Nothing Special   »   [go: up one dir, main page]

EP3504496B1 - Verfahren und vorrichtung zur gefriertrocknung - Google Patents

Verfahren und vorrichtung zur gefriertrocknung Download PDF

Info

Publication number
EP3504496B1
EP3504496B1 EP17752124.2A EP17752124A EP3504496B1 EP 3504496 B1 EP3504496 B1 EP 3504496B1 EP 17752124 A EP17752124 A EP 17752124A EP 3504496 B1 EP3504496 B1 EP 3504496B1
Authority
EP
European Patent Office
Prior art keywords
pressure
product
nucleation
condenser
product chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17752124.2A
Other languages
English (en)
French (fr)
Other versions
EP3504496A1 (de
Inventor
Timo HEINZ
Jens Philipp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Optima Pharma GmbH
Original Assignee
Optima Pharma GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Optima Pharma GmbH filed Critical Optima Pharma GmbH
Priority to PL17752124T priority Critical patent/PL3504496T3/pl
Priority to SI201730848T priority patent/SI3504496T1/sl
Publication of EP3504496A1 publication Critical patent/EP3504496A1/de
Application granted granted Critical
Publication of EP3504496B1 publication Critical patent/EP3504496B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B5/00Drying solid materials or objects by processes not involving the application of heat
    • F26B5/04Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum
    • F26B5/06Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum the process involving freezing

Definitions

  • the invention relates to a method and a device for freeze drying.
  • Freeze drying also known as lyophilization or sublimation drying, is a method for the gentle drying of high-quality products, in particular pharmaceutical products or biotech products, for example vaccines, or food, in particular for the production of milk powder.
  • a product is defined as any preparation which is suitable for freeze-drying.
  • These are in particular liquid or semi-solid aqueous preparations such as solutions, emulsions or suspensions.
  • the products to be dried are filled into containers such as small bottles, so-called vials, injection bottles or others and dried in these.
  • Known freeze-drying systems comprise a product chamber in which a condenser is arranged or which is connected to a condenser.
  • a condenser In the product chamber, several heating and cooling plates are provided, one above the other, on which the containers, in particular the vials, with the product to be dried filled therein are placed.
  • the product Before the actual drying process, the product is cooled and frozen, the product usually being cooled to a certain freezing temperature and the freezing temperature being maintained until the solvent component of the product is frozen. Freezing usually takes place at atmospheric pressure. Freezing is also known as crystallization. The beginning of freezing is known as nucleation or nucleation.
  • the drying process following freezing can be divided into primary drying and secondary drying.
  • primary drying a vacuum is applied and the solvent contained in the product is sublimed at temperatures below freezing point.
  • secondary drying more solvent bound in the product is evaporated.
  • a quality of nucleation has a strong influence on the quality of the product obtained by the freeze-drying.
  • it is proposed to improve the nucleation that first of all cooling to a temperature close to or below the phase transition temperature takes place, the pressure in the product chamber being above atmospheric pressure.
  • the products are cooled at a temperature of the shelves of -7 ° C over a period of approx. 15 minutes.
  • the pressure in the product chamber is then rapidly reduced to atmospheric pressure. This is achieved, for example, by opening a valve to a condenser.
  • the shelves are then cooled to a temperature between approx. -40 ° C and -45 ° C for further freezing. Freezing is followed by the actual drying process.
  • nucleation or nucleation begins in a pressure range that varies depending on the type and concentration.
  • the time span between nucleations can be several minutes. This can result in sublimation of the initially frozen products, which manifests itself in small, dry areas on the surface.
  • the steps cause vacuum-induced nucleation.
  • a pressure drop is achieved in the product chamber with a high pressure drop rate, a pressure below the product-specific nucleation pressure being established in the product chamber.
  • a pressure range within which the products freeze in conventional vacuum-induced nucleation processes is approximately skipped. As a result, all products nucleate in a short period of time. Since a pressure in the product chamber was already reduced before the pressure drop, only a pressure difference of a few millibars needs to be compensated.
  • the product chamber is preferably cooled by means of known adjusting plates.
  • the in the product chamber arranged shelves to a temperature of approx. -20 ° C to approx. -3 ° C, in particular from approx. -14 ° C to approx. -5 ° C, cooled.
  • the temperature of the setting plates is kept constant via steps a) to d) of the method.
  • the product-specific nucleation pressure and / or the pressure range to be skipped by closing and opening the valve can be suitably selected by the person skilled in the art depending on the application, for example depending on the product and / or a size of the product chamber.
  • the pressure in the condenser is lowered to a pressure in the range from approx. 0.005 to approx. 3 mbar.
  • the pressure in the product chamber is reduced by approx. 0.3 mbar to approx. 2.5 mbar by opening the valve and / or the pressure in the product chamber is reduced to a pressure by opening the valve is lowered below the triple point of the product.
  • the vacuum-induced nucleation takes place in the inventive method at a temperature which is below the freezing point of the product. If the products are filled in small quantities, the pressure drop not only causes nucleation but also complete crystallization of the products.
  • a step for freezing the products is provided after the vacuum-induced nucleation, with the product chamber being further cooled for this purpose. In one embodiment, the low pressure level in the product chamber is maintained.
  • a method of freeze drying of products comprising a method for nucleation is created, a subsequent freezing and sublimation of the solvent taking place while maintaining the pressure between the product chamber and the condenser after opening the valve.
  • the pressure in the product chamber is increased for complete freezing, for example the product chamber is brought back to atmospheric pressure.
  • the temperature of the shelves also remains unchanged for freezing and sublimation in one embodiment.
  • a device for freeze-drying products comprising a product chamber, a condenser connected to the product chamber via a valve and a control device
  • the control device for Carrying out the method for nucleation according to one of claims 1 to 5 is set up and designed.
  • the control device is designed in such a way that it can be carried out completely automatically with predeterminable process parameters.
  • the control device comprises, for example, adjusting elements for actuating the valve provided between the product chamber and the condenser. In other embodiments, it is carried out semi-automatically.
  • the control device sends acoustic or optical signals, for example, by means of which a user is supported in carrying out the method. For example, a user is asked to close or open the valve between the product chamber and the condenser.
  • a central control device 5 is provided which is connected wirelessly or via data lines to the setting plates 20, the condenser 3, the valve 4, the valve 60 and the vacuum pump 6 or elements thereof for the exchange of sensor and / or control signals.
  • the communication paths shown by arrows are to be understood only schematically and do not show any wiring.
  • several control devices are provided.
  • each or individual of the named components can be assigned their own control device, by means of which, for example, the temperature of the setting plates 20 is regulated to a temperature predetermined by the central control device 5.
  • valve 4 is initially opened and the product chamber 2 is in communication with the condenser 3.
  • a temperature in the product chamber 2 and the condenser is lowered to a value which is below the freezing point of the product.
  • this takes place in that the setting plates 20 are cooled to a temperature which is approximately 3 to 20 ° C. below the freezing point of the product.
  • the pressure in the product chamber 2 and the condenser 3 is first lowered until a first defined pressure is reached, which is below atmospheric pressure and above a product-specific nucleation pressure at which nucleation begins.
  • the vacuum pump 6 is operated in a suitable manner, the vacuum pump 6 being operated, for example, by means of the control device 5.
  • the first defined pressure can be specified product-specifically by a person skilled in the art, with the control device 5 having a man-machine interface for this purpose in one embodiment.
  • valve 4 When the first defined pressure is reached, the valve 4 is closed.
  • a pressure in the product chamber 2 and the condenser 3 is monitored by means of the control device 5 and, by means of the control device 5, an actuation of the valve 4 when it is reached first defined pressure.
  • the valve 4 is actuated by a user.
  • Fig. 2 shows the device 1 with the valve 4 closed. After the valve 4 is closed, the pressure in the product chamber 3 is maintained and the pressure in the condenser 4 is further reduced by means of the vacuum pump 6. A further lowering of the pressure in the condenser 3 takes place, for example, until a second defined pressure is reached in the condenser 3 which is below the product-specific nucleation pressure.
  • the valve 4 When the second defined pressure is reached, the valve 4 is opened.
  • a pressure in the condenser 3 is also monitored by means of the control device 5 and, by means of the control device 5, the valve 4 is actuated when the second defined pressure is reached.
  • the valve 4 is actuated by a user.
  • the second defined pressure can also be specified product-specifically by a specialist.
  • the person skilled in the art specifies the pressure which is to be set in the product chamber 2 after opening the valve 4, the control device 5 based on this value taking into account the properties of the device 1, such as the size of the product chamber 2, the second defined pressure is determined.
  • the pressure in the condenser 3 is lowered over a predetermined period of time.
  • Fig. 3 shows the device 1 after the opening of the valve 4 between the product chamber 2 and the condenser 2 after or when the second defined pressure is reached in the condenser 3, as indicated by arrows in FIG Fig. 3 indicated the pressure in the product chamber 2 is lowered to a pressure below the product-specific nucleation pressure.
  • Fig. 4 shows schematically a course of a product temperature 7 and a course of the pressure 8 in a product chamber 2 (cf. Fig. 1 ) when carrying out the method according to the invention.
  • the temperature of the shelves 20 in the product chamber 2 (cf. Figs. 1 to 3 ) is represented by a line 9.
  • the temperature of the setting plates 20 is about -10 ° C.
  • a pressure 8 in the product chamber 2 and the condenser 3 (cf. Fig. 1 ) until a first defined pressure is reached, which is below the Atmospheric pressure and above a product-specific nucleation pressure at which nucleation begins.
  • a second step b) the valve 4 between the product chamber 2 and the condenser 3 is closed.
  • a third step c) the pressure in the product chamber is maintained and the pressure in the condenser 3 is further reduced until a second defined pressure is reached which is below the product-specific nucleation pressure.
  • a fourth step d) the valve 4 between the product chamber 2 and the condenser 3 is opened and a pressure equalization is achieved as a result.
  • the pressure equalization has the effect that the pressure in the product chamber 2 is reduced in a short time to a pressure below the product-specific nucleation pressure.
  • the pressure which has been reduced to approx. 0.7 mbar, causes nucleation, with the nucleation occurring in all products within a product chamber 2 almost simultaneously. Due to the prevailing low temperature, the products freeze completely in the case of small filling quantities, without the need for a further lowering of the temperature of the shelves 20. The period of time at which the products are completely frozen or crystallized is marked with II.
  • a subsequent sublimation of the frozen product takes place in the illustrated embodiment, likewise while maintaining the pressure that is established after the completion of step 4) and while maintaining the temperature of the shelves at approx. -10 ° C.
  • these process parameters are only exemplary and the steps according to the invention for an improved freezing process can be combined with other process steps for complete freezing or drying.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Drying Of Solid Materials (AREA)
  • Confectionery (AREA)

Description

  • Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Gefriertrocknung.
  • Gefriertrocknung, auch als Lyophilisation oder Sublimationstrocknung bezeichnet, ist ein Verfahren zur schonenden Trocknung hochwertiger Produkte, insbesondere Pharmaprodukte oder Biotechprodukte, beispielsweise Impfstoffe, oder Lebensmittel, insbesondere zur Herstellung von Milchpulver.
  • Als Produkt wird im Zusammenhang mit der Anmeldung jede Zubereitung bezeichnet, welche sich für die Gefriertrocknung eignet. Dabei handelt es sich insbesondere um flüssige oder halbfeste wässrige Zubereitungen, wie beispielsweise Lösungen, Emulsionen oder Suspensionen.
  • Die zu trocknenden Produkte werden in Behältnisse, wie kleine Fläschchen, sogenannte Vials, Injektionsflaschen oder andere gefüllt und in diesen getrocknet.
  • Bekannte Gefriertrocknungsanlagen umfassen eine Produktkammer, in welcher ein Kondensator angeordnet ist oder welche mit einem Kondensator verbunden ist. In der Produktkammer sind mehrere, übereinander angeordnete, beheiz- und kühlbare Stellplatten vorgesehen, auf welchen die Behältnisse, insbesondere die Vials, mit dem darin abgefüllten, zu trocknenden Produkt platziert werden,
  • Vor dem eigentlichen Trocknungsvorgang erfolgt ein Abkühlen und Einfrieren des Produkts, wobei üblicherweise das Produkt auf eine bestimmte Gefriertemperatur abgekühlt wird und die Gefriertemperatur bis zum Einfrieren des Lösungsmittelanteils des Produkts beibehalten wird. Ein Einfrieren erfolgt üblicherweise bei Atmosphärendruck. Das Einfrieren wird auch als Kristallisation bezeichnet. Der Beginn des Einfrierens wird als Keimbildung oder Nukleation bezeichnet.
  • Der auf das Einfrieren folgende Trocknungsvorgang kann in eine Primärtrocknung und eine Sekundärtrocknung unterteilt werden. Bei der Primärtrocknung wird ein Vakuum angelegt und das in dem Produkt enthaltene Lösungsmittel bei Temperaturen unter dem Gefrierpunkt sublimiert. Bei der Sekundärtrocknung wird stärker in dem Produkt gebundenes Lösungsmittel verdampft.
  • Wie beispielsweise in US 8,240,065 B2 beschrieben, hat eine Qualität der Keimbildung einen starken Einfluss auf die Qualität des durch die Gefriertrocknung erhaltenen Produkts. Gemäß US 8,240,065 B2 ist zur Verbesserung der Keimbildung vorgeschlagen, dass zunächst eine Abkühlung auf eine Temperatur nahe oder unterhalb der Phasenübergangstemperatur erfolgt, wobei der Druck in der Produktkammer über dem Atmosphärendruck liegt. Beispielsweise erfolgt eine Abkühlung der Produkte bei einer Temperatur der Stellplatten von -7°C über einen Zeitraum von ca. 15 Minuten. Für die Keimbildung erfolgt dann eine rasche Druckabsenkung in der Produktkammer auf Atmosphärendruck. Dies wird beispielsweise durch Öffnen eines Ventils zu einem Kondensator erreicht. Anschließend werden für ein weiteres Einfrieren die Stellplatten auf eine Temperatur zwischen ca. -40°C und -45°C abgekühlt. An das Einfrieren schließt sich dann der eigentliche Trocknungsvorgang an.
  • Aus DE 199 36 281 A1 ist ein vakuumindiziertes Einfrieren bekannt, wobei zunächst bei einer Temperatur in der Produktkammer, die oberhalb des Gefrierpunkts der Produkts liegt, ein Druck in der Produktkammer bis zum Einsetzen einer sichtbaren Kristallisation des Lösungsmittels abgesenkt wird. Die Temperatur der Stellplatten liegt dabei beispielsweise bei +10 °C. In einem zweiten Schritt wird die Temperatur in der Trocknungskammer auf eine Temperatur abgesenkt, die unter dem Gefrierpunkt des Produkts liegt oder mit diesem identisch ist, bis zum Abschluss der Kristallisation des Lösungsmittels. In einem weiteren Schritt erfolgt eine Primärtrocknung durch Sublimation des Lösungsmittels bei vermindertem Druck.
  • Bei einem vakuuminduzierten Einfrieren lässt sich beobachten, dass die Nukleation oder Keimbildung in einem je nach Art und Konzentration variierenden Druckbereich einsetzt. Die Zeitspanne zwischen den Nukleationen kann bei mehreren Minuten liegen. Dies kann zur Folge haben, dass bei den zuerst eingefrorenen Produkten eine Sublimation einsetzt, was sich in kleinen, trockenen Arealen an der Oberfläche äußert.
  • Aus US 2003/116027 A1 ist ein Verfahren zur Überwachung eines Gefriertrocknungsprozesses mittels optischer Strahlung bekannt. Verfahren und/oder Vorrichtungen zum Gefriertrocknen sind weiter aus US 2010/242301 A1 , CN 104 677 084 A , US 2012/102982 A , WO 00/40910 A1 und US 2010/107436 A1 bekannt.
  • AUFGABE UND LÖSUNG
  • Es ist eine Aufgabe der Erfindung, ein verbessertes Verfahren zur Keimbildung bei der Gefriertrocknung von Produkten und Verfahren zur Gefriertrocknung von Produkte sowie eine Vorrichtung zu dessen Durchführung zu schaffen.
  • Erfindungsgemäß wird ein Verfahren zur Keimbildung bei der Gefriertrocknung von Produkten in einer mit einem Kondensator über ein Ventil verbundenen Produktkammer geschaffen, umfassend die in zeitlicher Folge nacheinander durchzuführenden Schritte:
    1. a) Absenken des Drucks in der Produktkammer und dem Kondensator bei einer Temperatur, die unterhalb des Gefrierpunktes des Produkts liegt, bis ein definierter Druck erreicht wird, welcher unterhalb des Atmosphärendrucks und oberhalb eines produktspezifischen Keimbildungsdrucks, bei welchem eine Keimbildung einsetzt, liegt;
    2. b) Schließen des Ventils zwischen der Produktkammer und dem Kondensator;
    3. c) Beibehalten des Drucks in der Produktkammer und weiteres Absenken des Drucks in dem Kondensator; und
    4. d) Öffnen des Ventils zwischen der Produktkammer und dem Kondensator nach oder bei Erreichen des produktspezifischen Keimbildungsdrucks in dem Kondensator, sodass der Druck in der Produktkammer auf einen Druck unterhalb des produktspezifischen Keimbildungsdrucks abgesenkt wird.
  • Die Schritte bewirken eine vakuuminduzierte Keimbildung. Durch das Öffnen des Ventils wird ein Druckabfall in der Produktkammer mit einer hohen Druckabfallrate erzielt, wobei sich in der Produktkammer ein unterhalb des produktspezifischen Keimbildungsdrucks liegender Druck einstellt. Ein Druckbereich, innerhalb dessen die Produkte bei herkömmlichen vakuuminduzierte Keimbildungsverfahren einfrieren, wird annähernd übersprungen. Dies hat zur Folge, dass alle Produkte in einer kleinen Zeitspanne nukleieren. Da ein Druck in der Produktkammer vor dem Druckabfall bereits abgesenkt wurde, ist nur eine Druckdifferenz von wenigen Millibar auszugleichen.
  • Ein Kühlen der Produktkammer erfolgt vorzugsweise mittels bekannter Stellplatten. Dabei werden in vorteilhaften Ausgestaltungen des Verfahrens die in der Produktkammer angeordneten Stellplatten auf eine Temperatur von ca. -20°C bis ca. -3°C, insbesondere von ca.-14°C bis ca. -5°C, gekühlt. Die Temperatur der Stellplatten wird in vorteilhaften Ausgestaltungen über die Schritte a) bis d) des Verfahrens konstant gehalten.
  • Der produktspezifische Keimbildungsdruck und/oder der durch Schließen und Öffnen des Ventils zu überspringende Druckbereich sind durch den Fachmann je nach Anwendungsfall, beispielsweise in Abhängigkeit des Produkts und/oder einer Größe der Produktkammer geeignet wählbar.
  • In vorteilhaften Ausgestaltungen wird der Druck in dem Kondensator auf einen Druck im Bereich von ca. 0,005 bis ca. 3 mbar abgesenkt. Alternativ oder zusätzlich ist in vorteilhaften Ausgestaltungen vorgesehen, dass der Druck in der Produktkammer durch Öffnen des Ventils um ca. 0,3 mbar bis ca. 2,5 mbar abgesenkt wird und/oder der Druck in der Produktkammer durch Öffnen des Ventils auf einen Druck unterhalb des Tripelpunkts des Produkts abgesenkt wird.
  • Die vakuuminduzierte Keimbildung erfolgt bei dem erfindungsgemäßen bei einer Temperatur, die unterhalb des Gefrierpunktes des Produkts liegt. Bei kleinen Füllmengen der Produkte bewirkt der Druckabfall nicht nur eine Keimbildung, sondern eine vollständige Kristallisation der Produkte. In anderen Ausgestaltungen ist nach der vakuumindizierten Keimbildung ein Schritt zum Einfrieren der Produkte vorgesehen, wobei zu diesem Zweck die Produktkammer weiter abgekühlt wird. In einer Ausgestaltung wird dabei das niedrige Druckniveau in der Produktkammer beibehalten.
  • Gemäß einer vorteilhaften Ausgestaltung wird ein Verfahren Gefriertrocknung von Produkten umfassend ein Verfahren zur Keimbildung geschaffen, wobei ein nachfolgendes Einfrieren und eine Sublimation des Lösungsmittels unter Beibehaltung des sich nach Öffnen des Ventils zwischen der Produktkammer und dem Kondensator einstellenden Drucks erfolgen. In anderen Ausgestaltungen wird der Druck in der Produktkammer für ein vollständiges Einfrieren erhöht, beispielsweise wird die Produktkammer wieder auf Atmosphärendruck gebracht. Die Temperatur der Stellplatten bleibt für Einfrieren und eine Sublimation in einer Ausgestaltung ebenfalls unverändert.
  • Erfindungsgemäß wird eine Vorrichtung zur Gefriertrocknung von Produkten umfassend eine Produktkammer, einen mit der Produktkammer über ein Ventil verbundenen Kondensator und eine Steuereinrichtung geschaffen, wobei die Steuereinrichtung zum Durchführen des Verfahrens zur Keimbildung nach einem der Ansprüche 1 bis 5 eingerichtet und ausgebildet ist. Die Steuereinrichtung ist dabei in einer Ausgestaltung derart ausgebildet, dass eine vollständig automatische Durchführung mit vorgebbaren Prozessparametern möglich ist. Die Steuereinrichtung umfasst zu diesem Zweck beispielsweise Stellelemente für eine Betätigung des zwischen der Produktkammer und dem Kondensator vorgesehenen Ventils. In anderen Ausgestaltungen erfolgt eine halbautomatische Durchführung. Die Steuereinrichtung sendet dabei beispielweise akustische oder optische Signale, mittels welcher ein Nutzer bei der Durchführung des Verfahrens unterstützt wird. Beispielsweise wird ein Nutzer aufgefordert, das Ventil zwischen Produktkammer und Kondensator zu schließen oder zu öffnen.
  • KURZBESCHREIBUNG DER ZEICHNUNGEN
  • Weitere Vorteile und Aspekte der Erfindung ergeben sich aus den Ansprüchen und aus der nachfolgenden Beschreibung von bevorzugten Ausführungsbeispielen der Erfindung, die nachfolgend anhand der Figuren erläutert sind. Dabei zeigen:
  • Fig. 1
    eine schematische Darstellung einer erfindungsgemäßen Vorrichtung zur Gefriertrocknung;
    Fig. 2
    eine schematische Darstellung der Vorrichtung zur Gefriertrocknung gemäß Fig. 1 bei geschlossenem Ventil;
    Fig. 3
    eine schematische Darstellung der Vorrichtung zur Gefriertrocknung gemäß Fig. 1 bei einem Druckausgleich bei geöffnetem Ventil; und
    Fig. 4
    schematisch einen Verlauf einer Produkttemperatur und einen Verlauf des Drucks in einer Produktkammer bei Durchführung des erfindungsgemäßen Verfahrens.
    DETAILLIERTE BESCHREIBUNG DER AUSFÜHRUNGSBEISPIELE
    • Fig. 1 zeigt schematisch eine Vorrichtung 1 zur Gefriertrocknung von Produkten umfassend eine Produktkammer 2 mit Stellplatten 20, einen mit der Produktkammer 2 über ein Ventil 4 verbundenen Kondensator 3 und eine Steuereinrichtung 5. Die Vorrichtung 1 umfasst weiter eine Vakuumpumpe 6, welche mit dem Kondensator 3 über ein Ventil 60 verbunden ist.
    • Fig. 2 und 3 zeigen die Vorrichtung 1 zur Gefriertrocknung gemäß Fig. 1 bei geschlossenem bzw. offenem Ventil 4, wobei die Steuereinrichtung 5 zur besseren Übersicht in Fig. 2 und 3 nicht dargestellt ist.
  • In dem in Fig. 1 dargestellten Ausführungsbeispiel ist eine zentrale Steuereinrichtung 5 vorgesehen, welche mit den Stellplatten 20, dem Kondensator 3, dem Ventil 4, dem Ventil 60 und der Vakuumpumpe 6 oder Elementen davon zum Austausch von Sensor- und/oder Steuersignalen drahtlos oder über Datenleitungen verbunden ist. Die durch Pfeile dargestellten Kommunikationswege sind jedoch lediglich schematisch zu verstehen und zeigen keine Verdrahtung. In anderen Ausgestaltungen sind mehrere Steuereinrichtungen vorgesehen. Weiter kann jeder oder einzelnen der genannten Komponenten eine eigene Steuereinrichtung zugeordnet sein, mittels welcher beispielsweise eine Temperaturregelung der Stellplatten 20 auf eine von der zentralen Steuereinrichtung 5 vorgegebene Temperatur erfolgt.
  • Für das erfindungsgemäße Verfahren ist vorgesehen, dass zunächst das Ventil 4 geöffnet ist und die Produktkammer 2 mit dem Kondensator 3 kommuniziert ist. Eine Temperatur in der Produktkammer 2 und dem Kondensator ist auf einen Wert abgesenkt, der unterhalb des Gefrierpunktes des Produkts liegt. Dies erfolgt in vorteilhaften Ausgestaltungen indem die Stellplatten 20 auf eine um ca. 3 bis 20°C unterhalb des Gefrierpunktes des Produkts liegende Temperatur abgekühlt werden.
  • Für ein vakuuminduziertes Einfrieren wird zunächst der Druck in der Produktkammer 2 und dem Kondensator 3 abgesenkt, bis ein erster definierter Druck erreicht wird, welcher unterhalb des Atmosphärendrucks und oberhalb eines produktspezifischen Keimbildungsdrucks, bei welchem eine Keimbildung einsetzt, liegt. Zu diesem Zweck wird die Vakuumpumpe 6 geeignet betrieben, wobei ein Betrieb der Vakuumpumpe 6 beispielsweise mittels der Steuereinrichtung 5 bewirkt wird.
  • Der erste definierte Druck kann produktspezifisch von einem Fachmann vorgegeben werden, wobei zu diesem Zweck die Steuereinrichtung 5 in einer Ausgestaltung eine Mensch-Maschine-Schnittstelle aufweist.
  • Bei Erreichen des ersten definierten Drucks wird das Ventil 4 geschlossen. Vorzugsweise wird ein Druck in der Produktkammer 2 und dem Kondensator 3 mittels der Steuereinrichtung 5 überwacht und mittels der Steuereinrichtung 5 eine Betätigung des Ventils 4 bei Erreichen des ersten definierten Drucks bewirkt. Es ist jedoch auch denkbar, dass das Ventil 4 durch einen Nutzer betätigt wird.
  • Fig. 2 zeigt die Vorrichtung 1 bei geschlossenem Ventil 4. Nach Schließen des Ventils 4 wird der Druck in der Produktkammer 3 beibehalten und der Druck in dem Kondensator 4 mittels der Vakuumpumpe 6 weiter abgesenkt. Ein weiteres Absenken des Drucks in dem Kondensator 3 erfolgt beispielsweise bis in dem Kondensator 3 ein zweiter definierter Druck erreicht wird, welcher unterhalb des produktspezifischen Keimbildungsdrucks liegt.
  • Bei Erreichen des zweiten definierten Drucks wird das Ventil 4 geöffnet. Vorzugsweise wird ein Druck in dem Kondensator 3 dabei ebenfalls mittels der Steuereinrichtung 5 überwacht und mittels der Steuereinrichtung 5 eine Betätigung des Ventils 4 bei Erreichen des zweiten definierten Drucks bewirkt. Es ist jedoch auch bei diesem Schritt denkbar, dass das Ventil 4 durch einen Nutzer betätigt wird.
  • Auch der zweite definierte Druck kann produktspezifisch von einem Fachmann vorgegeben werden. In anderen Ausgestaltungen ist vorgesehen, dass durch den Fachmann der Druck vorgegeben wird, welcher sich nach Öffnen des Ventils 4 in der Produktkammer 2 einstellen soll, wobei die Steuereinrichtung 5 anhand dieses Wertes unter Berücksichtigung der Eigenschaften der Vorrichtung 1, wie beispielsweise der Größe der Produktkammer 2, den zweiten definierten Druck ermittelt. In wieder anderen Ausgestaltungen erfolgt ein Absenken des Drucks in dem Kondensator 3 über eine vorgegeben Zeitspanne.
  • Fig. 3 zeigt die Vorrichtung 1 nach dem Öffnen des Ventils 4 zwischen der Produktkammer 2 und dem Kondensator 2 nach oder bei Erreichen des zweiten definierten Drucks in dem Kondensator 3, wobei wie durch Pfeile in Fig. 3 angedeutet der Druck in der Produktkammer 2 auf einen Druck unterhalb des produktspezifischen Keimbildungsdrucks abgesenkt wird.
  • Fig. 4 zeigt schematisch einen Verlauf einer Produkttemperatur 7 und einen Verlauf des Drucks 8 in einer Produktkammer 2 (vgl. Fig. 1) bei Durchführung des erfindungsgemäßen Verfahrens. Die Temperatur der Stellplatten 20 in der Produktkammer 2 (vgl. Fig. 1 bis 3) ist durch eine Linie 9 dargestellt. Die Temperatur der Stellplatten 20 liegt dabei bei ca. -10°C.
  • In einem ersten Schritt a) wird ein Drucks 8 in der Produktkammer 2 und dem Kondensator 3 (vgl. Fig. 1) abgesenkt, bis ein erster definierter Druck erreicht wird, welcher unterhalb des Atmosphärendrucks und oberhalb eines produktspezifischen Keimbildungsdrucks, bei welchem eine Keimbildung einsetzt, liegt.
  • In einem zweiten Schritt b) wird das Ventil 4 zwischen der Produktkammer 2 und dem Kondensator 3 geschlossen.
  • In einem dritten Schritt c) wird der Druck in der Produktkammer beibehalten und der Druck in dem Kondensator 3 weiter abgesenkt bis ein zweiter definierter Druck erreicht wird, welcher unterhalb des produktspezifischen Keimbildungsdrucks liegt.
  • In einem vierten Schritt d) wird das Ventil 4 zwischen der Produktkammer 2 und dem Kondensator 3 geöffnet und dadurch ein Druckausgleich erzielt. Wie schematisch bei I dargestellt bewirkt der Druckausgleich, dass der Druck in der Produktkammer 2 in kurzer Zeit auf einen Druck unterhalb des produktspezifischen Keimbildungsdrucks abgesenkt wird.
  • Der auf ca. 0,7mbar abgesenkte Druck bewirkt eine Keimbildung, wobei die Keimbildung in allen Produkten innerhalb einer Produktkammer 2 nahezu gleichzeitig erfolgt. Aufgrund der herrschenden niedrigen Temperatur frieren die Produkte bei kleinen Füllmengen vollständig ein, ohne dass eine weitere Absenkung der Temperatur der Stellplatten 20 notwendig ist. Die Zeitspanne, zu welcher die Produkte vollständig eingefroren oder kristallisiert sind, ist mit II gekennzeichnet.
  • Eine daran anschließende Sublimation des eingefrorenen Produkts erfolgt in dem dargestellten Ausführungsbeispiel ebenfalls unter Beibehaltung des sich nach Abschluss von Schritt 4) einstellenden Drucks und unter Beibehaltung der Temperatur der Stellplatten von ca. -10°C. Diese Prozessparameter sind jedoch lediglich beispielhaft und die erfindungsgemäßen Schritte für einen verbesserten Einfriervorgang sind mit anderen Verfahrensschritten für ein vollständiges Einfrieren oder eine Trocknung kombinierbar.

Claims (7)

  1. Verfahren zur Keimbildung bei der Gefriertrocknung von Produkten in einer Produktkammer (2), wobei die Produktkammer (2) mit einem Kondensator (3) über ein Ventil (4) verbunden ist, umfassend die in zeitlicher Folge nacheinander durchzuführenden Schritte:
    a) Absenken des Drucks in der Produktkammer (2) und dem Kondensator (3) bei einer Temperatur, die unterhalb des Gefrierpunktes des Produkts liegt, bis ein definierter Druck erreicht wird, welcher unterhalb des Atmosphärendrucks und oberhalb eines produktspezifischen Keimbildungsdrucks, bei welchem eine Keimbildung einsetzt, liegt;
    b) Schließen des Ventils (4) zwischen der Produktkammer (2) und dem Kondensator (3);
    c) Beibehalten des Drucks in der Produktkammer (2) und weiteres Absenken des Drucks in dem Kondensator (3);
    d) Öffnen des Ventils (4) zwischen der Produktkammer (2) und dem Kondensator (3) nach oder bei Erreichen des produktspezifischen Keimbildungsdrucks in dem Kondensator (3), sodass der Druck in der Produktkammer (2) auf einen Druck unterhalb des produktspezifischen Keimbildungsdrucks abgesenkt wird.
  2. Verfahren zur Keimbildung bei der Gefriertrocknung von Produkten nach Anspruch 1, dadurch gekennzeichnet, dass in der Produktkammer (2) angeordnete Stellplatten (20) während der Schritte a) bis d) auf eine Temperatur von ca. -20°C bis ca. -3°C, insbesondere von ca.-14°C bis ca. -5°C, gekühlt werden.
  3. Verfahren zur Keimbildung bei der Gefriertrocknung von Produkten nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Druck in dem Kondensator (3) in Schritt c) auf einen produktspezifischen Keimbildungsdruck im Bereich von ca. 0,005 mbar bis ca. 3 mbar abgesenkt wird.
  4. Verfahren zur Keimbildung bei der Gefriertrocknung von Produkten nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass der Druck in der Produktkammer (2) durch Öffnen des Ventils (4) in Schritt d) um ca. 0,3 mbar bis ca. 2,5 mbar abgesenkt wird.
  5. Verfahren zur Keimbildung bei der Gefriertrocknung von Produkten nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Druck in der Produktkammer (2) durch Öffnen des Ventils (4) in Schritt d) auf einen Druck unterhalb des Tripelpunkts des Produkts abgesenkt wird.
  6. Verfahren zur Gefriertrocknung von Produkten umfassend ein Verfahren zur Keimbildung nach einem der Ansprüche 1 bis 5, gekennzeichnet durch den weiteren Schritt
    e) Einfrieren des Produkts und Sublimation des Lösungsmittels unter Beibehaltung des sich nach Öffnen des Ventils (4) zwischen der Produktkammer (2) und dem Kondensator einstellenden Drucks.
  7. Vorrichtung zur Gefriertrocknung von Produkten umfassend eine Produktkammer (2) und einen Kondensator (3), wobei die Produktkammer (2) mit dem Kondensator (3) über ein Ventil (4) verbunden ist, und eine Steuereinrichtung (5), dadurch gekennzeichnet, dass die Steuereinrichtung (5) zum Durchführen des Verfahrens zur Keimbildung nach einem der Ansprüche 1 bis 5 ausgebildet und eingerichtet ist.
EP17752124.2A 2016-08-23 2017-08-15 Verfahren und vorrichtung zur gefriertrocknung Active EP3504496B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL17752124T PL3504496T3 (pl) 2016-08-23 2017-08-15 Sposób i urządzenie do suszenia przez wymrażanie
SI201730848T SI3504496T1 (sl) 2016-08-23 2017-08-15 Postopek in naprava za liofilizacijo

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016215844.9A DE102016215844B4 (de) 2016-08-23 2016-08-23 Verfahren und Vorrichtung zur Gefriertrocknung
PCT/EP2017/070644 WO2018036861A1 (de) 2016-08-23 2017-08-15 Verfahren und vorrichtung zur gefriertrocknung

Publications (2)

Publication Number Publication Date
EP3504496A1 EP3504496A1 (de) 2019-07-03
EP3504496B1 true EP3504496B1 (de) 2021-04-28

Family

ID=59626621

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17752124.2A Active EP3504496B1 (de) 2016-08-23 2017-08-15 Verfahren und vorrichtung zur gefriertrocknung

Country Status (7)

Country Link
EP (1) EP3504496B1 (de)
DE (1) DE102016215844B4 (de)
DK (1) DK3504496T3 (de)
ES (1) ES2883334T3 (de)
PL (1) PL3504496T3 (de)
SI (1) SI3504496T1 (de)
WO (1) WO2018036861A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017217415B4 (de) 2017-09-29 2022-11-10 OPTIMA pharma GmbH Verfahren und Vorrichtung zur Gefriertrocknung

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19654134C2 (de) 1996-04-25 2003-08-07 Messer Griesheim Gmbh Verfahren und Einrichtung zum Gefriertrocknen
DE19719398A1 (de) 1997-05-07 1998-11-12 Amsco Finn Aqua Gmbh Verfahren zur Steuerung eines Gefriertrocknungsprozesses
WO2000040910A1 (en) * 1999-01-05 2000-07-13 Universal Preservation Technologies, Inc. Vacuum control system for foam drying apparatus
DE19936281C2 (de) 1999-08-02 2002-04-04 Bayer Ag Verfahren zur Gefriertrocknung
SE0001453D0 (sv) 2000-04-19 2000-04-19 Astrazeneca Ab Method of monitoring a freeze drying process
DE20008915U1 (de) 2000-05-19 2001-06-28 Martin Christ Gefriertrocknungsanlagen GmbH, 37520 Osterode Gefriertrocknungsanlage
DE102004007526A1 (de) 2004-02-17 2005-09-01 Oetjen, Georg-Wilhelm, Dr. Verfahren und Einrichtung zur Gefriertrocknung von Produkten
US8794013B2 (en) * 2006-02-10 2014-08-05 Praxair Technology, Inc. Method and system for nucleation control in a controlled rate freezer (CRF)
EP1903291A1 (de) * 2006-09-19 2008-03-26 Ima-Telstar S.L. Verfahren und System zur Steuerung eines Gefriertrocknungsverfahrens
US8240065B2 (en) 2007-02-05 2012-08-14 Praxair Technology, Inc. Freeze-dryer and method of controlling the same
US8839528B2 (en) 2011-04-29 2014-09-23 Millrock Technology, Inc. Controlled nucleation during freezing step of freeze drying cycle using pressure differential ice fog distribution
CN104677084A (zh) * 2015-02-13 2015-06-03 黄少峰 一种瞬时降压装置及具有该装置的冻干设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2018036861A1 (de) 2018-03-01
PL3504496T3 (pl) 2021-11-02
DK3504496T3 (da) 2021-07-05
ES2883334T3 (es) 2021-12-07
DE102016215844B4 (de) 2018-03-29
EP3504496A1 (de) 2019-07-03
DE102016215844A1 (de) 2018-03-01
SI3504496T1 (sl) 2021-08-31

Similar Documents

Publication Publication Date Title
EP3093597B1 (de) Gefriertrocknungsanlage
DE19719398A1 (de) Verfahren zur Steuerung eines Gefriertrocknungsprozesses
EP3775739B1 (de) Gefriertrocknungsanlage und verfahren hierzu
DE2144778A1 (de) Verfahren und Vorrichtung zum Vorerhitzen hitzempfindlicher Produkte vor deren elektro-magnetischem Erhitzen
EP3504496B1 (de) Verfahren und vorrichtung zur gefriertrocknung
DE102014113152B3 (de) Vorrichtung und Verfahren zur Herstellung von Speiseeis
DE2219687A1 (de) Vorrichtung zum Herstellen und Wachstum eines kristallinen Stoffes
DE3311525A1 (de) Verfahren und vorrichtung zum gefriertrocknen eines produktes in einem gefaess mit enger oeffnung
EP0391142A2 (de) Verfahren zum Befüllen einer Flüssigkristallzelle
WO2010136118A2 (de) Verfahren und vorrichtung zur konservierung von zellkernen
AT1399U1 (de) Verfahren und einrichtung zum lyophilisieren
EP2195593B1 (de) Vorrichtung zum temperieren von gefriergut
DE102007049278A1 (de) Vorrichtungen zum Gefriertrocknen
EP3462116B1 (de) Verfahren zur gefriertrocknung
DE4226255A1 (de) Verfahren zur hydrostatischen Hochdruckbehandlung eines Stoffes
DE1038988B (de) Steuerungsverfahren einer Gefriertrocknung und Vorrichtung zu seiner Ausfuehrung
EP2728287B1 (de) Verfahren zur Gefriertrocknung eines mit einem Lösungsmittel versehenen, feuchten Produktes
DE10326791B4 (de) Verfahren und Vorrichtung zum kontinuierlichen Herstellen von gekochten und vakuumierten Süßwarenmassen
DE102016105273A1 (de) Verfahren und Vakuummehrbehälteranlage zur Mikrowellen-Vakuumtrocknung von stückigem, pulverförmigem oder granulatförmigem Gut
DE102004018788B3 (de) Verfahren zum Kühlen und/oder Gefrieren feuchter Produkte
EP2921550B1 (de) Verfahren zur reduzierung des alkoholgehalts von alkoholhaltigen getränken, insbesondere von bier
DE102017220471A1 (de) Tunnelpasteur und Verfahren zum Betreiben eines Tunnelpasteurs
DE4108024A1 (de) Verfahren zur entfernung der bei einer flaschengaerung entstehenden trubstoffe aus einer flasche und vorrichtung zur durchfuehrung des verfahrens
WO2004029529A1 (de) Verfahren zum herstellen einer zubereitung eines pharmazeutischen materials als lyophilisat und anlage hierfür
DE202004006122U1 (de) Einrichtung zum Kühlen und/oder Gefrieren feuchter Produkte

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190315

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200210

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201125

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1387523

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017010230

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20210701

REG Reference to a national code

Ref country code: FI

Ref legal event code: FGE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20210401612

Country of ref document: GR

Effective date: 20210709

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20210428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210828

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210830

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2883334

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20211207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017010230

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

26N No opposition filed

Effective date: 20220131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210828

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210815

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240821

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240821

Year of fee payment: 8

Ref country code: IE

Payment date: 20240816

Year of fee payment: 8

Ref country code: FI

Payment date: 20240820

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20240819

Year of fee payment: 8

Ref country code: DK

Payment date: 20240822

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240822

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20240820

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240814

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240918

Year of fee payment: 8

Ref country code: CH

Payment date: 20240901

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240819

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20240730

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20240806

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20240820

Year of fee payment: 8

Ref country code: IT

Payment date: 20240830

Year of fee payment: 8

Ref country code: SE

Payment date: 20240821

Year of fee payment: 8

P01 Opt-out of the competence of the unified patent court (upc) registered

Free format text: CASE NUMBER: APP_60546/2024

Effective date: 20241111