Nothing Special   »   [go: up one dir, main page]

EP3551360B1 - Alkalische resolbinder mit verbesserter fliessfähigkeit - Google Patents

Alkalische resolbinder mit verbesserter fliessfähigkeit Download PDF

Info

Publication number
EP3551360B1
EP3551360B1 EP17811304.9A EP17811304A EP3551360B1 EP 3551360 B1 EP3551360 B1 EP 3551360B1 EP 17811304 A EP17811304 A EP 17811304A EP 3551360 B1 EP3551360 B1 EP 3551360B1
Authority
EP
European Patent Office
Prior art keywords
molding material
material mixture
weight
molding
mixture according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17811304.9A
Other languages
English (en)
French (fr)
Other versions
EP3551360A1 (de
Inventor
Frank Lenzen
Christian Priebe
Melanie Mertscheit
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASK Chemicals GmbH
Original Assignee
ASK Chemicals GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASK Chemicals GmbH filed Critical ASK Chemicals GmbH
Publication of EP3551360A1 publication Critical patent/EP3551360A1/de
Application granted granted Critical
Publication of EP3551360B1 publication Critical patent/EP3551360B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/02Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by additives for special purposes, e.g. indicators, breakdown additives
    • B22C1/10Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by additives for special purposes, e.g. indicators, breakdown additives for influencing the hardening tendency of the mould material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/162Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents use of a gaseous treating agent for hardening the binder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/20Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents
    • B22C1/22Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins
    • B22C1/2233Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • B22C1/2246Condensation polymers of aldehydes and ketones
    • B22C1/2253Condensation polymers of aldehydes and ketones with phenols

Definitions

  • the invention relates to molding mixtures for the production of molds, cores or feeders for metal casting, comprising at least one refractory base molding material, a binder based on an alkaline resol resin and at least one sugar surfactant.
  • the invention also relates to a method for producing molds and cores using the molding material mixtures and to molds, cores and feeders produced by this method.
  • Casting molds are essentially composed of molds or molds and cores, which represent the negative shape of the casting to be produced.
  • These molds and cores generally consist of a refractory basic molding material, for example quartz sand, and a suitable binding agent which gives the casting mold sufficient mechanical strength after it has been removed from the mold.
  • the refractory basic molding material is preferably in free-flowing form so that, after mixing with the binder, it can be filled into a suitable hollow mold, compacted and then cured. After curing, the binding agent ensures that the particles of the basic mold material are held together firmly so that the casting mold has the required mechanical stability.
  • molds form the outer wall for the casting, cores are used to form cavities within the casting. It is not absolutely necessary that the molds and cores are made of the same material. In chill casting, for example, the external shaping of the cast pieces is done with the help of permanent metallic molds. A combination of molds and cores that have been produced from differently composed molding material mixtures and using different processes is also possible. Feeders are cavities in the casting mold that are filled with liquid metal together with the casting during casting. The feeder keeps the metal in it liquid longer and can thus compensate for a volume deficit in the solidification phase of the casting.
  • organic, inorganic and mixed organic / inorganic binders can be used, the hardening of which can take place in each case by cold or hot processes.
  • Cold processes are those processes that are carried out essentially without heating the mold used to manufacture the core, usually at room temperature or at a temperature caused by any reaction.
  • the hardening takes place, for example, in that a gas is passed through the molding material mixture to be hardened, thereby triggering a chemical reaction.
  • the molding material mixture is e.g. heated by the heated mold to a sufficiently high temperature to drive off the solvent contained in the binder and / or to initiate a chemical reaction by which the binder is hardened.
  • alkaline phenolic resins as binders for casting molds is known per se and these are for example in the EP 0323096 B2 and in the EP 1228128 B1 disclosed. These are alkaline resol resins that can be hardened by introducing CO 2 .
  • Essential components of the binders described in the patents mentioned are oxyanions, e.g. the borate ion ( EP 032096 B2 ) or the combination of borate and aluminate ions ( EP 1228128 B1 ).
  • Molding mixtures with alkaline resole resins often show poor flowability. This is noticeable in that fine core areas are incompletely depicted, the cores are not compactly compressed and thus lose strength or the molding material mixture in the shooting head stalls and does not continue to flow. In the latter case, a cavity then forms and the sand can only be pushed in by mechanical tamping.
  • Various proposals have already been made to address this problem.
  • US 5376696 or the WO 92/01016 A1 describe sand mixtures for ester-hardening alkaline resole resins, in which a surfactant solution is added to the sand mixture to improve the flowability.
  • EP 0399636 A2 describes ester-hardening alkaline resole resins which contain a fluorosurfactant, which can have an anionic, cationic, amphoteric or nonionic character.
  • JP 3 250915 B2 discloses molding material mixtures with alkaline resols and various surfactants, including sugar esters.
  • DE 10 2012 104934 A1 discloses waterglass-based molding material mixtures with various surfactants, including polyglycosides based on fatty alcohol.
  • DE 10 2007 051850 A1 discloses waterglass-based molding material mixtures with various surfactants, including carbohydrates etherified with alkyl groups.
  • the object of the invention is therefore to improve the flowability of the basic molding material impregnated with an alkaline resol.
  • Claim 13 describes a method for producing a core, feeder or a mold
  • claim 14 describes a mold, feeder or a core.
  • sugar surfactants significantly improves the flowability of mixtures of alkaline resole resin and refractory basic molding materials. This is surprising insofar as the surface tension of an alkaline resole resin is only slightly reduced by a sugar surfactant.
  • the sugar surfactant i used according to the invention is an alkyl polyglycoside and is contained in the alkaline resole resin component or it is added pure or diluted as the second component directly to the molding material mixture before or during mixing.
  • the binders are alkaline resole resins.
  • the resoles are produced by the condensation of phenolic compounds and aldehyde compounds in the presence of a basic catalyst such as ammonium hydroxide or an alkali metal hydroxide. Alkali metal hydroxide catalysts are preferably used.
  • the resoles are used in a concentration of 0.8% by weight to 10% by weight, preferably from about 1% by weight to about 5% by weight and particularly preferably from about 1% by weight to about 4% by weight. % used, each based on the solids content of the resol (according to DIN EN ISO 3251) and the basic molding material.
  • concentration of binder within the casting mold can vary.
  • Resoles in the sense of the present invention are aromatics linked to one another via methylene groups (-CH 2 -) groups and / or via ether bridges (in particular -CH 2 -O-CH 2 -), each of which has at least one -OH group (phenol compound) .
  • Suitable phenolic compounds are phenols, substituted phenols, e.g. Cresols or nonylphenol, 1,2-dihydroxybenzene (catechol), 1,3-dihydroxybenzene (resorcinol), cashew nut shell oil, i.e. a mixture of cardanol and cardol, or 1,4-dihydroxybenzene (hydroquinone) or phenolic compounds such as e.g. Bisphenol A.
  • aldehyde compounds examples include formaldehyde, paraformaldehyde and glyoxal and mixtures thereof.
  • Formaldehyde or mixtures containing predominantly formaldehyde are particularly preferred.
  • the molar ratio of phenol compound to aldehyde compound is preferably between 1.05: 1.2 to 1.05: 2.6, particularly preferably between 1.1: 1.3 to 1.1: 2.5.
  • Resoles are preferred in which adjacent hydroxy aromatics are each linked at the ortho and / or para position (relative to the hydroxy group of the built-in phenol / aromatics) via the methylene bridges and / or the ether bridges, i.e. the majority of the links are para and / or ortho.
  • Suitable oxyanions in the binder composition for the resole / CO 2 process include borate, stannate and aluminate ions. Aluminate and borate ions are preferred.
  • the oxyanion can be added to the binder composition for the resol / CO 2 process by mixing in sodium tetraborate times x H 2 O, potassium tetraborate times x H 2 O, sodium metaborate, sodium pentaborate, sodium stannate trihydrate, sodium aluminate, potassium aluminate, aluminum hydroxide, aluminum oxide or ammonium oxyanion salt such as ammonium borate. Borate ions can also be introduced by adding boric acid or boron oxide.
  • the molar ratio of oxyanions (expressed as boron and / or aluminum and / or tin) to phenol group is preferably in the range from 0.1: 1 to 1: 1.
  • the molar ratio of boron to phenol is particularly preferably in the range 0.1: 1 to 0.5: 1.
  • the oxyanions can also be obtained by introducing organic boron, aluminum and tin compounds such as aluminum alcoholates of the formula Al (OR) 3 , where R can independently be a saturated or unsaturated, branched or unbranched hydrocarbon radical with 1 to 10 carbon atoms.
  • a solution of a boron compound such as boric acid or boric acid ester in alkali is suitable as a solution of a boron-containing oxyanion.
  • the solution of a base in water, which is also used for mixing with the resole resin, serves as the lye.
  • Organic bases such as e.g. Amines or ammonium compounds as well as inorganic bases such as e.g. Alkali metal hydroxides can be used.
  • Alkali hydroxides such as e.g. Sodium hydroxide and potassium hydroxide are used.
  • the molar ratio of hydroxide ions to the phenol group in the binder system is preferably 0.5: 1 to 3: 1, preferably 1.0: 1 to 2.5: 1. It is not necessary that the total amount of base is already at the beginning of the Condensation is added; The addition is usually carried out in two or more sub-steps, some of which can also only be added at the end of the manufacturing process. Mixtures of basic catalysts can also be used.
  • alkaline resoles are for example in the EP 0323096 B2 and EP 1228128 B1 disclosed. Further binders based on resol are for example in the US 4426467 and the US 4474904 described.
  • the resole contains water, preferably in an amount of 15% by weight to 50% by weight, based on the binder.
  • components of the binding agent are resol, water, alkalis and oxyanion.
  • the water can come from aqueous solutions that are used in the production of binders, on the other hand, it can also be added separately to the binder or come as condensation water from the resol condensation.
  • water also serves, for example, to give the binder an application-appropriate viscosity (25 ° C.) of 5 to 1200 mPas, preferably from 10 to 1100 mPas and particularly preferably from 10 to 950 mPas.
  • the viscosity is determined with the aid of a Brookfield rotary viscometer, " Small Sample” method, spindle no. 21 at 100 rpm and 25 ° C.
  • the alkaline resole preferably has a pH value (at 25 ° C.) greater than 12.
  • additives such as Alcohols, glycols, and silanes may be added.
  • additives such as Alcohols, glycols, and silanes.
  • silanes has a particularly positive effect in this regard, e.g. gamma-aminopropyltriethoxysilane or gamma-glycidoxypropyltrimethoxysilane, in concentrations of about 0.1% by weight to about 4.0% by weight, preferably from about 0.2% by weight to about 3.0% by weight and particularly preferably from about 0.3% by weight to about 2.5% by weight, each based on the weight of the molding material composition.
  • concentrations e.g. gamma-aminopropyltriethoxysilane or gamma-glycidoxypropyltrimethoxysilane, in concentrations of about 0.1% by weight to about 4.0% by weight, preferably from about 0.2% by weight to about 3.0% by weight and particularly preferably from about 0.3% by weight to about 2.5% by weight, each based on the weight of the molding material composition.
  • esters suitable for hardening the resols are, for example, from those skilled in the art US 4426467 , US 4474904 and US 5405881 known. They include lactones, organic carbonates and esters of C1 to C10 mono- and polycarboxylic acids with C1 to C10 mono- and polyalcohols. Preferred but non-limiting examples of these compounds are gamma-butyrolactone, propylene carbonate, ethylene glycol diacetate, mono-, di- and triacetin and the dimethyl esters of succinic acid, glutaric acid and adipic acid, including their mixture known under the name DBE. Due to the different saponification rates of the individual esters, the rate of hardening of the resols varies depending on the ester used, which can also influence the strengths. The desired curing time can be varied within wide limits by mixing two or more esters.
  • Carbon dioxide or methyl formate as an aerosol or heated as a gas is also suitable for hardening the resols.
  • Sugar surfactants are nonionic surfactants in which sugars form the hydrophilic part of the surfactant molecule. Fatty alcohol or fatty acid residues act as hydrophobic components. Carbohydrates used are, for example, glucose, methylglucose, fructose, methylfructose, lactose, ribose, sucrose, xylenose, xylitol, mannose, mannitol, isosorbitol and sorbitol.
  • the sugar building blocks can be used as monomers or up to a degree of polymerization of 30.
  • the sugar building blocks can be alpha or beta 1,4 glycosidically linked.
  • the hydrophilic component is preferably formed by linking glucose, sucrose, fructose, isosorbitol and / or sorbitol; sucrose and / or glucose is particularly preferred.
  • Fatty acids can be esterified or fatty alcohols and / or fatty alcohol ethoxylates, fatty alcohol propoxylates and / or fatty alcohol ethoxylates / fatty alcohol propoxylates, the chain length is between C 6 and C 32 , in particular C 8 and C 22 , and can be branched or straight-chain and saturated to the free hydroxyl groups or be unsaturated. Both the sugar and the fat building blocks can be mixed together.
  • alkyl polyglycosides APG
  • alkyl polyglucosides are used which have the following exemplary structure.
  • n stands on average for 1 to 30, preferably on average from 2 to 25 and particularly preferably on average from 2 to 10.n stands for a saturated or unsaturated, straight-chain or branched alkyl radical with an average of 5 to 31 carbon atoms and particularly preferably 7 to 21 carbon atoms.
  • Alkyl polyglycosides are produced on an industrial scale and sold by BASF under the trade names Plantacare or Glucopon.
  • the sugar surfactants according to the invention are preferably added to the resole resin in a concentration of 0.05 to 5.0% by weight. Preferably in a range from 0.05 to 3.0% by weight and particularly preferably from 0.05 to 2.0% by weight, relative to the binder.
  • the sugar surfactants according to the invention can be added directly to the molding material mixture. This can be done as a pure substance or dissolved in a carrier medium (e.g. water). Based on the finished molding material mixture, 0.005 to 0.5% by weight, preferably 0.01 to 0.3% by weight, of sugar surfactant are added.
  • the sugar surfactants used preferably have an HLB value between 11 and 16 (HLB stands for hydrophilic-lipophilic balance).
  • basic molding material Conventional materials for the production of casting molds can be used as the refractory basic molding material (hereinafter abbreviated to basic molding material (s)).
  • basic molding material for example, quartz sand, zircon sand or chrome ore sand, olivine, vermiculite, bauxite and chamotte or mixtures thereof are suitable. If there are no technological reasons to the contrary, quartz sand is preferred for economic reasons.
  • Regenerated materials obtained by washing and subsequent drying are particularly suitable.
  • Regenerated materials obtained by thermo-mechanical or purely mechanical treatment can also be used.
  • the mean diameter of the basic mold materials is generally between 100 ⁇ m and 600 ⁇ m, preferably between 120 ⁇ m and 550 ⁇ m and particularly preferably between 150 ⁇ m and 500 ⁇ m.
  • the particle size can be e.g. determine by sieving according to DIN ISO 3310.
  • Artificial molding materials can also be used as molding base materials, in particular as an additive to the above molding base materials, but also as exclusive molding base material, such as glass beads, glass granulate, the spherical ceramic molding base materials known under the name "Cerabeads” or “Carboaccucast” or aluminum silicate microbeads (so-called hollow spheres). Microspheres). Such hollow aluminum silicate microspheres are marketed, for example, by Omega Minerals Germany GmbH, Norderstedt, under the name “Omega-Spheres”. Corresponding products are also available from PQ Corporation (USA) under the name “Extendospheres”.
  • the procedure is generally that the refractory molding base material is initially introduced and then the binder and the sugar surfactant are added together or one after the other with stirring. It is of course also possible to add all or some of the components first and then to stir and / or during this. The mixture is stirred until a uniform distribution of the binder and the sugar surfactant with the basic molding material is guaranteed.
  • the molding material mixture is then brought into the desired shape.
  • the usual methods are used for shaping.
  • the molding material mixture can be shot into the tool by means of a core shooting machine with the aid of compressed air.
  • Another possibility is to allow the molding material mixture to trickle freely from the mixer into the molding tool and to compress it there by shaking, tamping or pressing.
  • the preferred core production process is the resole / CO 2 process.
  • this does not exclude gassing with lower alkyl esters, known under the name Betaset processes such as C1 to C3 alkyl formates, in particular methyl formate, and curing by means of liquid esters, known under the name Alphaset process.
  • Curing takes place in that CO 2 , a CO 2 / gas mixture (e.g. with air), a gas mixture (e.g. air) or gaseous methyl formate (in the Betaset process) one after the other (as e.g. in detail in the DE 102012103705.1 described) is passed through the mold or through the molding material mixture contained therein.
  • a CO 2 / gas mixture e.g. with air
  • a gas mixture e.g. air
  • gaseous methyl formate in the Betaset process
  • the gas stream has a temperature between 0 ° C and 140 ° C, preferably from 5 ° C to 120 ° C and particularly preferably from 6 ° C to 110 ° C.
  • Table 1 shows the surface tensions found (in mN / mm) at room temperature, which were obtained by adding the surfactants. If one looks at the surface tension (comparison of the same amount of active substance, identifier with “*”), it is surprisingly noticeable that the APG type sugar surfactants according to the invention reduce the surface tension by only 2% (zero example for B2).
  • a sand mixture of quartz sand H 32, plus 3.0% NOVANOL 165 (without or with the listed substances) was mixed homogeneously in a Hobart mixer for 2 minutes. This sand mixture was transferred to a core shooting machine, model Laempe L 1 (opening at the sand outlet of the shooting head reduced to 5mm) and was placed in a four core box (GF bar 220mm x 22.4mm x 22.4 mm) with a shooting pressure of 2 bar using compressed air and a shooting time of 1 sec into the mold. The sand was hardened by means of CO 2 gas (2 liters / min for 30 seconds). After three shots, without the 1 liter shooting head being filled, the sand mixture was visually assessed to determine whether the sand was flowing.
  • Table 2 shows that the flexural strengths measured immediately with the Plantacare 2000 UP according to the invention (example B1-B4) remain constant with increasing concentration, while they decrease with increasing oleic acid content (example A1-A4).
  • the remaining sand in the firing head was assessed visually.
  • “Stuck” means that a cavity has formed above the shooting openings in which the sand does not slide.
  • “Slips” means that the cavity does not exist and has been closed by sliding sand. This means that shooting can continue without shaking. This effect is surprising for the sugar surfactants according to the invention (here Plantacare 2000 UP), since it encourages the sand to slide down.
  • a sand mixture of quartz sand H 31, plus 2.3% AVENOL F 633 (without or with the listed substances) was mixed homogeneously for 2 minutes in a Hobart mixer.
  • This sand mixture was transferred to a core shooter, model Roeper H 1 (opening at the sand outlet of the shooting head 10 mm) and was in a two core box (GF bar 220mm x 22.4mm x 22.4 mm) with a shooting pressure of 3 bar by means of compressed air and brought into the mold with a shooting time of 1 sec.
  • the sand was hardened by means of methyl formate gas at 60 ° C. (2.0 ml of liquid methyl formate, for 20 seconds, 2 bar flushing pressure).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mold Materials And Core Materials (AREA)

Description

    Einleitung
  • Die Erfindung betrifft Formstoffmischungen zur Herstellung von Formen, Kernen oder Speisern für den Metallguss umfassend mindestens einen feuerfesten Formgrundstoff, ein Bindemittel auf der Basis eines alkalischen Resolharzes und mindestens ein Zuckertensid. Weiterhin betrifft die Erfindung ein Verfahren zur Herstellung von Formen und Kernen unter Verwendung der Formstoffmischungen sowie nach diesem Verfahren hergestellte Formen, Kerne und Speiser.
  • Hintergrund der Erfindung
  • Gießformen setzen sich im Wesentlichen aus Formen oder Formen und Kernen zusammen, welche die Negativform des herzustellenden Gussstücks darstellen. Diese Formen und Kerne bestehen dabei in der Regel aus einem feuerfesten Formgrundstoff, beispielsweise Quarzsand, und einem geeigneten Bindemittel, das der Gießform nach der Entnahme aus dem Formwerkzeug eine ausreichende mechanische Festigkeit verleiht. Der feuerfeste Formgrundstoff liegt bevorzugt in rieselfähiger Form vor, so dass er nach dem Mischen mit dem Bindemittel in eine geeignete Hohlform eingefüllt, verdichtet und danach ausgehärtet werden kann. Nach dem Aushärten sorgt das Bindemittel für einen festen Zusammenhalt zwischen den Partikeln des Formgrundstoffs, so dass die Gießform die erforderliche mechanische Stabilität erhält.
  • Formen bilden beim Gießen die äußere Wandung für das Gussstück, Kerne werden zur Ausbildung von Hohlräumen innerhalb des Gussstücks eingesetzt. Dabei ist es nicht zwingend notwendig, dass Formen und Kerne aus demselben Material bestehen. So erfolgt z.B. beim Kokillenguss die äußere Formgebung der Gussstücke mit Hilfe metallischer Dauerformen. Auch ist eine Kombination von Formen und Kernen, die aus unterschiedlich zusammengesetzten Formstoffmischungen und nach unterschiedlichen Verfahren hergestellt wurden, möglich. Speiser sind Hohlräume in der Gießform, die beim Gießen gemeinsam mit dem Gussstück mit flüssigem Metall gefüllt werden. Der Speiser hält das in ihm befindliche Metall länger flüssig und kann somit ein Volumendefizit in der Erstarrungsphase des Gussstücks ausgleichen.
  • Wenn nachstehend vereinfachend nur von Kernen gesprochen wird, gelten die Aussagen in gleichem Maße auch für Formen und Speiser, die auf einer gleichen Formstoffmischung basieren und nach demselben Verfahren hergestellt wurden.
  • Zur Herstellung von Kernen können organische, anorganische und gemischt organisch/anorganische Bindemittel (Hybridsysteme) eingesetzt werden, deren Aushärtung jeweils durch kalte oder heiße Verfahren erfolgen kann. Als kalte Verfahren bezeichnet man dabei solche Verfahren, welche im Wesentlichen ohne Erhitzen des zur Kernherstellung verwendeten Formwerkzeugs durchgeführt werden, i.d.R. bei Raumtemperatur oder bei einer durch eine etwaige Reaktion verursachten Temperatur. Die Aushärtung erfolgt beispielsweise dadurch, dass ein Gas durch die zu härtende Formstoffmischung geleitet wird und dabei eine chemische Reaktion auslöst. Bei heißen Verfahren wird die Formstoffmischung nach der Formgebung z.B. durch das erwärmte Formwerkzeug auf eine ausreichend hohe Temperatur erhitzt, um das im Bindemittel enthaltene Lösemittel auszutreiben und/oder um eine chemische Reaktion zu initiieren, durch welche das Bindemittel ausgehärtet wird.
  • Die Verwendung alkalischer Phenolharze als Bindemittel für Gussformen ist an sich bekannt und diese sind beispielsweise in der EP 0323096 B2 und in der EP 1228128 B1 offenbart. Es handelt sich dabei um alkalische Resolharze, die sich durch Einleiten von CO2 aushärten lassen. Wesentliche Bestandteile der in den genannten Patenten beschriebenen Bindemittel sind Oxyanionen, z.B. das Borat-Ion ( EP 032096 B2 ) bzw. die Kombination aus Borat- und Aluminat-Ion ( EP 1228128 B1 ).
  • Aufgabe der Erfindung
  • Formstoffmischungen mit alkalischen Resolharzen weisen häufig eine schlechte Fließfähigkeit auf. Diese macht sich dadurch bemerkbar, dass feine Kernpartien unvollständig abgebildet werden, die Kerne nicht kompakt verdichtet sind und damit an Festigkeiten verlieren oder dass die Formstoffmischung im Schießkopf stockt und nicht weiterfließt. Im letzten Fall bildet sich dann ein Hohlraum aus und der Sand kann nur durch mechanisches Stopfen nachgedrückt werden. Es sind bereits verschiedene Vorschläge erfolgt, die sich diesem Problem annehmen.
  • US 5077323 beschreibt esterhärtende alkalische Resolharze (= Alphaset Verfahren), deren Fließfähigkeit durch Zusatz von Fettsäuren, Fettalkoholen, Fettaminen, Fettsäureamiden oder Fettsäurealkanolamiden verbessert wird. US 5376696 bzw. die WO 92/01016 A1 beschreiben Sandmischungen für esterhärtende alkalische Resolharze, bei denen der Sandmischung eine Tensidlösung zur Verbesserung der Fließfähigkeit zugesetzt wird. EP 0399636 A2 beschreibt esterhärtende alkalische Resolharze, die ein Fluortensid enthalten, dieses kann einen anionischen, kationischen, amphoteren oder nichtionischen Charakter aufweisen. Es verbessert die Fließfähigkeit der Formstoffmischung. JP 3 250915 B2 offenbart Formstoffmischungen mit alkalischen Resolen und verschiedenen Tensiden, unter anderem Zuckerestern. DE 10 2012 104934 A1 offenbart wasserglasbasierte Formstoffmischungen mit verschiedenen Tensiden, unter anderem Polyglykosiden auf Fettalkoholbasis. Auch DE 10 2007 051850 A1 offenbart wasserglasbasierte Formstoffmischungen mit verschiedenen Tensiden, unter anderem mit Alkylgruppen veretherte Kohlenhydrate.
  • Es besteht aber weiter das Bedürfnis Formstoffmischungen enthaltend alkalische Resolharze dahingehend weiterzuentwickeln, dass sie eine verbesserte Fließfähigkeit aufweisen. Dadurch ließen sich auch Kerne mit komplexeren Geometrien herstellen bzw. bei massiven einfachen Kernen ließe sich der Bindergehalt absenken, was zum einen die Wirtschaftlichkeit des Verfahrens erhöhen und zum anderen die Menge der beim Guss auftretenden Emissionen reduzieren würde. Aufgabe der Erfindung ist es somit, die Fließfähigkeit des mit einem alkalischen Resol imprägnierten Formgrundstoffes zu verbessern.
  • Zusammenfassung der Erfindung
  • Diese Aufgabe wird durch Formstoffmischungen mit den Merkmalen des Anspruchs 1 gelöst. Anspruch 13 beschreibt ein Verfahren zur Herstellung eines Kerns, Speisers oder einer Form, und Anspruch 14 beschreibt eine Form, Speiser oder einen Kern. Vorteilhafte Weiterbildungen sind Gegenstand der abhängigen Patentansprüche und werden nachstehend beschrieben.
  • Überraschend wurde gefunden, dass ein Zusatz von Zuckertensiden die Fließfähigkeit von Gemischen aus alkalischen Resolharz und feuerfesten Formgrundstoffen deutlich verbessert. Dieses ist insofern überraschend als die Oberflächenspannung eines alkalischen Resolharzes nur unwesentlich von einem Zuckertensid herabgesetzt wird. Das erfindungsgemäß eingesetzte Zuckertensid i ist ein Alkylpolyglycosid und ist der in der alkalischen Resolharz-Komponente enthalten oder es wird als zweite Komponente pur oder verdünnt direkt der Formstoffmischung vor oder während des Mischens zugeführt.
  • Die erfindungsgemäße Formstoffmischung umfasst somit mindestens
    1. a) einen feuerfesten Formgrundstoff;
    2. b) ein alkalisches Resolharz ; in einer Menge von 0,8 bis 10 Gew.%, bezogen auf den Feststoffgehalt des alkalischen Resols und relativ zum Gewicht des feuerfesten Formgrundstoffs, als Bindemittel welches mittels CO2; Methylformiat (als Aerosol, gasförmig oder flüssig) oder einem anderen flüssigen (bei Raumtemperatur = 25°C) Ester härtbar ist; und
    3. c) ein Zuckertensid, nämlich ein Alkylpolygycosid, welches auch als Zuckertensidlösung zugegeben
      werden kann.
  • Weiterhin betrifft die Erfindung ein Verfahren zur Herstellung eines Kerns umfassend die folgenden Schritte:
    • Vermischen von alkalischem Resolharz, Zuckertensid und feuerfestem Formgrundstoff zum Erhalt einer Formstoffmischung;
    • Einbringen der Formstoffmischung in ein Formwerkzeug;
    • Härten der Formstoffmischung mittels CO2; Methylformiat (als Aerosol, gasförmig oder flüssig) oder einem anderen flüssigen Ester; und
    • Entnahme des gehärteten Kerns, des Speisers oder der Form aus dem Formwerkzeug.
    Detaillierte Beschreibung der Erfindung
  • Das Bindemittel sind alkalische Resolharze. Die Resole werden durch Kondensation von Phenol-Verbindungen und Aldehyd-Verbindungen in Gegenwart eines basischen Katalysators, wie Ammoniumhydroxid oder eines Alkalimetallhydroxids, hergestellt. Bevorzugt werden Alkalimetallhydroxid-Katalysatoren verwendet.
  • Die Resole werden in einer Konzentration von 0,8 Gew.% bis 10 Gew.%, bevorzugt von ca. 1 Gew.% bis ca. 5 Gew.% und besonders bevorzugt von ca. 1 Gew.% bis ca. 4 Gew.% eingesetzt, jeweils bezogen auf den Feststoffgehalt des Resols (nach DIN EN ISO 3251) und den Formgrundstoff. Dabei kann die Konzentration an Bindemittel innerhalb der Gießform variieren.
  • Resole im Sinn der vorliegenden Erfindung sind über Methylengruppen (-CH2-) Gruppen und/oder über Etherbrücken (insbesondere -CH2-O-CH2-) miteinander verbundene Aromaten, die jeweils zumindest eine -OH Gruppe tragen (Phenol-Verbindung).
  • Geeignete Phenol-Verbindungen sind Phenole, substituierte Phenole, wie z.B. Kresole oder Nonylphenol, 1,2-Dihydroxybenzol (Brenzcatechin), 1,3-Dihydroxybenzol (Resorcin), Cashewnussschalenöl, d.h. eine Mischung aus Cardanol und Cardol, oder 1,4-Dihydroxybenzol (Hydrochinon) oder phenolische Verbindungen wie z.B. Bisphenol A.
  • Beispiele für geeignete Aldehyd-Verbindungen sind Formaldehyd, Paraformaldehyd und Glyoxal und deren Mischungen. Besonders bevorzugt ist Formaldehyd oder Mischungen enthaltend überwiegend Formaldehyd (bezogen auf die molare Menge der Aldehyde).
  • Das molare Verhältnis von Phenol-Verbindung zu Aldehyd-Verbindung liegt bevorzugt zwischen 1,05 : 1,2 bis 1,05 : 2,6, besonders bevorzugt zwischen 1,1 :1,3 bis 1,1 : 2,5.
  • Es sind solche Resole bevorzugt, in denen benachbarte Hydroxy-Aromaten jeweils an ortho- und/oder para- Position (relativ zur Hydroxy-Gruppe des eingebauten Phenols/Aromaten) über die Methylenbrücken und/oder die Etherbrücken verknüpft sind, d.h. die Mehrzahl der Verknüpfungen erfolgt para und/oder ortho.
  • Beispiele geeigneter Oxyanionen in der Bindemittelzusammensetzung für das Resol/CO2 Verfahren umfassen Borat-, Stannat- und Aluminiat- Ionen. Aluminat- und Borationen sind dabei bevorzugt. Das Oxyanion kann in der Bindemittelzusammensetzung für das Resol/CO2 Verfahren durch das Einmischen von Natriumtetraborat mal x H2O, Kaliumtetraborat mal x H2O, Natriummetaborat, Natriumpentaborat, Natriumstannat-Trihydrat, Natriumaluminat, Kaliumaluminat, Aluminiumhydroxid, Aluminiumoxid oder Ammonium Oxyanion Salz wie Ammoniumborat eingefügt werden. Borationen können auch durch Zugabe von Borsäure oder Boroxid eingebracht werden.
  • Das Molverhältnis der Oxyanionen (ausgedrückt als Bor und/oder Aluminium und/oder Zinn) zu Phenolgruppe ist vorzugsweise im Bereich von 0,1 : 1 bis 1 : 1. Wenn das Oxyanion Borat ist liegt das Molverhältnis von Bor zu Phenol besonders bevorzugt im Bereich 0,1 : 1 bis 0,5 : 1.
  • Es ist auch möglich organische Aluminium-, Bor- oder Zinnverbindungen einzubringen. Weiterhin können die Oxyanionen auch durch Einbringen von organischen Bor-, Aluminium- und Zinnverbindungen wie z.B. Aluminiumalkoholate der Formel Al(OR)3, wobei R unabhängig ein gesättigter oder ungesättigter, verzweigter oder unverzweigter Kohlenwasserstoffrest mit 1 bis 10 Kohlenstoffatomen sein kann. Eine Lösung einer Borverbindung wie z.B Borsäure oder Borsäureester in Lauge eignet sich als Lösung eines borhaltigen Oxyanions.
  • Als Lauge dient die Lösung einer Base in Wasser, die ebenfalls zum Mischen mit dem Resolharz verwendet wird.
  • Als basische Katalysatoren können sowohl organische Basen wie z.B. Amine oder Ammoniumverbindungen als auch anorganische Basen wie z.B. Alkalimetallhydroxide verwendet werden. Als Base werden bevorzugt Alkalihydroxide wie z.B. Natriumhydroxid und Kaliumhydroxid verwendet. Das molare Verhältnis von Hydroxidionen zu der Phenolgruppe im Bindemittelsystem beträgt bevorzugt 0,5:1 bis 3:1, bevorzugt 1,0 : 1 bis 2,5 : 1. Es ist nicht notwendig, dass die gesamte Menge an Base bereits zu Beginn der Kondensation zugesetzt wird; üblicherweise erfolgt die Zugabe in zwei oder mehreren Teilschritten, wobei ein Teil auch erst am Ende des Herstellungsprozesses zugegeben werden kann. Mischungen basischer Katalysatoren können ebenfalls Verwendung finden.
  • Die Herstellung von alkalischen Resolen ist z.B. in der EP 0323096 B2 und EP 1228128 B1 offenbart. Weitere Bindemittel auf Resolbasis werden beispielsweise in der US 4426467 und der US 4474904 beschrieben.
  • Neben den bereits erwähnten Bestandteilen enthält das Resol Wasser, bevorzugt in einer Menge von 15 Gew.% bis 50 Gew.% bezogen auf das Bindemittel. Bestandteil des Bindemittels sind abschließend Resol, Wasser, Alkalien und Oxyanion. Dabei kann das Wasser einerseits von wässrigen Lösungen stammen, die bei der Binderherstellung eingesetzt werden, andererseits kann es dem Binder aber auch separat zugesetzt werden oder als Kondensationswasser aus der Resolkondensation stammen.
  • Wasser dient neben seiner Funktion als Lösemittel auch beispielsweise dazu, dem Bindemittel eine anwendungsgerechte Viskosität (25°C) von 5 bis 1200 mPas, bevorzugt von 10 bis 1100 mPas und besonders bevorzugt von 10 bis 950 mPas zu verleihen. Die Viskosität wird mit Hilfe eines Brookfield Rotationsviskosimeters, Verfahren "Small Sample", Spindel Nr. 21 bei 100 U/Min und 25°C bestimmt. Das alkalische Resol hat vorzugsweise einen pH-Wert (bei 25°C) von größer 12.
  • Des Weiteren können dem Bindemittel bis zu ca. 50 Gew.% Zusätze wie z.B. Alkohole, Glykole, und Silane zugesetzt sein. Mit Hilfe dieser Additive kann beispielsweise die Benetzbarkeit des Formstoffs durch das Bindemittel und dessen Haftung auf dem Formstoff erhöht werden, was wiederum zu verbesserten Festigkeiten und einer gesteigerten Feuchtigkeitsresistenz führen kann.
  • Besonders positiv wirkt sich in dieser Hinsicht ein Zusatz von Silanen, z.B. gamma-Aminopropyltriethoxysilan oder gamma-Glycidoxypropyltrimethoxysilan, in Konzentrationen von ca. 0,1 Gew.% bis ca. 4,0 Gew.%, vorzugsweise von ca. 0,2 Gew.% bis ca. 3,0 Gew.% und besonders bevorzugt von ca. 0,3 Gew.% bis ca. 2,5 Gew.% aus, jeweils bezogen auf das Gewicht der Formstoffzusammensetzung.
  • Die zur Härtung der Resole geeigneten Ester (Alphaset Verfahren) sind dem Fachmann z.B. aus US 4426467 , US 4474904 und US 5405881 bekannt. Sie umfassen Lactone, organische Carbonate und Ester von C1- bis C10-Mono- und Polycarbonsäuren mit C1- bis C10- Mono- und Polyalkoholen. Bevorzugte aber nicht limitierende Beispiele dieser Verbindungen sind Gamma-Butyrolacton, Propylencarbonat, Ethylenglykoldiacetat, Mono-, Di- und Triacetin sowie die Dimethylester von Bernsteinsäure, Glutarsäure und Adipinsäure inklusive deren unter der Bezeichnung DBE bekanntes Gemisch. Auf Grund unterschiedlicher Verseifungsgeschwindigkeiten der einzelnen Ester verläuft die Härtungsgeschwindigkeit der Resole je nach eingesetztem Ester unterschiedlich rasch, was auch die Festigkeiten beeinflussen kann. Durch Mischen von zwei oder mehreren Estern kann man die gewünschte Aushärtezeit innerhalb weiter Grenzen variieren.
  • Weiterhin zur Härtung der Resole geeignet ist Kohlendioxid oder Methylformiat als Aerosol oder erwärmt als Gas.
  • Zuckertenside sind nichtionische Tenside, bei denen Zucker den hydrophilen Anteil des Tensidmoleküls bilden. Als hydrophobe Komponente fungieren Fettalkohol- oder Fettsäure-Reste. Eingesetzte Kohlenhydrate sind z.B. Glucose, Methylglucose, Fructose, Methylfructose, Lactose, Ribose, Saccharose, Xylenose, Xylit, Mannose, Mannit, Isosorbit und Sorbit.
  • Die Zuckerbausteine können als Monomer oder bis zu einem Polymerisationsgrad von 30 eingesetzt werden. Dabei können die Zuckerbausteine alpha oder beta 1,4 glycosidisch verknüpft sein. Bevorzugt wird der hydrophile Anteil durch Verknüpfung von Glucose, Saccharose, Fructose, Isosorbit und/oder Sorbit gebildet, besonders bevorzugt ist Saccharose und/oder Glucose.
  • An die freien Hydroxylgruppen können Fettsäuren verestert oder Fettalkohole, und/oder Fettalkoholethoxylate, Fettalkoholpropoxylate und/oder Fettalkoholethoxylate / Fettalkoholpropoxylate verethert werden, die Kettenlänge liegt zwischen C6 und C32, insbesondere C8 und C22, und kann verzweigt oder geradkettig sein und gesättigt oder ungesättigt sein. Sowohl die Zucker- als auch die Fettbausteine können untereinander gemischt werden. Erfindungsgemäß werden Alkylpolyglycoside (APG), insbesondere Alkylpolyglucoside verwendet, welche folgende exemplarische Struktur aufweisen.
    Figure imgb0001
  • m steht im Mittel für 1 bis 30, bevorzugt im Mittel von 2 bis 25 und insbesondere bevorzugt im Mittel von 2 bis 10. n steht für einen gesättigten oder ungesättigten, geradkettigen oder verzweigten Alkylrest von im Mittel 5 bis 31 Kohlenstoffatomen und insbesondere bevorzugt von 7 bis 21 Kohlenstoffatomen.
  • Alkylpolyglycoside werden großtechnisch hergestellt und von der BASF unter dem Handelsnamen Plantacare oder Glucopon vertrieben.
  • Bevorzugt werden die erfindungsgemäßen Zuckertenside dem Resolharz in einer Konzentration von 0,05 bis 5,0 Gew. % zugesetzt. Bevorzugt in einem Bereich von 0,05 bis 3,0 Gew.% und besonders bevorzugt von 0,05 bis 2,0 Gew.%, relativ zum Bindemittel. In einer weiteren Ausführungsform können die erfindungsgemäßen Zuckertenside der Formstoffmischung direkt zugegeben werden. Dieses kann als pure Substanz oder gelöst in einem Trägermedium (z.B. Wasser) erfolgen. Bezogen auf die fertige Formstoffmischung werden 0,005 bis 0,5 Gew.%, bevorzugt 0,01 bis 0,3 Gew.% Zuckertensid zugegeben.
  • Die verwendeten Zuckertenside haben vorzugsweise einen HLB-Wert zwischen 11 und 16 (HLB steht für engl. hydrophilic-lipophilic balance).
  • Als feuerfester Formgrundstoff (nachfolgend kurz Formgrundstoff(e)) können für die Herstellung von Gießformen übliche Materialien verwendet werden. Geeignet sind beispielsweise Quarzsand, Zirkonsand oder Chromerzsand, Olivin, Vermiculit, Bauxit und Schamotte bzw. Gemische davon. Sofern keine technologischen Gründe dagegensprechen, kommt aus wirtschaftlichen Gründen bevorzugt Quarz-sand zum Einsatz.
  • Es ist nicht notwendig, ausschließlich Neusande einzusetzen. Im Sinne einer Ressourcenschonung und zur Vermeidung von Deponiekosten ist es sogar vorteilhaft, einen möglichst hohen Anteil an regeneriertem Altsand zu verwenden. Besonders geeignet sind Regenerate, die durch Waschen und anschließende Trocknung erhalten werden. Einsetzbar sind auch durch thermo-mechanische oder durch rein mechanische Behandlung gewonnene Regenerate.
  • Der mittlere Durchmesser der Formgrundstoffe liegt in der Regel zwischen 100 µm und 600 µm, bevorzugt zwischen 120 µm und 550 µm und besonders bevorzugt zwischen 150 µm und 500 µm. Die Partikelgröße lässt sich z.B. durch Sieben nach DIN ISO 3310 bestimmen.
  • Weiter können als Formgrundstoffe auch künstliche Formstoffe verwendet werden, insbesondere als Zusatz zu obigen Formgrundstoffen, aber auch als ausschließlicher Formgrundstoff, wie z.B. Glasperlen, Glasgranulat, die unter der Bezeichnung "Cerabeads" bzw. "Carboaccucast" bekannten kugelförmigen keramischen Formgrundstoffe oder Aluminiumsilikatmikrohohlkugeln (sog. Microspheres). Solche Aluminiumsilikatmikrohohlkugeln werden beispielsweise von der Omega Minerals Germany GmbH, Norderstedt, unter der Bezeichnung "Omega-Spheres" in den Handel gebracht. Entsprechende Produkte sind auch bei der PQ-Corporation (USA) unter der Bezeichnung "Extendospheres" erhältlich.
  • Weiterhin ist es möglich dem Formgrundstoff amorphes Siliciumdioxid zu zusetzen. Dadurch wird eine Erhöhung der Festigkeit erreicht. Dies ist u.a. in der DE 102014106178 offenbart.
  • Bei der Herstellung einer Formstoffmischung wird i.A. so vorgegangen, dass der feuerfeste Formgrundstoff vorgelegt und anschließend das Bindemittel und das Zuckertensid gemeinsam oder nacheinander unter Rühren zugegeben werden. Selbstverständlich ist es auch möglich, erst die Komponenten ganz oder teilweise zuzugeben und danach und/oder währenddessen zu rühren. Es wird solange gerührt, bis eine gleichmäßige Verteilung des Bindemittels und des Zuckertensids mit dem Formgrundstoff gewährleistet ist.
  • Die Formstoffmischung wird anschließend in die gewünschte Form gebracht. Dabei werden für die Formgebung übliche Verfahren angewendet. Beispielsweise kann die Formstoffmischung mittels einer Kernschießmaschine mit Hilfe von Druckluft in das Werkzeug geschossen werden. Eine andere Möglichkeit besteht darin, die Formstoffmischung freifließend aus dem Mischer in das Formwerkzeug rieseln zu lassen und sie dort durch Rütteln, Stampfen oder Pressen zu verdichten.
  • Bevorzugtes Kernherstellungsverfahren ist das Resol/CO2 Verfahren. Dieses schließt aber die Begasung mit niedrigen Alkylestern, bekannt unter dem Namen Betaset Verfahren wie C1- bis C3- Alkylformiate, insbesondere Methylformiat, und eine Härtung mittels flüssiger Ester nicht aus, bekannt unter dem Namen Alphaset Verfahren.
  • Die Härtung erfolgt dadurch, dass CO2, ein CO2/Gasgemisch (z.B. mit Luft), ein Gasgemisch (z.B. Luft) oder gasförmiges Methylformiat (beim Betaset Verfahren) nacheinander (wie z.B. im Detail in der DE 102012103705.1 beschrieben) durch das Formwerkzeug bzw. durch die darin enthaltene Formstoffmischung geleitet wird.
  • Der Gasstrom hat eine Temperatur zwischen 0°C bis 140°C, bevorzugt von 5°C bis 120°C und besonders bevorzugt von 6°C bis 110°C.
  • Experimenteller Teil Eingesetzte Komponenten:
  • NOVANOL 165 - alkalischer Resol/CO2 Binder, Lieferant ASK-Chemicals GmbH
    AVENOL F 633 - alkalischer Betaset Binder, Lieferant ASK-Chemicals GmbH
    Quarzsand H 32 - Lieferant Quarzwerke GmbH
    Ölsäure = technische Ölsäure
    Capstone FS 35 = 25%ige wässrige Lösung eines nichtionischen Fluortensids, Hersteller: Chemour
    Plantacare 2000 UP: 50%ige wässrige Alkylpolyglucosidlösung mit C8-C16 Fettalkoholketten, Hersteller: BASF SE
    Alle Angaben in Gew%.
  • Bestimmung der Oberflächenspannung
  • Jeweils x% der in der u.a. Tabelle genannten Stoffe wurden einzeln zu NOVANOL 165 gegeben und klar gelöst. 200g der homogenen, klaren und luftblasenfreien Mischung wurde in einen PTFE-Becher gegeben und die Oberflächenspannung (in mN/mm) bei Raumtemperatur gemessen. Hierzu wurde ein Krüss Force Tensiometer 100 (Fa. Krüss) verwendet. Es wurde die Plattenmethode (angerauhte Platinplatte) nach Wilhelmy als Doppelbestimmung benutzt. Berührt eine senkrecht aufgehängte Platte eine flüssige Oberfläche oder Grenzfläche, dann wirkt auf diese Platte eine Kraft F, die mit der Oberflächenspannung korreliert. Tabelle 1
    # Zusatz mN/mm Bemerkung
    A0 ohne 34,5 Vergleich
    A1 0,25% Ölsäure* 31,2 gemäß US 5,077,323
    A2 0,50% Ölsäure 30,3
    A3 0,75% Ölsäure 30,2
    A4 1,0% Ölsäure 29,9
    A5 0,25% Capstone FS 35 30,6 gemäß EP 0 399 636
    A6 0,50% Capstone FS 35 28,1
    A7 0,75% Capstone FS 35 26,1
    A 8 1,0% Capstone FS 35* 25,1
    B1 0,25% Plantacare 2000 UP 34,3 erfindungsgemäß
    B2 0,50% Plantacare 2000 UP* 33,7
    B3 0,75% Plantacare 2000 UP 32,8
    B4 1,0% Plantacare 2000 UP 32,3
    % = Gew.% relativ zum Bindemittel
  • Tabelle 1 zeigt die gefundenen Oberflächenspannungen (in mN/mm) bei Raumtemperatur, welche durch Zusatz der Tenside erhalten wurden. Betrachtet man die Oberflächenspannung (Vergleich der selben Menge Aktivsubstanz, Kennung mit "*"), so fällt überraschenderweise auf, dass die erfindungsgemäßen Zuckertenside vom APG Typ die Oberflächenspannung nur um 2% reduzieren (Nullbeispiel zu B2).
  • Verglichen zum Stand der Technik gemäß US 5,077,323 reduziert die Ölsäure die Oberflächenspannung um 10% (Nullbeispiel zu A1), gemäß EP 0399 636 wird sogar eine Reduzierung um 27% erreicht (Nullbeispiel zu A8). Als Referenz diente Wasser mit dem Wert 68,8 mN/mm.
  • Bestimmung der Festigkeit in N/cm2 - Resol CO2 Verfahren
  • In einem Hobart Mischer wurde eine Sandmischung aus Quarzsand H 32, plus 3,0% NOVANOL 165 (ohne, bzw. mit den aufgeführten Stoffen) für 2 Minuten homogen vermischt. Diese Sandmischung wurde in eine Kernschießmaschine, Model Laempe L 1 (Öffnung am Sandaustritt des Schießkopfs auf 5mm reduziert) überführt und wurde in einen vierer Kernkasten (GF Riegel 220mm x 22,4mm x 22,4 mm) mit einem Schießdruck von 2 bar mittels Druckluft und einer Schießzeit von 1 sec in die Form gebracht. Mittels CO2 Gas (2 Liter/min für 30 sec) wurde der Sand ausgehärtet. Nach drei Schüßen, ohne Auffüllung des 1 Liter fassenden Schießkopfes, wurde die Sandmischung optisch beurteilt, ob der Sand nachfließt.
  • Die Biegefestigkeiten wurden mittels eine Biegeprüfgerätes der Fa. Multiserw nach der angegebenen Zeit gebrochen (Mittelwerte aus vier Bestimmungen). Tabelle 2
    # Zusatz Festigkeit in N/cm 2 Sandfluß n. 3 Schuß
    60 sec sofort 24h RT 24h RT 98%
    A0 ohne 81 139 108 stockt
    A1 0,25% Ölsäure* 85 144 104 stockt
    A2 0,50% Ölsäure 81 146 101 rutscht
    A3 0,75% Ölsäure 80 137 95 rutscht
    A4 1,0% Ölsäure 76 131 90 rutscht
    A5 0,25% Capstone FS 35 80 133 110 stockt
    A6 0,50% Capstone FS 35 77 130 111 stockt
    A7 0,75% Capstone FS 35 78 127 105 stockt
    A8 1,0% Capstone FS 35* 79 129 106 stockt
    B1 0,25% Plantacare 2000 UP 84 155 117 rutscht
    B2 0,50% Plantacare 2000 UP* 83 145 113 rutscht
    B3 0,75% Plantacare 2000 UP 83 139 106 rutscht
    B4 1,0% Plantacare 2000 UP 82 136 101 rutscht
  • Tabelle 2 zeigt, dass die sofort gemessenen Biegefestigkeiten mit dem erfindungsgemäßen Plantacare 2000 UP (Beispiel B1-B4) mit zunehmender Konzentration konstant bleiben, während sie mit zunehmenden Gehalt an Ölsäure (Beispiel A1-A4) abfallen. In der Spalte "Sandfluß nach 3 Schuß" ist der verbliebene Sand im Schießkopf optisch beurteilt worden. "Stockt" bedeutet, dass sich über den Schießöffnungen ein Hohlraum ausgebildet hat, in denen der Sand nicht nachrutscht. "Rutscht" bedeutet, dass der Hohlraum nicht vorhanden ist und durch nachrutschenden Sand verschlossen worden ist. Dadurch kann ohne Rütteln weitergeschossen werden. Dieser Effekt ist für die erfindungsgemäßen Zuckertenside (hier Plantacare 2000 UP) überraschend, da es ein Nachrutschen des Sandes begünstigt.
  • Bestimmung der Festigkeit in N/cm2 - Betaset Verfahren
  • In einem Hobart Mischer wurde eine Sandmischung aus Quarzsand H 31, plus 2,3% AVENOL F 633 (ohne, bzw. mit den aufgeführten Stoffen) für 2 Minuten homogen vermischt. Diese Sandmischung wurde in eine Kernschießmaschine, Model Roeper H 1 (Öffnung am Sandaustritt des Schießkopfs 10 mm) überführt und wurde in einen zweier Kernkasten (GF Riegel 220mm x 22,4mm x 22,4 mm) mit einem Schießdruck von 3 bar mittels Druckluft und einer Schießzeit von 1 sec in die Form gebracht. Mittels 60°C warmem Methylformiat Gas (2,0 ml flüssiges Methylformiat, für 20 sec, 2 bar Spüldruck) wurde der Sand ausgehärtet. Die Biegefestigkeiten wurden mittels eine Biegeprüfgerätes der Fa. Multiserw nach der angegebenen Zeit bestimmt (Mittelwerte aus vier Bestimmungen). Tabelle 3
    # Additiv Festigkeit in N/cm 2 Kerngewicht
    15 sec sofort 24h RT 24h RT 98%
    [g]
    A9 ohne 125 155 175 118
    A10 0,50% Ölsäure 80 225 210 123
    A11 0,50% Capstone FS 35 130 255 180 125
    B5 0,50% Plantacare 2000 UP 145 285 220 129
    A9 = Vergleich, A10 gemäß US 5077323 ; A11 gemäß EP 0399636 : B5 erfindungsgemäß
  • Aus der Tabelle 3 ist ersichtlich, das durch Zusatz des erfindungsgemäßen Plantacare 2000 UP, die höchsten Festigkeiten in N/cm2 und die höchste Packungsdichte (angegeben durch das Kerngewicht) erreicht wurden.

Claims (14)

  1. Formstoffmischung umfassend zumindest einen feuerfesten Formgrundstoff, ein alkalisches Resol und ein Alkylpolyglycosid, wobei das alkalische Resol in einer Menge von 0,8 bis 10 Gew.%, bezogen auf den Feststoffgehalt des alkalischen Resols und relativ zum Gewicht des feuerfesten Formgrundstoffs, in der Formstoffmischung enthalten ist.
  2. Formstoffmischung nach Anspruch 1, wobei das Alkylpolyglycosid einen Polymerisationsgrad von 1 bis 30, insbesondere 2 bis 10, und einer C-Zahl des Alkohol-Restes von 6 bis 32 aufweist.
  3. Formstoffmischung nach Anspruch 1, wobei das Alkylpolyglycosid einen Polymerisationsgrad von 1 bis 30, insbesondere 2 bis 10, und einer C-Zahl des Alkohol-Restes von 8 bis 22 aufweist.
  4. Formstoffmischung nach zumindest einem der vorhergehenden Ansprüche, wobei das Alkylpolyglycosid einen HLB-Wert 11 bis 16 aufweist.
  5. Formstoffmischung nach zumindest einem der vorhergehenden Ansprüche, wobei das Alkylpolyglycosid mit 0,05 bis 5,0 Gew. % in der Formstoffmischung enthalten ist, bevorzugt mit 0,05 bis 3,0 Gew.% und besonders bevorzugt mit 0,05 bis 2,0 Gew%, bezogen auf den Feststoffgehalt des alkalischen Resols.
  6. Formstoffmischung nach zumindest einem der vorhergehenden Ansprüche, wobei das Alkylpolyglycosid mit 0,005 bis 0,5 Gew. % in der Formstoffmischung enthalten ist, bevorzugt mit 0,01 bis 0,3 Gew.%, bezogen auf die Formstoffmischung.
  7. Formstoffmischung nach zumindest einem der vorhergehenden Ansprüche, wobei das alkalische Resol in einer Menge von 1 bis 5 Gew.%, bezogen auf den Feststoffgehalt des alkalischen Resols und relativ zum Gewicht des feuerfesten Formgrundstoffs in der Formstoffmischung enthalten ist.
  8. Formstoffmischung nach zumindest einem der vorhergehenden Ansprüche, wobei das alkalische Resol Oxyanionen enthält, bevorzugt Aluminium-oxo-Verbindungen und/oder Bor-oxo-Verbindungen.
  9. Formstoffmischung nach zumindest einem der vorhergehenden Ansprüche, wobei die Resole in Form einer wässrigen alkalischen Lösung eingesetzt werden, vorzugsweise mit einem Festkörperanteil von 15 bis 50 Gew.%, und einem pH-Wert größer 12.
  10. Formstoffmischung nach zumindest einem der vorhergehenden Ansprüche, wobei der feuerfeste Formgrundstoff Quarz-Sand, Zirkon-Sand oder Chromerzsand, Olivin, Vermiculit, Bauxit, Schamotte, Glasperlen, Glasgranulat, Aluminiumsilikatmikrohohlkugeln und deren Mischungen umfasst und vorzugsweise zu mehr als 50 Gew.% aus Quarzsand, bezogen auf den feuerfesten Formgrundstoff, besteht.
  11. Formstoffmischung nach zumindest einem der vorhergehenden Ansprüche, wobei größer 80 Gew.%, vorzugsweise größer gleich 90 Gew.%, und besonders bevorzugt größer gleich 95 Gew.%, der Formstoffmischung feuerfester Formgrundstoff ist.
  12. Formstoffmischung nach zumindest einem der vorhergehenden Ansprüche, wobei der feuerfeste Formgrundstoff mittlere Partikeldurchmesser von 100 µm bis 600 µm, bevorzugt zwischen 120 µm und 550 µm aufweist, bestimmt durch Siebanalyse.
  13. Verfahren zur Herstellung eines Kerns, Speisers oder einer Form umfassend die folgenden Schritte:
    Einbringen der Formstoffmischung nach zumindest einem der vorhergehenden Ansprüche, ggf. enthaltend weitere Bestandteile, in ein Formwerkzeug;
    Härten der Formstoffmischung im Formwerkzeug mit CO2, Methylformiat oder einem anderen bei 25°C flüssigen Ester, vorzugsweise mit CO2; und
    Entnahme des gehärteten Kerns, Speisers oder der Form aus dem Formwerkzeug.
  14. Form, Speiser oder Kern herstellbar nach dem Verfahren nach Anspruch 13 für den Metallguss, insbesondere den Eisen oder Aluminium-Guss.
EP17811304.9A 2016-12-07 2017-12-07 Alkalische resolbinder mit verbesserter fliessfähigkeit Active EP3551360B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016123661.6A DE102016123661A1 (de) 2016-12-07 2016-12-07 Alkalische Resolbinder mit verbesserter Fließfähigkeit
PCT/EP2017/081934 WO2018104493A1 (de) 2016-12-07 2017-12-07 Alkalische resolbinder mit verbesserter fliessfähigkeit

Publications (2)

Publication Number Publication Date
EP3551360A1 EP3551360A1 (de) 2019-10-16
EP3551360B1 true EP3551360B1 (de) 2020-11-25

Family

ID=60627646

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17811304.9A Active EP3551360B1 (de) 2016-12-07 2017-12-07 Alkalische resolbinder mit verbesserter fliessfähigkeit

Country Status (3)

Country Link
EP (1) EP3551360B1 (de)
DE (1) DE102016123661A1 (de)
WO (1) WO2018104493A1 (de)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007051850A1 (de) * 2007-10-30 2009-05-07 Ashland-Südchemie-Kernfest GmbH Formstoffmischung mit verbesserter Fliessfähigkeit

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2473032A1 (fr) 1980-01-07 1981-07-10 Banquy David Procede de production d'ammoniac et du gaz de synthese correspondant
US4426467A (en) 1981-01-12 1984-01-17 Borden (Uk) Limited Foundry molding compositions and process
US4474904A (en) 1982-01-21 1984-10-02 Lemon Peter H R B Foundry moulds and cores
AU605943B2 (en) 1987-12-24 1991-01-24 Foseco International Limited Production of articles of bonded particulate material and binder compositions for use therein
US4996249A (en) 1989-04-27 1991-02-26 Acme Resin Corporation Method to improve flowability of resin coated sand
US5077323A (en) 1989-10-10 1991-12-31 Acme Resin Corporation Method to improve flowability of alkaline phenolic resin coated sand
AU8328191A (en) 1990-07-13 1992-02-04 Ashland Oil, Inc. Three component foundry binder system
US5376696A (en) 1990-07-13 1994-12-27 Ashland Oil, Inc. Foundry mixes based upon reclaimed sand
TW256851B (de) 1992-11-18 1995-09-11 Ashland Oil Inc
JP3250915B2 (ja) * 1994-09-30 2002-01-28 花王株式会社 鋳型用粘結剤組成物、鋳型組成物および鋳型の製造方法
DE19938043C2 (de) 1999-08-12 2001-12-06 Ashland Suedchemie Kernfest Aluminiumhaltiges Bindemittelsystem auf Resolbasis, Verfahren zur Herstellung und Verwendung sowie Formmasse
JP2001219242A (ja) * 2000-02-08 2001-08-14 Hodogaya Ashland Kk 鋳物砂用粘結剤組成物及び鋳型組成物
DE102012103705A1 (de) 2012-04-26 2013-10-31 Ask Chemicals Gmbh Verfahren zur Herstellung von Formen und Kernen für den Metallguss sowie nach diesem Verfahren hergestellte Formen und Kerne
DE102012104934A1 (de) * 2012-06-06 2013-12-12 Ask Chemicals Gmbh Forstoffmischungen enthaltend Bariumsulfat
DE102014106178A1 (de) 2014-05-02 2015-11-05 Ask Chemicals Gmbh Verfahren zum schichtweisen Aufbau von Körpern umfassend feuerfesten Formgrundstoff und Resole und Formen oder Kerne hergestellt nach diesem Verfahren

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007051850A1 (de) * 2007-10-30 2009-05-07 Ashland-Südchemie-Kernfest GmbH Formstoffmischung mit verbesserter Fliessfähigkeit

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
- -: "Product Datasheet Glucopon 225 DK", 1 January 2018 (2018-01-01), pages 1 - 2, XP055522283, Retrieved from the Internet <URL:https://e-applications.basf-ag.de/data/basf-pcan/pds2/pds2-web.nsf/892292F8084F5B17C125765700419640/$File/GLUCOPON_r__225_DK_E.pdf> [retrieved on 20181108] *
PATRICK BILLIAN ET AL: "Isolation of n -Decyl-[alpha](1->6) Isomaltoside from a Technical APG Mixture and Its Identification by the Parallel Use of LC-MS and NMR Spectroscopy", ANALYTICAL CHEMISTRY, vol. 72, no. 20, 13 September 2000 (2000-09-13), US, pages 4973 - 4978, XP055522388, ISSN: 0003-2700, DOI: 10.1021/ac0004005 *

Also Published As

Publication number Publication date
DE102016123661A1 (de) 2018-06-07
EP3551360A1 (de) 2019-10-16
WO2018104493A1 (de) 2018-06-14

Similar Documents

Publication Publication Date Title
EP3137246B1 (de) Verfahren zum schichtweisen aufbau von körpern umfassend feuerfesten formgrundstoff und resole
EP3606690B1 (de) Verfahren zur herstellung von giessformen, kernen und daraus regenerierten formgrundstoffen
EP2014392B1 (de) Formstoffmischung, Formling für Giessereizwecke und Verfahren zur Herstellung eines Formlings
EP2908968B1 (de) Formstoffmischungen auf der basis anorganischer bindemittel und verfahren zur herstellung von formen und kerne für den metallguss
EP2097192B2 (de) Phosphorhaltige formstoffmischung zur herstellung von giessformen für die metallverarbeitung
EP1884300B1 (de) Formstoff, Giesserei-Formstoff-Gemisch und Verfahren zur Herstellung einer Form oder eines Formlings
DE2945653C2 (de) Verfahren zur Herstellung von Gießereikernen oder -formen und Bindemittel für diesen Zweck
EP3495073B1 (de) Emissionsarmes, kalthärtendes bindemittel für die giessereiindustrie
EP3634726B1 (de) Verfahren zur herstellung von dreidimensional geschichteten formkörpern
EP3137245B1 (de) Formstoffmischung enthaltend resole und amorphes siliciumdioxid, aus diesen hergestellte formen und kerne und verfahren zu deren herstellung
DE102012020511A1 (de) Formstoffmischungen auf der Basis anorganischer Bindemittel und Verfahren zur Herstellung von Formen und Kerne für den Metallguss
DE102007012489A1 (de) Zusammensetzung zur Herstellung von Speisern
DE69706193T2 (de) Sandregenerierung
EP1228128B1 (de) Aluminium- und borhaltiges bindemittelsystem auf resolbasis
EP3551360B1 (de) Alkalische resolbinder mit verbesserter fliessfähigkeit
EP3006136A1 (de) Verwendung einer basischen zusammensetzung als infiltrationsmittel für den formstoff einer giessform zur vermeidung von weissen belägen (narbigen oberflächen) auf gussstücken, entsprechende verfahren, giessformen und kits
EP1417060B1 (de) Giessform und verfahren zu deren herstellung
EP3478428B1 (de) Wässrige alkalische bindemittelzusammensetzung zur aushärtung mit kohlendioxidgas sowie deren verwendung, eine entsprechende formstoffmischung zur herstellung eines giessereiformkörpers, ein entsprechender giessereiformkörper sowie ein verfahren zur herstellung eines giessereiformkörpers
DE10136365A1 (de) CO¶2¶-härtbares Bindemittelsystem auf Resolbasis
WO2023217325A1 (de) Verfahren zum schichtweisen aufbau von baukörpern mit einem bindemittel modifizierter viskosität
DE102019135605A1 (de) Verfahren zum schichtweisen Aufbau von Körpern umfassend feuerfesten Formgrundstoff und Resole, nach diesem Verfahren hergestellte dreidimensionale Körper sowie ein Bindemittel für den 3-dimensionalen Aufbau von Körpern
DE102005024524B4 (de) Form und Verfahren zu deren Herstellung
EP0032596B1 (de) Verfahren zur Herstellung von verlorenen Formen
DE2713115A1 (de) Mischung zur herstellung von giessereikernen und -formen

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190618

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: PRIEBE, CHRISTIAN

Inventor name: MERTSCHEIT, MELANIE

Inventor name: LENZEN, FRANK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200722

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017008405

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1337701

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210325

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210225

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210325

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210225

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017008405

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201207

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201207

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

26N No opposition filed

Effective date: 20210826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210325

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211207

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230517

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20231218

Year of fee payment: 7

Ref country code: FR

Payment date: 20231219

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1337701

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221207

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240215

Year of fee payment: 7