodochlorine Chemical compound ICl QZRGKCOWNLSUDK-UHFFFAOYSA-N 0.000 description 1
- NHTMVDHEPJAVLT-UHFFFAOYSA-N Isooctane Chemical class CC(C)CC(C)(C)C NHTMVDHEPJAVLT-UHFFFAOYSA-N 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- PHSPJQZRQAJPPF-UHFFFAOYSA-N N-alpha-Methylhistamine Chemical compound CNCCC1=CN=CN1 PHSPJQZRQAJPPF-UHFFFAOYSA-N 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910052773 Promethium Inorganic materials 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical class C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 1
- 239000006242 Semi-Reinforcing Furnace Substances 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- 229910021623 Tin(IV) bromide Inorganic materials 0.000 description 1
- 229910021627 Tin(IV) chloride Inorganic materials 0.000 description 1
- GCTFWCDSFPMHHS-UHFFFAOYSA-M Tributyltin chloride Chemical compound CCCC[Sn](Cl)(CCCC)CCCC GCTFWCDSFPMHHS-UHFFFAOYSA-M 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical class NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 229920006311 Urethane elastomer Polymers 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- YTEISYFNYGDBRV-UHFFFAOYSA-N [(dimethyl-$l^{3}-silanyl)oxy-dimethylsilyl]oxy-dimethylsilicon Chemical compound C[Si](C)O[Si](C)(C)O[Si](C)C YTEISYFNYGDBRV-UHFFFAOYSA-N 0.000 description 1
- QMWXNDMXCXKBFC-UHFFFAOYSA-N [2,2-dimethylpropyl(dimethylsilyloxy)silyl]oxy-dimethyl-trimethylsilyloxysilane Chemical compound C(C(C)(C)C)[SiH](O[Si](C)(C)O[Si](C)(C)C)O[SiH](C)C QMWXNDMXCXKBFC-UHFFFAOYSA-N 0.000 description 1
- DCMQIGDERRJTGZ-UHFFFAOYSA-N [2,2-dimethylpropyl(dimethylsilyloxy)silyl]oxy-dimethylsilyloxy-dimethylsilane Chemical compound C(C(C)(C)C)[SiH](O[Si](C)(C)O[SiH](C)C)O[SiH](C)C DCMQIGDERRJTGZ-UHFFFAOYSA-N 0.000 description 1
- UJTRAOGBWNXDOR-UHFFFAOYSA-N [2,2-dimethylpropyl(triethylsilyloxy)silyl]oxy-triethylsilane Chemical compound C(C(C)(C)C)[SiH](O[Si](CC)(CC)CC)O[Si](CC)(CC)CC UJTRAOGBWNXDOR-UHFFFAOYSA-N 0.000 description 1
- FBWKJSFWRODQPW-UHFFFAOYSA-N [2,2-dimethylpropyl(trimethylsilyloxy)silyl]oxy-trimethylsilane Chemical compound C(C(C)(C)C)[SiH](O[Si](C)(C)C)O[Si](C)(C)C FBWKJSFWRODQPW-UHFFFAOYSA-N 0.000 description 1
- KXZNRDHBMFLTDL-UHFFFAOYSA-N [2,2-dimethylpropyl-[dimethyl(trimethylsilyloxy)silyl]oxysilyl]oxy-dimethyl-trimethylsilyloxysilane Chemical compound C(C(C)(C)C)[SiH](O[Si](O[Si](C)(C)C)(C)C)O[Si](C)(C)O[Si](C)(C)C KXZNRDHBMFLTDL-UHFFFAOYSA-N 0.000 description 1
- ZRKKIJHTEVCWJY-UHFFFAOYSA-N [2,2-dimethylpropyl-[dimethylsilyloxy(dimethyl)silyl]oxysilyl]oxy-dimethylsilyloxy-dimethylsilane Chemical compound C(C(C)(C)C)[SiH](O[Si](O[SiH](C)C)(C)C)O[Si](C)(C)O[SiH](C)C ZRKKIJHTEVCWJY-UHFFFAOYSA-N 0.000 description 1
- CUXPIHYOYZYTFW-UHFFFAOYSA-N [2,2-dimethylpropyl-[dimethylsilyloxy(dimethyl)silyl]oxysilyl]oxy-trimethylsilane Chemical compound C(C(C)(C)C)[SiH](O[Si](C)(C)O[SiH](C)C)O[Si](C)(C)C CUXPIHYOYZYTFW-UHFFFAOYSA-N 0.000 description 1
- DLDRHNFPULCRAH-UHFFFAOYSA-N [2,2-dimethylpropyl-tri(propan-2-yl)silyloxysilyl]oxy-tri(propan-2-yl)silane Chemical compound C(C(C)(C)C)[SiH](O[Si](C(C)C)(C(C)C)C(C)C)O[Si](C(C)C)(C(C)C)C(C)C DLDRHNFPULCRAH-UHFFFAOYSA-N 0.000 description 1
- OXMJRVYRZGUIFL-UHFFFAOYSA-M [Mg+]C.CCCCCC([O-])=O Chemical compound [Mg+]C.CCCCCC([O-])=O OXMJRVYRZGUIFL-UHFFFAOYSA-M 0.000 description 1
- XFJNAOUAGWZUHZ-UHFFFAOYSA-M [Mg+]C.[O-]C1=CC=CC=C1 Chemical compound [Mg+]C.[O-]C1=CC=CC=C1 XFJNAOUAGWZUHZ-UHFFFAOYSA-M 0.000 description 1
- CXRXPNKVVVYSDV-UHFFFAOYSA-M [Mg+]C1=CC=CC=C1.CCCCCC([O-])=O Chemical compound [Mg+]C1=CC=CC=C1.CCCCCC([O-])=O CXRXPNKVVVYSDV-UHFFFAOYSA-M 0.000 description 1
- CJIWPJJXOHALTD-UHFFFAOYSA-K [Nd+3].C1=CC(CCCCCCCCC)=CC=C1OP([O-])(=O)C1=CC=C(CCCCCCCCC)C=C1.C1=CC(CCCCCCCCC)=CC=C1OP([O-])(=O)C1=CC=C(CCCCCCCCC)C=C1.C1=CC(CCCCCCCCC)=CC=C1OP([O-])(=O)C1=CC=C(CCCCCCCCC)C=C1 Chemical compound [Nd+3].C1=CC(CCCCCCCCC)=CC=C1OP([O-])(=O)C1=CC=C(CCCCCCCCC)C=C1.C1=CC(CCCCCCCCC)=CC=C1OP([O-])(=O)C1=CC=C(CCCCCCCCC)C=C1.C1=CC(CCCCCCCCC)=CC=C1OP([O-])(=O)C1=CC=C(CCCCCCCCC)C=C1 CJIWPJJXOHALTD-UHFFFAOYSA-K 0.000 description 1
- KZDZRRVHSGQYCA-UHFFFAOYSA-K [Nd+3].CCCCC(CC)COP([O-])(=O)CCCC.CCCCC(CC)COP([O-])(=O)CCCC.CCCCC(CC)COP([O-])(=O)CCCC Chemical compound [Nd+3].CCCCC(CC)COP([O-])(=O)CCCC.CCCCC(CC)COP([O-])(=O)CCCC.CCCCC(CC)COP([O-])(=O)CCCC KZDZRRVHSGQYCA-UHFFFAOYSA-K 0.000 description 1
- IGQPTDPIKQDXBU-UHFFFAOYSA-K [Nd+3].CCCCC(CC)COP([O-])=O.CCCCC(CC)COP([O-])=O.CCCCC(CC)COP([O-])=O Chemical compound [Nd+3].CCCCC(CC)COP([O-])=O.CCCCC(CC)COP([O-])=O.CCCCC(CC)COP([O-])=O IGQPTDPIKQDXBU-UHFFFAOYSA-K 0.000 description 1
- YFMDSORVVIWIHS-UHFFFAOYSA-K [Nd+3].CCCCC(CC)CP([O-])=O.CCCCC(CC)CP([O-])=O.CCCCC(CC)CP([O-])=O Chemical compound [Nd+3].CCCCC(CC)CP([O-])=O.CCCCC(CC)CP([O-])=O.CCCCC(CC)CP([O-])=O YFMDSORVVIWIHS-UHFFFAOYSA-K 0.000 description 1
- YSULVSCKDWCVQT-UHFFFAOYSA-K [Nd+3].CCCCCCC(C)OP([O-])(=O)C(C)CCCCCC.CCCCCCC(C)OP([O-])(=O)C(C)CCCCCC.CCCCCCC(C)OP([O-])(=O)C(C)CCCCCC Chemical compound [Nd+3].CCCCCCC(C)OP([O-])(=O)C(C)CCCCCC.CCCCCCC(C)OP([O-])(=O)C(C)CCCCCC.CCCCCCC(C)OP([O-])(=O)C(C)CCCCCC YSULVSCKDWCVQT-UHFFFAOYSA-K 0.000 description 1
- SRVUCAYWYQMWPT-UHFFFAOYSA-K [Nd+3].CCCCCCC(C)OP([O-])(=O)CC(CC)CCCC.CCCCCCC(C)OP([O-])(=O)CC(CC)CCCC.CCCCCCC(C)OP([O-])(=O)CC(CC)CCCC Chemical compound [Nd+3].CCCCCCC(C)OP([O-])(=O)CC(CC)CCCC.CCCCCCC(C)OP([O-])(=O)CC(CC)CCCC.CCCCCCC(C)OP([O-])(=O)CC(CC)CCCC SRVUCAYWYQMWPT-UHFFFAOYSA-K 0.000 description 1
- OENSLPMEVXUEBB-UHFFFAOYSA-K [Nd+3].CCCCCCC(C)OP([O-])=O.CCCCCCC(C)OP([O-])=O.CCCCCCC(C)OP([O-])=O Chemical compound [Nd+3].CCCCCCC(C)OP([O-])=O.CCCCCCC(C)OP([O-])=O.CCCCCCC(C)OP([O-])=O OENSLPMEVXUEBB-UHFFFAOYSA-K 0.000 description 1
- SKDZORUENYMBEE-UHFFFAOYSA-K [Nd+3].CCCCCCC(C)P([O-])(=O)CC(CC)CCCC.CCCCCCC(C)P([O-])(=O)CC(CC)CCCC.CCCCCCC(C)P([O-])(=O)CC(CC)CCCC Chemical compound [Nd+3].CCCCCCC(C)P([O-])(=O)CC(CC)CCCC.CCCCCCC(C)P([O-])(=O)CC(CC)CCCC.CCCCCCC(C)P([O-])(=O)CC(CC)CCCC SKDZORUENYMBEE-UHFFFAOYSA-K 0.000 description 1
- BEKGXNMDOUROJS-UHFFFAOYSA-K [Nd+3].CCCCCCC(C)P([O-])(=O)OCC(CC)CCCC.CCCCCCC(C)P([O-])(=O)OCC(CC)CCCC.CCCCCCC(C)P([O-])(=O)OCC(CC)CCCC Chemical compound [Nd+3].CCCCCCC(C)P([O-])(=O)OCC(CC)CCCC.CCCCCCC(C)P([O-])(=O)OCC(CC)CCCC.CCCCCCC(C)P([O-])(=O)OCC(CC)CCCC BEKGXNMDOUROJS-UHFFFAOYSA-K 0.000 description 1
- NBOHOGXBUFYEAM-UHFFFAOYSA-K [Nd+3].CCCCCCC(C)P([O-])=O.CCCCCCC(C)P([O-])=O.CCCCCCC(C)P([O-])=O Chemical compound [Nd+3].CCCCCCC(C)P([O-])=O.CCCCCCC(C)P([O-])=O.CCCCCCC(C)P([O-])=O NBOHOGXBUFYEAM-UHFFFAOYSA-K 0.000 description 1
- BTHXJVJHBULHIT-UHFFFAOYSA-K [Nd+3].CCCCCCCCCC1=CC=C(OP([O-])(=O)CC(CC)CCCC)C=C1.CCCCCCCCCC1=CC=C(OP([O-])(=O)CC(CC)CCCC)C=C1.CCCCCCCCCC1=CC=C(OP([O-])(=O)CC(CC)CCCC)C=C1 Chemical compound [Nd+3].CCCCCCCCCC1=CC=C(OP([O-])(=O)CC(CC)CCCC)C=C1.CCCCCCCCCC1=CC=C(OP([O-])(=O)CC(CC)CCCC)C=C1.CCCCCCCCCC1=CC=C(OP([O-])(=O)CC(CC)CCCC)C=C1 BTHXJVJHBULHIT-UHFFFAOYSA-K 0.000 description 1
- DHXSVMGSDAUSNM-UHFFFAOYSA-K [Nd+3].CCCCCCCCCC1=CC=C(P([O-])(=O)OCC(CC)CCCC)C=C1.CCCCCCCCCC1=CC=C(P([O-])(=O)OCC(CC)CCCC)C=C1.CCCCCCCCCC1=CC=C(P([O-])(=O)OCC(CC)CCCC)C=C1 Chemical compound [Nd+3].CCCCCCCCCC1=CC=C(P([O-])(=O)OCC(CC)CCCC)C=C1.CCCCCCCCCC1=CC=C(P([O-])(=O)OCC(CC)CCCC)C=C1.CCCCCCCCCC1=CC=C(P([O-])(=O)OCC(CC)CCCC)C=C1 DHXSVMGSDAUSNM-UHFFFAOYSA-K 0.000 description 1
- AGBSADSRHBULCX-UHFFFAOYSA-K [Nd+3].CCCCCCCCCCCCCCCCCCOP([O-])(=O)CCCCCCCCCCCCCCCCCC.CCCCCCCCCCCCCCCCCCOP([O-])(=O)CCCCCCCCCCCCCCCCCC.CCCCCCCCCCCCCCCCCCOP([O-])(=O)CCCCCCCCCCCCCCCCCC Chemical compound [Nd+3].CCCCCCCCCCCCCCCCCCOP([O-])(=O)CCCCCCCCCCCCCCCCCC.CCCCCCCCCCCCCCCCCCOP([O-])(=O)CCCCCCCCCCCCCCCCCC.CCCCCCCCCCCCCCCCCCOP([O-])(=O)CCCCCCCCCCCCCCCCCC AGBSADSRHBULCX-UHFFFAOYSA-K 0.000 description 1
- OUXKBBDKDNCLEX-UHFFFAOYSA-K [Nd+3].CCCCCCCCCCCCCCCCCCOP([O-])(=O)OCCCCCCCCCCCCCCCCCC.CCCCCCCCCCCCCCCCCCOP([O-])(=O)OCCCCCCCCCCCCCCCCCC.CCCCCCCCCCCCCCCCCCOP([O-])(=O)OCCCCCCCCCCCCCCCCCC Chemical compound [Nd+3].CCCCCCCCCCCCCCCCCCOP([O-])(=O)OCCCCCCCCCCCCCCCCCC.CCCCCCCCCCCCCCCCCCOP([O-])(=O)OCCCCCCCCCCCCCCCCCC.CCCCCCCCCCCCCCCCCCOP([O-])(=O)OCCCCCCCCCCCCCCCCCC OUXKBBDKDNCLEX-UHFFFAOYSA-K 0.000 description 1
- WWAABSDIYKCERZ-UHFFFAOYSA-K [Nd+3].CCCCCCCCCCCCCCCCCCOP([O-])=O.CCCCCCCCCCCCCCCCCCOP([O-])=O.CCCCCCCCCCCCCCCCCCOP([O-])=O Chemical compound [Nd+3].CCCCCCCCCCCCCCCCCCOP([O-])=O.CCCCCCCCCCCCCCCCCCOP([O-])=O.CCCCCCCCCCCCCCCCCCOP([O-])=O WWAABSDIYKCERZ-UHFFFAOYSA-K 0.000 description 1
- SZZUQSMBUXTIIH-UHFFFAOYSA-K [Nd+3].CCCCCCCCCCCCCCCCCCP([O-])=O.CCCCCCCCCCCCCCCCCCP([O-])=O.CCCCCCCCCCCCCCCCCCP([O-])=O Chemical compound [Nd+3].CCCCCCCCCCCCCCCCCCP([O-])=O.CCCCCCCCCCCCCCCCCCP([O-])=O.CCCCCCCCCCCCCCCCCCP([O-])=O SZZUQSMBUXTIIH-UHFFFAOYSA-K 0.000 description 1
- HSJNHXSNNHEDGB-UHFFFAOYSA-K [Nd+3].CCCCCCCCCCCCOP([O-])(=O)CCCCCCCCCCCC.CCCCCCCCCCCCOP([O-])(=O)CCCCCCCCCCCC.CCCCCCCCCCCCOP([O-])(=O)CCCCCCCCCCCC Chemical compound [Nd+3].CCCCCCCCCCCCOP([O-])(=O)CCCCCCCCCCCC.CCCCCCCCCCCCOP([O-])(=O)CCCCCCCCCCCC.CCCCCCCCCCCCOP([O-])(=O)CCCCCCCCCCCC HSJNHXSNNHEDGB-UHFFFAOYSA-K 0.000 description 1
- DUDARQTWIBNSJE-UHFFFAOYSA-K [Nd+3].CCCCCCCCCCCCOP([O-])(=O)OCCCCCCCCCCCC.CCCCCCCCCCCCOP([O-])(=O)OCCCCCCCCCCCC.CCCCCCCCCCCCOP([O-])(=O)OCCCCCCCCCCCC Chemical compound [Nd+3].CCCCCCCCCCCCOP([O-])(=O)OCCCCCCCCCCCC.CCCCCCCCCCCCOP([O-])(=O)OCCCCCCCCCCCC.CCCCCCCCCCCCOP([O-])(=O)OCCCCCCCCCCCC DUDARQTWIBNSJE-UHFFFAOYSA-K 0.000 description 1
- ITONJIBIUYPWEY-UHFFFAOYSA-K [Nd+3].CCCCCCCCCCCCOP([O-])=O.CCCCCCCCCCCCOP([O-])=O.CCCCCCCCCCCCOP([O-])=O Chemical compound [Nd+3].CCCCCCCCCCCCOP([O-])=O.CCCCCCCCCCCCOP([O-])=O.CCCCCCCCCCCCOP([O-])=O ITONJIBIUYPWEY-UHFFFAOYSA-K 0.000 description 1
- XIXCVRNEKQZJGU-UHFFFAOYSA-K [Nd+3].CCCCCCCCCCCCP([O-])=O.CCCCCCCCCCCCP([O-])=O.CCCCCCCCCCCCP([O-])=O Chemical compound [Nd+3].CCCCCCCCCCCCP([O-])=O.CCCCCCCCCCCCP([O-])=O.CCCCCCCCCCCCP([O-])=O XIXCVRNEKQZJGU-UHFFFAOYSA-K 0.000 description 1
- QVYNRBLTBQLMFM-UHFFFAOYSA-K [Nd+3].CCCCCCCCCCOP([O-])(=O)CCCCCCCCCC.CCCCCCCCCCOP([O-])(=O)CCCCCCCCCC.CCCCCCCCCCOP([O-])(=O)CCCCCCCCCC Chemical compound [Nd+3].CCCCCCCCCCOP([O-])(=O)CCCCCCCCCC.CCCCCCCCCCOP([O-])(=O)CCCCCCCCCC.CCCCCCCCCCOP([O-])(=O)CCCCCCCCCC QVYNRBLTBQLMFM-UHFFFAOYSA-K 0.000 description 1
- ASFSQQMCXMSWAN-UHFFFAOYSA-K [Nd+3].CCCCCCCCCCOP([O-])(=O)OCCCCCCCCCC.CCCCCCCCCCOP([O-])(=O)OCCCCCCCCCC.CCCCCCCCCCOP([O-])(=O)OCCCCCCCCCC Chemical compound [Nd+3].CCCCCCCCCCOP([O-])(=O)OCCCCCCCCCC.CCCCCCCCCCOP([O-])(=O)OCCCCCCCCCC.CCCCCCCCCCOP([O-])(=O)OCCCCCCCCCC ASFSQQMCXMSWAN-UHFFFAOYSA-K 0.000 description 1
- RUQCENVAEZPFOT-UHFFFAOYSA-K [Nd+3].CCCCCCCCCCOP([O-])=O.CCCCCCCCCCOP([O-])=O.CCCCCCCCCCOP([O-])=O Chemical compound [Nd+3].CCCCCCCCCCOP([O-])=O.CCCCCCCCCCOP([O-])=O.CCCCCCCCCCOP([O-])=O RUQCENVAEZPFOT-UHFFFAOYSA-K 0.000 description 1
- DJHPMITVPACWOO-UHFFFAOYSA-K [Nd+3].CCCCCCCCCCP([O-])=O.CCCCCCCCCCP([O-])=O.CCCCCCCCCCP([O-])=O Chemical compound [Nd+3].CCCCCCCCCCP([O-])=O.CCCCCCCCCCP([O-])=O.CCCCCCCCCCP([O-])=O DJHPMITVPACWOO-UHFFFAOYSA-K 0.000 description 1
- WJYIOPFRKDGLSO-UHFFFAOYSA-K [Nd+3].CCCCCCCCCc1ccc(OP([O-])=O)cc1.CCCCCCCCCc1ccc(OP([O-])=O)cc1.CCCCCCCCCc1ccc(OP([O-])=O)cc1 Chemical compound [Nd+3].CCCCCCCCCc1ccc(OP([O-])=O)cc1.CCCCCCCCCc1ccc(OP([O-])=O)cc1.CCCCCCCCCc1ccc(OP([O-])=O)cc1 WJYIOPFRKDGLSO-UHFFFAOYSA-K 0.000 description 1
- PUQQTXVATFSKNU-UHFFFAOYSA-K [Nd+3].CCCCCCCCCc1ccc(cc1)P([O-])(=O)CC(CC)CCCC.CCCCCCCCCc1ccc(cc1)P([O-])(=O)CC(CC)CCCC.CCCCCCCCCc1ccc(cc1)P([O-])(=O)CC(CC)CCCC Chemical compound [Nd+3].CCCCCCCCCc1ccc(cc1)P([O-])(=O)CC(CC)CCCC.CCCCCCCCCc1ccc(cc1)P([O-])(=O)CC(CC)CCCC.CCCCCCCCCc1ccc(cc1)P([O-])(=O)CC(CC)CCCC PUQQTXVATFSKNU-UHFFFAOYSA-K 0.000 description 1
- PZBSHRXLRKRSHS-UHFFFAOYSA-K [Nd+3].CCCCCCCCCc1ccc(cc1)P([O-])=O.CCCCCCCCCc1ccc(cc1)P([O-])=O.CCCCCCCCCc1ccc(cc1)P([O-])=O Chemical compound [Nd+3].CCCCCCCCCc1ccc(cc1)P([O-])=O.CCCCCCCCCc1ccc(cc1)P([O-])=O.CCCCCCCCCc1ccc(cc1)P([O-])=O PZBSHRXLRKRSHS-UHFFFAOYSA-K 0.000 description 1
- ZKTILWBKMBZELX-UHFFFAOYSA-K [Nd+3].CCCCCCCCOP([O-])(=O)CCCCCCCC.CCCCCCCCOP([O-])(=O)CCCCCCCC.CCCCCCCCOP([O-])(=O)CCCCCCCC Chemical compound [Nd+3].CCCCCCCCOP([O-])(=O)CCCCCCCC.CCCCCCCCOP([O-])(=O)CCCCCCCC.CCCCCCCCOP([O-])(=O)CCCCCCCC ZKTILWBKMBZELX-UHFFFAOYSA-K 0.000 description 1
- COTWFXVBYJIDKB-UHFFFAOYSA-K [Nd+3].CCCCCCCCOP([O-])(=O)OCCCCCCCC.CCCCCCCCOP([O-])(=O)OCCCCCCCC.CCCCCCCCOP([O-])(=O)OCCCCCCCC Chemical compound [Nd+3].CCCCCCCCOP([O-])(=O)OCCCCCCCC.CCCCCCCCOP([O-])(=O)OCCCCCCCC.CCCCCCCCOP([O-])(=O)OCCCCCCCC COTWFXVBYJIDKB-UHFFFAOYSA-K 0.000 description 1
- LOAMPDBVDUCBJV-UHFFFAOYSA-K [Nd+3].CCCCCCCCOP([O-])=O.CCCCCCCCOP([O-])=O.CCCCCCCCOP([O-])=O Chemical compound [Nd+3].CCCCCCCCOP([O-])=O.CCCCCCCCOP([O-])=O.CCCCCCCCOP([O-])=O LOAMPDBVDUCBJV-UHFFFAOYSA-K 0.000 description 1
- VQDIDKVWNHABSY-UHFFFAOYSA-K [Nd+3].CCCCCCCCP([O-])=O.CCCCCCCCP([O-])=O.CCCCCCCCP([O-])=O Chemical compound [Nd+3].CCCCCCCCP([O-])=O.CCCCCCCCP([O-])=O.CCCCCCCCP([O-])=O VQDIDKVWNHABSY-UHFFFAOYSA-K 0.000 description 1
- LHIQNDXQOLHPSO-WJUSBNTKSA-K [Nd+3].CCCCCCCC\C=C/CCCCCCCCOP([O-])(=O)OCCCCCCCC\C=C/CCCCCCCC.CCCCCCCC\C=C/CCCCCCCCOP([O-])(=O)OCCCCCCCC\C=C/CCCCCCCC.CCCCCCCC\C=C/CCCCCCCCOP([O-])(=O)OCCCCCCCC\C=C/CCCCCCCC Chemical compound [Nd+3].CCCCCCCC\C=C/CCCCCCCCOP([O-])(=O)OCCCCCCCC\C=C/CCCCCCCC.CCCCCCCC\C=C/CCCCCCCCOP([O-])(=O)OCCCCCCCC\C=C/CCCCCCCC.CCCCCCCC\C=C/CCCCCCCCOP([O-])(=O)OCCCCCCCC\C=C/CCCCCCCC LHIQNDXQOLHPSO-WJUSBNTKSA-K 0.000 description 1
- XNVCRUZIMFGRHE-WJUSBNTKSA-K [Nd+3].CCCCCCCC\C=C/CCCCCCCCP([O-])(=O)CCCCCCCC\C=C/CCCCCCCC.CCCCCCCC\C=C/CCCCCCCCP([O-])(=O)CCCCCCCC\C=C/CCCCCCCC.CCCCCCCC\C=C/CCCCCCCCP([O-])(=O)CCCCCCCC\C=C/CCCCCCCC Chemical compound [Nd+3].CCCCCCCC\C=C/CCCCCCCCP([O-])(=O)CCCCCCCC\C=C/CCCCCCCC.CCCCCCCC\C=C/CCCCCCCCP([O-])(=O)CCCCCCCC\C=C/CCCCCCCC.CCCCCCCC\C=C/CCCCCCCCP([O-])(=O)CCCCCCCC\C=C/CCCCCCCC XNVCRUZIMFGRHE-WJUSBNTKSA-K 0.000 description 1
- CHLGIOGDICVOQK-UHFFFAOYSA-K [Nd+3].CCCCCCCOP([O-])(=O)CCCCCCC.CCCCCCCOP([O-])(=O)CCCCCCC.CCCCCCCOP([O-])(=O)CCCCCCC Chemical compound [Nd+3].CCCCCCCOP([O-])(=O)CCCCCCC.CCCCCCCOP([O-])(=O)CCCCCCC.CCCCCCCOP([O-])(=O)CCCCCCC CHLGIOGDICVOQK-UHFFFAOYSA-K 0.000 description 1
- PQFOHOQOMRHGBB-UHFFFAOYSA-K [Nd+3].CCCCCCCOP([O-])(=O)OCCCCCCC.CCCCCCCOP([O-])(=O)OCCCCCCC.CCCCCCCOP([O-])(=O)OCCCCCCC Chemical compound [Nd+3].CCCCCCCOP([O-])(=O)OCCCCCCC.CCCCCCCOP([O-])(=O)OCCCCCCC.CCCCCCCOP([O-])(=O)OCCCCCCC PQFOHOQOMRHGBB-UHFFFAOYSA-K 0.000 description 1
- XOQFIVLBNHGKTM-UHFFFAOYSA-K [Nd+3].CCCCCCCOP([O-])=O.CCCCCCCOP([O-])=O.CCCCCCCOP([O-])=O Chemical compound [Nd+3].CCCCCCCOP([O-])=O.CCCCCCCOP([O-])=O.CCCCCCCOP([O-])=O XOQFIVLBNHGKTM-UHFFFAOYSA-K 0.000 description 1
- FWCOLEPBRRWSBU-UHFFFAOYSA-K [Nd+3].CCCCCCCP([O-])=O.CCCCCCCP([O-])=O.CCCCCCCP([O-])=O Chemical compound [Nd+3].CCCCCCCP([O-])=O.CCCCCCCP([O-])=O.CCCCCCCP([O-])=O FWCOLEPBRRWSBU-UHFFFAOYSA-K 0.000 description 1
- TXTDEZVBDZLFBW-UHFFFAOYSA-K [Nd+3].CCCCCCOP([O-])(=O)CCCCCC.CCCCCCOP([O-])(=O)CCCCCC.CCCCCCOP([O-])(=O)CCCCCC Chemical compound [Nd+3].CCCCCCOP([O-])(=O)CCCCCC.CCCCCCOP([O-])(=O)CCCCCC.CCCCCCOP([O-])(=O)CCCCCC TXTDEZVBDZLFBW-UHFFFAOYSA-K 0.000 description 1
- FJGATKHRWKJAIE-UHFFFAOYSA-K [Nd+3].CCCCCCOP([O-])=O.CCCCCCOP([O-])=O.CCCCCCOP([O-])=O Chemical compound [Nd+3].CCCCCCOP([O-])=O.CCCCCCOP([O-])=O.CCCCCCOP([O-])=O FJGATKHRWKJAIE-UHFFFAOYSA-K 0.000 description 1
- VPAJFTTVZRPMRX-UHFFFAOYSA-K [Nd+3].CCCCCCP([O-])=O.CCCCCCP([O-])=O.CCCCCCP([O-])=O Chemical compound [Nd+3].CCCCCCP([O-])=O.CCCCCCP([O-])=O.CCCCCCP([O-])=O VPAJFTTVZRPMRX-UHFFFAOYSA-K 0.000 description 1
- BMMHZQVDRUDMMK-UHFFFAOYSA-K [Nd+3].CCCCCOP([O-])(=O)CCCCC.CCCCCOP([O-])(=O)CCCCC.CCCCCOP([O-])(=O)CCCCC Chemical compound [Nd+3].CCCCCOP([O-])(=O)CCCCC.CCCCCOP([O-])(=O)CCCCC.CCCCCOP([O-])(=O)CCCCC BMMHZQVDRUDMMK-UHFFFAOYSA-K 0.000 description 1
- MESOMEQHUGUMRU-UHFFFAOYSA-K [Nd+3].CCCCCOP([O-])(=O)OCCCCC.CCCCCOP([O-])(=O)OCCCCC.CCCCCOP([O-])(=O)OCCCCC Chemical compound [Nd+3].CCCCCOP([O-])(=O)OCCCCC.CCCCCOP([O-])(=O)OCCCCC.CCCCCOP([O-])(=O)OCCCCC MESOMEQHUGUMRU-UHFFFAOYSA-K 0.000 description 1
- CWNXLBUKTWPPLA-UHFFFAOYSA-K [Nd+3].CCCCCOP([O-])=O.CCCCCOP([O-])=O.CCCCCOP([O-])=O Chemical compound [Nd+3].CCCCCOP([O-])=O.CCCCCOP([O-])=O.CCCCCOP([O-])=O CWNXLBUKTWPPLA-UHFFFAOYSA-K 0.000 description 1
- GHEBKNFQLUBXTK-UHFFFAOYSA-K [Nd+3].CCCCCP([O-])=O.CCCCCP([O-])=O.CCCCCP([O-])=O Chemical compound [Nd+3].CCCCCP([O-])=O.CCCCCP([O-])=O.CCCCCP([O-])=O GHEBKNFQLUBXTK-UHFFFAOYSA-K 0.000 description 1
- TVOHLYVFEUSSDG-UHFFFAOYSA-K [Nd+3].CCCCOP([O-])(=O)CC(CC)CCCC.CCCCOP([O-])(=O)CC(CC)CCCC.CCCCOP([O-])(=O)CC(CC)CCCC Chemical compound [Nd+3].CCCCOP([O-])(=O)CC(CC)CCCC.CCCCOP([O-])(=O)CC(CC)CCCC.CCCCOP([O-])(=O)CC(CC)CCCC TVOHLYVFEUSSDG-UHFFFAOYSA-K 0.000 description 1
- XHTHOEQDAXRWRN-UHFFFAOYSA-K [Nd+3].CCCCOP([O-])(=O)CCCC.CCCCOP([O-])(=O)CCCC.CCCCOP([O-])(=O)CCCC Chemical compound [Nd+3].CCCCOP([O-])(=O)CCCC.CCCCOP([O-])(=O)CCCC.CCCCOP([O-])(=O)CCCC XHTHOEQDAXRWRN-UHFFFAOYSA-K 0.000 description 1
- MDRXGBPMEPSFRF-UHFFFAOYSA-K [Nd+3].CCCCOP([O-])(=O)OCCCC.CCCCOP([O-])(=O)OCCCC.CCCCOP([O-])(=O)OCCCC Chemical compound [Nd+3].CCCCOP([O-])(=O)OCCCC.CCCCOP([O-])(=O)OCCCC.CCCCOP([O-])(=O)OCCCC MDRXGBPMEPSFRF-UHFFFAOYSA-K 0.000 description 1
- OZQGQVAUWDNZKQ-UHFFFAOYSA-K [Nd+3].CCCCOP([O-])=O.CCCCOP([O-])=O.CCCCOP([O-])=O Chemical compound [Nd+3].CCCCOP([O-])=O.CCCCOP([O-])=O.CCCCOP([O-])=O OZQGQVAUWDNZKQ-UHFFFAOYSA-K 0.000 description 1
- XDDJOEBWXSLXRY-UHFFFAOYSA-K [Nd+3].CCCCP([O-])=O.CCCCP([O-])=O.CCCCP([O-])=O Chemical compound [Nd+3].CCCCP([O-])=O.CCCCP([O-])=O.CCCCP([O-])=O XDDJOEBWXSLXRY-UHFFFAOYSA-K 0.000 description 1
- ZWPJHWUXSLZYRD-UHFFFAOYSA-K [Nd+3].[O-]C#N.[O-]C#N.[O-]C#N Chemical compound [Nd+3].[O-]C#N.[O-]C#N.[O-]C#N ZWPJHWUXSLZYRD-UHFFFAOYSA-K 0.000 description 1
- SHEJOFWVPOMWQW-UHFFFAOYSA-K [Nd+3].[O-]C(=O)C1=CC=CC=N1.[O-]C(=O)C1=CC=CC=N1.[O-]C(=O)C1=CC=CC=N1 Chemical compound [Nd+3].[O-]C(=O)C1=CC=CC=N1.[O-]C(=O)C1=CC=CC=N1.[O-]C(=O)C1=CC=CC=N1 SHEJOFWVPOMWQW-UHFFFAOYSA-K 0.000 description 1
- PATBZBBCKZBDMC-UHFFFAOYSA-K [Nd+3].[O-]P(=O)(Oc1ccccc1)c1ccccc1.[O-]P(=O)(Oc1ccccc1)c1ccccc1.[O-]P(=O)(Oc1ccccc1)c1ccccc1 Chemical compound [Nd+3].[O-]P(=O)(Oc1ccccc1)c1ccccc1.[O-]P(=O)(Oc1ccccc1)c1ccccc1.[O-]P(=O)(Oc1ccccc1)c1ccccc1 PATBZBBCKZBDMC-UHFFFAOYSA-K 0.000 description 1
- HMAYLOLHXUPPCA-UHFFFAOYSA-K [Nd+3].[O-]P(=O)Oc1ccccc1.[O-]P(=O)Oc1ccccc1.[O-]P(=O)Oc1ccccc1 Chemical compound [Nd+3].[O-]P(=O)Oc1ccccc1.[O-]P(=O)Oc1ccccc1.[O-]P(=O)Oc1ccccc1 HMAYLOLHXUPPCA-UHFFFAOYSA-K 0.000 description 1
- OCLQKMUNLOFINX-UHFFFAOYSA-K [Nd+3].[O-]P(=O)c1ccccc1.[O-]P(=O)c1ccccc1.[O-]P(=O)c1ccccc1 Chemical compound [Nd+3].[O-]P(=O)c1ccccc1.[O-]P(=O)c1ccccc1.[O-]P(=O)c1ccccc1 OCLQKMUNLOFINX-UHFFFAOYSA-K 0.000 description 1
- JGBAFVIBNBBBNE-UHFFFAOYSA-N [Nd].BrOBr Chemical compound [Nd].BrOBr JGBAFVIBNBBBNE-UHFFFAOYSA-N 0.000 description 1
- HDLKUQNRQQEPLO-UHFFFAOYSA-N [Nd].ClOCl Chemical compound [Nd].ClOCl HDLKUQNRQQEPLO-UHFFFAOYSA-N 0.000 description 1
- LKPVHTAWGPBJMM-UHFFFAOYSA-M [O-]C1=CC=CC=C1.[Mg+]C1=CC=CC=C1 Chemical compound [O-]C1=CC=CC=C1.[Mg+]C1=CC=CC=C1 LKPVHTAWGPBJMM-UHFFFAOYSA-M 0.000 description 1
- CXEUYWNLHPHGOG-UHFFFAOYSA-M [O-]C1=CC=CC=C1.[Mg+]CC1=CC=CC=C1 Chemical compound [O-]C1=CC=CC=C1.[Mg+]CC1=CC=CC=C1 CXEUYWNLHPHGOG-UHFFFAOYSA-M 0.000 description 1
- ILBWBNOBGCYGSU-UHFFFAOYSA-N [[(dimethyl-$l^{3}-silanyl)oxy-dimethylsilyl]oxy-dimethylsilyl]oxy-dimethylsilicon Chemical compound C[Si](C)O[Si](C)(C)O[Si](C)(C)O[Si](C)C ILBWBNOBGCYGSU-UHFFFAOYSA-N 0.000 description 1
- ANWRMWOWPNMSFE-UHFFFAOYSA-N [[dimethyl(trimethylsilyloxy)silyl]oxy-ethylsilyl]oxy-dimethyl-trimethylsilyloxysilane Chemical compound C(C)[SiH](O[Si](O[Si](C)(C)C)(C)C)O[Si](C)(C)O[Si](C)(C)C ANWRMWOWPNMSFE-UHFFFAOYSA-N 0.000 description 1
- RJJXOQXDGHJGEL-UHFFFAOYSA-N [[dimethyl(trimethylsilyloxy)silyl]oxy-hexylsilyl]oxy-dimethyl-trimethylsilyloxysilane Chemical compound C(CCCCC)[SiH](O[Si](O[Si](C)(C)C)(C)C)O[Si](C)(C)O[Si](C)(C)C RJJXOQXDGHJGEL-UHFFFAOYSA-N 0.000 description 1
- RLVRNBDLEDGDOU-UHFFFAOYSA-N [[dimethyl(trimethylsilyloxy)silyl]oxy-methylsilyl]oxy-dimethyl-trimethylsilyloxysilane Chemical compound C[Si](C)(C)O[Si](C)(C)O[SiH](C)O[Si](C)(C)O[Si](C)(C)C RLVRNBDLEDGDOU-UHFFFAOYSA-N 0.000 description 1
- JMPCUKJNXJTANS-UHFFFAOYSA-N [[dimethyl(trimethylsilyloxy)silyl]oxy-pentylsilyl]oxy-dimethyl-trimethylsilyloxysilane Chemical compound C(CCCC)[SiH](O[Si](O[Si](C)(C)C)(C)C)O[Si](C)(C)O[Si](C)(C)C JMPCUKJNXJTANS-UHFFFAOYSA-N 0.000 description 1
- AEBLESGFWPWKCV-UHFFFAOYSA-N [[dimethyl(trimethylsilyloxy)silyl]oxy-phenylsilyl]oxy-dimethyl-trimethylsilyloxysilane Chemical compound C1(=CC=CC=C1)[SiH](O[Si](O[Si](C)(C)C)(C)C)O[Si](C)(C)O[Si](C)(C)C AEBLESGFWPWKCV-UHFFFAOYSA-N 0.000 description 1
- CYKYFOLZJWULGX-UHFFFAOYSA-N [[dimethyl(trimethylsilyloxy)silyl]oxy-propan-2-ylsilyl]oxy-dimethyl-trimethylsilyloxysilane Chemical compound C(C)(C)[SiH](O[Si](O[Si](C)(C)C)(C)C)O[Si](C)(C)O[Si](C)(C)C CYKYFOLZJWULGX-UHFFFAOYSA-N 0.000 description 1
- YAHSPHAZVSFTHQ-UHFFFAOYSA-N [[dimethyl(trimethylsilyloxy)silyl]oxy-propylsilyl]oxy-dimethyl-trimethylsilyloxysilane Chemical compound C(CC)[SiH](O[Si](O[Si](C)(C)C)(C)C)O[Si](C)(C)O[Si](C)(C)C YAHSPHAZVSFTHQ-UHFFFAOYSA-N 0.000 description 1
- NVATWIHFUOQBLS-UHFFFAOYSA-N [benzyl(dimethylsilyloxy)silyl]oxy-dimethyl-trimethylsilyloxysilane Chemical compound C(C1=CC=CC=C1)[SiH](O[Si](C)(C)O[Si](C)(C)C)O[SiH](C)C NVATWIHFUOQBLS-UHFFFAOYSA-N 0.000 description 1
- XZILBHBRTKLSNJ-UHFFFAOYSA-N [benzyl(dimethylsilyloxy)silyl]oxy-dimethylsilyloxy-dimethylsilane Chemical compound C(C1=CC=CC=C1)[SiH](O[Si](C)(C)O[SiH](C)C)O[SiH](C)C XZILBHBRTKLSNJ-UHFFFAOYSA-N 0.000 description 1
- ZSEYLTZWEICMKA-UHFFFAOYSA-N [benzyl(triethylsilyloxy)silyl]oxy-triethylsilane Chemical compound C(C1=CC=CC=C1)[SiH](O[Si](CC)(CC)CC)O[Si](CC)(CC)CC ZSEYLTZWEICMKA-UHFFFAOYSA-N 0.000 description 1
- QUXUASUYIVOWEG-UHFFFAOYSA-N [benzyl(trimethylsilyloxy)silyl]oxy-trimethylsilane Chemical compound C(C1=CC=CC=C1)[SiH](O[Si](C)(C)C)O[Si](C)(C)C QUXUASUYIVOWEG-UHFFFAOYSA-N 0.000 description 1
- OKTVMCDRWTVPIJ-UHFFFAOYSA-N [benzyl-[dimethyl(trimethylsilyloxy)silyl]oxysilyl]oxy-dimethyl-trimethylsilyloxysilane Chemical compound C(C1=CC=CC=C1)[SiH](O[Si](O[Si](C)(C)C)(C)C)O[Si](C)(C)O[Si](C)(C)C OKTVMCDRWTVPIJ-UHFFFAOYSA-N 0.000 description 1
- FSZOLYTVCYKTLS-UHFFFAOYSA-N [benzyl-[dimethylsilyloxy(dimethyl)silyl]oxysilyl]oxy-dimethylsilyloxy-dimethylsilane Chemical compound C(C1=CC=CC=C1)[SiH](O[Si](O[SiH](C)C)(C)C)O[Si](C)(C)O[SiH](C)C FSZOLYTVCYKTLS-UHFFFAOYSA-N 0.000 description 1
- ZPVCJVPSMYIDFE-UHFFFAOYSA-N [benzyl-[dimethylsilyloxy(dimethyl)silyl]oxysilyl]oxy-trimethylsilane Chemical compound C(C1=CC=CC=C1)[SiH](O[Si](C)(C)O[SiH](C)C)O[Si](C)(C)C ZPVCJVPSMYIDFE-UHFFFAOYSA-N 0.000 description 1
- HGCXEHXWQRBOKV-UHFFFAOYSA-N [benzyl-tri(propan-2-yl)silyloxysilyl]oxy-tri(propan-2-yl)silane Chemical compound C(C1=CC=CC=C1)[SiH](O[Si](C(C)C)(C(C)C)C(C)C)O[Si](C(C)C)(C(C)C)C(C)C HGCXEHXWQRBOKV-UHFFFAOYSA-N 0.000 description 1
- NZHXEWZGTQSYJM-UHFFFAOYSA-N [bromo(diphenyl)methyl]benzene Chemical compound C=1C=CC=CC=1C(C=1C=CC=CC=1)(Br)C1=CC=CC=C1 NZHXEWZGTQSYJM-UHFFFAOYSA-N 0.000 description 1
- PGRXBKWVCOYNKB-UHFFFAOYSA-N [butyl(dimethylsilyloxy)silyl]oxy-dimethyl-trimethylsilyloxysilane Chemical compound C(CCC)[SiH](O[Si](C)(C)O[Si](C)(C)C)O[SiH](C)C PGRXBKWVCOYNKB-UHFFFAOYSA-N 0.000 description 1
- WDWPCMCNHPMNJU-UHFFFAOYSA-N [butyl(dimethylsilyloxy)silyl]oxy-dimethylsilyloxy-dimethylsilane Chemical compound C(CCC)[SiH](O[Si](C)(C)O[SiH](C)C)O[SiH](C)C WDWPCMCNHPMNJU-UHFFFAOYSA-N 0.000 description 1
- CIFUNLPMASCEPR-UHFFFAOYSA-N [butyl(triethylsilyloxy)silyl]oxy-triethylsilane Chemical compound C(CCC)[SiH](O[Si](CC)(CC)CC)O[Si](CC)(CC)CC CIFUNLPMASCEPR-UHFFFAOYSA-N 0.000 description 1
- JSUHROPQUYIHAB-UHFFFAOYSA-N [butyl-[dimethyl(trimethylsilyloxy)silyl]oxysilyl]oxy-dimethyl-trimethylsilyloxysilane Chemical compound C(CCC)[SiH](O[Si](O[Si](C)(C)C)(C)C)O[Si](C)(C)O[Si](C)(C)C JSUHROPQUYIHAB-UHFFFAOYSA-N 0.000 description 1
- KXDOKAVIEWMZLQ-UHFFFAOYSA-N [butyl-[dimethylsilyloxy(dimethyl)silyl]oxysilyl]oxy-dimethylsilyloxy-dimethylsilane Chemical compound C(CCC)[SiH](O[Si](O[SiH](C)C)(C)C)O[Si](C)(C)O[SiH](C)C KXDOKAVIEWMZLQ-UHFFFAOYSA-N 0.000 description 1
- CEJFHDCWQZRQCG-UHFFFAOYSA-N [butyl-[dimethylsilyloxy(dimethyl)silyl]oxysilyl]oxy-trimethylsilane Chemical compound C(CCC)[SiH](O[Si](C)(C)O[SiH](C)C)O[Si](C)(C)C CEJFHDCWQZRQCG-UHFFFAOYSA-N 0.000 description 1
- ZYPFZPLZQMSVRD-UHFFFAOYSA-N [butyl-tri(propan-2-yl)silyloxysilyl]oxy-tri(propan-2-yl)silane Chemical compound C(CCC)[SiH](O[Si](C(C)C)(C(C)C)C(C)C)O[Si](C(C)C)(C(C)C)C(C)C ZYPFZPLZQMSVRD-UHFFFAOYSA-N 0.000 description 1
- ZDVDCDLBOLSVGM-UHFFFAOYSA-N [chloro(phenyl)methyl]benzene Chemical compound C=1C=CC=CC=1C(Cl)C1=CC=CC=C1 ZDVDCDLBOLSVGM-UHFFFAOYSA-N 0.000 description 1
- SWBDERCARHCKGH-UHFFFAOYSA-N [cyclohexyl(dimethylsilyloxy)silyl]oxy-dimethyl-trimethylsilyloxysilane Chemical compound C1(CCCCC1)[SiH](O[Si](C)(C)O[Si](C)(C)C)O[SiH](C)C SWBDERCARHCKGH-UHFFFAOYSA-N 0.000 description 1
- SHKUOFZKNAEVFQ-UHFFFAOYSA-N [cyclohexyl(dimethylsilyloxy)silyl]oxy-dimethylsilyloxy-dimethylsilane Chemical compound C1(CCCCC1)[SiH](O[Si](C)(C)O[SiH](C)C)O[SiH](C)C SHKUOFZKNAEVFQ-UHFFFAOYSA-N 0.000 description 1
- ALGABUXJCMXBQO-UHFFFAOYSA-N [cyclohexyl(ethyl)silyl]oxy-tri(propan-2-yl)silane Chemical compound C(C)[SiH](O[Si](C(C)C)(C(C)C)C(C)C)C1CCCCC1 ALGABUXJCMXBQO-UHFFFAOYSA-N 0.000 description 1
- CUMRCZQAJNAORX-UHFFFAOYSA-N [cyclohexyl(ethyl)silyl]oxy-triethylsilane Chemical compound C(C)[SiH](O[Si](CC)(CC)CC)C1CCCCC1 CUMRCZQAJNAORX-UHFFFAOYSA-N 0.000 description 1
- RPABKSCKTRMAPW-UHFFFAOYSA-N [cyclohexyl(ethyl)silyl]oxy-trimethylsilane Chemical compound C(C)[SiH](O[Si](C)(C)C)C1CCCCC1 RPABKSCKTRMAPW-UHFFFAOYSA-N 0.000 description 1
- OYMGVVCXERBSIB-UHFFFAOYSA-N [cyclohexyl(methyl)silyl]oxy-tri(propan-2-yl)silane Chemical compound C[SiH](O[Si](C(C)C)(C(C)C)C(C)C)C1CCCCC1 OYMGVVCXERBSIB-UHFFFAOYSA-N 0.000 description 1
- WKWWHUYTXNUQRQ-UHFFFAOYSA-N [cyclohexyl(methyl)silyl]oxy-triethylsilane Chemical compound C[SiH](O[Si](CC)(CC)CC)C1CCCCC1 WKWWHUYTXNUQRQ-UHFFFAOYSA-N 0.000 description 1
- QLDLGEQWGSWOOC-UHFFFAOYSA-N [cyclohexyl(methyl)silyl]oxy-trimethylsilane Chemical compound C[SiH](O[Si](C)(C)C)C1CCCCC1 QLDLGEQWGSWOOC-UHFFFAOYSA-N 0.000 description 1
- RFGYRLIZKIJUFS-UHFFFAOYSA-N [cyclohexyl(triethylsilyloxy)silyl]oxy-triethylsilane Chemical compound C1(CCCCC1)[SiH](O[Si](CC)(CC)CC)O[Si](CC)(CC)CC RFGYRLIZKIJUFS-UHFFFAOYSA-N 0.000 description 1
- QBAIMBFXKYUQBW-UHFFFAOYSA-N [cyclohexyl-[dimethyl(trimethylsilyloxy)silyl]oxysilyl]oxy-dimethyl-trimethylsilyloxysilane Chemical compound C1(CCCCC1)[SiH](O[Si](O[Si](C)(C)C)(C)C)O[Si](C)(C)O[Si](C)(C)C QBAIMBFXKYUQBW-UHFFFAOYSA-N 0.000 description 1
- AGCATMCTQUBIEX-UHFFFAOYSA-N [cyclohexyl-[dimethylsilyloxy(dimethyl)silyl]oxysilyl]oxy-dimethylsilyloxy-dimethylsilane Chemical compound C1(CCCCC1)[SiH](O[Si](O[SiH](C)C)(C)C)O[Si](C)(C)O[SiH](C)C AGCATMCTQUBIEX-UHFFFAOYSA-N 0.000 description 1
- FZPUSQFBLDGEGL-UHFFFAOYSA-N [cyclohexyl-[dimethylsilyloxy(dimethyl)silyl]oxysilyl]oxy-trimethylsilane Chemical compound C1(CCCCC1)[SiH](O[Si](C)(C)O[SiH](C)C)O[Si](C)(C)C FZPUSQFBLDGEGL-UHFFFAOYSA-N 0.000 description 1
- DLHGHVMGEZFHPV-UHFFFAOYSA-N [cyclohexyl-tri(propan-2-yl)silyloxysilyl]oxy-tri(propan-2-yl)silane Chemical compound C1(CCCCC1)[SiH](O[Si](C(C)C)(C(C)C)C(C)C)O[Si](C(C)C)(C(C)C)C(C)C DLHGHVMGEZFHPV-UHFFFAOYSA-N 0.000 description 1
- GDDVTIGTERZVBW-UHFFFAOYSA-N [dimethyl(trimethylsilyloxy)silyl]oxy-dimethylsilicon Chemical compound C[Si](C)O[Si](C)(C)O[Si](C)(C)C GDDVTIGTERZVBW-UHFFFAOYSA-N 0.000 description 1
- FZWZCGUCZYYIJE-UHFFFAOYSA-N [dimethylsilyloxy(ethyl)silyl]oxy-dimethyl-trimethylsilyloxysilane Chemical compound C(C)[SiH](O[Si](C)(C)O[Si](C)(C)C)O[SiH](C)C FZWZCGUCZYYIJE-UHFFFAOYSA-N 0.000 description 1
- DWWJWAGNXFUPSC-UHFFFAOYSA-N [dimethylsilyloxy(hexyl)silyl]oxy-dimethyl-trimethylsilyloxysilane Chemical compound C(CCCCC)[SiH](O[Si](C)(C)O[Si](C)(C)C)O[SiH](C)C DWWJWAGNXFUPSC-UHFFFAOYSA-N 0.000 description 1
- QNHINQATTHOWNT-UHFFFAOYSA-N [dimethylsilyloxy(methyl)silyl]oxy-dimethyl-trimethylsilyloxysilane Chemical compound C[SiH](C)O[SiH](C)O[Si](C)(C)O[Si](C)(C)C QNHINQATTHOWNT-UHFFFAOYSA-N 0.000 description 1
- ZKMNYAYASRISDZ-UHFFFAOYSA-N [dimethylsilyloxy(pentyl)silyl]oxy-dimethyl-trimethylsilyloxysilane Chemical compound C(CCCC)[SiH](O[Si](C)(C)O[Si](C)(C)C)O[SiH](C)C ZKMNYAYASRISDZ-UHFFFAOYSA-N 0.000 description 1
- VPIQNBCPCGHAQL-UHFFFAOYSA-N [dimethylsilyloxy(phenyl)silyl]oxy-dimethyl-trimethylsilyloxysilane Chemical compound C1(=CC=CC=C1)[SiH](O[Si](C)(C)O[Si](C)(C)C)O[SiH](C)C VPIQNBCPCGHAQL-UHFFFAOYSA-N 0.000 description 1
- GVUDDQMNCDFIRQ-UHFFFAOYSA-N [dimethylsilyloxy(propan-2-yl)silyl]oxy-dimethyl-trimethylsilyloxysilane Chemical compound C(C)(C)[SiH](O[Si](C)(C)O[Si](C)(C)C)O[SiH](C)C GVUDDQMNCDFIRQ-UHFFFAOYSA-N 0.000 description 1
- FMOHGCDBMRMFOL-UHFFFAOYSA-N [dimethylsilyloxy(propyl)silyl]oxy-dimethyl-trimethylsilyloxysilane Chemical compound C(CC)[SiH](O[Si](C)(C)O[Si](C)(C)C)O[SiH](C)C FMOHGCDBMRMFOL-UHFFFAOYSA-N 0.000 description 1
- YQNBMABQJWTDKF-UHFFFAOYSA-N [ethyl(methyl)silyl]oxy-tri(propan-2-yl)silane Chemical compound C[SiH](O[Si](C(C)C)(C(C)C)C(C)C)CC YQNBMABQJWTDKF-UHFFFAOYSA-N 0.000 description 1
- QLAXGUXNKSHSFA-UHFFFAOYSA-N [ethyl(methyl)silyl]oxy-trimethylsilane Chemical compound CC[SiH](C)O[Si](C)(C)C QLAXGUXNKSHSFA-UHFFFAOYSA-N 0.000 description 1
- HUSHXODIYGYPSK-UHFFFAOYSA-N [ethyl(phenyl)silyl]oxy-tri(propan-2-yl)silane Chemical compound C(C)[SiH](O[Si](C(C)C)(C(C)C)C(C)C)C1=CC=CC=C1 HUSHXODIYGYPSK-UHFFFAOYSA-N 0.000 description 1
- RNYQYFAHFAXKSP-UHFFFAOYSA-N [ethyl(phenyl)silyl]oxy-trimethylsilane Chemical compound C(C)[SiH](O[Si](C)(C)C)C1=CC=CC=C1 RNYQYFAHFAXKSP-UHFFFAOYSA-N 0.000 description 1
- VYJGDVZPHJTIEP-UHFFFAOYSA-N [ethyl(propan-2-yl)silyl]oxy-tri(propan-2-yl)silane Chemical compound C(C)(C)[SiH](O[Si](C(C)C)(C(C)C)C(C)C)CC VYJGDVZPHJTIEP-UHFFFAOYSA-N 0.000 description 1
- BTXAXFTXMCCQMN-UHFFFAOYSA-N [ethyl(propan-2-yl)silyl]oxy-trimethylsilane Chemical compound C(C)(C)[SiH](O[Si](C)(C)C)CC BTXAXFTXMCCQMN-UHFFFAOYSA-N 0.000 description 1
- FOLNDEOXOGUWTR-UHFFFAOYSA-N [ethyl(trimethylsilyloxy)silyl]oxy-trimethylsilane Chemical compound C[Si](C)(C)O[SiH](CC)O[Si](C)(C)C FOLNDEOXOGUWTR-UHFFFAOYSA-N 0.000 description 1
- NTXOYCIXWUPIRX-UHFFFAOYSA-N [ethyl-tri(propan-2-yl)silyloxysilyl]oxy-tri(propan-2-yl)silane Chemical compound C(C)[SiH](O[Si](C(C)C)(C(C)C)C(C)C)O[Si](C(C)C)(C(C)C)C(C)C NTXOYCIXWUPIRX-UHFFFAOYSA-N 0.000 description 1
- QRRISIFTWDHMBG-UHFFFAOYSA-N [hexyl(trimethylsilyloxy)silyl]oxy-trimethylsilane Chemical compound CCCCCC[SiH](O[Si](C)(C)C)O[Si](C)(C)C QRRISIFTWDHMBG-UHFFFAOYSA-N 0.000 description 1
- YOIRKMDLLMJLSQ-UHFFFAOYSA-N [hexyl-tri(propan-2-yl)silyloxysilyl]oxy-tri(propan-2-yl)silane Chemical compound C(CCCCC)[SiH](O[Si](C(C)C)(C(C)C)C(C)C)O[Si](C(C)C)(C(C)C)C(C)C YOIRKMDLLMJLSQ-UHFFFAOYSA-N 0.000 description 1
- BKCFNUGOUOCBEB-UHFFFAOYSA-N [methyl(phenyl)silyl]oxy-tri(propan-2-yl)silane Chemical compound C[SiH](O[Si](C(C)C)(C(C)C)C(C)C)C1=CC=CC=C1 BKCFNUGOUOCBEB-UHFFFAOYSA-N 0.000 description 1
- ZYOBRHFEFGJJQD-UHFFFAOYSA-N [methyl(propan-2-yl)silyl]oxy-tri(propan-2-yl)silane Chemical compound C[SiH](O[Si](C(C)C)(C(C)C)C(C)C)C(C)C ZYOBRHFEFGJJQD-UHFFFAOYSA-N 0.000 description 1
- QDEUGZNRBBLJBD-UHFFFAOYSA-N [methyl-tri(propan-2-yl)silyloxysilyl]oxy-tri(propan-2-yl)silane Chemical compound C[SiH](O[Si](C(C)C)(C(C)C)C(C)C)O[Si](C(C)C)(C(C)C)C(C)C QDEUGZNRBBLJBD-UHFFFAOYSA-N 0.000 description 1
- NCTSTSADRHHQSZ-UHFFFAOYSA-N [pentyl-tri(propan-2-yl)silyloxysilyl]oxy-tri(propan-2-yl)silane Chemical compound C(CCCC)[SiH](O[Si](C(C)C)(C(C)C)C(C)C)O[Si](C(C)C)(C(C)C)C(C)C NCTSTSADRHHQSZ-UHFFFAOYSA-N 0.000 description 1
- KJGPUDGVQXYLHV-UHFFFAOYSA-N [phenyl(propan-2-yl)silyl]oxy-tri(propan-2-yl)silane Chemical compound C(C)(C)[SiH](O[Si](C(C)C)(C(C)C)C(C)C)C1=CC=CC=C1 KJGPUDGVQXYLHV-UHFFFAOYSA-N 0.000 description 1
- AZBATYDVVUKHTI-UHFFFAOYSA-N [phenyl-tri(propan-2-yl)silyloxysilyl]oxy-tri(propan-2-yl)silane Chemical compound C1(=CC=CC=C1)[SiH](O[Si](C(C)C)(C(C)C)C(C)C)O[Si](C(C)C)(C(C)C)C(C)C AZBATYDVVUKHTI-UHFFFAOYSA-N 0.000 description 1
- CAOBOPVBROENEX-UHFFFAOYSA-N [tert-butyl(dimethylsilyloxy)silyl]oxy-dimethyl-trimethylsilyloxysilane Chemical compound C(C)(C)(C)[SiH](O[Si](C)(C)O[Si](C)(C)C)O[SiH](C)C CAOBOPVBROENEX-UHFFFAOYSA-N 0.000 description 1
- XNRLXAILDXUGGW-UHFFFAOYSA-N [tert-butyl(dimethylsilyloxy)silyl]oxy-dimethylsilyloxy-dimethylsilane Chemical compound C(C)(C)(C)[SiH](O[Si](C)(C)O[SiH](C)C)O[SiH](C)C XNRLXAILDXUGGW-UHFFFAOYSA-N 0.000 description 1
- SELZDUUFZKNSNG-UHFFFAOYSA-N [tert-butyl(triethylsilyloxy)silyl]oxy-triethylsilane Chemical compound C(C)(C)(C)[SiH](O[Si](CC)(CC)CC)O[Si](CC)(CC)CC SELZDUUFZKNSNG-UHFFFAOYSA-N 0.000 description 1
- BLBMDMFAYBDHDZ-UHFFFAOYSA-N [tert-butyl(trimethylsilyloxy)silyl]oxy-trimethylsilane Chemical compound C(C)(C)(C)[SiH](O[Si](C)(C)C)O[Si](C)(C)C BLBMDMFAYBDHDZ-UHFFFAOYSA-N 0.000 description 1
- WRAGSMCDDDVZEL-UHFFFAOYSA-N [tert-butyl-[dimethyl(trimethylsilyloxy)silyl]oxysilyl]oxy-dimethyl-trimethylsilyloxysilane Chemical compound C(C)(C)(C)[SiH](O[Si](O[Si](C)(C)C)(C)C)O[Si](C)(C)O[Si](C)(C)C WRAGSMCDDDVZEL-UHFFFAOYSA-N 0.000 description 1
- HSUSBHYTGSOAJM-UHFFFAOYSA-N [tert-butyl-[dimethylsilyloxy(dimethyl)silyl]oxysilyl]oxy-dimethylsilyloxy-dimethylsilane Chemical compound C(C)(C)(C)[SiH](O[Si](O[SiH](C)C)(C)C)O[Si](C)(C)O[SiH](C)C HSUSBHYTGSOAJM-UHFFFAOYSA-N 0.000 description 1
- AALFVZVWYPEWFR-UHFFFAOYSA-N [tert-butyl-[dimethylsilyloxy(dimethyl)silyl]oxysilyl]oxy-trimethylsilane Chemical compound C(C)(C)(C)[SiH](O[Si](C)(C)O[SiH](C)C)O[Si](C)(C)C AALFVZVWYPEWFR-UHFFFAOYSA-N 0.000 description 1
- SCIVXJAAHXZOGP-UHFFFAOYSA-N [tert-butyl-tri(propan-2-yl)silyloxysilyl]oxy-tri(propan-2-yl)silane Chemical compound C(C)(C)(C)[SiH](O[Si](C(C)C)(C(C)C)C(C)C)O[Si](C(C)C)(C(C)C)C(C)C SCIVXJAAHXZOGP-UHFFFAOYSA-N 0.000 description 1
- GPWHDDKQSYOYBF-UHFFFAOYSA-N ac1l2u0q Chemical compound Br[Br-]Br GPWHDDKQSYOYBF-UHFFFAOYSA-N 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 229920000800 acrylic rubber Polymers 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 125000002015 acyclic group Chemical group 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 125000003302 alkenyloxy group Chemical group 0.000 description 1
- 125000005133 alkynyloxy group Chemical group 0.000 description 1
- BHELZAPQIKSEDF-UHFFFAOYSA-N allyl bromide Chemical compound BrCC=C BHELZAPQIKSEDF-UHFFFAOYSA-N 0.000 description 1
- 125000005336 allyloxy group Chemical group 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- PQLAYKMGZDUDLQ-UHFFFAOYSA-K aluminium bromide Chemical compound Br[Al](Br)Br PQLAYKMGZDUDLQ-UHFFFAOYSA-K 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- CECABOMBVQNBEC-UHFFFAOYSA-K aluminium iodide Chemical compound I[Al](I)I CECABOMBVQNBEC-UHFFFAOYSA-K 0.000 description 1
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 1
- 238000010539 anionic addition polymerization reaction Methods 0.000 description 1
- RPJGYLSSECYURW-UHFFFAOYSA-K antimony(3+);tribromide Chemical compound Br[Sb](Br)Br RPJGYLSSECYURW-UHFFFAOYSA-K 0.000 description 1
- VMPVEPPRYRXYNP-UHFFFAOYSA-I antimony(5+);pentachloride Chemical compound Cl[Sb](Cl)(Cl)(Cl)Cl VMPVEPPRYRXYNP-UHFFFAOYSA-I 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- JMBNQWNFNACVCB-UHFFFAOYSA-N arsenic tribromide Chemical compound Br[As](Br)Br JMBNQWNFNACVCB-UHFFFAOYSA-N 0.000 description 1
- 229940077468 arsenic tribromide Drugs 0.000 description 1
- OEYOHULQRFXULB-UHFFFAOYSA-N arsenic trichloride Chemical compound Cl[As](Cl)Cl OEYOHULQRFXULB-UHFFFAOYSA-N 0.000 description 1
- IKIBSPLDJGAHPX-UHFFFAOYSA-N arsenic triiodide Chemical compound I[As](I)I IKIBSPLDJGAHPX-UHFFFAOYSA-N 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- AQIHMSVIAGNIDM-UHFFFAOYSA-N benzoyl bromide Chemical compound BrC(=O)C1=CC=CC=C1 AQIHMSVIAGNIDM-UHFFFAOYSA-N 0.000 description 1
- PASDCCFISLVPSO-UHFFFAOYSA-N benzoyl chloride Chemical compound ClC(=O)C1=CC=CC=C1 PASDCCFISLVPSO-UHFFFAOYSA-N 0.000 description 1
- AGEZXYOZHKGVCM-UHFFFAOYSA-N benzyl bromide Chemical compound BrCC1=CC=CC=C1 AGEZXYOZHKGVCM-UHFFFAOYSA-N 0.000 description 1
- KCXMKQUNVWSEMD-UHFFFAOYSA-N benzyl chloride Chemical compound ClCC1=CC=CC=C1 KCXMKQUNVWSEMD-UHFFFAOYSA-N 0.000 description 1
- 229940073608 benzyl chloride Drugs 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- DAMJCWMGELCIMI-UHFFFAOYSA-N benzyl n-(2-oxopyrrolidin-3-yl)carbamate Chemical compound C=1C=CC=CC=1COC(=O)NC1CCNC1=O DAMJCWMGELCIMI-UHFFFAOYSA-N 0.000 description 1
- WULHEUKAPOPNDB-UHFFFAOYSA-N benzyl(2-methylpropyl)alumane Chemical compound C(C1=CC=CC=C1)[AlH]CC(C)C WULHEUKAPOPNDB-UHFFFAOYSA-N 0.000 description 1
- MNJAAMMKYQCBQW-UHFFFAOYSA-M benzyl(2-methylpropyl)alumanylium;chloride Chemical compound [Cl-].CC(C)C[Al+]CC1=CC=CC=C1 MNJAAMMKYQCBQW-UHFFFAOYSA-M 0.000 description 1
- CETUXYPGBFOCCA-UHFFFAOYSA-N benzyl(butyl)alumane Chemical compound C(C1=CC=CC=C1)[AlH]CCCC CETUXYPGBFOCCA-UHFFFAOYSA-N 0.000 description 1
- SHEYREVQOFZMQB-UHFFFAOYSA-M benzyl(butyl)alumanylium;chloride Chemical compound [Cl-].CCCC[Al+]CC1=CC=CC=C1 SHEYREVQOFZMQB-UHFFFAOYSA-M 0.000 description 1
- YOMAMBOZYONBQO-UHFFFAOYSA-N benzyl(diethoxy)silane Chemical compound CCO[SiH](OCC)CC1=CC=CC=C1 YOMAMBOZYONBQO-UHFFFAOYSA-N 0.000 description 1
- LBKYCOGBBDATCR-UHFFFAOYSA-N benzyl(diethyl)alumane Chemical compound CC[Al](CC)CC1=CC=CC=C1 LBKYCOGBBDATCR-UHFFFAOYSA-N 0.000 description 1
- UJOQTUFWZMIROT-UHFFFAOYSA-N benzyl(dimethoxy)silane Chemical compound CO[SiH](OC)CC1=CC=CC=C1 UJOQTUFWZMIROT-UHFFFAOYSA-N 0.000 description 1
- PYLJLSYCSHUOGA-UHFFFAOYSA-N benzyl(diphenoxy)silane Chemical compound C=1C=CC=CC=1C[SiH](OC=1C=CC=CC=1)OC1=CC=CC=C1 PYLJLSYCSHUOGA-UHFFFAOYSA-N 0.000 description 1
- YXHYBZZCYPDUBG-UHFFFAOYSA-N benzyl(octyl)alumane Chemical compound C(C1=CC=CC=C1)[AlH]CCCCCCCC YXHYBZZCYPDUBG-UHFFFAOYSA-N 0.000 description 1
- UKFKCEPJTXYSOD-UHFFFAOYSA-M benzyl(octyl)alumanylium;chloride Chemical compound [Cl-].CCCCCCCC[Al+]CC1=CC=CC=C1 UKFKCEPJTXYSOD-UHFFFAOYSA-M 0.000 description 1
- AIWXNWDZGADCFW-UHFFFAOYSA-N benzyl(propan-2-yl)alumane Chemical compound C(C1=CC=CC=C1)[AlH]C(C)C AIWXNWDZGADCFW-UHFFFAOYSA-N 0.000 description 1
- LXJHRZUMLFAACT-UHFFFAOYSA-M benzyl(propan-2-yl)alumanylium;chloride Chemical compound [Cl-].CC(C)[Al+]CC1=CC=CC=C1 LXJHRZUMLFAACT-UHFFFAOYSA-M 0.000 description 1
- YGHMTLQLIZMTLJ-UHFFFAOYSA-N benzyl(propyl)alumane Chemical compound C(C1=CC=CC=C1)[AlH]CCC YGHMTLQLIZMTLJ-UHFFFAOYSA-N 0.000 description 1
- JUIZDJUMBNVWAT-UHFFFAOYSA-M benzyl(propyl)alumanylium;chloride Chemical compound [Cl-].CCC[Al+]CC1=CC=CC=C1 JUIZDJUMBNVWAT-UHFFFAOYSA-M 0.000 description 1
- ZAUSBDKRJQCNDK-UHFFFAOYSA-N benzyl-bis(diethylsilyloxy)silane Chemical compound C(C1=CC=CC=C1)[SiH](O[SiH](CC)CC)O[SiH](CC)CC ZAUSBDKRJQCNDK-UHFFFAOYSA-N 0.000 description 1
- YDSIFWIZYGXLGF-UHFFFAOYSA-N benzyl-bis(dimethylsilyloxy)silane Chemical compound C(C1=CC=CC=C1)[SiH](O[SiH](C)C)O[SiH](C)C YDSIFWIZYGXLGF-UHFFFAOYSA-N 0.000 description 1
- BYBWEXJWOFZAPM-UHFFFAOYSA-N benzyl-bis[di(propan-2-yl)silyloxy]silane Chemical compound C(C1=CC=CC=C1)[SiH](O[SiH](C(C)C)C(C)C)O[SiH](C(C)C)C(C)C BYBWEXJWOFZAPM-UHFFFAOYSA-N 0.000 description 1
- ZKIGCGDNKFVZSC-UHFFFAOYSA-N benzyl-ethoxy-methoxysilane Chemical compound C1(=CC=CC=C1)C[SiH](OCC)OC ZKIGCGDNKFVZSC-UHFFFAOYSA-N 0.000 description 1
- CDLZPGZKDJQJAK-UHFFFAOYSA-N benzyl-ethoxy-phenoxysilane Chemical compound C(C1=CC=CC=C1)[SiH](OCC)OC1=CC=CC=C1 CDLZPGZKDJQJAK-UHFFFAOYSA-N 0.000 description 1
- WHNIJHLVZHHDQY-UHFFFAOYSA-N benzyl-methoxy-phenoxysilane Chemical compound C(C1=CC=CC=C1)[SiH](OC1=CC=CC=C1)OC WHNIJHLVZHHDQY-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- WUORFVPBIBWYJA-UHFFFAOYSA-N bis(2,2-dimethylpropyl)-di(propan-2-yl)silyloxysilane Chemical compound C(C(C)(C)C)[SiH](O[SiH](C(C)C)C(C)C)CC(C)(C)C WUORFVPBIBWYJA-UHFFFAOYSA-N 0.000 description 1
- RSQGKGMMVNANNB-UHFFFAOYSA-N bis(2,2-dimethylpropyl)-dimethylsilyloxysilane Chemical compound C(C(C)(C)C)[SiH](O[SiH](C)C)CC(C)(C)C RSQGKGMMVNANNB-UHFFFAOYSA-N 0.000 description 1
- HHULPRWRQXNSTG-UHFFFAOYSA-N bis(2,2-dimethylpropyl)-ethoxysilane Chemical compound CCO[SiH](CC(C)(C)C)CC(C)(C)C HHULPRWRQXNSTG-UHFFFAOYSA-N 0.000 description 1
- FYKOBBDGBVOJTM-UHFFFAOYSA-N bis(2,2-dimethylpropyl)-methoxysilane Chemical compound CO[SiH](CC(C)(C)C)CC(C)(C)C FYKOBBDGBVOJTM-UHFFFAOYSA-N 0.000 description 1
- JSHRLAPETSNMLO-UHFFFAOYSA-N bis(2,2-dimethylpropyl)-phenoxysilane Chemical compound C(C(C)(C)C)[SiH](OC1=CC=CC=C1)CC(C)(C)C JSHRLAPETSNMLO-UHFFFAOYSA-N 0.000 description 1
- FFVMMTBELROFSF-UHFFFAOYSA-N bis(2,2-dimethylpropyl)silyloxy-diethylsilane Chemical compound C(C(C)(C)C)[SiH](O[SiH](CC)CC)CC(C)(C)C FFVMMTBELROFSF-UHFFFAOYSA-N 0.000 description 1
- FGDUUVUIEAXNIW-UHFFFAOYSA-N bis(2,2-dimethylpropyl)silyloxy-tri(propan-2-yl)silane Chemical compound C(C(C)(C)C)[SiH](O[Si](C(C)C)(C(C)C)C(C)C)CC(C)(C)C FGDUUVUIEAXNIW-UHFFFAOYSA-N 0.000 description 1
- BUAJFSOLNZPAQW-UHFFFAOYSA-N bis(2,2-dimethylpropyl)silyloxy-triethylsilane Chemical compound C(C(C)(C)C)[SiH](O[Si](CC)(CC)CC)CC(C)(C)C BUAJFSOLNZPAQW-UHFFFAOYSA-N 0.000 description 1
- UYBSVQSBAOOJBJ-UHFFFAOYSA-N bis(2,2-dimethylpropyl)silyloxy-trimethylsilane Chemical compound C(C(C)(C)C)[SiH](O[Si](C)(C)C)CC(C)(C)C UYBSVQSBAOOJBJ-UHFFFAOYSA-N 0.000 description 1
- ATQXJRZEZJQPIK-UHFFFAOYSA-K bis(2-ethylhexyl) phosphate;neodymium(3+) Chemical compound [Nd+3].CCCCC(CC)COP([O-])(=O)OCC(CC)CCCC.CCCCC(CC)COP([O-])(=O)OCC(CC)CCCC.CCCCC(CC)COP([O-])(=O)OCC(CC)CCCC ATQXJRZEZJQPIK-UHFFFAOYSA-K 0.000 description 1
- JVUAGBYDIROHRJ-UHFFFAOYSA-K bis(2-ethylhexyl)phosphinate;neodymium(3+) Chemical compound [Nd+3].CCCCC(CC)CP([O-])(=O)CC(CC)CCCC.CCCCC(CC)CP([O-])(=O)CC(CC)CCCC.CCCCC(CC)CP([O-])(=O)CC(CC)CCCC JVUAGBYDIROHRJ-UHFFFAOYSA-K 0.000 description 1
- WEDLYHNDZPHFLT-UHFFFAOYSA-M bis(2-methylpropyl)-phenoxyalumane Chemical compound [O-]C1=CC=CC=C1.CC(C)C[Al+]CC(C)C WEDLYHNDZPHFLT-UHFFFAOYSA-M 0.000 description 1
- AIEHFWUJEVRRNF-UHFFFAOYSA-M bis(2-methylpropyl)alumanylium;2-ethylhexanoate Chemical compound CC(C)C[Al+]CC(C)C.CCCCC(CC)C([O-])=O AIEHFWUJEVRRNF-UHFFFAOYSA-M 0.000 description 1
- HQMRIBYCTLBDAK-UHFFFAOYSA-M bis(2-methylpropyl)alumanylium;chloride Chemical compound CC(C)C[Al](Cl)CC(C)C HQMRIBYCTLBDAK-UHFFFAOYSA-M 0.000 description 1
- LLHTVHHWJJDSSP-UHFFFAOYSA-N bis(4-methylphenyl)alumane Chemical compound C1(=CC=C(C=C1)[AlH]C1=CC=C(C=C1)C)C LLHTVHHWJJDSSP-UHFFFAOYSA-N 0.000 description 1
- GTDUJCSUIQCLOZ-UHFFFAOYSA-M bis(4-methylphenyl)alumanylium;chloride Chemical compound [Cl-].C1=CC(C)=CC=C1[Al+]C1=CC=C(C)C=C1 GTDUJCSUIQCLOZ-UHFFFAOYSA-M 0.000 description 1
- JDRFLZCXGCAYAP-UHFFFAOYSA-K bis(4-nonylphenyl) phosphate;neodymium(3+) Chemical compound [Nd+3].C1=CC(CCCCCCCCC)=CC=C1OP([O-])(=O)OC1=CC=C(CCCCCCCCC)C=C1.C1=CC(CCCCCCCCC)=CC=C1OP([O-])(=O)OC1=CC=C(CCCCCCCCC)C=C1.C1=CC(CCCCCCCCC)=CC=C1OP([O-])(=O)OC1=CC=C(CCCCCCCCC)C=C1 JDRFLZCXGCAYAP-UHFFFAOYSA-K 0.000 description 1
- ZBXJWCXCFGELBK-UHFFFAOYSA-N bis(diethylsilyloxy)-(2,2-dimethylpropyl)silane Chemical compound C(C(C)(C)C)[SiH](O[SiH](CC)CC)O[SiH](CC)CC ZBXJWCXCFGELBK-UHFFFAOYSA-N 0.000 description 1
- XDRAVJFWRSVHFA-UHFFFAOYSA-N bis(diethylsilyloxy)-bis(3,3,3-trichloropropyl)silane Chemical compound ClC(CC[Si](O[SiH](CC)CC)(O[SiH](CC)CC)CCC(Cl)(Cl)Cl)(Cl)Cl XDRAVJFWRSVHFA-UHFFFAOYSA-N 0.000 description 1
- DIOZMGPEPGANNT-UHFFFAOYSA-N bis(diethylsilyloxy)-bis(3,3,3-trifluoropropyl)silane Chemical compound FC(CC[Si](O[SiH](CC)CC)(O[SiH](CC)CC)CCC(F)(F)F)(F)F DIOZMGPEPGANNT-UHFFFAOYSA-N 0.000 description 1
- CKCXTIHXWNZKNT-UHFFFAOYSA-N bis(diethylsilyloxy)-diethylsilane Chemical compound CC[SiH](CC)O[Si](CC)(CC)O[SiH](CC)CC CKCXTIHXWNZKNT-UHFFFAOYSA-N 0.000 description 1
- VAYHPZXTHIQWAD-UHFFFAOYSA-N bis(diethylsilyloxy)-ethylsilane Chemical compound CC[SiH](CC)O[SiH](CC)O[SiH](CC)CC VAYHPZXTHIQWAD-UHFFFAOYSA-N 0.000 description 1
- LJSYQIHCROWAOD-UHFFFAOYSA-N bis(diethylsilyloxy)-hexylsilane Chemical compound C(CCCCC)[SiH](O[SiH](CC)CC)O[SiH](CC)CC LJSYQIHCROWAOD-UHFFFAOYSA-N 0.000 description 1
- DHIILBQCCPDKCV-UHFFFAOYSA-N bis(diethylsilyloxy)-methylsilane Chemical compound CC[SiH](CC)O[SiH](C)O[SiH](CC)CC DHIILBQCCPDKCV-UHFFFAOYSA-N 0.000 description 1
- USSNRYMOUDHNSP-UHFFFAOYSA-N bis(diethylsilyloxy)-pentylsilane Chemical compound C(CCCC)[SiH](O[SiH](CC)CC)O[SiH](CC)CC USSNRYMOUDHNSP-UHFFFAOYSA-N 0.000 description 1
- GFCDDKMAWJUCGC-UHFFFAOYSA-N bis(diethylsilyloxy)-phenylsilane Chemical compound C1(=CC=CC=C1)[SiH](O[SiH](CC)CC)O[SiH](CC)CC GFCDDKMAWJUCGC-UHFFFAOYSA-N 0.000 description 1
- JSOVQGTZZDHUIR-UHFFFAOYSA-N bis(diethylsilyloxy)-propan-2-ylsilane Chemical compound C(C)(C)[SiH](O[SiH](CC)CC)O[SiH](CC)CC JSOVQGTZZDHUIR-UHFFFAOYSA-N 0.000 description 1
- YDRMRQSBVWBHIQ-UHFFFAOYSA-N bis(diethylsilyloxy)-propylsilane Chemical compound C(CC)[SiH](O[SiH](CC)CC)O[SiH](CC)CC YDRMRQSBVWBHIQ-UHFFFAOYSA-N 0.000 description 1
- KDUMOMWZLROMKK-UHFFFAOYSA-N bis(dimethylsilyloxy)-bis(3,3,3-trifluoropropyl)silane Chemical compound FC(CC[Si](O[SiH](C)C)(O[SiH](C)C)CCC(F)(F)F)(F)F KDUMOMWZLROMKK-UHFFFAOYSA-N 0.000 description 1
- LJUIPTDIQDMYGB-UHFFFAOYSA-N bis(dimethylsilyloxy)-hexylsilane Chemical compound C(CCCCC)[SiH](O[SiH](C)C)O[SiH](C)C LJUIPTDIQDMYGB-UHFFFAOYSA-N 0.000 description 1
- DLMRBGAENSRVSV-UHFFFAOYSA-N bis(dimethylsilyloxy)-methylsilane Chemical compound C[SiH](C)O[SiH](C)O[SiH](C)C DLMRBGAENSRVSV-UHFFFAOYSA-N 0.000 description 1
- QKLJGAJVUNMSGN-UHFFFAOYSA-N bis(dimethylsilyloxy)-pentylsilane Chemical compound C(CCCC)[SiH](O[SiH](C)C)O[SiH](C)C QKLJGAJVUNMSGN-UHFFFAOYSA-N 0.000 description 1
- AVAKDMJNXXFZNC-UHFFFAOYSA-N bis(dimethylsilyloxy)-phenylsilane Chemical compound C[SiH](C)O[SiH](O[SiH](C)C)C1=CC=CC=C1 AVAKDMJNXXFZNC-UHFFFAOYSA-N 0.000 description 1
- DJPWHHZHURZBDB-UHFFFAOYSA-N bis(dimethylsilyloxy)-propan-2-ylsilane Chemical compound C(C)(C)[SiH](O[SiH](C)C)O[SiH](C)C DJPWHHZHURZBDB-UHFFFAOYSA-N 0.000 description 1
- ZTTAGBYZHSEQAC-UHFFFAOYSA-N bis(dimethylsilyloxy)-propylsilane Chemical compound C(CC)[SiH](O[SiH](C)C)O[SiH](C)C ZTTAGBYZHSEQAC-UHFFFAOYSA-N 0.000 description 1
- QIOIAGDUGGSDQH-UHFFFAOYSA-N bis(dimethylsilyloxy)silyloxy-dimethyl-trimethylsilyloxysilane Chemical compound C[SiH](O[SiH](O[Si](C)(C)O[Si](C)(C)C)O[SiH](C)C)C QIOIAGDUGGSDQH-UHFFFAOYSA-N 0.000 description 1
- BASOMUKVCJZMDK-UHFFFAOYSA-N bis(dimethylsilyloxy)silyloxy-dimethylsilyloxy-dimethylsilane Chemical compound C[SiH](O[SiH](O[Si](C)(C)O[SiH](C)C)O[SiH](C)C)C BASOMUKVCJZMDK-UHFFFAOYSA-N 0.000 description 1
- YQPSTPIKAKGYPW-UHFFFAOYSA-N bis(triethylsilyloxy)silyloxy-triethylsilane Chemical compound CC[Si](CC)(CC)O[SiH](O[Si](CC)(CC)CC)O[Si](CC)(CC)CC YQPSTPIKAKGYPW-UHFFFAOYSA-N 0.000 description 1
- JBRHRHRIQVSRFO-UHFFFAOYSA-N bis(trimethylsilyloxy)silyloxy-dimethyl-trimethylsilyloxysilane Chemical compound C[Si](O[SiH](O[Si](C)(C)O[Si](C)(C)C)O[Si](C)(C)C)(C)C JBRHRHRIQVSRFO-UHFFFAOYSA-N 0.000 description 1
- JHNLKUNPYLYSRR-UHFFFAOYSA-N bis(trimethylsilyloxy)silyloxy-dimethylsilyloxy-dimethylsilane Chemical compound C[Si](O[SiH](O[Si](C)(C)O[SiH](C)C)O[Si](C)(C)C)(C)C JHNLKUNPYLYSRR-UHFFFAOYSA-N 0.000 description 1
- RQGJVAWGHURYTP-UHFFFAOYSA-N bis[[dimethyl(trimethylsilyloxy)silyl]oxy]silyloxy-dimethyl-trimethylsilyloxysilane Chemical compound C[Si](O[Si](O[SiH](O[Si](O[Si](C)(C)C)(C)C)O[Si](O[Si](C)(C)C)(C)C)(C)C)(C)C RQGJVAWGHURYTP-UHFFFAOYSA-N 0.000 description 1
- QPFYUCVYNDMAGP-UHFFFAOYSA-N bis[di(propan-2-yl)silyloxy]-ethylsilane Chemical compound C(C)[SiH](O[SiH](C(C)C)C(C)C)O[SiH](C(C)C)C(C)C QPFYUCVYNDMAGP-UHFFFAOYSA-N 0.000 description 1
- SCOPTPHEPZXVHR-UHFFFAOYSA-N bis[di(propan-2-yl)silyloxy]-hexylsilane Chemical compound C(CCCCC)[SiH](O[SiH](C(C)C)C(C)C)O[SiH](C(C)C)C(C)C SCOPTPHEPZXVHR-UHFFFAOYSA-N 0.000 description 1
- FMLBBQXSVQXUAM-UHFFFAOYSA-N bis[di(propan-2-yl)silyloxy]-methylsilane Chemical compound C[SiH](O[SiH](C(C)C)C(C)C)O[SiH](C(C)C)C(C)C FMLBBQXSVQXUAM-UHFFFAOYSA-N 0.000 description 1
- SJOVKQWAHZGDEW-UHFFFAOYSA-N bis[di(propan-2-yl)silyloxy]-pentylsilane Chemical compound C(CCCC)[SiH](O[SiH](C(C)C)C(C)C)O[SiH](C(C)C)C(C)C SJOVKQWAHZGDEW-UHFFFAOYSA-N 0.000 description 1
- OZCUZHDYXQAANX-UHFFFAOYSA-N bis[di(propan-2-yl)silyloxy]-phenylsilane Chemical compound C1(=CC=CC=C1)[SiH](O[SiH](C(C)C)C(C)C)O[SiH](C(C)C)C(C)C OZCUZHDYXQAANX-UHFFFAOYSA-N 0.000 description 1
- FUOQWGIZUCMQKA-UHFFFAOYSA-N bis[di(propan-2-yl)silyloxy]-propan-2-ylsilane Chemical compound C(C)(C)[SiH](O[SiH](C(C)C)C(C)C)O[SiH](C(C)C)C(C)C FUOQWGIZUCMQKA-UHFFFAOYSA-N 0.000 description 1
- ATNMEMNOTIGOMZ-UHFFFAOYSA-N bis[di(propan-2-yl)silyloxy]-propylsilane Chemical compound C(CC)[SiH](O[SiH](C(C)C)C(C)C)O[SiH](C(C)C)C(C)C ATNMEMNOTIGOMZ-UHFFFAOYSA-N 0.000 description 1
- JKJWUYDLVRTAHU-UHFFFAOYSA-N bis[tri(propan-2-yl)silyloxy]silyloxy-tri(propan-2-yl)silane Chemical compound C(C)(C)[Si](O[SiH](O[Si](C(C)C)(C(C)C)C(C)C)O[Si](C(C)C)(C(C)C)C(C)C)(C(C)C)C(C)C JKJWUYDLVRTAHU-UHFFFAOYSA-N 0.000 description 1
- OQROAIRCEOBYJA-UHFFFAOYSA-N bromodiphenylmethane Chemical compound C=1C=CC=CC=1C(Br)C1=CC=CC=C1 OQROAIRCEOBYJA-UHFFFAOYSA-N 0.000 description 1
- AHBFJGHOACGALZ-UHFFFAOYSA-K butoxymethanedithioate neodymium(3+) Chemical compound [Nd+3].CCCCOC([S-])=S.CCCCOC([S-])=S.CCCCOC([S-])=S AHBFJGHOACGALZ-UHFFFAOYSA-K 0.000 description 1
- ILGRJWRWHVWPIO-UHFFFAOYSA-K butyl 2-ethylhexyl phosphate neodymium(3+) Chemical compound [Nd+3].CCCCOP([O-])(=O)OCC(CC)CCCC.CCCCOP([O-])(=O)OCC(CC)CCCC.CCCCOP([O-])(=O)OCC(CC)CCCC ILGRJWRWHVWPIO-UHFFFAOYSA-K 0.000 description 1
- ZEZXMFBCRYGNNP-UHFFFAOYSA-N butyl(diethoxy)silane Chemical compound CCCC[SiH](OCC)OCC ZEZXMFBCRYGNNP-UHFFFAOYSA-N 0.000 description 1
- DTTVIPFQOOGEHZ-UHFFFAOYSA-N butyl(phenyl)alumane Chemical compound C1(=CC=CC=C1)[AlH]CCCC DTTVIPFQOOGEHZ-UHFFFAOYSA-N 0.000 description 1
- PJWCPDQGYPRSAT-UHFFFAOYSA-M butyl(phenyl)alumanylium;chloride Chemical compound [Cl-].CCCC[Al+]C1=CC=CC=C1 PJWCPDQGYPRSAT-UHFFFAOYSA-M 0.000 description 1
- ANENTNQQVIUDQM-UHFFFAOYSA-N butyl-(4-methylphenyl)alumane Chemical compound C1(=CC=C(C=C1)[AlH]CCCC)C ANENTNQQVIUDQM-UHFFFAOYSA-N 0.000 description 1
- OYRHKHOWCLRGCQ-UHFFFAOYSA-M butyl-(4-methylphenyl)alumanylium;chloride Chemical compound [Cl-].CCCC[Al+]C1=CC=C(C)C=C1 OYRHKHOWCLRGCQ-UHFFFAOYSA-M 0.000 description 1
- BHAZRJFSFNMMTP-UHFFFAOYSA-N butyl-bis(diethylsilyloxy)silane Chemical compound C(CCC)[SiH](O[SiH](CC)CC)O[SiH](CC)CC BHAZRJFSFNMMTP-UHFFFAOYSA-N 0.000 description 1
- FDZILWGBANOFFN-UHFFFAOYSA-N butyl-bis(dimethylsilyloxy)silane Chemical compound C(CCC)[SiH](O[SiH](C)C)O[SiH](C)C FDZILWGBANOFFN-UHFFFAOYSA-N 0.000 description 1
- OILCGMKLEGDJJH-UHFFFAOYSA-N butyl-bis[di(propan-2-yl)silyloxy]silane Chemical compound C(CCC)[SiH](O[SiH](C(C)C)C(C)C)O[SiH](C(C)C)C(C)C OILCGMKLEGDJJH-UHFFFAOYSA-N 0.000 description 1
- TWUCQHPURWYYNQ-UHFFFAOYSA-N butyl-ethoxy-methoxysilane Chemical compound CCCC[SiH](OC)OCC TWUCQHPURWYYNQ-UHFFFAOYSA-N 0.000 description 1
- BDCXMQUZTUCPJP-UHFFFAOYSA-N butyl-ethoxy-phenoxysilane Chemical compound C(CCC)[SiH](OCC)OC1=CC=CC=C1 BDCXMQUZTUCPJP-UHFFFAOYSA-N 0.000 description 1
- GOLXANMOSQDNPW-UHFFFAOYSA-N butyl-methoxy-phenoxysilane Chemical compound C(CCC)[SiH](OC1=CC=CC=C1)OC GOLXANMOSQDNPW-UHFFFAOYSA-N 0.000 description 1
- VPCAAUUIFCAFRZ-UHFFFAOYSA-N butylalumane Chemical compound CCCC[AlH2] VPCAAUUIFCAFRZ-UHFFFAOYSA-N 0.000 description 1
- SHOVVTSKTTYFGP-UHFFFAOYSA-L butylaluminum(2+);dichloride Chemical compound CCCC[Al](Cl)Cl SHOVVTSKTTYFGP-UHFFFAOYSA-L 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 125000005626 carbonium group Chemical group 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- IKNAJTLCCWPIQD-UHFFFAOYSA-K cerium(3+);lanthanum(3+);neodymium(3+);oxygen(2-);phosphate Chemical compound [O-2].[La+3].[Ce+3].[Nd+3].[O-]P([O-])([O-])=O IKNAJTLCCWPIQD-UHFFFAOYSA-K 0.000 description 1
- HYZXMVILOKSUKA-UHFFFAOYSA-K chloro(dimethyl)alumane;dichloro(methyl)alumane Chemical compound C[Al](C)Cl.C[Al](Cl)Cl HYZXMVILOKSUKA-UHFFFAOYSA-K 0.000 description 1
- ISFMCQATCMRFPY-UHFFFAOYSA-M chloro(diphenyl)alumane Chemical compound [Cl-].C=1C=CC=CC=1[Al+]C1=CC=CC=C1 ISFMCQATCMRFPY-UHFFFAOYSA-M 0.000 description 1
- PIMYDFDXAUVLON-UHFFFAOYSA-M chloro(triethyl)stannane Chemical compound CC[Sn](Cl)(CC)CC PIMYDFDXAUVLON-UHFFFAOYSA-M 0.000 description 1
- KWTSZCJMWHGPOS-UHFFFAOYSA-M chloro(trimethyl)stannane Chemical compound C[Sn](C)(C)Cl KWTSZCJMWHGPOS-UHFFFAOYSA-M 0.000 description 1
- LKRBKNPREDAJJQ-UHFFFAOYSA-M chloro-di(propan-2-yl)alumane Chemical compound [Cl-].CC(C)[Al+]C(C)C LKRBKNPREDAJJQ-UHFFFAOYSA-M 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 125000004465 cycloalkenyloxy group Chemical group 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- YVHJRAAAFKGEQV-UHFFFAOYSA-N cyclohexyl(diethoxy)silane Chemical compound CCO[SiH](OCC)C1CCCCC1 YVHJRAAAFKGEQV-UHFFFAOYSA-N 0.000 description 1
- XUCKQPJKYWZURJ-UHFFFAOYSA-N cyclohexyl(dimethoxy)silane Chemical compound CO[SiH](OC)C1CCCCC1 XUCKQPJKYWZURJ-UHFFFAOYSA-N 0.000 description 1
- XHWZEAHIQBCVMS-UHFFFAOYSA-N cyclohexyl(diphenoxy)silane Chemical compound C1(CCCCC1)[SiH](OC1=CC=CC=C1)OC1=CC=CC=C1 XHWZEAHIQBCVMS-UHFFFAOYSA-N 0.000 description 1
- YYSWNXAMQZNFCC-UHFFFAOYSA-N cyclohexyl-bis(diethylsilyloxy)silane Chemical compound C1(CCCCC1)[SiH](O[SiH](CC)CC)O[SiH](CC)CC YYSWNXAMQZNFCC-UHFFFAOYSA-N 0.000 description 1
- PIPDLOLYTQNPMC-UHFFFAOYSA-N cyclohexyl-bis(dimethylsilyloxy)silane Chemical compound C[SiH](C)O[SiH](O[SiH](C)C)C1CCCCC1 PIPDLOLYTQNPMC-UHFFFAOYSA-N 0.000 description 1
- COOPZZAKRGYVMO-UHFFFAOYSA-N cyclohexyl-bis[di(propan-2-yl)silyloxy]silane Chemical compound C1(CCCCC1)[SiH](O[SiH](C(C)C)C(C)C)O[SiH](C(C)C)C(C)C COOPZZAKRGYVMO-UHFFFAOYSA-N 0.000 description 1
- YWADZCODLBUTEU-UHFFFAOYSA-N cyclohexyl-di(propan-2-yl)silyloxy-ethylsilane Chemical compound C(C)[SiH](O[SiH](C(C)C)C(C)C)C1CCCCC1 YWADZCODLBUTEU-UHFFFAOYSA-N 0.000 description 1
- NMBBPCXEWGYOBX-UHFFFAOYSA-N cyclohexyl-di(propan-2-yl)silyloxy-methylsilane Chemical compound C[SiH](O[SiH](C(C)C)C(C)C)C1CCCCC1 NMBBPCXEWGYOBX-UHFFFAOYSA-N 0.000 description 1
- OROVQVFICNKUMX-UHFFFAOYSA-N cyclohexyl-diethylsilyloxy-ethylsilane Chemical compound C(C)[SiH](O[SiH](CC)CC)C1CCCCC1 OROVQVFICNKUMX-UHFFFAOYSA-N 0.000 description 1
- XADOGNRYXWVRHU-UHFFFAOYSA-N cyclohexyl-diethylsilyloxy-methylsilane Chemical compound C[SiH](O[SiH](CC)CC)C1CCCCC1 XADOGNRYXWVRHU-UHFFFAOYSA-N 0.000 description 1
- ZYEQIPPBIFAJQT-UHFFFAOYSA-N cyclohexyl-dimethylsilyloxy-ethylsilane Chemical compound C(C)[SiH](O[SiH](C)C)C1CCCCC1 ZYEQIPPBIFAJQT-UHFFFAOYSA-N 0.000 description 1
- QETKORLJJKTPOQ-UHFFFAOYSA-N cyclohexyl-dimethylsilyloxy-methylsilane Chemical compound C[SiH](O[SiH](C)C)C1CCCCC1 QETKORLJJKTPOQ-UHFFFAOYSA-N 0.000 description 1
- JPOWYEMMSSSFJX-UHFFFAOYSA-N cyclohexyl-ethoxy-ethylsilane Chemical compound C(C)[SiH](OCC)C1CCCCC1 JPOWYEMMSSSFJX-UHFFFAOYSA-N 0.000 description 1
- IIBBDWZAPWNLGI-UHFFFAOYSA-N cyclohexyl-ethoxy-methoxysilane Chemical compound C1(CCCCC1)[SiH](OCC)OC IIBBDWZAPWNLGI-UHFFFAOYSA-N 0.000 description 1
- RETRMYIUGJTODQ-UHFFFAOYSA-N cyclohexyl-ethoxy-methylsilane Chemical compound C1(CCCCC1)[SiH](OCC)C RETRMYIUGJTODQ-UHFFFAOYSA-N 0.000 description 1
- HAQNXRLKHRSGSH-UHFFFAOYSA-N cyclohexyl-ethoxy-phenoxysilane Chemical compound C1(CCCCC1)[SiH](OCC)OC1=CC=CC=C1 HAQNXRLKHRSGSH-UHFFFAOYSA-N 0.000 description 1
- DJUGLEDOBYVWLO-UHFFFAOYSA-N cyclohexyl-ethyl-methoxysilane Chemical compound C1CCC([SiH](OC)CC)CC1 DJUGLEDOBYVWLO-UHFFFAOYSA-N 0.000 description 1
- OBBXMJIVQYVULG-UHFFFAOYSA-N cyclohexyl-ethyl-phenoxysilane Chemical compound C(C)[SiH](OC1=CC=CC=C1)C1CCCCC1 OBBXMJIVQYVULG-UHFFFAOYSA-N 0.000 description 1
- VARCERBLAQWSHW-UHFFFAOYSA-N cyclohexyl-methoxy-methylsilane Chemical compound CO[SiH](C)C1CCCCC1 VARCERBLAQWSHW-UHFFFAOYSA-N 0.000 description 1
- LBRFTFYSOCMUGB-UHFFFAOYSA-N cyclohexyl-methoxy-phenoxysilane Chemical compound C1(CCCCC1)[SiH](OC1=CC=CC=C1)OC LBRFTFYSOCMUGB-UHFFFAOYSA-N 0.000 description 1
- NVHUHXYPAOSAAJ-UHFFFAOYSA-N cyclohexyl-methyl-phenoxysilane Chemical compound C[SiH](OC1=CC=CC=C1)C1CCCCC1 NVHUHXYPAOSAAJ-UHFFFAOYSA-N 0.000 description 1
- KDUIUFJBNGTBMD-VXMYFEMYSA-N cyclooctatetraene Chemical compound C1=C\C=C/C=C\C=C1 KDUIUFJBNGTBMD-VXMYFEMYSA-N 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- ZTVNMDOSBVIJFG-UHFFFAOYSA-K di(octan-2-yl)phosphinate;neodymium(3+) Chemical compound [Nd+3].CCCCCCC(C)P([O-])(=O)C(C)CCCCCC.CCCCCCC(C)P([O-])(=O)C(C)CCCCCC.CCCCCCC(C)P([O-])(=O)C(C)CCCCCC ZTVNMDOSBVIJFG-UHFFFAOYSA-K 0.000 description 1
- CDHICTNQMQYRSM-UHFFFAOYSA-N di(propan-2-yl)alumane Chemical compound CC(C)[AlH]C(C)C CDHICTNQMQYRSM-UHFFFAOYSA-N 0.000 description 1
- MQRXZVLOOXQGLF-UHFFFAOYSA-N di(propan-2-yl)silyloxy-di(propan-2-yl)silane Chemical compound CC(C)[SiH](C(C)C)O[SiH](C(C)C)C(C)C MQRXZVLOOXQGLF-UHFFFAOYSA-N 0.000 description 1
- VIPNXFRFLQHGTM-UHFFFAOYSA-N di(propan-2-yl)silyloxy-dipropylsilane Chemical compound C(CC)[SiH](O[SiH](C(C)C)C(C)C)CCC VIPNXFRFLQHGTM-UHFFFAOYSA-N 0.000 description 1
- FHISHRJQSOZKBQ-UHFFFAOYSA-N di(propan-2-yl)silyloxy-ethyl-methylsilane Chemical compound C[SiH](O[SiH](C(C)C)C(C)C)CC FHISHRJQSOZKBQ-UHFFFAOYSA-N 0.000 description 1
- PIKGJEZVQFIXTC-UHFFFAOYSA-N di(propan-2-yl)silyloxy-ethyl-phenylsilane Chemical compound C(C)[SiH](O[SiH](C(C)C)C(C)C)C1=CC=CC=C1 PIKGJEZVQFIXTC-UHFFFAOYSA-N 0.000 description 1
- FWEUXSHOPBQFTL-UHFFFAOYSA-N di(propan-2-yl)silyloxy-ethyl-propan-2-ylsilane Chemical compound C(C)(C)[SiH](O[SiH](C(C)C)C(C)C)CC FWEUXSHOPBQFTL-UHFFFAOYSA-N 0.000 description 1
- SKNJFZDSNOIEIF-UHFFFAOYSA-N di(propan-2-yl)silyloxy-methyl-phenylsilane Chemical compound C[SiH](O[SiH](C(C)C)C(C)C)C1=CC=CC=C1 SKNJFZDSNOIEIF-UHFFFAOYSA-N 0.000 description 1
- PLKRYWMFBSWCDM-UHFFFAOYSA-N di(propan-2-yl)silyloxy-methyl-propan-2-ylsilane Chemical compound C[SiH](O[SiH](C(C)C)C(C)C)C(C)C PLKRYWMFBSWCDM-UHFFFAOYSA-N 0.000 description 1
- NAKDTKKONLFZLQ-UHFFFAOYSA-N di(propan-2-yl)silyloxy-phenyl-propan-2-ylsilane Chemical compound C(C)(C)[SiH](O[SiH](C(C)C)C(C)C)C1=CC=CC=C1 NAKDTKKONLFZLQ-UHFFFAOYSA-N 0.000 description 1
- OMWRZRQGCSKAMR-UHFFFAOYSA-N di(propan-2-yl)silyloxy-tri(propan-2-yl)silane Chemical compound C(C)(C)[SiH](O[Si](C(C)C)(C(C)C)C(C)C)C(C)C OMWRZRQGCSKAMR-UHFFFAOYSA-N 0.000 description 1
- SEDHOUPCJYONON-UHFFFAOYSA-N di(propan-2-yl)silyloxy-triethylsilane Chemical compound C(C)(C)[SiH](O[Si](CC)(CC)CC)C(C)C SEDHOUPCJYONON-UHFFFAOYSA-N 0.000 description 1
- PCZNDAQYNQUSEK-UHFFFAOYSA-N di(propan-2-yl)silyloxy-trimethylsilane Chemical compound C(C)(C)[SiH](O[Si](C)(C)C)C(C)C PCZNDAQYNQUSEK-UHFFFAOYSA-N 0.000 description 1
- RQXXJDTUITUSMU-UHFFFAOYSA-M dibenzyl(chloro)alumane Chemical compound [Cl-].C=1C=CC=CC=1C[Al+]CC1=CC=CC=C1 RQXXJDTUITUSMU-UHFFFAOYSA-M 0.000 description 1
- OMMSSMAJDJVAAH-UHFFFAOYSA-N dibenzyl(diethylsilyloxy)silane Chemical compound C(C1=CC=CC=C1)[SiH](O[SiH](CC)CC)CC1=CC=CC=C1 OMMSSMAJDJVAAH-UHFFFAOYSA-N 0.000 description 1
- KZPGUYAAMCJZMA-UHFFFAOYSA-N dibenzyl(dimethylsilyloxy)silane Chemical compound C(C1=CC=CC=C1)[SiH](O[SiH](C)C)CC1=CC=CC=C1 KZPGUYAAMCJZMA-UHFFFAOYSA-N 0.000 description 1
- WNAHPEDZGPRENH-UHFFFAOYSA-N dibenzyl(ethoxy)silane Chemical compound C=1C=CC=CC=1C[SiH](OCC)CC1=CC=CC=C1 WNAHPEDZGPRENH-UHFFFAOYSA-N 0.000 description 1
- OTACYDLCOLOKPA-UHFFFAOYSA-N dibenzyl(ethyl)alumane Chemical compound C=1C=CC=CC=1C[Al](CC)CC1=CC=CC=C1 OTACYDLCOLOKPA-UHFFFAOYSA-N 0.000 description 1
- JGSSZEVXNNKQOC-UHFFFAOYSA-N dibenzyl(methoxy)silane Chemical compound C=1C=CC=CC=1C[SiH](OC)CC1=CC=CC=C1 JGSSZEVXNNKQOC-UHFFFAOYSA-N 0.000 description 1
- QKPAGPDUONDSRJ-UHFFFAOYSA-N dibenzyl(phenoxy)silane Chemical compound C(C1=CC=CC=C1)[SiH](OC1=CC=CC=C1)CC1=CC=CC=C1 QKPAGPDUONDSRJ-UHFFFAOYSA-N 0.000 description 1
- XCJWBSPUZLXNFU-UHFFFAOYSA-N dibenzyl-di(propan-2-yl)silyloxysilane Chemical compound C(C1=CC=CC=C1)[SiH](O[SiH](C(C)C)C(C)C)CC1=CC=CC=C1 XCJWBSPUZLXNFU-UHFFFAOYSA-N 0.000 description 1
- DODCHQVKECHKRP-UHFFFAOYSA-N dibenzylalumane Chemical compound C(C1=CC=CC=C1)[AlH]CC1=CC=CC=C1 DODCHQVKECHKRP-UHFFFAOYSA-N 0.000 description 1
- UOSGPDJASMDLGN-UHFFFAOYSA-N dibenzylsilyloxy(triethyl)silane Chemical compound C(C1=CC=CC=C1)[SiH](O[Si](CC)(CC)CC)CC1=CC=CC=C1 UOSGPDJASMDLGN-UHFFFAOYSA-N 0.000 description 1
- RUZICTFXKWWCHD-UHFFFAOYSA-N dibenzylsilyloxy(trimethyl)silane Chemical compound C(C1=CC=CC=C1)[SiH](O[Si](C)(C)C)CC1=CC=CC=C1 RUZICTFXKWWCHD-UHFFFAOYSA-N 0.000 description 1
- YWFCEXFFKUGDTB-UHFFFAOYSA-N dibenzylsilyloxy-tri(propan-2-yl)silane Chemical compound C(C1=CC=CC=C1)[SiH](O[Si](C(C)C)(C(C)C)C(C)C)CC1=CC=CC=C1 YWFCEXFFKUGDTB-UHFFFAOYSA-N 0.000 description 1
- VFENDXLKEHQKOU-UHFFFAOYSA-L dibromo(ditert-butyl)stannane Chemical compound CC(C)(C)[Sn](Br)(Br)C(C)(C)C VFENDXLKEHQKOU-UHFFFAOYSA-L 0.000 description 1
- VCJZTATVUDMNLU-UHFFFAOYSA-N dibromomethylbenzene Chemical compound BrC(Br)C1=CC=CC=C1 VCJZTATVUDMNLU-UHFFFAOYSA-N 0.000 description 1
- RJGHQTVXGKYATR-UHFFFAOYSA-L dibutyl(dichloro)stannane Chemical compound CCCC[Sn](Cl)(Cl)CCCC RJGHQTVXGKYATR-UHFFFAOYSA-L 0.000 description 1
- ORQSWQAMUYPFHT-UHFFFAOYSA-N dibutyl(diethylsilyloxy)silane Chemical compound C(CCC)[SiH](O[SiH](CC)CC)CCCC ORQSWQAMUYPFHT-UHFFFAOYSA-N 0.000 description 1
- GZEOYGOTSWBYGH-UHFFFAOYSA-N dibutyl(ethoxy)silane Chemical compound CCCC[SiH](OCC)CCCC GZEOYGOTSWBYGH-UHFFFAOYSA-N 0.000 description 1
- OHFQPUJZMBVZRX-UHFFFAOYSA-N dibutyl(phenoxy)silane Chemical compound C(CCC)[SiH](OC1=CC=CC=C1)CCCC OHFQPUJZMBVZRX-UHFFFAOYSA-N 0.000 description 1
- KRZZHPFJOBNCNH-UHFFFAOYSA-N dibutyl-di(propan-2-yl)silyloxysilane Chemical compound C(CCC)[SiH](O[SiH](C(C)C)C(C)C)CCCC KRZZHPFJOBNCNH-UHFFFAOYSA-N 0.000 description 1
- VJRUISVXILMZSL-UHFFFAOYSA-M dibutylalumanylium;chloride Chemical compound CCCC[Al](Cl)CCCC VJRUISVXILMZSL-UHFFFAOYSA-M 0.000 description 1
- VTZJFPSWNQFPCQ-UHFFFAOYSA-N dibutylaluminum Chemical compound CCCC[Al]CCCC VTZJFPSWNQFPCQ-UHFFFAOYSA-N 0.000 description 1
- XYBPXKSKJGTKJB-UHFFFAOYSA-K dibutylphosphinate;neodymium(3+) Chemical compound [Nd+3].CCCCP([O-])(=O)CCCC.CCCCP([O-])(=O)CCCC.CCCCP([O-])(=O)CCCC XYBPXKSKJGTKJB-UHFFFAOYSA-K 0.000 description 1
- DZUXQDKIKFTQDY-UHFFFAOYSA-N dibutylsilyloxy(triethyl)silane Chemical compound C(CCC)[SiH](O[Si](CC)(CC)CC)CCCC DZUXQDKIKFTQDY-UHFFFAOYSA-N 0.000 description 1
- XEMNYLGPNMULAP-UHFFFAOYSA-N dibutylsilyloxy(trimethyl)silane Chemical compound C(CCC)[SiH](O[Si](C)(C)C)CCCC XEMNYLGPNMULAP-UHFFFAOYSA-N 0.000 description 1
- NEPPHLLVTRYQCZ-UHFFFAOYSA-N dibutylsilyloxy-tri(propan-2-yl)silane Chemical compound C(CCC)[SiH](O[Si](C(C)C)(C(C)C)C(C)C)CCCC NEPPHLLVTRYQCZ-UHFFFAOYSA-N 0.000 description 1
- QSHZUFRQHSINTB-UHFFFAOYSA-L dibutyltin(2+);dibromide Chemical compound CCCC[Sn](Br)(Br)CCCC QSHZUFRQHSINTB-UHFFFAOYSA-L 0.000 description 1
- OSXYHAQZDCICNX-UHFFFAOYSA-N dichloro(diphenyl)silane Chemical compound C=1C=CC=CC=1[Si](Cl)(Cl)C1=CC=CC=C1 OSXYHAQZDCICNX-UHFFFAOYSA-N 0.000 description 1
- FLFGMNFGOKXUQY-UHFFFAOYSA-L dichloro(propan-2-yl)alumane Chemical compound [Cl-].[Cl-].CC(C)[Al+2] FLFGMNFGOKXUQY-UHFFFAOYSA-L 0.000 description 1
- RFUDQCRVCDXBGK-UHFFFAOYSA-L dichloro(propyl)alumane Chemical compound [Cl-].[Cl-].CCC[Al+2] RFUDQCRVCDXBGK-UHFFFAOYSA-L 0.000 description 1
- JMSVGWMFQSMEBJ-UHFFFAOYSA-N dicyclohexyl(diethylsilyloxy)silane Chemical compound C1(CCCCC1)[SiH](O[SiH](CC)CC)C1CCCCC1 JMSVGWMFQSMEBJ-UHFFFAOYSA-N 0.000 description 1
- ORJIIXDNKJHART-UHFFFAOYSA-N dicyclohexyl(dimethylsilyloxy)silane Chemical compound C1(CCCCC1)[SiH](O[SiH](C)C)C1CCCCC1 ORJIIXDNKJHART-UHFFFAOYSA-N 0.000 description 1
- CJARMWNEUFDOGS-UHFFFAOYSA-N dicyclohexyl(ethoxy)silane Chemical compound CCO[SiH](C1CCCCC1)C1CCCCC1 CJARMWNEUFDOGS-UHFFFAOYSA-N 0.000 description 1
- YXFSTSFYTJXUKY-UHFFFAOYSA-N dicyclohexyl(phenoxy)silane Chemical compound C1(CCCCC1)[SiH](OC1=CC=CC=C1)C1CCCCC1 YXFSTSFYTJXUKY-UHFFFAOYSA-N 0.000 description 1
- OZOWMWNLNYKULV-UHFFFAOYSA-N dicyclohexyl-di(propan-2-yl)silyloxysilane Chemical compound C1(CCCCC1)[SiH](O[SiH](C(C)C)C(C)C)C1CCCCC1 OZOWMWNLNYKULV-UHFFFAOYSA-N 0.000 description 1
- LSXUPMGYQDTWNA-UHFFFAOYSA-N dicyclohexylmethoxysilane Chemical compound C1CCCCC1C(O[SiH3])C1CCCCC1 LSXUPMGYQDTWNA-UHFFFAOYSA-N 0.000 description 1
- WNYKHPCCYJDYFF-UHFFFAOYSA-N dicyclohexylsilyloxy(triethyl)silane Chemical compound C1(CCCCC1)[SiH](O[Si](CC)(CC)CC)C1CCCCC1 WNYKHPCCYJDYFF-UHFFFAOYSA-N 0.000 description 1
- WWPKPPKKTTUKDT-UHFFFAOYSA-N dicyclohexylsilyloxy(trimethyl)silane Chemical compound C1(CCCCC1)[SiH](O[Si](C)(C)C)C1CCCCC1 WWPKPPKKTTUKDT-UHFFFAOYSA-N 0.000 description 1
- YXZNMYQDMQJUCO-UHFFFAOYSA-N dicyclohexylsilyloxy-tri(propan-2-yl)silane Chemical compound C1(CCCCC1)[SiH](O[Si](C(C)C)(C(C)C)C(C)C)C1CCCCC1 YXZNMYQDMQJUCO-UHFFFAOYSA-N 0.000 description 1
- KQSNBEOLWQQQBT-UHFFFAOYSA-K didecylphosphinate;neodymium(3+) Chemical compound [Nd+3].CCCCCCCCCCP([O-])(=O)CCCCCCCCCC.CCCCCCCCCCP([O-])(=O)CCCCCCCCCC.CCCCCCCCCCP([O-])(=O)CCCCCCCCCC KQSNBEOLWQQQBT-UHFFFAOYSA-K 0.000 description 1
- BRJZEGHWEPTWAX-UHFFFAOYSA-K didodecylphosphinate;neodymium(3+) Chemical compound [Nd+3].CCCCCCCCCCCCP([O-])(=O)CCCCCCCCCCCC.CCCCCCCCCCCCP([O-])(=O)CCCCCCCCCCCC.CCCCCCCCCCCCP([O-])(=O)CCCCCCCCCCCC BRJZEGHWEPTWAX-UHFFFAOYSA-K 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- YEMLBLTUNOJCQH-UHFFFAOYSA-N diethoxy(2-methylpropyl)alumane Chemical compound CCO[Al](CC(C)C)OCC YEMLBLTUNOJCQH-UHFFFAOYSA-N 0.000 description 1
- DLRHRQTUCJTIIV-UHFFFAOYSA-N diethoxy(ethyl)alumane Chemical compound CC[O-].CC[O-].CC[Al+2] DLRHRQTUCJTIIV-UHFFFAOYSA-N 0.000 description 1
- ZWTJVXCCMKLQKS-UHFFFAOYSA-N diethoxy(ethyl)silicon Chemical compound CCO[Si](CC)OCC ZWTJVXCCMKLQKS-UHFFFAOYSA-N 0.000 description 1
- GAURFLBIDLSLQU-UHFFFAOYSA-N diethoxy(methyl)silicon Chemical compound CCO[Si](C)OCC GAURFLBIDLSLQU-UHFFFAOYSA-N 0.000 description 1
- DVAZURRZYNXADH-UHFFFAOYSA-N diethoxy(pentyl)silane Chemical compound CCCCC[SiH](OCC)OCC DVAZURRZYNXADH-UHFFFAOYSA-N 0.000 description 1
- BODAWKLCLUZBEZ-UHFFFAOYSA-N diethoxy(phenyl)silicon Chemical compound CCO[Si](OCC)C1=CC=CC=C1 BODAWKLCLUZBEZ-UHFFFAOYSA-N 0.000 description 1
- NGMGOHNBEKQQMJ-UHFFFAOYSA-N diethoxy(propan-2-yl)silane Chemical compound CCO[SiH](C(C)C)OCC NGMGOHNBEKQQMJ-UHFFFAOYSA-N 0.000 description 1
- FZQNBVBLHJXOEA-UHFFFAOYSA-N diethoxy(propyl)silane Chemical compound CCC[SiH](OCC)OCC FZQNBVBLHJXOEA-UHFFFAOYSA-N 0.000 description 1
- LDYLHMQUPCBROZ-UHFFFAOYSA-N diethyl(methoxy)alumane Chemical compound [O-]C.CC[Al+]CC LDYLHMQUPCBROZ-UHFFFAOYSA-N 0.000 description 1
- DGXPASZXUJQWLQ-UHFFFAOYSA-N diethyl(methoxy)silane Chemical compound CC[SiH](CC)OC DGXPASZXUJQWLQ-UHFFFAOYSA-N 0.000 description 1
- UWAMTZZJXXCIOH-UHFFFAOYSA-M diethyl(phenoxy)alumane Chemical compound CC[Al+]CC.[O-]C1=CC=CC=C1 UWAMTZZJXXCIOH-UHFFFAOYSA-M 0.000 description 1
- GJUGJXZKCJPPMD-UHFFFAOYSA-N diethyl(phenoxy)silane Chemical compound C(C)[SiH](OC1=CC=CC=C1)CC GJUGJXZKCJPPMD-UHFFFAOYSA-N 0.000 description 1
- MVGUIMCFFQICHB-UHFFFAOYSA-N diethyl(phenyl)alumane Chemical compound CC[Al](CC)C1=CC=CC=C1 MVGUIMCFFQICHB-UHFFFAOYSA-N 0.000 description 1
- PASXEHKLXCTXJM-UHFFFAOYSA-N diethyl-(4-methylphenyl)alumane Chemical compound CC[Al](CC)C1=CC=C(C)C=C1 PASXEHKLXCTXJM-UHFFFAOYSA-N 0.000 description 1
- CKFUUNCLZMDRMA-UHFFFAOYSA-N diethyl-[ethyl(methyl)silyl]oxysilane Chemical compound C[SiH](O[SiH](CC)CC)CC CKFUUNCLZMDRMA-UHFFFAOYSA-N 0.000 description 1
- OIZRMASEOGTKQN-UHFFFAOYSA-N diethyl-[ethyl(phenyl)silyl]oxysilane Chemical compound C(C)[SiH](O[SiH](CC)CC)C1=CC=CC=C1 OIZRMASEOGTKQN-UHFFFAOYSA-N 0.000 description 1
- OJRIYBAYWZYVCI-UHFFFAOYSA-N diethyl-[ethyl(propan-2-yl)silyl]oxysilane Chemical compound C(C)(C)[SiH](O[SiH](CC)CC)CC OJRIYBAYWZYVCI-UHFFFAOYSA-N 0.000 description 1
- RNZVBENBZFRFQY-UHFFFAOYSA-N diethyl-[ethyl-[5,5,5-trichloro-2,2-bis(3,3,3-trichloropropyl)pentyl]silyl]oxysilyloxysilane Chemical compound ClC(CCC(C[SiH](O[SiH2]O[SiH](CC)CC)CC)(CCC(Cl)(Cl)Cl)CCC(Cl)(Cl)Cl)(Cl)Cl RNZVBENBZFRFQY-UHFFFAOYSA-N 0.000 description 1
- LLBDLEISPRRSAV-UHFFFAOYSA-N diethyl-[methyl(phenyl)silyl]oxysilane Chemical compound C[SiH](O[SiH](CC)CC)C1=CC=CC=C1 LLBDLEISPRRSAV-UHFFFAOYSA-N 0.000 description 1
- CBGOKBBAFGCKTG-UHFFFAOYSA-N diethyl-[methyl(propan-2-yl)silyl]oxysilane Chemical compound C[SiH](O[SiH](CC)CC)C(C)C CBGOKBBAFGCKTG-UHFFFAOYSA-N 0.000 description 1
- UWPJHNAVXWLEGG-UHFFFAOYSA-N diethyl-[phenyl(propan-2-yl)silyl]oxysilane Chemical compound C(C)(C)[SiH](O[SiH](CC)CC)C1=CC=CC=C1 UWPJHNAVXWLEGG-UHFFFAOYSA-N 0.000 description 1
- HJXBDPDUCXORKZ-UHFFFAOYSA-N diethylalumane Chemical compound CC[AlH]CC HJXBDPDUCXORKZ-UHFFFAOYSA-N 0.000 description 1
- JJSGABFIILQOEY-UHFFFAOYSA-M diethylalumanylium;bromide Chemical compound CC[Al](Br)CC JJSGABFIILQOEY-UHFFFAOYSA-M 0.000 description 1
- HRXSKIOIHQEGAI-UHFFFAOYSA-M diethylalumanylium;fluoride Chemical compound CC[Al](F)CC HRXSKIOIHQEGAI-UHFFFAOYSA-M 0.000 description 1
- CCOCQIOIKQPQSR-UHFFFAOYSA-M diethylalumanylium;octadecanoate Chemical compound CC[Al+]CC.CCCCCCCCCCCCCCCCCC([O-])=O CCOCQIOIKQPQSR-UHFFFAOYSA-M 0.000 description 1
- XEVPOFCVYSDAQR-UHFFFAOYSA-N diethylsilyloxy(dihexyl)silane Chemical compound C(CCCCC)[SiH](O[SiH](CC)CC)CCCCCC XEVPOFCVYSDAQR-UHFFFAOYSA-N 0.000 description 1
- DCOHMYCPXCWKPN-UHFFFAOYSA-N diethylsilyloxy(dipentyl)silane Chemical compound C(CCCC)[SiH](O[SiH](CC)CC)CCCCC DCOHMYCPXCWKPN-UHFFFAOYSA-N 0.000 description 1
- PAJBXNVHBBJSQY-UHFFFAOYSA-N diethylsilyloxy(diphenyl)silane Chemical compound C1(=CC=CC=C1)[SiH](O[SiH](CC)CC)C1=CC=CC=C1 PAJBXNVHBBJSQY-UHFFFAOYSA-N 0.000 description 1
- GIRLBDVFOQLACR-UHFFFAOYSA-N diethylsilyloxy(dipropyl)silane Chemical compound C(CC)[SiH](O[SiH](CC)CC)CCC GIRLBDVFOQLACR-UHFFFAOYSA-N 0.000 description 1
- YJGZRFAQYNJCJV-UHFFFAOYSA-N diethylsilyloxy(triethyl)silane Chemical compound CC[SiH](CC)O[Si](CC)(CC)CC YJGZRFAQYNJCJV-UHFFFAOYSA-N 0.000 description 1
- UCPHERNLBJKEKP-UHFFFAOYSA-N diethylsilyloxy(trimethyl)silane Chemical compound C(C)[SiH](O[Si](C)(C)C)CC UCPHERNLBJKEKP-UHFFFAOYSA-N 0.000 description 1
- UXEKEJVAYSHBMA-UHFFFAOYSA-N diethylsilyloxy-[diethyl(triethylsilyloxy)silyl]oxy-diethylsilane Chemical compound C(C)[Si](O[Si](O[Si](O[SiH](CC)CC)(CC)CC)(CC)CC)(CC)CC UXEKEJVAYSHBMA-UHFFFAOYSA-N 0.000 description 1
- FWWXAYLKTUFFET-UHFFFAOYSA-N diethylsilyloxy-[diethylsilyloxy(diethyl)silyl]oxy-diethylsilane Chemical compound CC[SiH](CC)O[Si](CC)(CC)O[Si](CC)(CC)O[SiH](CC)CC FWWXAYLKTUFFET-UHFFFAOYSA-N 0.000 description 1
- SJFZRVWNUGYHML-UHFFFAOYSA-N diethylsilyloxy-diethyl-triethylsilyloxysilane Chemical compound CC[SiH](CC)O[Si](CC)(CC)O[Si](CC)(CC)CC SJFZRVWNUGYHML-UHFFFAOYSA-N 0.000 description 1
- WJZWULFZJXVWRS-UHFFFAOYSA-N diethylsilyloxy-tri(propan-2-yl)silane Chemical compound C(C)[SiH](O[Si](C(C)C)(C(C)C)C(C)C)CC WJZWULFZJXVWRS-UHFFFAOYSA-N 0.000 description 1
- JTGUKNQMNXAFIS-UHFFFAOYSA-K diheptylphosphinate;neodymium(3+) Chemical compound [Nd+3].CCCCCCCP([O-])(=O)CCCCCCC.CCCCCCCP([O-])(=O)CCCCCCC.CCCCCCCP([O-])(=O)CCCCCCC JTGUKNQMNXAFIS-UHFFFAOYSA-K 0.000 description 1
- AXEOTJPPNKRJOQ-UHFFFAOYSA-K dihexyl phosphate;neodymium(3+) Chemical compound [Nd+3].CCCCCCOP([O-])(=O)OCCCCCC.CCCCCCOP([O-])(=O)OCCCCCC.CCCCCCOP([O-])(=O)OCCCCCC AXEOTJPPNKRJOQ-UHFFFAOYSA-K 0.000 description 1
- WEYQAXBQFSZIEA-UHFFFAOYSA-N dihexyl(methoxy)silane Chemical compound CCCCCC[SiH](CCCCCC)OC WEYQAXBQFSZIEA-UHFFFAOYSA-N 0.000 description 1
- AZIGOVWLWMBYCT-UHFFFAOYSA-N dihexyl(phenoxy)silane Chemical compound C(CCCCC)[SiH](OC1=CC=CC=C1)CCCCCC AZIGOVWLWMBYCT-UHFFFAOYSA-N 0.000 description 1
- XHFZHPQZVCWVBA-UHFFFAOYSA-K dihexylphosphinate;neodymium(3+) Chemical compound [Nd+3].CCCCCCP([O-])(=O)CCCCCC.CCCCCCP([O-])(=O)CCCCCC.CCCCCCP([O-])(=O)CCCCCC XHFZHPQZVCWVBA-UHFFFAOYSA-K 0.000 description 1
- IYFKPULTUPQOEO-UHFFFAOYSA-N dihexylsilyloxy(triethyl)silane Chemical compound C(CCCCC)[SiH](O[Si](CC)(CC)CC)CCCCCC IYFKPULTUPQOEO-UHFFFAOYSA-N 0.000 description 1
- RLZXDBIEHCVZQE-UHFFFAOYSA-N dihexylsilyloxy(trimethyl)silane Chemical compound C(CCCCC)[SiH](O[Si](C)(C)C)CCCCCC RLZXDBIEHCVZQE-UHFFFAOYSA-N 0.000 description 1
- PQUFOYWYPVSKCM-UHFFFAOYSA-N dihexylsilyloxy-di(propan-2-yl)silane Chemical compound C(CCCCC)[SiH](O[SiH](C(C)C)C(C)C)CCCCCC PQUFOYWYPVSKCM-UHFFFAOYSA-N 0.000 description 1
- XFXXBZOCCKQRRU-UHFFFAOYSA-N dihexylsilyloxy-tri(propan-2-yl)silane Chemical compound C(CCCCC)[SiH](O[Si](C(C)C)(C(C)C)C(C)C)CCCCCC XFXXBZOCCKQRRU-UHFFFAOYSA-N 0.000 description 1
- PKTOVQRKCNPVKY-UHFFFAOYSA-N dimethoxy(methyl)silicon Chemical compound CO[Si](C)OC PKTOVQRKCNPVKY-UHFFFAOYSA-N 0.000 description 1
- DWYGLGYVAMEOSL-UHFFFAOYSA-N dimethoxy(pentyl)silane Chemical compound CCCCC[SiH](OC)OC DWYGLGYVAMEOSL-UHFFFAOYSA-N 0.000 description 1
- QKOQRGFJYNZGJV-UHFFFAOYSA-N dimethoxy(phenoxy)silane Chemical compound CO[SiH](OC)OC1=CC=CC=C1 QKOQRGFJYNZGJV-UHFFFAOYSA-N 0.000 description 1
- CIQDYIQMZXESRD-UHFFFAOYSA-N dimethoxy(phenyl)silane Chemical compound CO[SiH](OC)C1=CC=CC=C1 CIQDYIQMZXESRD-UHFFFAOYSA-N 0.000 description 1
- HVEBTMFRWKOCGF-UHFFFAOYSA-N dimethoxy(propan-2-yl)silane Chemical compound CO[SiH](OC)C(C)C HVEBTMFRWKOCGF-UHFFFAOYSA-N 0.000 description 1
- SGKDAFJDYSMACD-UHFFFAOYSA-N dimethoxy(propyl)silane Chemical compound CCC[SiH](OC)OC SGKDAFJDYSMACD-UHFFFAOYSA-N 0.000 description 1
- AFABGHUZZDYHJO-UHFFFAOYSA-N dimethyl butane Natural products CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 1
- RHBCYWAHUOTOJC-UHFFFAOYSA-N dimethyl(phenoxy)silicon Chemical compound C[Si](C)OC1=CC=CC=C1 RHBCYWAHUOTOJC-UHFFFAOYSA-N 0.000 description 1
- QTOVQZTZLUQLMA-UHFFFAOYSA-N dimethyl-[methyl(phenyl)silyl]oxysilane Chemical compound C[SiH](C)O[SiH](C)C1=CC=CC=C1 QTOVQZTZLUQLMA-UHFFFAOYSA-N 0.000 description 1
- AJIQEUCUHWEUHM-UHFFFAOYSA-N dimethyl-[methyl(propan-2-yl)silyl]oxysilane Chemical compound C[SiH](O[SiH](C)C)C(C)C AJIQEUCUHWEUHM-UHFFFAOYSA-N 0.000 description 1
- ZRLMHJOKSCDRLL-UHFFFAOYSA-N dimethyl-[phenyl(propan-2-yl)silyl]oxysilane Chemical compound C(C)(C)[SiH](O[SiH](C)C)C1=CC=CC=C1 ZRLMHJOKSCDRLL-UHFFFAOYSA-N 0.000 description 1
- IRWLSEJAVLQSDF-UHFFFAOYSA-N dimethyl-silyloxy-trimethylsilyloxysilane Chemical compound C[Si](C)(C)O[Si](C)(C)O[SiH3] IRWLSEJAVLQSDF-UHFFFAOYSA-N 0.000 description 1
- ZGMHEOLLTWPGQX-UHFFFAOYSA-M dimethylalumanylium;bromide Chemical compound C[Al](C)Br ZGMHEOLLTWPGQX-UHFFFAOYSA-M 0.000 description 1
- JGHYBJVUQGTEEB-UHFFFAOYSA-M dimethylalumanylium;chloride Chemical compound C[Al](C)Cl JGHYBJVUQGTEEB-UHFFFAOYSA-M 0.000 description 1
- MWNKMBHGMZHEMM-UHFFFAOYSA-N dimethylalumanylium;ethanolate Chemical compound CCO[Al](C)C MWNKMBHGMZHEMM-UHFFFAOYSA-N 0.000 description 1
- IRGBBLIJYFWRJM-UHFFFAOYSA-M dimethylalumanylium;hexanoate Chemical compound C[Al+]C.CCCCCC([O-])=O IRGBBLIJYFWRJM-UHFFFAOYSA-M 0.000 description 1
- SIWKOPAOOWDWHQ-UHFFFAOYSA-M dimethylalumanylium;phenoxide Chemical compound C[Al](C)OC1=CC=CC=C1 SIWKOPAOOWDWHQ-UHFFFAOYSA-M 0.000 description 1
- LIKFHECYJZWXFJ-UHFFFAOYSA-N dimethyldichlorosilane Chemical compound C[Si](C)(Cl)Cl LIKFHECYJZWXFJ-UHFFFAOYSA-N 0.000 description 1
- NVYQDQZEMGUESH-UHFFFAOYSA-N dimethylsilyloxy(dimethyl)silane Chemical compound C[SiH](C)O[SiH](C)C NVYQDQZEMGUESH-UHFFFAOYSA-N 0.000 description 1
- QBHFDBBSUFUBBK-UHFFFAOYSA-N dimethylsilyloxy(dipentyl)silane Chemical compound C(CCCC)[SiH](O[SiH](C)C)CCCCC QBHFDBBSUFUBBK-UHFFFAOYSA-N 0.000 description 1
- ZYVRTYTYUQBKFZ-UHFFFAOYSA-N dimethylsilyloxy(diphenyl)silane Chemical compound C=1C=CC=CC=1[SiH](O[SiH](C)C)C1=CC=CC=C1 ZYVRTYTYUQBKFZ-UHFFFAOYSA-N 0.000 description 1
- NSYGWAKRVZMEFS-UHFFFAOYSA-N dimethylsilyloxy(dipropyl)silane Chemical compound C(CC)[SiH](O[SiH](C)C)CCC NSYGWAKRVZMEFS-UHFFFAOYSA-N 0.000 description 1
- YLYOYUMWJJNTJY-UHFFFAOYSA-N dimethylsilyloxy(triethyl)silane Chemical compound CC[Si](CC)(CC)O[SiH](C)C YLYOYUMWJJNTJY-UHFFFAOYSA-N 0.000 description 1
- AOJHDNSYXUZCCE-UHFFFAOYSA-N dimethylsilyloxy(trimethyl)silane Chemical compound C[SiH](C)O[Si](C)(C)C AOJHDNSYXUZCCE-UHFFFAOYSA-N 0.000 description 1
- DZNOWYSQBNSEJQ-UHFFFAOYSA-N dimethylsilyloxy-[[dimethylsilyloxy(dimethyl)silyl]oxy-ethylsilyl]oxy-dimethylsilane Chemical compound C(C)[SiH](O[Si](O[SiH](C)C)(C)C)O[Si](C)(C)O[SiH](C)C DZNOWYSQBNSEJQ-UHFFFAOYSA-N 0.000 description 1
- KWVIALYSMLESAW-UHFFFAOYSA-N dimethylsilyloxy-[[dimethylsilyloxy(dimethyl)silyl]oxy-hexylsilyl]oxy-dimethylsilane Chemical compound C(CCCCC)[SiH](O[Si](O[SiH](C)C)(C)C)O[Si](C)(C)O[SiH](C)C KWVIALYSMLESAW-UHFFFAOYSA-N 0.000 description 1
- IRHIFGAHQKALMR-UHFFFAOYSA-N dimethylsilyloxy-[[dimethylsilyloxy(dimethyl)silyl]oxy-methylsilyl]oxy-dimethylsilane Chemical compound C[SiH](O[Si](O[SiH](C)C)(C)C)O[Si](C)(C)O[SiH](C)C IRHIFGAHQKALMR-UHFFFAOYSA-N 0.000 description 1
- NUCIPPXMONWWKT-UHFFFAOYSA-N dimethylsilyloxy-[[dimethylsilyloxy(dimethyl)silyl]oxy-pentylsilyl]oxy-dimethylsilane Chemical compound C(CCCC)[SiH](O[Si](O[SiH](C)C)(C)C)O[Si](C)(C)O[SiH](C)C NUCIPPXMONWWKT-UHFFFAOYSA-N 0.000 description 1
- PWISKIWLCLNPAW-UHFFFAOYSA-N dimethylsilyloxy-[[dimethylsilyloxy(dimethyl)silyl]oxy-phenylsilyl]oxy-dimethylsilane Chemical compound C1(=CC=CC=C1)[SiH](O[Si](O[SiH](C)C)(C)C)O[Si](C)(C)O[SiH](C)C PWISKIWLCLNPAW-UHFFFAOYSA-N 0.000 description 1
- VZBMOBMNHKRGFY-UHFFFAOYSA-N dimethylsilyloxy-[[dimethylsilyloxy(dimethyl)silyl]oxy-propan-2-ylsilyl]oxy-dimethylsilane Chemical compound C(C)(C)[SiH](O[Si](O[SiH](C)C)(C)C)O[Si](C)(C)O[SiH](C)C VZBMOBMNHKRGFY-UHFFFAOYSA-N 0.000 description 1
- AZRFMBKELFVDON-UHFFFAOYSA-N dimethylsilyloxy-[[dimethylsilyloxy(dimethyl)silyl]oxy-propylsilyl]oxy-dimethylsilane Chemical compound C(CC)[SiH](O[Si](O[SiH](C)C)(C)C)O[Si](C)(C)O[SiH](C)C AZRFMBKELFVDON-UHFFFAOYSA-N 0.000 description 1
- ARXNMERJUIGXAL-UHFFFAOYSA-N dimethylsilyloxy-[dimethyl(trimethylsilyloxy)silyl]oxy-dimethylsilane Chemical compound C[SiH](C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C ARXNMERJUIGXAL-UHFFFAOYSA-N 0.000 description 1
- CRNPIJRUSOPROM-UHFFFAOYSA-N dimethylsilyloxy-[dimethylsilyloxy(ethyl)silyl]oxy-dimethylsilane Chemical compound C(C)[SiH](O[Si](C)(C)O[SiH](C)C)O[SiH](C)C CRNPIJRUSOPROM-UHFFFAOYSA-N 0.000 description 1
- XFSVXFOGIQTMDQ-UHFFFAOYSA-N dimethylsilyloxy-[dimethylsilyloxy(hexyl)silyl]oxy-dimethylsilane Chemical compound C(CCCCC)[SiH](O[Si](C)(C)O[SiH](C)C)O[SiH](C)C XFSVXFOGIQTMDQ-UHFFFAOYSA-N 0.000 description 1
- RKNWEDONPPWJNO-UHFFFAOYSA-N dimethylsilyloxy-[dimethylsilyloxy(methyl)silyl]oxy-dimethylsilane Chemical compound C[SiH](C)O[SiH](C)O[Si](C)(C)O[SiH](C)C RKNWEDONPPWJNO-UHFFFAOYSA-N 0.000 description 1
- GWDFNKPGINYFEE-UHFFFAOYSA-N dimethylsilyloxy-[dimethylsilyloxy(pentyl)silyl]oxy-dimethylsilane Chemical compound C(CCCC)[SiH](O[Si](C)(C)O[SiH](C)C)O[SiH](C)C GWDFNKPGINYFEE-UHFFFAOYSA-N 0.000 description 1
- OMJWYSUNTSGKJG-UHFFFAOYSA-N dimethylsilyloxy-[dimethylsilyloxy(phenyl)silyl]oxy-dimethylsilane Chemical compound C1=C(C=CC=C1)[SiH](O[SiH](C)C)O[Si](C)(O[SiH](C)C)C OMJWYSUNTSGKJG-UHFFFAOYSA-N 0.000 description 1
- CCXIHTKUBMWXCK-UHFFFAOYSA-N dimethylsilyloxy-[dimethylsilyloxy(propan-2-yl)silyl]oxy-dimethylsilane Chemical compound C(C)(C)[SiH](O[Si](C)(C)O[SiH](C)C)O[SiH](C)C CCXIHTKUBMWXCK-UHFFFAOYSA-N 0.000 description 1
- BBAZWWPTDHAJJP-UHFFFAOYSA-N dimethylsilyloxy-[dimethylsilyloxy(propyl)silyl]oxy-dimethylsilane Chemical compound C(CC)[SiH](O[Si](C)(C)O[SiH](C)C)O[SiH](C)C BBAZWWPTDHAJJP-UHFFFAOYSA-N 0.000 description 1
- DDZFERIWFNMQCA-UHFFFAOYSA-N dimethylsilyloxy-[ethyl(trimethylsilyloxy)silyl]oxy-dimethylsilane Chemical compound C(C)[SiH](O[Si](C)(C)O[SiH](C)C)O[Si](C)(C)C DDZFERIWFNMQCA-UHFFFAOYSA-N 0.000 description 1
- GRVSAQIDNFBVTL-UHFFFAOYSA-N dimethylsilyloxy-[hexyl(trimethylsilyloxy)silyl]oxy-dimethylsilane Chemical compound C(CCCCC)[SiH](O[Si](C)(C)O[SiH](C)C)O[Si](C)(C)C GRVSAQIDNFBVTL-UHFFFAOYSA-N 0.000 description 1
- XMCLDZUQXDVDAU-UHFFFAOYSA-N dimethylsilyloxy-dimethyl-[methyl(trimethylsilyloxy)silyl]oxysilane Chemical compound C[SiH](C)O[Si](C)(C)O[SiH](C)O[Si](C)(C)C XMCLDZUQXDVDAU-UHFFFAOYSA-N 0.000 description 1
- INZDCUMNYFIMFV-UHFFFAOYSA-N dimethylsilyloxy-dimethyl-[pentyl(trimethylsilyloxy)silyl]oxysilane Chemical compound C(CCCC)[SiH](O[Si](C)(C)O[SiH](C)C)O[Si](C)(C)C INZDCUMNYFIMFV-UHFFFAOYSA-N 0.000 description 1
- CJIMFSMDTRJJBY-UHFFFAOYSA-N dimethylsilyloxy-dimethyl-[phenyl(trimethylsilyloxy)silyl]oxysilane Chemical compound C1(=CC=CC=C1)[SiH](O[Si](C)(C)O[SiH](C)C)O[Si](C)(C)C CJIMFSMDTRJJBY-UHFFFAOYSA-N 0.000 description 1
- BQLMDRBXGJZODN-UHFFFAOYSA-N dimethylsilyloxy-dimethyl-[propan-2-yl(trimethylsilyloxy)silyl]oxysilane Chemical compound C(C)(C)[SiH](O[Si](C)(C)O[SiH](C)C)O[Si](C)(C)C BQLMDRBXGJZODN-UHFFFAOYSA-N 0.000 description 1
- JPXYFHDZBVKPNG-UHFFFAOYSA-N dimethylsilyloxy-dimethyl-[propyl(trimethylsilyloxy)silyl]oxysilane Chemical compound C(CC)[SiH](O[Si](C)(C)O[SiH](C)C)O[Si](C)(C)C JPXYFHDZBVKPNG-UHFFFAOYSA-N 0.000 description 1
- DEXGVALCUWOBGH-UHFFFAOYSA-N dimethylsilyloxy-ethyl-methylsilane Chemical compound C[SiH](O[SiH](CC)C)C DEXGVALCUWOBGH-UHFFFAOYSA-N 0.000 description 1
- FIWMNWWZSJJRMI-UHFFFAOYSA-N dimethylsilyloxy-ethyl-phenylsilane Chemical compound C(C)[SiH](O[SiH](C)C)C1=CC=CC=C1 FIWMNWWZSJJRMI-UHFFFAOYSA-N 0.000 description 1
- ONNFICVTSAPVAV-UHFFFAOYSA-N dimethylsilyloxy-ethyl-propan-2-ylsilane Chemical compound C(C)(C)[SiH](O[SiH](C)C)CC ONNFICVTSAPVAV-UHFFFAOYSA-N 0.000 description 1
- KHPWHUHYMJZCEP-UHFFFAOYSA-N dimethylsilyloxy-tri(propan-2-yl)silane Chemical compound CC(C)[Si](O[SiH](C)C)(C(C)C)C(C)C KHPWHUHYMJZCEP-UHFFFAOYSA-N 0.000 description 1
- XNHFVFHOCMXLAU-UHFFFAOYSA-N dimethylsilyloxysilyloxy(dimethyl)silane Chemical compound C[SiH](C)O[SiH2]O[SiH](C)C XNHFVFHOCMXLAU-UHFFFAOYSA-N 0.000 description 1
- FEKYRHDXAQLNDO-UHFFFAOYSA-N dimethylsilyloxysilyloxy-[1,1,1,7,7,7-hexachloro-4-(3,3,3-trichloropropyl)heptan-4-yl]-methylsilane Chemical compound ClC(CCC([SiH](O[SiH2]O[SiH](C)C)C)(CCC(Cl)(Cl)Cl)CCC(Cl)(Cl)Cl)(Cl)Cl FEKYRHDXAQLNDO-UHFFFAOYSA-N 0.000 description 1
- DEYSFYUFFGZQQG-UHFFFAOYSA-K dioctadecylphosphinate;neodymium(3+) Chemical compound [Nd+3].CCCCCCCCCCCCCCCCCCP([O-])(=O)CCCCCCCCCCCCCCCCCC.CCCCCCCCCCCCCCCCCCP([O-])(=O)CCCCCCCCCCCCCCCCCC.CCCCCCCCCCCCCCCCCCP([O-])(=O)CCCCCCCCCCCCCCCCCC DEYSFYUFFGZQQG-UHFFFAOYSA-K 0.000 description 1
- JAGXRFFDUAYIAG-UHFFFAOYSA-K dioctan-2-yl phosphate;neodymium(3+) Chemical compound [Nd+3].CCCCCCC(C)OP([O-])(=O)OC(C)CCCCCC.CCCCCCC(C)OP([O-])(=O)OC(C)CCCCCC.CCCCCCC(C)OP([O-])(=O)OC(C)CCCCCC JAGXRFFDUAYIAG-UHFFFAOYSA-K 0.000 description 1
- GNPSMYTXIPVJDU-UHFFFAOYSA-N dioctylalumane Chemical compound C(CCCCCCC)[AlH]CCCCCCCC GNPSMYTXIPVJDU-UHFFFAOYSA-N 0.000 description 1
- QRQUTSPLBBZERR-UHFFFAOYSA-M dioctylalumanylium;chloride Chemical compound CCCCCCCC[Al](Cl)CCCCCCCC QRQUTSPLBBZERR-UHFFFAOYSA-M 0.000 description 1
- UZSAHKACJKVKEK-UHFFFAOYSA-K dioctylphosphinate;neodymium(3+) Chemical compound [Nd+3].CCCCCCCCP([O-])(=O)CCCCCCCC.CCCCCCCCP([O-])(=O)CCCCCCCC.CCCCCCCCP([O-])(=O)CCCCCCCC UZSAHKACJKVKEK-UHFFFAOYSA-K 0.000 description 1
- HMHRHZDMJBXAIB-UHFFFAOYSA-N dipentyl(phenoxy)silane Chemical compound C(CCCC)[SiH](OC1=CC=CC=C1)CCCCC HMHRHZDMJBXAIB-UHFFFAOYSA-N 0.000 description 1
- CMISOYBKHBNISI-UHFFFAOYSA-K dipentylphosphinate;neodymium(3+) Chemical compound [Nd+3].CCCCCP([O-])(=O)CCCCC.CCCCCP([O-])(=O)CCCCC.CCCCCP([O-])(=O)CCCCC CMISOYBKHBNISI-UHFFFAOYSA-K 0.000 description 1
- ITEKDIVXUDEPFB-UHFFFAOYSA-N dipentylsilyloxy(triethyl)silane Chemical compound C(CCCC)[SiH](O[Si](CC)(CC)CC)CCCCC ITEKDIVXUDEPFB-UHFFFAOYSA-N 0.000 description 1
- AGSWIUWVWXVVMD-UHFFFAOYSA-N dipentylsilyloxy(trimethyl)silane Chemical compound C(CCCC)[SiH](O[Si](C)(C)C)CCCCC AGSWIUWVWXVVMD-UHFFFAOYSA-N 0.000 description 1
- XJIUHWWBCCIWPR-UHFFFAOYSA-N dipentylsilyloxy-di(propan-2-yl)silane Chemical compound C(CCCC)[SiH](O[SiH](C(C)C)C(C)C)CCCCC XJIUHWWBCCIWPR-UHFFFAOYSA-N 0.000 description 1
- UGWYERYFTGLMAX-UHFFFAOYSA-N dipentylsilyloxy-tri(propan-2-yl)silane Chemical compound C(CCCC)[SiH](O[Si](C(C)C)(C(C)C)C(C)C)CCCCC UGWYERYFTGLMAX-UHFFFAOYSA-N 0.000 description 1
- QTEONXCRDRLVKU-UHFFFAOYSA-N diphenoxy(phenyl)silane Chemical compound O([SiH](Oc1ccccc1)c1ccccc1)c1ccccc1 QTEONXCRDRLVKU-UHFFFAOYSA-N 0.000 description 1
- KJWJFHRNYPXSIA-UHFFFAOYSA-N diphenoxy(propan-2-yl)silane Chemical compound CC(C)[SiH](Oc1ccccc1)Oc1ccccc1 KJWJFHRNYPXSIA-UHFFFAOYSA-N 0.000 description 1
- XNAZVASFWJAZNT-UHFFFAOYSA-N diphenoxy(propyl)silane Chemical compound CCC[SiH](Oc1ccccc1)Oc1ccccc1 XNAZVASFWJAZNT-UHFFFAOYSA-N 0.000 description 1
- BUHQQXGTFKPOJT-UHFFFAOYSA-K diphenyl phosphate;neodymium(3+) Chemical compound [Nd+3].C=1C=CC=CC=1OP(=O)([O-])OC1=CC=CC=C1.C=1C=CC=CC=1OP(=O)([O-])OC1=CC=CC=C1.C=1C=CC=CC=1OP(=O)([O-])OC1=CC=CC=C1 BUHQQXGTFKPOJT-UHFFFAOYSA-K 0.000 description 1
- HIVRDDZUKVNKAO-UHFFFAOYSA-N diphenylalumane Chemical compound C1(=CC=CC=C1)[AlH]C1=CC=CC=C1 HIVRDDZUKVNKAO-UHFFFAOYSA-N 0.000 description 1
- QJXQMMHNTBZSOF-UHFFFAOYSA-K diphenylphosphinate;neodymium(3+) Chemical compound [Nd+3].C=1C=CC=CC=1P(=O)([O-])C1=CC=CC=C1.C=1C=CC=CC=1P(=O)([O-])C1=CC=CC=C1.C=1C=CC=CC=1P(=O)([O-])C1=CC=CC=C1 QJXQMMHNTBZSOF-UHFFFAOYSA-K 0.000 description 1
- OTFFNIHDKVZKIP-UHFFFAOYSA-N diphenylsilyloxy(triethyl)silane Chemical compound C1(=CC=CC=C1)[SiH](O[Si](CC)(CC)CC)C1=CC=CC=C1 OTFFNIHDKVZKIP-UHFFFAOYSA-N 0.000 description 1
- KYUKIPRNDJWYKY-UHFFFAOYSA-N diphenylsilyloxy(trimethyl)silane Chemical compound C[Si](C)(C)O[SiH](c1ccccc1)c1ccccc1 KYUKIPRNDJWYKY-UHFFFAOYSA-N 0.000 description 1
- PTHJUHRLDRJTAA-UHFFFAOYSA-N diphenylsilyloxy-di(propan-2-yl)silane Chemical compound C1(=CC=CC=C1)[SiH](O[SiH](C(C)C)C(C)C)C1=CC=CC=C1 PTHJUHRLDRJTAA-UHFFFAOYSA-N 0.000 description 1
- SULOECCKVBBPEI-UHFFFAOYSA-N diphenylsilyloxy-tri(propan-2-yl)silane Chemical compound C1(=CC=CC=C1)[SiH](O[Si](C(C)C)(C(C)C)C(C)C)C1=CC=CC=C1 SULOECCKVBBPEI-UHFFFAOYSA-N 0.000 description 1
- XOCWTYIVWYOSGQ-UHFFFAOYSA-N dipropylalumane Chemical compound C(CC)[AlH]CCC XOCWTYIVWYOSGQ-UHFFFAOYSA-N 0.000 description 1
- ZMXPNWBFRPIZFV-UHFFFAOYSA-M dipropylalumanylium;chloride Chemical compound [Cl-].CCC[Al+]CCC ZMXPNWBFRPIZFV-UHFFFAOYSA-M 0.000 description 1
- CYBHFOOCCVRMGR-UHFFFAOYSA-N dipropylsilyloxy(trimethyl)silane Chemical compound C(CC)[SiH](O[Si](C)(C)C)CCC CYBHFOOCCVRMGR-UHFFFAOYSA-N 0.000 description 1
- BALNKESDTACYKI-UHFFFAOYSA-N dipropylsilyloxy-tri(propan-2-yl)silane Chemical compound C(CC)[SiH](O[Si](C(C)C)(C(C)C)C(C)C)CCC BALNKESDTACYKI-UHFFFAOYSA-N 0.000 description 1
- JVKLIMKQOPLJDV-UHFFFAOYSA-N ditert-butyl(diethylsilyloxy)silane Chemical compound C(C)(C)(C)[SiH](O[SiH](CC)CC)C(C)(C)C JVKLIMKQOPLJDV-UHFFFAOYSA-N 0.000 description 1
- QEKOKHVLXWEZJP-UHFFFAOYSA-N ditert-butyl(dimethylsilyloxy)silane Chemical compound C(C)(C)(C)[SiH](O[SiH](C)C)C(C)(C)C QEKOKHVLXWEZJP-UHFFFAOYSA-N 0.000 description 1
- VWESQIXYUZNWRN-UHFFFAOYSA-N ditert-butyl(ethoxy)silane Chemical compound CCO[SiH](C(C)(C)C)C(C)(C)C VWESQIXYUZNWRN-UHFFFAOYSA-N 0.000 description 1
- MHGXITXSAXMBOM-UHFFFAOYSA-N ditert-butyl(methoxy)silane Chemical compound CO[SiH](C(C)(C)C)C(C)(C)C MHGXITXSAXMBOM-UHFFFAOYSA-N 0.000 description 1
- PVXDXIDRSUTNOE-UHFFFAOYSA-N ditert-butyl-di(propan-2-yl)silyloxysilane Chemical compound C(C)(C)(C)[SiH](O[SiH](C(C)C)C(C)C)C(C)(C)C PVXDXIDRSUTNOE-UHFFFAOYSA-N 0.000 description 1
- PDMOPHHYQDLRRG-UHFFFAOYSA-N ditert-butylsilyloxy(triethyl)silane Chemical compound C(C)(C)(C)[SiH](O[Si](CC)(CC)CC)C(C)(C)C PDMOPHHYQDLRRG-UHFFFAOYSA-N 0.000 description 1
- WRCNGLJUIIPWTA-UHFFFAOYSA-N ditert-butylsilyloxy(trimethyl)silane Chemical compound C(C)(C)(C)[SiH](O[Si](C)(C)C)C(C)(C)C WRCNGLJUIIPWTA-UHFFFAOYSA-N 0.000 description 1
- DRLLTRHPKHBENS-UHFFFAOYSA-N ditert-butylsilyloxy-tri(propan-2-yl)silane Chemical compound C(C)(C)(C)[SiH](O[Si](C(C)C)(C(C)C)C(C)C)C(C)(C)C DRLLTRHPKHBENS-UHFFFAOYSA-N 0.000 description 1
- PEGCFRJASNUIPX-UHFFFAOYSA-L ditert-butyltin(2+);dichloride Chemical compound CC(C)(C)[Sn](Cl)(Cl)C(C)(C)C PEGCFRJASNUIPX-UHFFFAOYSA-L 0.000 description 1
- 239000012990 dithiocarbamate Substances 0.000 description 1
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 description 1
- 229920005558 epichlorohydrin rubber Polymers 0.000 description 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 1
- OAGKEKIEPNLLIS-UHFFFAOYSA-N ethanolate neodymium(3+) Chemical compound [Nd+3].CC[O-].CC[O-].CC[O-] OAGKEKIEPNLLIS-UHFFFAOYSA-N 0.000 description 1
- JXVBWSROJSOQFU-UHFFFAOYSA-N ethanolate;methylaluminum(2+) Chemical compound CCO[Al](C)OCC JXVBWSROJSOQFU-UHFFFAOYSA-N 0.000 description 1
- GCPCLEKQVMKXJM-UHFFFAOYSA-N ethoxy(diethyl)alumane Chemical compound CCO[Al](CC)CC GCPCLEKQVMKXJM-UHFFFAOYSA-N 0.000 description 1
- XSAUEOCQIPDIQK-UHFFFAOYSA-N ethoxy(diethyl)silane Chemical compound CCO[SiH](CC)CC XSAUEOCQIPDIQK-UHFFFAOYSA-N 0.000 description 1
- CXRUQTKXYICFTG-UHFFFAOYSA-N ethoxy(dihexyl)silane Chemical compound CCCCCC[SiH](OCC)CCCCCC CXRUQTKXYICFTG-UHFFFAOYSA-N 0.000 description 1
- DRUOQOFQRYFQGB-UHFFFAOYSA-N ethoxy(dimethyl)silicon Chemical compound CCO[Si](C)C DRUOQOFQRYFQGB-UHFFFAOYSA-N 0.000 description 1
- FODNZYLSKLWBBC-UHFFFAOYSA-N ethoxy(dipentyl)silane Chemical compound CCCCC[SiH](CCCCC)OCC FODNZYLSKLWBBC-UHFFFAOYSA-N 0.000 description 1
- FJKCDSVHCNEOOS-UHFFFAOYSA-N ethoxy(diphenyl)silane Chemical compound C=1C=CC=CC=1[SiH](OCC)C1=CC=CC=C1 FJKCDSVHCNEOOS-UHFFFAOYSA-N 0.000 description 1
- WPQJZUITFQDUQP-UHFFFAOYSA-N ethoxy(dipropyl)silane Chemical compound CCC[SiH](CCC)OCC WPQJZUITFQDUQP-UHFFFAOYSA-N 0.000 description 1
- XGAIERUWZADBAO-UHFFFAOYSA-N ethoxy-bis(2-methylpropyl)alumane Chemical compound CCO[Al](CC(C)C)CC(C)C XGAIERUWZADBAO-UHFFFAOYSA-N 0.000 description 1
- PVXAEFHZZIVEEJ-UHFFFAOYSA-N ethoxy-di(propan-2-yl)silane Chemical compound CCO[SiH](C(C)C)C(C)C PVXAEFHZZIVEEJ-UHFFFAOYSA-N 0.000 description 1
- QBLAORDPXJPOER-UHFFFAOYSA-N ethoxy-ethyl-methoxysilane Chemical compound C(C)O[SiH](CC)OC QBLAORDPXJPOER-UHFFFAOYSA-N 0.000 description 1
- PVPZVPJEQJLKLJ-UHFFFAOYSA-N ethoxy-ethyl-methylsilane Chemical compound CCO[SiH](C)CC PVPZVPJEQJLKLJ-UHFFFAOYSA-N 0.000 description 1
- ZNWDZIKGHKKAHA-UHFFFAOYSA-N ethoxy-ethyl-phenoxysilane Chemical compound C(C)[SiH](OCC)OC1=CC=CC=C1 ZNWDZIKGHKKAHA-UHFFFAOYSA-N 0.000 description 1
- PKXQRNZSCSZWQK-UHFFFAOYSA-N ethoxy-ethyl-phenylsilane Chemical compound CCO[SiH](CC)C1=CC=CC=C1 PKXQRNZSCSZWQK-UHFFFAOYSA-N 0.000 description 1
- NETMEOHPCLPFPN-UHFFFAOYSA-N ethoxy-ethyl-propan-2-ylsilane Chemical compound C(C)(C)[SiH](OCC)CC NETMEOHPCLPFPN-UHFFFAOYSA-N 0.000 description 1
- QHAFYQVJAYFWBB-UHFFFAOYSA-N ethoxy-hexyl-methoxysilane Chemical compound C(CCCCC)[SiH](OCC)OC QHAFYQVJAYFWBB-UHFFFAOYSA-N 0.000 description 1
- YSJKVXDUHOBAKS-UHFFFAOYSA-N ethoxy-hexyl-phenoxysilane Chemical compound C(CCCCC)[SiH](OCC)OC1=CC=CC=C1 YSJKVXDUHOBAKS-UHFFFAOYSA-N 0.000 description 1
- GKDXCOQOVKKXEM-UHFFFAOYSA-N ethoxy-methoxy-methylsilane Chemical compound CCO[SiH](C)OC GKDXCOQOVKKXEM-UHFFFAOYSA-N 0.000 description 1
- HUHMWLPHNUVSCN-UHFFFAOYSA-N ethoxy-methoxy-pentylsilane Chemical compound C(CCCC)[SiH](OCC)OC HUHMWLPHNUVSCN-UHFFFAOYSA-N 0.000 description 1
- VXPUPWYTMXAIID-UHFFFAOYSA-N ethoxy-methoxy-phenoxysilane Chemical compound CO[SiH](OC1=CC=CC=C1)OCC VXPUPWYTMXAIID-UHFFFAOYSA-N 0.000 description 1
- LANWDVZYXOBHCN-UHFFFAOYSA-N ethoxy-methoxy-phenylsilane Chemical compound CCO[SiH](OC)c1ccccc1 LANWDVZYXOBHCN-UHFFFAOYSA-N 0.000 description 1
- DUJQIKLNMPODGN-UHFFFAOYSA-N ethoxy-methoxy-propan-2-ylsilane Chemical compound C(C)(C)[SiH](OCC)OC DUJQIKLNMPODGN-UHFFFAOYSA-N 0.000 description 1
- SFWDZHZASJMEMR-UHFFFAOYSA-N ethoxy-methoxy-propylsilane Chemical compound CCC[SiH](OC)OCC SFWDZHZASJMEMR-UHFFFAOYSA-N 0.000 description 1
- ZFSAFTQTTJMALA-UHFFFAOYSA-N ethoxy-methyl-phenoxysilane Chemical compound C[SiH](OCC)OC1=CC=CC=C1 ZFSAFTQTTJMALA-UHFFFAOYSA-N 0.000 description 1
- YKKRKJBEMXCRDJ-UHFFFAOYSA-N ethoxy-methyl-propan-2-ylsilane Chemical compound CC([SiH](C)OCC)C YKKRKJBEMXCRDJ-UHFFFAOYSA-N 0.000 description 1
- NGLWNPNCODKLLJ-UHFFFAOYSA-N ethoxy-pentyl-phenoxysilane Chemical compound C(CCCC)[SiH](OCC)OC1=CC=CC=C1 NGLWNPNCODKLLJ-UHFFFAOYSA-N 0.000 description 1
- CQBFCPJJBNRAFH-UHFFFAOYSA-N ethoxy-phenoxy-phenylsilane Chemical compound C1(=CC=CC=C1)[SiH](OCC)OC1=CC=CC=C1 CQBFCPJJBNRAFH-UHFFFAOYSA-N 0.000 description 1
- OFJXRHZGFGYRBI-UHFFFAOYSA-N ethoxy-phenoxy-propan-2-ylsilane Chemical compound C(C)(C)[SiH](OCC)OC1=CC=CC=C1 OFJXRHZGFGYRBI-UHFFFAOYSA-N 0.000 description 1
- YBGPBJDRFKOMKH-UHFFFAOYSA-N ethoxy-phenoxy-propylsilane Chemical compound C(CC)[SiH](OCC)OC1=CC=CC=C1 YBGPBJDRFKOMKH-UHFFFAOYSA-N 0.000 description 1
- CKZYGDYMUBBWFJ-UHFFFAOYSA-N ethoxy-phenyl-propan-2-ylsilane Chemical compound CCO[SiH](C(C)C)c1ccccc1 CKZYGDYMUBBWFJ-UHFFFAOYSA-N 0.000 description 1
- REMDLFHXTIFOIT-UHFFFAOYSA-K ethoxymethanedithioate neodymium(3+) Chemical compound [Nd+3].CCOC([S-])=S.CCOC([S-])=S.CCOC([S-])=S REMDLFHXTIFOIT-UHFFFAOYSA-K 0.000 description 1
- CWAFVXWRGIEBPL-UHFFFAOYSA-N ethoxysilane Chemical compound CCO[SiH3] CWAFVXWRGIEBPL-UHFFFAOYSA-N 0.000 description 1
- QPADTPIHSPAZLQ-UHFFFAOYSA-N ethyl 5-nitronaphthalene-1-carboxylate Chemical compound C1=CC=C2C(C(=O)OCC)=CC=CC2=C1[N+]([O-])=O QPADTPIHSPAZLQ-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- UABOHUHCGKGGOJ-UHFFFAOYSA-N ethyl(dimethoxy)alumane Chemical compound [O-]C.[O-]C.CC[Al+2] UABOHUHCGKGGOJ-UHFFFAOYSA-N 0.000 description 1
- YSLVSGVAVRTLAV-UHFFFAOYSA-N ethyl(dimethoxy)silane Chemical compound CC[SiH](OC)OC YSLVSGVAVRTLAV-UHFFFAOYSA-N 0.000 description 1
- ODAHSCRBAKWZPS-UHFFFAOYSA-L ethyl(diphenoxy)alumane Chemical compound CC[Al+2].[O-]C1=CC=CC=C1.[O-]C1=CC=CC=C1 ODAHSCRBAKWZPS-UHFFFAOYSA-L 0.000 description 1
- XBQKHZAEBLQEHX-UHFFFAOYSA-N ethyl(diphenoxy)silane Chemical compound CC[SiH](Oc1ccccc1)Oc1ccccc1 XBQKHZAEBLQEHX-UHFFFAOYSA-N 0.000 description 1
- SMCMEVQBOQDRPJ-UHFFFAOYSA-N ethyl(diphenyl)alumane Chemical compound C=1C=CC=CC=1[Al](CC)C1=CC=CC=C1 SMCMEVQBOQDRPJ-UHFFFAOYSA-N 0.000 description 1
- NEPIVOURWZEXGS-UHFFFAOYSA-N ethyl-bis(4-methylphenyl)alumane Chemical compound C=1C=C(C)C=CC=1[Al](CC)C1=CC=C(C)C=C1 NEPIVOURWZEXGS-UHFFFAOYSA-N 0.000 description 1
- PRJZPAJSRRGSNS-UHFFFAOYSA-N ethyl-methoxy-methylsilane Chemical compound CC[SiH](C)OC PRJZPAJSRRGSNS-UHFFFAOYSA-N 0.000 description 1
- DOLGSHASIJXDTP-UHFFFAOYSA-N ethyl-methoxy-phenoxysilane Chemical compound C(C)[SiH](OC1=CC=CC=C1)OC DOLGSHASIJXDTP-UHFFFAOYSA-N 0.000 description 1
- XFRASVKMWKOGAU-UHFFFAOYSA-N ethyl-methoxy-phenylsilane Chemical compound CC[SiH](OC)c1ccccc1 XFRASVKMWKOGAU-UHFFFAOYSA-N 0.000 description 1
- CAZLYFUFZMFQPA-UHFFFAOYSA-N ethyl-methyl-phenoxysilane Chemical compound C[SiH](OC1=CC=CC=C1)CC CAZLYFUFZMFQPA-UHFFFAOYSA-N 0.000 description 1
- UBQPUIRKWKFWRV-UHFFFAOYSA-N ethyl-phenoxy-phenylsilane Chemical compound CC[SiH](Oc1ccccc1)c1ccccc1 UBQPUIRKWKFWRV-UHFFFAOYSA-N 0.000 description 1
- XGOGFAWSMCUJLT-UHFFFAOYSA-N ethyl-phenoxy-propan-2-ylsilane Chemical compound C(C)(C)[SiH](OC1=CC=CC=C1)CC XGOGFAWSMCUJLT-UHFFFAOYSA-N 0.000 description 1
- JFICPAADTOQAMU-UHFFFAOYSA-L ethylaluminum(2+);dibromide Chemical compound CC[Al](Br)Br JFICPAADTOQAMU-UHFFFAOYSA-L 0.000 description 1
- UGUZZPBNTADPIT-UHFFFAOYSA-L ethylaluminum(2+);difluoride Chemical compound [F-].[F-].CC[Al+2] UGUZZPBNTADPIT-UHFFFAOYSA-L 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- XDFDJBOEIDRBBG-UHFFFAOYSA-N fluoro hypofluorite;neodymium Chemical compound [Nd].FOF XDFDJBOEIDRBBG-UHFFFAOYSA-N 0.000 description 1
- GNTRBBGWVVMYJH-UHFFFAOYSA-M fluoro(dimethyl)alumane Chemical compound [F-].C[Al+]C GNTRBBGWVVMYJH-UHFFFAOYSA-M 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- UPWPDUACHOATKO-UHFFFAOYSA-K gallium trichloride Chemical compound Cl[Ga](Cl)Cl UPWPDUACHOATKO-UHFFFAOYSA-K 0.000 description 1
- WXXZSFJVAMRMPV-UHFFFAOYSA-K gallium(iii) fluoride Chemical compound F[Ga](F)F WXXZSFJVAMRMPV-UHFFFAOYSA-K 0.000 description 1
- DWRNSCDYNYYYHT-UHFFFAOYSA-K gallium(iii) iodide Chemical compound I[Ga](I)I DWRNSCDYNYYYHT-UHFFFAOYSA-K 0.000 description 1
- 229940050410 gluconate Drugs 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 1
- MUCJTVYXMIQXNE-UHFFFAOYSA-L hexanoate;methylaluminum(2+) Chemical compound [Al+2]C.CCCCCC([O-])=O.CCCCCC([O-])=O MUCJTVYXMIQXNE-UHFFFAOYSA-L 0.000 description 1
- OGMDYZVGIYQLCM-UHFFFAOYSA-N hexyl(dimethoxy)silane Chemical compound CCCCCC[SiH](OC)OC OGMDYZVGIYQLCM-UHFFFAOYSA-N 0.000 description 1
- QLRQMFKBLYFMGQ-UHFFFAOYSA-N hexyl(diphenoxy)silane Chemical compound C(CCCCC)[SiH](OC1=CC=CC=C1)OC1=CC=CC=C1 QLRQMFKBLYFMGQ-UHFFFAOYSA-N 0.000 description 1
- UXWMJODHYSLOQT-UHFFFAOYSA-N hexyl-methoxy-phenoxysilane Chemical compound C(CCCCC)[SiH](OC1=CC=CC=C1)OC UXWMJODHYSLOQT-UHFFFAOYSA-N 0.000 description 1
- KJZYNXUDTRRSPN-UHFFFAOYSA-N holmium atom Chemical compound [Ho] KJZYNXUDTRRSPN-UHFFFAOYSA-N 0.000 description 1
- 229910000042 hydrogen bromide Inorganic materials 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 229910000043 hydrogen iodide Inorganic materials 0.000 description 1
- 150000002466 imines Chemical class 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 150000002540 isothiocyanates Chemical class 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- OHSVLFRHMCKCQY-UHFFFAOYSA-N lutetium atom Chemical compound [Lu] OHSVLFRHMCKCQY-UHFFFAOYSA-N 0.000 description 1
- 150000002681 magnesium compounds Chemical class 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- WRYKIHMRDIOPSI-UHFFFAOYSA-N magnesium;benzene Chemical compound [Mg+2].C1=CC=[C-]C=C1.C1=CC=[C-]C=C1 WRYKIHMRDIOPSI-UHFFFAOYSA-N 0.000 description 1
- KJJBSBKRXUVBMX-UHFFFAOYSA-N magnesium;butane Chemical compound [Mg+2].CCC[CH2-].CCC[CH2-] KJJBSBKRXUVBMX-UHFFFAOYSA-N 0.000 description 1
- VXWPONVCMVLXBW-UHFFFAOYSA-M magnesium;carbanide;iodide Chemical compound [CH3-].[Mg+2].[I-] VXWPONVCMVLXBW-UHFFFAOYSA-M 0.000 description 1
- DLPASUVGCQPFFO-UHFFFAOYSA-N magnesium;ethane Chemical compound [Mg+2].[CH2-]C.[CH2-]C DLPASUVGCQPFFO-UHFFFAOYSA-N 0.000 description 1
- RVOYYLUVELMWJF-UHFFFAOYSA-N magnesium;hexane Chemical compound [Mg+2].CCCCC[CH2-].CCCCC[CH2-] RVOYYLUVELMWJF-UHFFFAOYSA-N 0.000 description 1
- LZFCBBSYZJPPIV-UHFFFAOYSA-M magnesium;hexane;bromide Chemical compound [Mg+2].[Br-].CCCCC[CH2-] LZFCBBSYZJPPIV-UHFFFAOYSA-M 0.000 description 1
- GBRJQTLHXWRDOV-UHFFFAOYSA-M magnesium;hexane;chloride Chemical compound [Mg+2].[Cl-].CCCCC[CH2-] GBRJQTLHXWRDOV-UHFFFAOYSA-M 0.000 description 1
- WCFJMDWWJOCLSJ-UHFFFAOYSA-N magnesium;methanidylbenzene Chemical compound [Mg+2].[CH2-]C1=CC=CC=C1.[CH2-]C1=CC=CC=C1 WCFJMDWWJOCLSJ-UHFFFAOYSA-N 0.000 description 1
- QGEFGPVWRJCFQP-UHFFFAOYSA-M magnesium;methanidylbenzene;bromide Chemical compound [Mg+2].[Br-].[CH2-]C1=CC=CC=C1 QGEFGPVWRJCFQP-UHFFFAOYSA-M 0.000 description 1
- DQZLQYHGCKLKGU-UHFFFAOYSA-N magnesium;propane Chemical compound [Mg+2].C[CH-]C.C[CH-]C DQZLQYHGCKLKGU-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- AUHZEENZYGFFBQ-UHFFFAOYSA-N mesitylene Substances CC1=CC(C)=CC(C)=C1 AUHZEENZYGFFBQ-UHFFFAOYSA-N 0.000 description 1
- 125000001827 mesitylenyl group Chemical group [H]C1=C(C(*)=C(C([H])=C1C([H])([H])[H])C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- CBNHBSGOXOSEAO-UHFFFAOYSA-N methanolate neodymium(3+) Chemical compound [Nd+3].[O-]C.[O-]C.[O-]C CBNHBSGOXOSEAO-UHFFFAOYSA-N 0.000 description 1
- NEMYBHYAISOMTI-UHFFFAOYSA-N methanolate;2-methylpropylaluminum(2+) Chemical compound [O-]C.[O-]C.CC(C)C[Al+2] NEMYBHYAISOMTI-UHFFFAOYSA-N 0.000 description 1
- DKUIXLPCCDROFD-UHFFFAOYSA-N methanolate;methylaluminum(2+) Chemical compound [O-]C.[O-]C.[Al+2]C DKUIXLPCCDROFD-UHFFFAOYSA-N 0.000 description 1
- BQBCXNQILNPAPX-UHFFFAOYSA-N methoxy(dimethyl)alumane Chemical compound [O-]C.C[Al+]C BQBCXNQILNPAPX-UHFFFAOYSA-N 0.000 description 1
- MDLRQEHNDJOFQN-UHFFFAOYSA-N methoxy(dimethyl)silicon Chemical compound CO[Si](C)C MDLRQEHNDJOFQN-UHFFFAOYSA-N 0.000 description 1
- LQHHFLZNPCLRGP-UHFFFAOYSA-N methoxy(dipentyl)silane Chemical compound CCCCC[SiH](CCCCC)OC LQHHFLZNPCLRGP-UHFFFAOYSA-N 0.000 description 1
- RSRCJPGCPWEIHN-UHFFFAOYSA-N methoxy(diphenyl)silane Chemical compound C=1C=CC=CC=1[SiH](OC)C1=CC=CC=C1 RSRCJPGCPWEIHN-UHFFFAOYSA-N 0.000 description 1
- QDVXOTZUGXHBAO-UHFFFAOYSA-N methoxy(dipropyl)silane Chemical compound CCC[SiH](OC)CCC QDVXOTZUGXHBAO-UHFFFAOYSA-N 0.000 description 1
- PQYRGTGTFRXFEN-UHFFFAOYSA-N methoxy-bis(2-methylpropyl)alumane Chemical compound CC(C)C[Al](OC)CC(C)C PQYRGTGTFRXFEN-UHFFFAOYSA-N 0.000 description 1
- JSWYYQXCMPNWMB-UHFFFAOYSA-N methoxy-di(propan-2-yl)silane Chemical compound CO[SiH](C(C)C)C(C)C JSWYYQXCMPNWMB-UHFFFAOYSA-N 0.000 description 1
- NJISVYSHLYACRT-UHFFFAOYSA-N methoxy-methyl-phenoxysilane Chemical compound CO[SiH](C)Oc1ccccc1 NJISVYSHLYACRT-UHFFFAOYSA-N 0.000 description 1
- PFWSYCVWLNRSKD-UHFFFAOYSA-N methoxy-methyl-propan-2-ylsilane Chemical compound CC([SiH](C)OC)C PFWSYCVWLNRSKD-UHFFFAOYSA-N 0.000 description 1
- GOXHEUBBLXRMNO-UHFFFAOYSA-N methoxy-pentyl-phenoxysilane Chemical compound C(CCCC)[SiH](OC1=CC=CC=C1)OC GOXHEUBBLXRMNO-UHFFFAOYSA-N 0.000 description 1
- UCHGAWCLWYIAMK-UHFFFAOYSA-N methoxy-phenoxy-phenylsilane Chemical compound CO[SiH](Oc1ccccc1)c1ccccc1 UCHGAWCLWYIAMK-UHFFFAOYSA-N 0.000 description 1
- VMTDTRXKPOOWDS-UHFFFAOYSA-N methoxy-phenoxy-propan-2-ylsilane Chemical compound CO[SiH](OC1=CC=CC=C1)C(C)C VMTDTRXKPOOWDS-UHFFFAOYSA-N 0.000 description 1
- NSKKUHRDZTXNEW-UHFFFAOYSA-N methoxy-phenoxy-propylsilane Chemical compound C(CC)[SiH](OC1=CC=CC=C1)OC NSKKUHRDZTXNEW-UHFFFAOYSA-N 0.000 description 1
- MPNJOMADXUTZRY-UHFFFAOYSA-N methoxy-phenyl-propan-2-ylsilane Chemical compound CO[SiH](C(C)C)c1ccccc1 MPNJOMADXUTZRY-UHFFFAOYSA-N 0.000 description 1
- DQLIEGFPDMCSLJ-UHFFFAOYSA-K methoxymethanedithioate neodymium(3+) Chemical compound [Nd+3].COC([S-])=S.COC([S-])=S.COC([S-])=S DQLIEGFPDMCSLJ-UHFFFAOYSA-K 0.000 description 1
- QQHNGZNHRRLNKI-UHFFFAOYSA-N methyl carbonobromidate Chemical compound COC(Br)=O QQHNGZNHRRLNKI-UHFFFAOYSA-N 0.000 description 1
- XMJHPCRAQCTCFT-UHFFFAOYSA-N methyl chloroformate Chemical compound COC(Cl)=O XMJHPCRAQCTCFT-UHFFFAOYSA-N 0.000 description 1
- 239000005055 methyl trichlorosilane Substances 0.000 description 1
- VZSYMWXUKVEIHW-UHFFFAOYSA-N methyl(diphenoxy)silane Chemical compound C=1C=CC=CC=1O[SiH](C)OC1=CC=CC=C1 VZSYMWXUKVEIHW-UHFFFAOYSA-N 0.000 description 1
- PFAUUICEGIRNHU-UHFFFAOYSA-N methyl(phenylmethoxy)silicon Chemical compound C[Si]OCC1=CC=CC=C1 PFAUUICEGIRNHU-UHFFFAOYSA-N 0.000 description 1
- SWGZAKPJNWCPRY-UHFFFAOYSA-N methyl-bis(trimethylsilyloxy)silicon Chemical compound C[Si](C)(C)O[Si](C)O[Si](C)(C)C SWGZAKPJNWCPRY-UHFFFAOYSA-N 0.000 description 1
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 description 1
- AXRHCEGZSANROF-UHFFFAOYSA-N methyl-phenoxy-phenylsilane Chemical compound C[SiH](Oc1ccccc1)c1ccccc1 AXRHCEGZSANROF-UHFFFAOYSA-N 0.000 description 1
- SMVPAJYQYZNCAG-UHFFFAOYSA-N methyl-phenoxy-propan-2-ylsilane Chemical compound C[SiH](OC1=CC=CC=C1)C(C)C SMVPAJYQYZNCAG-UHFFFAOYSA-N 0.000 description 1
- XBKBZMOLSULOEA-UHFFFAOYSA-L methylaluminum(2+);dibromide Chemical compound C[Al](Br)Br XBKBZMOLSULOEA-UHFFFAOYSA-L 0.000 description 1
- YSTQWZZQKCCBAY-UHFFFAOYSA-L methylaluminum(2+);dichloride Chemical compound C[Al](Cl)Cl YSTQWZZQKCCBAY-UHFFFAOYSA-L 0.000 description 1
- UEBCFKSPKUURKQ-UHFFFAOYSA-L methylaluminum(2+);difluoride Chemical compound [F-].[F-].[Al+2]C UEBCFKSPKUURKQ-UHFFFAOYSA-L 0.000 description 1
- FCUCJXXFUVRUTR-UHFFFAOYSA-L methylaluminum(2+);diphenoxide Chemical compound [Al+2]C.[O-]C1=CC=CC=C1.[O-]C1=CC=CC=C1 FCUCJXXFUVRUTR-UHFFFAOYSA-L 0.000 description 1
- JLUFWMXJHAVVNN-UHFFFAOYSA-N methyltrichlorosilane Chemical compound C[Si](Cl)(Cl)Cl JLUFWMXJHAVVNN-UHFFFAOYSA-N 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 229910052590 monazite Inorganic materials 0.000 description 1
- 238000010068 moulding (rubber) Methods 0.000 description 1
- UEYXOBGKUHPHQO-UHFFFAOYSA-K n,n-di(propan-2-yl)carbamate;neodymium(3+) Chemical compound [Nd+3].CC(C)N(C(C)C)C([O-])=O.CC(C)N(C(C)C)C([O-])=O.CC(C)N(C(C)C)C([O-])=O UEYXOBGKUHPHQO-UHFFFAOYSA-K 0.000 description 1
- SQUOJZZETZQEOF-UHFFFAOYSA-K n,n-di(propan-2-yl)carbamodithioate;neodymium(3+) Chemical compound [Nd+3].CC(C)N(C(C)C)C([S-])=S.CC(C)N(C(C)C)C([S-])=S.CC(C)N(C(C)C)C([S-])=S SQUOJZZETZQEOF-UHFFFAOYSA-K 0.000 description 1
- YUUKWVLDUDNKDT-UHFFFAOYSA-K n,n-dibenzylcarbamate;neodymium(3+) Chemical compound [Nd+3].C=1C=CC=CC=1CN(C(=O)[O-])CC1=CC=CC=C1.C=1C=CC=CC=1CN(C(=O)[O-])CC1=CC=CC=C1.C=1C=CC=CC=1CN(C(=O)[O-])CC1=CC=CC=C1 YUUKWVLDUDNKDT-UHFFFAOYSA-K 0.000 description 1
- XXBGWCVWYRXRMO-UHFFFAOYSA-K n,n-dibenzylcarbamodithioate;neodymium(3+) Chemical compound [Nd+3].C=1C=CC=CC=1CN(C(=S)[S-])CC1=CC=CC=C1.C=1C=CC=CC=1CN(C(=S)[S-])CC1=CC=CC=C1.C=1C=CC=CC=1CN(C(=S)[S-])CC1=CC=CC=C1 XXBGWCVWYRXRMO-UHFFFAOYSA-K 0.000 description 1
- NOTLJNJGENTSBY-UHFFFAOYSA-K n,n-dibutylcarbamate;neodymium(3+) Chemical compound [Nd+3].CCCCN(C([O-])=O)CCCC.CCCCN(C([O-])=O)CCCC.CCCCN(C([O-])=O)CCCC NOTLJNJGENTSBY-UHFFFAOYSA-K 0.000 description 1
- UKJJHVZVXZCPRF-UHFFFAOYSA-K n,n-dibutylcarbamodithioate;neodymium(3+) Chemical compound [Nd+3].CCCCN(C([S-])=S)CCCC.CCCCN(C([S-])=S)CCCC.CCCCN(C([S-])=S)CCCC UKJJHVZVXZCPRF-UHFFFAOYSA-K 0.000 description 1
- VIZYOIUGCRJUHQ-UHFFFAOYSA-K n,n-diethylcarbamate;neodymium(3+) Chemical compound [Nd+3].CCN(CC)C([O-])=O.CCN(CC)C([O-])=O.CCN(CC)C([O-])=O VIZYOIUGCRJUHQ-UHFFFAOYSA-K 0.000 description 1
- SZBUPRSARRAZQN-UHFFFAOYSA-K n,n-diethylcarbamodithioate;neodymium(3+) Chemical compound [Nd+3].CCN(CC)C([S-])=S.CCN(CC)C([S-])=S.CCN(CC)C([S-])=S SZBUPRSARRAZQN-UHFFFAOYSA-K 0.000 description 1
- HATKMJSGRRQFMU-UHFFFAOYSA-K n,n-dimethylcarbamate;neodymium(3+) Chemical compound [Nd+3].CN(C)C([O-])=O.CN(C)C([O-])=O.CN(C)C([O-])=O HATKMJSGRRQFMU-UHFFFAOYSA-K 0.000 description 1
- DXENBISLKDEHAN-UHFFFAOYSA-K n,n-dimethylcarbamodithioate;neodymium(3+) Chemical compound [Nd+3].CN(C)C([S-])=S.CN(C)C([S-])=S.CN(C)C([S-])=S DXENBISLKDEHAN-UHFFFAOYSA-K 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- LIOPISMUTXUKFO-UHFFFAOYSA-K neodymium(3+) pentanoate Chemical compound [Nd+3].CCCCC([O-])=O.CCCCC([O-])=O.CCCCC([O-])=O LIOPISMUTXUKFO-UHFFFAOYSA-K 0.000 description 1
- IDIGCVOPRGKSDP-UHFFFAOYSA-K neodymium(3+) phenylmethoxymethanedithioate Chemical compound [Nd+3].[S-]C(=S)OCc1ccccc1.[S-]C(=S)OCc1ccccc1.[S-]C(=S)OCc1ccccc1 IDIGCVOPRGKSDP-UHFFFAOYSA-K 0.000 description 1
- QUFRWNPMZBKODL-UHFFFAOYSA-K neodymium(3+) propan-2-yloxymethanedithioate Chemical compound [Nd+3].CC(C)OC([S-])=S.CC(C)OC([S-])=S.CC(C)OC([S-])=S QUFRWNPMZBKODL-UHFFFAOYSA-K 0.000 description 1
- IQILFJXGSRKIIW-UHFFFAOYSA-N neodymium(3+) triazide Chemical compound [Nd+3].[N-]=[N+]=[N-].[N-]=[N+]=[N-].[N-]=[N+]=[N-] IQILFJXGSRKIIW-UHFFFAOYSA-N 0.000 description 1
- AAIPJXDONHAQHJ-UHFFFAOYSA-K neodymium(3+) tricarbamate Chemical class [Nd+3].NC([O-])=O.NC([O-])=O.NC([O-])=O AAIPJXDONHAQHJ-UHFFFAOYSA-K 0.000 description 1
- FJWHSHNHTPHETF-UHFFFAOYSA-N neodymium(3+) tricyanide Chemical compound [Nd+3].[C-]#N.[C-]#N.[C-]#N FJWHSHNHTPHETF-UHFFFAOYSA-N 0.000 description 1
- HCOLBMWNEVUKDB-UHFFFAOYSA-K neodymium(3+) trithiocyanate Chemical compound [Nd+3].[S-]C#N.[S-]C#N.[S-]C#N HCOLBMWNEVUKDB-UHFFFAOYSA-K 0.000 description 1
- MPKWOMQKNIDCKY-UHFFFAOYSA-K neodymium(3+);2-nonylphenolate Chemical compound [Nd+3].CCCCCCCCCC1=CC=CC=C1[O-].CCCCCCCCCC1=CC=CC=C1[O-].CCCCCCCCCC1=CC=CC=C1[O-] MPKWOMQKNIDCKY-UHFFFAOYSA-K 0.000 description 1
- SIINVGJQWZKNSJ-UHFFFAOYSA-K neodymium(3+);octadecanoate Chemical compound [Nd+3].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O SIINVGJQWZKNSJ-UHFFFAOYSA-K 0.000 description 1
- MHJIJZIBANOIDE-UHFFFAOYSA-K neodymium(3+);prop-2-enoate Chemical compound [Nd+3].[O-]C(=O)C=C.[O-]C(=O)C=C.[O-]C(=O)C=C MHJIJZIBANOIDE-UHFFFAOYSA-K 0.000 description 1
- HZHUIQPXRWTHNF-UHFFFAOYSA-N neodymium(3+);propan-2-olate Chemical compound [Nd+3].CC(C)[O-].CC(C)[O-].CC(C)[O-] HZHUIQPXRWTHNF-UHFFFAOYSA-N 0.000 description 1
- HPCGPGSYNUPEKZ-UHFFFAOYSA-K neodymium(3+);tribenzoate Chemical compound [Nd+3].[O-]C(=O)C1=CC=CC=C1.[O-]C(=O)C1=CC=CC=C1.[O-]C(=O)C1=CC=CC=C1 HPCGPGSYNUPEKZ-UHFFFAOYSA-K 0.000 description 1
- LBWLQVSRPJHLEY-UHFFFAOYSA-K neodymium(3+);tribromide Chemical compound Br[Nd](Br)Br LBWLQVSRPJHLEY-UHFFFAOYSA-K 0.000 description 1
- SXSPKVLHGFYNGI-UHFFFAOYSA-K neodymium(3+);tricarbamodithioate Chemical class [Nd+3].NC([S-])=S.NC([S-])=S.NC([S-])=S SXSPKVLHGFYNGI-UHFFFAOYSA-K 0.000 description 1
- AARCLZBTVAUMJK-UHFFFAOYSA-K neodymium(3+);triformate Chemical compound [Nd+3].[O-]C=O.[O-]C=O.[O-]C=O AARCLZBTVAUMJK-UHFFFAOYSA-K 0.000 description 1
- DKSXWSAKLYQPQE-UHFFFAOYSA-K neodymium(3+);triiodide Chemical compound I[Nd](I)I DKSXWSAKLYQPQE-UHFFFAOYSA-K 0.000 description 1
- TZNZEEADHYGQQO-UHFFFAOYSA-K neodymium(3+);triphenoxide Chemical compound [Nd+3].[O-]C1=CC=CC=C1.[O-]C1=CC=CC=C1.[O-]C1=CC=CC=C1 TZNZEEADHYGQQO-UHFFFAOYSA-K 0.000 description 1
- ATINCSYRHURBSP-UHFFFAOYSA-K neodymium(iii) chloride Chemical compound Cl[Nd](Cl)Cl ATINCSYRHURBSP-UHFFFAOYSA-K 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000002828 nitro derivatives Chemical class 0.000 description 1
- 150000002832 nitroso derivatives Chemical class 0.000 description 1
- 125000005474 octanoate group Chemical group 0.000 description 1
- JXRJZEIFKKYMBS-UHFFFAOYSA-N octyl(phenyl)alumane Chemical compound C1(=CC=CC=C1)[AlH]CCCCCCCC JXRJZEIFKKYMBS-UHFFFAOYSA-N 0.000 description 1
- KMKBWZXSKDYZDZ-UHFFFAOYSA-M octyl(phenyl)alumanylium;chloride Chemical compound [Cl-].CCCCCCCC[Al+]C1=CC=CC=C1 KMKBWZXSKDYZDZ-UHFFFAOYSA-M 0.000 description 1
- SOEVKJXMZBAALG-UHFFFAOYSA-N octylalumane Chemical compound CCCCCCCC[AlH2] SOEVKJXMZBAALG-UHFFFAOYSA-N 0.000 description 1
- RBLGTYCOUOIUNY-UHFFFAOYSA-L octylaluminum(2+);dichloride Chemical compound CCCCCCCC[Al](Cl)Cl RBLGTYCOUOIUNY-UHFFFAOYSA-L 0.000 description 1
- 125000001117 oleyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])/C([H])=C([H])\C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000002924 oxiranes Chemical class 0.000 description 1
- 125000000538 pentafluorophenyl group Chemical group FC1=C(F)C(F)=C(*)C(F)=C1F 0.000 description 1
- DDJLBYOTOBLOLK-UHFFFAOYSA-N pentyl(diphenoxy)silane Chemical compound C(CCCC)[SiH](OC1=CC=CC=C1)OC1=CC=CC=C1 DDJLBYOTOBLOLK-UHFFFAOYSA-N 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- ZPXICPJFLHUXJZ-UHFFFAOYSA-N phenoxy(diphenyl)silane Chemical compound C=1C=CC=CC=1O[SiH](C=1C=CC=CC=1)C1=CC=CC=C1 ZPXICPJFLHUXJZ-UHFFFAOYSA-N 0.000 description 1
- KDQKKHKMUQWKHQ-UHFFFAOYSA-N phenoxy(dipropyl)silane Chemical compound C(CC)[SiH](OC1=CC=CC=C1)CCC KDQKKHKMUQWKHQ-UHFFFAOYSA-N 0.000 description 1
- WOGCHQACCYUPKV-UHFFFAOYSA-N phenoxy-di(propan-2-yl)silane Chemical compound C(C)(C)[SiH](OC1=CC=CC=C1)C(C)C WOGCHQACCYUPKV-UHFFFAOYSA-N 0.000 description 1
- ZJLPCSRUCYHMSD-UHFFFAOYSA-N phenoxy-phenyl-propan-2-ylsilane Chemical compound CC(C)[SiH](Oc1ccccc1)c1ccccc1 ZJLPCSRUCYHMSD-UHFFFAOYSA-N 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- QDUCABQBSRSYCO-UHFFFAOYSA-N phenyl(propan-2-yl)alumane Chemical compound C1(=CC=CC=C1)[AlH]C(C)C QDUCABQBSRSYCO-UHFFFAOYSA-N 0.000 description 1
- CUIJJJLOSZSJRO-UHFFFAOYSA-M phenyl(propan-2-yl)alumanylium;chloride Chemical compound [Cl-].CC(C)[Al+]C1=CC=CC=C1 CUIJJJLOSZSJRO-UHFFFAOYSA-M 0.000 description 1
- ZKGDHJAHOGRQEP-UHFFFAOYSA-N phenyl(propyl)alumane Chemical compound C1(=CC=CC=C1)[AlH]CCC ZKGDHJAHOGRQEP-UHFFFAOYSA-N 0.000 description 1
- AAQNAPUTWYBWOV-UHFFFAOYSA-M phenyl(propyl)alumanylium;chloride Chemical compound [Cl-].CCC[Al+]C1=CC=CC=C1 AAQNAPUTWYBWOV-UHFFFAOYSA-M 0.000 description 1
- 239000005054 phenyltrichlorosilane Substances 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 description 1
- XYFCBTPGUUZFHI-UHFFFAOYSA-O phosphonium Chemical compound [PH4+] XYFCBTPGUUZFHI-UHFFFAOYSA-O 0.000 description 1
- UXCDUFKZSUBXGM-UHFFFAOYSA-N phosphoric tribromide Chemical compound BrP(Br)(Br)=O UXCDUFKZSUBXGM-UHFFFAOYSA-N 0.000 description 1
- UHZYTMXLRWXGPK-UHFFFAOYSA-N phosphorus pentachloride Chemical compound ClP(Cl)(Cl)(Cl)Cl UHZYTMXLRWXGPK-UHFFFAOYSA-N 0.000 description 1
- FAIAAWCVCHQXDN-UHFFFAOYSA-N phosphorus trichloride Chemical compound ClP(Cl)Cl FAIAAWCVCHQXDN-UHFFFAOYSA-N 0.000 description 1
- PMJHHCWVYXUKFD-UHFFFAOYSA-N piperylene Natural products CC=CC=C PMJHHCWVYXUKFD-UHFFFAOYSA-N 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000005077 polysulfide Substances 0.000 description 1
- 229920001021 polysulfide Polymers 0.000 description 1
- 150000008117 polysulfides Polymers 0.000 description 1
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 1
- 238000012673 precipitation polymerization Methods 0.000 description 1
- VQMWBBYLQSCNPO-UHFFFAOYSA-N promethium atom Chemical compound [Pm] VQMWBBYLQSCNPO-UHFFFAOYSA-N 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- ZYTJPPRBIGGXRO-UHFFFAOYSA-N propan-2-ylalumane Chemical compound C(C)(C)[AlH2] ZYTJPPRBIGGXRO-UHFFFAOYSA-N 0.000 description 1
- RIBFXMJCUYXJDZ-UHFFFAOYSA-N propanoyl bromide Chemical compound CCC(Br)=O RIBFXMJCUYXJDZ-UHFFFAOYSA-N 0.000 description 1
- RZWZRACFZGVKFM-UHFFFAOYSA-N propanoyl chloride Chemical compound CCC(Cl)=O RZWZRACFZGVKFM-UHFFFAOYSA-N 0.000 description 1
- OBRKWFIGZSMARO-UHFFFAOYSA-N propylalumane Chemical compound [AlH2]CCC OBRKWFIGZSMARO-UHFFFAOYSA-N 0.000 description 1
- 150000004053 quinones Chemical class 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000010061 rubber shaping Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- VTQZBGAODFEJOW-UHFFFAOYSA-N selenium tetrabromide Chemical compound Br[Se](Br)(Br)Br VTQZBGAODFEJOW-UHFFFAOYSA-N 0.000 description 1
- LNBXMNQCXXEHFT-UHFFFAOYSA-N selenium tetrachloride Chemical compound Cl[Se](Cl)(Cl)Cl LNBXMNQCXXEHFT-UHFFFAOYSA-N 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- AIFMYMZGQVTROK-UHFFFAOYSA-N silicon tetrabromide Chemical compound Br[Si](Br)(Br)Br AIFMYMZGQVTROK-UHFFFAOYSA-N 0.000 description 1
- 239000005049 silicon tetrachloride Substances 0.000 description 1
- ABTOQLMXBSRXSM-UHFFFAOYSA-N silicon tetrafluoride Chemical compound F[Si](F)(F)F ABTOQLMXBSRXSM-UHFFFAOYSA-N 0.000 description 1
- JHGCXUUFRJCMON-UHFFFAOYSA-J silicon(4+);tetraiodide Chemical compound [Si+4].[I-].[I-].[I-].[I-] JHGCXUUFRJCMON-UHFFFAOYSA-J 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 230000003381 solubilizing effect Effects 0.000 description 1
- 235000015096 spirit Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- XCOKHDCPVWVFKS-UHFFFAOYSA-N tellurium tetraiodide Chemical compound I[Te](I)(I)I XCOKHDCPVWVFKS-UHFFFAOYSA-N 0.000 description 1
- GZCRRIHWUXGPOV-UHFFFAOYSA-N terbium atom Chemical compound [Tb] GZCRRIHWUXGPOV-UHFFFAOYSA-N 0.000 description 1
- RKSOPLXZQNSWAS-UHFFFAOYSA-N tert-butyl bromide Chemical compound CC(C)(C)Br RKSOPLXZQNSWAS-UHFFFAOYSA-N 0.000 description 1
- NBRKLOOSMBRFMH-UHFFFAOYSA-N tert-butyl chloride Chemical compound CC(C)(C)Cl NBRKLOOSMBRFMH-UHFFFAOYSA-N 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- GCBMRNJWILGVGY-UHFFFAOYSA-N tert-butyl(diethoxy)silane Chemical compound CCO[SiH](C(C)(C)C)OCC GCBMRNJWILGVGY-UHFFFAOYSA-N 0.000 description 1
- TXLMBPWQZULYHP-UHFFFAOYSA-N tert-butyl(dimethoxy)silane Chemical compound CO[SiH](OC)C(C)(C)C TXLMBPWQZULYHP-UHFFFAOYSA-N 0.000 description 1
- DUOUZDRNXSUEKL-UHFFFAOYSA-N tert-butyl(diphenoxy)silane Chemical compound CC(C)(C)[SiH](Oc1ccccc1)Oc1ccccc1 DUOUZDRNXSUEKL-UHFFFAOYSA-N 0.000 description 1
- LXQLJCHAAZECEO-UHFFFAOYSA-N tert-butyl-bis(diethylsilyloxy)silane Chemical compound C(C)(C)(C)[SiH](O[SiH](CC)CC)O[SiH](CC)CC LXQLJCHAAZECEO-UHFFFAOYSA-N 0.000 description 1
- ROCXXWGDBNSEIU-UHFFFAOYSA-N tert-butyl-bis(dimethylsilyloxy)silane Chemical compound C(C)(C)(C)[SiH](O[SiH](C)C)O[SiH](C)C ROCXXWGDBNSEIU-UHFFFAOYSA-N 0.000 description 1
- PUDQQLTYOFYSQO-UHFFFAOYSA-N tert-butyl-bis[di(propan-2-yl)silyloxy]silane Chemical compound C(C)(C)(C)[SiH](O[SiH](C(C)C)C(C)C)O[SiH](C(C)C)C(C)C PUDQQLTYOFYSQO-UHFFFAOYSA-N 0.000 description 1
- FEODIHUPHBSBJY-UHFFFAOYSA-N tert-butyl-ethoxy-methoxysilane Chemical compound C(C)(C)(C)[SiH](OCC)OC FEODIHUPHBSBJY-UHFFFAOYSA-N 0.000 description 1
- QWGRYFVTXQHHMA-UHFFFAOYSA-N tert-butyl-ethoxy-phenoxysilane Chemical compound C(C)(C)(C)[SiH](OCC)OC1=CC=CC=C1 QWGRYFVTXQHHMA-UHFFFAOYSA-N 0.000 description 1
- POLXQRUXRCPXOI-UHFFFAOYSA-N tert-butyl-methoxy-phenoxysilane Chemical compound C(C)(C)(C)[SiH](OC1=CC=CC=C1)OC POLXQRUXRCPXOI-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical class NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 1
- LTSUHJWLSNQKIP-UHFFFAOYSA-J tin(iv) bromide Chemical compound Br[Sn](Br)(Br)Br LTSUHJWLSNQKIP-UHFFFAOYSA-J 0.000 description 1
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 description 1
- UBZYKBZMAMTNKW-UHFFFAOYSA-J titanium tetrabromide Chemical compound Br[Ti](Br)(Br)Br UBZYKBZMAMTNKW-UHFFFAOYSA-J 0.000 description 1
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 1
- NLLZTRMHNHVXJJ-UHFFFAOYSA-J titanium tetraiodide Chemical compound I[Ti](I)(I)I NLLZTRMHNHVXJJ-UHFFFAOYSA-J 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- VIQWCHQQGOFNDJ-UHFFFAOYSA-N tri(propan-2-yl)-[propan-2-yl-tri(propan-2-yl)silyloxysilyl]oxysilane Chemical compound C(C)(C)[SiH](O[Si](C(C)C)(C(C)C)C(C)C)O[Si](C(C)C)(C(C)C)C(C)C VIQWCHQQGOFNDJ-UHFFFAOYSA-N 0.000 description 1
- RPTRDOHWWDACIS-UHFFFAOYSA-N tri(propan-2-yl)-[propyl-tri(propan-2-yl)silyloxysilyl]oxysilane Chemical compound C(CC)[SiH](O[Si](C(C)C)(C(C)C)C(C)C)O[Si](C(C)C)(C(C)C)C(C)C RPTRDOHWWDACIS-UHFFFAOYSA-N 0.000 description 1
- 125000004665 trialkylsilyl group Chemical group 0.000 description 1
- 125000005106 triarylsilyl group Chemical group 0.000 description 1
- MCWWHQMTJNSXPX-UHFFFAOYSA-N tribenzylalumane Chemical compound C=1C=CC=CC=1C[Al](CC=1C=CC=CC=1)CC1=CC=CC=C1 MCWWHQMTJNSXPX-UHFFFAOYSA-N 0.000 description 1
- JKNHZOAONLKYQL-UHFFFAOYSA-K tribromoindigane Chemical compound Br[In](Br)Br JKNHZOAONLKYQL-UHFFFAOYSA-K 0.000 description 1
- SQBBHCOIQXKPHL-UHFFFAOYSA-N tributylalumane Chemical compound CCCC[Al](CCCC)CCCC SQBBHCOIQXKPHL-UHFFFAOYSA-N 0.000 description 1
- FVRKTAOFDKFAMI-UHFFFAOYSA-M tributylstannanylium;bromide Chemical compound [Br-].CCCC[Sn+](CCCC)CCCC FVRKTAOFDKFAMI-UHFFFAOYSA-M 0.000 description 1
- ORVMIVQULIKXCP-UHFFFAOYSA-N trichloro(phenyl)silane Chemical compound Cl[Si](Cl)(Cl)C1=CC=CC=C1 ORVMIVQULIKXCP-UHFFFAOYSA-N 0.000 description 1
- FAQYAMRNWDIXMY-UHFFFAOYSA-N trichloroborane Chemical compound ClB(Cl)Cl FAQYAMRNWDIXMY-UHFFFAOYSA-N 0.000 description 1
- ZIYNWDQDHKSRCE-UHFFFAOYSA-N tricyclohexylalumane Chemical compound C1CCCCC1[Al](C1CCCCC1)C1CCCCC1 ZIYNWDQDHKSRCE-UHFFFAOYSA-N 0.000 description 1
- BRVYMSGIKDKTKW-UHFFFAOYSA-N triethyl-[ethyl(methyl)silyl]oxysilane Chemical compound C[SiH](O[Si](CC)(CC)CC)CC BRVYMSGIKDKTKW-UHFFFAOYSA-N 0.000 description 1
- AUYKJXCXKRTIMK-UHFFFAOYSA-N triethyl-[ethyl(phenyl)silyl]oxysilane Chemical compound C(C)[SiH](O[Si](CC)(CC)CC)C1=CC=CC=C1 AUYKJXCXKRTIMK-UHFFFAOYSA-N 0.000 description 1
- MEGSGWUYYYJPRR-UHFFFAOYSA-N triethyl-[ethyl(propan-2-yl)silyl]oxysilane Chemical compound C(C)(C)[SiH](O[Si](CC)(CC)CC)CC MEGSGWUYYYJPRR-UHFFFAOYSA-N 0.000 description 1
- DHMBAQQIVDNJQY-UHFFFAOYSA-N triethyl-[ethyl(triethylsilyloxy)silyl]oxysilane Chemical compound CC[Si](CC)(CC)O[SiH](CC)O[Si](CC)(CC)CC DHMBAQQIVDNJQY-UHFFFAOYSA-N 0.000 description 1
- DFXKQSOHCCTUFM-UHFFFAOYSA-N triethyl-[hexyl(triethylsilyloxy)silyl]oxysilane Chemical compound C(CCCCC)[SiH](O[Si](CC)(CC)CC)O[Si](CC)(CC)CC DFXKQSOHCCTUFM-UHFFFAOYSA-N 0.000 description 1
- FGMGIDZRVNAZAX-UHFFFAOYSA-N triethyl-[methyl(phenyl)silyl]oxysilane Chemical compound C[SiH](O[Si](CC)(CC)CC)C1=CC=CC=C1 FGMGIDZRVNAZAX-UHFFFAOYSA-N 0.000 description 1
- PJJNTCQGPBUIGX-UHFFFAOYSA-N triethyl-[methyl(propan-2-yl)silyl]oxysilane Chemical compound C[SiH](O[Si](CC)(CC)CC)C(C)C PJJNTCQGPBUIGX-UHFFFAOYSA-N 0.000 description 1
- LLVYBYXTNXKYKA-UHFFFAOYSA-N triethyl-[methyl(triethylsilyloxy)silyl]oxysilane Chemical compound CC[Si](CC)(CC)O[SiH](C)O[Si](CC)(CC)CC LLVYBYXTNXKYKA-UHFFFAOYSA-N 0.000 description 1
- BBFUHZCYLBUUQN-UHFFFAOYSA-N triethyl-[pentyl(triethylsilyloxy)silyl]oxysilane Chemical compound C(CCCC)[SiH](O[Si](CC)(CC)CC)O[Si](CC)(CC)CC BBFUHZCYLBUUQN-UHFFFAOYSA-N 0.000 description 1
- JGBOHZWLHXKWQJ-UHFFFAOYSA-N triethyl-[phenyl(propan-2-yl)silyl]oxysilane Chemical compound C(C)(C)[SiH](O[Si](CC)(CC)CC)C1=CC=CC=C1 JGBOHZWLHXKWQJ-UHFFFAOYSA-N 0.000 description 1
- JXMGMPMSIIZJRT-UHFFFAOYSA-N triethyl-[phenyl(triethylsilyloxy)silyl]oxysilane Chemical compound C1(=CC=CC=C1)[SiH](O[Si](CC)(CC)CC)O[Si](CC)(CC)CC JXMGMPMSIIZJRT-UHFFFAOYSA-N 0.000 description 1
- VWADDXVGPLNISL-UHFFFAOYSA-N triethyl-[propan-2-yl(triethylsilyloxy)silyl]oxysilane Chemical compound C(C)(C)[SiH](O[Si](CC)(CC)CC)O[Si](CC)(CC)CC VWADDXVGPLNISL-UHFFFAOYSA-N 0.000 description 1
- XWQDJMSZBLQFDS-UHFFFAOYSA-N triethyl-[propyl(triethylsilyloxy)silyl]oxysilane Chemical compound CCC[SiH](O[Si](CC)(CC)CC)O[Si](CC)(CC)CC XWQDJMSZBLQFDS-UHFFFAOYSA-N 0.000 description 1
- VOITXYVAKOUIBA-UHFFFAOYSA-N triethylaluminium Chemical compound CC[Al](CC)CC VOITXYVAKOUIBA-UHFFFAOYSA-N 0.000 description 1
- KQPIFPBKXYBDGV-UHFFFAOYSA-M triethylstannanylium;bromide Chemical compound CC[Sn](Br)(CC)CC KQPIFPBKXYBDGV-UHFFFAOYSA-M 0.000 description 1
- JNLSTWIBJFIVHZ-UHFFFAOYSA-K trifluoroindigane Chemical compound F[In](F)F JNLSTWIBJFIVHZ-UHFFFAOYSA-K 0.000 description 1
- XRADHEAKQRNYQQ-UHFFFAOYSA-K trifluoroneodymium Chemical compound F[Nd](F)F XRADHEAKQRNYQQ-UHFFFAOYSA-K 0.000 description 1
- ORYGRKHDLWYTKX-UHFFFAOYSA-N trihexylalumane Chemical compound CCCCCC[Al](CCCCCC)CCCCCC ORYGRKHDLWYTKX-UHFFFAOYSA-N 0.000 description 1
- RMUKCGUDVKEQPL-UHFFFAOYSA-K triiodoindigane Chemical compound I[In](I)I RMUKCGUDVKEQPL-UHFFFAOYSA-K 0.000 description 1
- YUYCVXFAYWRXLS-UHFFFAOYSA-N trimethoxysilane Chemical compound CO[SiH](OC)OC YUYCVXFAYWRXLS-UHFFFAOYSA-N 0.000 description 1
- JZQGWNPHDJYISY-UHFFFAOYSA-N trimethyl-[methyl(phenyl)silyl]oxysilane Chemical compound C[SiH](O[Si](C)(C)C)c1ccccc1 JZQGWNPHDJYISY-UHFFFAOYSA-N 0.000 description 1
- GIILGANFUHCUSZ-UHFFFAOYSA-N trimethyl-[methyl(propan-2-yl)silyl]oxysilane Chemical compound CC(C)[SiH](C)O[Si](C)(C)C GIILGANFUHCUSZ-UHFFFAOYSA-N 0.000 description 1
- JZZVTTREYMGMPX-UHFFFAOYSA-N trimethyl-[pentyl(trimethylsilyloxy)silyl]oxysilane Chemical compound C(CCCC)[SiH](O[Si](C)(C)C)O[Si](C)(C)C JZZVTTREYMGMPX-UHFFFAOYSA-N 0.000 description 1
- BSKQICLMMUQFJV-UHFFFAOYSA-N trimethyl-[phenyl(propan-2-yl)silyl]oxysilane Chemical compound C(C)(C)[SiH](O[Si](C)(C)C)C1=CC=CC=C1 BSKQICLMMUQFJV-UHFFFAOYSA-N 0.000 description 1
- MVDKZIOZIWKNCP-UHFFFAOYSA-N trimethyl-[phenyl(trimethylsilyloxy)silyl]oxysilane Chemical compound C[Si](C)(C)O[SiH](O[Si](C)(C)C)C1=CC=CC=C1 MVDKZIOZIWKNCP-UHFFFAOYSA-N 0.000 description 1
- YBSONWFCMKTZDG-UHFFFAOYSA-N trimethyl-[propan-2-yl(trimethylsilyloxy)silyl]oxysilane Chemical compound CC(C)[SiH](O[Si](C)(C)C)O[Si](C)(C)C YBSONWFCMKTZDG-UHFFFAOYSA-N 0.000 description 1
- PMFSLPPNQCIHBT-UHFFFAOYSA-N trimethyl-[propyl(trimethylsilyloxy)silyl]oxysilane Chemical compound CCC[SiH](O[Si](C)(C)C)O[Si](C)(C)C PMFSLPPNQCIHBT-UHFFFAOYSA-N 0.000 description 1
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 1
- 239000005051 trimethylchlorosilane Substances 0.000 description 1
- MZGUIAFRJWSYJJ-UHFFFAOYSA-M trimethylstannanylium;bromide Chemical compound C[Sn](C)(C)Br MZGUIAFRJWSYJJ-UHFFFAOYSA-M 0.000 description 1
- LFXVBWRMVZPLFK-UHFFFAOYSA-N trioctylalumane Chemical compound CCCCCCCC[Al](CCCCCCCC)CCCCCCCC LFXVBWRMVZPLFK-UHFFFAOYSA-N 0.000 description 1
- JOJQVUCWSDRWJE-UHFFFAOYSA-N tripentylalumane Chemical compound CCCCC[Al](CCCCC)CCCCC JOJQVUCWSDRWJE-UHFFFAOYSA-N 0.000 description 1
- JQPMDTQDAXRDGS-UHFFFAOYSA-N triphenylalumane Chemical compound C1=CC=CC=C1[Al](C=1C=CC=CC=1)C1=CC=CC=C1 JQPMDTQDAXRDGS-UHFFFAOYSA-N 0.000 description 1
- JBWKIWSBJXDJDT-UHFFFAOYSA-N triphenylmethyl chloride Chemical compound C=1C=CC=CC=1C(C=1C=CC=CC=1)(Cl)C1=CC=CC=C1 JBWKIWSBJXDJDT-UHFFFAOYSA-N 0.000 description 1
- CNWZYDSEVLFSMS-UHFFFAOYSA-N tripropylalumane Chemical compound CCC[Al](CCC)CCC CNWZYDSEVLFSMS-UHFFFAOYSA-N 0.000 description 1
- QDHQENQYSFSSQA-UHFFFAOYSA-N tris(1-methylcyclopentyl)alumane Chemical compound C1CCCC1(C)[Al](C1(C)CCCC1)C1(C)CCCC1 QDHQENQYSFSSQA-UHFFFAOYSA-N 0.000 description 1
- MYWRONRUDLXRGX-UHFFFAOYSA-N tris(2,2-dimethylpropyl)alumane Chemical compound CC(C)(C)C[Al](CC(C)(C)C)CC(C)(C)C MYWRONRUDLXRGX-UHFFFAOYSA-N 0.000 description 1
- ZHRAFNQICZNWIK-UHFFFAOYSA-N tris(2,6-dimethylphenyl)alumane Chemical compound CC1=CC=CC(C)=C1[Al](C=1C(=CC=CC=1C)C)C1=C(C)C=CC=C1C ZHRAFNQICZNWIK-UHFFFAOYSA-N 0.000 description 1
- FHAOCGKAMRAFMM-UHFFFAOYSA-N tris(2-ethylhexyl)alumane Chemical compound CCCCC(CC)C[Al](CC(CC)CCCC)CC(CC)CCCC FHAOCGKAMRAFMM-UHFFFAOYSA-N 0.000 description 1
- WSITXTIRYQMZHM-UHFFFAOYSA-N tris(4-methylphenyl)alumane Chemical compound C1=CC(C)=CC=C1[Al](C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 WSITXTIRYQMZHM-UHFFFAOYSA-N 0.000 description 1
- HUOVLEMBMVCLRL-UHFFFAOYSA-N tris(diethylsilyloxy)-(3,3,3-trichloropropyl)silane Chemical compound ClC(CC[Si](O[SiH](CC)CC)(O[SiH](CC)CC)O[SiH](CC)CC)(Cl)Cl HUOVLEMBMVCLRL-UHFFFAOYSA-N 0.000 description 1
- MQHHDYBMIIULMP-UHFFFAOYSA-N tris(diethylsilyloxy)silane Chemical compound C(C)[SiH](O[SiH](O[SiH](CC)CC)O[SiH](CC)CC)CC MQHHDYBMIIULMP-UHFFFAOYSA-N 0.000 description 1
- OKUFGZNQTJZYTG-UHFFFAOYSA-N tris(dimethylsilyloxy)-(3,3,3-trichloropropyl)silane Chemical compound ClC(CC[Si](O[SiH](C)C)(O[SiH](C)C)O[SiH](C)C)(Cl)Cl OKUFGZNQTJZYTG-UHFFFAOYSA-N 0.000 description 1
- BEQREZLERZKZQU-UHFFFAOYSA-N tris(dimethylsilyloxy)silane Chemical compound C[SiH](C)O[SiH](O[SiH](C)C)O[SiH](C)C BEQREZLERZKZQU-UHFFFAOYSA-N 0.000 description 1
- XAASNKQYFKTYTR-UHFFFAOYSA-N tris(trimethylsilyloxy)silicon Chemical compound C[Si](C)(C)O[Si](O[Si](C)(C)C)O[Si](C)(C)C XAASNKQYFKTYTR-UHFFFAOYSA-N 0.000 description 1
- NCAZTOSTWWEAEN-UHFFFAOYSA-N tris[di(propan-2-yl)silyloxy]silane Chemical compound C(C)(C)[SiH](O[SiH](O[SiH](C(C)C)C(C)C)O[SiH](C(C)C)C(C)C)C(C)C NCAZTOSTWWEAEN-UHFFFAOYSA-N 0.000 description 1
- RTAKQLTYPVIOBZ-UHFFFAOYSA-N tritert-butylalumane Chemical compound CC(C)(C)[Al](C(C)(C)C)C(C)(C)C RTAKQLTYPVIOBZ-UHFFFAOYSA-N 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 150000003738 xylenes Chemical class 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
- UAYWVJHJZHQCIE-UHFFFAOYSA-L zinc iodide Chemical compound I[Zn]I UAYWVJHJZHQCIE-UHFFFAOYSA-L 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F36/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
- C08F36/02—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
- C08F36/04—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C1/00—Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
- B60C1/0016—Compositions of the tread
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C1/00—Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C1/00—Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
- B60C1/0025—Compositions of the sidewalls
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08C—TREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
- C08C19/00—Chemical modification of rubber
- C08C19/25—Incorporating silicon atoms into the molecule
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F136/00—Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
- C08F136/02—Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
- C08F136/04—Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
- C08F136/06—Butadiene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/06—Metallic compounds other than hydrides and other than metallo-organic compounds; Boron halide or aluminium halide complexes with organic compounds containing oxygen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/04—Polysiloxanes
- C08G77/20—Polysiloxanes containing silicon bound to unsaturated aliphatic groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/54—Silicon-containing compounds
- C08K5/541—Silicon-containing compounds containing oxygen
- C08K5/5415—Silicon-containing compounds containing oxygen containing at least one Si—O bond
- C08K5/5419—Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L15/00—Compositions of rubber derivatives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2410/00—Features related to the catalyst preparation, the catalyst use or to the deactivation of the catalyst
- C08F2410/01—Additive used together with the catalyst, excluding compounds containing Al or B
Definitions
- Embodiments of the invention relate to preparing silane-functionalized polymers by a process that includes reacting a cis-1,4-polydiene that includes some 1,2-linkage content with a hydrosilane compound in the presence of a lanthanide-based catalyst system.
- the particulate filler can bolster the modulus of the rubber composition.
- silica has advantageously been employed as a filler.
- the use of silica filler within tire treads produces, among other advantages, improved wear.
- fillers offer advantages in rubber compositions, the presence of the filler impacts the dynamic properties of the rubber compositions. Namely, hysteretic loss increases with filler concentration. This can be disadvantageous, especially in tire treads, because hysteretic loss is inversely proportional to rolling resistance.
- polymers can be modified with certain functionalities that react or interact with filler and thereby reduce hysteretic loss.
- Suitable functionalities that may react or interact with filler include silane functionalities.
- Current strategies for the incorporation of a silane functionality into a polymer include either the chain-end functionalization of an anionically-initiated polymer or the hydrosilation of a polymer chain. While the foregoing approaches have been useful, the use anionic polymerization results in a polymer with limited 1,4-cis linkage and a single silane functionality at one terminus of the polymer chain.
- hydrosilation techniques that have been employed thus far use a finished polymer that is then redissolved in a solvent prior to the functionalization reaction with a silane using a either a platinum or a rhodium catalyst to drive the hydrosilation reaction.
- Examples of preparation of silylated polydienes are described in EP2470574 A2 , US2010/317818 A1 , and EP2266819 A1 .
- Embodiments of the present invention provide a method of preparing a silane-functionalized polymer, the method comprising (i) preparing a polymerization system including a cis-1,4-polydiene by introducing a lanthanide-based catalyst and a conjugated diene monomer; and (ii) adding a hydrosilane compound to the polymerization system including a cis-1,4-polydiene.
- a vulcanizable composition comprising: the silane-functionalized polymer prepared by the method, a filler, and a curative.
- Embodiments of the invention are based, at least in part, on the discovery of a method for producing silane-functional cis-1,4-polydiene polymer.
- cis-1,4-polydienes may be silane-functionalized by combining a polymer, including reactive polymers, with hydrosilane compound in the presence of a lanthanide-based catalyst system.
- the functionalized polymer includes silane-functionalization.
- the cis-1,4-polydienes may be prepared in the presence of a lanthanide-based catalyst system, and the same catalyst can then catalyze the hydrosilation reaction. This allows for a process for preparing silane-functional cis-1,4-polydiene polymers that may reduce process steps, minimize by-product waste, and eliminate the need for additional catalysts.
- the polymers that undergo functionalization according to embodiments of the present invention are cis-1,4-polydienes that include 1,2-linkage content (i.e., vinyl content).
- 1,2-linkage content i.e., vinyl content
- these polymers may be referred to simply as cis-1,4-polydienes.
- the cis-1,4-polydienes may be synthesized by polymerizing conjugated dienes with a lanthanide-based catalyst system.
- the cis-1,4-polydienes may include a reactive chain end.
- the cis-1,4-polydienes cis-1,4-polydienes with a reactive chain end prepared with a lanthanide-based catalyst may be referred to as a pseudo-living polymer, which will be discussed in further detail below.
- the cis-1,4-polydienes may include a functionalized chain end (i.e., a chain end bearing a functional group).
- the cis-1,4-polydienes may have a cis-1,4-linkage content that is greater than 60%, in other embodiments greater than 75%, in other embodiments greater than 90%, in other embodiments greater than 96%, in other embodiments greater than 98%, and in other embodiments greater than 99%, where the percentages are based upon the number of diene mer units adopting the cis-1,4 linkage versus the total number of diene mer units.
- these polymers have a 1,2-linkage content.
- these polymers may have a 1,2-linkage content that is greater than 0.1%, in other embodiments greater than 0.3%, and in other embodiments greater than 0.5%.
- these polymers may have a 1,2-linkage content that is less than 7%, in other embodiments less than 5%, and in other embodiments less than 2%, where the percentages are based upon the number of diene mer units adopting the 1,2-linkage versus the total number of diene mer units. In one or more embodiments, these polymers may have a 1,2-linkage content that is from about 0.1% to about 7%, in other embodiments about 0.3% to about 5%, and in other embodiments about 0.5% to about 2%.
- the cis-1,4-, 1,2-, and trans-1,4-linkage contents can be determined by infrared spectroscopy.
- the number average molecular weight (M n ) of the cis-1,4-polydiene polymers may be from about 1,000 to about 1,000,000, in other embodiments from about 5,000 to about 200,000, in other embodiments from about 25,000 to about 150,000, and in other embodiments from about 50,000 to about 120,000, as determined by using gel permeation chromatography (GPC) calibrated with polystyrene standards and Mark-Houwink constants for the polymer in question.
- the molecular weight distribution or polydispersity (M w /M n ) of the cis-1,4-polydienes may be from about 1.5 to about 5.0, and in other embodiments from about 2.0 to about 4.0.
- the cis-1,4-polydienes of this invention may have a M w /M n of less than 3.0, in other embodiments less than 2.5, in other embodiments less than 2.3, in other embodiments less than 2.2, in other embodiments less than 2.1, and in other embodiments less than 2.0.
- the cis-1,4-polydienes may include a secondary functionalization.
- a secondary-functionalizing agent may be added to the polymerization mixture that includes a reactive polymer to yield an end-functionalized polymer.
- the percentage of polymer chains possessing a functional group may depend on various factors such as the type of catalyst, the type of monomer, the purity of the ingredients, the polymerization temperature, the monomer conversion, and many other factors.
- At least about 10% of the polymer chains possess a functional end group in other embodiments at least about 30% of the polymer chains possess a functional end group, in other embodiments at least about 50% of the polymer chains possess a functional end group, and in still other embodiments at least about 60% of the polymer chains possess a functional end group.
- the cis-1,4-polydienes may be prepared by polymerizing conjugated diene monomer by using a lanthanide-based catalyst system.
- conjugated diene monomer examples include 1,3-butadiene, isoprene, 1,3-pentadiene, 1,3-hexadiene, 2,3-dimethyl 1,3-butadiene, 2-ethyl-1,3-butadiene, 2-methyl-1,3-pentadiene, 3-methyl-1,3-pentadiene, 4-methyl-1,3-pentadiene, and 2,4-hexadiene.
- Mixtures of two or more conjugated dienes may also be utilized in copolymerization.
- the catalyst systems employed include (a) a lanthanide-containing compound, (b) an alkylating agent, and (c) a halogen source.
- a compound containing a non-coordinating anion or a non-coordinating anion precursor can be employed in lieu of a halogen source.
- other organometallic compounds, Lewis bases, and/or catalyst modifiers can be employed in addition to the ingredients or components set forth above.
- a nickel-containing compound can be employed as a molecular weight regulator as disclosed in U.S. Patent No. 6,699,813 .
- the catalyst system is a preformed lanthanide-based catalyst system.
- the catalyst system is a lanthanide-based catalyst system form in situ.
- the lanthanide-based catalyst systems employed in the present invention can include a lanthanide-containing compound.
- Lanthanide-containing compounds useful in the present invention are those compounds that include at least one atom of lanthanum, neodymium, cerium, praseodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, and didymium.
- these compounds can include neodymium, lanthanum, samarium, or didymium.
- the term "didymium” shall denote a commercial mixture of rare-earth elements obtained from monazite sand.
- the lanthanide-containing compounds useful in the present invention can be in the form of elemental lanthanide.
- the lanthanide atom in the lanthanide-containing compounds can be in various oxidation states including, but not limited to, the 0, +2, +3, and +4 oxidation states.
- a trivalent lanthanide-containing compound, where the lanthanide atom is in the +3 oxidation state can be employed.
- Suitable lanthanide-containing compounds include, but are not limited to, lanthanide carboxylates, lanthanide organophosphates, lanthanide organophosphonates, lanthanide organophosphinates, lanthanide carbamates, lanthanide dithiocarbamates, lanthanide xanthates, lanthanide ⁇ -diketonates, lanthanide alkoxides or aryloxides, lanthanide halides, lanthanide pseudo-halides, lanthanide oxyhalides, and organolanthanide compounds.
- the lanthanide-containing compounds can be soluble in hydrocarbon solvents such as aromatic hydrocarbons, aliphatic hydrocarbons, or cycloaliphatic hydrocarbons.
- Hydrocarbon-insoluble lanthanide-containing compounds may also be useful in the present invention, as they can be suspended in the polymerization medium to form the catalytically active species.
- lanthanide-containing compounds For ease of illustration, further discussion of useful lanthanide-containing compounds will focus on neodymium compounds, although those skilled in the art will be able to select similar compounds that are based upon other lanthanide metals.
- Suitable neodymium carboxylates include, but are not limited to, neodymium formate, neodymium acetate, neodymium acrylate, neodymium methacrylate, neodymium valerate, neodymium gluconate, neodymium citrate, neodymium fumarate, neodymium lactate, neodymium maleate, neodymium oxalate, neodymium 2-ethylhexanoate, neodymium neodecanoate (a.k.a., neodymium versatate), neodymium naphthenate, neodymium stearate, neodymium oleate, neodymium benzoate, and neodymium picolinate.
- Suitable neodymium organophosphates include, but are not limited to, neodymium dibutyl phosphate, neodymium dipentyl phosphate, neodymium dihexyl phosphate, neodymium diheptyl phosphate, neodymium dioctyl phosphate, neodymium bis(1-methylheptyl) phosphate, neodymium bis(2-ethylhexyl) phosphate, neodymium didecyl phosphate, neodymium didodecyl phosphate, neodymium dioctadecyl phosphate, neodymium dioleyl phosphate, neodymium diphenyl phosphate, neodymium bis(p-nonylphenyl) phosphate, neodymium butyl (2-ethylhex
- Suitable neodymium organophosphonates include, but are not limited to, neodymium butyl phosphonate, neodymium pentyl phosphonate, neodymium hexyl phosphonate, neodymium heptyl phosphonate, neodymium octyl phosphonate, neodymium (1-methylheptyl) phosphonate, neodymium (2-ethylhexyl) phosphonate, neodymium decyl phosphonate, neodymium dodecyl phosphonate, neodymium octadecyl phosphonate, neodymium oleyl phosphonate, neodymium phenyl phosphonate, neodymium (p-nonylphenyl) phosphonate, neodymium butyl buty
- Suitable neodymium organophosphinates include, but are not limited to, neodymium butylphosphinate, neodymium pentylphosphinate, neodymium hexylphosphinate, neodymium heptylphosphinate, neodymium octylphosphinate, neodymium (1-methylheptyl)phosphinate, neodymium (2-ethylhexyl)phosphinate, neodymium decylphosphinate, neodymium dodecylphosphinate, neodymium octadecylphosphinate, neodymium oleylphosphinate, neodymium phenylphosphinate, neodymium (p-nonylphenyl)phosphinate, neodymium dibutyl
- Suitable neodymium carbamates include, but are not limited to, neodymium dimethylcarbamate, neodymium diethylcarbamate, neodymium diisopropylcarbamate, neodymium dibutylcarbamate, and neodymium dibenzylcarbamate.
- Suitable neodymium dithiocarbamates include, but are not limited to, neodymium dimethyldithiocarbamate, neodymium diethyldithiocarbamate, neodymium diisopropyldithiocarbamate, neodymium dibutyldithiocarbamate, and neodymium dibenzyldithiocarbamate.
- Suitable neodymium xanthates include, but are not limited to, neodymium methylxanthate, neodymium ethylxanthate, neodymium isopropylxanthate, neodymium butylxanthate, and neodymium benzylxanthate.
- Suitable neodymium ⁇ -diketonates include, but are not limited to, neodymium acetylacetonate, neodymium trifluoroacetylacetonate, neodymium hexafluoroacetylacetonate, neodymium benzoylacetonate, and neodymium 2,2,6,6-tetramethyl-3,5-heptanedionate.
- Suitable neodymium alkoxides or aryloxides include, but are not limited to, neodymium methoxide, neodymium ethoxide, neodymium isopropoxide, neodymium 2-ethylhexoxide, neodymium phenoxide, neodymium nonylphenoxide, and neodymium naphthoxide.
- Suitable neodymium halides include, but are not limited to, neodymium fluoride, neodymium chloride, neodymium bromide, and neodymium iodide.
- Suitable neodymium pseudo-halides include, but are not limited to, neodymium cyanide, neodymium cyanate, neodymium thiocyanate, neodymium azide, and neodymium ferrocyanide.
- Suitable neodymium oxyhalides include, but are not limited to, neodymium oxyfluoride, neodymium oxychloride, and neodymium oxybromide.
- a Lewis base such as tetrahydrofuran (“THF”), may be employed as an aid for solubilizing this class of neodymium compounds in inert organic solvents.
- THF tetrahydrofuran
- the lanthanide-containing compound may optionally also provide all or part of the halogen source in the lanthanide-based catalyst system.
- organolanthanide compound refers to any lanthanide-containing compound containing at least one lanthanide-carbon bond. These compounds are predominantly, though not exclusively, those containing cyclopentadienyl ("Cp"), substituted cyclopentadienyl, allyl, and substituted allyl ligands.
- Cp cyclopentadienyl
- Suitable organolanthanide compounds include, but are not limited to, Cp 3 Ln, Cp 2 LnR, Cp 2 LnCl, CpLnCl 2 , CpLn(cyclooctatetraene), (C 5 Me 5 ) 2 LnR, LnR 3 , Ln(allyl) 3 , and Ln(allyl) 2 Cl, where Ln represents a lanthanide atom, and R represents a hydrocarbyl group.
- hydrocarbyl groups useful in the present invention may contain heteroatoms such as, for example, nitrogen, oxygen, boron, silicon, sulfur, and phosphorus atoms.
- alkylating agents which may also be referred to as hydrocarbylating agents, include organometallic compounds that can transfer one or more hydrocarbyl groups to another metal.
- these agents include organometallic compounds of electropositive metals such as those from Groups 1, 2, and 13 metals under IUPAC numbering (Groups IA, IIA, and IIIA metals).
- Alkylating agents useful in the present invention include, but are not limited to, organoaluminum and organomagnesium compounds.
- organoaluminum compound refers to any aluminum compound containing at least one aluminum-carbon bond.
- organoaluminum compounds that are soluble in a hydrocarbon solvent can be employed.
- organomagnesium compound refers to any magnesium compound that contains at least one magnesium-carbon bond.
- organomagnesium compounds that are soluble in a hydrocarbon can be employed.
- suitable alkylating agents can be in the form of a halide. Where the alkylating agent includes a halogen atom, the alkylating agent may also serve as all or part of the halogen source in the above-mentioned catalyst system.
- organoaluminum compounds that can be utilized in the lanthanide-based catalyst system include those represented by the general formula AlR n X 3-n , where each R independently can be a monovalent organic group that is attached to the aluminum atom via a carbon atom, where each X independently can be a hydrogen atom, a halogen atom, a carboxylate group, an alkoxide group, or an aryloxide group, and where n can be an integer in the range of from 1 to 3.
- each R independently can be a hydrocarbyl group such as, for example, alkyl, cycloalkyl, substituted cycloalkyl, alkenyl, cycloalkenyl, substituted cycloalkenyl, aryl, substituted aryl, aralkyl, alkaryl, allyl, and alkynyl groups, with each group containing in the range of from 1 carbon atom, or the appropriate minimum number of carbon atoms to form the group, up to about 20 carbon atoms.
- These hydrocarbyl groups may contain heteroatoms including, but not limited to, nitrogen, oxygen, boron, silicon, sulfur, and phosphorus atoms.
- Types of the organoaluminum compounds that are represented by the general formula AlR n X 3-n include, but are not limited to, trihydrocarbylaluminum, dihydrocarbylaluminum hydride, hydrocarbylaluminum dihydride, dihydrocarbylaluminum carboxylate, hydrocarbylaluminum bis(carboxylate), dihydrocarbylaluminum alkoxide, hydrocarbylaluminum dialkoxide, dihydrocarbylaluminum halide, hydrocarbylaluminum dihalide, dihydrocarbylaluminum aryloxide, and hydrocarbylaluminum diaryloxide compounds.
- the alkylating agent can comprise trihydrocarbylaluminum, dihydrocarbylaluminum hydride, and/or hydrocarbylaluminum dihydride compounds.
- the above-mentioned halogen source can be provided by a tin halide, as disclosed in U.S. Patent No. 7,008,899 .
- Suitable trihydrocarbylaluminum compounds include, but are not limited to, trimethylaluminum, triethylaluminum, triisobutylaluminum, tri-n-propylaluminum, triisopropylaluminum, tri-n-butylaluminum, tri-t-butylaluminum, tri-n-pentylaluminum, trineopentylaluminum, tri-n-hexylaluminum, tri-n-octylaluminum, tris(2-ethylhexyl)aluminum, tricyclohexylaluminum, tris(1-methylcyclopentyl)aluminum, triphenylaluminum, tri-p-tolylaluminum, tris(2,6-dimethylphenyl)aluminum, tribenzylaluminum, diethylphenylaluminum, diethyl-p-tolylaluminum, die
- Suitable dihydrocarbylaluminum hydride compounds include, but are not limited to, diethylaluminum hydride, di-n-propylaluminum hydride, diisopropylaluminum hydride, di-n-butylaluminum hydride, diisobutylaluminum hydride, di-n-octylaluminum hydride, diphenylaluminum hydride, di-p-tolylaluminum hydride, dibenzylaluminum hydride, phenylethylaluminum hydride, phenyl-n-propylaluminum hydride, phenylisopropylaluminum hydride, phenyl-n-butylaluminum hydride, phenylisobutylaluminum hydride, phenyl-n-octylaluminum hydride, p-tolylethylaluminum hydride
- Suitable hydrocarbylaluminum dihydrides include, but are not limited to, ethylaluminum dihydride, n-propylaluminum dihydride, isopropylaluminum dihydride, n-butylaluminum dihydride, isobutylaluminum dihydride, and n-octylaluminum dihydride.
- Suitable dihydrocarbylaluminum halide compounds include, but are not limited to, diethylaluminum chloride, di-n-propylaluminum chloride, diisopropylaluminum chloride, di-n-butylaluminum chloride, diisobutylaluminum chloride, di-n-octylaluminum chloride, diphenylaluminum chloride, di-p-tolylaluminum chloride, dibenzylaluminum chloride, phenylethylaluminum chloride, phenyl-n-propylaluminum chloride, phenylisopropylaluminum chloride, phenyl-n-butylaluminum chloride, phenylisobutylaluminum chloride, phenyl-n-octylaluminum chloride, p-tolylethylaluminum chloride, p-tolyl-n-propylaluminum
- Suitable hydrocarbylaluminum dihalide compounds include, but are not limited to, ethylaluminum dichloride, n-propylaluminum dichloride, isopropylaluminum dichloride, n-butylaluminum dichloride, isobutylaluminum dichloride, and n-octylaluminum dichloride.
- organoaluminum compounds useful as alkylating agents that may be represented by the general formula AlR n X 3-n include, but are not limited to, dimethylaluminum hexanoate, diethylaluminum octoate, diisobutylaluminum 2-ethylhexanoate, dimethylaluminum neodecanoate, diethylaluminum stearate, diisobutylaluminum oleate, methylaluminum bis(hexanoate), ethylaluminum bis(octoate), isobutylaluminum bis(2-ethylhexanoate), methylaluminum bis(neodecanoate), ethylaluminum bis(stearate), isobutylaluminum bis(oleate), dimethylaluminum methoxide, diethylaluminum methoxide, diisobutylaluminum methoxid
- Aluminoxanes can comprise oligomeric linear aluminoxanes, which can be represented by the general formula: and oligomeric cyclic aluminoxanes, which can be represented by the general formula: where x can be an integer in the range of from 1 to about 100, or about 10 to about 50; y can be an integer in the range of from 2 to about 100, or about 3 to about 20; and where each R independently can be a monovalent organic group that is attached to the aluminum atom via a carbon atom.
- each R independently can be a hydrocarbyl group including, but not limited to, alkyl, cycloalkyl, substituted cycloalkyl, alkenyl, cycloalkenyl, substituted cycloalkenyl, aryl, substituted aryl, aralkyl, alkaryl, allyl, and alkynyl groups, with each group containing in the range of from 1 carbon atom, or the appropriate minimum number of carbon atoms to form the group, up to about 20 carbon atoms.
- These hydrocarbyl groups may also contain heteroatoms including, but not limited to, nitrogen, oxygen, boron, silicon, sulfur, and phosphorus atoms.
- the number of moles of the aluminoxane as used in this application refers to the number of moles of the aluminum atoms rather than the number of moles of the oligomeric aluminoxane molecules. This convention is commonly employed in the art of catalyst systems utilizing aluminoxanes.
- Aluminoxanes can be prepared by reacting trihydrocarbylaluminum compounds with water. This reaction can be performed according to known methods, such as, for example, (1) a method in which the trihydrocarbylaluminum compound is dissolved in an organic solvent and then contacted with water, (2) a method in which the trihydrocarbylaluminum compound is reacted with water of crystallization contained in, for example, metal salts, or water adsorbed in inorganic or organic compounds, or (3) a method in which the trihydrocarbylaluminum compound is reacted with water in the presence of the monomer or monomer solution that is to be polymerized.
- Suitable aluminoxane compounds include, but are not limited to, methylaluminoxane, modified methylaluminoxane, ethylaluminoxane, n-propylaluminoxane, isopropylaluminoxane, butylaluminoxane, isobutylaluminoxane, n-pentylaluminoxane, neopentylaluminoxane, n-hexylaluminoxane, n-octylaluminoxane, 2-ethylhexylaluminoxane, cyclohexylaluminoxane, 1-methylcyclopentylaluminoxane, phenylaluminoxane, and 2,6-dimethylphenylaluminoxane.
- Modified methylaluminoxane can be formed by substituting about 5 to 95 percent of the methyl groups of methylaluminoxane with C 2 to C 12 hydrocarbyl groups, preferably with isobutyl groups, by using techniques known to those skilled in the art.
- aluminoxanes can be used alone or in combination with other organoaluminum compounds.
- methylaluminoxane and at least one other organoaluminum compound e.g., AlR n X 3-n
- the catalyst compositions employed in the present invention are devoid or substantially devoid of aluminoxanes.
- alkylating agents useful in the lanthanide-based catalyst system can include organomagnesium compounds.
- organomagnesium compounds that can be utilized include those represented by the general formula MgR 2 , where each R independently can be a monovalent organic group that is attached to the magnesium atom via a carbon atom.
- each R independently can be a hydrocarbyl group including, but not limited to, alkyl, cycloalkyl, substituted cycloalkyl, alkenyl, cycloalkenyl, substituted cycloalkenyl, aryl, allyl, substituted aryl, aralkyl, alkaryl, and alkynyl groups, with each group containing in the range of from 1 carbon atom, or the appropriate minimum number of carbon atoms to form the group, up to about 20 carbon atoms.
- These hydrocarbyl groups may also contain heteroatoms including, but not limited to, nitrogen, oxygen, silicon, sulfur, and phosphorus atoms.
- Suitable organomagnesium compounds that may be represented by the general formula MgR 2 include, but are not limited to, diethylmagnesium, di-n-propylmagnesium, diisopropylmagnesium, dibutylmagnesium, dihexylmagnesium, diphenylmagnesium, and dibenzylmagnesium.
- the alkylating agent is an organomagnesium compound that includes a halogen atom
- the organomagnesium compound can serve as both the alkylating agent and at least a portion of the halogen source in the catalyst systems.
- R can be a hydrocarbyl group including, but not limited to, alkyl, cycloalkyl, substituted cycloalkyl, alkenyl, cycloalkenyl, substituted cycloalkenyl, aryl, allyl, substituted aryl, aralkyl, alkaryl, and alkynyl groups, with each group containing in the range of from 1 carbon atom, or the appropriate minimum number of carbon atoms to form the group, up to about 20 carbon atoms.
- These hydrocarbyl groups may also contain heteroatoms including, but not limited to, nitrogen, oxygen, boron, silicon, sulfur, and phosphorus atoms.
- X can be a carboxylate group, an alkoxide group, or an aryloxide group, with each group containing in the range of from 1 to about 20 carbon atoms.
- Types of organomagnesium compounds that may be represented by the general formula RMgX include, but are not limited to, hydrocarbylmagnesium hydride, hydrocarbylmagnesium halide, hydrocarbylmagnesium carboxylate, hydrocarbylmagnesium alkoxide, and hydrocarbylmagnesium aryloxide.
- Suitable organomagnesium compounds that may be represented by the general formula RMgX include, but are not limited to, methylmagnesium hydride, ethylmagnesium hydride, butylmagnesium hydride, hexylmagnesium hydride, phenylmagnesium hydride, benzylmagnesium hydride, methylmagnesium chloride, ethylmagnesium chloride, butylmagnesium chloride, hexylmagnesium chloride, phenylmagnesium chloride, benzylmagnesium chloride, methylmagnesium bromide, ethylmagnesium bromide, butylmagnesium bromide, hexylmagnesium bromide, phenylmagnesium bromide, benzylmagnesium bromide, methylmagnesium hexanoate, ethylmagnesium hexanoate, butylmagnesium hexan
- the lanthanide-based catalyst systems employed in the present invention can include a halogen source.
- the term halogen source refers to any substance including at least one halogen atom.
- at least a portion of the halogen source can be provided by either of the above-described lanthanide-containing compound and/or the above-described alkylating agent, when those compounds contain at least one halogen atom.
- the lanthanide-containing compound can serve as both the lanthanide-containing compound and at least a portion of the halogen source.
- the alkylating agent can serve as both the alkylating agent and at least a portion of the halogen source.
- halogen source can be present in the catalyst systems in the form of a separate and distinct halogen-containing compound.
- Various compounds, or mixtures thereof, that contain one or more halogen atoms can be employed as the halogen source.
- halogen atoms include, but are not limited to, fluorine, chlorine, bromine, and iodine.
- a combination of two or more halogen atoms can also be utilized.
- Halogen-containing compounds that are soluble in a hydrocarbon solvent are suitable for use in the present invention. Hydrocarbon-insoluble halogen-containing compounds, however, can be suspended in a polymerization system to form the catalytically active species, and are therefore also useful.
- halogen-containing compounds that can be employed include, but are not limited to, elemental halogens, mixed halogens, hydrogen halides, organic halides, inorganic halides, metallic halides, and organometallic halides.
- Suitable elemental halogens include, but are not limited to, fluorine, chlorine, bromine, and iodine.
- suitable mixed halogens include iodine monochloride, iodine monobromide, iodine trichloride, and iodine pentafluoride.
- Suitable hydrogen halides include, but are not limited to, hydrogen fluoride, hydrogen chloride, hydrogen bromide, and hydrogen iodide.
- Suitable organic halides include, but are not limited to, t-butyl chloride, t-butyl bromide, allyl chloride, allyl bromide, benzyl chloride, benzyl bromide, chloro-di-phenylmethane, bromo-di-phenylmethane, triphenylmethyl chloride, triphenylmethyl bromide, benzylidene chloride, benzylidene bromide, methyltrichlorosilane, phenyltrichlorosilane, dimethyldichlorosilane, diphenyldichlorosilane, trimethylchlorosilane, benzoyl chloride, benzoyl bromide, propionyl chloride, propionyl bromide, methyl chloroformate, and methyl bromoformate.
- Suitable inorganic halides include, but are not limited to, phosphorus trichloride, phosphorus tribromide, phosphorus pentachloride, phosphorus oxychloride, phosphorus oxybromide, boron trifluoride, boron trichloride, boron tribromide, silicon tetrafluoride, silicon tetrachloride, silicon tetrabromide, silicon tetraiodide, arsenic trichloride, arsenic tribromide, arsenic triiodide, selenium tetrachloride, selenium tetrabromide, tellurium tetrachloride, tellurium tetrabromide, and tellurium tetraiodide.
- Suitable metallic halides include, but are not limited to, tin tetrachloride, tin tetrabromide, aluminum trichloride, aluminum tribromide, antimony trichloride, antimony pentachloride, antimony tribromide, aluminum triiodide, aluminum trifluoride, gallium trichloride, gallium tribromide, gallium triiodide, gallium trifluoride, indium trichloride, indium tribromide, indium triiodide, indium trifluoride, titanium tetrachloride, titanium tetrabromide, titanium tetraiodide, zinc dichloride, zinc dibromide, zinc diiodide, and zinc difluoride.
- Suitable organometallic halides include, but are not limited to, dimethylaluminum chloride, diethylaluminum chloride, dimethylaluminum bromide, diethylaluminum bromide, dimethylaluminum fluoride, diethylaluminum fluoride, methylaluminum dichloride, ethylaluminum dichloride, methylaluminum dibromide, ethylaluminum dibromide, methylaluminum difluoride, ethylaluminum difluoride, methylaluminum sesquichloride, ethylaluminum sesquichloride, isobutylaluminum sesquichloride, methylmagnesium chloride, methylmagnesium bromide, methylmagnesium iodide, ethylmagnesium chloride, ethylmagnesium bromide, butylmagnesium chloride, butylmagnesium
- the lanthanide-based catalyst systems can comprise a compound containing a non-coordinating anion or a non-coordinating anion precursor.
- a compound containing a non-coordinating anion, or a non-coordinating anion precursor can be employed in lieu of the above-described halogen source.
- a non-coordinating anion is a sterically bulky anion that does not form coordinate bonds with, for example, the active center of a catalyst system due to steric hindrance.
- Non-coordinating anions useful in the present invention include, but are not limited to, tetraarylborate anions and fluorinated tetraarylborate anions.
- Compounds containing a non-coordinating anion can also contain a counter cation, such as a carbonium, ammonium, or phosphonium cation.
- a counter cation such as a carbonium, ammonium, or phosphonium cation.
- Exemplary counter cations include, but are not limited to, triarylcarbonium cations and N,N-dialkylanilinium cations.
- Examples of compounds containing a non-coordinating anion and a counter cation include, but are not limited to, triphenylcarbonium tetrakis(pentafluorophenyl)borate, N,N-dimethylanilinium tetrakis(pentafluorophenyl)borate, triphenylcarbonium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate, and N,N-dimethylanilinium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate.
- a non-coordinating anion precursor can also be used in this embodiment.
- a non-coordinating anion precursor is a compound that is able to form a non-coordinating anion under reaction conditions.
- Useful non-coordinating anion precursors include, but are not limited to, triarylboron compounds, BR 3 , where R is a strong electron-withdrawing aryl group, such as a pentafluorophenyl or 3,5-bis(trifluoromethyl)phenyl group.
- the lanthanide-based catalyst composition used in this invention may be formed by combining or mixing the foregoing catalyst ingredients. Although one or more active catalyst species are believed to result from the combination of the lanthanide-based catalyst ingredients, the degree of interaction or reaction between the various catalyst ingredients or components is not known with any great degree of certainty. Therefore, the term "catalyst composition" has been employed to encompass a simple mixture of the ingredients, a complex of the various ingredients that is caused by physical or chemical forces of attraction, a chemical reaction product of the ingredients, or a combination of the foregoing.
- the foregoing lanthanide-based catalyst composition may have high catalytic activity for polymerizing conjugated dienes into cis-1,4-polydienes over a wide range of catalyst concentrations and catalyst ingredient ratios.
- Several factors may impact the optimum concentration of any one of the catalyst ingredients. For example, because the catalyst ingredients may interact to form an active species, the optimum concentration for any one catalyst ingredient may be dependent upon the concentrations of the other catalyst ingredients.
- the molar ratio of the alkylating agent to the lanthanide-containing compound can be varied from about 1:1 to about 1,000:1, in other embodiments from about 2:1 to about 500:1, and in other embodiments from about 5:1 to about 200:1.
- the molar ratio of the aluminoxane to the lanthanide-containing compound can be varied from 5:1 to about 1,000:1, in other embodiments from about 10:1 to about 700:1, and in other embodiments from about 20:1 to about 500:1; and the molar ratio of the at least one other organoaluminum compound to the lanthanide-containing compound (Al/Ln) can be varied from about 1:1 to about 200:1, in other embodiments from about 2:1 to about 150:1, and in other embodiments from about 5:1 to about 100:1.
- the molar ratio of the halogen-containing compound to the lanthanide-containing compound is best described in terms of the ratio of the moles of halogen atoms in the halogen source to the moles of lanthanide atoms in the lanthanide-containing compound (halogen/Ln).
- the halogen/Ln molar ratio can be varied from about 0.5:1 to about 20:1, in other embodiments from about 1:1 to about 10:1, and in other embodiments from about 2:1 to about 6:1.
- the molar ratio of the non-coordinating anion or non-coordinating anion precursor to the lanthanide-containing compound may be from about 0.5:1 to about 20:1, in other embodiments from about 0.75:1 to about 10:1, and in other embodiments from about 1:1 to about 6:1.
- the catalyst systems employed in the present invention can be formed by various methods.
- the lanthanide-based catalyst composition may be formed in situ by adding the catalyst ingredients to a solution containing monomer and solvent, or to bulk monomer, in either a stepwise or simultaneous manner.
- the alkylating agent can be added first, followed by the lanthanide-containing compound, and then followed by the halogen source or by the compound containing a non-coordinating anion or the non-coordinating anion precursor.
- the lanthanide-based catalyst composition may be preformed. That is, the catalyst ingredients are premixed outside the polymerization system. In one or more embodiments, the premixing of the catalyst ingredients forms an active catalyst system, which is a catalyst system capable of polymerizing monomer, especially conjugated diene monomer into the desired cis-1,4-polydienes desired by one or more embodiments of this invention. Examples of useful processes for preforming a lanthanide-based catalyst composition are disclosed in U.S. Pat. No. 5,686,371 , U.S. Pat. No. 6,576,731 , U.S. Pat. Publ. No. 2002/0035226 , U.S. Pat. Publ. No. 2012/0208964 , and U.S. Pat. Publ. No. 2013/0237669 .
- the catalyst system may be formed by combining the catalyst ingredients simultaneously or sequentially. Where the ingredients are combined sequentially, the alkylating agent can be first combined with the lanthanide-containing compound, and then the mixture can be combined with the halogen source or the compound containing a non-coordinating anion or the non-coordinating anion precursor. In other embodiments, the alkylating agent and the halogen source (or non-coordinating anion or non-coordinating anion precursor) can first be combined, and then the mixture can be combined with the lanthanide-containing compound. In yet other embodiments, the lanthanide-containing compound and the halogen source (or non-coordinating anion or non-coordinating anion precursor) can first be combined, and then the mixture can be combined with the alkylating agent.
- the preformation of the catalyst may take place with a solvent.
- a solvent may be employed as a carrier to either dissolve or suspend the catalyst in order to facilitate the delivery of the catalyst to the polymerization system.
- monomer can be used as the carrier.
- the catalyst can be used in their neat state without any solvent.
- suitable solvents include those organic compounds that will not undergo polymerization or incorporation into propagating polymer chains during the polymerization of monomer in the presence of the catalyst or initiator. In one or more embodiments, these organic species are liquid at ambient temperature and pressure. In one or more embodiments, these organic solvents are inert to the catalyst or initiator.
- Exemplary organic solvents include hydrocarbons with a low or relatively low boiling point such as aromatic hydrocarbons, aliphatic hydrocarbons, and cycloaliphatic hydrocarbons.
- aromatic hydrocarbons include benzene, toluene, xylenes, ethylbenzene, diethylbenzene, and mesitylene.
- Non-limiting examples of aliphatic hydrocarbons include n-pentane, n-hexane, n-heptane, n-octane, n-nonane, n-decane, isopentane, isohexanes, isopentanes, isooctanes, 2,2-dimethylbutane, petroleum ether, kerosene, and petroleum spirits.
- non-limiting examples of cycloaliphatic hydrocarbons include cyclopentane, cyclohexane, methylcyclopentane, and methylcyclohexane. Mixtures of the above hydrocarbons may also be used.
- aliphatic and cycloaliphatic hydrocarbons may be desirably employed for environmental reasons. The low-boiling hydrocarbon solvents are typically separated from the polymer upon completion of the polymerization.
- organic solvents include high-boiling hydrocarbons of high molecular weights, including hydrocarbon oils that are commonly used to oil-extend polymers.
- hydrocarbon oils include paraffinic oils, aromatic oils, naphthenic oils, vegetable oils other than castor oils, and low PCA oils including MES, TDAE, SRAE, heavy naphthenic oils. Since these hydrocarbons are non-volatile, they typically do not require separation and remain incorporated in the polymer.
- the catalyst system may optionally be prepared, for example by preforming the catalyst system, in the presence of a small amount of an alkene containing compound, which may serve to stabilize the catalyst system.
- Useful alkene containing compounds may include monomer as defined herein. Specific examples of suitable monomers for preforming the catalyst system include conjugated diene monomers such as 1,3-butadiene or isoprene.
- the amount of alkene containing compound that may be used for preforming the catalyst can range from about 1 to about 100 moles, in other embodiments from about 2.5 to about 50 moles, and in other embodiments from about 5 to about 20 moles per mole of the lanthanide-containing compound.
- the catalyst systems used in this invention may be prepared at specific temperatures.
- the catalyst compositions can be prepared at a temperature of at least -20 °C, in other embodiments at least 0 °C, in other embodiments at least 20 °C, and in other embodiments at least 40 °C.
- the catalyst compositions can be prepared at a temperature of at most 100 °C, in other embodiments at most 80 °C, in other embodiments at most 60 °C, in other embodiments at most 40 °C, in other embodiments at most 20 °C, and in other embodiments at most 0 °C.
- the catalyst composition may be aged prior to use (i.e. prior to being added to the polymerization system).
- the catalyst composition may be aged at a temperature of at least -20 °C, in other embodiments at least 0 °C, in other embodiments at least 20 °C, and in other embodiments at least 40 °C. In these or other embodiments, the catalyst compositions may be aged at a temperature of at most 100 °C, in other embodiments at most 80 °C, in other embodiments at most 60 °C, in other embodiments at most 40 °C, in other embodiments at most 20 °C, and in other embodiments at most 0 °C. In certain embodiments, the catalyst composition may be aged in an environment without temperature control, where the catalyst composition would potentially be subject to varying environmental temperatures. In these or other embodiments, the catalyst composition may be aged at a temperature as described above and further aged, for at least a portion of the aging time, at an uncontrolled temperature.
- the catalyst composition may be aged for at least 1 hour, in other embodiments at least 3 hours, in other embodiments at least 6 hours, in other embodiments at least 12 hours, in other embodiments at least 24 hours, in other embodiments at least 6 days, in other embodiments at least 12 days, in other embodiments at least 30 days, and in other embodiments at least 60 days.
- the catalyst compositions may be aged for at most 1000 days, in other embodiments at most 750 days, in other embodiments at most 500 days, in other embodiments at most 300 days, and in other embodiments at most 100 days, in other embodiments at most 24 days, in other embodiments at most 18 days, and in other embodiments at most 12 days.
- the catalyst composition is aged from about 4 to about 16 days, in other embodiments from about 5 to about 15 days, and in other embodiments from about 6 to about 12 days.
- the catalyst employed in the practice of this invention is a preformed catalyst that is the combination or reaction product of a lanthanide carboxylate, an aluminum hydride, and an organometallic halide.
- the lanthanide carboxylate is a neodymium carboxylate
- the aluminum hydride is a dihydrocarbylaluminum hydride and/or hydrocarbylaluminum dihydride
- the organometallic halide is a hydrocarbyl aluminum sesquichloride.
- the catalyst system is the combination or reaction product of a neodymium neodecanoate, diisobutylaluminum hydride, and ethylaluminum sesquichloride.
- the catalyst system may have a diisobutylaluminum hydride to neodymium neodecanoate molar ratio from about 5 to about 40, or in other embodiments from about 10 to about 20, and an ethylaluminum sesquichloride to neodymium neodecanoate molar ratio, which is best described as a molar ratio of the moles of halogen atoms in the ethylaluminum sesquichloride to the moles of lanthanide atoms in the neodymium neodecanoate (halogen/Ln), of from about 1 to about 4, or in other embodiments from about 2 to about 3.
- these specific catalyst systems may include a conjugated diene (such as 1,3-butadiene or isoprene) as a stabilizer.
- a conjugated diene such as 1,3-butadiene or isoprene
- the recited specific catalyst systems are aged as described herein.
- Catalyst systems that may be employed in one or more embodiments of this invention are commercially available.
- useful preformed catalyst systems are available under the tradename COMCAT Nd-FC (NH), COMCAT Nd-FC/20 (NH), COMCAT Nd-FC/SF [COMAR CHEMICALS (Pty) Ltd].
- the cis-1,4-polydienes having a 1,2-linkage which may simply be referred to as the polymer, may be prepared by polymerizing conjugated diene monomer in an amount sufficient to prepare a polymer of a desired molecular weight in the presence of a catalytically effective amount of the catalyst.
- the introduction of the catalyst and the conjugated diene monomer forms a polymerization mixture, which may also be referred to as polymerization system, in which a polymer is formed.
- the amount of the catalyst to be employed may depend on the interplay of various factors such as the type of catalyst or initiator employed, the purity of the ingredients, the polymerization temperature, the polymerization rate and conversion desired, the molecular weight desired, and many other factors. Accordingly, a specific catalyst amount cannot be definitively set forth except to say that catalytically effective amounts of the catalyst may be used.
- the amount of the coordinating metal compound (e.g., a lanthanide-containing compound) used can be varied from about 0.001 to about 2 mmol, in other embodiments from about 0.005 to about 1 mmol, and in still other embodiments from about 0.01 to about 0.2 mmol per 100 gram of monomer.
- the coordinating metal compound e.g., a lanthanide-containing compound
- the polymerization may be carried out in a polymerization system that includes a substantial amount of solvent.
- a solution polymerization system may be employed in which both the monomer to be polymerized and the polymer formed are soluble in the solvent.
- a precipitation polymerization system may be employed by choosing a solvent in which the polymer formed is insoluble.
- an amount of solvent in addition to the amount of solvent that may be used in preparing the catalyst or initiator is usually added to the polymerization system.
- the additional solvent may be the same as or different from the solvent used in preparing the catalyst or initiator. Exemplary solvents have been set forth above.
- the solvent content of the polymerization mixture may be more than 20% by weight, in other embodiments more than 50% by weight, and in still other embodiments more than 80% by weight based on the total weight of the polymerization mixture.
- the polymerization system employed may be generally considered a bulk polymerization system that includes substantially no solvent or a minimal amount of solvent.
- the solvent content of the polymerization mixture may be less than about 20% by weight, in other embodiments less than about 10% by weight, and in still other embodiments less than about 5% by weight based on the total weight of the polymerization mixture.
- the polymerization mixture contains no solvents other than those that are inherent to the raw materials employed.
- the polymerization mixture is substantially devoid of solvent, which refers to the absence of that amount of solvent that would otherwise have an appreciable impact on the polymerization process.
- Polymerization systems that are substantially devoid of solvent may be referred to as including substantially no solvent.
- the polymerization mixture is devoid of solvent.
- the polymerization may be conducted in any conventional polymerization vessels known in the art.
- solution polymerization can be conducted in a conventional stirred-tank reactor.
- bulk polymerization can be conducted in a conventional stirred-tank reactor, especially if the monomer conversion is less than about 60%.
- the bulk polymerization may be conducted in an elongated reactor in which the viscous cement under polymerization is driven to move by piston, or substantially by piston.
- extruders in which the cement is pushed along by a self-cleaning single-screw or double-screw agitator are suitable for this purpose.
- Examples of useful bulk polymerization processes are disclosed in U.S. Patent No. 7,351,776 .
- all of the ingredients used for the polymerization can be combined within a single vessel (e.g., a conventional stirred-tank reactor), and all steps of the polymerization process can be conducted within this vessel.
- two or more of the ingredients can be pre-combined in one vessel and then transferred to another vessel where the polymerization of monomer (or at least a major portion thereof) may be conducted.
- the polymerization can be carried out as a batch process, a continuous process, or a semi-continuous process.
- the monomer is intermittently charged as needed to replace that monomer already polymerized.
- the conditions under which the polymerization proceeds may be controlled to maintain the temperature of the polymerization mixture within a range from about -10 °C to about 200 °C, in other embodiments from about 0 °C to about 150 °C, and in other embodiments from about 20 °C to about 100 °C.
- the heat of polymerization may be removed by external cooling by a thermally controlled reactor jacket, internal cooling by evaporation and condensation of the monomer through the use of a reflux condenser connected to the reactor, or a combination of the two methods.
- the polymerization conditions may be controlled to conduct the polymerization under a pressure of from about 0.1 atmosphere to about 50 atmospheres, in other embodiments from about 0.5 atmosphere to about 20 atmosphere, and in other embodiments from about 1 atmosphere to about 10 atmospheres.
- the pressures at which the polymerization may be carried out include those that ensure that the majority of the monomer is in the liquid phase.
- the polymerization mixture may be maintained under anaerobic conditions.
- Polymerization catalyzed by a lanthanide-based catalyst produces polymers (i.e. cis-1,4-polydienes) where some or all of the resulting polymer chains may possess reactive chain ends before the polymerization mixture is quenched.
- a reactive polymer refers to a polymer having a reactive chain end.
- the reactive polymer prepared with a lanthanide-based catalyst may be referred to as a pseudo-living polymer.
- a polymerization mixture including reactive polymer may be referred to as an active polymerization mixture or active polymerization system.
- the percentage of polymer chains possessing a reactive end depends on various factors such as the type of catalyst or initiator, the type of monomer, the purity of the ingredients, the polymerization temperature, the monomer conversion, and many other factors. In one or more embodiments, at least about 20% of the polymer chains possess a reactive end, in other embodiments at least about 50% of the polymer chains possess a reactive end, and in still other embodiments at least about 80% of the polymer chains possess a reactive end.
- the pseudo-living polymer which includes a reactive chain end, may optionally be end functionalized by reacting the reactive chain end with a secondary-functionalizing agent.
- the secondary-functionalizing agent can be reacted with the reactive polymer after a desired monomer conversion is achieved but before the polymerization mixture is quenched by a quenching agent.
- the reaction between the secondary-functionalizing agent and the reactive polymer may take place within 2 hours, in other embodiments within 1 hour, in other embodiments within 30 minutes, in other embodiments within 5 minutes, and in other embodiments within one minute after the peak polymerization temperature is reached.
- the reaction between the secondary-functionalizing agent and the reactive polymer can occur once the peak polymerization temperature is reached.
- the reaction between the secondary-functionalizing agent and the reactive polymer can occur after the reactive polymer has been stored.
- the storage of the reactive polymer occurs at room temperature or below room temperature under an inert atmosphere.
- the time required for completing the reaction between the secondary-functionalizing agent and the reactive polymer depends on various factors such as the type and amount of the catalyst used to prepare the reactive polymer, the type and amount of the secondary-functionalizing agent, as well as the temperature at which the functionalization reaction is conducted. In one or more embodiments, the reaction between the secondary-functionalizing agent and the reactive polymer can be conducted for about 10 to 60 minutes.
- the secondary-functionalizing agent may be introduced to the polymerization mixture at a location (e.g., within a vessel) where the polymerization has been conducted. In other embodiments, the secondary-functionalizing agent may be introduced to the polymerization mixture at a location that is distinct from where the polymerization has taken place.
- the functionalizing agent may be introduced to the polymerization mixture in downstream vessels including downstream reactors or tanks, in-line reactors or mixers, extruders, or devolatilizers.
- suitable secondary-functionalizing agents include those compounds that contain groups that may react with a pseudo-living polymer.
- Exemplary secondary-functionalizing agents include ketones, quinones, aldehydes, amides, esters, isocyanates, isothiocyanates, epoxides, imines, aminoketones, aminothioketones, and acid anhydrides. Examples of these compounds are disclosed in U.S. Pat. Nos. 4,906,706 , 4,990,573 , 5,064,910 , 5,567,784 , 5,844,050 , 6,838,526 , 6977,281 , and 6,992,147 ; U.S. Pat. Publication Nos.
- halosilanes containing an amino group disclosed in U.S. Pat. No. 8,258,332 imide compounds containing a protected amino group disclosed in U.S. Pat. No. 7,906,592 , nitroso compounds disclosed in U.S. Pat. Pub. No. 2010/0168378 , amide containing compounds disclosed in U.S. Pat. Pub. No. 2010/0099826 , carboxylic or thiocarboxylic esters containing a silylated amino group disclosed in U.S. Pat. Pub. No. 2011/0077325 , polyoxime compounds disclosed in U.S. Pat. Publ. No. 2011/0152449 , polycyano compounds disclosed in U.S. Pat. Pub. No. 2011/0288200 , nitrile compounds containing a protected amino group disclosed in U.S. Pat. Pub. No. 2012/0059112 .
- the amount of the secondary-functionalizing agent that can be added to the polymerization mixture to yield a functionalized polymer may depend on various factors including the type and amount of catalyst used to synthesize the reactive polymer and the desired degree of functionalization.
- the amount of functionalizing agent employed can be described with reference to the lanthanide metal of the lanthanide-containing compound.
- the molar ratio of the functionalizing agent to the lanthanide metal may be from about 1:1 to about 80:1, in other embodiments from about 5:1 to about 40:1, and in other embodiments from about 10:1 to about 25:1.
- the amount and type of secondary-functionalization agent may be selected to have a minimal impact on the catalyst activity.
- the secondary-functionalization agent does stop or substantially inhibit the ability of the hydrosilane compound to react with the cis-1,4-polydiene which includes 1,2-linkage.
- the silane-functionalized polymers of the present invention may be prepared by combining a cis-1,4-polydiene, a hydrosilane compound, and a lanthanide-based catalyst.
- the hydrosilane compound may be added to a polymerization mixture in which the cis-1,4-polydiene was prepared.
- the cis-1,4-polydiene may be a pseudo-living polymer, which indicates that the hydrosilane is introduced prior to quenching the polymerization mixture or end-functionalizing the cis-1,4-polydiene.
- the hydrosilation reaction of the hydrosilane takes place at the terminal, reactive end of the polymer, further functionalization with a secondary funcitionalization agent may occur on separate reactive polymers.
- the amount of the hydrosilane added is not sufficient to terminate all of the reactive chain ends.
- the hydrosilane compound is added to the polymerization mixture after the cis-1,4-polydiene has been end functionalized with a secondary-functionalization agent.
- the hydrosilane compound is introduced to the polymerization mixture containing the cis-1,4-polydiene prior to the polymerization mixture being quenched.
- the lanthanide-based catalyst system employed during the functionalization reaction with the hydrosilane compound is the same lanthanide-based catalyst system that was employed to synthesize the cis-1,4-polydiene. In other embodiments, additional lanthanide-based catalyst is added to the polymerization system. In these or other embodiments, the lanthanide-based catalyst is the only catalyst present during the functionalization with the hydrosilane compound (i.e., other catalysts, such as transitioned metal catalysts, are not present during the functionalization reaction).
- the hydrosilane compound may be added to the polymerization mixture in which the cis-1,4-polydiene was prepared.
- the hydrosilane compound may be added after a desired monomer conversion is achieved but before the polymerization mixture is quenched by a quenching agent.
- the hydrosilane compound may be added after a substantial amount of the polymerization is completed.
- the hydrosilane compound may be added after a monomer conversion of at least 80%, in other embodiments at least 90%, and in other embodiments at least 95%.
- the addition of the hydrosilane compound to the polymerization mixture in which the cis-1,4-polydiene was prepared may take place within 30 minutes, in other embodiments within 5 minutes, and in other embodiments within one minute after the peak polymerization temperature is reached. In one or more embodiments, the addition of the hydrosilane compound to the polymerization mixture in which the cis-1,4-polydiene was prepared can occur once the peak polymerization temperature is reached. In other embodiments, the addition of the hydrosilane compound to the polymerization mixture in which the cis-1,4-polydiene was prepared can occur after the pseudo-living cis-1,4-polydiene has been stored.
- the hydrosilane compound may be introduced to the polymerization mixture at a location (e.g., within a vessel) where the polymerization has been conducted. In other embodiments, the hydrosilane compound may be introduced to the polymerization mixture at a location that is distinct from where the polymerization has taken place. For example, the hydrosilane compound may be introduced to the polymerization mixture in downstream vessels including downstream reactors or tanks, in-line reactors or mixers, extruders, or devolatilizers.
- the reaction between the cis-1,4-polydiene and the hydrosilane compound may proceed under suitable reaction conditions.
- the time and temperate required for completing the reaction between the cis-1,4-polydiene and the hydrosilane compound depends on various factors such as the type and amount of the catalyst, the type and amount of the hydrosilane compound, the amount of 1,2-linkage in the cis-1,4-polydieneas well as the temperature at which the functionalization reaction is conducted.
- the reaction between the cis-1,4-polydiene and the hydrosilane compound may be conducted at a temperature of at least 25 °C, in other embodiments at least 45 °C, in other embodiments, and in other embodiments at least 65 °C. In these or other embodiments, the reaction between the cis-1,4-polydiene and the hydrosilane compound may be conducted at a temperature of at most 80 °C, in other embodiments at most 100 °C, in other embodiments, and in other embodiments at most 120 °C.
- the reaction between the cis-1,4-polydiene and the hydrosilane compound may be conducted at a temperature of about 25 °C to about 120 °C, in other embodiments a temperature of about 45 °C to about 100 °C, in other embodiments, and in other embodiments a temperature of about 65 °C to about 80 °C.
- the reaction between the reaction between the cis-1,4-polydiene and the hydrosilane compound may be conducted for at least 15 minutes, in other embodiments at least 30 minutes, and in other embodiments at least 2 hours. In these or other embodiments, the reaction between the cis-1,4-polydiene and the hydrosilane compound may be conducted for at most 4 hours, in other embodiments at most 8 hours, and in other embodiments at most 18 hours. In one or more embodiments, the reaction between the reaction between the cis-1,4-polydiene and the hydrosilane compound may be conducted for about 15 minutes to about 18 hours in other embodiments for about 30 minutes to about 8 hours and in other embodiments for about 2 hours to about 4 hours.
- the amount of the hydrosilane compound used to prepare the silane-functionalized polymers of the present invention may be represented by the molar ratio of the hydrosilane compound to the lanthanide-containing compound within the polymerization mixture (hydrosilane compound/Ln).
- the hydrosilane compound/Ln molar ratio is at least 25, in other embodiments at least 50, in other embodiments at least 100, in other embodiments at least 200, and in other embodiments at least 500.
- the hydrosilane compound/Ln molar ratio is at most 600, in other embodiments at most 1000, and in other embodiments at most 5000.
- the hydrosilane compound/Ln molar ratio is from about 25 to about 5000, in other embodiments from about 50 to about 1000, in other embodiments from about 100 to about 1000, and in other embodiments from about 100 to about 600.
- the amount of the hydrosilane compound used to prepare the silane-functionalized polymers of the present invention may be expressed with respect to the amount of polymer present within the polymerization mixture.
- the amount of the hydrosilane compound employed is at least 1 mmol, in other embodiments at least 5 mmol, in other embodiments at least 10 mmol, in other embodiments at least 20 mmol, and in other embodiments at least 30 mmol per 100 g of cis-1,4-polydiene.
- the amount of the hydrosilane compound employed is at most 50 mmol, in other embodiments at most 80 mmol, in other embodiments at most 95 mmol, and in other embodiments at most 100 mmol per 100 g of cis-1,4-polydiene. In one or more embodiments, the amount of the hydrosilane compound employed is from about 1 mmol to about 100 mmol, in other embodiments is from about 5 mmol to about 95 mmol, in other embodiments is from about 20 mmol to about 80 mmol, and in other embodiments is from about 30 mmol to about 50 mmol.
- the hydrosilane compounds employed in one or more embodiments of the invention include those compounds that contain at least one hydrogen atom bonded to a silicon atom.
- the hydrosilane compound may include a hydrocarbyloxy group attached to a silicon atom in addition to a hydrogen atom attached to a silicon atom.
- the hydrosilane compounds may be monomeric, dimeric, trimeric, tetrameric, oligomeric, or polymeric. In these or other embodiments, the hydrosilane compounds may have a cyclic or acyclic structure. A combination of two or more hydrosilane compounds may be employed. As will be described in more detail below, several species of suitable hydrosilane compounds can include a halogen atom, and therefore where the hydrosilane compound includes a halogen atom, the hydrosilane compound may also serve as all or part of the halogen source in the above-mentioned catalyst system.
- a hydrosilane compound may be defined by the formula I SiH x R 4-x where x is an integer from 1 to 4, and each R is individually a halogen atom or a monovalent organic group, or where two or more R groups join to form a polyvalent organic group.
- polyvalent organic group refers to an organic group that has a valence of two or more, such as a divalent, trivalent or tetravalent organic group.
- the hydrosilane compound may be defined by the formula II SiH x (OR) 4-x where x is an integer from 1 to 4, and each R is individually a hydrocarbyl or silyl group, or where two or more R groups join to form a polyvalent organic group.
- the hydrosilane compound may be defined by the formula III where n is an integer from 0 to 8, and each R is individually a hydrogen atom, halogen atom, or a monovalent organic group, or where two or more R groups join to form a bond or a polyvalent organic group, with the proviso that at least one R in the hydrosilane compound is a hydrogen atom.
- n may be in integer from 2 to 4.
- hydrosilane compound may be defined by the formula IV where R 1 and R 2 are each individually a hydrogen atom, halogen atom, or a monovalent organic group, with the proviso that the at least one R 1 or R 2 in the hydrosilane compound is a hydrogen atom, and y is from about 3 to about 6 units.
- the monovalent organic groups of the hydrosilane compounds may be hydrocarbyl groups, which include, but are not limited to, alkyl, cycloalkyl, alkenyl, cycloalkenyl, aryl, allyl, aralkyl, alkaryl, or alkynyl groups.
- Hydrocarbyl groups also include substituted hydrocarbyl groups, which refer to hydrocarbyl groups in which one or more hydrogen atoms have been replaced by a substituent such as a hydrocarbyl, hydrocarbyloxy, silyl, or silyloxy group.
- these groups may include from one, or the appropriate minimum number of carbon atoms to form the group, to about 20 carbon atoms.
- These groups may also contain heteroatoms such as, but not limited to, nitrogen, boron, oxygen, silicon, sulfur, tin, and phosphorus atoms.
- the monovalent organic groups of the hydrosilane compounds may be hydrocarbyloxy groups such as, but not limited to, alkyloxy, cycloalkyloxy, alkenyloxy, cycloalkenyloxy, aryloxy, allyloxy, aralkyloxy, alkaryloxy, or alkynyloxy groups.
- Hydrocarbyloxy groups also include substituted hydrocarbyloxy groups, which refer to hydrocarbyloxy groups in which one or more hydrogen atoms have been replaced by a substituent such as a hydrocarbyl, hydrocarbyloxy, silyl, or silyloxy group.
- these groups may include from one, or the appropriate minimum number of carbon atoms to form the group, to about 20 carbon atoms. These groups may also contain heteroatoms such as, but not limited to, nitrogen, boron, oxygen, silicon, sulfur, tin, and phosphorus atoms.
- the monovalent organic groups of the hydrosilane compounds may be silyl groups, which include, but are not limited to, trihydrocarbylsilyl, dihydrocarbylhydrosilyl, or hydrocarbyldihydrosilyl.
- Silyl groups also include substituted silyl groups, which refer to silyl groups in which one or more hydrogen atoms have been replaced by a substituent such as a hydrocarbyl, hydrocarbyloxy, silyl, or silyloxy group.
- these groups may include from one, or the appropriate minimum number of carbon atoms to form the group, to about 20 carbon atoms.
- These groups may include heteroatoms such as, but not limited to, nitrogen, boron, oxygen, silicon, sulfur, tin, and phosphorus atoms, in addition to the parent silicon atom.
- silyl groups and substituted silyl groups include, but are not limited to, trihydrocarbylsilyl, trisilyloxysilyl, trihydrocarbyloxysilyl, trisilylsilyl, dihydrocarbylhydrosilyl, dihydrocarbyl(silyloxy)silyl, dihydrocarbyl(silyl)silyl, dihydrocarbyl(hydrocarbyloxy)silyl, hydrocarbyldihydrosilyl, hydrocarbyl(disilyloxy)silyl, hydrocarbyl(disilyl)silyl, and hydrocarbyl(dihydrocarbyloxy)silyl groups.
- types of silyl groups may include trialkylsilyl, dialkylhydrosilyl, dialkyl(silyloxy)silyl, dialkyl(silyl)silyl, tricycloalkylsilyl, dicycloalkylhydrosilyl, dicycloalkyl(silyloxy)silyl, dicycloalkyl(silyl)silyl, trialkenylsilyl, dialkenylhydrosilyl, dialkenyl(silyloxy)silyl, dialkenyl(silyl)silyl, tricycloalkenylsilyl, dicycloalkenylhydrosilyl, dicycloalkenyl(silyloxy)silyl, dicycloalkenyl(silyl)silyl, triarylsilyl, diarylhydrosilyl, diaryl(silyloxy)silyl, diaryl(silyl)silyl, triallylsilyl, diallyl
- the monovalent organic groups of the hydrosilane compounds may be silyloxy groups, which include, but are not limited to, trihydrocarbylsilyloxy, dihydrocarbylhydrosilyloxy, or hydrocarbyldihydrosilyloxy.
- Silyloxy groups also include substituted silyloxy groups, which refer to silyloxy groups in which one or more hydrogen atoms have been replaced by a substituent such as a hydrocarbyl, hydrocarbyloxy, silyl, or silyloxy group.
- these groups may include from one, or the appropriate minimum number of carbon atoms to form the group, to about 20 carbon atoms.
- These groups may include heteroatoms such as, but not limited to, nitrogen, boron, oxygen, silicon, sulfur, tin, and phosphorus atoms, in addition to the parent silicon atom.
- the hydrosilane compound may be referred to as a trihydrocarbyloxy silane compound.
- the hydrosilane compound may be referred to as a hydrocarbyl dihydrocarbyloxy silane compound.
- the hydrosilane compound may be referred to as a dihydrocarbyl hydrocarbyloxy silane compound.
- the hydrosilane compound may be referred to as a trisilyloxy silane compound.
- the hydrosilane compound may be referred to as a hydrocarbyl disilyloxy silane compound.
- the hydrosilane compound may be referred to as a dihydrocarbyl silyloxy silane compound.
- hydrosilane compound where the hydrosilane compound is defined by formula III the hydrosilane compound may be referred to as a siloxane compound. In one or more embodiments, where the hydrosilane compound is defined by formula IV, the hydrosilane compound may be referred to as cyclic hydrosilane compound.
- trihydrocarbyloxy silane compounds include, but are not limited to, trialkyloxy silane, tricycloalkyloxy silane, triaryloxy silane, triaralkyloxy silane, trialkaryloxy silane, dialkyloxy cycloalkyloxy silane, alkyloxy dicycloalkyloxy silane, dialkyloxy aryloxy silane, alkyloxy diaryloxy silane, and alkyloxy aryloxy cycloalkyloxy silane.
- hydrocarbyl dihydrocarbyloxy silane compounds include, but are not limited to, alkyl dialkyloxy silane, alkyl dicycloalkyloxy silane, alkyl diaryloxy silane, alkyl diaralkyloxy silane, alkyl dialkaryloxy silane, alkyl alkyloxy cycloalkyloxy silane, alkyl alkyloxy aryloxy silane, cycloalkyl dialkyloxy silane, cycloalkyl dicycloalkyloxy silane, cycloalkyl diaryloxy silane, cycloalkyl diaralkyloxy silane, cycloalkyl dialkaryloxy silane, cycloalkyl alkyloxy cycloalkyloxy silane, cycloalkyl alkyloxy aryloxy silane, aryl dialkyloxy silane, aryl dicycloalkyloxy silane, aryl diaryloxy silane, aryl diaral
- dihydrocarbyl hydrocarbyloxy silane compounds include, but are not limited to, dialkyl alkyloxy silane, dialkyl cycloalkyloxy silane, dialkyl aryloxy silane, dialkyl aralkyloxy silane, dialkyl alkaryloxy silane, dicycloalkyl alkyloxy silane, dicycloalkyl cycloalkyloxy silane, dicycloalkyl aryloxy silane, dicycloalkyl aralkyloxy silane, dicycloalkyl alkaryloxy silane, diaryl alkyloxy silane, diaryl cycloalkyloxy silane, diaryl aryloxy silane, diaryl aralkyloxy silane, diaryl alkaryloxy silane, diaralkyl alkyloxy silane, diaralkyl cycloalkyloxy silane, diaralkyl aryloxy silane, diaralkyloxy silane, diaralkyloxy silane,
- trisilyloxy silane compounds include, but are not limited to, tris(trialkylsilyloxy)silane, tris(dialkylsilyloxy)silane, bis(trialkylsilyloxy)(dialkylsilyloxy)silane, (trialkylsilyloxy)bis(dialkylsilyloxy)silane, tris[(dialkyl)(trialkylsilyloxy)silyloxy]silane, tris[(dialkyl)(dialkylsilyloxy)silyloxy]silane, bis(trialkylsilyloxy)[(dialkyl)(trialkylsilyloxy)silyloxy] silane, and bis(dialkylsilyloxy)[(dialkyl)(dialkylsilyloxy)silyloxy]silane.
- hydrocarbyl disilyloxy silane compounds include, but are not limited to, alkyl bis(trialkylsilyloxy)silane, alkyl bis(dialkylsilyloxy)silane, alkyl (trialkylsilyloxy)(dialkylsilyloxy)silane, alkyl bis[(dialkyl)(trialkylsilyloxy)silyloxy]silane, alkyl bis[(dialkyl)(dialkylsilyloxy)silyloxy]silane, alkyl (trialkylsilyloxy) [(dialkyl)(trialkylsilyloxy)silyloxy] silane, alkyl (dialkylsilyloxy) [(dialkyl)(dialkylsilyloxy)silyloxy] silane, cycloalkyl bis(trialkylsilyloxy)silane, cycloalkyl bis(dialkylsilyloxy)silane, cycloal
- suitable dihydrocarbyl silyloxy silane compounds include, but are not limited to, dialkyl (trialkylsilyloxy)silane, dialkyl dialkylsilyloxysilane, dialkyl (dialkyl)(trialkylsilyloxy)silyloxysilane, dialkyl (dialkyl)(dialkylsilyloxy)silyloxysilane, dicycloalkyl (trialkylsilyloxy)silane, dicycloalkyl dialkylsilyloxysilane, dicycloalkyl (dialkyl)(trialkylsilyloxy)silyloxysilane, dicycloalkyl (dialkyl)(dialkylsilyloxy)silyloxysilane, diaryl (trialkylsilyloxy)silane, diaryl dialkylsilyloxysilane, diaryl (dialkylsilyloxy)silyloxysilyloxysilyloxysilane,
- siloxane compounds include, but are not limited to, 1,1,3,3-tetraalkyldisiloxane, 1,1,1,3,3,-butaalkyldisiloxane, 1,1,3,3,5,5-hexaalkyltrisiloxane, 1,1,1,3,3,5,5-heptaalkyltrisiloxane, 1,1,3,3,5,5,7,7-octaalkyltetrasiloxane, 1,1,1,3,5,7,7,7-octaakyltetrasiloxane, and 1,1,1,3,3,5,5,7,7-nonaalkyltetrasiloxane.
- Suitable cyclic hydrosilane compounds include, but are not limited to, 1,3,5-trialkylcyclotrisiloxane, 1,1,3,5-tetraalkylcyclotrisiloxane, 1,1,3,3,5-pentaalkylcyclotrisiloxane, 1,3,5,7-tetraalkylcyclotetrasiloxane, 1,1,3,5,7-pentaalkylcyclotetrasiloxane, 1,1,3,3,5,7-hexaalkylcyclotetrasiloxane, 1,1,3,5,5,7-hexaalkylcyclotetrasiloxane, 1,1,3,3,5,5,7-heptaalkylcyclotetrasiloxane, 1,3,5,7,9-pentaalkylcyclopentasiloxane, 1,1,3,5,7,9-hexaalkylcyclopentasiloxane, 1,1,3,5,7,9-hexaalkylcyclopenta
- trihydrocarbyloxy silane compounds include, but are not limited to, trimethoxy silane, triethoxy silane, triphenoxy silane, dimethoxy ethoxysilane, dimethoxy phenoxysilane, diphenoxy ethoxy silane, and methoxy ethoxy phenoxysilane.
- hydrocarbyl dihydrocarbyloxy silane compounds include, but are not limited to, methyl dimethoxy silane, methyl diethoxy silane, methyl diphenoxy silane, methyl methoxy ethoxysilane, methyl methoxy phenoxysilane, methyl phenoxy ethoxy silane, ethyl dimethoxy silane, ethyl diethoxy silane, ethyl diphenoxy silane, ethyl methoxy ethoxysilane, ethyl methoxy phenoxysilane, ethyl phenoxy ethoxy silane, n-propyl dimethoxy silane, n-propyl diethoxy silane, n-propyl diphenoxy silane, n-propyl methoxy ethoxysilane, n-propyl methoxy phenoxysilane, n-propyl phenoxy ethoxy silane, is
- dihydrocarbyl hydrocarbyloxy silane compounds include, but are not limited to, dimethyl methoxy silane, dimethyl ethoxy silane, dimethyl phenoxy silane, diethyl methoxy silane, diethyl ethoxy silane, diethyl phenoxy silane, di-n-propyl methoxy silane, di-n-propyl ethoxy silane, di-n-propyl phenoxy silane, diisopropyl methoxy silane, diisopropyl ethoxy silane, diisopropyl phenoxy silane, di-n-butyl methoxy silane, di-n-butyl ethoxy silane, di-n-butyl phenoxy silane, di-t-butyl methoxy silane, di-t-butyl ethoxy silane, di-t-butyl phenoxy silane, dineopentyl methoxy silane, dineopent
- trisilyloxy silane compounds include, but are not limited to, tris(dimethylsilyloxy)silane, tris(trimethylsilyloxy)silane, tris(diethylsilyloxy)silane, tris(triethylsilyloxy)silane, tris(diisopropylsilyloxy)silane, tris(triisopropylsilyloxy)silane, tris[(trimethylsiloxy)dimethylsiloxy]silane, tris[(dimethylsiloxy)dimethylsiloxy] silane, bis(dimethylsilyloxy)[(trimethylsiloxy)dimethylsiloxy]silane, bis(dimethylsilyloxy)[(dimethylsiloxy)dimethylsiloxy] silane, bis(trimethylsilyloxy)[(dimethylsiloxy)dimethylsiloxy] silane, bis(trimethylsilyloxy) [(
- hydrocarbyl disilyloxy silane compounds include, but are not limited to, methyl bis(dimethylsilyloxy)silane, methyl bis(trimethylsilyloxy)silane, methyl bis(diethylsilyloxy)silane, methyl bis(triethylsilyloxy)silane, methyl bis(diisopropylsilyloxy)silane, methyl bis(triisopropylsilyloxy)silane, methyl bis [(trimethylsiloxy)dimethylsiloxy] silane, methyl bis [(dimethylsiloxy)dimethylsiloxy] silane, methyl (dimethylsilyloxy)[(trimethylsiloxy)dimethylsiloxy] silane, methyl (dimethylsilyloxy) [(dimethylsiloxy)dimethylsiloxy] silane, methyl (trimethylhydrosilyloxy)[(trimethylsiloxy)dimethylsil
- suitable dihydrocarbyl silyloxy silane compounds include, but are not limited to, dimethyl dimethylsilyloxysilane, dimethyl trimethylsilyloxysilane, dimethyl diethylsilyloxysilane, dimethyl triethylsilyloxysilane, dimethyl diisopropylsilyloxysilane, dimethyl triisopropylsilyloxysilane, dimethyl [(trimethylsiloxy) dimethyl siloxy]silane, dimethyl [(dimethylsiloxy) dimethyl siloxy]silane, diethyl dimethylsilyloxysilane, diethyl trimethylsilyloxysilane, diethyl diethylsilyloxysilane, diethyl triethylsilyloxysilane, diethyl diisopropylsilyloxysilane, diethyl triisopropylsilyloxysilane, diethyl [(trimethyls
- siloxane compounds include, but are not limited to, 1,1,3,3-tetramethyldisiloxane, 1,1,3,3,-butamethyldisiloxane, 1,1,3,3,5,5-hexamethyltrisiloxane, 1,1,1,3,3,5,5-heptamethyltrisiloxane, 1,1,3,3,5,5,7,7-octamethyltetrasiloxane, 1,1,1,3,5,7,7,7-octaakyltetrasiloxane, 1,1,1,3,3,5,5,7,7-nonamethyltetrasiloxane, 1,1,3,3-tetraethyldisiloxane, 1,1,1,3,3,-butaethyldisiloxane, 1,1,3,3,5,5-hexaethyltrisiloxane, 1,1,1,3,3,5,5-heptaethyltrisiloxane, 1,1,3,3,5,5,7,7-octaethyldis
- Suitable cyclic hydrosilane compounds include, but are not limited to, 1,3,5-trimethylcyclotrisiloxane, 1,1,3,5-tetramethylcyclotrisiloxane, 1,1,3,3,5-pentamethylcyclotrisiloxane, 1,3,5,7-tetramethylcyclotetrasiloxane, 1,1,3,5,7-pentamethylcyclotetrasiloxane, 1,1,3,3,5,7-hexamethylcyclotetrasiloxane, 1,1,3,5,5,7-hexamethylcyclotetrasiloxane, 1,1,3,3,5,5,7-heptamethylcyclotetrasiloxane, 1,3,5,7,9-pentamethylcyclopentasiloxane, 1,1,3,5,7,9-hexamethylcyclopentasiloxane, 1,1,3,3,5,7,9-heptamethylcyclopentasiloxane, 1,1,3,5,5,7,9-heptamethylcyclopen
- a quenching agent can be added to the polymerization mixture in order to protonate the reaction product between the reactive polymer and the functionalizing agent, inactivate any residual reactive polymer chains, and/or inactivate the catalyst or catalyst components.
- the quenching agent may include a protic compound, which includes, but is not limited to, an alcohol, a carboxylic acid, an inorganic acid, water, or a mixture thereof.
- quenching with an alcohol, such as isopropanol is employed since it has been observed that the use of isopropyl alcohol contributes to certain desirable properties in the final polymer, such as desirable cold flow.
- An antioxidant such as 2,6-di-tert-butyl-4-methylphenol may be added along with, before, or after the addition of the quenching agent.
- the amount of the antioxidant employed may be in the range of 0.2% to 1% by weight of the polymer product.
- the polymer product can be oil extended by adding an oil to the polymer, which may be in the form of a polymer cement or polymer dissolved or suspended in monomer. Practice of the present invention does not limit the amount of oil that may be added, and therefore conventional amounts may be added (e.g., 5-50 phr).
- Useful oils or extenders that may be employed include, but are not limited to, aromatic oils, paraffinic oils, naphthenic oils, vegetable oils other than castor oils, low PCA oils including MES, TDAE, and SRAE, and heavy naphthenic oils.
- the various constituents of the polymerization mixture may be recovered.
- the unreacted monomer can be recovered from the polymerization mixture.
- the monomer can be distilled from the polymerization mixture by using techniques known in the art.
- a devolatilizer may be employed to remove the monomer from the polymerization mixture. Once the monomer has been removed from the polymerization mixture, the monomer may be purified, stored, and/or recycled back to the polymerization process.
- the polymer product may be recovered from the polymerization mixture by using techniques known in the art.
- desolventization and drying techniques may be used.
- the polymer can be recovered by passing the polymerization mixture through a heated screw apparatus, such as a desolventizing extruder, in which the volatile substances are removed by evaporation at appropriate temperatures (e.g., about 100 °C to about 170 °C) and under atmospheric or sub-atmospheric pressure. This treatment serves to remove unreacted monomer as well as any low-boiling solvent.
- the polymer can also be recovered by subjecting the polymerization mixture to steam desolventization, followed by drying the resulting polymer crumbs in a hot air tunnel.
- the polymer can also be recovered by directly drying the polymerization mixture on a drum dryer.
- the cis-1,4-polydiene and the hydrosilane (and optionally the functionalizing agent) are believed to react to produce a novel functionalized polymer, wherein the residue of the hydrosilane is imparted on the cis-1,4-polydiene.
- the exact chemical structure of the functionalized polymer produced in every embodiment may not be known with a great degree of certainty, particularly as the structure relates to the residue imparted to the cis-1,4-polydiene by the hydrosilane and optionally the functionalizing agent.
- the structure of the functionalized polymer may depend upon various factors such as the conditions employed to prepare the cis-1,4-polydiene (e.g., the type and amount of the catalyst) and the conditions employed to react the hydrosilane (and optionally the functionalizing agent) with the cis-1,4-polydiene (e.g., the types and a and the functionalizing agent).
- the functionalized polymer resulting from the reaction between the cis-1,4-polydiene and the hydrosilane can be protonated or further modified.
- one of the products resulting from the reaction between the cis-1,4-polydiene and the hydrosilane may be a functionalized polymer defined by the following formula: ⁇ -SiH x R 3-x where x is an integer from 0 to 3, each R is individually a halogen atom or a monovalent organic group, or where two or more R groups join to form a polyvalent organic group, and ⁇ is a cis-1,4-polydiene polymer chain as described above.
- the polymer functionalized with the hydrosilane may undergo a condensation reaction with another hydrocarbyloxy group or a silyloxy group on a second silane-functionalized polymer, thereby coupling the cis-1,4-polydiene polymers.
- the occurrence of a coupling reaction of a silane functionality may be determined through gel permeation chromatography (GPC).
- the coupled polymer is a higher molecular weight species that has a number average molecular weight is at least 20 times larger, in other embodiments at least 50 times larger and in other embodiments at least 100 times larger than the number average molecular weight of the predominant species of the cis-1,4-polydiene polymer.
- one of the products resulting from the reaction between the cis-1,4-polydiene and the hydrosilane, particularly after the silane-functionalized polymer couples with a second silane-functionalized polymer may be a functionalized polymer defined by the following formula where n is an integer from 0 to 8, each R is individually a hydrogen atom, halogen atom, or a monovalent organic group, and each ⁇ is a cis-1,4-polydiene polymer chain as described above. In one or more embodiments, n may be in integer from 1 to 6, and in other embodiments from 2 to 4.
- the silane-functionalized polymer may be characterized by the number silane-functional groups per cis-1,4-polydiene polymer. In one or more embodiments, the average number of silane-functional groups on the cis-1,4-polydiene polymer may be from about 1 to about 8, in other embodiments about 2 to about 6, and in other embodiments about 3 to about 4 silane-functional groups per polymer.
- the polymers of this invention are particularly useful in preparing rubber compositions that can be used to manufacture tire components.
- Rubber compounding techniques and the additives employed therein are generally disclosed in The Compounding and Vulcanization of Rubber, in Rubber Technology (2nd Ed. 1973 ).
- the rubber compositions can be prepared by using the polymers alone or together with other elastomers (i.e., polymers that can be vulcanized to form compositions possessing rubbery or elastomeric properties).
- Other elastomers that may be used include natural and synthetic rubbers.
- the synthetic rubbers typically derive from the polymerization of conjugated diene monomer, the copolymerization of conjugated diene monomer with other monomer such as vinyl-substituted aromatic monomer, or the copolymerization of ethylene with one or more ⁇ -olefins and optionally one or more diene monomers.
- Exemplary elastomers include natural rubber, synthetic polyisoprene, polybutadiene, polyisobutylene- co -isoprene, neoprene, poly(ethylene- co -propylene), poly(styrene- co -butadiene), poly(styrene- co -isoprene), poly(styrene- co -isoprene-co-butadiene), poly(isoprene- co -butadiene), poly(ethylene- co -propylene-co-diene), polysulfide rubber, acrylic rubber, urethane rubber, silicone rubber, epichlorohydrin rubber, and mixtures thereof.
- These elastomers can have a myriad of macromolecular structures including linear, branched, and star-shaped structures.
- the rubber compositions may include fillers such as inorganic and organic fillers.
- organic fillers include carbon black and starch.
- inorganic fillers include silica, aluminum hydroxide, magnesium hydroxide, mica, talc (hydrated magnesium silicate), and clays (hydrated aluminum silicates).
- carbon blacks and silicas are the most common fillers used in manufacturing tires. In certain embodiments, a mixture of different fillers may be advantageously employed.
- carbon blacks include furnace blacks, channel blacks, and lamp blacks. More specific examples of carbon blacks include super abrasion furnace blacks, intermediate super abrasion furnace blacks, high abrasion furnace blacks, fast extrusion furnace blacks, fine furnace blacks, semi-reinforcing furnace blacks, medium processing channel blacks, hard processing channel blacks, conducting channel blacks, and acetylene blacks.
- the carbon blacks may have a surface area (EMSA) of at least 20 m 2 /g and in other embodiments at least 35 m 2 /g; surface area values can be determined by ASTM D-1765 using the cetyltrimethylammonium bromide (CTAB) technique.
- the carbon blacks may be in a pelletized form or an unpelletized flocculent form. The preferred form of carbon black may depend upon the type of mixing equipment used to mix the rubber compound.
- the amount of carbon black employed in the rubber compositions can be up to about 50 parts by weight per 100 parts by weight of rubber (phr), with about 5 to about 40 phr being typical.
- Hi-Sil TM 215, Hi-Sil TM 233, and Hi-Sil TM 190 PPG Industries, Inc.; Pittsburgh, Pa.
- Other suppliers of commercially available silica include Grace Davison (Baltimore, Md.), Degussa Corp. (Parsippany, N.J.), Rhodia Silica Systems (Cranbury, N.J.), and J.M. Huber Corp. (Edison, N.J.).
- silicas may be characterized by their surface areas, which give a measure of their reinforcing character.
- the Brunauer, Emmet and Teller (“BET”) method (described in J. Am. Chem. Soc., vol. 60, p. 309 et seq.) is a recognized method for determining the surface area.
- the BET surface area of silica is generally less than 450 m 2 /g.
- Useful ranges of surface area include from about 32 to about 400 m 2 /g, about 100 to about 250 m 2 /g, and about 150 to about 220 m 2 /g.
- the pH's of the silicas are generally from about 5 to about 7 or slightly over 7, or in other embodiments from about 5.5 to about 6.8.
- a coupling agent and/or a shielding agent may be added to the rubber compositions during mixing in order to enhance the interaction of silica with the elastomers.
- a coupling agent and/or a shielding agent are disclosed in U.S. Patent Nos.
- the amount of silica employed in the rubber compositions can be from about 1 to about 100 phr or in other embodiments from about 5 to about 80 phr.
- the useful upper range is limited by the high viscosity imparted by silicas.
- the amount of silica can be decreased to as low as about 1 phr; as the amount of silica is decreased, lesser amounts of coupling agents and shielding agents can be employed.
- the amounts of coupling agents and shielding agents range from about 4% to about 20% based on the weight of silica used.
- a multitude of rubber curing agents may be employed, including sulfur or peroxide-based curing systems. Curing agents are described in Kirk-Othmer, ENCYCLOPEDIA OF CHEMICAL TECHNOLOGY, Vol. 20, pgs. 365-468, (3rd Ed. 1982 ), particularly Vulcanization Agents and Auxiliary Materials, pgs. 390-402 , and A.Y. Coran, Vulcanization, ENCYCLOPEDIA OF POLYMER SCIENCE AND ENGINEERING, (2nd Ed. 1989 ). Vulcanizing agents may be used alone or in combination.
- oils include those conventionally used as extender oils, which are described above.
- All ingredients of the rubber compositions can be mixed with standard mixing equipment such as Banbury or Brabender mixers, extruders, kneaders, and two-rolled mills.
- the ingredients are mixed in two or more stages.
- a so-called masterbatch which typically includes the rubber component and filler, is prepared.
- the masterbatch may exclude vulcanizing agents.
- the masterbatch may be mixed at a starting temperature of from about 25 °C to about 125 °C with a discharge temperature of about 135 °C to about 180 °C.
- the vulcanizing agents may be introduced and mixed into the masterbatch in a final mixing stage, which is typically conducted at relatively low temperatures so as to reduce the chances of premature vulcanization.
- additional mixing stages sometimes called remills, can be employed between the masterbatch mixing stage and the final mixing stage.
- remill stages are often employed where the rubber composition includes silica as the filler.
- Various ingredients including the polymers of this invention can be added during these remills.
- the initial masterbatch is prepared by including the polymer of this invention and silica in the substantial absence of coupling agents and shielding agents.
- the rubber compositions prepared from the polymers of this invention are particularly useful for forming tire components such as treads, subtreads, sidewalls, body ply skims, bead filler, and the like.
- the polymers of this invention are employed in tread and sidewall formulations.
- these tread or sidewall formulations may include from about 10% to about 100% by weight, in other embodiments from about 35% to about 90% by weight, and in other embodiments from about 50% to about 80% by weight of the polymer based on the total weight of the rubber within the formulation.
- vulcanization is effected by heating the vulcanizable composition in a mold; e.g., it may be heated to about 140 °C to about 180 °C.
- Cured or crosslinked rubber compositions may be referred to as vulcanizates, which generally contain three-dimensional polymeric networks that are thermoset.
- the other ingredients, such as fillers and processing aids, may be evenly dispersed throughout the crosslinked network.
- Pneumatic tires can be made as discussed in U.S. Patent Nos. 5,866,171 , 5,876,527 , 5,931,211 , and 5,971,046 .
- 1,3-butadiene was polymerized into cis-1,4-polybutadiene by a batch polymerization process.
- the polymerization reactor consisted of a two-gallon stainless cylinder equipped with a mechanical agitator (shaft and blades) capable of mixing high viscosity polymer cement.
- the reactor was also equipped with a water jacket to which could be supplied water with a controlled temperature. The jacket temperature was set to 100 °F.
- To the reactor were added 3.49 lbs. of anhydrous hexanes and 6.51 lbs. of a 21.5 wt. % solution of butadiene in hexanes.
- the polymer was quenched with isopropanol to provide an unmodified polymer sample.
- the polymer was coagulated in 8 L isopropanol containing 15 g of 2,6-di-tert-butyl-4-methylphenol.
- the coagulated polymer was drum-dried.
- the yield of the polymer was 91.57 g (92.9% conversion).
- the Mooney viscosity (ML l+4 ) of the polymer was determined to be 21.1 at 100 °C by using a Monsanto Mooney viscometer with a large rotor, a one-minute warm-up time, and a four-minute running time.
- the polymer As determined by gel permeation chromatography (GPC), the polymer had a number average molecular Weight (M n ) of 64,000 g/mole, a weight average molecular weight (M w ) of 227,000 g/mole, and a molecular weight distribution (M w /M n ) of 3.5.
- M n number average molecular Weight
- M w weight average molecular weight
- M w /M n molecular weight distribution
- the resulting polymer had the following properties: ML l+4 : 37.1, base M n : 68,000 g/mole, base M w : 202,000 g/mole, M w /M n : 3.0, cis-1,4-linkage: 95.0%, trans-1,4-linkage: 4.2%, and 1,2-linkage: 0.8%.
- M n molecular weight species present with an M n of approximately 27,000,000 which constituted 1.0% of the polymer.
- the resulting polymer had the following properties: ML l+4 : 40.4, base M n : 71,000 g/mole, base M w : 191,000 g/mole, M w /M n : 2.7, cis-1,4-linkage: 94.8%, trans-1,4-linkage: 4.4%, and 1,2-linkage: 0.8%.
- M n approximately 29,000,000 which constituted 1.5% of the polymer.
- the resulting polymer had the following properties: ML l+4 : 52.3, base M n : 63,000 g/mole, base M W : 197,000 g/mole, M w /M n : 3.1, cis-1,4-linkage: 95.0%, trans-1,4-linkage: 4.2%, and 1,2-linkage: 0.8%.
- M n approximately 73,000,000 which constituted 1.6% of the polymer.
- 1,3-butadiene was polymerized into cis-1,4-polybutadiene by a batch polymerization process.
- the polymerization reactor consisted of a nitrogen purged 750 mL glass bottle equipped with a rubber septum and crimped metal cap which had two holes to allow for the addition of reagents. To the bottle were added 99.7 g of anhydrous hexanes and 233.6 g of a 21.4 wt. % solution of butadiene in hexanes.
- the coagulated polymer was drum-dried.
- the yield of the polymer was 51.1 g (102.2% conversion).
- the resulting polymer had the following properties: ML l+4 : 38.5, M n : 93,000 g/mole, M w : 305,000 g/mole, M w /M n : 3.3, cis-1,4-linkage:96.9%, trans-1,4-linkage2.2%, and 1,2-linkage:0.9%.
- a bottle of polymer cement was prepared as in Comparative Example 1. To the bottle was added 8.50 mL of a 1.00 M solution of Octyl(EtO) 3 Si in toluene (100 equiv. per Nd). The bottle was placed in an agitating water bath held at a temperature of 65 °C for 30 minutes. The polymer was quenched with isopropanol. The polymer was coagulated in 8 L isopropanol containing 15 g of 2,6-di-tert-butyl-4-methylphenol. The coagulated polymer was drum-dried. The yield of the polymer was 49.70 g.
- the resulting polymer had the following properties: ML l+4 : 33.2, base M n : 92,000 g/mole, base M w : 296,000 g/mole, M w /M n : 3.2. No higher molecular weight species was observed by GPC.
- a small N 2 purged sealed glass vessel was charged with 10.46 mL of an 2.81 M solution of MAO in toluene and 2.25 mL of a 21.4% wt. solution of butadiene in hexanes. To this mixture was added 0.57 mL of a 0.518 M solution of NdV3 in hexanes, rapidly followed by 5.99 mL of a 1.03 M solution of DIBAH in hexanes. The mixture was vigorously shaken and allowed to age at 23 °C for 2 minutes. To this mixture was added 1.10 mL of a 1.07 M solution of DEAC in hexanes. After this mixture was aged at 23 °C for 14 minutes, the active catalyst mixture was diluted with 3.06 mL of toluene. The catalyst was used to prepare Control 2 and Examples 4-7.
- the polymer cement was combined and coagulated in 8 L isopropyl alcohol containing 15 g of 2,6-di-tert-butyl-4-methylphenol and then drum dried.
- the yield of the polymer was 98.4 g.
- the resulting polymer had the following properties: ML l+4 : 33.7, base M n : 123,000 g/mole, base M W : 247,000 g/mole, M w /M n : 2.0, cis-1,4-linkage: 94.6%, trans-1,4-linkage: 4.8%, and 1,2-linkage: 0.6%.
- the resulting polymer had the following properties: ML 1+4 : 33.8, base M n : 128,000 g/mole, base M w : 224,000 g/mole, M w /M n : 2.0, cis-1,4-linkage: 94.7%, trans-1,4-linkage: 4.8%, and 1,2-linkage: 0.5%.
- M n molecular weight species present with an M n of approximately 11,000,000 which constituted 1.7% of the polymer.
- the resulting polymer had the following properties: ML l+4 : 31.4, base M n : 119,000 g/mole, base M w : 241,000 g/mole, M w /M n : 2.0, cis-1,4-linkage: 94.5%, trans-1,4-linkage: 4.9%, and 1,2-linkage: 0.6%.
- the resulting polymer had the following properties: ML l+4 : 30.5, base M n : 123,000 g/mole, base M w : 236,000 g/mole, M w /M n : 1.9, cis-1,4-linkage: 94.5%, trans-1,4-linkage: 4.9%, and 1,2-linkage: 0.6%.
- the resulting polymer had the following properties: ML 1+4 : 48.7, base M n : 137,000 g/mole, base M w : 248,000 g/mole, M w /M n : 1.8, cis-1,4-linkage: 94.5%, trans-1,4-linkage: 4.9%, and 1,2-linkage: 0.6%.
- M n molecular weight species present with an M n of approximately 23,000,000 which constituted 4.8% of the polymer.
- vulcanizates which were cured for ⁇ 15 minutes at 160 °C.
- the compounds from which these vulcanizates were prepared were made according to the formulations shown above in Table 1 where N-phenyl-N'-(1,3-dimethylbutyl)-p-phenylenediamine (6-PPD) acts as an antioxidant and 2,2'-dithiobis(benzothiazole) (MBTS), N-tert-butylbenzothiazole-2-sulfenamide (TBBS) and N,N'-diphenylguanidine (DPG) act as accelerators.
- Black oil is an extender oil that contains a relatively low amount of polycyclic aromatic (PCA) compounds.
- vulcanizable elastormeric compounds containing reinforcing fillers were prepared from Controls 1 and 2 and Examples 1-7. Results of physical testing on these compounds are shown below in Table 2 and 3.
- Tensile mechanical properties were determined using the standard procedure described in ASTM-D412; Payne effect ( ⁇ G', i.e., the difference between G' at 0.25% strain and at 14% strain) and hysteresis (tan ⁇ ) data were obtained from dynamic experiments conducted at 60 °C. and 10 Hz (strain sweep). With respect to tensile properties, Mx is modulus at x % elongation.
- Example 2 Example 3 M50 (MPa) 1.62 1.68 1.65 1.66 M300 (MPa) 8.16 9.52 8.97 9.32 ⁇ G' (MPa) 4.618 3.450 3.108 2.905 Table 3 Testing Data for Control 2 and Examples 4-7 Control 2 Example 4 Example 5
- Example 6 Example 7 M50 (MPa) 2.01 2.05 2.06 2.05 2.05 M300 (MPa) 10.08 10.72 10.51 10.67 11.50 ⁇ G' (MPa) 4.673 4.088 4.688 4.062 3.312
- 1,3-butadiene was polymerized into cis-1,4-polybutadiene by a batch polymerization process.
- the polymerization reactor consisted of a two-gallon stainless cylinder equipped with a mechanical agitator (shaft and blades) capable of mixing high viscosity polymer cement.
- the reactor was also equipped with a water jacket to which could be supplied water with a controlled temperature. The jacket temperature was set to 100 °F.
- To the reactor were added 3.49 lbs. of anhydrous hexanes and 6.51 lbs. of a 21.5 wt. % solution of butadiene in hexanes.
- the polymer was quenched with isopropanol to provide an unmodified polymer sample.
- the polymer was coagulated in 8 L isopropanol containing 15 g of 2,6-di-tert-butyl-4-methylphenol.
- the coagulated polymer was drum-dried.
- the yield of the polymer was 91.57 g (92.9% conversion).
- the Mooney viscosity (ML l+4 ) of the polymer was determined to be 21.1 at 100 °C by using a Monsanto Mooney viscometer with a large rotor, a one-minute warm-up time, and a four-minute running time.
- the polymer As determined by gel permeation chromatography (GPC), the polymer had a number average molecular Weight (M n ) of 64,000 g/mole, a weight average molecular weight (M w ) of 227,000 g/mole, and a molecular weight distribution (M w /M n ) of 3.5.
- M n number average molecular Weight
- M w weight average molecular weight
- M w /M n molecular weight distribution
- the resulting polymer had the following properties: ML l+4 : 37.1, base M n : 68,000 g/mole, base M w : 202,000 g/mole, M w /M n : 3.0, cis-1,4-linkage: 95.0%, trans-1,4-linkage: 4.2%, and 1,2-linkage: 0.8%.
- M n molecular weight species present with an M n of approximately 27,000,000 which constituted 1.0% of the polymer.
- the resulting polymer had the following properties: ML l+4 : 40.4, base M n : 71,000 g/mole, base M w : 191,000 g/mole, M w /M n : 2.7, cis-1,4-linkage: 94.8%, trans-1,4-linkage: 4.4%, and 1,2-linkage: 0.8%.
- M n approximately 29,000,000 which constituted 1.5% of the polymer.
- the resulting polymer had the following properties: ML l+4 : 52.3, base M n : 63,000 g/mole, base M W : 197,000 g/mole, M w /M n : 3.1, cis-1,4-linkage: 95.0%, trans-1,4-linkage: 4.2%, and 1,2-linkage: 0.8%.
- M n approximately 73,000,000 which constituted 1.6% of the polymer.
- 1,3-butadiene was polymerized into cis-1,4-polybutadiene by a batch polymerization process.
- the polymerization reactor consisted of a nitrogen purged 750 mL glass bottle equipped with a rubber septum and crimped metal cap which had two holes to allow for the addition of reagents. To the bottle were added 99.7 g of anhydrous hexanes and 233.6 g of a 21.4 wt. % solution of butadiene in hexanes.
- the coagulated polymer was drum-dried.
- the yield of the polymer was 51.1 g (102.2% conversion).
- the resulting polymer had the following properties: ML 1+4 : 38.5, M n : 93,000 g/mole, M w : 305,000 g/mole, M w /M n : 3.3, cis-1,4-linkage:96.9%, trans-1,4-linkage:2.2%, and 1,2-linkage:0.9%.
- a bottle of polymer cement was prepared as in Comparative Example 1. To the bottle was added 8.50 mL of a 1.00 M solution of Octyl(EtO) 3 Si in toluene (100 equiv. per Nd). The bottle was placed in an agitating water bath held at a temperature of 65 °C for 30 minutes. The polymer was quenched with isopropanol. The polymer was coagulated in 8 L isopropanol containing 15 g of 2,6-di-tert-butyl-4-methylphenol. The coagulated polymer was drum-dried. The yield of the polymer was 49.70 g.
- the resulting polymer had the following properties: ML 1+4 : 33.2, base M n : 92,000 g/mole, base M w : 296,000 g/mole, M w /M n : 3.2. No higher molecular weight species was observed by GPC.
- a small N 2 purged sealed glass vessel was charged with 10.46 mL of an 2.81 M solution of MAO in toluene and 2.25 mL of a 21.4% wt. solution of butadiene in hexanes. To this mixture was added 0.57 mL of a 0.518 M solution of NdV3 in hexanes, rapidly followed by 5.99 mL of a 1.03 M solution of DIBAH in hexanes. The mixture was vigorously shaken and allowed to age at 23 °C for 2 minutes. To this mixture was added 1.10 mL of a 1.07 M solution of DEAC in hexanes. After this mixture was aged at 23 °C for 14 minutes, the active catalyst mixture was diluted with 3.06 mL of toluene. The catalyst was used to prepare Control 2 and Examples 4-7.
- the polymer cement was combined and coagulated in 8 L isopropyl alcohol containing 15 g of 2,6-di-tert-butyl-4-methylphenol and then drum dried.
- the yield of the polymer was 98.4 g.
- the resulting polymer had the following properties: ML 1+4 : 33.7, base M n : 123,000 g/mole, base M W : 247,000 g/mole, M w /M n : 2.0, cis-1,4-linkage: 94.6%, trans-1,4-linkage: 4.8%, and 1,2-linkage: 0.6%.
- the resulting polymer had the following properties: ML 1+4 : 33.8, base M n : 128,000 g/mole, base M w : 224,000 g/mole, M w /M n : 2.0, cis-1,4-linkage: 94.7%, trans-1,4-linkage: 4.8%, and 1,2-linkage: 0.5%.
- M n molecular weight species present with an M n of approximately 11,000,000 which constituted 1.7% of the polymer.
- the resulting polymer had the following properties: ML 1+4 : 31.4, base M n : 119,000 g/mole, base M w : 241,000 g/mole, M w /M n : 2.0, cis-1,4-linkage: 94.5%, trans-1,4-linkage: 4.9%, and 1,2-linkage: 0.6%.
- the resulting polymer had the following properties: ML 1+4 : 30.5, base M n : 123,000 g/mole, base M w : 236,000 g/mole, M w /M n : 1.9, cis-1,4-linkage: 94.5%, trans-1,4-linkage: 4.9%, and 1,2-linkage: 0.6%.
- the resulting polymer had the following properties: ML 1+4 : 48.7, base M n : 137,000 g/mole, base M w : 248,000 g/mole, M w /M n : 1.8, cis-1,4-linkage: 94.5%, trans-1,4-linkage: 4.9%, and 1,2-linkage: 0.6%.
- M n molecular weight species present with an M n of approximately 23,000,000 which constituted 4.8% of the polymer.
- vulcanizates which were cured for ⁇ 15 minutes at 160 °C.
- the compounds from which these vulcanizates were prepared were made according to the formulations shown above in Table 1 where N-phenyl-N'-(1,3-dimethylbutyl)-p-phenylenediamine (6-PPD) acts as an antioxidant and 2,2'-dithiobis(benzothiazole) (MBTS), N-tert-butylbenzothiazole-2-sulfenamide (TBBS) and N,N'-diphenylguanidine (DPG) act as accelerators.
- Black oil is an extender oil that contains a relatively low amount of polycyclic aromatic (PCA) compounds.
- vulcanizable elastormeric compounds containing reinforcing fillers were prepared from Controls 1 and 2 and Examples 1-7. Results of physical testing on these compounds are shown below in Table 2 and 3.
- Tensile mechanical properties were determined using the standard procedure described in ASTM-D412; Payne effect ( ⁇ G', i.e., the difference between G' at 0.25% strain and at 14% strain) and hysteresis (tan ⁇ ) data were obtained from dynamic experiments conducted at 60 °C. and 10 Hz (strain sweep). With respect to tensile properties, Mx is modulus at x % elongation.
- Example 2 Example 3 M50 (MPa) 1.62 1.68 1.65 1.66 M300 (MPa) 8.16 9.52 8.97 9.32 ⁇ G' (MPa) 4.618 3.450 3.108 2.905 Table 3 Testing Data for Control 2 and Examples 4-7 Control 2 Example 4 Example 5
- Example 6 Example 7 M50 (MPa) 2.01 2.05 2.06 2.05 2.05 M300 (MPa) 10.08 10.72 10.51 10.67 11.50 ⁇ G' (MPa) 4.673 4.088 4.688 4.062 3.312
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Polymerization Catalysts (AREA)
Description
- Embodiments of the invention relate to preparing silane-functionalized polymers by a process that includes reacting a cis-1,4-polydiene that includes some 1,2-linkage content with a hydrosilane compound in the presence of a lanthanide-based catalyst system.
- It is common in the rubber industry, such as the tire industry, to reinforce rubber compositions with particulate filler. Among the advantages of doing so, the particulate filler can bolster the modulus of the rubber composition. For example, silica has advantageously been employed as a filler. The use of silica filler within tire treads produces, among other advantages, improved wear.
- While fillers offer advantages in rubber compositions, the presence of the filler impacts the dynamic properties of the rubber compositions. Namely, hysteretic loss increases with filler concentration. This can be disadvantageous, especially in tire treads, because hysteretic loss is inversely proportional to rolling resistance.
- It is known that polymers can be modified with certain functionalities that react or interact with filler and thereby reduce hysteretic loss. Suitable functionalities that may react or interact with filler include silane functionalities. Current strategies for the incorporation of a silane functionality into a polymer include either the chain-end functionalization of an anionically-initiated polymer or the hydrosilation of a polymer chain. While the foregoing approaches have been useful, the use anionic polymerization results in a polymer with limited 1,4-cis linkage and a single silane functionality at one terminus of the polymer chain. And, the hydrosilation techniques that have been employed thus far use a finished polymer that is then redissolved in a solvent prior to the functionalization reaction with a silane using a either a platinum or a rhodium catalyst to drive the hydrosilation reaction. Examples of preparation of silylated polydienes are described in
EP2470574 A2 ,US2010/317818 A1 , andEP2266819 A1 . - Embodiments of the present invention provide a method of preparing a silane-functionalized polymer, the method comprising (i) preparing a polymerization system including a cis-1,4-polydiene by introducing a lanthanide-based catalyst and a conjugated diene monomer; and (ii) adding a hydrosilane compound to the polymerization system including a cis-1,4-polydiene.
- Other embodiments of the present invention also provide a vulcanizable composition comprising: the silane-functionalized polymer prepared by the method, a filler, and a curative.
- Embodiments of the invention are based, at least in part, on the discovery of a method for producing silane-functional cis-1,4-polydiene polymer. According to aspects of the invention, cis-1,4-polydienes may be silane-functionalized by combining a polymer, including reactive polymers, with hydrosilane compound in the presence of a lanthanide-based catalyst system. As a result, the functionalized polymer includes silane-functionalization. Advantageously, the cis-1,4-polydienes may be prepared in the presence of a lanthanide-based catalyst system, and the same catalyst can then catalyze the hydrosilation reaction. This allows for a process for preparing silane-functional cis-1,4-polydiene polymers that may reduce process steps, minimize by-product waste, and eliminate the need for additional catalysts.
- The polymers that undergo functionalization according to embodiments of the present invention are cis-1,4-polydienes that include 1,2-linkage content (i.e., vinyl content). For ease of description, these polymers may be referred to simply as cis-1,4-polydienes.
- In one or more embodiments, the cis-1,4-polydienes may be synthesized by polymerizing conjugated dienes with a lanthanide-based catalyst system. In one or more embodiments, the cis-1,4-polydienes may include a reactive chain end. The cis-1,4-polydienes cis-1,4-polydienes with a reactive chain end prepared with a lanthanide-based catalyst may be referred to as a pseudo-living polymer, which will be discussed in further detail below. In these or other embodiments, the cis-1,4-polydienes may include a functionalized chain end (i.e., a chain end bearing a functional group).
- In one or more embodiments, the cis-1,4-polydienes may have a cis-1,4-linkage content that is greater than 60%, in other embodiments greater than 75%, in other embodiments greater than 90%, in other embodiments greater than 96%, in other embodiments greater than 98%, and in other embodiments greater than 99%, where the percentages are based upon the number of diene mer units adopting the cis-1,4 linkage versus the total number of diene mer units. As indicated above, these polymers have a 1,2-linkage content. In one or more embodiments, these polymers may have a 1,2-linkage content that is greater than 0.1%, in other embodiments greater than 0.3%, and in other embodiments greater than 0.5%. In these or other embodiments, these polymers may have a 1,2-linkage content that is less than 7%, in other embodiments less than 5%, and in other embodiments less than 2%, where the percentages are based upon the number of diene mer units adopting the 1,2-linkage versus the total number of diene mer units. In one or more embodiments, these polymers may have a 1,2-linkage content that is from about 0.1% to about 7%, in other embodiments about 0.3% to about 5%, and in other embodiments about 0.5% to about 2%. The cis-1,4-, 1,2-, and trans-1,4-linkage contents can be determined by infrared spectroscopy.
- In one or more embodiments, the number average molecular weight (Mn) of the cis-1,4-polydiene polymers may be from about 1,000 to about 1,000,000, in other embodiments from about 5,000 to about 200,000, in other embodiments from about 25,000 to about 150,000, and in other embodiments from about 50,000 to about 120,000, as determined by using gel permeation chromatography (GPC) calibrated with polystyrene standards and Mark-Houwink constants for the polymer in question. The molecular weight distribution or polydispersity (Mw/Mn) of the cis-1,4-polydienes may be from about 1.5 to about 5.0, and in other embodiments from about 2.0 to about 4.0. In these or other embodiments, the cis-1,4-polydienes of this invention may have a Mw/Mn of less than 3.0, in other embodiments less than 2.5, in other embodiments less than 2.3, in other embodiments less than 2.2, in other embodiments less than 2.1, and in other embodiments less than 2.0.
- In certain embodiments, in addtion to the hydosilane, the cis-1,4-polydienes may include a secondary functionalization. In certain embodiments, a secondary-functionalizing agent may be added to the polymerization mixture that includes a reactive polymer to yield an end-functionalized polymer. In those embodiments where the cis-1,4-polydienes are end functionalized with a secondary functionalization, the percentage of polymer chains possessing a functional group may depend on various factors such as the type of catalyst, the type of monomer, the purity of the ingredients, the polymerization temperature, the monomer conversion, and many other factors. In one or more embodiments, at least about 10% of the polymer chains possess a functional end group, in other embodiments at least about 30% of the polymer chains possess a functional end group, in other embodiments at least about 50% of the polymer chains possess a functional end group, and in still other embodiments at least about 60% of the polymer chains possess a functional end group.
- As indicated above, the cis-1,4-polydienes may be prepared by polymerizing conjugated diene monomer by using a lanthanide-based catalyst system.
- Examples of conjugated diene monomer include 1,3-butadiene, isoprene, 1,3-pentadiene, 1,3-hexadiene, 2,3-dimethyl 1,3-butadiene, 2-ethyl-1,3-butadiene, 2-methyl-1,3-pentadiene, 3-methyl-1,3-pentadiene, 4-methyl-1,3-pentadiene, and 2,4-hexadiene. Mixtures of two or more conjugated dienes may also be utilized in copolymerization.
- Practice of the present invention is not necessarily limited by the selection of any particular lanthanide-based catalyst system. In one or more embodiments, the catalyst systems employed include (a) a lanthanide-containing compound, (b) an alkylating agent, and (c) a halogen source. In other embodiments, a compound containing a non-coordinating anion or a non-coordinating anion precursor can be employed in lieu of a halogen source. In these or other embodiments, other organometallic compounds, Lewis bases, and/or catalyst modifiers can be employed in addition to the ingredients or components set forth above. For example, in one embodiment, a nickel-containing compound can be employed as a molecular weight regulator as disclosed in
U.S. Patent No. 6,699,813 . In one or more embodiments, the catalyst system is a preformed lanthanide-based catalyst system. In other embodiments, the catalyst system is a lanthanide-based catalyst system form in situ. - As mentioned above, the lanthanide-based catalyst systems employed in the present invention can include a lanthanide-containing compound. Lanthanide-containing compounds useful in the present invention are those compounds that include at least one atom of lanthanum, neodymium, cerium, praseodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, and didymium. In one embodiment, these compounds can include neodymium, lanthanum, samarium, or didymium. As used herein, the term "didymium" shall denote a commercial mixture of rare-earth elements obtained from monazite sand. In addition, the lanthanide-containing compounds useful in the present invention can be in the form of elemental lanthanide.
- The lanthanide atom in the lanthanide-containing compounds can be in various oxidation states including, but not limited to, the 0, +2, +3, and +4 oxidation states. In one embodiment, a trivalent lanthanide-containing compound, where the lanthanide atom is in the +3 oxidation state, can be employed. Suitable lanthanide-containing compounds include, but are not limited to, lanthanide carboxylates, lanthanide organophosphates, lanthanide organophosphonates, lanthanide organophosphinates, lanthanide carbamates, lanthanide dithiocarbamates, lanthanide xanthates, lanthanide β-diketonates, lanthanide alkoxides or aryloxides, lanthanide halides, lanthanide pseudo-halides, lanthanide oxyhalides, and organolanthanide compounds.
- In one or more embodiments, the lanthanide-containing compounds can be soluble in hydrocarbon solvents such as aromatic hydrocarbons, aliphatic hydrocarbons, or cycloaliphatic hydrocarbons. Hydrocarbon-insoluble lanthanide-containing compounds, however, may also be useful in the present invention, as they can be suspended in the polymerization medium to form the catalytically active species.
- For ease of illustration, further discussion of useful lanthanide-containing compounds will focus on neodymium compounds, although those skilled in the art will be able to select similar compounds that are based upon other lanthanide metals.
- Suitable neodymium carboxylates include, but are not limited to, neodymium formate, neodymium acetate, neodymium acrylate, neodymium methacrylate, neodymium valerate, neodymium gluconate, neodymium citrate, neodymium fumarate, neodymium lactate, neodymium maleate, neodymium oxalate, neodymium 2-ethylhexanoate, neodymium neodecanoate (a.k.a., neodymium versatate), neodymium naphthenate, neodymium stearate, neodymium oleate, neodymium benzoate, and neodymium picolinate.
- Suitable neodymium organophosphates include, but are not limited to, neodymium dibutyl phosphate, neodymium dipentyl phosphate, neodymium dihexyl phosphate, neodymium diheptyl phosphate, neodymium dioctyl phosphate, neodymium bis(1-methylheptyl) phosphate, neodymium bis(2-ethylhexyl) phosphate, neodymium didecyl phosphate, neodymium didodecyl phosphate, neodymium dioctadecyl phosphate, neodymium dioleyl phosphate, neodymium diphenyl phosphate, neodymium bis(p-nonylphenyl) phosphate, neodymium butyl (2-ethylhexyl) phosphate, neodymium (1-methylheptyl) (2-ethylhexyl) phosphate, and neodymium (2-ethylhexyl) (p-nonylphenyl) phosphate.
- Suitable neodymium organophosphonates include, but are not limited to, neodymium butyl phosphonate, neodymium pentyl phosphonate, neodymium hexyl phosphonate, neodymium heptyl phosphonate, neodymium octyl phosphonate, neodymium (1-methylheptyl) phosphonate, neodymium (2-ethylhexyl) phosphonate, neodymium decyl phosphonate, neodymium dodecyl phosphonate, neodymium octadecyl phosphonate, neodymium oleyl phosphonate, neodymium phenyl phosphonate, neodymium (p-nonylphenyl) phosphonate, neodymium butyl butylphosphonate, neodymium pentyl pentylphosphonate, neodymium hexyl hexylphosphonate, neodymium heptyl heptylphosphonate, neodymium octyl octylphosphonate, neodymium (1-methylheptyl) (1-methylheptyl)phosphonate, neodymium (2-ethylhexyl) (2-ethylhexyl)phosphonate, neodymium decyl decylphosphonate, neodymium dodecyl dodecylphosphonate, neodymium octadecyl octadecylphosphonate, neodymium oleyl oleylphosphonate, neodymium phenyl phenylphosphonate, neodymium (p-nonylphenyl) (p-nonylphenyl)phosphonate, neodymium butyl (2-ethylhexyl)phosphonate, neodymium (2-ethylhexyl) butylphosphonate, neodymium (1-methylheptyl) (2-ethylhexyl)phosphonate, neodymium (2-ethylhexyl) (1-methylheptyl)phosphonate, neodymium (2-ethylhexyl) (p-nonylphenyl)phosphonate, and neodymium (p-nonylphenyl) (2-ethylhexyl)phosphonate.
- Suitable neodymium organophosphinates include, but are not limited to, neodymium butylphosphinate, neodymium pentylphosphinate, neodymium hexylphosphinate, neodymium heptylphosphinate, neodymium octylphosphinate, neodymium (1-methylheptyl)phosphinate, neodymium (2-ethylhexyl)phosphinate, neodymium decylphosphinate, neodymium dodecylphosphinate, neodymium octadecylphosphinate, neodymium oleylphosphinate, neodymium phenylphosphinate, neodymium (p-nonylphenyl)phosphinate, neodymium dibutylphosphinate, neodymium dipentylphosphinate, neodymium dihexylphosphinate, neodymium diheptylphosphinate, neodymium dioctylphosphinate, neodymium bis(1-methylheptyl)phosphinate, neodymium bis(2-ethylhexyl)phosphinate, neodymium didecylphosphinate, neodymium didodecylphosphinate, neodymium dioctadecylphosphinate, neodymium dioleylphosphinate, neodymium diphenylphosphinate, neodymium bis(p-nonylphenyl) phosphinate, neodymium butyl (2-ethylhexyl) phosphinate, neodymium (1-methylheptyl)(2-ethylhexyl)phosphinate, and neodymium (2-ethylhexyl)(p-nonylphenyl)phosphinate.
- Suitable neodymium carbamates include, but are not limited to, neodymium dimethylcarbamate, neodymium diethylcarbamate, neodymium diisopropylcarbamate, neodymium dibutylcarbamate, and neodymium dibenzylcarbamate.
- Suitable neodymium dithiocarbamates include, but are not limited to, neodymium dimethyldithiocarbamate, neodymium diethyldithiocarbamate, neodymium diisopropyldithiocarbamate, neodymium dibutyldithiocarbamate, and neodymium dibenzyldithiocarbamate.
- Suitable neodymium xanthates include, but are not limited to, neodymium methylxanthate, neodymium ethylxanthate, neodymium isopropylxanthate, neodymium butylxanthate, and neodymium benzylxanthate.
- Suitable neodymium β-diketonates include, but are not limited to, neodymium acetylacetonate, neodymium trifluoroacetylacetonate, neodymium hexafluoroacetylacetonate, neodymium benzoylacetonate, and neodymium 2,2,6,6-tetramethyl-3,5-heptanedionate.
- Suitable neodymium alkoxides or aryloxides include, but are not limited to, neodymium methoxide, neodymium ethoxide, neodymium isopropoxide, neodymium 2-ethylhexoxide, neodymium phenoxide, neodymium nonylphenoxide, and neodymium naphthoxide.
- Suitable neodymium halides include, but are not limited to, neodymium fluoride, neodymium chloride, neodymium bromide, and neodymium iodide. Suitable neodymium pseudo-halides include, but are not limited to, neodymium cyanide, neodymium cyanate, neodymium thiocyanate, neodymium azide, and neodymium ferrocyanide. Suitable neodymium oxyhalides include, but are not limited to, neodymium oxyfluoride, neodymium oxychloride, and neodymium oxybromide. A Lewis base, such as tetrahydrofuran ("THF"), may be employed as an aid for solubilizing this class of neodymium compounds in inert organic solvents. Where lanthanide halides, lanthanide oxyhalides, or other lanthanide-containing compounds containing a halogen atom are employed, the lanthanide-containing compound may optionally also provide all or part of the halogen source in the lanthanide-based catalyst system.
- As used herein, the term organolanthanide compound refers to any lanthanide-containing compound containing at least one lanthanide-carbon bond. These compounds are predominantly, though not exclusively, those containing cyclopentadienyl ("Cp"), substituted cyclopentadienyl, allyl, and substituted allyl ligands. Suitable organolanthanide compounds include, but are not limited to, Cp3Ln, Cp2LnR, Cp2LnCl, CpLnCl2, CpLn(cyclooctatetraene), (C5Me5)2LnR, LnR3, Ln(allyl)3, and Ln(allyl)2Cl, where Ln represents a lanthanide atom, and R represents a hydrocarbyl group. In one or more embodiments, hydrocarbyl groups useful in the present invention may contain heteroatoms such as, for example, nitrogen, oxygen, boron, silicon, sulfur, and phosphorus atoms.
- As mentioned above, the lanthanide-based catalyst systems employed in the present invention can include an alkylating agent. In one or more embodiments, alkylating agents, which may also be referred to as hydrocarbylating agents, include organometallic compounds that can transfer one or more hydrocarbyl groups to another metal. Typically, these agents include organometallic compounds of electropositive metals such as those from Groups 1, 2, and 13 metals under IUPAC numbering (Groups IA, IIA, and IIIA metals). Alkylating agents useful in the present invention include, but are not limited to, organoaluminum and organomagnesium compounds. As used herein, the term organoaluminum compound refers to any aluminum compound containing at least one aluminum-carbon bond. In one or more embodiments, organoaluminum compounds that are soluble in a hydrocarbon solvent can be employed. As used herein, the term organomagnesium compound refers to any magnesium compound that contains at least one magnesium-carbon bond. In one or more embodiments, organomagnesium compounds that are soluble in a hydrocarbon can be employed. As will be described in more detail below, several species of suitable alkylating agents can be in the form of a halide. Where the alkylating agent includes a halogen atom, the alkylating agent may also serve as all or part of the halogen source in the above-mentioned catalyst system.
- In one or more embodiments, organoaluminum compounds that can be utilized in the lanthanide-based catalyst system include those represented by the general formula AlRnX3-n, where each R independently can be a monovalent organic group that is attached to the aluminum atom via a carbon atom, where each X independently can be a hydrogen atom, a halogen atom, a carboxylate group, an alkoxide group, or an aryloxide group, and where n can be an integer in the range of from 1 to 3. In one or more embodiments, each R independently can be a hydrocarbyl group such as, for example, alkyl, cycloalkyl, substituted cycloalkyl, alkenyl, cycloalkenyl, substituted cycloalkenyl, aryl, substituted aryl, aralkyl, alkaryl, allyl, and alkynyl groups, with each group containing in the range of from 1 carbon atom, or the appropriate minimum number of carbon atoms to form the group, up to about 20 carbon atoms. These hydrocarbyl groups may contain heteroatoms including, but not limited to, nitrogen, oxygen, boron, silicon, sulfur, and phosphorus atoms.
- Types of the organoaluminum compounds that are represented by the general formula AlRnX3-n include, but are not limited to, trihydrocarbylaluminum, dihydrocarbylaluminum hydride, hydrocarbylaluminum dihydride, dihydrocarbylaluminum carboxylate, hydrocarbylaluminum bis(carboxylate), dihydrocarbylaluminum alkoxide, hydrocarbylaluminum dialkoxide, dihydrocarbylaluminum halide, hydrocarbylaluminum dihalide, dihydrocarbylaluminum aryloxide, and hydrocarbylaluminum diaryloxide compounds. In one embodiment, the alkylating agent can comprise trihydrocarbylaluminum, dihydrocarbylaluminum hydride, and/or hydrocarbylaluminum dihydride compounds. In one embodiment, when the alkylating agent includes an organoaluminum hydride compound, the above-mentioned halogen source can be provided by a tin halide, as disclosed in
U.S. Patent No. 7,008,899 . - Suitable trihydrocarbylaluminum compounds include, but are not limited to, trimethylaluminum, triethylaluminum, triisobutylaluminum, tri-n-propylaluminum, triisopropylaluminum, tri-n-butylaluminum, tri-t-butylaluminum, tri-n-pentylaluminum, trineopentylaluminum, tri-n-hexylaluminum, tri-n-octylaluminum, tris(2-ethylhexyl)aluminum, tricyclohexylaluminum, tris(1-methylcyclopentyl)aluminum, triphenylaluminum, tri-p-tolylaluminum, tris(2,6-dimethylphenyl)aluminum, tribenzylaluminum, diethylphenylaluminum, diethyl-p-tolylaluminum, diethylbenzylaluminum, ethyldiphenylaluminum, ethyldi-p-tolylaluminum, and ethyldibenzylaluminum.
- Suitable dihydrocarbylaluminum hydride compounds include, but are not limited to, diethylaluminum hydride, di-n-propylaluminum hydride, diisopropylaluminum hydride, di-n-butylaluminum hydride, diisobutylaluminum hydride, di-n-octylaluminum hydride, diphenylaluminum hydride, di-p-tolylaluminum hydride, dibenzylaluminum hydride, phenylethylaluminum hydride, phenyl-n-propylaluminum hydride, phenylisopropylaluminum hydride, phenyl-n-butylaluminum hydride, phenylisobutylaluminum hydride, phenyl-n-octylaluminum hydride, p-tolylethylaluminum hydride, p-tolyl-n-propylaluminum hydride, p-tolylisopropylaluminum hydride, p-tolyl-n-butylaluminum hydride, p-tolylisobutylaluminum hydride, p-tolyl-n-octylaluminum hydride, benzylethylaluminum hydride, benzyl-n-propylaluminum hydride, benzylisopropylaluminum hydride, benzyl-n-butylaluminum hydride, benzylisobutylaluminum hydride, and benzyl-n-octylaluminum hydride.
- Suitable hydrocarbylaluminum dihydrides include, but are not limited to, ethylaluminum dihydride, n-propylaluminum dihydride, isopropylaluminum dihydride, n-butylaluminum dihydride, isobutylaluminum dihydride, and n-octylaluminum dihydride.
- Suitable dihydrocarbylaluminum halide compounds include, but are not limited to, diethylaluminum chloride, di-n-propylaluminum chloride, diisopropylaluminum chloride, di-n-butylaluminum chloride, diisobutylaluminum chloride, di-n-octylaluminum chloride, diphenylaluminum chloride, di-p-tolylaluminum chloride, dibenzylaluminum chloride, phenylethylaluminum chloride, phenyl-n-propylaluminum chloride, phenylisopropylaluminum chloride, phenyl-n-butylaluminum chloride, phenylisobutylaluminum chloride, phenyl-n-octylaluminum chloride, p-tolylethylaluminum chloride, p-tolyl-n-propylaluminum chloride, p-tolylisopropylaluminum chloride, p-tolyl-n-butylaluminum chloride, p-tolylisobutylaluminum chloride, p-tolyl-n-octylaluminum chloride, benzylethylaluminum chloride, benzyl-n-propylaluminum chloride, benzylisopropylaluminum chloride, benzyl-n-butylaluminum chloride, benzylisobutylaluminum chloride, and benzyl-n-octylaluminum chloride.
- Suitable hydrocarbylaluminum dihalide compounds include, but are not limited to, ethylaluminum dichloride, n-propylaluminum dichloride, isopropylaluminum dichloride, n-butylaluminum dichloride, isobutylaluminum dichloride, and n-octylaluminum dichloride.
- Other organoaluminum compounds useful as alkylating agents that may be represented by the general formula AlRnX3-n include, but are not limited to, dimethylaluminum hexanoate, diethylaluminum octoate, diisobutylaluminum 2-ethylhexanoate, dimethylaluminum neodecanoate, diethylaluminum stearate, diisobutylaluminum oleate, methylaluminum bis(hexanoate), ethylaluminum bis(octoate), isobutylaluminum bis(2-ethylhexanoate), methylaluminum bis(neodecanoate), ethylaluminum bis(stearate), isobutylaluminum bis(oleate), dimethylaluminum methoxide, diethylaluminum methoxide, diisobutylaluminum methoxide, dimethylaluminum ethoxide, diethylaluminum ethoxide, diisobutylaluminum ethoxide, dimethylaluminum phenoxide, diethylaluminum phenoxide, diisobutylaluminum phenoxide, methylaluminum dimethoxide, ethylaluminum dimethoxide, isobutylaluminum dimethoxide, methylaluminum diethoxide, ethylaluminum diethoxide, isobutylaluminum diethoxide, methylaluminum diphenoxide, ethylaluminum diphenoxide, and isobutylaluminum diphenoxide.
- Another class of organoaluminum compounds suitable for use as an alkylating agent in the lanthanide-based catalyst system is aluminoxanes. Aluminoxanes can comprise oligomeric linear aluminoxanes, which can be represented by the general formula:
- Aluminoxanes can be prepared by reacting trihydrocarbylaluminum compounds with water. This reaction can be performed according to known methods, such as, for example, (1) a method in which the trihydrocarbylaluminum compound is dissolved in an organic solvent and then contacted with water, (2) a method in which the trihydrocarbylaluminum compound is reacted with water of crystallization contained in, for example, metal salts, or water adsorbed in inorganic or organic compounds, or (3) a method in which the trihydrocarbylaluminum compound is reacted with water in the presence of the monomer or monomer solution that is to be polymerized.
- Suitable aluminoxane compounds include, but are not limited to, methylaluminoxane, modified methylaluminoxane, ethylaluminoxane, n-propylaluminoxane, isopropylaluminoxane, butylaluminoxane, isobutylaluminoxane, n-pentylaluminoxane, neopentylaluminoxane, n-hexylaluminoxane, n-octylaluminoxane, 2-ethylhexylaluminoxane, cyclohexylaluminoxane, 1-methylcyclopentylaluminoxane, phenylaluminoxane, and 2,6-dimethylphenylaluminoxane. Modified methylaluminoxane can be formed by substituting about 5 to 95 percent of the methyl groups of methylaluminoxane with C2 to C12 hydrocarbyl groups, preferably with isobutyl groups, by using techniques known to those skilled in the art.
- In one or more embodiments, aluminoxanes can be used alone or in combination with other organoaluminum compounds. In one embodiment, methylaluminoxane and at least one other organoaluminum compound (e.g., AlRnX3-n), such as diisobutyl aluminum hydride, can be employed in combination.
U.S. Publication No. 2008/0182954 provides other examples where aluminoxanes and organoaluminum compounds can be employed in combination. In one or more embodiments, the catalyst compositions employed in the present invention are devoid or substantially devoid of aluminoxanes. - As mentioned above, alkylating agents useful in the lanthanide-based catalyst system can include organomagnesium compounds. In one or more embodiments, organomagnesium compounds that can be utilized include those represented by the general formula MgR2, where each R independently can be a monovalent organic group that is attached to the magnesium atom via a carbon atom. In one or more embodiments, each R independently can be a hydrocarbyl group including, but not limited to, alkyl, cycloalkyl, substituted cycloalkyl, alkenyl, cycloalkenyl, substituted cycloalkenyl, aryl, allyl, substituted aryl, aralkyl, alkaryl, and alkynyl groups, with each group containing in the range of from 1 carbon atom, or the appropriate minimum number of carbon atoms to form the group, up to about 20 carbon atoms. These hydrocarbyl groups may also contain heteroatoms including, but not limited to, nitrogen, oxygen, silicon, sulfur, and phosphorus atoms.
- Suitable organomagnesium compounds that may be represented by the general formula MgR2 include, but are not limited to, diethylmagnesium, di-n-propylmagnesium, diisopropylmagnesium, dibutylmagnesium, dihexylmagnesium, diphenylmagnesium, and dibenzylmagnesium.
- Another class of organomagnesium compounds that can be utilized as an alkylating agent may be represented by the general formula RMgX, where R can be a monovalent organic group that is attached to the magnesium atom via a carbon atom, and X can be a hydrogen atom, a halogen atom, a carboxylate group, an alkoxide group, or an aryloxide group. Where the alkylating agent is an organomagnesium compound that includes a halogen atom, the organomagnesium compound can serve as both the alkylating agent and at least a portion of the halogen source in the catalyst systems. In one or more embodiments, R can be a hydrocarbyl group including, but not limited to, alkyl, cycloalkyl, substituted cycloalkyl, alkenyl, cycloalkenyl, substituted cycloalkenyl, aryl, allyl, substituted aryl, aralkyl, alkaryl, and alkynyl groups, with each group containing in the range of from 1 carbon atom, or the appropriate minimum number of carbon atoms to form the group, up to about 20 carbon atoms. These hydrocarbyl groups may also contain heteroatoms including, but not limited to, nitrogen, oxygen, boron, silicon, sulfur, and phosphorus atoms. In one embodiment, X can be a carboxylate group, an alkoxide group, or an aryloxide group, with each group containing in the range of from 1 to about 20 carbon atoms.
- Types of organomagnesium compounds that may be represented by the general formula RMgX include, but are not limited to, hydrocarbylmagnesium hydride, hydrocarbylmagnesium halide, hydrocarbylmagnesium carboxylate, hydrocarbylmagnesium alkoxide, and hydrocarbylmagnesium aryloxide.
- Suitable organomagnesium compounds that may be represented by the general formula RMgX include, but are not limited to, methylmagnesium hydride, ethylmagnesium hydride, butylmagnesium hydride, hexylmagnesium hydride, phenylmagnesium hydride, benzylmagnesium hydride, methylmagnesium chloride, ethylmagnesium chloride, butylmagnesium chloride, hexylmagnesium chloride, phenylmagnesium chloride, benzylmagnesium chloride, methylmagnesium bromide, ethylmagnesium bromide, butylmagnesium bromide, hexylmagnesium bromide, phenylmagnesium bromide, benzylmagnesium bromide, methylmagnesium hexanoate, ethylmagnesium hexanoate, butylmagnesium hexanoate, hexylmagnesium hexanoate, phenylmagnesium hexanoate, benzylmagnesium hexanoate, methylmagnesium ethoxide, ethylmagnesium ethoxide, butylmagnesium ethoxide, hexylmagnesium ethoxide, phenylmagnesium ethoxide, benzylmagnesium ethoxide, methylmagnesium phenoxide, ethylmagnesium phenoxide, butylmagnesium phenoxide, hexylmagnesium phenoxide, phenylmagnesium phenoxide, and benzylmagnesium phenoxide.
- As mentioned above, the lanthanide-based catalyst systems employed in the present invention can include a halogen source. As used herein, the term halogen source refers to any substance including at least one halogen atom. In one or more embodiments, at least a portion of the halogen source can be provided by either of the above-described lanthanide-containing compound and/or the above-described alkylating agent, when those compounds contain at least one halogen atom. In other words, the lanthanide-containing compound can serve as both the lanthanide-containing compound and at least a portion of the halogen source. Similarly, the alkylating agent can serve as both the alkylating agent and at least a portion of the halogen source.
- In another embodiment, at least a portion of the halogen source can be present in the catalyst systems in the form of a separate and distinct halogen-containing compound. Various compounds, or mixtures thereof, that contain one or more halogen atoms can be employed as the halogen source. Examples of halogen atoms include, but are not limited to, fluorine, chlorine, bromine, and iodine. A combination of two or more halogen atoms can also be utilized. Halogen-containing compounds that are soluble in a hydrocarbon solvent are suitable for use in the present invention. Hydrocarbon-insoluble halogen-containing compounds, however, can be suspended in a polymerization system to form the catalytically active species, and are therefore also useful.
- Useful types of halogen-containing compounds that can be employed include, but are not limited to, elemental halogens, mixed halogens, hydrogen halides, organic halides, inorganic halides, metallic halides, and organometallic halides.
- Suitable elemental halogens include, but are not limited to, fluorine, chlorine, bromine, and iodine. Some specific examples of suitable mixed halogens include iodine monochloride, iodine monobromide, iodine trichloride, and iodine pentafluoride.
- Suitable hydrogen halides include, but are not limited to, hydrogen fluoride, hydrogen chloride, hydrogen bromide, and hydrogen iodide.
- Suitable organic halides include, but are not limited to, t-butyl chloride, t-butyl bromide, allyl chloride, allyl bromide, benzyl chloride, benzyl bromide, chloro-di-phenylmethane, bromo-di-phenylmethane, triphenylmethyl chloride, triphenylmethyl bromide, benzylidene chloride, benzylidene bromide, methyltrichlorosilane, phenyltrichlorosilane, dimethyldichlorosilane, diphenyldichlorosilane, trimethylchlorosilane, benzoyl chloride, benzoyl bromide, propionyl chloride, propionyl bromide, methyl chloroformate, and methyl bromoformate.
- Suitable inorganic halides include, but are not limited to, phosphorus trichloride, phosphorus tribromide, phosphorus pentachloride, phosphorus oxychloride, phosphorus oxybromide, boron trifluoride, boron trichloride, boron tribromide, silicon tetrafluoride, silicon tetrachloride, silicon tetrabromide, silicon tetraiodide, arsenic trichloride, arsenic tribromide, arsenic triiodide, selenium tetrachloride, selenium tetrabromide, tellurium tetrachloride, tellurium tetrabromide, and tellurium tetraiodide.
- Suitable metallic halides include, but are not limited to, tin tetrachloride, tin tetrabromide, aluminum trichloride, aluminum tribromide, antimony trichloride, antimony pentachloride, antimony tribromide, aluminum triiodide, aluminum trifluoride, gallium trichloride, gallium tribromide, gallium triiodide, gallium trifluoride, indium trichloride, indium tribromide, indium triiodide, indium trifluoride, titanium tetrachloride, titanium tetrabromide, titanium tetraiodide, zinc dichloride, zinc dibromide, zinc diiodide, and zinc difluoride.
- Suitable organometallic halides include, but are not limited to, dimethylaluminum chloride, diethylaluminum chloride, dimethylaluminum bromide, diethylaluminum bromide, dimethylaluminum fluoride, diethylaluminum fluoride, methylaluminum dichloride, ethylaluminum dichloride, methylaluminum dibromide, ethylaluminum dibromide, methylaluminum difluoride, ethylaluminum difluoride, methylaluminum sesquichloride, ethylaluminum sesquichloride, isobutylaluminum sesquichloride, methylmagnesium chloride, methylmagnesium bromide, methylmagnesium iodide, ethylmagnesium chloride, ethylmagnesium bromide, butylmagnesium chloride, butylmagnesium bromide, phenylmagnesium chloride, phenylmagnesium bromide, benzylmagnesium chloride, trimethyltin chloride, trimethyltin bromide, triethyltin chloride, triethyltin bromide, di-t-butyltin dichloride, di-t-butyltin dibromide, dibutyltin dichloride, dibutyltin dibromide, tributyltin chloride, and tributyltin bromide.
- In one or more embodiments, the lanthanide-based catalyst systems can comprise a compound containing a non-coordinating anion or a non-coordinating anion precursor. In one or more embodiments, a compound containing a non-coordinating anion, or a non-coordinating anion precursor can be employed in lieu of the above-described halogen source. A non-coordinating anion is a sterically bulky anion that does not form coordinate bonds with, for example, the active center of a catalyst system due to steric hindrance. Non-coordinating anions useful in the present invention include, but are not limited to, tetraarylborate anions and fluorinated tetraarylborate anions. Compounds containing a non-coordinating anion can also contain a counter cation, such as a carbonium, ammonium, or phosphonium cation. Exemplary counter cations include, but are not limited to, triarylcarbonium cations and N,N-dialkylanilinium cations. Examples of compounds containing a non-coordinating anion and a counter cation include, but are not limited to, triphenylcarbonium tetrakis(pentafluorophenyl)borate, N,N-dimethylanilinium tetrakis(pentafluorophenyl)borate, triphenylcarbonium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate, and N,N-dimethylanilinium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate.
- A non-coordinating anion precursor can also be used in this embodiment. A non-coordinating anion precursor is a compound that is able to form a non-coordinating anion under reaction conditions. Useful non-coordinating anion precursors include, but are not limited to, triarylboron compounds, BR3, where R is a strong electron-withdrawing aryl group, such as a pentafluorophenyl or 3,5-bis(trifluoromethyl)phenyl group.
- The lanthanide-based catalyst composition used in this invention may be formed by combining or mixing the foregoing catalyst ingredients. Although one or more active catalyst species are believed to result from the combination of the lanthanide-based catalyst ingredients, the degree of interaction or reaction between the various catalyst ingredients or components is not known with any great degree of certainty. Therefore, the term "catalyst composition" has been employed to encompass a simple mixture of the ingredients, a complex of the various ingredients that is caused by physical or chemical forces of attraction, a chemical reaction product of the ingredients, or a combination of the foregoing.
- The foregoing lanthanide-based catalyst composition may have high catalytic activity for polymerizing conjugated dienes into cis-1,4-polydienes over a wide range of catalyst concentrations and catalyst ingredient ratios. Several factors may impact the optimum concentration of any one of the catalyst ingredients. For example, because the catalyst ingredients may interact to form an active species, the optimum concentration for any one catalyst ingredient may be dependent upon the concentrations of the other catalyst ingredients.
- In one or more embodiments, the molar ratio of the alkylating agent to the lanthanide-containing compound (alkylating agent/Ln) can be varied from about 1:1 to about 1,000:1, in other embodiments from about 2:1 to about 500:1, and in other embodiments from about 5:1 to about 200:1.
- In those embodiments where both an aluminoxane and at least one other organoaluminum agent are employed as alkylating agents, the molar ratio of the aluminoxane to the lanthanide-containing compound (aluminoxane/Ln) can be varied from 5:1 to about 1,000:1, in other embodiments from about 10:1 to about 700:1, and in other embodiments from about 20:1 to about 500:1; and the molar ratio of the at least one other organoaluminum compound to the lanthanide-containing compound (Al/Ln) can be varied from about 1:1 to about 200:1, in other embodiments from about 2:1 to about 150:1, and in other embodiments from about 5:1 to about 100:1.
- The molar ratio of the halogen-containing compound to the lanthanide-containing compound is best described in terms of the ratio of the moles of halogen atoms in the halogen source to the moles of lanthanide atoms in the lanthanide-containing compound (halogen/Ln). In one or more embodiments, the halogen/Ln molar ratio can be varied from about 0.5:1 to about 20:1, in other embodiments from about 1:1 to about 10:1, and in other embodiments from about 2:1 to about 6:1.
- In yet another embodiment, the molar ratio of the non-coordinating anion or non-coordinating anion precursor to the lanthanide-containing compound (An/Ln) may be from about 0.5:1 to about 20:1, in other embodiments from about 0.75:1 to about 10:1, and in other embodiments from about 1:1 to about 6:1.
- The catalyst systems employed in the present invention can be formed by various methods.
- In one or more embodiments, the lanthanide-based catalyst composition may be formed in situ by adding the catalyst ingredients to a solution containing monomer and solvent, or to bulk monomer, in either a stepwise or simultaneous manner. In one embodiment, the alkylating agent can be added first, followed by the lanthanide-containing compound, and then followed by the halogen source or by the compound containing a non-coordinating anion or the non-coordinating anion precursor.
- In one or more embodiments, the lanthanide-based catalyst composition may be preformed. That is, the catalyst ingredients are premixed outside the polymerization system. In one or more embodiments, the premixing of the catalyst ingredients forms an active catalyst system, which is a catalyst system capable of polymerizing monomer, especially conjugated diene monomer into the desired cis-1,4-polydienes desired by one or more embodiments of this invention. Examples of useful processes for preforming a lanthanide-based catalyst composition are disclosed in
U.S. Pat. No. 5,686,371 ,U.S. Pat. No. 6,576,731 ,U.S. Pat. Publ. No. 2002/0035226 ,U.S. Pat. Publ. No. 2012/0208964 , andU.S. Pat. Publ. No. 2013/0237669 . - In one or more embodiments, the catalyst system may be formed by combining the catalyst ingredients simultaneously or sequentially. Where the ingredients are combined sequentially, the alkylating agent can be first combined with the lanthanide-containing compound, and then the mixture can be combined with the halogen source or the compound containing a non-coordinating anion or the non-coordinating anion precursor. In other embodiments, the alkylating agent and the halogen source (or non-coordinating anion or non-coordinating anion precursor) can first be combined, and then the mixture can be combined with the lanthanide-containing compound. In yet other embodiments, the lanthanide-containing compound and the halogen source (or non-coordinating anion or non-coordinating anion precursor) can first be combined, and then the mixture can be combined with the alkylating agent.
- In one or more embodiments, the preformation of the catalyst may take place with a solvent. In one or more embodiments, a solvent may be employed as a carrier to either dissolve or suspend the catalyst in order to facilitate the delivery of the catalyst to the polymerization system. In other embodiments, monomer can be used as the carrier. In yet other embodiments, the catalyst can be used in their neat state without any solvent.
- In one or more embodiments, suitable solvents include those organic compounds that will not undergo polymerization or incorporation into propagating polymer chains during the polymerization of monomer in the presence of the catalyst or initiator. In one or more embodiments, these organic species are liquid at ambient temperature and pressure. In one or more embodiments, these organic solvents are inert to the catalyst or initiator. Exemplary organic solvents include hydrocarbons with a low or relatively low boiling point such as aromatic hydrocarbons, aliphatic hydrocarbons, and cycloaliphatic hydrocarbons. Non-limiting examples of aromatic hydrocarbons include benzene, toluene, xylenes, ethylbenzene, diethylbenzene, and mesitylene. Non-limiting examples of aliphatic hydrocarbons include n-pentane, n-hexane, n-heptane, n-octane, n-nonane, n-decane, isopentane, isohexanes, isopentanes, isooctanes, 2,2-dimethylbutane, petroleum ether, kerosene, and petroleum spirits. And, non-limiting examples of cycloaliphatic hydrocarbons include cyclopentane, cyclohexane, methylcyclopentane, and methylcyclohexane. Mixtures of the above hydrocarbons may also be used. As is known in the art, aliphatic and cycloaliphatic hydrocarbons may be desirably employed for environmental reasons. The low-boiling hydrocarbon solvents are typically separated from the polymer upon completion of the polymerization.
- Other examples of organic solvents include high-boiling hydrocarbons of high molecular weights, including hydrocarbon oils that are commonly used to oil-extend polymers. Examples of these oils include paraffinic oils, aromatic oils, naphthenic oils, vegetable oils other than castor oils, and low PCA oils including MES, TDAE, SRAE, heavy naphthenic oils. Since these hydrocarbons are non-volatile, they typically do not require separation and remain incorporated in the polymer.
- In one or more embodiments, the catalyst system may optionally be prepared, for example by preforming the catalyst system, in the presence of a small amount of an alkene containing compound, which may serve to stabilize the catalyst system. Useful alkene containing compounds may include monomer as defined herein. Specific examples of suitable monomers for preforming the catalyst system include conjugated diene monomers such as 1,3-butadiene or isoprene. The amount of alkene containing compound that may be used for preforming the catalyst can range from about 1 to about 100 moles, in other embodiments from about 2.5 to about 50 moles, and in other embodiments from about 5 to about 20 moles per mole of the lanthanide-containing compound.
- In one or more embodiments, the catalyst systems used in this invention may be prepared at specific temperatures. In one or more embodiments, the catalyst compositions can be prepared at a temperature of at least -20 °C, in other embodiments at least 0 °C, in other embodiments at least 20 °C, and in other embodiments at least 40 °C. In these or other embodiments, the catalyst compositions can be prepared at a temperature of at most 100 °C, in other embodiments at most 80 °C, in other embodiments at most 60 °C, in other embodiments at most 40 °C, in other embodiments at most 20 °C, and in other embodiments at most 0 °C.
- In one or more embodiments, the catalyst composition may be aged prior to use (i.e. prior to being added to the polymerization system).
- In one or more embodiments, the catalyst composition may be aged at a temperature of at least -20 °C, in other embodiments at least 0 °C, in other embodiments at least 20 °C, and in other embodiments at least 40 °C. In these or other embodiments, the catalyst compositions may be aged at a temperature of at most 100 °C, in other embodiments at most 80 °C, in other embodiments at most 60 °C, in other embodiments at most 40 °C, in other embodiments at most 20 °C, and in other embodiments at most 0 °C. In certain embodiments, the catalyst composition may be aged in an environment without temperature control, where the catalyst composition would potentially be subject to varying environmental temperatures. In these or other embodiments, the catalyst composition may be aged at a temperature as described above and further aged, for at least a portion of the aging time, at an uncontrolled temperature.
- In one or more embodiments, the catalyst composition may be aged for at least 1 hour, in other embodiments at least 3 hours, in other embodiments at least 6 hours, in other embodiments at least 12 hours, in other embodiments at least 24 hours, in other embodiments at least 6 days, in other embodiments at least 12 days, in other embodiments at least 30 days, and in other embodiments at least 60 days. In these or other embodiments, the catalyst compositions may be aged for at most 1000 days, in other embodiments at most 750 days, in other embodiments at most 500 days, in other embodiments at most 300 days, and in other embodiments at most 100 days, in other embodiments at most 24 days, in other embodiments at most 18 days, and in other embodiments at most 12 days. In one or more embodiments, the catalyst composition is aged from about 4 to about 16 days, in other embodiments from about 5 to about 15 days, and in other embodiments from about 6 to about 12 days.
- In one or more embodiments, the catalyst employed in the practice of this invention is a preformed catalyst that is the combination or reaction product of a lanthanide carboxylate, an aluminum hydride, and an organometallic halide. In specific embodiments, the lanthanide carboxylate is a neodymium carboxylate, the aluminum hydride is a dihydrocarbylaluminum hydride and/or hydrocarbylaluminum dihydride, and the organometallic halide is a hydrocarbyl aluminum sesquichloride. In still more specific embodiments, the catalyst system is the combination or reaction product of a neodymium neodecanoate, diisobutylaluminum hydride, and ethylaluminum sesquichloride. The catalyst system may have a diisobutylaluminum hydride to neodymium neodecanoate molar ratio from about 5 to about 40, or in other embodiments from about 10 to about 20, and an ethylaluminum sesquichloride to neodymium neodecanoate molar ratio, which is best described as a molar ratio of the moles of halogen atoms in the ethylaluminum sesquichloride to the moles of lanthanide atoms in the neodymium neodecanoate (halogen/Ln), of from about 1 to about 4, or in other embodiments from about 2 to about 3. In these or other embodiments, these specific catalyst systems may include a conjugated diene (such as 1,3-butadiene or isoprene) as a stabilizer. In yet still more specific embodiments, the recited specific catalyst systems are aged as described herein.
- Catalyst systems that may be employed in one or more embodiments of this invention are commercially available. For example, useful preformed catalyst systems are available under the tradename COMCAT Nd-FC (NH), COMCAT Nd-FC/20 (NH), COMCAT Nd-FC/SF [COMAR CHEMICALS (Pty) Ltd].
- The cis-1,4-polydienes having a 1,2-linkage, which may simply be referred to as the polymer, may be prepared by polymerizing conjugated diene monomer in an amount sufficient to prepare a polymer of a desired molecular weight in the presence of a catalytically effective amount of the catalyst. The introduction of the catalyst and the conjugated diene monomer forms a polymerization mixture, which may also be referred to as polymerization system, in which a polymer is formed. The amount of the catalyst to be employed may depend on the interplay of various factors such as the type of catalyst or initiator employed, the purity of the ingredients, the polymerization temperature, the polymerization rate and conversion desired, the molecular weight desired, and many other factors. Accordingly, a specific catalyst amount cannot be definitively set forth except to say that catalytically effective amounts of the catalyst may be used.
- In one or more embodiments, the amount of the coordinating metal compound (e.g., a lanthanide-containing compound) used can be varied from about 0.001 to about 2 mmol, in other embodiments from about 0.005 to about 1 mmol, and in still other embodiments from about 0.01 to about 0.2 mmol per 100 gram of monomer.
- In one or more embodiments, the polymerization may be carried out in a polymerization system that includes a substantial amount of solvent. In one embodiment, a solution polymerization system may be employed in which both the monomer to be polymerized and the polymer formed are soluble in the solvent. In another embodiment, a precipitation polymerization system may be employed by choosing a solvent in which the polymer formed is insoluble. In both cases, an amount of solvent in addition to the amount of solvent that may be used in preparing the catalyst or initiator is usually added to the polymerization system. The additional solvent may be the same as or different from the solvent used in preparing the catalyst or initiator. Exemplary solvents have been set forth above. In one or more embodiments, the solvent content of the polymerization mixture may be more than 20% by weight, in other embodiments more than 50% by weight, and in still other embodiments more than 80% by weight based on the total weight of the polymerization mixture.
- In other embodiments, the polymerization system employed may be generally considered a bulk polymerization system that includes substantially no solvent or a minimal amount of solvent. Those skilled in the art will appreciate the benefits of bulk polymerization processes (i.e., processes where monomer acts as the solvent), and therefore the polymerization system includes less solvent than will deleteriously impact the benefits sought by conducting bulk polymerization. In one or more embodiments, the solvent content of the polymerization mixture may be less than about 20% by weight, in other embodiments less than about 10% by weight, and in still other embodiments less than about 5% by weight based on the total weight of the polymerization mixture. In another embodiment, the polymerization mixture contains no solvents other than those that are inherent to the raw materials employed. In still another embodiment, the polymerization mixture is substantially devoid of solvent, which refers to the absence of that amount of solvent that would otherwise have an appreciable impact on the polymerization process. Polymerization systems that are substantially devoid of solvent may be referred to as including substantially no solvent. In particular embodiments, the polymerization mixture is devoid of solvent.
- The polymerization may be conducted in any conventional polymerization vessels known in the art. In one or more embodiments, solution polymerization can be conducted in a conventional stirred-tank reactor. In other embodiments, bulk polymerization can be conducted in a conventional stirred-tank reactor, especially if the monomer conversion is less than about 60%. In still other embodiments, especially where the monomer conversion in a bulk polymerization process is higher than about 60%, which typically results in a highly viscous cement, the bulk polymerization may be conducted in an elongated reactor in which the viscous cement under polymerization is driven to move by piston, or substantially by piston. For example, extruders in which the cement is pushed along by a self-cleaning single-screw or double-screw agitator are suitable for this purpose. Examples of useful bulk polymerization processes are disclosed in
U.S. Patent No. 7,351,776 . - In one or more embodiments, all of the ingredients used for the polymerization can be combined within a single vessel (e.g., a conventional stirred-tank reactor), and all steps of the polymerization process can be conducted within this vessel. In other embodiments, two or more of the ingredients can be pre-combined in one vessel and then transferred to another vessel where the polymerization of monomer (or at least a major portion thereof) may be conducted.
- The polymerization can be carried out as a batch process, a continuous process, or a semi-continuous process. In the semi-continuous process, the monomer is intermittently charged as needed to replace that monomer already polymerized. In one or more embodiments, the conditions under which the polymerization proceeds may be controlled to maintain the temperature of the polymerization mixture within a range from about -10 °C to about 200 °C, in other embodiments from about 0 °C to about 150 °C, and in other embodiments from about 20 °C to about 100 °C. In one or more embodiments, the heat of polymerization may be removed by external cooling by a thermally controlled reactor jacket, internal cooling by evaporation and condensation of the monomer through the use of a reflux condenser connected to the reactor, or a combination of the two methods. Also, the polymerization conditions may be controlled to conduct the polymerization under a pressure of from about 0.1 atmosphere to about 50 atmospheres, in other embodiments from about 0.5 atmosphere to about 20 atmosphere, and in other embodiments from about 1 atmosphere to about 10 atmospheres. In one or more embodiments, the pressures at which the polymerization may be carried out include those that ensure that the majority of the monomer is in the liquid phase. In these or other embodiments, the polymerization mixture may be maintained under anaerobic conditions.
- Polymerization catalyzed by a lanthanide-based catalyst produces polymers (i.e. cis-1,4-polydienes) where some or all of the resulting polymer chains may possess reactive chain ends before the polymerization mixture is quenched. Thus, reference to a reactive polymer refers to a polymer having a reactive chain end. As indicated above, the reactive polymer prepared with a lanthanide-based catalyst may be referred to as a pseudo-living polymer. In one or more embodiments, a polymerization mixture including reactive polymer may be referred to as an active polymerization mixture or active polymerization system. The percentage of polymer chains possessing a reactive end depends on various factors such as the type of catalyst or initiator, the type of monomer, the purity of the ingredients, the polymerization temperature, the monomer conversion, and many other factors. In one or more embodiments, at least about 20% of the polymer chains possess a reactive end, in other embodiments at least about 50% of the polymer chains possess a reactive end, and in still other embodiments at least about 80% of the polymer chains possess a reactive end.
- In one or more embodiments, the pseudo-living polymer, which includes a reactive chain end, may optionally be end functionalized by reacting the reactive chain end with a secondary-functionalizing agent.
- In one or more embodiments, the secondary-functionalizing agent can be reacted with the reactive polymer after a desired monomer conversion is achieved but before the polymerization mixture is quenched by a quenching agent. In one or more embodiments, the reaction between the secondary-functionalizing agent and the reactive polymer may take place within 2 hours, in other embodiments within 1 hour, in other embodiments within 30 minutes, in other embodiments within 5 minutes, and in other embodiments within one minute after the peak polymerization temperature is reached. In one or more embodiments, the reaction between the secondary-functionalizing agent and the reactive polymer can occur once the peak polymerization temperature is reached. In other embodiments, the reaction between the secondary-functionalizing agent and the reactive polymer can occur after the reactive polymer has been stored. In one or more embodiments, the storage of the reactive polymer occurs at room temperature or below room temperature under an inert atmosphere.
- The time required for completing the reaction between the secondary-functionalizing agent and the reactive polymer depends on various factors such as the type and amount of the catalyst used to prepare the reactive polymer, the type and amount of the secondary-functionalizing agent, as well as the temperature at which the functionalization reaction is conducted. In one or more embodiments, the reaction between the secondary-functionalizing agent and the reactive polymer can be conducted for about 10 to 60 minutes.
- In one or more embodiments, the secondary-functionalizing agent may be introduced to the polymerization mixture at a location (e.g., within a vessel) where the polymerization has been conducted. In other embodiments, the secondary-functionalizing agent may be introduced to the polymerization mixture at a location that is distinct from where the polymerization has taken place. For example, the functionalizing agent may be introduced to the polymerization mixture in downstream vessels including downstream reactors or tanks, in-line reactors or mixers, extruders, or devolatilizers.
- In one or more embodiments, suitable secondary-functionalizing agents include those compounds that contain groups that may react with a pseudo-living polymer.
- Exemplary secondary-functionalizing agents include ketones, quinones, aldehydes, amides, esters, isocyanates, isothiocyanates, epoxides, imines, aminoketones, aminothioketones, and acid anhydrides. Examples of these compounds are disclosed in
U.S. Pat. Nos. 4,906,706 ,4,990,573 ,5,064,910 ,5,567,784 ,5,844,050 ,6,838,526 ,6977,281 , and6,992,147 ;U.S. Pat. Publication Nos. 2006/0004131 A1 ,2006/0025539 A1 ,2006/0030677 A1 , and2004/0147694 A1 ;Japanese Patent Application Nos. 05-051406A 05-059103A 10-306113A 11-035633A U.S. Pat No. 7,879,952 , hydrobenzamide compounds as disclosed inU.S. Pat No. 7,671,138 , nitro compounds as disclosed inU.S. Pat No. 7,732,534 , protected oxime compounds as disclosed inU.S. Pat No. 8,088,868 , hetrocyclic nitrile compounds disclosed inU.S. Pat. No. 8,314,189 , halosilanes containing an amino group disclosed inU.S. Pat. No. 8,258,332 , imide compounds containing a protected amino group disclosed inU.S. Pat. No. 7,906,592 , nitroso compounds disclosed inU.S. Pat. Pub. No. 2010/0168378 , amide containing compounds disclosed inU.S. Pat. Pub. No. 2010/0099826 , carboxylic or thiocarboxylic esters containing a silylated amino group disclosed inU.S. Pat. Pub. No. 2011/0077325 , polyoxime compounds disclosed inU.S. Pat. Publ. No. 2011/0152449 , polycyano compounds disclosed inU.S. Pat. Pub. No. 2011/0288200 , nitrile compounds containing a protected amino group disclosed inU.S. Pat. Pub. No. 2012/0059112 . - The amount of the secondary-functionalizing agent that can be added to the polymerization mixture to yield a functionalized polymer may depend on various factors including the type and amount of catalyst used to synthesize the reactive polymer and the desired degree of functionalization. In one or more embodiments, where the reactive polymer is prepared by employing a lanthanide-based catalyst, the amount of functionalizing agent employed can be described with reference to the lanthanide metal of the lanthanide-containing compound. For example, the molar ratio of the functionalizing agent to the lanthanide metal may be from about 1:1 to about 80:1, in other embodiments from about 5:1 to about 40:1, and in other embodiments from about 10:1 to about 25:1.
- In one or more embodiments, the amount and type of secondary-functionalization agent may be selected to have a minimal impact on the catalyst activity. In these or other embodiments, the secondary-functionalization agent does stop or substantially inhibit the ability of the hydrosilane compound to react with the cis-1,4-polydiene which includes 1,2-linkage.
- Generally speaking, the silane-functionalized polymers of the present invention may be prepared by combining a cis-1,4-polydiene, a hydrosilane compound, and a lanthanide-based catalyst. In one or more embodiments, the hydrosilane compound may be added to a polymerization mixture in which the cis-1,4-polydiene was prepared. In these or other embodiments, the cis-1,4-polydiene may be a pseudo-living polymer, which indicates that the hydrosilane is introduced prior to quenching the polymerization mixture or end-functionalizing the cis-1,4-polydiene. To the extent that the hydrosilation reaction of the hydrosilane takes place at the terminal, reactive end of the polymer, further functionalization with a secondary funcitionalization agent may occur on separate reactive polymers. In these or other embodiments, the amount of the hydrosilane added is not sufficient to terminate all of the reactive chain ends. In other embodiments, the hydrosilane compound is added to the polymerization mixture after the cis-1,4-polydiene has been end functionalized with a secondary-functionalization agent. In one or more embodiments, the hydrosilane compound is introduced to the polymerization mixture containing the cis-1,4-polydiene prior to the polymerization mixture being quenched. In one or more embodiments, the lanthanide-based catalyst system employed during the functionalization reaction with the hydrosilane compound is the same lanthanide-based catalyst system that was employed to synthesize the cis-1,4-polydiene. In other embodiments, additional lanthanide-based catalyst is added to the polymerization system. In these or other embodiments, the lanthanide-based catalyst is the only catalyst present during the functionalization with the hydrosilane compound (i.e., other catalysts, such as transitioned metal catalysts, are not present during the functionalization reaction).
- As noted above, the hydrosilane compound may be added to the polymerization mixture in which the cis-1,4-polydiene was prepared. In these or other embodiments, the hydrosilane compound may be added after a desired monomer conversion is achieved but before the polymerization mixture is quenched by a quenching agent. In one or more embodiments, the hydrosilane compound may be added after a substantial amount of the polymerization is completed. In one or more embodiments, the hydrosilane compound may be added after a monomer conversion of at least 80%, in other embodiments at least 90%, and in other embodiments at least 95%.
- In one or more embodiments, the addition of the hydrosilane compound to the polymerization mixture in which the cis-1,4-polydiene was prepared may take place within 30 minutes, in other embodiments within 5 minutes, and in other embodiments within one minute after the peak polymerization temperature is reached. In one or more embodiments, the addition of the hydrosilane compound to the polymerization mixture in which the cis-1,4-polydiene was prepared can occur once the peak polymerization temperature is reached. In other embodiments, the addition of the hydrosilane compound to the polymerization mixture in which the cis-1,4-polydiene was prepared can occur after the pseudo-living cis-1,4-polydiene has been stored.
- In one or more embodiments, the hydrosilane compound may be introduced to the polymerization mixture at a location (e.g., within a vessel) where the polymerization has been conducted. In other embodiments, the hydrosilane compound may be introduced to the polymerization mixture at a location that is distinct from where the polymerization has taken place. For example, the hydrosilane compound may be introduced to the polymerization mixture in downstream vessels including downstream reactors or tanks, in-line reactors or mixers, extruders, or devolatilizers.
- The reaction between the cis-1,4-polydiene and the hydrosilane compound may proceed under suitable reaction conditions. The time and temperate required for completing the reaction between the cis-1,4-polydiene and the hydrosilane compound depends on various factors such as the type and amount of the catalyst, the type and amount of the hydrosilane compound, the amount of 1,2-linkage in the cis-1,4-polydieneas well as the temperature at which the functionalization reaction is conducted.
- In one or more embodiments, the reaction between the cis-1,4-polydiene and the hydrosilane compound may be conducted at a temperature of at least 25 °C, in other embodiments at least 45 °C, in other embodiments, and in other embodiments at least 65 °C. In these or other embodiments, the reaction between the cis-1,4-polydiene and the hydrosilane compound may be conducted at a temperature of at most 80 °C, in other embodiments at most 100 °C, in other embodiments, and in other embodiments at most 120 °C. In one or more embodiments, the reaction between the cis-1,4-polydiene and the hydrosilane compound may be conducted at a temperature of about 25 °C to about 120 °C, in other embodiments a temperature of about 45 °C to about 100 °C, in other embodiments, and in other embodiments a temperature of about 65 °C to about 80 °C.
- In one or more embodiments, the reaction between the reaction between the cis-1,4-polydiene and the hydrosilane compound may be conducted for at least 15 minutes, in other embodiments at least 30 minutes, and in other embodiments at least 2 hours. In these or other embodiments, the reaction between the cis-1,4-polydiene and the hydrosilane compound may be conducted for at most 4 hours, in other embodiments at most 8 hours, and in other embodiments at most 18 hours. In one or more embodiments, the reaction between the reaction between the cis-1,4-polydiene and the hydrosilane compound may be conducted for about 15 minutes to about 18 hours in other embodiments for about 30 minutes to about 8 hours and in other embodiments for about 2 hours to about 4 hours.
- In one or more embodiments, the amount of the hydrosilane compound used to prepare the silane-functionalized polymers of the present invention may be represented by the molar ratio of the hydrosilane compound to the lanthanide-containing compound within the polymerization mixture (hydrosilane compound/Ln). In one or more embodiments, the hydrosilane compound/Ln molar ratio is at least 25, in other embodiments at least 50, in other embodiments at least 100, in other embodiments at least 200, and in other embodiments at least 500. In these or other embodiments, the hydrosilane compound/Ln molar ratio is at most 600, in other embodiments at most 1000, and in other embodiments at most 5000. In one or more embodiments, the hydrosilane compound/Ln molar ratio is from about 25 to about 5000, in other embodiments from about 50 to about 1000, in other embodiments from about 100 to about 1000, and in other embodiments from about 100 to about 600.
- In other embodiments, the amount of the hydrosilane compound used to prepare the silane-functionalized polymers of the present invention may be expressed with respect to the amount of polymer present within the polymerization mixture. In one or more embodiments, the amount of the hydrosilane compound employed is at least 1 mmol, in other embodiments at least 5 mmol, in other embodiments at least 10 mmol, in other embodiments at least 20 mmol, and in other embodiments at least 30 mmol per 100 g of cis-1,4-polydiene. In these or other embodiments, the amount of the hydrosilane compound employed is at most 50 mmol, in other embodiments at most 80 mmol, in other embodiments at most 95 mmol, and in other embodiments at most 100 mmol per 100 g of cis-1,4-polydiene. In one or more embodiments, the amount of the hydrosilane compound employed is from about 1 mmol to about 100 mmol, in other embodiments is from about 5 mmol to about 95 mmol, in other embodiments is from about 20 mmol to about 80 mmol, and in other embodiments is from about 30 mmol to about 50 mmol.
- The hydrosilane compounds employed in one or more embodiments of the invention include those compounds that contain at least one hydrogen atom bonded to a silicon atom. In one or more embodiments, the hydrosilane compound may include a hydrocarbyloxy group attached to a silicon atom in addition to a hydrogen atom attached to a silicon atom.
- In one or more embodiments, the hydrosilane compounds may be monomeric, dimeric, trimeric, tetrameric, oligomeric, or polymeric. In these or other embodiments, the hydrosilane compounds may have a cyclic or acyclic structure. A combination of two or more hydrosilane compounds may be employed. As will be described in more detail below, several species of suitable hydrosilane compounds can include a halogen atom, and therefore where the hydrosilane compound includes a halogen atom, the hydrosilane compound may also serve as all or part of the halogen source in the above-mentioned catalyst system.
- In one or more embodiments, a hydrosilane compound may be defined by the formula I
SiHxR4-x
where x is an integer from 1 to 4, and each R is individually a halogen atom or a monovalent organic group, or where two or more R groups join to form a polyvalent organic group. For purposes of this specification, polyvalent organic group refers to an organic group that has a valence of two or more, such as a divalent, trivalent or tetravalent organic group. - In one or more embodiments, where the monovalent organic groups of the hydrosilane defined by formula I are hydrocarbyloxy groups or silyloxy groups, the hydrosilane compound may be defined by the formula II
SiHx(OR)4-x
where x is an integer from 1 to 4, and each R is individually a hydrocarbyl or silyl group, or where two or more R groups join to form a polyvalent organic group. - In one or more embodiments, where the R group of the hydrosilane defined by formula II is a silyl group, the hydrosilane compound may be defined by the formula III
- In one or more embodiments, where the R groups of formula III combine to from a bond or a polyvalent group, hydrosilane compound may be defined by the formula IV
- In one or more embodiments, the monovalent organic groups of the hydrosilane compounds may be hydrocarbyl groups, which include, but are not limited to, alkyl, cycloalkyl, alkenyl, cycloalkenyl, aryl, allyl, aralkyl, alkaryl, or alkynyl groups. Hydrocarbyl groups also include substituted hydrocarbyl groups, which refer to hydrocarbyl groups in which one or more hydrogen atoms have been replaced by a substituent such as a hydrocarbyl, hydrocarbyloxy, silyl, or silyloxy group. In one or more embodiments, these groups may include from one, or the appropriate minimum number of carbon atoms to form the group, to about 20 carbon atoms. These groups may also contain heteroatoms such as, but not limited to, nitrogen, boron, oxygen, silicon, sulfur, tin, and phosphorus atoms.
- In one or more embodiments, the monovalent organic groups of the hydrosilane compounds may be hydrocarbyloxy groups such as, but not limited to, alkyloxy, cycloalkyloxy, alkenyloxy, cycloalkenyloxy, aryloxy, allyloxy, aralkyloxy, alkaryloxy, or alkynyloxy groups. Hydrocarbyloxy groups also include substituted hydrocarbyloxy groups, which refer to hydrocarbyloxy groups in which one or more hydrogen atoms have been replaced by a substituent such as a hydrocarbyl, hydrocarbyloxy, silyl, or silyloxy group. In one or more embodiments, these groups may include from one, or the appropriate minimum number of carbon atoms to form the group, to about 20 carbon atoms. These groups may also contain heteroatoms such as, but not limited to, nitrogen, boron, oxygen, silicon, sulfur, tin, and phosphorus atoms.
- In one or more embodiments, the monovalent organic groups of the hydrosilane compounds may be silyl groups, which include, but are not limited to, trihydrocarbylsilyl, dihydrocarbylhydrosilyl, or hydrocarbyldihydrosilyl. Silyl groups also include substituted silyl groups, which refer to silyl groups in which one or more hydrogen atoms have been replaced by a substituent such as a hydrocarbyl, hydrocarbyloxy, silyl, or silyloxy group. In one or more embodiments, these groups may include from one, or the appropriate minimum number of carbon atoms to form the group, to about 20 carbon atoms. These groups may include heteroatoms such as, but not limited to, nitrogen, boron, oxygen, silicon, sulfur, tin, and phosphorus atoms, in addition to the parent silicon atom.
- Types of silyl groups and substituted silyl groups include, but are not limited to, trihydrocarbylsilyl, trisilyloxysilyl, trihydrocarbyloxysilyl, trisilylsilyl, dihydrocarbylhydrosilyl, dihydrocarbyl(silyloxy)silyl, dihydrocarbyl(silyl)silyl, dihydrocarbyl(hydrocarbyloxy)silyl, hydrocarbyldihydrosilyl, hydrocarbyl(disilyloxy)silyl, hydrocarbyl(disilyl)silyl, and hydrocarbyl(dihydrocarbyloxy)silyl groups. For example, types of silyl groups may include trialkylsilyl, dialkylhydrosilyl, dialkyl(silyloxy)silyl, dialkyl(silyl)silyl, tricycloalkylsilyl, dicycloalkylhydrosilyl, dicycloalkyl(silyloxy)silyl, dicycloalkyl(silyl)silyl, trialkenylsilyl, dialkenylhydrosilyl, dialkenyl(silyloxy)silyl, dialkenyl(silyl)silyl, tricycloalkenylsilyl, dicycloalkenylhydrosilyl, dicycloalkenyl(silyloxy)silyl, dicycloalkenyl(silyl)silyl, triarylsilyl, diarylhydrosilyl, diaryl(silyloxy)silyl, diaryl(silyl)silyl, triallylsilyl, diallylhydrosilyl, diallyl(silyloxy)silyl, diallyl(silyl)silyl, triaralkylsilyl, diaralkylhydrosilyl, diaralkyl(silyloxy)silyl, diaralkyl(silyl)silyl, trialkarylsilyl, dialkarylhydrosilyl, dialkaryl(silyloxy)silyl, dialkaryl(silyl)silyl, trialkynylsilyl, dialkynylhydrosilyl, dialkynyl(silyloxy)silyl, dialkynyl(silyl)silyl, tris(trialkylsilyloxy)silyl, tris(triarylsilyloxy)silyl, tris(tricycloalkylsilyloxy)silyl, tris(trialkoxysilyloxy)silyl, tris(triaryloxysilyloxy)silyl, or tris(tricycloalkyloxysilyloxy)silyl groups.
- In one or more embodiments, the monovalent organic groups of the hydrosilane compounds may be silyloxy groups, which include, but are not limited to, trihydrocarbylsilyloxy, dihydrocarbylhydrosilyloxy, or hydrocarbyldihydrosilyloxy. Silyloxy groups also include substituted silyloxy groups, which refer to silyloxy groups in which one or more hydrogen atoms have been replaced by a substituent such as a hydrocarbyl, hydrocarbyloxy, silyl, or silyloxy group. In one or more embodiments, these groups may include from one, or the appropriate minimum number of carbon atoms to form the group, to about 20 carbon atoms. These groups may include heteroatoms such as, but not limited to, nitrogen, boron, oxygen, silicon, sulfur, tin, and phosphorus atoms, in addition to the parent silicon atom.
- In one or more embodiments, where the hydrosilane compound is defined by formula I and contains three hydrocarbyloxy groups, the hydrosilane compound may be referred to as a trihydrocarbyloxy silane compound. In one or more embodiments, where the hydrosilane compound is defined by formula II and contains one hydrocarbyl group and two hydrocarbyloxy group, the hydrosilane compound may be referred to as a hydrocarbyl dihydrocarbyloxy silane compound. In one or more embodiments, where the hydrosilane compound is defined by formula I and contains two hydrocarbyl groups and one hydrocarbyloxy group, the hydrosilane compound may be referred to as a dihydrocarbyl hydrocarbyloxy silane compound. In one or more embodiments, where the hydrosilane compound is defined by formula I and contains three silyloxy groups, the hydrosilane compound may be referred to as a trisilyloxy silane compound. In one or more embodiments, where the hydrosilane compound is defined by formula I and contains one hydrocarbyl group and two silyloxy group, the hydrosilane compound may be referred to as a hydrocarbyl disilyloxy silane compound. In one or more embodiments, where the hydrosilane compound is defined by formula I and contains two hydrocarbyl groups and one silyloxy group, the hydrosilane compound may be referred to as a dihydrocarbyl silyloxy silane compound. In one or more embodiments, where the hydrosilane compound is defined by formula III the hydrosilane compound may be referred to as a siloxane compound. In one or more embodiments, where the hydrosilane compound is defined by formula IV, the hydrosilane compound may be referred to as cyclic hydrosilane compound.
- Representative examples of suitable trihydrocarbyloxy silane compounds include, but are not limited to, trialkyloxy silane, tricycloalkyloxy silane, triaryloxy silane, triaralkyloxy silane, trialkaryloxy silane, dialkyloxy cycloalkyloxy silane, alkyloxy dicycloalkyloxy silane, dialkyloxy aryloxy silane, alkyloxy diaryloxy silane, and alkyloxy aryloxy cycloalkyloxy silane.
- Representative examples of suitable hydrocarbyl dihydrocarbyloxy silane compounds include, but are not limited to, alkyl dialkyloxy silane, alkyl dicycloalkyloxy silane, alkyl diaryloxy silane, alkyl diaralkyloxy silane, alkyl dialkaryloxy silane, alkyl alkyloxy cycloalkyloxy silane, alkyl alkyloxy aryloxy silane, cycloalkyl dialkyloxy silane, cycloalkyl dicycloalkyloxy silane, cycloalkyl diaryloxy silane, cycloalkyl diaralkyloxy silane, cycloalkyl dialkaryloxy silane, cycloalkyl alkyloxy cycloalkyloxy silane, cycloalkyl alkyloxy aryloxy silane, aryl dialkyloxy silane, aryl dicycloalkyloxy silane, aryl diaryloxy silane, aryl diaralkyloxy silane, aryl dialkaryloxy silane, aryl alkyloxy cycloalkyloxy silane, aryl alkyloxy aryloxy silane, aralkyl dialkyloxy silane, aralkyl dicycloalkyloxy silane, aralkyl diaryloxy silane, aralkyl diaralkyloxy silane, aralkyl dialkaryloxy silane, aralkyl alkyloxy cycloalkyloxy silane, aralkyl alkyloxy aryloxy silane, alkaryl dialkyloxy silane, alkaryl dicycloalkyloxy silane, alkaryl diaryloxy silane, alkaryl diaralkyloxy silane, alkaryl dialkaryloxy silane, alkaryl alkyloxy cycloalkyloxy silane, and alkaryl alkyloxy aryloxy silane.
- Representative examples of suitable dihydrocarbyl hydrocarbyloxy silane compounds include, but are not limited to, dialkyl alkyloxy silane, dialkyl cycloalkyloxy silane, dialkyl aryloxy silane, dialkyl aralkyloxy silane, dialkyl alkaryloxy silane, dicycloalkyl alkyloxy silane, dicycloalkyl cycloalkyloxy silane, dicycloalkyl aryloxy silane, dicycloalkyl aralkyloxy silane, dicycloalkyl alkaryloxy silane, diaryl alkyloxy silane, diaryl cycloalkyloxy silane, diaryl aryloxy silane, diaryl aralkyloxy silane, diaryl alkaryloxy silane, diaralkyl alkyloxy silane, diaralkyl cycloalkyloxy silane, diaralkyl aryloxy silane, diaralkyl aralkyloxy silane, diaralkyl alkaryloxy silane, dialkaryl alkyloxy silane, dialkaryl cycloalkyloxy silane, dialkaryl aryloxy silane, dialkaryl aralkyloxy silane, dialkaryl alkaryloxy silane, alkyl cycloalkyl alkyloxy silane, alkyl cycloalkyl cycloalkyloxy silane, alkyl cycloalkyl aryloxy silane, alkyl cycloalkyl aralkyloxy silane, alkyl cycloalkyl alkaryloxy silane, alkyl aryl alkyloxy silane, alkyl aryl cycloalkyloxy silane, alkyl aryl aryloxy silane, alkyl aryl aralkyloxy silane, alkyl aryl alkaryloxy silane, aryl cycloalkyl alkyloxy silane, aryl cycloalkyl cycloalkyloxy silane, aryl cycloalkyl aryloxy silane, aryl cycloalkyl aralkyloxy silane, and aryl cycloalkyl alkaryloxy silane.
- Representative examples of suitable trisilyloxy silane compounds include, but are not limited to, tris(trialkylsilyloxy)silane, tris(dialkylsilyloxy)silane, bis(trialkylsilyloxy)(dialkylsilyloxy)silane, (trialkylsilyloxy)bis(dialkylsilyloxy)silane, tris[(dialkyl)(trialkylsilyloxy)silyloxy]silane, tris[(dialkyl)(dialkylsilyloxy)silyloxy]silane, bis(trialkylsilyloxy)[(dialkyl)(trialkylsilyloxy)silyloxy] silane, and bis(dialkylsilyloxy)[(dialkyl)(dialkylsilyloxy)silyloxy]silane.
- Representative examples of suitable hydrocarbyl disilyloxy silane compounds include, but are not limited to, alkyl bis(trialkylsilyloxy)silane, alkyl bis(dialkylsilyloxy)silane, alkyl (trialkylsilyloxy)(dialkylsilyloxy)silane, alkyl bis[(dialkyl)(trialkylsilyloxy)silyloxy]silane, alkyl bis[(dialkyl)(dialkylsilyloxy)silyloxy]silane, alkyl (trialkylsilyloxy) [(dialkyl)(trialkylsilyloxy)silyloxy] silane, alkyl (dialkylsilyloxy) [(dialkyl)(dialkylsilyloxy)silyloxy] silane, cycloalkyl bis(trialkylsilyloxy)silane, cycloalkyl bis(dialkylsilyloxy)silane, cycloalkyl (trialkylsilyloxy)(dialkylsilyloxy)silane, cycloalkyl bis[(dialkyl)(trialkylsilyloxy)silyloxy]silane, cycloalkyl bis [(dialkyl)(dialkylsilyloxy)silyloxy] silane, cycloalkyl (trialkylsilyloxy) [(dialkyl)(trialkylsilyloxy)silyloxy] silane, cycloalkyl (dialkylsilyloxy)[(dialkyl)(dialkylsilyloxy)silyloxy]silane, aryl bis(trialkylsilyloxy)silane, aryl bis(dialkylsilyloxy)silane, aryl (trialkylsilyloxy)(dialkylsilyloxy)silane, aryl bis[(dialkyl)(trialkylsilyloxy)silyloxy]silane, aryl bis[(dialkyl)(dialkylsilyloxy)silyloxy]silane, aryl (trialkylsilyloxy) [(dialkyl)(trialkylsilyloxy)silyloxy] silane, aryl (dialkylsilyloxy)[(dialkyl)(dialkylsilyloxy)silyloxy]silane, aralkyl bis(trialkylsilyloxy)silane, aralkyl bis(dialkylsilyloxy)silane, aralkyl (trialkylsilyloxy)(dialkylsilyloxy)silane, aralkyl bis[(dialkyl)(trialkylsilyloxy)silyloxy]silane, aralkyl bis [(dialkyl)(dialkylsilyloxy)silyloxy] silane, aralkyl (trialkylsilyloxy) [(dialkyl)(trialkylsilyloxy)silyloxy] silane, aralkyl (dialkylsilyloxy) [(dialkyl)(dialkylsilyloxy)silyloxy] silane, alkaryl bis(trialkylsilyloxy)silane, alkaryl bis(dialkylsilyloxy)silane, alkaryl (trialkylsilyloxy)(dialkylsilyloxy)silane, alkaryl bis[(dialkyl)(trialkylsilyloxy)silyloxy]silane, alkaryl bis[(dialkyl)(dialkylsilyloxy)silyloxy]silane, alkaryl (trialkylsilyloxy)[(dialkyl)(trialkylsilyloxy)silyloxy]silane, and alkaryl (dialkylsilyloxy)[(dialkyl)(dialkylsilyloxy)silyloxy]silane.
- Representative examples of suitable dihydrocarbyl silyloxy silane compounds include, but are not limited to, dialkyl (trialkylsilyloxy)silane, dialkyl dialkylsilyloxysilane, dialkyl (dialkyl)(trialkylsilyloxy)silyloxysilane, dialkyl (dialkyl)(dialkylsilyloxy)silyloxysilane, dicycloalkyl (trialkylsilyloxy)silane, dicycloalkyl dialkylsilyloxysilane, dicycloalkyl (dialkyl)(trialkylsilyloxy)silyloxysilane, dicycloalkyl (dialkyl)(dialkylsilyloxy)silyloxysilane, diaryl (trialkylsilyloxy)silane, diaryl dialkylsilyloxysilane, diaryl (dialkyl)(trialkylsilyloxy)silyloxysilane, diaryl (dialkyl)(dialkylsilyloxy)silyloxysilane, diaralkyl (trialkylsilyloxy)silane, diaralkyl dialkylsilyloxysilane, diaralkyl (dialkyl)(trialkylsilyloxy)silyloxysilane, diaralkyl (dialkyl)(dialkylsilyloxy)silyloxysilane, dialkaryl (trialkylsilyloxy)silane, dialkaryl dialkylsilyloxysilane, dialkaryl (dialkyl)(trialkylsilyloxy)silyloxysilane, dialkaryl (dialkyl)(dialkylsilyloxy)silyloxysilane, alkyl cycloalkyl (trialkylsilyloxy)silane, alkyl cycloalkyl dialkylsilyloxysilane, alkyl cycloalkyl (dialkyl)(trialkylsilyloxy)silyloxysilane, alkyl cycloalkyl (dialkyl)(dialkylsilyloxy)silyloxysilane, alkyl aryl (trialkylsilyloxy)silane, alkyl aryl dialkylsilyloxysilane, alkyl aryl (dialkyl)(trialkylsilyloxy)silyloxysilane, alkyl aryl (dialkyl)(dialkylsilyloxy)silyloxysilane, aryl cycloalkyl (trialkylsilyloxy)silane, aryl cycloalkyl dialkylsilyloxysilane, aryl cycloalkyl (dialkyl)(trialkylsilyloxy)silyloxysilane, and aryl cycloalkyl (dialkyl)(dialkylsilyloxy)silyloxysilane.
- Representative examples of suitable siloxane compounds include, but are not limited to, 1,1,3,3-tetraalkyldisiloxane, 1,1,1,3,3,-butaalkyldisiloxane, 1,1,3,3,5,5-hexaalkyltrisiloxane, 1,1,1,3,3,5,5-heptaalkyltrisiloxane, 1,1,3,3,5,5,7,7-octaalkyltetrasiloxane, 1,1,1,3,5,7,7,7-octaakyltetrasiloxane, and 1,1,1,3,3,5,5,7,7-nonaalkyltetrasiloxane.
- Representative examples of suitable cyclic hydrosilane compounds include, but are not limited to, 1,3,5-trialkylcyclotrisiloxane, 1,1,3,5-tetraalkylcyclotrisiloxane, 1,1,3,3,5-pentaalkylcyclotrisiloxane, 1,3,5,7-tetraalkylcyclotetrasiloxane, 1,1,3,5,7-pentaalkylcyclotetrasiloxane, 1,1,3,3,5,7-hexaalkylcyclotetrasiloxane, 1,1,3,5,5,7-hexaalkylcyclotetrasiloxane, 1,1,3,3,5,5,7-heptaalkylcyclotetrasiloxane, 1,3,5,7,9-pentaalkylcyclopentasiloxane, 1,1,3,5,7,9-hexaalkylcyclopentasiloxane, 1,1,3,3,5,7,9-heptaalkylcyclopentasiloxane, 1,1,3,5,5,7,9-heptaalkylcyclopentasiloxane, 1,1,3,3,5,5,7,9-octaalkylcyclopentasiloxane, 1,1,3,5,5,7,7,9-octaalkylcyclopentasiloxane, 1,1,3,5,5,7,9,9-octaalkylcyclopentasiloxane, 1,1,3,3,5,5,7,7,9-nonaalkylcyclopentasiloxane, 1,3,5,7,9,11-hexaalkylcyclohexasiloxane, 1,1,3,5,7,9,11-heptaalkylcyclohexasiloxane, 1,1,3,3,5,7,9,11-octaalkylcyclohexasiloxane, 1,1,3,5,5,7,9,11-octaalkylcyclohexasiloxane, 1,1,3,5,7,7,9,11-octaalkylcyclohexasiloxane, 1,1,3,3,5,5,7,9,11-nonaalkylcyclohexasiloxane, 1,1,3,3,5,7,7,9,11-nonaalkylcyclohexasiloxane, 1,1,3,3,5,7,9,9,11-nonaalkylcyclohexasiloxane, 1,1,3,5,5,7,7,9,11-nonaalkylcyclohexasiloxane, 1,1,3,3,5,5,7,7,9,11-decaalkylcyclohexasiloxane, 1,1,3,3,5,5,7,9,9,11-decaalkylcyclohexasiloxane, 1,1,3,3,5,7,7,9,9,11-decaalkylcyclohexasiloxane, 1,1,3,5,5,7,7,9,9,11-decaalkylcyclohexasiloxane, and 1,1,3,3, 5, 5,7,7,9,9,11-undecaalkylcyclohexasiloxane.
- Specific examples of suitable trihydrocarbyloxy silane compounds include, but are not limited to, trimethoxy silane, triethoxy silane, triphenoxy silane, dimethoxy ethoxysilane, dimethoxy phenoxysilane, diphenoxy ethoxy silane, and methoxy ethoxy phenoxysilane.
- Specific examples of suitable hydrocarbyl dihydrocarbyloxy silane compounds include, but are not limited to, methyl dimethoxy silane, methyl diethoxy silane, methyl diphenoxy silane, methyl methoxy ethoxysilane, methyl methoxy phenoxysilane, methyl phenoxy ethoxy silane, ethyl dimethoxy silane, ethyl diethoxy silane, ethyl diphenoxy silane, ethyl methoxy ethoxysilane, ethyl methoxy phenoxysilane, ethyl phenoxy ethoxy silane, n-propyl dimethoxy silane, n-propyl diethoxy silane, n-propyl diphenoxy silane, n-propyl methoxy ethoxysilane, n-propyl methoxy phenoxysilane, n-propyl phenoxy ethoxy silane, isopropyl dimethoxy silane, isopropyl diethoxy silane, isopropyl diphenoxy silane, isopropyl methoxy ethoxysilane, isopropyl methoxy phenoxysilane, isopropyl phenoxy ethoxy silane, n-butyl dimethoxy silane, n-butyl diethoxy silane, n-butyl diphenoxy silane, n-butyl methoxy ethoxysilane, n-butyl methoxy phenoxysilane, n-butyl phenoxy ethoxy silane, t-butyl dimethoxy silane, t-butyl diethoxy silane, t-butyl diphenoxy silane, t-butyl methoxy ethoxysilane, t-butyl methoxy phenoxysilane, t-butyl phenoxy ethoxy silane, neopentyl dimethoxy silane, neopentyl diethoxy silane, neopentyl diphenoxy silane, neopentyl methoxy ethoxysilane, neopentyl methoxy phenoxysilane, neopentyl phenoxy ethoxy silane, n-pentyl dimethoxy silane, n-pentyl diethoxy silane, n-pentyl diphenoxy silane, n-pentyl methoxy ethoxysilane, n-pentyl methoxy phenoxysilane, n-pentyl phenoxy ethoxy silane, n-hexyl dimethoxy silane, n-hexyl diethoxy silane, n-hexyl diphenoxy silane, n-hexyl methoxy ethoxysilane, n-hexyl methoxy phenoxysilane, n-hexyl phenoxy ethoxy silane, benzyl dimethoxy silane, benzyl diethoxy silane, benzyl diphenoxy silane, benzyl methoxy ethoxysilane, benzyl methoxy phenoxysilane, benzyl phenoxy ethoxy silane, phenyl dimethoxy silane, phenyl diethoxy silane, phenyl diphenoxy silane, phenyl methoxy ethoxysilane, phenyl methoxy phenoxysilane, phenyl phenoxy ethoxy silane, cyclohexyl dimethoxy silane, cyclohexyl diethoxy silane, cyclohexyl diphenoxy silane, cyclohexyl methoxy ethoxysilane, cyclohexyl methoxy phenoxysilane, and cyclohexyl phenoxy ethoxy silane.
- Specific examples of suitable dihydrocarbyl hydrocarbyloxy silane compounds include, but are not limited to, dimethyl methoxy silane, dimethyl ethoxy silane, dimethyl phenoxy silane, diethyl methoxy silane, diethyl ethoxy silane, diethyl phenoxy silane, di-n-propyl methoxy silane, di-n-propyl ethoxy silane, di-n-propyl phenoxy silane, diisopropyl methoxy silane, diisopropyl ethoxy silane, diisopropyl phenoxy silane, di-n-butyl methoxy silane, di-n-butyl ethoxy silane, di-n-butyl phenoxy silane, di-t-butyl methoxy silane, di-t-butyl ethoxy silane, di-t-butyl phenoxy silane, dineopentyl methoxy silane, dineopentyl ethoxy silane, dineopentyl phenoxy silane, di-n-pentyl methoxy silane, di-n-pentyl ethoxy silane, di-n-pentyl phenoxy silane, di-n-hexyl methoxy silane, di-n-hexyl ethoxy silane, di-n-hexyl phenoxy silane, dibenzyl methoxy silane, dibenzyl ethoxy silane, dibenzyl phenoxy silane, diphenyl methoxy silane, diphenyl ethoxy silane, diphenyl phenoxy silane, dicyclohexyl methoxy silane, dicyclohexyl ethoxy silane, dicyclohexyl phenoxy silane, methyl ethyl methoxy silane, methyl ethyl ethoxy silane, methyl ethyl phenoxy silane, methyl isopropyl methoxy silane, methyl isopropyl ethoxy silane, methyl isopropyl phenoxy silane, methyl phenyl methoxy silane, methyl phenyl ethoxy silane, methyl phenyl phenoxy silane, ethyl phenyl methoxy silane, ethyl phenyl ethoxy silane, ethyl phenyl phenoxy silane, isopropyl phenyl methoxy silane, isopropyl phenyl ethoxy silane, isopropyl phenyl phenoxy silane, isopropyl ethyl methoxy silane, isopropyl ethyl ethoxy silane, isopropyl ethyl phenoxy silane, methyl cyclohexyl methoxy silane, methyl cyclohexyl ethoxy silane, methyl cyclohexyl phenoxy silane, ethyl cyclohexyl methoxy silane, ethyl cyclohexyl ethoxy silane, and ethyl cyclohexyl phenoxy silane.
- Specific examples of suitable trisilyloxy silane compounds include, but are not limited to, tris(dimethylsilyloxy)silane, tris(trimethylsilyloxy)silane, tris(diethylsilyloxy)silane, tris(triethylsilyloxy)silane, tris(diisopropylsilyloxy)silane, tris(triisopropylsilyloxy)silane, tris[(trimethylsiloxy)dimethylsiloxy]silane, tris[(dimethylsiloxy)dimethylsiloxy] silane, bis(dimethylsilyloxy)[(trimethylsiloxy)dimethylsiloxy]silane, bis(dimethylsilyloxy)[(dimethylsiloxy)dimethylsiloxy] silane, bis(trimethylsilyloxy) [(trimethylsiloxy)dimethylsiloxy] silane, and bis(trimethylsilyloxy)[(dimethylsiloxy)dimethylsiloxy] silane.
- Specific examples of suitable hydrocarbyl disilyloxy silane compounds include, but are not limited to, methyl bis(dimethylsilyloxy)silane, methyl bis(trimethylsilyloxy)silane, methyl bis(diethylsilyloxy)silane, methyl bis(triethylsilyloxy)silane, methyl bis(diisopropylsilyloxy)silane, methyl bis(triisopropylsilyloxy)silane, methyl bis [(trimethylsiloxy)dimethylsiloxy] silane, methyl bis [(dimethylsiloxy)dimethylsiloxy] silane, methyl (dimethylsilyloxy)[(trimethylsiloxy)dimethylsiloxy] silane, methyl (dimethylsilyloxy) [(dimethylsiloxy)dimethylsiloxy] silane, methyl (trimethylhydrosilyloxy)[(trimethylsiloxy)dimethylsiloxy]silane, methyl (trimethylsilyloxy)[(dimethylsiloxy)dimethylsiloxy] silane, ethyl bis(dimethylsilyloxy)silane, ethyl bis(trimethylsilyloxy)silane, ethyl bis(diethylsilyloxy)silane, ethyl bis(triethylsilyloxy)silane, ethyl bis(diisopropylsilyloxy)silane, ethyl bis(triisopropylsilyloxy)silane, ethyl bis [(trimethylsiloxy)dimethylsiloxy] silane, ethyl bis[(dimethylsiloxy)dimethylsiloxy]silane, ethyl (dimethylsilyloxy) [(trimethylsiloxy)dimethylsiloxy] silane, ethyl (dimethylsilyloxy) [(dimethylsiloxy)dimethylsiloxy] silane, ethyl (trimethylhydrosilyloxy)[(trimethylsiloxy)dimethylsiloxy]silane, ethyl (trimethylsilyloxy) [(dimethylsiloxy)dimethylsiloxy] silane, n-propyl bis(dimethylsilyloxy)silane, n-propyl bis(trimethylsilyloxy)silane, n-propyl bis(diethylsilyloxy)silane, n-propyl bis(triethylsilyloxy)silane, n-propyl bis(diisopropylsilyloxy)silane, n-propyl bis(triisopropylsilyloxy)silane, n-propyl bis[(trimethylsiloxy)dimethylsiloxy]silane, n-propyl bis[(dimethylsiloxy)dimethylsiloxy]silane, n-propyl (dimethylsilyloxy) [(trimethylsiloxy)dimethylsiloxy] silane, n-propyl (dimethylsilyloxy)[(dimethylsiloxy)dimethylsiloxy]silane, n-propyl (trimethylhydrosilyloxy)[(trimethylsiloxy)dimethylsiloxy]silane, n-propyl (trimethylsilyloxy)[(dimethylsiloxy)dimethylsiloxy]silane, isopropyl bis(dimethylsilyloxy)silane, isopropyl bis(trimethylsilyloxy)silane, isopropyl bis(diethylsilyloxy)silane, isopropyl bis(triethylsilyloxy)silane, isopropyl bis(diisopropylsilyloxy)silane, isopropyl bis(triisopropylsilyloxy)silane, isopropyl bis [(trimethylsiloxy)dimethylsiloxy] silane, isopropyl bis[(dimethylsiloxy)dimethylsiloxy]silane, isopropyl (dimethylsilyloxy) [(trimethylsiloxy)dimethylsiloxy] silane, isopropyl (dimethylsilyloxy) [(dimethylsiloxy)dimethylsiloxy] silane, isopropyl (trimethylhydrosilyloxy)[(trimethylsiloxy)dimethylsiloxy]silane, isopropyl (trimethylsilyloxy)[(dimethylsiloxy)dimethylsiloxy]silane, n-butyl bis(dimethylsilyloxy)silane, n-butyl bis(trimethylsilyloxy)silane, n-butyl bis(diethylsilyloxy)silane, n-butyl bis(triethylsilyloxy)silane, n-butyl bis(diisopropylsilyloxy)silane, n-butyl bis(triisopropylsilyloxy)silane, n-butyl bis[(trimethylsiloxy)dimethylsiloxy]silane, n-butyl bis[(dimethylsiloxy)dimethylsiloxy]silane, n-butyl (dimethylsilyloxy) [(trimethylsiloxy)dimethylsiloxy] silane, n-butyl (dimethylsilyloxy) [(dimethylsiloxy)dimethylsiloxy] silane, n-butyl (trimethylhydrosilyloxy)[(trimethylsiloxy)dimethylsiloxy]silane, n-butyl (trimethylsilyloxy)[(dimethylsiloxy)dimethylsiloxy]silane, t-butyl bis(dimethylsilyloxy)silane, t-butyl bis(trimethylsilyloxy)silane, t-butyl bis(diethylsilyloxy)silane, t-butyl bis(triethylsilyloxy)silane, t-butyl bis(diisopropylsilyloxy)silane, t-butyl bis(triisopropylsilyloxy)silane, t-butyl bis[(trimethylsiloxy)dimethylsiloxy]silane, t-butyl bis[(dimethylsiloxy)dimethylsiloxy]silane, t-butyl (dimethylsilyloxy) [(trimethylsiloxy)dimethylsiloxy] silane, t-butyl (dimethylsilyloxy)[(dimethylsiloxy)dimethylsiloxy]silane, t-butyl (trimethylhydrosilyloxy)[(trimethylsiloxy)dimethylsiloxy]silane, t-butyl (trimethylsilyloxy) [(dimethylsiloxy)dimethylsiloxy] silane, neopentyl bis(dimethylsilyloxy)silane, neopentyl bis(trimethylsilyloxy)silane, neopentyl bis(diethylsilyloxy)silane, neopentyl bis(triethylsilyloxy)silane, neopentyl bis(diisopropylsilyloxy)silane, neopentyl bis(triisopropylsilyloxy)silane, neopentyl bis[(trimethylsiloxy)dimethylsiloxy]silane, neopentyl bis[(dimethylsiloxy)dimethylsiloxy]silane, neopentyl (dimethylsilyloxy) [(trimethylsiloxy)dimethylsiloxy] silane, neopentyl (dimethylsilyloxy) [(dimethylsiloxy)dimethylsiloxy] silane, neopentyl (trimethylhydrosilyloxy) [(trimethylsiloxy)dimethylsiloxy] silane, neopentyl (trimethylsilyloxy)[(dimethylsiloxy)dimethylsiloxy] silane, n-pentyl bis(dimethylsilyloxy)silane, n-pentyl bis(trimethylsilyloxy)silane, n-pentyl bis(diethylsilyloxy)silane, n-pentyl bis(triethylsilyloxy)silane, n-pentyl bis(diisopropylsilyloxy)silane, n-pentyl bis(triisopropylsilyloxy)silane, n-pentyl bis[(trimethylsiloxy)dimethylsiloxy]silane, n-pentyl bis[(dimethylsiloxy)dimethylsiloxy]silane, n-pentyl (dimethylsilyloxy) [(trimethylsiloxy)dimethylsiloxy] silane, n-pentyl (dimethylsilyloxy) [(dimethylsiloxy)dimethylsiloxy] silane, n-pentyl (trimethylhydrosilyloxy)[(trimethylsiloxy)dimethylsiloxy]silane, n-pentyl (trimethylsilyloxy)[(dimethylsiloxy)dimethylsiloxy] silane, n-hexyl bis(dimethylsilyloxy)silane, n-hexyl bis(trimethylsilyloxy)silane, n-hexyl bis(diethylsilyloxy)silane, n-hexyl bis(triethylsilyloxy)silane, n-hexyl bis(diisopropylsilyloxy)silane, n-hexyl bis(triisopropylsilyloxy)silane, n-hexyl bis [(trimethylsiloxy)dimethylsiloxy] silane, n-hexyl bis[(dimethylsiloxy)dimethylsiloxy]silane, n-hexyl (dimethylsilyloxy) [(trimethylsiloxy)dimethylsiloxy] silane, n-hexyl (dimethylsilyloxy) [(dimethylsiloxy)dimethylsiloxy] silane, n-hexyl (trimethylhydrosilyloxy)[(trimethylsiloxy)dimethylsiloxy]silane, n-hexyl (trimethylsilyloxy)[(dimethylsiloxy)dimethylsiloxy]silane, benzyl bis(dimethylsilyloxy)silane, benzyl bis(trimethylsilyloxy)silane, benzyl bis(diethylsilyloxy)silane, benzyl bis(triethylsilyloxy)silane, benzyl bis(diisopropylsilyloxy)silane, benzyl bis(triisopropylsilyloxy)silane, benzyl bis[(trimethylsiloxy)dimethylsiloxy]silane, benzyl bis[(dimethylsiloxy)dimethylsiloxy]silane, benzyl (dimethylsilyloxy) [(trimethylsiloxy)dimethylsiloxy] silane, benzyl (dimethylsilyloxy) [(dimethylsiloxy)dimethylsiloxy] silane, benzyl (trimethylhydrosilyloxy)[(trimethylsiloxy)dimethylsiloxy]silane, benzyl (trimethylsilyloxy)[(dimethylsiloxy)dimethylsiloxy] silane, phenyl bis(dimethylsilyloxy)silane, phenyl bis(trimethylsilyloxy)silane, phenyl bis(diethylsilyloxy)silane, phenyl bis(triethylsilyloxy)silane, phenyl bis(diisopropylsilyloxy)silane, phenyl bis(triisopropylsilyloxy)silane, phenyl bis [(trimethylsiloxy)dimethylsiloxy] silane, phenyl bis[(dimethylsiloxy)dimethylsiloxy]silane, phenyl (dimethylsilyloxy) [(trimethylsiloxy)dimethylsiloxy] silane, phenyl (dimethylsilyloxy)[(dimethylsiloxy)dimethylsiloxy]silane, phenyl (trimethylhydrosilyloxy)[(trimethylsiloxy)dimethylsiloxy]silane, phenyl (trimethylsilyloxy) [(dimethylsiloxy)dimethylsiloxy] silane, cyclohexyl bis(dimethylsilyloxy)silane, cyclohexyl bis(trimethylsilyloxy)silane, cyclohexyl bis(diethylsilyloxy)silane, cyclohexyl bis(triethylsilyloxy)silane, cyclohexyl bis(diisopropylsilyloxy)silane, cyclohexyl bis(triisopropylsilyloxy)silane, cyclohexyl bis [(trimethylsiloxy)dimethylsiloxy] silane, cyclohexyl bis [(dimethylsiloxy)dimethylsiloxy] silane, cyclohexyl (dimethylsilyloxy) [(trimethylsiloxy)dimethylsiloxy] silane, cyclohexyl (dimethylsilyloxy) [(dimethylsiloxy)dimethylsiloxy] silane, cyclohexyl (trimethylhydrosilyloxy)[(trimethylsiloxy)dimethylsiloxy]silane, and cyclohexyl (trimethylsilyloxy)[(dimethylsiloxy)dimethylsiloxy]silane.
- Specific examples of suitable dihydrocarbyl silyloxy silane compounds include, but are not limited to, dimethyl dimethylsilyloxysilane, dimethyl trimethylsilyloxysilane, dimethyl diethylsilyloxysilane, dimethyl triethylsilyloxysilane, dimethyl diisopropylsilyloxysilane, dimethyl triisopropylsilyloxysilane, dimethyl [(trimethylsiloxy) dimethyl siloxy]silane, dimethyl [(dimethylsiloxy) dimethyl siloxy]silane, diethyl dimethylsilyloxysilane, diethyl trimethylsilyloxysilane, diethyl diethylsilyloxysilane, diethyl triethylsilyloxysilane, diethyl diisopropylsilyloxysilane, diethyl triisopropylsilyloxysilane, diethyl [(trimethylsiloxy) dimethyl siloxy]silane, diethyl [(dimethylsiloxy) dimethyl siloxy]silane, di-n-propyl dimethylsilyloxysilane, di-n-propyl trimethylsilyloxysilane, di-n-propyl diethylsilyloxysilane, din-propyl triethylsilyloxysilane, di-n-propyl diisopropylsilyloxysilane, di-n-propyl triisopropylsilyloxysilane, di-n-propyl [(trimethylsiloxy) dimethyl siloxy]silane, di-n-propyl [(dimethylsiloxy) dimethyl siloxy]silane, diisopropyl dimethylsilyloxysilane, diisopropyl trimethylsilyloxysilane, diisopropyl diethylsilyloxysilane, diisopropyl triethylsilyloxysilane, diisopropyl diisopropylsilyloxysilane, diisopropyl triisopropylsilyloxysilane, diisopropyl [(trimethylsiloxy) dimethyl siloxy]silane, diisopropyl [(dimethylsiloxy) dimethyl siloxy]silane, din-butyl dimethylsilyloxysilane, di-n-butyl trimethylsilyloxysilane, di-n-butyl diethylsilyloxysilane, di-n-butyl triethylsilyloxysilane, di-n-butyl diisopropylsilyloxysilane, di-n-butyl triisopropylsilyloxysilane, di-n-butyl [(trimethylsiloxy) dimethyl siloxy]silane, di-n-butyl [(dimethylsiloxy) dimethyl siloxy]silane, di-t-butyl dimethylsilyloxysilane, di-t-butyl trimethylsilyloxysilane, di-t-butyl diethylsilyloxysilane, di-t-butyl triethylsilyloxysilane, di-t-butyl diisopropylsilyloxysilane, di-t-butyl triisopropylsilyloxysilane, di-t-butyl [(trimethylsiloxy) dimethyl siloxy]silane, di-t-butyl [(dimethylsiloxy) dimethyl siloxy]silane, dineopentyl dimethylsilyloxysilane, dineopentyl trimethylsilyloxysilane, dineopentyl diethylsilyloxysilane, dineopentyl triethylsilyloxysilane, dineopentyl diisopropylsilyloxysilane, dineopentyl triisopropylsilyloxysilane, dineopentyl [(trimethylsiloxy) dimethyl siloxy]silane, dineopentyl [(dimethylsiloxy) dimethyl siloxy]silane, di-n-pentyl dimethylsilyloxysilane, di-n-pentyl trimethylsilyloxysilane, di-n-pentyl diethylsilyloxysilane, di-n-pentyl triethylsilyloxysilane, di-n-pentyl diisopropylsilyloxysilane, di-n-pentyl triisopropylsilyloxysilane, di-n-pentyl [(trimethylsiloxy) dimethyl siloxy]silane, di-n-pentyl [(dimethylsiloxy) dimethyl siloxy]silane, din-hexyl dimethylsilyloxysilane, di-n-hexyl trimethylsilyloxysilane, di-n-hexyl diethylsilyloxysilane, di-n-hexyl triethylsilyloxysilane, di-n-hexyl diisopropylsilyloxysilane, di-n-hexyl triisopropylsilyloxysilane, di-n-hexyl [(trimethylsiloxy) dimethyl siloxy]silane, di-n-hexyl [(dimethylsiloxy) dimethyl siloxy]silane, dibenzyl dimethylsilyloxysilane, dibenzyl trimethylsilyloxysilane, dibenzyl diethylsilyloxysilane, dibenzyl triethylsilyloxysilane, dibenzyl diisopropylsilyloxysilane, dibenzyl triisopropylsilyloxysilane, dibenzyl [(trimethylsiloxy) dimethyl siloxy]silane, dibenzyl [(dimethylsiloxy) dimethyl siloxy]silane, diphenyl dimethylsilyloxysilane, diphenyl trimethylsilyloxysilane, diphenyl diethylsilyloxysilane, diphenyl triethylsilyloxysilane, diphenyl diisopropylsilyloxysilane, diphenyl triisopropylsilyloxysilane, diphenyl [(trimethylsiloxy) dimethyl siloxy]silane, diphenyl [(dimethylsiloxy) dimethyl siloxy]silane, dicyclohexyl dimethylsilyloxysilane, dicyclohexyl trimethylsilyloxysilane, dicyclohexyl diethylsilyloxysilane, dicyclohexyl triethylsilyloxysilane, dicyclohexyl diisopropylsilyloxysilane, dicyclohexyl triisopropylsilyloxysilane, dicyclohexyl [(trimethylsiloxy) dimethyl siloxy]silane, dicyclohexyl [(dimethylsiloxy) dimethyl siloxy]silane, methylethyl dimethylsilyloxysilane, methylethyl trimethylsilyloxysilane, methylethyl diethylsilyloxysilane, methylethyl triethylsilyloxysilane, methylethyl diisopropylsilyloxysilane, methylethyl triisopropylsilyloxysilane, methylethyl [(trimethylsiloxy) dimethyl siloxy]silane, methylethyl [(dimethylsiloxy) dimethyl siloxy]silane, methylisopropyl dimethylsilyloxysilane, methylisopropyl trimethylsilyloxysilane, methylisopropyl diethylsilyloxysilane, methylisopropyl triethylsilyloxysilane, methylisopropyl diisopropylsilyloxysilane, methylisopropyl triisopropylsilyloxysilane, methylisopropyl [(trimethylsiloxy) dimethyl siloxy]silane, methylisopropyl [(dimethylsiloxy) dimethyl siloxy]silane, methylphenyl dimethylsilyloxysilane, methylphenyl trimethylsilyloxysilane, methylphenyl diethylsilyloxysilane, methylphenyl triethylsilyloxysilane, methylphenyl diisopropylsilyloxysilane, methylphenyl triisopropylsilyloxysilane, methylphenyl [(trimethylsiloxy) dimethyl siloxy]silane, methylphenyl [(dimethylsiloxy) dimethyl siloxy]silane, ethyl phenyl dimethylsilyloxysilane, ethyl phenyl trimethylsilyloxysilane, ethyl phenyl diethylsilyloxysilane, ethyl phenyl triethylsilyloxysilane, ethyl phenyl diisopropylsilyloxysilane, ethyl phenyl triisopropylsilyloxysilane, ethyl phenyl [(trimethylsiloxy) dimethyl siloxy]silane, ethyl phenyl [(dimethylsiloxy) dimethyl siloxy]silane, isopropyl phenyl dimethylsilyloxysilane, isopropyl phenyl trimethylsilyloxysilane, isopropyl phenyl diethylsilyloxysilane, isopropyl phenyl triethylsilyloxysilane, isopropyl phenyl diisopropylsilyloxysilane, isopropyl phenyl triisopropylsilyloxysilane, isopropyl phenyl [(trimethylsiloxy) dimethyl siloxy]silane, isopropyl phenyl [(dimethylsiloxy) dimethyl siloxy]silane, isopropyl ethyl dimethylsilyloxysilane, isopropyl ethyl trimethylsilyloxysilane, isopropyl ethyl diethylsilyloxysilane, isopropyl ethyl triethylsilyloxysilane, isopropyl ethyl diisopropylsilyloxysilane, isopropyl ethyl triisopropylsilyloxysilane, isopropyl ethyl [(trimethylsiloxy) dimethyl siloxy]silane, isopropyl ethyl [(dimethylsiloxy) dimethyl siloxy]silane, methylcyclohexyl dimethylsilyloxysilane, methylcyclohexyl trimethylsilyloxysilane, methylcyclohexyl diethylsilyloxysilane, methylcyclohexyl triethylsilyloxysilane, methylcyclohexyl diisopropylsilyloxysilane, methylcyclohexyl triisopropylsilyloxysilane, methylcyclohexyl [(trimethylsiloxy) dimethyl siloxy]silane, methylcyclohexyl [(dimethylsiloxy) dimethyl siloxy]silane, ethyl cyclohexyl dimethylsilyloxysilane, ethyl cyclohexyl trimethylsilyloxysilane, ethyl cyclohexyl diethylsilyloxysilane, ethyl cyclohexyl triethylsilyloxysilane, ethyl cyclohexyl diisopropylsilyloxysilane, ethyl cyclohexyl triisopropylsilyloxysilane, ethyl cyclohexyl [(trimethylsiloxy) dimethyl siloxy]silane, ethyl cyclohexyl [(dimethylsiloxy) dimethyl siloxy]silane, trifluoropropyl tris(dimethylsiloxy)silane, trichloropropyl tris(dimethylsiloxy)silane, bis(trifluoropropyl) bis(dimethylsiloxy)silane, bis(trichloropropyl) bis(dimethylsiloxy)silane, trifluoropropyl tris(dimethylsiloxy) silane, tris(trichloropropyl) bis(dimethylsiloxy)silane, trifluoropropyl tris(diethylsiloxy)silane, trichloropropyl tris(diethylsiloxy)silane, bis(trifluoropropyl) bis(diethylsiloxy)silane, bis(trichloropropyl) bis(diethylsiloxy)silane, trifluoropropyl tris(diethylsiloxy) silane, and tris(trichloropropyl) bis(diethylsiloxy)silane.
- Specific examples of suitable siloxane compounds include, but are not limited to, 1,1,3,3-tetramethyldisiloxane, 1,1,1,3,3,-butamethyldisiloxane, 1,1,3,3,5,5-hexamethyltrisiloxane, 1,1,1,3,3,5,5-heptamethyltrisiloxane, 1,1,3,3,5,5,7,7-octamethyltetrasiloxane, 1,1,1,3,5,7,7,7-octaakyltetrasiloxane, 1,1,1,3,3,5,5,7,7-nonamethyltetrasiloxane, 1,1,3,3-tetraethyldisiloxane, 1,1,1,3,3,-butaethyldisiloxane, 1,1,3,3,5,5-hexaethyltrisiloxane, 1,1,1,3,3,5,5-heptaethyltrisiloxane, 1,1,3,3,5,5,7,7-octaethyltetrasiloxane, 1,1,1,3,5,7,7,7-octaakyltetrasiloxane, and 1,1,1,3,3,5,5,7,7-nonaethyltetrasiloxane.
- Specific examples of suitable cyclic hydrosilane compounds include, but are not limited to, 1,3,5-trimethylcyclotrisiloxane, 1,1,3,5-tetramethylcyclotrisiloxane, 1,1,3,3,5-pentamethylcyclotrisiloxane, 1,3,5,7-tetramethylcyclotetrasiloxane, 1,1,3,5,7-pentamethylcyclotetrasiloxane, 1,1,3,3,5,7-hexamethylcyclotetrasiloxane, 1,1,3,5,5,7-hexamethylcyclotetrasiloxane, 1,1,3,3,5,5,7-heptamethylcyclotetrasiloxane, 1,3,5,7,9-pentamethylcyclopentasiloxane, 1,1,3,5,7,9-hexamethylcyclopentasiloxane, 1,1,3,3,5,7,9-heptamethylcyclopentasiloxane, 1,1,3,5,5,7,9-heptamethylcyclopentasiloxane, 1,1,3,3,5,5,7,9-octamethylcyclopentasiloxane, 1,1,3,5,5,7,7,9-octamethylcyclopentasiloxane, 1,1,3,5,5,7,9,9-octamethylcyclopentasiloxane, 1,1,3,3,5,5,7,7,9-nonamethylcyclopentasiloxane, 1,3,5,7,9,11-hexamethylcyclohexasiloxane, 1,1,3,5,7,9,11-heptamethylcyclohexasiloxane, 1,1,3,3,5,7,9,11-octamethylcyclohexasiloxane, 1,1,3,5,5,7,9,11-octamethylcyclohexasiloxane, 1,1,3,5,7,7,9,11-octamethylcyclohexasiloxane, 1,1,3,3,5,5,7,9,11-nonamethylcyclohexasiloxane, 1,1,3,3,5,7,7,9,11-nonamethylcyclohexasiloxane, 1,1,3,3,5,7,9,9,11-nonamethylcyclohexasiloxane, 1,1,3,5,5,7,7,9,11-nonamethylcyclohexasiloxane, 1,1,3,3,5,5,7,7,9,11-decamethylcyclohexasiloxane, 1,1,3,3,5,5,7,9,9,11-decamethylcyclohexasiloxane, 1,1,3,3,5,7,7,9,9,11-decamethylcyclohexasiloxane, 1,1,3,5,5,7,7,9,9,11-decamethylcyclohexasiloxane, 1,1,3,3,5,5,7,7,9,9,11-undecamethylcyclohexasiloxane, 1,3,5-triethylcyclotrisiloxane, 1,1,3,5-tetraethylcyclotrisiloxane, 1,1,3,3,5-pentaethylcyclotrisiloxane, 1,3,5,7-tetraethylcyclotetrasiloxane, 1,1,3,5,7-pentaethylcyclotetrasiloxane, 1,1,3,3,5,7-hexaethylcyclotetrasiloxane, 1,1,3,5,5,7-hexaethylcyclotetrasiloxane, 1,1,3,3,5,5,7-heptaethylcyclotetrasiloxane, 1,3,5,7,9-pentaethylcyclopentasiloxane, 1,1,3,5,7,9-hexaethylcyclopentasiloxane, 1,1,3,3,5,7,9-heptaethylcyclopentasiloxane, 1,1,3,5,5,7,9-heptaethylcyclopentasiloxane, 1,1,3,3,5,5,7,9-octaethylcyclopentasiloxane, 1,1,3,5,5,7,7,9-octaethylcyclopentasiloxane, 1,1,3,5,5,7,9,9-octaethylcyclopentasiloxane, 1,1,3,3,5,5,7,7,9-nonaethylcyclopentasiloxane, 1,3,5,7,9,11-hexaethylcyclohexasiloxane, 1,1,3,5,7,9,11-heptaethylcyclohexasiloxane, 1,1,3,3,5,7,9,11-octaethylcyclohexasiloxane, 1,1,3,5,5,7,9,11-octaethylcyclohexasiloxane, 1,1,3,5,7,7,9,11-octaethylcyclohexasiloxane, 1,1,3,3,5,5,7,9,11-nonaethylcyclohexasiloxane, 1,1,3,3,5,7,7,9,11-nonaethylcyclohexasiloxane, 1,1,3,3,5,7,9,9,11-nonaethylcyclohexasiloxane, 1,1,3,5,5,7,7,9,11-nonaethylcyclohexasiloxane, 1,1,3,3,5,5,7,7,9,11-decaethylcyclohexasiloxane, 1,1,3,3,5,5,7,9,9,11-decaethylcyclohexasiloxane, 1,1,3,3,5,7,7,9,9,11-decaethylcyclohexasiloxane, 1,1,3,5,5,7,7,9,9,11-decaethylcyclohexasiloxane, and 1,1,3,3, 5, 5,7,7,9,9,11-undecaethylcyclohexasiloxane.
- In one or more embodiments, optionally after the reaction between the reactive polymer and the functionalizing agent has been accomplished or completed, a quenching agent can be added to the polymerization mixture in order to protonate the reaction product between the reactive polymer and the functionalizing agent, inactivate any residual reactive polymer chains, and/or inactivate the catalyst or catalyst components. The quenching agent may include a protic compound, which includes, but is not limited to, an alcohol, a carboxylic acid, an inorganic acid, water, or a mixture thereof. In particular embodiments, quenching with an alcohol, such as isopropanol, is employed since it has been observed that the use of isopropyl alcohol contributes to certain desirable properties in the final polymer, such as desirable cold flow. An antioxidant such as 2,6-di-tert-butyl-4-methylphenol may be added along with, before, or after the addition of the quenching agent. The amount of the antioxidant employed may be in the range of 0.2% to 1% by weight of the polymer product. Additionally, the polymer product can be oil extended by adding an oil to the polymer, which may be in the form of a polymer cement or polymer dissolved or suspended in monomer. Practice of the present invention does not limit the amount of oil that may be added, and therefore conventional amounts may be added (e.g., 5-50 phr). Useful oils or extenders that may be employed include, but are not limited to, aromatic oils, paraffinic oils, naphthenic oils, vegetable oils other than castor oils, low PCA oils including MES, TDAE, and SRAE, and heavy naphthenic oils.
- Once the polymerization mixture has been quenched, the various constituents of the polymerization mixture may be recovered. In one or more embodiments, the unreacted monomer can be recovered from the polymerization mixture. For example, the monomer can be distilled from the polymerization mixture by using techniques known in the art. In one or more embodiments, a devolatilizer may be employed to remove the monomer from the polymerization mixture. Once the monomer has been removed from the polymerization mixture, the monomer may be purified, stored, and/or recycled back to the polymerization process.
- The polymer product may be recovered from the polymerization mixture by using techniques known in the art. In one or more embodiments, desolventization and drying techniques may be used. For instance, the polymer can be recovered by passing the polymerization mixture through a heated screw apparatus, such as a desolventizing extruder, in which the volatile substances are removed by evaporation at appropriate temperatures (e.g., about 100 °C to about 170 °C) and under atmospheric or sub-atmospheric pressure. This treatment serves to remove unreacted monomer as well as any low-boiling solvent. Alternatively, the polymer can also be recovered by subjecting the polymerization mixture to steam desolventization, followed by drying the resulting polymer crumbs in a hot air tunnel. The polymer can also be recovered by directly drying the polymerization mixture on a drum dryer.
- The cis-1,4-polydiene and the hydrosilane (and optionally the functionalizing agent) are believed to react to produce a novel functionalized polymer, wherein the residue of the hydrosilane is imparted on the cis-1,4-polydiene. The exact chemical structure of the functionalized polymer produced in every embodiment may not be known with a great degree of certainty, particularly as the structure relates to the residue imparted to the cis-1,4-polydiene by the hydrosilane and optionally the functionalizing agent. Indeed, it is speculated that the structure of the functionalized polymer may depend upon various factors such as the conditions employed to prepare the cis-1,4-polydiene (e.g., the type and amount of the catalyst) and the conditions employed to react the hydrosilane (and optionally the functionalizing agent) with the cis-1,4-polydiene (e.g., the types and a and the functionalizing agent). The functionalized polymer resulting from the reaction between the cis-1,4-polydiene and the hydrosilane can be protonated or further modified.
- In one or more embodiments, one of the products resulting from the reaction between the cis-1,4-polydiene and the hydrosilane may be a functionalized polymer defined by the following formula:
π-SiHxR3-x
where x is an integer from 0 to 3, each R is individually a halogen atom or a monovalent organic group, or where two or more R groups join to form a polyvalent organic group, and π is a cis-1,4-polydiene polymer chain as described above. - In certain embodiments, where the hydrosilane compound includes a hydrocarbyloxy group or a silyloxy group, the polymer functionalized with the hydrosilane (i.e. the silane-functionalized polymer) may undergo a condensation reaction with another hydrocarbyloxy group or a silyloxy group on a second silane-functionalized polymer, thereby coupling the cis-1,4-polydiene polymers. In one or more embodiments, the occurrence of a coupling reaction of a silane functionality may be determined through gel permeation chromatography (GPC). In one or more embodiments, the coupled polymer is a higher molecular weight species that has a number average molecular weight is at least 20 times larger, in other embodiments at least 50 times larger and in other embodiments at least 100 times larger than the number average molecular weight of the predominant species of the cis-1,4-polydiene polymer.
- In one or more embodiments, one of the products resulting from the reaction between the cis-1,4-polydiene and the hydrosilane, particularly after the silane-functionalized polymer couples with a second silane-functionalized polymer, may be a functionalized polymer defined by the following formula
- In one or more embodiments, the silane-functionalized polymer may be characterized by the number silane-functional groups per cis-1,4-polydiene polymer. In one or more embodiments, the average number of silane-functional groups on the cis-1,4-polydiene polymer may be from about 1 to about 8, in other embodiments about 2 to about 6, and in other embodiments about 3 to about 4 silane-functional groups per polymer.
- Advantageously, the polymers of this invention are particularly useful in preparing rubber compositions that can be used to manufacture tire components. Rubber compounding techniques and the additives employed therein are generally disclosed in The Compounding and Vulcanization of Rubber, in Rubber Technology (2nd Ed. 1973).
- The rubber compositions can be prepared by using the polymers alone or together with other elastomers (i.e., polymers that can be vulcanized to form compositions possessing rubbery or elastomeric properties). Other elastomers that may be used include natural and synthetic rubbers. The synthetic rubbers typically derive from the polymerization of conjugated diene monomer, the copolymerization of conjugated diene monomer with other monomer such as vinyl-substituted aromatic monomer, or the copolymerization of ethylene with one or more α-olefins and optionally one or more diene monomers.
- Exemplary elastomers include natural rubber, synthetic polyisoprene, polybutadiene, polyisobutylene-co-isoprene, neoprene, poly(ethylene-co-propylene), poly(styrene-co-butadiene), poly(styrene-co-isoprene), poly(styrene-co-isoprene-co-butadiene), poly(isoprene-co-butadiene), poly(ethylene-co-propylene-co-diene), polysulfide rubber, acrylic rubber, urethane rubber, silicone rubber, epichlorohydrin rubber, and mixtures thereof. These elastomers can have a myriad of macromolecular structures including linear, branched, and star-shaped structures.
- The rubber compositions may include fillers such as inorganic and organic fillers. Examples of organic fillers include carbon black and starch. Examples of inorganic fillers include silica, aluminum hydroxide, magnesium hydroxide, mica, talc (hydrated magnesium silicate), and clays (hydrated aluminum silicates). Carbon blacks and silicas are the most common fillers used in manufacturing tires. In certain embodiments, a mixture of different fillers may be advantageously employed.
- In one or more embodiments, carbon blacks include furnace blacks, channel blacks, and lamp blacks. More specific examples of carbon blacks include super abrasion furnace blacks, intermediate super abrasion furnace blacks, high abrasion furnace blacks, fast extrusion furnace blacks, fine furnace blacks, semi-reinforcing furnace blacks, medium processing channel blacks, hard processing channel blacks, conducting channel blacks, and acetylene blacks.
- In particular embodiments, the carbon blacks may have a surface area (EMSA) of at least 20 m2/g and in other embodiments at least 35 m2/g; surface area values can be determined by ASTM D-1765 using the cetyltrimethylammonium bromide (CTAB) technique. The carbon blacks may be in a pelletized form or an unpelletized flocculent form. The preferred form of carbon black may depend upon the type of mixing equipment used to mix the rubber compound.
- The amount of carbon black employed in the rubber compositions can be up to about 50 parts by weight per 100 parts by weight of rubber (phr), with about 5 to about 40 phr being typical.
- Some commercially available silicas which may be used include Hi-Sil™ 215, Hi-Sil™ 233, and Hi-Sil™ 190 (PPG Industries, Inc.; Pittsburgh, Pa.). Other suppliers of commercially available silica include Grace Davison (Baltimore, Md.), Degussa Corp. (Parsippany, N.J.), Rhodia Silica Systems (Cranbury, N.J.), and J.M. Huber Corp. (Edison, N.J.).
- In one or more embodiments, silicas may be characterized by their surface areas, which give a measure of their reinforcing character. The Brunauer, Emmet and Teller ("BET") method (described in J. Am. Chem. Soc., vol. 60, p. 309 et seq.) is a recognized method for determining the surface area. The BET surface area of silica is generally less than 450 m2/g. Useful ranges of surface area include from about 32 to about 400 m2/g, about 100 to about 250 m2/g, and about 150 to about 220 m2/g.
- The pH's of the silicas are generally from about 5 to about 7 or slightly over 7, or in other embodiments from about 5.5 to about 6.8.
- In one or more embodiments, where silica is employed as a filler (alone or in combination with other fillers), a coupling agent and/or a shielding agent may be added to the rubber compositions during mixing in order to enhance the interaction of silica with the elastomers. Useful coupling agents and shielding agents are disclosed in
U.S. Patent Nos. 3,842,111 ,3,873,489 ,3,978,103 ,3,997,581 ,4,002,594 ,5,580,919 ,5,583,245 ,5,663,396 ,5,674,932 ,5,684,171 ,5,684,172 5,696,197 ,6,608,145 ,6,667,362 ,6,579,949 ,6,590,017 ,6,525,118 ,6,342,552 , and6,683,135 . - The amount of silica employed in the rubber compositions can be from about 1 to about 100 phr or in other embodiments from about 5 to about 80 phr. The useful upper range is limited by the high viscosity imparted by silicas. When silica is used together with carbon black, the amount of silica can be decreased to as low as about 1 phr; as the amount of silica is decreased, lesser amounts of coupling agents and shielding agents can be employed. Generally, the amounts of coupling agents and shielding agents range from about 4% to about 20% based on the weight of silica used.
- A multitude of rubber curing agents (also called vulcanizing agents) may be employed, including sulfur or peroxide-based curing systems. Curing agents are described in Kirk-Othmer, ENCYCLOPEDIA OF CHEMICAL TECHNOLOGY, Vol. 20, pgs. 365-468, (3rd Ed. 1982), particularly Vulcanization Agents and Auxiliary Materials, pgs. 390-402, and A.Y. Coran, Vulcanization, ENCYCLOPEDIA OF POLYMER SCIENCE AND ENGINEERING, (2nd Ed. 1989). Vulcanizing agents may be used alone or in combination.
- Other ingredients that are typically employed in rubber compounding may also be added to the rubber compositions. These include accelerators, accelerator activators, oils, plasticizer, waxes, scorch inhibiting agents, processing aids, zinc oxide, tackifying resins, reinforcing resins, fatty acids such as stearic acid, peptizers, and antidegradants such as antioxidants and antiozonants. In particular embodiments, the oils that are employed include those conventionally used as extender oils, which are described above.
- All ingredients of the rubber compositions can be mixed with standard mixing equipment such as Banbury or Brabender mixers, extruders, kneaders, and two-rolled mills. In one or more embodiments, the ingredients are mixed in two or more stages. In the first stage (often referred to as the masterbatch mixing stage), a so-called masterbatch, which typically includes the rubber component and filler, is prepared. To prevent premature vulcanization (also known as scorch), the masterbatch may exclude vulcanizing agents. The masterbatch may be mixed at a starting temperature of from about 25 °C to about 125 °C with a discharge temperature of about 135 °C to about 180 °C. Once the masterbatch is prepared, the vulcanizing agents may be introduced and mixed into the masterbatch in a final mixing stage, which is typically conducted at relatively low temperatures so as to reduce the chances of premature vulcanization. Optionally, additional mixing stages, sometimes called remills, can be employed between the masterbatch mixing stage and the final mixing stage. One or more remill stages are often employed where the rubber composition includes silica as the filler. Various ingredients including the polymers of this invention can be added during these remills.
- The mixing procedures and conditions particularly applicable to silica-filled tire formulations are described in
U.S. Patent Nos. 5,227,425 ,5,719,207 , and5,717,022 , as well asEuropean Patent No. 890,606 - The rubber compositions prepared from the polymers of this invention are particularly useful for forming tire components such as treads, subtreads, sidewalls, body ply skims, bead filler, and the like. Preferably, the polymers of this invention are employed in tread and sidewall formulations. In one or more embodiments, these tread or sidewall formulations may include from about 10% to about 100% by weight, in other embodiments from about 35% to about 90% by weight, and in other embodiments from about 50% to about 80% by weight of the polymer based on the total weight of the rubber within the formulation.
- Where the rubber compositions are employed in the manufacture of tires, these compositions can be processed into tire components according to ordinary tire manufacturing techniques including standard rubber shaping, molding and curing techniques. Typically, vulcanization is effected by heating the vulcanizable composition in a mold; e.g., it may be heated to about 140 °C to about 180 °C. Cured or crosslinked rubber compositions may be referred to as vulcanizates, which generally contain three-dimensional polymeric networks that are thermoset. The other ingredients, such as fillers and processing aids, may be evenly dispersed throughout the crosslinked network. Pneumatic tires can be made as discussed in
U.S. Patent Nos. 5,866,171 ,5,876,527 ,5,931,211 , and5,971,046 . - In order to demonstrate the practice of the present invention, the following examples have been prepared and tested.
- In this example, 1,3-butadiene was polymerized into cis-1,4-polybutadiene by a batch polymerization process. The polymerization reactor consisted of a two-gallon stainless cylinder equipped with a mechanical agitator (shaft and blades) capable of mixing high viscosity polymer cement. The reactor was also equipped with a water jacket to which could be supplied water with a controlled temperature. The jacket temperature was set to 100 °F. To the reactor were added 3.49 lbs. of anhydrous hexanes and 6.51 lbs. of a 21.5 wt. % solution of butadiene in hexanes. 45.1 mL of 1.07 M triisobutylaluminum in hexane was charged into the reactor followed by the addition of 2.3 mL of 1.21 M neodymium(III) versatate in hexane. After the mixture inside the reactor was allowed to age for 5 minutes, the polymerization was started by charging 2.33 mL of 1.08 M ethylaluminum dichloride in hexane into the reactor and the temperature of the jacket was increased to 180 °F. After 60 minutes from the start of the polymerization, the jacket temperature was decreased to 40 °F. After an additional 20 minutes a portion of the polymer cement was dropped from the reactor into two, nitrogen purged glass bottles. The polymer was quenched with isopropanol to provide an unmodified polymer sample. The polymer was coagulated in 8 L isopropanol containing 15 g of 2,6-di-tert-butyl-4-methylphenol. The coagulated polymer was drum-dried. The yield of the polymer was 91.57 g (92.9% conversion). The Mooney viscosity (MLl+4) of the polymer was determined to be 21.1 at 100 °C by using a Monsanto Mooney viscometer with a large rotor, a one-minute warm-up time, and a four-minute running time. As determined by gel permeation chromatography (GPC), the polymer had a number average molecular Weight (Mn) of 64,000 g/mole, a weight average molecular weight (Mw) of 227,000 g/mole, and a molecular weight distribution (Mw/Mn) of 3.5. The infrared spectroscopic analysis of the polymer indicated a cis-1,4-linkage content of 95.1%, a trans-1,4-linkage content of 4.13%, and a 1,2-linkage content of 0.8%.
- Two additional bottles of polymer cement were prepared as in the control. To each bottle was added enough neat (EtO)3SiH to constitute 25 equiv. per Nd (∼0.43 mL per bottle). The bottles were placed in an agitating water bath held at a temperature of 65 °C for 30 minutes. The polymer was quenched with isopropanol. The polymer was coagulated in 8 L isopropanol containing 15 g of 2,6-di-tert-butyl-4-methylphenol. The coagulated polymer was drum-dried. The yield of the polymer was 88.87 g. The resulting polymer had the following properties: MLl+4: 37.1, base Mn: 68,000 g/mole, base Mw: 202,000 g/mole, Mw/Mn: 3.0, cis-1,4-linkage: 95.0%, trans-1,4-linkage: 4.2%, and 1,2-linkage: 0.8%. In addition there was a higher molecular weight species present with an Mn of approximately 27,000,000 which constituted 1.0% of the polymer.
- Two additional bottles of polymer cement were prepared as in the control. To each bottle was added enough neat (EtO)3SiH to constitute 50 equiv. per Nd (~0.90 mL per bottle). The bottles were placed in an agitating water bath held at a temperature of 65 °C for 30 minutes. The polymer was quenched with isopropanol. The polymer was coagulated in 8 L isopropanol containing 15 g of 2,6-di-tert-butyl-4-methylphenol. The coagulated polymer was drum-dried. The yield of the polymer was 90.56 g. The resulting polymer had the following properties: MLl+4: 40.4, base Mn: 71,000 g/mole, base Mw: 191,000 g/mole, Mw/Mn: 2.7, cis-1,4-linkage: 94.8%, trans-1,4-linkage: 4.4%, and 1,2-linkage: 0.8%. In addition there was a higher molecular weight species present with an Mn of approximately 29,000,000 which constituted 1.5% of the polymer.
- Two additional bottles of polymer cement were prepared as in the control. To each bottle was added enough neat (EtO)3SiH to constitute 100 equiv. per Nd (∼1.75 mL per bottle). The bottles were placed in an agitating water bath held at a temperature of 65 °C for 30 minutes. The polymer was quenched with isopropanol. The polymer was coagulated in 8 L isopropanol containing 15 g of 2,6-di-tert-butyl-4-methylphenol. The coagulated polymer was drum-dried. The yield of the polymer was 90.56 g. The resulting polymer had the following properties: MLl+4: 52.3, base Mn: 63,000 g/mole, base MW: 197,000 g/mole, Mw/Mn: 3.1, cis-1,4-linkage: 95.0%, trans-1,4-linkage: 4.2%, and 1,2-linkage: 0.8%. In addition there was a higher molecular weight species present with an Mn of approximately 73,000,000 which constituted 1.6% of the polymer.
- In this example, 1,3-butadiene was polymerized into cis-1,4-polybutadiene by a batch polymerization process. The polymerization reactor consisted of a nitrogen purged 750 mL glass bottle equipped with a rubber septum and crimped metal cap which had two holes to allow for the addition of reagents. To the bottle were added 99.7 g of anhydrous hexanes and 233.6 g of a 21.4 wt. % solution of butadiene in hexanes. 2.55 mL of 1.00 M triisobutylaluminum in hexane was charged into the bottle followed by the addition of 1.57 mL of 0.054 M neodymium(III) versatate in hexane. The polymerization was started by charging 0.24 mL of 1.08 M diethylaluminum chloride in hexane into the bottle and the bottle was placed in an agitating water bath held at a temperature of 80 °C for 30 minutes. The polymer was quenched with isopropanol to provide an unmodified polymer sample. The polymer was coagulated in 8 L isopropanol containing 15 g of 2,6-di-tert-butyl-4-methylphenol. The coagulated polymer was drum-dried. The yield of the polymer was 51.1 g (102.2% conversion). The resulting polymer had the following properties: MLl+4: 38.5, Mn: 93,000 g/mole, Mw: 305,000 g/mole, Mw/Mn: 3.3, cis-1,4-linkage:96.9%, trans-1,4-linkage2.2%, and 1,2-linkage:0.9%.
- A bottle of polymer cement was prepared as in Comparative Example 1. To the bottle was added 8.50 mL of a 1.00 M solution of Octyl(EtO)3Si in toluene (100 equiv. per Nd). The bottle was placed in an agitating water bath held at a temperature of 65 °C for 30 minutes. The polymer was quenched with isopropanol. The polymer was coagulated in 8 L isopropanol containing 15 g of 2,6-di-tert-butyl-4-methylphenol. The coagulated polymer was drum-dried. The yield of the polymer was 49.70 g. The resulting polymer had the following properties: MLl+4: 33.2, base Mn: 92,000 g/mole, base Mw: 296,000 g/mole, Mw/Mn: 3.2. No higher molecular weight species was observed by GPC.
- As can be seen by comparing Examples 1, 2, and 3, to the Control and Comparative Example 1, a higher molecular weight species is only observed upon the addition of (EtO)3SiH. It is believed that the higher molecular weight species is the result of coupling that results from the (EtO)3SiH-functionalized polymer. Further comparing Examples 1, 2, and 3, to Comparative Example 2, higher molecular weight species is not observed with the addition of Octyl(EtO)3Si in comparative Example 2, indicating that a hydrosilane is necessary for the functionalization reaction with the polymer.
- A small N2 purged sealed glass vessel was charged with 10.46 mL of an 2.81 M solution of MAO in toluene and 2.25 mL of a 21.4% wt. solution of butadiene in hexanes. To this mixture was added 0.57 mL of a 0.518 M solution of NdV3 in hexanes, rapidly followed by 5.99 mL of a 1.03 M solution of DIBAH in hexanes. The mixture was vigorously shaken and allowed to age at 23 °C for 2 minutes. To this mixture was added 1.10 mL of a 1.07 M solution of DEAC in hexanes. After this mixture was aged at 23 °C for 14 minutes, the active catalyst mixture was diluted with 3.06 mL of toluene. The catalyst was used to prepare Control 2 and Examples 4-7.
- Two N2 purged sealed glass vessels were charged with 117.8 g of hexanes followed by 232.2 g of a 21.1% wt. solution of butadiene in hexanes. To each vessel was added 3.06 mL of Preformed Catalyst 1 described above. The vessels were then immediately placed in an agitating bath at 65 °C. After 60 minutes of agitation, the vessels were removed from the bath and terminated with 4 mL of isopropyl alcohol containing 0.46 g of 2,6-di-tert-butyl-4-methylphenol. The polymer cement was combined and coagulated in 8 L isopropyl alcohol containing 15 g of 2,6-di-tert-butyl-4-methylphenol and then drum dried. The yield of the polymer was 98.4 g. The resulting polymer had the following properties: MLl+4: 33.7, base Mn: 123,000 g/mole, base MW: 247,000 g/mole, Mw/Mn: 2.0, cis-1,4-linkage: 94.6%, trans-1,4-linkage: 4.8%, and 1,2-linkage: 0.6%.
- Two N2 purged sealed glass vessels were charged with 117.8 g of hexanes followed by 232.2 g of a 21.1% wt. solution of butadiene in hexanes. To each vessel was added 3.06 mL of Preformed Catalyst 1 described above. The vessels were then immediately placed in an agitating bath at 65 °C. After 60 minutes of agitation, the vessels were removed from the bath and 1.54 mL of triethoxysilane was added to each vessel. The bottles were then placed in an agitating bath at 80 °C. After 60 minutes the vessels were removed from the bath and terminated with 4 mL of isopropyl alcohol containing 0.46 g of 2,6-di-tert-butyl-4-methylphenol. The polymer cement was combined and coagulated in 8 L isopropyl alcohol containing 15 g of 2,6-di-tert-butyl-4-methylphenol and then drum dried. The yield of the polymer was 97.7 g. The resulting polymer had the following properties: ML1+4: 33.8, base Mn: 128,000 g/mole, base Mw: 224,000 g/mole, Mw/Mn: 2.0, cis-1,4-linkage: 94.7%, trans-1,4-linkage: 4.8%, and 1,2-linkage: 0.5%. In addition there was a higher molecular weight species present with an Mn of approximately 11,000,000 which constituted 1.7% of the polymer.
- Two N2 purged sealed glass vessels were charged with 117.8 g of hexanes followed by 232.2 g of a 21.1% wt. solution of butadiene in hexanes. To each vessel was added 3.06 mL of Preformed Catalyst 1 described above. The vessels were then immediately placed in an agitating bath at 65 °C. After 60 minutes of agitation, the vessels were removed from the bath and 2.11 mL of 1,1,3,3,5,5,-hexamethyltrisiloxane was added to each vessel. The bottles were then placed in an agitating bath at 80 °C. After 60 minutes the vessels were removed from the bath and terminated with 4 mL of isopropyl alcohol containing 0.46 g of 2,6-di-tert-butyl-4-methylphenol. The polymer cement was combined and coagulated in 8 L isopropyl alcohol containing 15 g of 2,6-di-tert-butyl-4-methylphenol and then drum dried. The yield of the polymer was 97.6 g. The resulting polymer had the following properties: MLl+4: 31.4, base Mn: 119,000 g/mole, base Mw: 241,000 g/mole, Mw/Mn: 2.0, cis-1,4-linkage: 94.5%, trans-1,4-linkage: 4.9%, and 1,2-linkage: 0.6%.
- Two N2 purged sealed glass vessels were charged with 117.8 g of hexanes followed by 232.2 g of a 21.1% wt. solution of butadiene in hexanes. To each vessel was added 3.06 mL of Preformed Catalyst 1 described above. The vessels were then immediately placed in an agitating bath at 65 °C. After 60 minutes of agitation, the vessels were removed from the bath and 2.26 mL of 1,1,1,3,3,5,5,-heptamethyltrisiloxane was added to each vessel. The bottles were then placed in an agitating bath at 80 °C. After 60 minutes the vessels were removed from the bath and terminated with 4 mL of isopropyl alcohol containing 0.46 g of 2,6-di-tert-butyl-4-methylphenol. The polymer cement was combined and coagulated in 8 L isopropyl alcohol containing 15 g of 2,6-di-tert-butyl-4-methylphenol and then drum dried. The yield of the polymer was 97.7 g. The resulting polymer had the following properties: MLl+4: 30.5, base Mn: 123,000 g/mole, base Mw: 236,000 g/mole, Mw/Mn: 1.9, cis-1,4-linkage: 94.5%, trans-1,4-linkage: 4.9%, and 1,2-linkage: 0.6%.
- Two N2 purged sealed glass vessels were charged with 117.8 g of hexanes followed by 232.2 g of a 21.1% wt. solution of butadiene in hexanes. To each vessel was added 3.06 mL of Preformed Catalyst 1 described above. The vessels were then immediately placed in an agitating bath at 65 °C. After 60 minutes of agitation, the vessels were removed from the bath and 3.04 mL of 1,1,3,3,5,5,-hexamethyltrisiloxane was added to each vessel. The bottles were then placed in an agitating bath at 80 °C. After 60 minutes the vessels were removed from the bath and terminated with 4 mL of isopropyl alcohol containing 0.46 g of 2,6-di-tert-butyl-4-methylphenol. The polymer cement was combined and coagulated in 8 L isopropyl alcohol containing 15 g of 2,6-di-tert-butyl-4-methylphenol and then drum dried. The yield of the polymer was 98.3 g. The resulting polymer had the following properties: ML1+4: 48.7, base Mn: 137,000 g/mole, base Mw: 248,000 g/mole, Mw/Mn: 1.8, cis-1,4-linkage: 94.5%, trans-1,4-linkage: 4.9%, and 1,2-linkage: 0.6%. In addition there was a higher molecular weight species present with an Mn of approximately 23,000,000 which constituted 4.8% of the polymer.
Table 1 Compound Formulation Masterbatch Amount (phr) Synthetic polymer 80 Natural Rubber 20 Black oil 10 Silica 55 60% disulfide silane 4.4 Stearic acid 2 6-PPD 1 Wax 2 Final Zinc Oxide 2.5 DPG 1.4 MBTS 0.6 TBBS 1.5 Sulfur 1.5 TOTAL 181.9 - Testing data in the Examples was performed on vulcanizates, which were cured for ~15 minutes at 160 °C. The compounds from which these vulcanizates were prepared were made according to the formulations shown above in Table 1 where N-phenyl-N'-(1,3-dimethylbutyl)-p-phenylenediamine (6-PPD) acts as an antioxidant and 2,2'-dithiobis(benzothiazole) (MBTS), N-tert-butylbenzothiazole-2-sulfenamide (TBBS) and N,N'-diphenylguanidine (DPG) act as accelerators. Black oil is an extender oil that contains a relatively low amount of polycyclic aromatic (PCA) compounds.
- Using the formulation from Table 1 above, vulcanizable elastormeric compounds containing reinforcing fillers were prepared from Controls 1 and 2 and Examples 1-7. Results of physical testing on these compounds are shown below in Table 2 and 3. Tensile mechanical properties were determined using the standard procedure described in ASTM-D412; Payne effect (ΔG', i.e., the difference between G' at 0.25% strain and at 14% strain) and hysteresis (tan δ) data were obtained from dynamic experiments conducted at 60 °C. and 10 Hz (strain sweep). With respect to tensile properties, Mx is modulus at x % elongation.
Table 2 Testing Data for Control 1 and Examples 1-3 Control 1 Example 1 Example 2 Example 3 M50 (MPa) 1.62 1.68 1.65 1.66 M300 (MPa) 8.16 9.52 8.97 9.32 ΔG' (MPa) 4.618 3.450 3.108 2.905 Table 3 Testing Data for Control 2 and Examples 4-7 Control 2 Example 4 Example 5 Example 6 Example 7 M50 (MPa) 2.01 2.05 2.06 2.05 2.05 M300 (MPa) 10.08 10.72 10.51 10.67 11.50 ΔG' (MPa) 4.673 4.088 4.688 4.062 3.312 - From the data in Tables 1 and 2, one can see that compounds made with the hydrosilane modified polymer (Examples 1-7) can exhibit improved Payne effect (reduced ΔG') compared to non-modified polymer (Controls 1 & 2).
- In this example, 1,3-butadiene was polymerized into cis-1,4-polybutadiene by a batch polymerization process. The polymerization reactor consisted of a two-gallon stainless cylinder equipped with a mechanical agitator (shaft and blades) capable of mixing high viscosity polymer cement. The reactor was also equipped with a water jacket to which could be supplied water with a controlled temperature. The jacket temperature was set to 100 °F. To the reactor were added 3.49 lbs. of anhydrous hexanes and 6.51 lbs. of a 21.5 wt. % solution of butadiene in hexanes. 45.1 mL of 1.07 M triisobutylaluminum in hexane was charged into the reactor followed by the addition of 2.3 mL of 1.21 M neodymium(III) versatate in hexane. After the mixture inside the reactor was allowed to age for 5 minutes, the polymerization was started by charging 2.33 mL of 1.08 M ethylaluminum dichloride in hexane into the reactor and the temperature of the jacket was increased to 180 °F. After 60 minutes from the start of the polymerization, the jacket temperature was decreased to 40 °F. After an additional 20 minutes a portion of the polymer cement was dropped from the reactor into two, nitrogen purged glass bottles. The polymer was quenched with isopropanol to provide an unmodified polymer sample. The polymer was coagulated in 8 L isopropanol containing 15 g of 2,6-di-tert-butyl-4-methylphenol. The coagulated polymer was drum-dried. The yield of the polymer was 91.57 g (92.9% conversion). The Mooney viscosity (MLl+4) of the polymer was determined to be 21.1 at 100 °C by using a Monsanto Mooney viscometer with a large rotor, a one-minute warm-up time, and a four-minute running time. As determined by gel permeation chromatography (GPC), the polymer had a number average molecular Weight (Mn) of 64,000 g/mole, a weight average molecular weight (Mw) of 227,000 g/mole, and a molecular weight distribution (Mw/Mn) of 3.5. The infrared spectroscopic analysis of the polymer indicated a cis-1,4-linkage content of 95.1%, a trans-1,4-linkage content of 4.13%, and a 1,2-linkage content of 0.8%.
- Two additional bottles of polymer cement were prepared as in the control. To each bottle was added enough neat (EtO)3SiH to constitute 25 equiv. per Nd (∼0.43 mL per bottle). The bottles were placed in an agitating water bath held at a temperature of 65 °C for 30 minutes. The polymer was quenched with isopropanol. The polymer was coagulated in 8 L isopropanol containing 15 g of 2,6-di-tert-butyl-4-methylphenol. The coagulated polymer was drum-dried. The yield of the polymer was 88.87 g. The resulting polymer had the following properties: MLl+4: 37.1, base Mn: 68,000 g/mole, base Mw: 202,000 g/mole, Mw/Mn: 3.0, cis-1,4-linkage: 95.0%, trans-1,4-linkage: 4.2%, and 1,2-linkage: 0.8%. In addition there was a higher molecular weight species present with an Mn of approximately 27,000,000 which constituted 1.0% of the polymer.
- Two additional bottles of polymer cement were prepared as in the control. To each bottle was added enough neat (EtO)3SiH to constitute 50 equiv. per Nd (∼0.90 mL per bottle). The bottles were placed in an agitating water bath held at a temperature of 65 °C for 30 minutes. The polymer was quenched with isopropanol. The polymer was coagulated in 8 L isopropanol containing 15 g of 2,6-di-tert-butyl-4-methylphenol. The coagulated polymer was drum-dried. The yield of the polymer was 90.56 g. The resulting polymer had the following properties: MLl+4: 40.4, base Mn: 71,000 g/mole, base Mw: 191,000 g/mole, Mw/Mn: 2.7, cis-1,4-linkage: 94.8%, trans-1,4-linkage: 4.4%, and 1,2-linkage: 0.8%. In addition there was a higher molecular weight species present with an Mn of approximately 29,000,000 which constituted 1.5% of the polymer.
- Two additional bottles of polymer cement were prepared as in the control. To each bottle was added enough neat (EtO)3SiH to constitute 100 equiv. per Nd (∼1.75 mL per bottle). The bottles were placed in an agitating water bath held at a temperature of 65 °C for 30 minutes. The polymer was quenched with isopropanol. The polymer was coagulated in 8 L isopropanol containing 15 g of 2,6-di-tert-butyl-4-methylphenol. The coagulated polymer was drum-dried. The yield of the polymer was 90.56 g. The resulting polymer had the following properties: MLl+4: 52.3, base Mn: 63,000 g/mole, base MW: 197,000 g/mole, Mw/Mn: 3.1, cis-1,4-linkage: 95.0%, trans-1,4-linkage: 4.2%, and 1,2-linkage: 0.8%. In addition there was a higher molecular weight species present with an Mn of approximately 73,000,000 which constituted 1.6% of the polymer.
- In this example, 1,3-butadiene was polymerized into cis-1,4-polybutadiene by a batch polymerization process. The polymerization reactor consisted of a nitrogen purged 750 mL glass bottle equipped with a rubber septum and crimped metal cap which had two holes to allow for the addition of reagents. To the bottle were added 99.7 g of anhydrous hexanes and 233.6 g of a 21.4 wt. % solution of butadiene in hexanes. 2.55 mL of 1.00 M triisobutylaluminum in hexane was charged into the bottle followed by the addition of 1.57 mL of 0.054 M neodymium(III) versatate in hexane. The polymerization was started by charging 0.24 mL of 1.08 M diethylaluminum chloride in hexane into the bottle and the bottle was placed in an agitating water bath held at a temperature of 80 °C for 30 minutes. The polymer was quenched with isopropanol to provide an unmodified polymer sample. The polymer was coagulated in 8 L isopropanol containing 15 g of 2,6-di-tert-butyl-4-methylphenol. The coagulated polymer was drum-dried. The yield of the polymer was 51.1 g (102.2% conversion). The resulting polymer had the following properties: ML1+4: 38.5, Mn: 93,000 g/mole, Mw: 305,000 g/mole, Mw/Mn: 3.3, cis-1,4-linkage:96.9%, trans-1,4-linkage:2.2%, and 1,2-linkage:0.9%.
- A bottle of polymer cement was prepared as in Comparative Example 1. To the bottle was added 8.50 mL of a 1.00 M solution of Octyl(EtO)3Si in toluene (100 equiv. per Nd). The bottle was placed in an agitating water bath held at a temperature of 65 °C for 30 minutes. The polymer was quenched with isopropanol. The polymer was coagulated in 8 L isopropanol containing 15 g of 2,6-di-tert-butyl-4-methylphenol. The coagulated polymer was drum-dried. The yield of the polymer was 49.70 g. The resulting polymer had the following properties: ML1+4: 33.2, base Mn: 92,000 g/mole, base Mw: 296,000 g/mole, Mw/Mn: 3.2. No higher molecular weight species was observed by GPC.
- As can be seen by comparing Examples 1, 2, and 3, to the Control and Comparative Example 1, a higher molecular weight species is only observed upon the addition of (EtO)3SiH. It is believed that the higher molecular weight species is the result of coupling that results from the (EtO)3SiH-functionalized polymer. Further comparing Examples 1, 2, and 3, to Comparative Example 2, higher molecular weight species is not observed with the addition of Octyl(EtO)3Si in comparative Example 2, indicating that a hydrosilane is necessary for the functionalization reaction with the polymer.
- A small N2 purged sealed glass vessel was charged with 10.46 mL of an 2.81 M solution of MAO in toluene and 2.25 mL of a 21.4% wt. solution of butadiene in hexanes. To this mixture was added 0.57 mL of a 0.518 M solution of NdV3 in hexanes, rapidly followed by 5.99 mL of a 1.03 M solution of DIBAH in hexanes. The mixture was vigorously shaken and allowed to age at 23 °C for 2 minutes. To this mixture was added 1.10 mL of a 1.07 M solution of DEAC in hexanes. After this mixture was aged at 23 °C for 14 minutes, the active catalyst mixture was diluted with 3.06 mL of toluene. The catalyst was used to prepare Control 2 and Examples 4-7.
- Two N2 purged sealed glass vessels were charged with 117.8 g of hexanes followed by 232.2 g of a 21.1% wt. solution of butadiene in hexanes. To each vessel was added 3.06 mL of Preformed Catalyst 1 described above. The vessels were then immediately placed in an agitating bath at 65 °C. After 60 minutes of agitation, the vessels were removed from the bath and terminated with 4 mL of isopropyl alcohol containing 0.46 g of 2,6-di-tert-butyl-4-methylphenol. The polymer cement was combined and coagulated in 8 L isopropyl alcohol containing 15 g of 2,6-di-tert-butyl-4-methylphenol and then drum dried. The yield of the polymer was 98.4 g. The resulting polymer had the following properties: ML1+4: 33.7, base Mn: 123,000 g/mole, base MW: 247,000 g/mole, Mw/Mn: 2.0, cis-1,4-linkage: 94.6%, trans-1,4-linkage: 4.8%, and 1,2-linkage: 0.6%.
- Two N2 purged sealed glass vessels were charged with 117.8 g of hexanes followed by 232.2 g of a 21.1% wt. solution of butadiene in hexanes. To each vessel was added 3.06 mL of Preformed Catalyst 1 described above. The vessels were then immediately placed in an agitating bath at 65 °C. After 60 minutes of agitation, the vessels were removed from the bath and 1.54 mL of triethoxysilane was added to each vessel. The bottles were then placed in an agitating bath at 80 °C. After 60 minutes the vessels were removed from the bath and terminated with 4 mL of isopropyl alcohol containing 0.46 g of 2,6-di-tert-butyl-4-methylphenol. The polymer cement was combined and coagulated in 8 L isopropyl alcohol containing 15 g of 2,6-di-tert-butyl-4-methylphenol and then drum dried. The yield of the polymer was 97.7 g. The resulting polymer had the following properties: ML1+4: 33.8, base Mn: 128,000 g/mole, base Mw: 224,000 g/mole, Mw/Mn: 2.0, cis-1,4-linkage: 94.7%, trans-1,4-linkage: 4.8%, and 1,2-linkage: 0.5%. In addition there was a higher molecular weight species present with an Mn of approximately 11,000,000 which constituted 1.7% of the polymer.
- Two N2 purged sealed glass vessels were charged with 117.8 g of hexanes followed by 232.2 g of a 21.1% wt. solution of butadiene in hexanes. To each vessel was added 3.06 mL of Preformed Catalyst 1 described above. The vessels were then immediately placed in an agitating bath at 65 °C. After 60 minutes of agitation, the vessels were removed from the bath and 2.11 mL of 1,1,3,3,5,5,-hexamethyltrisiloxane was added to each vessel. The bottles were then placed in an agitating bath at 80 °C. After 60 minutes the vessels were removed from the bath and terminated with 4 mL of isopropyl alcohol containing 0.46 g of 2,6-di-tert-butyl-4-methylphenol. The polymer cement was combined and coagulated in 8 L isopropyl alcohol containing 15 g of 2,6-di-tert-butyl-4-methylphenol and then drum dried. The yield of the polymer was 97.6 g. The resulting polymer had the following properties: ML1+4: 31.4, base Mn: 119,000 g/mole, base Mw: 241,000 g/mole, Mw/Mn: 2.0, cis-1,4-linkage: 94.5%, trans-1,4-linkage: 4.9%, and 1,2-linkage: 0.6%.
- Two N2 purged sealed glass vessels were charged with 117.8 g of hexanes followed by 232.2 g of a 21.1% wt. solution of butadiene in hexanes. To each vessel was added 3.06 mL of Preformed Catalyst 1 described above. The vessels were then immediately placed in an agitating bath at 65 °C. After 60 minutes of agitation, the vessels were removed from the bath and 2.26 mL of 1,1,1,3,3,5,5,-heptamethyltrisiloxane was added to each vessel. The bottles were then placed in an agitating bath at 80 °C. After 60 minutes the vessels were removed from the bath and terminated with 4 mL of isopropyl alcohol containing 0.46 g of 2,6-di-tert-butyl-4-methylphenol. The polymer cement was combined and coagulated in 8 L isopropyl alcohol containing 15 g of 2,6-di-tert-butyl-4-methylphenol and then drum dried. The yield of the polymer was 97.7 g. The resulting polymer had the following properties: ML1+4: 30.5, base Mn: 123,000 g/mole, base Mw: 236,000 g/mole, Mw/Mn: 1.9, cis-1,4-linkage: 94.5%, trans-1,4-linkage: 4.9%, and 1,2-linkage: 0.6%.
- Two N2 purged sealed glass vessels were charged with 117.8 g of hexanes followed by 232.2 g of a 21.1% wt. solution of butadiene in hexanes. To each vessel was added 3.06 mL of Preformed Catalyst 1 described above. The vessels were then immediately placed in an agitating bath at 65 °C. After 60 minutes of agitation, the vessels were removed from the bath and 3.04 mL of 1,1,3,3,5,5,-hexamethyltrisiloxane was added to each vessel. The bottles were then placed in an agitating bath at 80 °C. After 60 minutes the vessels were removed from the bath and terminated with 4 mL of isopropyl alcohol containing 0.46 g of 2,6-di-tert-butyl-4-methylphenol. The polymer cement was combined and coagulated in 8 L isopropyl alcohol containing 15 g of 2,6-di-tert-butyl-4-methylphenol and then drum dried. The yield of the polymer was 98.3 g. The resulting polymer had the following properties: ML1+4: 48.7, base Mn: 137,000 g/mole, base Mw: 248,000 g/mole, Mw/Mn: 1.8, cis-1,4-linkage: 94.5%, trans-1,4-linkage: 4.9%, and 1,2-linkage: 0.6%. In addition there was a higher molecular weight species present with an Mn of approximately 23,000,000 which constituted 4.8% of the polymer.
Table 1 Compound Formulation Masterbatch Amount (phr) Synthetic polymer 80 Natural Rubber 20 Black oil 10 Silica 55 60% disulfide silane 4.4 Stearic acid 2 6-PPD 1 Wax 2 Final Zinc Oxide 2.5 DPG 1.4 MBTS 0.6 TBBS 1.5 Sulfur 1.5 TOTAL 181.9 - Testing data in the Examples was performed on vulcanizates, which were cured for ~15 minutes at 160 °C. The compounds from which these vulcanizates were prepared were made according to the formulations shown above in Table 1 where N-phenyl-N'-(1,3-dimethylbutyl)-p-phenylenediamine (6-PPD) acts as an antioxidant and 2,2'-dithiobis(benzothiazole) (MBTS), N-tert-butylbenzothiazole-2-sulfenamide (TBBS) and N,N'-diphenylguanidine (DPG) act as accelerators. Black oil is an extender oil that contains a relatively low amount of polycyclic aromatic (PCA) compounds.
- Using the formulation from Table 1 above, vulcanizable elastormeric compounds containing reinforcing fillers were prepared from Controls 1 and 2 and Examples 1-7. Results of physical testing on these compounds are shown below in Table 2 and 3. Tensile mechanical properties were determined using the standard procedure described in ASTM-D412; Payne effect (ΔG', i.e., the difference between G' at 0.25% strain and at 14% strain) and hysteresis (tan δ) data were obtained from dynamic experiments conducted at 60 °C. and 10 Hz (strain sweep). With respect to tensile properties, Mx is modulus at x % elongation.
Table 2 Testing Data for Control 1 and Examples 1-3 Control 1 Example 1 Example 2 Example 3 M50 (MPa) 1.62 1.68 1.65 1.66 M300 (MPa) 8.16 9.52 8.97 9.32 ΔG' (MPa) 4.618 3.450 3.108 2.905 Table 3 Testing Data for Control 2 and Examples 4-7 Control 2 Example 4 Example 5 Example 6 Example 7 M50 (MPa) 2.01 2.05 2.06 2.05 2.05 M300 (MPa) 10.08 10.72 10.51 10.67 11.50 ΔG' (MPa) 4.673 4.088 4.688 4.062 3.312 - From the data in Tables 1 and 2, one can see that compounds made with the hydrosilane modified polymer (Examples 1-7) can exhibit improved Payne effect (reduced ΔG') compared to non-modified polymer (Controls 1 & 2).
- Various modifications and alterations that do not depart from the scope and spirit of this invention will become apparent to those skilled in the art. This invention is not to be duly limited to the illustrative embodiments set forth herein.
Claims (11)
- A method of preparing a silane-functionalized polymer, the method comprising:(i) preparing a polymerization system including a cis-1,4-polydiene by introducing a lanthanide-based catalyst and a conjugated diene monomer; and(ii) adding a hydrosilane compound to the polymerization system including a cis-1,4-polydiene.
- The method of claim 1, where the lanthanide-based catalyst includes (a) a lanthanide-containing compound, (b) an alkylating agent, and (c) a halogen source.
- The method of claim 1 or claim 2, further comprising the step of chain-end functionalizing the cis-1,4-polydiene by reacting a cis-1,4-polydiene having a reactive chain end with a secondary-functionalizing agent.
- The method of any of the preceding claims, where no additional catalyst is added prior to the step of adding the hydrosilane compound to the polymerization system including a cis-1,4-polydiene.
- The method of any of claims 1 to 4, where the hydrosilane compound is defined by the formula I
SiHxR4-x
where x is an integer from 1 to 4, and each R is independently a halogen atom, or a monovalent organic group, or where two or more R groups may join to form a polyvalent organic group. - The method of any of claims 1 to 4, where the hydrosilane compound is defined by the formula II
SiHx(OR)4-x
where x is an integer from 1 to 4, and each R is individually a hydrocarbyl or silyl group, or where two or more R groups join to form a polyvalent organic group. - The method of any of claims 1 to 4, where the hydrosilane compound is defined by the formula III
- The method of any of claims 1 to 4, where the hydrosilane compound is defined by the formula IV
- The method of any of claims 1 to 4, where the hydrosilane compound is selected from the group consisting of trihydrocarbyloxy silane, hydrocarbyl dihydrocarbyloxy silane, dihydrocarbyl hydrocarbyloxy silane, trisilyloxy silane, hydrocarbyl disilyloxy silane, dihydrocarbyl silyloxy silane, and cyclic hydrosilane compounds.
- The method of any of the preceding claims, where the cis-1,4-polydiene has a 1,2-linkage content of from 0.1 to 7%, a cis-1,4-linkage content that is greater than 60%, and a number average molecular weight of from 1,000 to 1,000,000.
- A vulcanizable composition comprising: the silane-functionalized polymer prepared by the method of any of the preceding claims, a filler, and a curative.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662383093P | 2016-09-02 | 2016-09-02 | |
PCT/US2017/049867 WO2018045291A1 (en) | 2016-09-02 | 2017-09-01 | Production of cis-1,4-polydienes with multiple silane functional groups prepared by in-situ hydrosilylation of polymer cement |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3507104A1 EP3507104A1 (en) | 2019-07-10 |
EP3507104B1 true EP3507104B1 (en) | 2024-03-27 |
Family
ID=59914520
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17769147.4A Active EP3507104B1 (en) | 2016-09-02 | 2017-09-01 | Production of cis-1,4-polydienes with multiple silane functional groups prepared byin-situ |
Country Status (5)
Country | Link |
---|---|
US (1) | US10975178B2 (en) |
EP (1) | EP3507104B1 (en) |
JP (1) | JP6869333B2 (en) |
CN (1) | CN109641482B (en) |
WO (1) | WO2018045291A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10954327B2 (en) * | 2016-10-31 | 2021-03-23 | Bridgestone Corporation | Methods to prepare catalysts for in-line bulk polymerization |
JP7021650B2 (en) * | 2019-02-15 | 2022-02-17 | 信越化学工業株式会社 | Rubber compositions and organosilicon compounds |
Family Cites Families (97)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE787691A (en) | 1971-08-17 | 1973-02-19 | Degussa | ORGANOSILICIC COMPOUNDS CONTAINING SULFUR |
US3873489A (en) | 1971-08-17 | 1975-03-25 | Degussa | Rubber compositions containing silica and an organosilane |
US3978103A (en) | 1971-08-17 | 1976-08-31 | Deutsche Gold- Und Silber-Scheideanstalt Vormals Roessler | Sulfur containing organosilicon compounds |
SU580840A3 (en) | 1974-02-07 | 1977-11-15 | Дегусса (Фирма) | Method of preparing sulfur-containing silicones |
US4002594A (en) | 1975-07-08 | 1977-01-11 | Ppg Industries, Inc. | Scorch retardants for rubber reinforced with siliceous pigment and mercapto-type coupling agent |
US4477326A (en) | 1983-06-20 | 1984-10-16 | Loctite Corporation | Polyphotoinitiators and compositions thereof |
FR2579982B1 (en) | 1985-04-05 | 1987-05-15 | Poudres & Explosifs Ste Nale | |
US5064910A (en) | 1986-09-05 | 1991-11-12 | Japan Synthetic Rubber Co., Ltd. | Preparation of conjugated diene polymers modified with an organo-tin or germanium halide |
US4906706A (en) | 1986-09-05 | 1990-03-06 | Japan Synthetic Rubber Co., Ltd. | Modified conjugated diene polymer and process for production thereof |
JPH01110543A (en) * | 1987-10-22 | 1989-04-27 | Bridgestone Corp | Rubber composition |
US4803244A (en) | 1987-11-16 | 1989-02-07 | Union Carbide Corporation | Process for the preparation of thermoplastic elastomers |
IT1230756B (en) | 1989-02-17 | 1991-10-29 | Enichem Elastomers | METHOD FOR THE PREPARATION OF POLYBUTADIENE FOR IMPROVED WORKABILITY. |
JPH0684381B2 (en) * | 1990-09-14 | 1994-10-26 | 工業技術院長 | Method for producing organosilicon compound |
FR2673187B1 (en) | 1991-02-25 | 1994-07-01 | Michelin & Cie | RUBBER COMPOSITION AND TIRE COVERS BASED ON SAID COMPOSITION. |
JP3211274B2 (en) | 1991-08-27 | 2001-09-25 | 旭化成株式会社 | Method for producing conjugated diene polymer |
JP3230532B2 (en) | 1991-08-28 | 2001-11-19 | 旭化成株式会社 | Method for producing conjugated diene polymer |
GB9119234D0 (en) | 1991-09-09 | 1991-10-23 | Enichem Elastomers Ltd | Conjugated diene polymerisation |
WO1995004090A1 (en) | 1993-07-30 | 1995-02-09 | Nippon Zeon Co., Ltd. | Modified conjugated diene copolymer, process for producing the same, and composition thereof |
JP3681412B2 (en) | 1993-09-20 | 2005-08-10 | 住友ゴム工業株式会社 | Silane-modified diene rubber, vulcanized rubber composition, and method for producing silane-modified diene rubber |
DE4436059A1 (en) | 1994-10-10 | 1996-04-11 | Bayer Ag | Process for the preparation of diene rubbers polymerized by means of Nd catalysts with a low cold flow and low intrinsic odor |
US5674932A (en) | 1995-03-14 | 1997-10-07 | The Goodyear Tire & Rubber Company | Silica reinforced rubber composition and use in tires |
US5580919A (en) | 1995-03-14 | 1996-12-03 | The Goodyear Tire & Rubber Company | Silica reinforced rubber composition and use in tires |
JP3555809B2 (en) | 1995-06-19 | 2004-08-18 | 株式会社ブリヂストン | Radial tire |
AT405285B (en) | 1995-09-07 | 1999-06-25 | Semperit Ag | RUBBER BLEND |
US5672660A (en) | 1995-12-01 | 1997-09-30 | Advanced Elastomer Systems, L.P. | Hydrosilylation crosslinking |
US5583245A (en) | 1996-03-06 | 1996-12-10 | The Goodyear Tire & Rubber Company | Preparation of sulfur-containing organosilicon compounds |
US5719207A (en) | 1996-03-18 | 1998-02-17 | The Goodyear Tire & Rubber Company | Silica reinforced rubber composition and tire with tread |
US5696197A (en) | 1996-06-21 | 1997-12-09 | The Goodyear Tire & Rubber Company | Heterogeneous silica carbon black-filled rubber compound |
JP3606411B2 (en) | 1996-07-10 | 2005-01-05 | 株式会社ブリヂストン | Tire vulcanization mold and manufacturing method thereof |
US5810705A (en) | 1996-08-28 | 1998-09-22 | Kanegafuchi Kagaku Kogyo Kabushiki Kaisha | Developing roller |
JP3117645B2 (en) | 1996-09-03 | 2000-12-18 | 株式会社ブリヂストン | Pneumatic radial tire |
US5663396A (en) | 1996-10-31 | 1997-09-02 | The Goodyear Tire & Rubber Company | Preparation of sulfur-containing organosilicon compounds |
US5684172A (en) | 1997-02-11 | 1997-11-04 | The Goodyear Tire & Rubber Company | Process for the preparation of organosilicon polysulfide compounds |
US5684171A (en) | 1997-02-11 | 1997-11-04 | The Goodyear Tire & Rubber Company | Process for the preparation of organosilicon polysulfide compounds |
ES2198651T3 (en) | 1997-03-05 | 2004-02-01 | Jsr Corporation | METHOD TO PRODUCE CONJUGATED DIENO POLYMERS. |
JP4489194B2 (en) | 1997-03-05 | 2010-06-23 | Jsr株式会社 | Method for producing conjugated diene polymer |
JP3724125B2 (en) | 1997-07-15 | 2005-12-07 | Jsr株式会社 | Method for producing conjugated diene polymer |
US6221943B1 (en) | 1997-07-11 | 2001-04-24 | Bridgestone Corporation | Processability of silica-filled rubber stocks |
US6384117B1 (en) | 1997-07-11 | 2002-05-07 | Bridgestone Corporation | Processability of silica-filled rubber stocks |
US6525118B2 (en) | 1997-07-11 | 2003-02-25 | Bridgestone Corporation | Processability of silica-filled rubber stocks with reduced hysteresis |
EP0996676B1 (en) | 1997-07-11 | 2002-06-12 | Compagnie Generale Des Etablissements Michelin-Michelin & Cie | Diene rubber composition reinforced with white filler, comprising as coupling agent (white filler/elastomer) a multifunctionalized polyorganosiloxane |
CN101139355A (en) | 1997-08-21 | 2008-03-12 | 通用电气公司 | Blocked mercaptosilane coupling agents for filled rubbers |
US5971046A (en) | 1997-09-17 | 1999-10-26 | Bridgestone/Firestone, Inc. | Method and apparatus for bonding an active tag to a patch and a tire |
US6930147B1 (en) | 1998-09-02 | 2005-08-16 | Kaneka Corporation | Polymer, processes for producing polymer, and composition |
EP1013710A1 (en) | 1998-12-25 | 2000-06-28 | Nippon Mitsubishi Oil Corporation | Rubber composition |
US6271309B1 (en) | 1999-07-30 | 2001-08-07 | 3M Innovative Properties Company | Curable compositions comprising the hydrosilation product of olefin-containing polymers and organosiloxane hydrides, cured compositions made therefrom, and methods of making same |
US6977281B1 (en) | 1999-11-12 | 2005-12-20 | Bridgestone Corporation | Modified polymers prepared with lanthanide-based catalysts |
JP4898045B2 (en) | 1999-11-12 | 2012-03-14 | 株式会社ブリヂストン | Modified polymers produced using lanthanide-based catalysts |
EP1099711B1 (en) | 1999-11-12 | 2006-03-29 | JSR Corporation | Modified conjugated diene polymer, method of producing it and rubber composition comprising the same |
FR2802542A1 (en) | 1999-12-20 | 2001-06-22 | Michelin Soc Tech | VULCANIZABLE RUBBER COMPOSITION FOR THE MANUFACTURE OF A PNEUMATIC AND PNEUMATIC TIRE WHERE THE TREAD BAND INCLUDES SUCH A COMPOSITION |
JP4302272B2 (en) | 2000-01-24 | 2009-07-22 | 株式会社カネカ | Method for promoting hydrosilylation reaction |
US6590017B1 (en) | 2000-05-15 | 2003-07-08 | Bridgestone Corporation | Processability of silica-reinforced rubber containing an amide compound |
DE10037076A1 (en) | 2000-07-27 | 2002-02-07 | Bayer Ag | Polybutadienes with a reduced solution viscosity / Mooney viscosity ratio |
US6608145B1 (en) | 2000-10-13 | 2003-08-19 | Bridgestone Corporation | Silica-reinforced rubber compounded with an organosilane tetrasulfide silica coupling agent at high mixing temperature |
WO2002038615A1 (en) | 2000-11-10 | 2002-05-16 | Bridgestone Corporation | Functionalized high cis-1,4-polybutadiene prepared using novel functionalizing agents |
US6579949B1 (en) | 2001-10-30 | 2003-06-17 | Bridgestone Corporation | Preparation of low hysteresis rubber by reacting a lithium polymer with a sulfur containing reagent |
US6699813B2 (en) | 2001-11-07 | 2004-03-02 | Bridgestone Corporation | Lanthanide-based catalyst composition for the manufacture of polydienes |
JP2004035695A (en) | 2002-07-02 | 2004-02-05 | Tokai Rubber Ind Ltd | Rubber composition and office automation machine member obtained using the same |
JP4240209B2 (en) * | 2003-05-21 | 2009-03-18 | Jsr株式会社 | Modified conjugated diene polymer, production method thereof and composition containing the same |
US7008899B2 (en) | 2003-08-11 | 2006-03-07 | Bridgestone Corporation | Lanthanide-based catalyst composition for producing cis-1,4-polydienes |
US7351762B2 (en) | 2004-02-13 | 2008-04-01 | The Goodyear Tire & Rubber Company | Polymeric composition for seals and gaskets |
US7351776B2 (en) | 2004-03-02 | 2008-04-01 | Bridgestone Corporation | Bulk polymerization process |
US6972309B1 (en) | 2004-06-17 | 2005-12-06 | The Goodyear Tire & Rubber Company | Cure system for polyisoprene rubber |
KR101271929B1 (en) * | 2005-04-15 | 2013-06-05 | 가부시키가이샤 브리지스톤 | Modified conjugated diene copolymer, rubber compositions and tires |
US8653170B2 (en) | 2005-06-27 | 2014-02-18 | Exxonmobil Chemical Patents Inc. | Dynamic vulcanization process for preparing thermoplastic elastomers |
US7655728B2 (en) | 2005-06-27 | 2010-02-02 | Exxonmobil Chemical Patents Inc. | Preparation of thermoplastic elastomers by dynamic vulcanization in multi-screw extruders |
DE102005063355B4 (en) | 2005-09-21 | 2015-08-20 | Carl Freudenberg Kg | Rubber compound, process for its preparation and uses |
US7879952B2 (en) | 2005-12-28 | 2011-02-01 | Bridgestone Corporation | Functionalized polymers |
US7671138B2 (en) | 2006-05-26 | 2010-03-02 | Bridgestone Corporation | Polymers functionized with hydrobenzamides |
US7732534B2 (en) | 2006-08-28 | 2010-06-08 | Bridgestone Corporation | Polymers functionalized with nitro compounds |
US7951871B2 (en) | 2006-11-10 | 2011-05-31 | Exxonmobil Chemical Patents Inc. | Curing rubber by hydrosilation |
US8088868B2 (en) | 2006-12-19 | 2012-01-03 | Bridgestone Corporation | Polymers functionalized with protected oxime compounds |
ZA200711158B (en) | 2006-12-28 | 2009-03-25 | Bridgestone Corp | A method for producing functionalized cis-1,4-polydienes having high cis-1,4-linkage content and high functionality |
KR101598638B1 (en) * | 2007-06-18 | 2016-02-29 | 가부시키가이샤 브리지스톤 | Polymers functionalized with halosilanes containing an amino group |
US8314189B2 (en) | 2007-10-12 | 2012-11-20 | Bridgestone Corporation | Polymers functionalized with heterocyclic nitrile compounds |
EP2266819B1 (en) * | 2008-03-10 | 2013-11-06 | Bridgestone Corporation | Method for producing modified conjugated diene polymer/copolymer, modified conjugated diene polymer/copolymer, and rubber composition and tier using the same |
US7906592B2 (en) | 2008-07-03 | 2011-03-15 | Bridgestone Corporation | Polymers functionalized with imide compounds containing a protected amino group |
JP2010168528A (en) | 2008-10-09 | 2010-08-05 | Ube Ind Ltd | Modified conjugated diene polymer and method of production thereof, rubber reinforcing agent-compounded rubber composition containing the modified conjugate diene polymer and method of production thereof, and tire containing the rubber reinforcing agent-compounded rubber composition |
US8188195B2 (en) | 2008-12-31 | 2012-05-29 | Bridgestone Corporation | Polymers functionalized with nitroso compounds |
KR101692089B1 (en) | 2009-01-23 | 2017-01-02 | 가부시키가이샤 브리지스톤 | Polymers functionalized with polycyano compounds |
EP2382240B1 (en) | 2009-01-23 | 2014-04-16 | Bridgestone Corporation | Polymers functionalized with nitrile compounds containing a protected amino group |
FR2946050B1 (en) | 2009-06-02 | 2016-10-28 | Rhodia Operations | USE AS A COUPLING AGENT IN AN ELASTOMER (S) COMPOSITION COMPRISING A REINFORCING INORGANIC LOAD OF A PARTICULAR FUNCTIONALIZED ORGANOSILIC COMPOUND |
RU2539596C2 (en) * | 2009-08-24 | 2015-01-20 | Бриджстоун Корпорейшн | Method and catalyst system for producing polydiene |
US20110077325A1 (en) | 2009-09-30 | 2011-03-31 | Bridgestone Corporation | Functionalized polymers and methods for their manufacture |
EP2311889A1 (en) | 2009-10-16 | 2011-04-20 | LANXESS Deutschland GmbH | Neodym-catalysed polybutadiene |
JP5370076B2 (en) * | 2009-10-28 | 2013-12-18 | 宇部興産株式会社 | Modified conjugated diene polymer and method for producing the same |
JP2011127035A (en) * | 2009-12-18 | 2011-06-30 | Ube Industries Ltd | Modified conjugated diene polymer and method for producing the same |
US8338544B2 (en) | 2009-12-21 | 2012-12-25 | Bridgestone Corporation | Polymers functionalized with polyoxime compounds and methods for their manufacture |
US9481795B2 (en) | 2010-10-13 | 2016-11-01 | Exxonmobil Chemical Patents Inc. | Underwater pelletizing method for low viscosity hydrocarbon resins |
JP2012107141A (en) | 2010-11-18 | 2012-06-07 | Sumitomo Rubber Ind Ltd | Pneumatic tire |
MY168416A (en) | 2011-08-26 | 2018-11-09 | Asahi Kasei Chemicals Corp | Method for producing modified conjugated diene polymer, modified conjugated diene polymer, modified conjugated diene polymer composition, rubber composition and tire |
TWI432465B (en) * | 2011-12-16 | 2014-04-01 | Chi Mei Corp | Modified high cis conjugated diene copolymer and manufacturing method of the same |
JP6158480B2 (en) | 2012-05-23 | 2017-07-05 | 旭化成株式会社 | Rubber composition and method for producing rubber composition |
JP6054821B2 (en) * | 2013-07-03 | 2016-12-27 | 住友ゴム工業株式会社 | Modified conjugated diene polymer and rubber composition |
CN105814143A (en) * | 2013-12-09 | 2016-07-27 | 盛禧奥欧洲有限责任公司 | Silane modified elastomeric polymers |
FR3015488B1 (en) | 2013-12-19 | 2018-05-04 | Compagnie Generale Des Etablissements Michelin | PROCESS FOR THE SYNTHESIS OF A DIENIC POLYMER FUNCTIONALIZED BY EPOXY GROUPS PENDING ALONG THE CHAIN |
FR3021971B1 (en) | 2014-06-05 | 2016-06-03 | Michelin & Cie | TIRE WITH LOW ROLLING RESISTANCE |
-
2017
- 2017-09-01 WO PCT/US2017/049867 patent/WO2018045291A1/en unknown
- 2017-09-01 US US16/329,979 patent/US10975178B2/en active Active
- 2017-09-01 CN CN201780053430.1A patent/CN109641482B/en active Active
- 2017-09-01 EP EP17769147.4A patent/EP3507104B1/en active Active
- 2017-09-01 JP JP2019512259A patent/JP6869333B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN109641482B (en) | 2021-11-05 |
CN109641482A (en) | 2019-04-16 |
US20190211120A1 (en) | 2019-07-11 |
JP6869333B2 (en) | 2021-05-12 |
WO2018045291A1 (en) | 2018-03-08 |
JP2019526675A (en) | 2019-09-19 |
US10975178B2 (en) | 2021-04-13 |
EP3507104A1 (en) | 2019-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2483317B1 (en) | Functionalized polymers and methods for their manufacture | |
EP2382240B1 (en) | Polymers functionalized with nitrile compounds containing a protected amino group | |
US9670299B2 (en) | Polymers functionalized with nitroso compounds | |
JP7235844B2 (en) | Method for preparing functionalized polymer | |
EP2751142B1 (en) | Polymers functionalized with lactones or thiolactones containing a protected amino group | |
EP3538575B1 (en) | High cis-1,4 block copolymers of polybutadiene and polyisoprene | |
EP3250617B1 (en) | Cis-1,4-polydienes with improved cold flow resistance | |
EP3507104B1 (en) | Production of cis-1,4-polydienes with multiple silane functional groups prepared byin-situ | |
EP2780177B1 (en) | Method for producing polydienes and polydiene copolymers with reduced cold flow | |
US11124589B2 (en) | Polymerization catalyst composition and method of employing same | |
EP3491030B1 (en) | Process for producing high cis-1,4-polydiene with lanthanide-based catalyst compositions | |
EP3204429B1 (en) | Method for producing polydienes and polydiene copolymers with reduced cold flow |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190329 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20220331 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C08L 15/00 20060101ALI20231020BHEP Ipc: C08C 19/25 20060101ALI20231020BHEP Ipc: C08F 136/06 20060101ALI20231020BHEP Ipc: B60C 1/00 20060101AFI20231020BHEP |
|
INTG | Intention to grant announced |
Effective date: 20231115 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20240125 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602017080394 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240327 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240628 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240627 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240327 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240627 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240627 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240327 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240327 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240628 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240327 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240327 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20240327 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240327 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240327 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240327 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1669576 Country of ref document: AT Kind code of ref document: T Effective date: 20240327 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240327 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240727 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240820 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240729 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240327 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240820 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240327 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240327 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240327 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240327 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240327 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240327 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240327 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240327 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240327 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240729 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240327 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240727 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240327 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240327 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240327 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240327 |