EP3434871B1 - Sliding cam system - Google Patents
Sliding cam system Download PDFInfo
- Publication number
- EP3434871B1 EP3434871B1 EP18181090.4A EP18181090A EP3434871B1 EP 3434871 B1 EP3434871 B1 EP 3434871B1 EP 18181090 A EP18181090 A EP 18181090A EP 3434871 B1 EP3434871 B1 EP 3434871B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- actuator
- cam
- cam carrier
- carrier
- contact surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000006073 displacement reaction Methods 0.000 claims description 50
- 238000013016 damping Methods 0.000 claims description 44
- 238000002485 combustion reaction Methods 0.000 claims description 17
- 230000005540 biological transmission Effects 0.000 claims description 10
- 230000007423 decrease Effects 0.000 claims 2
- 239000012530 fluid Substances 0.000 description 62
- 230000008901 benefit Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 206010007134 Candida infections Diseases 0.000 description 1
- 208000007027 Oral Candidiasis Diseases 0.000 description 1
- 241000287411 Turdidae Species 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 201000003984 candidiasis Diseases 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L1/00—Valve-gear or valve arrangements, e.g. lift-valve gear
- F01L1/26—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of two or more valves operated simultaneously by same transmitting-gear; peculiar to machines or engines with more than two lift-valves per cylinder
- F01L1/267—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of two or more valves operated simultaneously by same transmitting-gear; peculiar to machines or engines with more than two lift-valves per cylinder with means for varying the timing or the lift of the valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L13/00—Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
- F01L13/0015—Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
- F01L13/0036—Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque the valves being driven by two or more cams with different shape, size or timing or a single cam profiled in axial and radial direction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L1/00—Valve-gear or valve arrangements, e.g. lift-valve gear
- F01L1/02—Valve drive
- F01L1/04—Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
- F01L1/047—Camshafts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D13/00—Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
- F02D13/02—Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L1/00—Valve-gear or valve arrangements, e.g. lift-valve gear
- F01L1/12—Transmitting gear between valve drive and valve
- F01L1/18—Rocking arms or levers
- F01L1/181—Centre pivot rocking arms
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L1/00—Valve-gear or valve arrangements, e.g. lift-valve gear
- F01L1/26—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of two or more valves operated simultaneously by same transmitting-gear; peculiar to machines or engines with more than two lift-valves per cylinder
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L1/00—Valve-gear or valve arrangements, e.g. lift-valve gear
- F01L1/02—Valve drive
- F01L1/04—Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
- F01L1/047—Camshafts
- F01L2001/0471—Assembled camshafts
- F01L2001/0473—Composite camshafts, e.g. with cams or cam sleeve being able to move relative to the inner camshaft or a cam adjusting rod
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L13/00—Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
- F01L13/0015—Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
- F01L13/0036—Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque the valves being driven by two or more cams with different shape, size or timing or a single cam profiled in axial and radial direction
- F01L2013/0052—Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque the valves being driven by two or more cams with different shape, size or timing or a single cam profiled in axial and radial direction with cams provided on an axially slidable sleeve
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L13/00—Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
- F01L13/0015—Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
- F01L2013/0078—Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque by modification of cam contact point by axially displacing the camshaft
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L13/00—Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
- F01L2013/10—Auxiliary actuators for variable valve timing
- F01L2013/101—Electromagnets
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L13/00—Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
- F01L2013/10—Auxiliary actuators for variable valve timing
- F01L2013/103—Electric motors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L13/00—Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
- F01L2013/10—Auxiliary actuators for variable valve timing
- F01L2013/105—Hydraulic motors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L13/00—Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
- F01L2013/10—Auxiliary actuators for variable valve timing
- F01L2013/106—Pneumatic motors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L2305/00—Valve arrangements comprising rollers
Definitions
- the invention relates to a sliding cam system for an internal combustion engine.
- Valve-controlled internal combustion engines have one or more controllable inlet and outlet valves per cylinder.
- Variable valve drives allow flexible control of the valves to change the opening time, closing time and / or the valve lift. This means that engine operation can be adapted to a specific load situation, for example.
- a variable valve drive can be implemented using a so-called sliding cam system.
- a sliding cam with at least one cam section having a plurality of cam tracks is mounted on the camshaft in a rotationally fixed but axially displaceable manner, which has a stroke contour into which an actuator in the form of a pin is inserted from radially outside to generate an axial displacement of the sliding cam.
- the axial displacement of the sliding cam sets a different valve lift for the respective gas exchange valve.
- the sliding cam After axial displacement of the same relative to the camshaft, the sliding cam is locked in its axial relative position on the camshaft in that, depending on the axial relative position, at least one spring-loaded locking ball, which is received and supported in the camshaft, engages in at least one locking groove.
- the sliding cam system can take up a considerable amount of space.
- an arrangement of the actuators for moving a cam carrier (sliding cam) can be a challenge in tight spaces.
- the actuators are attached to a frame connected to the cylinder head or cylinder head cover.
- an internal combustion engine with a plurality of cylinders, a cylinder head and a cylinder head cover is known.
- At least one rotatably mounted camshaft with at least one slide cam that can be axially displaced on the respective camshaft is provided.
- the respective sliding cam has at least one link section with at least one groove.
- An actuator is provided to effect an axial displacement of the respective sliding cam.
- the actuator is mounted in the cylinder head or in the cylinder head cover.
- the JP 2013 060823 A discloses a sliding cam system with a camshaft, a cam carrier and pistons which can be retracted and extended parallel to the camshaft for moving the cam carrier.
- the JP S58 90338 U discloses a control device for opening and closing an intake valve.
- a camshaft can be displaced along its longitudinal direction by means of an actuating element engaging one end of the camshaft.
- the JP S60 75603 U and the WO 201/163252 A1 disclose further variable valve trains.
- the invention is based on the object of providing an improved or alternative sliding cam system which, in particular, has a construction that is optimized in terms of installation space.
- the sliding cam system for an internal combustion engine has a camshaft.
- the sliding cam system has a cam carrier which is arranged on the camshaft in a rotationally fixed and axially displaceable manner.
- the cam carrier has a first shift gate and a second shift gate.
- the sliding cam system has a first actuator with an element (for example retractable and extendable element) that can be displaced along a longitudinal axis of the camshaft.
- the element is designed in particular as a pin.
- the element can be brought into contact with the first shift gate for the axial displacement of the cam carrier in a first direction.
- the sliding cam system also has a second actuator with an element that can be displaced along the longitudinal axis of the camshaft (for example, element that can be retracted and extended).
- the element is designed in particular as a pin.
- the element can be brought into contact with the second shift gate for the axial displacement of the cam carrier in a second direction, which is opposite to the first direction.
- one or more axially acting actuators enables a space-optimized arrangement of the actuators compared to systems with radially acting actuators.
- the axially acting actuators can be integrated into existing structures along the camshaft.
- this actuator can, for example, be designed to be double-acting. This enables an axial displacement of the cam carrier in both directions along the longitudinal axis of the camshaft.
- the actuator can move the cam carrier, for example, in a first direction against an elastic pretensioning element. In an opposite direction, the actuator can enable the cam carrier to be displaced by the elastic pretensioning element by retracting the displaceable element. It is also possible to use a different mechanism which, in combination with only one actuator, enables an axial displacement of the cam carrier between a first axial position and a second axial position.
- the first actuator can move the cam carrier from a second axial position into a first axial position.
- the second actuator can move the cam carrier from a first axial position into a second axial position.
- a first cam of the cam carrier can be in operative connection with at least one gas exchange valve.
- a second cam of the cam carrier can be in operative connection with the at least one gas exchange valve.
- the first actuator is received in or on a first bearing block which rotatably supports the camshaft.
- the second actuator is accommodated in or on a second bearing block which rotatably supports the camshaft.
- the actuators therefore do not require any separate installation space. Instead, the actuators can be integrated directly into the existing bearing blocks of the camshaft without requiring additional space.
- first actuator can be attached to the first bearing block and / or the second actuator can be attached to the second bearing block.
- hydraulic fluid can be supplied to the first actuator and / or the second actuator via the bearing blocks. This means that no additional space is required for the hydraulic lines.
- an electrical line and / or a pneumatic line for the first actuator and / or the second actuator can be provided in or on the first and / or second bearing block.
- the first shift gate and / or the second shift gate is step-shaped.
- the stepped design of the shift gate can enable the actuators to be contacted in a simple manner by the displaceable elements.
- the movable elements of the actuators can press against a shoulder of the respective, stepped shift gate when the cam carrier is to be moved.
- first shift gate are arranged on a first end of the cam carrier and the second shift gate are arranged on an opposite second end of the cam carrier. In this way, a travel path of the displaceable elements can be minimized.
- the actuators can be arranged directly next to the ends of the cam carrier.
- the first shift gate has an actuator contact surface which extends in a circumferential direction around the longitudinal axis of the camshaft.
- the second shift gate has an actuator contact surface which extends in a circumferential direction around the longitudinal axis of the camshaft.
- a displacement of the cam carrier can be implemented via a contact between the displaceable elements of the actuators and the corresponding actuator contact surfaces.
- a contact with the corresponding actuator contact surfaces can be used to dampen the displacement of the cam carrier.
- the actuator contact surface of the first shift gate has a first ramp and a second ramp.
- the first ramp of the actuator contact surface of the first shift gate increases a distance between the first actuator and the actuator contact surface of the first shift gate with respect to a direction of rotation of the camshaft.
- the second ramp of the actuator contact surface of the first shift gate reduces a distance between the first actuator and the actuator contact surface of the first shift gate with respect to a direction of rotation of the camshaft.
- the actuator contact surface of the second shift gate has a first ramp and a second ramp.
- the first ramp of the actuator contact surface of the second shift gate increases a distance between the second actuator and the actuator contact surface of the second shift gate with respect to a direction of rotation of the camshaft.
- the second ramp of the actuator contact surface of the second shift gate reduces a distance between the second actuator and the actuator contact surface of the second shift gate with respect to a direction of rotation of the camshaft.
- the ramps enable the cam carrier to be displaced by contact with the displaceable elements. If, for example, the displaceable element of the first actuator contacts the second ramp of the actuator contact surface of the first shift gate, the cam carrier is displaced in the first direction while the cam carrier rotates together with the camshaft. If, on the other hand, the displaceable element of the second actuator contacts the second ramp of the actuator contact surface of the second shift gate, the cam carrier is displaced in the second direction while the cam carrier rotates together with the camshaft.
- first and second ramp of the first and second shift gate can be arranged such that a displacement of the cam carrier is only possible within a base circle area of the cams of the cam carrier.
- the first actuator and / or the second actuator is actuated hydraulically, electrically and / or pneumatically.
- an axial displacement of the cam carrier is damped hydraulically.
- the damping can enable locking (axial securing) of the cam carrier.
- the sliding cam system has a first elastic element which pretensions the cam carrier in the second direction.
- the sliding cam system has a second elastic element which pretensions the cam carrier in the first direction.
- the elastic elements enable damping of the displacement movement of the cam carrier. If the cam carrier is displaced in the first direction, for example by the first actuator, the first elastic element can dampen the displacement movement of the cam carrier.
- the first elastic element supports the cam carrier on a bearing block for rotatably mounting the camshaft and is rotatably mounted about the longitudinal axis of the camshaft with respect to the bearing block or the cam carrier.
- the second elastic element supports the cam carrier on a bearing block for rotatably mounting the camshaft and is rotatably mounted about the longitudinal axis of the camshaft with respect to the bearing block or the cam carrier.
- the bearing blocks of the camshaft which are already present, can thus be used to support the elastic elements for damping the displacement movement of the cam carrier.
- the rotatable mounting of the elastic elements is provided in order to prevent the elastic elements from dragging on the cam carrier or bearing block, since the elastic elements in the embodiment either rotate with the cam carrier or are fixed on the bearing block.
- the sliding cam system has a first hydraulic damping cylinder which is arranged to dampen an axial displacement of the cam carrier in the first direction.
- the sliding cam system has a second hydraulic damping cylinder which is arranged for damping an axial displacement of the cam carrier in the second direction.
- the sliding cam system also has a first throttle, which is arranged downstream of the first hydraulic damping cylinder, and / or a second throttle, which is arranged downstream of the second hydraulic damping cylinder.
- a resistance for hydraulic fluid flowing out of the hydraulic damping cylinders can be built up via the throttles, whereby a desired damping can be realized.
- the second actuator dampens an axial displacement of the cam carrier when the first actuator axially displaces the cam carrier in the first direction.
- the first actuator dampens an axial displacement of the cam carrier when the second actuator axially displaces the cam carrier in the second direction. This means that the damping functionality can be integrated directly into the actuators.
- the second actuator dampens an axial displacement of the cam carrier hydraulically and / or via an elastic element of the second actuator.
- the first actuator dampens an axial displacement of the cam carrier hydraulically and / or via an elastic element of the first actuator.
- the invention also relates to a variable valve drive for an internal combustion engine.
- the variable valve train includes a slide cam system as disclosed herein.
- the variable valve drive has at least one gas exchange valve and a force transmission device (for example a tappet, rocker arm or rocker arm).
- the force transmission device optionally sets a first cam of the cam carrier in operative connection with the at least one gas exchange valve or a second cam of the cam carrier in operative connection with the at least one gas exchange valve.
- the invention also relates to a motor vehicle, in particular a utility vehicle, with a sliding cam system as disclosed herein or a variable valve train as disclosed herein.
- the utility vehicle can be, for example, an omnibus or a truck.
- the Figure 1 shows a variable valve drive 10.
- the variable valve drive 10 can, for example, be part of an internal combustion engine of a commercial vehicle, in particular a truck or a bus.
- the variable valve drive 10 has a first gas exchange valve 12, a second gas exchange valve 14, a sliding cam system 16, a force transmission device 18, a first bearing block (bearing body) 20 and a second bearing block (bearing body) 22.
- variable valve drive 10 is used to adapt an activation of the gas exchange valves 12, 14.
- an opening time, a closing time and / or a valve lift of the gas exchange valves 12, 14 can be adapted.
- the gas exchange valves 12, 14 can be inlet valves or outlet valves.
- the bearing blocks 20, 22 support a camshaft 24 in a rotatable manner.
- the rocker arm shaft 42 is attached to the bearing blocks 20, 22.
- the bearing blocks 20, 22 can be fastened, for example, to a fastening frame or a cylinder head of the internal combustion engine.
- the camshaft 24 and the rocker arm shaft 42 can be mounted separately from one another, for example.
- the sliding cam system 16 has the camshaft 24, a cam carrier 26, a first actuator 28 and a second actuator 30.
- the cam carrier 26 is arranged on the camshaft 24 in a rotationally fixed and axially displaceable manner.
- the cam carrier 26 has a first cam 32, a second cam 34, a first shift gate 36 and a second shift gate 38.
- the first cam 32 and the second cam 34 are arranged adjacent to each other.
- the first cam 32 and the second cam 34 have different cam contours.
- the first cam 32 and the second cam 34 are provided in a central region of the cam carrier 26.
- the force transmission device 18 creates an operative connection between the first cam 32 and the gas exchange valves 12, 14 or between the second cam 34 and the gas exchange valves 12, 14.
- the force transmission device 18 has a rocker arm 40 and a rocker arm shaft 42.
- the rocker arm 40 follows a cam contour of the first cam 32 or the second cam 34 via a cam follower 44 depending on the axial position of the cam carrier 26.
- the cam follower 44 is designed as a rotatably mounted roller.
- the rocker arm 40 is mounted rotatably about the rocker arm axis 42. In a valve lift range of the cam 32 or 34, the gas exchange valves 12, 14 are actuated accordingly via the rocker arm 40.
- the force transmission device 18 can have a rocker arm or a tappet, for example.
- the example shown is the cam carrier 26 in a first axial position.
- the force transmission device 18 produces an operative connection between the first cam 32 and the gas exchange valves 12, 14.
- the cam carrier 26 can be moved into a second axial position (to the left in Figure 1 ) can be moved.
- the power transmission device 18 puts the second cam 34 in operative connection with the gas exchange valves 12, 14.
- the cam carrier (sliding cam) 26 can be moved along the axial direction of the camshaft 24 by the interaction of the first actuator 28, the second actuator 30, the first shift gate 36 and the second shift gate 38 are moved.
- the first actuator 28 is received and fastened in the first bearing block 20.
- the second actuator 30 is received and fastened in the second bearing block 22.
- the attachment and The inclusion of the actuators 28, 30 in the bearing blocks 20, 22 is advantageous for reasons of space. There is no need to provide a separate installation space for the actuators 28, 30.
- the first shift gate 36 and the second shift gate 38 are arranged on opposite axial ends of the cam carrier 26.
- the first shift gate 36 interacts with the first actuator 28 to shift the cam carrier 26 from the second axial position into the first axial position.
- the cam carrier 26 can be displaced in a first direction by the first actuator 28 and the first shift gate 36.
- the second shift gate 38 interacts with the second actuator 30 to shift the cam carrier 26 from the first axial position into the second axial position.
- the cam carrier 26 can be displaced in a second direction by the second actuator 30 and the second shift gate 38.
- the second direction is opposite to the first direction.
- the first and second directions extend parallel to a longitudinal axis of the camshaft 24.
- Each actuator 28, 30 has a displaceable pin 46, 48.
- the pin 46 of the first actuator 28 is in Figure 1 covered by the first bearing block 20.
- the pins 46, 48 are slidable in an axial direction of the camshaft 24.
- other displaceable elements can also be used for displacing the cam carrier 26.
- the first shift gate 36 and the second shift gate 38 are step-shaped.
- the shift gate 36, 38 each have an actuator contact surface 50, 52.
- the actuator contact surfaces 50, 52 extend in a circumferential direction around the longitudinal axis of the camshaft 24.
- the actuator contact surface 50 has a first ramp 50A and a second ramp 50B.
- the first ramp 50A increases a distance between the first actuator 28 and the actuator contact surface 50 with respect to a direction of rotation of the camshaft 24.
- the second ramp 50B reduces a distance between the first actuator 28 and the actuator contact surface 50 with respect to a direction of rotation of the camshaft 24 52 a first ramp 52A and a second ramp 52B.
- the first ramp 52A increases a distance between the second actuator 30 and the actuator contact surface 52 with respect to a direction of rotation of the camshaft 24.
- the second ramp 52B reduces a distance between the second actuator 30 and the actuator contact surface 52 with respect to a direction of rotation of the camshaft 24.
- the actuator contact surfaces 50, 52 extend spirally (helically) in a direction to each other with respect to a direction of rotation of the camshaft 24.
- the actuator contact surfaces 50, 52 extend spirally (helically) in the opposite direction with respect to a direction of rotation of the camshaft 24.
- the pin 46 of the first actuator 28 is extended.
- the pin 46 of the first actuator 28 is extended such that the pin 46 is fully extended when the cam carrier 26 reaches a rotational position in which a start of the second ramp 50B passes the pin 46 by rotating the camshaft 24.
- the pin 46 may extend as it passes the first ramp 50A over the pin 46 due to the rotation of the camshaft 24. Due to the ramp 50B, the extended pin 46 pushes the cam carrier 26 from the second axial position to the first axial position.
- the cam carrier 26 is displaced from the first axial position to the second axial position in an analogous manner by the pin 48 of the second actuator 30. Due to the ramp 52B of the actuator contact surface 52, the extended pin 48 pushes the cam carrier 26 into the second axial position.
- the sliding cam system 16 can additionally have a locking device (not shown).
- the locking device can be designed such that it axially secures the cam carrier 26 in the first axial position and the second axial position.
- the locking device can, for example, have an elastically pretensioned locking body. In the first axial position of the cam carrier 26, the locking body can engage in a first recess of the cam carrier and in the second axial position of the cam carrier 26 it can engage in a second recess of the cam carrier 26.
- the locking device can be provided in the camshaft 24, for example.
- the actuators 28 and 30 can be, for example, hydraulically operated actuators. In the following description, exemplary embodiments for hydraulic systems for actuating the actuators 28 and 30 are described.
- the Figure 2 shows a hydraulic system 53.
- the hydraulic system 53 has a main hydraulic line 54, a first connecting line 56 and a second connecting line 58.
- the first actuator 28 is connected to the main hydraulic line 54 via the first connecting line 56.
- the second actuator 30 is connected to the main hydraulic line 54 via the second connecting line 58.
- a first electrically operated 2-way valve 60, a first mechanically operated 2-way valve 62 and a first control valve 64 are in the first connecting line 58 for controlling an inflow of hydraulic fluid to the first actuator 28 arranged.
- a second electrically operated 2-way valve 66, a second mechanically operated 2-way valve 68 and a second control valve 70 are arranged in the second connecting line 58 for controlling an inflow of hydraulic fluid to the second actuator 30.
- an electrical release is first effected by the first electrically operated 2-way valve 60.
- the first electrically operated 2-way valve 60 establishes a fluid connection between the main hydraulic line 54 and the first mechanically operated 2-way valve 62 .
- the mechanically operated 2-way valve 62 establishes a fluid connection between the main hydraulic line 54 and the first actuator 28 via the released, first electrically operated 2-way valve 60.
- the hydraulic fluid passes through the first control valve 64 and causes the pin 46 of the first actuator 28 to extend.
- the pin 46 of the first actuator 28 touches the actuator contact surface 50 of the first shift gate 36 and moves the cam carrier 26 into the first axial position.
- the cam carrier 26 rotates in a circumferential direction about the longitudinal axis of the camshaft 24 (see Figure 1 ).
- the first control valve 64 is designed as a controllable check valve.
- the first control valve 64 prevents the hydraulic fluid from flowing back from the first actuator 28 as long as a control pressure from the first connecting line 56 is present.
- Hydraulic fluid flowing out of the first actuator 28 can, for example, be drained into a hydraulic fluid chamber (not shown) of the internal combustion engine.
- the hydraulic fluid space can be, for example, an oil space of the internal combustion engine.
- the second electrically operated 2-way valve 66 is first electrically released.
- the second mechanically operated 2-way valve 68 can establish a fluid connection between the second actuator 30 and the main hydraulic line 54.
- the pin 48 of the second actuator 30 extends, touches the actuator contact surfaces 52 and displaces the cam carrier 26 into the second axial position while the cam carrier 26 rotates.
- elastic elements 72, 74 for example springs
- the elastic elements 72, 74 support the cam carrier 26 on the first bearing block 20 and the second bearing block 22.
- the elastic elements 72, 74 can be rotated on the corresponding bearing block, for example via ball bearings 20, 22 stored.
- the elastic elements 72, 74 could also be fastened to the bearing blocks 20, 22 and, for example, be rotatably connected to the cam carrier 26 via ball bearings.
- the Figure 3 shows another hydraulic system 78.
- the hydraulic system 78 differs from the hydraulic system 53 of FIG Figure 2 in particular in the damping of the axial displacement of the cam carrier 26.
- the hydraulic system 78 has a first damping cylinder 80 and a second damping cylinder 82 for damping the axial displacement of the cam carrier 26.
- a piston of the first damping cylinder 80 extends when the pin 46 of the first actuator 28 extends. If the cam carrier 26 finally contacts the piston of the first damping cylinder 80 during the axial displacement to the first axial position, the piston of the first damping cylinder 80 is pushed in. In the process, hydraulic fluid is pushed out of the first damping cylinder 80. The hydraulic fluid is conducted to a hydraulic fluid chamber of the internal combustion engine via a first throttle 84. By pushing out the hydraulic fluid, the axial movement of the cam carrier 26 is damped.
- a piston of the second damping cylinder 82 extends when the pin 48 of the second actuator 30 extends. Hydraulic fluid is pushed out of the second damping cylinder 82 when the piston of the second damping cylinder 82 is pushed in by the cam carrier 26. The expelled hydraulic fluid passes the second throttle 86 and reaches the hydraulic fluid chamber of the internal combustion engine.
- a first check valve 88 prevents the hydraulic fluid from being conducted from the first damping cylinder 80 to the first actuator 28.
- a second check valve 90 prevents hydraulic fluid pushed out of the second damping cylinder 82 from being conducted to the second actuator 30.
- the first damping cylinder 80 damps an axial displacement of the cam carrier 26 to the second axial position.
- the second damping cylinder 82 damps an axial displacement of the cam carrier 26 to the first axial position.
- the chokes 84, 86 provide a resistance for represents the hydraulic fluid flowing out of the corresponding damping cylinder 80, 82, so that a desired damping is made possible.
- FIG. 14 shows another hydraulic system 92.
- Hydraulic system 92 differs from hydraulic system 78 from FIG Figure 3 in particular in the fact that no separate damping cylinders are provided.
- the damping of the axial displacement of the cam carrier 26 is instead carried out by the actuators 28, 30 themselves.
- the hydraulic system 92 has a first mechanically operated 4-way valve 94 and a second mechanically operated 4-way valve 96.
- the first mechanically operated 4-way valve 94 is activated by the first electrically operated 2-way valve 60.
- the second mechanically operated 4-way valve 96 is controlled by the second electrically operated 2-way valve 66.
- the hydraulic system 92 has a third electrically operated 2-way valve 98 and a fourth electrically operated 2-way valve 100.
- the first mechanically operated 4-way valve 94 is activated by the first electrically operated 2-way valve 60.
- the first mechanically operated 4-way valve 94 establishes a fluid connection between the main hydraulic line 54 and the first actuator 28.
- the pin 46 of the first actuator 28 extends.
- the cam carrier 26 is shifted in a direction towards the first axial position.
- the third electrically operated 2-way valve 98 establishes a fluid connection between the second actuator 30 and the main hydraulic line 54.
- the extended pin 48 of the second actuator 30 contacts the cam carrier 26 as the cam carrier 26 moves to the first axial position.
- the pin 48 is pushed into the second actuator 30.
- Hydraulic fluid is pushed out of the second actuator 30.
- the expelled hydraulic fluid arrives at the correspondingly set second mechanically operated 4-way valve 96 via the first throttle 84 to the hydraulic fluid chamber of the internal combustion engine.
- the cam carrier 26 can be displaced into the second axial position by the second actuator 30.
- the displacement movement of the cam carrier 26 can then be damped by the first actuator 28.
- the fourth electrically operated 2-way valve 100 and the first mechanically operated 4-way valve 94 are switched accordingly.
- the first check valve 88 prevents the hydraulic fluid from flowing back to the fourth electrically operated 2-way valve 100.
- the second check valve 90 prevents hydraulic fluid pushed out of the second actuator 30 from being conducted to the third electrically operated 2-way valve 98.
- FIG. 14 shows another hydraulic system 102.
- Hydraulic system 102 differs from hydraulic system 92 from FIG Figure 4 in particular that a common throttle 104 is provided instead of two separate throttles 84, 86.
- the valves 94, 96 have other neutral positions than in FIG Figure 4 on.
- FIGS Figures 6 to 15 show the sequence of a displacement of the cam carrier 26 by the first actuator 28 to the first axial position, while the cam carrier 26 moves together with the camshaft 24 (see FIG Figure 1 ) rotates.
- the hydraulic system 106 has a first electrically operated 2-way valve 108 and a second electrically operated 2-way valve 110.
- the hydraulic system 106 has a first control valve 112 and a second control valve 114 as well as a first check valve 116 and a second check valve 118.
- the hydraulic system 106 has the first throttle 84 and the second throttle 86.
- the first actuator 28 has a displaceable piston 120, a first displaceable sleeve 122, a second displaceable sleeve 124, a first elastic element 126, a second elastic element 128 and a third elastic element 130.
- the first elastic member 126 biases the piston 120 in a direction opposite to the pin 46.
- the second elastic member 128 supports the pin 46 against the first Sleeve 124 from.
- the third elastic element 130 biases the second sleeve 124 in a direction towards the piston 120.
- An axial movement of the pin 46 when the pin 46 is extended is limited by the second sleeve 124.
- the pin 46 is guided in the sleeves 122, 124.
- the second actuator 30 is constructed identically to the first actuator 28, with a piston 132, a first sleeve 134, a second sleeve 136, a first elastic element 138, a second elastic element 140 and a third elastic element 142.
- the Figure 6 shows the first actuator 28 and the second actuator 30 in a non-actuated state. Pins 46 and 48 are retracted. The first and second electrically operated 2-way valves 108, 110 are switched in such a way that hydraulic fluid is conducted from the first actuator 28 and the second actuator 30 to a hydraulic fluid chamber of the internal combustion engine.
- the Figure 7 shows the first actuator 28 at the beginning of an actuation.
- the first electrically operated 2-way valve 108 allows hydraulic fluid to pass from a hydraulic fluid source.
- the hydraulic fluid is conducted into a control fluid space for displacing the first sleeve 122.
- the Figure 8 shows that the hydraulic fluid conducted into the control fluid space for displacing the first sleeve 122 has displaced the first sleeve 122 together with the second sleeve 124 and the pin 46 in the direction of the actuator contact surface 50.
- the first sleeve 122, the second sleeve 124 and the pin 46 have shifted against the pretensioning force of the third elastic element 130.
- the third elastic member 130 is compressed.
- the pin 46 touches the actuator contact surface 50 in an area in which the actuator contact surface 50 is at the greatest distance from the first actuator 28.
- a hydraulic channel of the second sleeve 124 is aligned with a hydraulic channel of the pin 46.
- the hydraulic channel of the second sleeve 124 and the hydraulic channel of the pin 46 establish a fluid connection between the hydraulic fluid source and a control fluid space for displacing the piston 120. Hydraulic fluid flows through the hydraulic channels of the second sleeve 124 and the pin 46 to the control fluid space for displacing the piston 120.
- the Figure 9 shows that the hydraulic fluid conducted into the control fluid space for displacing the first piston 120 has displaced the piston 120 in a direction towards the actuator contact surface 50.
- the piston 120 has moved against the pretensioning force of the first elastic element 126.
- the piston 120 contacts the pin 46 to lock it into place.
- FIGS. 10 and 11 show that pin 46 eventually engages second ramp 50B as cam carrier 26 rotates.
- the pin 46 latched by the piston 120 pushes the cam carrier 26 in a direction towards the second actuator 30.
- the Figure 12 shows that the cam carrier 26 touches the pin 48 via the actuator contact surface 52 at the end of the displacement movement caused by the first actuator 28.
- the pin 48 is displaced against the pretensioning force of the second elastic element 140 in the direction of the piston 132 of the second actuator 30.
- a displacement movement of the cam carrier 26 is damped.
- the Figure 13 shows that the pretensioning force of the second elastic element 140 has moved the pin 48 back into its starting position.
- the cam carrier 26 was thereby shifted a little in the direction of the first actuator 28.
- the cam carrier 26 now lies centrally between the first actuator 28 and the second actuator 30.
- the locking device 76 (cf., for example, FIG Figures 2 to 5 ) the cam carrier 26 axially on the camshaft 24 (see Figure 1 ) to back up.
- the Figure 14 shows that the first electrically operated 2-way valve 108 has been switched over.
- the first electrically operated 2-way valve 108 establishes a fluid connection between the first actuator 28 and a hydraulic fluid chamber of the internal combustion engine via the first throttle 86.
- the hydraulic fluid from the control chamber for moving the piston 120 flows back through the hydraulic channels of the second sleeve 124 and the pin 46 in the direction of the first electrically operated 2-way valve 108.
- the hydraulic fluid flows from the control chamber for moving the piston 120 via the first Control valve 112 in the direction of the first electrically operated 2-way valve 108.
- hydraulic fluid flows out of the control chamber to move the first sleeve 128 in the direction of the first electrically operated 2-way valve 108.
- the Figure 15 shows that, due to the outflow of the hydraulic fluid, the piston 120 has shifted in a direction opposite to the second actuator 30 according to the pretensioning force of the first elastic element 126.
- the first sleeve 122, the second sleeve 124 and the pin 46 have moved together opposite to the second actuator 30 in accordance with the pretensioning force of the third elastic element 130.
- the pin 46 is retracted.
- the cam carrier 26 can be displaced back into the second axial position by actuating the second actuator 30.
- the second actuator 30 for moving is identical to that of the first actuator 28 when moving into the first axial position.
- the mode of operation of the first actuator 28 for damping the displacement movement is also identical to that of the second actuator 30 when damping the displacement into the first axial position.
- cam carrier 26 is only displaced by the first actuator 28 when the pin 46 is in engagement with the ramp 50B at the maximum distance. If the pin 46 comes into engagement with the actuator contact surface 50 on the ramp 50B or outside the ramp 50B, there is no displacement of the cam carrier 26.
- the Figure 16 shows similar to Figure 6 the first actuator 28 and the second actuator 30 in a non-actuated state. Pins 46 and 48 are retracted. The first and second electrically operated 2-way valves 108, 110 are switched in such a way that hydraulic fluid is conducted from the first actuator 28 and the second actuator 30 to a hydraulic fluid chamber of the internal combustion engine.
- the Figure 17 shows the first actuator 28 at the beginning of an actuation.
- the first electrically operated 2-way valve 108 allows hydraulic fluid to pass from a hydraulic fluid source.
- the hydraulic fluid is conducted into a control fluid space for displacing the first sleeve 122.
- the pin 46 is already in contact with the actuator contact surface 50. In other words, the pin 46 touches the actuator contact surface 50 in an area in which the actuator contact surface 50 is at the smallest distance from the first actuator 28.
- the Figure 18 shows that the hydraulic fluid conducted into the control fluid space for moving the first sleeve 122 has moved the first sleeve 122 together with the second sleeve 124 in the direction of the actuator contact surface 50.
- the pin 46 has not shifted with the first sleeve 122 and the second sleeve 124 in the direction of the actuator contact surface 50, since the pin 46 was already in contact with the actuator contact surface 50.
- the relative displacement between the first sleeve 122 and the pin 46 leads to a compression of the second elastic element 128.
- the hydraulic channels of the pin 46 and the second sleeve 124 are not aligned with one another. As a result, no fluid connection is established between the first electrically operated 2-way valve 108 and the control chamber for moving the piston 120.
- the pin 46 will not extend until it is in contact with the first ramp 50A (see FIG Figure 1 ) and the area of the actuator contact surface 50 in which the actuator contact surface 50 is at the greatest distance from the first actuator 28. It can thus be ensured that an axial displacement of the cam carrier 26 only takes place in the area of the base circle.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Valve Device For Special Equipments (AREA)
Description
Die Erfindung betrifft ein Schiebenockensystem für eine Brennkraftmaschine.The invention relates to a sliding cam system for an internal combustion engine.
Ventilgesteuerte Brennkraftmaschinen weisen eines oder mehrere steuerbare Ein- und Auslassventile je Zylinder auf. Variable Ventiltriebe ermöglichen ein flexibles Ansteuern der Ventile zum Verändern der Öffnungszeit, Schließzeit und/oder des Ventilhubs. Dadurch kann der Motorbetrieb beispielsweise an eine spezifische Lastsituation angepasst werden. Beispielsweise kann ein variabler Ventiltrieb durch ein sogenanntes Schiebenockensystem realisiert werden.Valve-controlled internal combustion engines have one or more controllable inlet and outlet valves per cylinder. Variable valve drives allow flexible control of the valves to change the opening time, closing time and / or the valve lift. This means that engine operation can be adapted to a specific load situation, for example. For example, a variable valve drive can be implemented using a so-called sliding cam system.
Aus der
Das Schiebenockensystem kann einen erheblichen Bauraum einnehmen. Insbesondere eine Anordnung der Aktoren zum Verschieben eines Nockenträgers (Schiebenockens) kann bei engen Platzverhältnissen eine Herausforderung darstellen. Typischerweise werden die Aktoren an einem mit dem Zylinderkopf oder Zylinderkopfdeckel verbundenen Rahmen befestigt.The sliding cam system can take up a considerable amount of space. In particular, an arrangement of the actuators for moving a cam carrier (sliding cam) can be a challenge in tight spaces. Typically, the actuators are attached to a frame connected to the cylinder head or cylinder head cover.
Aus der
Die
Die
Die
Der Erfindung liegt die Aufgabe zu Grunde, ein verbessertes oder alternatives Schiebenockensystem vorzusehen, das insbesondere einen bauraumoptimierten Aufbau aufweist.The invention is based on the object of providing an improved or alternative sliding cam system which, in particular, has a construction that is optimized in terms of installation space.
Die Aufgabe wird gelöst durch ein Schiebenockensystem gemäß dem unabhängigen Anspruch. Vorteilhafte Weiterbildungen sind in den abhängigen Ansprüchen und der Beschreibung angegeben.The object is achieved by a sliding cam system according to the independent claim. Advantageous developments are given in the dependent claims and the description.
Das Schiebenockensystem für eine Brennkraftmaschine weist eine Nockenwelle auf. Das Schiebenockensystem weist einen Nockenträger auf, der drehfest und axial verschiebbar auf der Nockenwelle angeordnet ist. Der Nockenträger weist eine erste Schaltkulisse und eine zweite Schaltkulisse auf. Das Schiebenockensystem weist einen ersten Aktor mit einem entlang einer Längsachse der Nockenwelle verschiebbaren Element (zum Beispiel ein- und ausfahrbares Element) auf. Das Element ist insbesondere als ein Stift ausgebildet. Das Element ist zum axialen Verschieben des Nockenträgers in einer ersten Richtung in Kontakt mit der ersten Schaltkulisse bringbar. Das Schiebenockensystem weist zusätzlich einen zweiten Aktor mit einem entlang der Längsachse der Nockenwelle verschiebbaren Element (zum Beispiel ein- und ausfahrbares Element) auf. Das Element ist insbesondere als ein Stift ausgebildet. Das Element ist zum axialen Verschieben des Nockenträgers in einer zweiten Richtung, die der ersten Richtung entgegensetzt ist, in Kontakt mit der zweiten Schaltkulisse bringbar.The sliding cam system for an internal combustion engine has a camshaft. The sliding cam system has a cam carrier which is arranged on the camshaft in a rotationally fixed and axially displaceable manner. The cam carrier has a first shift gate and a second shift gate. The sliding cam system has a first actuator with an element (for example retractable and extendable element) that can be displaced along a longitudinal axis of the camshaft. The element is designed in particular as a pin. The element can be brought into contact with the first shift gate for the axial displacement of the cam carrier in a first direction. The sliding cam system also has a second actuator with an element that can be displaced along the longitudinal axis of the camshaft (for example, element that can be retracted and extended). The element is designed in particular as a pin. The element can be brought into contact with the second shift gate for the axial displacement of the cam carrier in a second direction, which is opposite to the first direction.
Das Vorsehen von einem oder mehreren axial wirkenden Aktoren ermöglicht eine bauraumoptimierte Anordnung der Aktoren gegenüber Systemen mit radial wirkenden Aktoren. Insbesondere können die axial wirkenden Aktoren in vorhandenen Strukturen entlang der Nockenwelle integriert werden.The provision of one or more axially acting actuators enables a space-optimized arrangement of the actuators compared to systems with radially acting actuators. In particular, the axially acting actuators can be integrated into existing structures along the camshaft.
Bei Verwendung nur eines Aktors kann dieser Aktor bspw. doppeltwirkend ausgebildet sein. Damit kann eine Axialverschiebung des Nockenträgers in beide Richtungen entlang der Längsachse der Nockenwelle ermöglicht werden. Der Aktor kann den Nockenträger bspw. in einer ersten Richtung entgegen einem elastischen Vorspannelement verschieben. In einer entgegensetzten Richtung kann der Aktor eine Verschiebung des Nockenträgers durch das elastische Vorspannelement durch Einfahren des verschiebbaren Elements ermöglichen. Es ist auch möglich, einen anderen Mechanismus zu verwenden, der in Kombination mit nur einem Aktor eine Axialverschiebung des Nockenträgers zwischen einer ersten Axialposition und einer zweiten Axialposition ermöglicht.If only one actuator is used, this actuator can, for example, be designed to be double-acting. This enables an axial displacement of the cam carrier in both directions along the longitudinal axis of the camshaft. The actuator can move the cam carrier, for example, in a first direction against an elastic pretensioning element. In an opposite direction, the actuator can enable the cam carrier to be displaced by the elastic pretensioning element by retracting the displaceable element. It is also possible to use a different mechanism which, in combination with only one actuator, enables an axial displacement of the cam carrier between a first axial position and a second axial position.
Bei Verwendung von zwei Aktoren kann der erste Aktor den Nockenträger von einer zweiten Axialposition in eine erste Axialposition verschieben. Der zweite Aktor kann den Nockenträger von einer ersten Axialposition in eine zweite Axialposition verschieben. In der ersten Axialposition kann ein erster Nocken des Nockenträgers in Wirkverbindung mit mindestens einem Gaswechselventil stehen. In der zweiten Axialposition kann ein zweiter Nocken des Nockenträgers in Wirkverbindung mit dem mindestens einen Gaswechselventil stehen.When using two actuators, the first actuator can move the cam carrier from a second axial position into a first axial position. The second actuator can move the cam carrier from a first axial position into a second axial position. In the first axial position, a first cam of the cam carrier can be in operative connection with at least one gas exchange valve. In the second axial position, a second cam of the cam carrier can be in operative connection with the at least one gas exchange valve.
In einer besonders bevorzugten Ausführungsform ist der erste Aktor in oder an einem ersten Lagerbock, der die Nockenwelle drehbar lagert, aufgenommen. Alternativ oder ergänzend ist der zweite Aktor in oder an einem zweiten Lagerbock, der die Nockenwelle drehbar lagert, aufgenommen. Damit benötigen die Aktoren keinen separaten Bauraum. Stattdessen lassen sich die Aktoren ohne zusätzlichen Platzbedarf direkt in ohnehin vorhandenen Lagerböcke der Nockenwelle integrieren.In a particularly preferred embodiment, the first actuator is received in or on a first bearing block which rotatably supports the camshaft. As an alternative or in addition, the second actuator is accommodated in or on a second bearing block which rotatably supports the camshaft. The actuators therefore do not require any separate installation space. Instead, the actuators can be integrated directly into the existing bearing blocks of the camshaft without requiring additional space.
Insbesondere kann der erste Aktor am ersten Lagerbock befestigt sein und/oder der zweite Aktor am zweiten Lagerbock befestigt sein.In particular, the first actuator can be attached to the first bearing block and / or the second actuator can be attached to the second bearing block.
Zusätzlich kann über die Lagerböcke eine Zuführung von Hydraulikfluid zu dem ersten Aktor und/oder dem zweiten Aktor durchgeführt werden. Somit wird auch für die Hydraulikleitungen kein zusätzlicher Platz benötigt. Ebenso können bspw. eine Elektroleitung und/oder eine Pneumatikleitung für den ersten Aktor und/oder den zweiten Aktor im oder am ersten und/oder zweiten Lagerbock vorgesehen sein.In addition, hydraulic fluid can be supplied to the first actuator and / or the second actuator via the bearing blocks. This means that no additional space is required for the hydraulic lines. Likewise, for example, an electrical line and / or a pneumatic line for the first actuator and / or the second actuator can be provided in or on the first and / or second bearing block.
In einer Ausführungsform ist die erste Schaltkulisse und/oder die zweite Schaltkulisse stufenförmig ausgebildet. Die stufenförmige Ausbildung der Schaltkulisse kann ein Kontaktieren durch die verschiebbaren Elemente die Aktoren auf einfache Weise ermöglichen. Die verschiebbaren Elemente der Aktoren können gegen einen Absatz der jeweiligen, stufenförmigen Schaltkulisse drücken, wenn der Nockenträger verschoben werden soll.In one embodiment, the first shift gate and / or the second shift gate is step-shaped. The stepped design of the shift gate can enable the actuators to be contacted in a simple manner by the displaceable elements. The movable elements of the actuators can press against a shoulder of the respective, stepped shift gate when the cam carrier is to be moved.
In einer weiteren Ausführungsform sind die erste Schaltkulisse an einem ersten Ende des Nockenträgers und die zweite Schaltkulisse an einem entgegengesetzten zweiten Ende des Nockenträgers angeordnet. Auf diese Weise kann ein Verfahrweg der verschiebbaren Elemente minimiert werden. Die Aktoren können direkt neben den Enden des Nockenträgers angeordnet werden.In a further embodiment, the first shift gate are arranged on a first end of the cam carrier and the second shift gate are arranged on an opposite second end of the cam carrier. In this way, a travel path of the displaceable elements can be minimized. The actuators can be arranged directly next to the ends of the cam carrier.
In einem Ausführungsbeispiel weist die erste Schaltkulisse eine Aktorkontaktfläche auf, die sich in einer Umfangsrichtung um die Längsachse der Nockenwelle erstreckt. Alternativ oder zusätzlich weist die zweite Schaltkulisse eine Aktorkontaktfläche auf, die sich in einer Umfangsrichtung um die Längsachse der Nockenwelle erstreckt. Über einen Kontakt zwischen den verschiebbaren Elementen der Aktoren und den entsprechenden Aktorkontaktflächen kann eine Verschiebung des Nockenträgers realisiert werden. Zusätzlich kann in einer Weiterbildung über einen Kontakt mit den entsprechenden Aktorkontaktflächen eine Dämpfung der Verschiebung des Nockenträgers realisiert werden.In one embodiment, the first shift gate has an actuator contact surface which extends in a circumferential direction around the longitudinal axis of the camshaft. Alternatively or In addition, the second shift gate has an actuator contact surface which extends in a circumferential direction around the longitudinal axis of the camshaft. A displacement of the cam carrier can be implemented via a contact between the displaceable elements of the actuators and the corresponding actuator contact surfaces. In addition, in a further development, a contact with the corresponding actuator contact surfaces can be used to dampen the displacement of the cam carrier.
In einem weiteren Ausführungsbeispiel weist die Aktorkontaktfläche der ersten Schaltkulisse eine erste Rampe und eine zweite Rampe auf. Die erste Rampe der Aktorkontaktfläche der ersten Schaltkulisse vergrößert einen Abstand zwischen dem ersten Aktor und der Aktorkontaktfläche der ersten Schaltkulisse bezüglich einer Drehrichtung der Nockenwelle. Die zweite Rampe der Aktorkontaktfläche der ersten Schaltkulisse verkleinert einen Abstand zwischen dem ersten Aktor und der Aktorkontaktfläche der ersten Schaltkulisse bezüglich einer Drehrichtung der Nockenwelle.In a further exemplary embodiment, the actuator contact surface of the first shift gate has a first ramp and a second ramp. The first ramp of the actuator contact surface of the first shift gate increases a distance between the first actuator and the actuator contact surface of the first shift gate with respect to a direction of rotation of the camshaft. The second ramp of the actuator contact surface of the first shift gate reduces a distance between the first actuator and the actuator contact surface of the first shift gate with respect to a direction of rotation of the camshaft.
Alternativ oder zusätzlich weist die Aktorkontaktfläche der zweiten Schaltkulisse eine erste Rampe und eine zweite Rampe auf. Die erste Rampe der Aktorkontaktfläche der zweiten Schaltkulisse vergrößert einen Abstand zwischen dem zweiten Aktor und der Aktorkontaktfläche der zweiten Schaltkulisse bezüglich einer Drehrichtung der Nockenwelle. Die zweite Rampe der Aktorkontaktfläche der zweiten Schaltkulisse verkleinert einen Abstand zwischen dem zweiten Aktor und der Aktorkontaktfläche der zweiten Schaltkulisse bezüglich einer Drehrichtung der Nockenwelle.Alternatively or additionally, the actuator contact surface of the second shift gate has a first ramp and a second ramp. The first ramp of the actuator contact surface of the second shift gate increases a distance between the second actuator and the actuator contact surface of the second shift gate with respect to a direction of rotation of the camshaft. The second ramp of the actuator contact surface of the second shift gate reduces a distance between the second actuator and the actuator contact surface of the second shift gate with respect to a direction of rotation of the camshaft.
Die Rampen ermöglichen eine Verschiebebewegung des Nockenträgers durch Kontakt mit den verschiebbaren Elementen. Kontaktiert beispielsweise das verschiebbare Element des ersten Aktors die zweite Rampe der Aktorkontaktfläche der ersten Schaltkulisse, wird der Nockenträger in der ersten Richtung verschoben, während der Nockenträger sich gemeinsam mit der Nockenwelle dreht. Kontaktiert andererseits das verschiebbare Element des zweiten Aktors die zweite Rampe der Aktorkontaktfläche der zweiten Schaltkulisse, wird der Nockenträger in der zweiten Richtung verschoben, während der Nockenträger sich gemeinsam mit der Nockenwelle dreht.The ramps enable the cam carrier to be displaced by contact with the displaceable elements. If, for example, the displaceable element of the first actuator contacts the second ramp of the actuator contact surface of the first shift gate, the cam carrier is displaced in the first direction while the cam carrier rotates together with the camshaft. If, on the other hand, the displaceable element of the second actuator contacts the second ramp of the actuator contact surface of the second shift gate, the cam carrier is displaced in the second direction while the cam carrier rotates together with the camshaft.
Insbesondere können die erste und zweite Rampe der ersten und zweiten Schaltkulisse so angeordnet sein, dass eine Verschiebung des Nockenträgers nur innerhalb eines Grundkreisbereichs der Nocken des Nockenträgers ermöglicht wird.In particular, the first and second ramp of the first and second shift gate can be arranged such that a displacement of the cam carrier is only possible within a base circle area of the cams of the cam carrier.
In einer Ausführungsvariante ist der erste Aktor und/oder der zweite Aktor hydraulisch, elektrisch und/oder pneumatisch betätigt.In one embodiment variant, the first actuator and / or the second actuator is actuated hydraulically, electrically and / or pneumatically.
In einer weiteren Ausführungsvariante wird eine axiale Verschiebung des Nockenträgers hydraulisch gedämpft. Die Dämpfung kann eine Arretierung (axiale Sicherung) des Nockenträgers ermöglichen.In a further embodiment variant, an axial displacement of the cam carrier is damped hydraulically. The damping can enable locking (axial securing) of the cam carrier.
Gemäß der Erfindung weist das Schiebenockensystem ein erstes elastisches Element auf, das den Nockenträger in der zweiten Richtung vorspannt. Alternativ oder zusätzlich weist das Schiebenockensystem ein zweites elastisches Element auf, das den Nockenträger in der ersten Richtung vorspannt. Die elastischen Elemente ermöglichen eine Dämpfung der Verschiebebewegung des Nockenträgers. Wird der Nockenträger beispielsweise von dem ersten Aktor in der ersten Richtung verschoben, kann das erste elastische Element die Verschiebebewegung des Nockenträgers dämpfen.According to the invention, the sliding cam system has a first elastic element which pretensions the cam carrier in the second direction. Alternatively or additionally, the sliding cam system has a second elastic element which pretensions the cam carrier in the first direction. The elastic elements enable damping of the displacement movement of the cam carrier. If the cam carrier is displaced in the first direction, for example by the first actuator, the first elastic element can dampen the displacement movement of the cam carrier.
Gemäß der Erfindung stützt das erste elastische Element den Nockenträger an einem Lagerbock zum drehbaren Lagern der Nockenwelle ab und ist drehbar um die Längsachse der Nockenwelle bezüglich des Lagerbocks oder des Nockenträgers gelagert. Alternativ oder zusätzlich stützt das zweite elastische Element den Nockenträger an einem Lagerbock zum drehbaren Lagern der Nockenwelle ab und ist drehbar um die Längsachse der Nockenwelle bezüglich des Lagerbocks oder des Nockenträgers gelagert. Die ohnehin vorhandenen Lagerböcke der Nockenwelle können somit zum Abstützen der elastischen Elemente zum Dämpfen der Verschiebebewegung des Nockenträgers verwendet werden. Die drehbare Lagerung der elastischen Elemente ist vorgesehen, um ein Schleifen der elastischen Elemente am Nockenträger oder Lagerbock zu verhindern, da sich die elastischen Elemente in der Ausführungsform entweder mit dem Nockenträger drehen oder am Lagerbock festgelegt sind.According to the invention, the first elastic element supports the cam carrier on a bearing block for rotatably mounting the camshaft and is rotatably mounted about the longitudinal axis of the camshaft with respect to the bearing block or the cam carrier. Alternatively or additionally, the second elastic element supports the cam carrier on a bearing block for rotatably mounting the camshaft and is rotatably mounted about the longitudinal axis of the camshaft with respect to the bearing block or the cam carrier. The bearing blocks of the camshaft, which are already present, can thus be used to support the elastic elements for damping the displacement movement of the cam carrier. The rotatable mounting of the elastic elements is provided in order to prevent the elastic elements from dragging on the cam carrier or bearing block, since the elastic elements in the embodiment either rotate with the cam carrier or are fixed on the bearing block.
In einem Ausführungsbeispiel weist das Schiebenockensystem einen ersten hydraulischen Dämpfungszylinder, der zum Dämpfen einer axialen Verschiebung des Nockenträgers in der ersten Richtung angeordnet ist, auf. Alternativ oder zusätzlich weist das Schiebenockensystem einen zweiten hydraulischen Dämpfungszylinder, der zum Dämpfen einer axialen Verschiebung des Nockenträgers in der zweiten Richtung angeordnet ist, auf.In one embodiment, the sliding cam system has a first hydraulic damping cylinder which is arranged to dampen an axial displacement of the cam carrier in the first direction. As an alternative or in addition, the sliding cam system has a second hydraulic damping cylinder which is arranged for damping an axial displacement of the cam carrier in the second direction.
In einer Weiterbildung weist das Schiebenockensystem ferner eine erste Drossel, die stromabwärts des ersten hydraulischen Dämpfungszylinders angeordnet ist, und/oder eine zweite Drossel, die stromabwärts des zweiten hydraulischen Dämpfungszylinders angeordnet ist, auf.In a further development, the sliding cam system also has a first throttle, which is arranged downstream of the first hydraulic damping cylinder, and / or a second throttle, which is arranged downstream of the second hydraulic damping cylinder.
Über die Drosseln kann ein Widerstand für aus den hydraulischen Dämpfungszylindern ausfließendes Hydraulikfluid aufgebaut werden, wodurch eine gewünschte Dämpfung realisierbar ist.A resistance for hydraulic fluid flowing out of the hydraulic damping cylinders can be built up via the throttles, whereby a desired damping can be realized.
In einer Ausführungsvariante dämpft der zweite Aktor eine axiale Verschiebung des Nockenträgers, wenn der erste Aktor den Nockenträger in der ersten Richtung axial verschiebt. Alternativ oder zusätzlich dämpft der erste Aktor eine axiale Verschiebung des Nockenträgers, wenn der zweite Aktor den Nockenträger in der zweiten Richtung axial verschiebt. Damit kann die Dämpfungsfunktionalität direkt in die Aktoren integriert werden.In one embodiment, the second actuator dampens an axial displacement of the cam carrier when the first actuator axially displaces the cam carrier in the first direction. Alternatively or additionally, the first actuator dampens an axial displacement of the cam carrier when the second actuator axially displaces the cam carrier in the second direction. This means that the damping functionality can be integrated directly into the actuators.
In einer weiteren Ausführungsvariante dämpft der zweite Aktor eine axiale Verschiebung des Nockenträgers hydraulisch und/oder über ein elastisches Element des zweiten Aktors. Alternativ oder zusätzlich dämpft der erste Aktor eine axiale Verschiebung des Nockenträgers hydraulisch und/oder über ein elastisches Element des ersten Aktors.In a further embodiment variant, the second actuator dampens an axial displacement of the cam carrier hydraulically and / or via an elastic element of the second actuator. Alternatively or additionally, the first actuator dampens an axial displacement of the cam carrier hydraulically and / or via an elastic element of the first actuator.
Die Erfindung betrifft auch einen variablen Ventiltrieb für eine Brennkraftmaschine. Der variable Ventiltrieb weist ein Schiebenockensystem wie hierin offenbart auf. Der variable Ventiltrieb weist mindestens ein Gaswechselventil und eine Kraftübertragungseinrichtung (zum Beispiel Stößel, Kipphebel oder Schlepphebel) auf. Die Kraftübertragungseinrichtung setzt in Abhängigkeit von einer Axialposition des Nockenträgers wahlweise einen ersten Nocken des Nockenträgers in Wirkverbindung zu dem mindestens einen Gaswechselventil oder einen zweiten Nocken des Nockenträgers in Wirkverbindung zu dem mindestens einen Gaswechselventil.The invention also relates to a variable valve drive for an internal combustion engine. The variable valve train includes a slide cam system as disclosed herein. The variable valve drive has at least one gas exchange valve and a force transmission device (for example a tappet, rocker arm or rocker arm). Depending on an axial position of the cam carrier, the force transmission device optionally sets a first cam of the cam carrier in operative connection with the at least one gas exchange valve or a second cam of the cam carrier in operative connection with the at least one gas exchange valve.
Gemäß einem weiteren Gesichtspunkt betrifft die Erfindung auch ein Kraftfahrzeug, insbesondere Nutzfahrzeug, mit einem Schiebenockensystem wie hierin offenbart oder einem variablen Ventiltrieb wie hierin offenbart. Das Nutzfahrzeug kann beispielsweise ein Omnibus oder ein Lastkraftwagen sein.According to a further aspect, the invention also relates to a motor vehicle, in particular a utility vehicle, with a sliding cam system as disclosed herein or a variable valve train as disclosed herein. The utility vehicle can be, for example, an omnibus or a truck.
Die zuvor beschriebenen bevorzugten Ausführungsformen und Merkmale der Erfindung sind beliebig miteinander kombinierbar. Weitere Einzelheiten und Vorteile der Erfindung werden im Folgenden unter Bezug auf die beigefügten Zeichnungen beschrieben. Es zeigen:
- Figur 1
- eine perspektivische Ansicht eines variablen Ventiltriebs mit einem Schiebenockensystem; und
- Figur 2
- eine Schemadarstellung einer Ausführungsform des Schiebenockensystems;
- Figur 3
- eine Schemadarstellung eines Beispiels des Schiebenockensystems;
- Figur 4
- eine Schemadarstellung eines Beispiels des Schiebenockensystems;
- Figur 5
- eine Schemadarstellung eines Beispiels des Schiebenockensystems; und
- Figuren 7
bis 18 - Schemadarstellungen eines Beispiels des Schiebenockensystems zur Erläuterung der Funktionsweise eines beispielhaften Schiebenockensystems.
- Figure 1
- a perspective view of a variable valve train with a sliding cam system; and
- Figure 2
- a schematic representation of an embodiment of the slide cam system;
- Figure 3
- Fig. 3 is a schematic diagram of an example of the slide cam system;
- Figure 4
- Fig. 3 is a schematic diagram of an example of the slide cam system;
- Figure 5
- Fig. 3 is a schematic diagram of an example of the slide cam system; and
- Figures 7 to 18
- Schematic representations of an example of the sliding cam system to explain the mode of operation of an exemplary sliding cam system.
Die in den Figuren gezeigten Ausführungsformen stimmen zumindest teilweise überein, so dass ähnliche oder identische Teile mit den gleichen Bezugszeichen versehen sind und zu deren Erläuterung auch auf die Beschreibung der anderen Ausführungsformen bzw. Figuren verwiesen wird, um Wiederholungen zu vermeiden.The embodiments shown in the figures match at least in part, so that similar or identical parts are provided with the same reference symbols and reference is made to the description of the other embodiments or figures for their explanation in order to avoid repetition.
Die
Der variable Ventiltrieb 10 dient zum Anpassen einer Ansteuerung der Gaswechselventile 12, 14. Insbesondere können ein Öffnungszeitpunkt, ein Schließzeitpunkt und/oder ein Ventilhub der Gaswechselventile 12, 14 angepasst werden. Die Gaswechselventile 12, 14 können Einlassventile oder Auslassventile sein.The
Die Lagerböcke 20, 22 lagern eine Nockenwelle 24 drehbar. Zusätzlich ist die Kipphebelachse 42 an den Lagerböcken 20, 22 befestigt. Die Lagerböcke 20, 22 können beispielsweise an einem Befestigungsrahmen oder einem Zylinderkopf der Brennkraftmaschinen befestigt sein. In anderen Ausführungsformen können die Nockenwelle 24 und die Kipphebelachse 42 beispielsweise getrennt voneinander gelagert sein.The bearing blocks 20, 22 support a
Das Schiebenockensystem 16 weist die Nockenwelle 24, einen Nockenträger 26, einen ersten Aktor 28 und einen zweiten Aktor 30 auf.The sliding
Der Nockenträger 26 ist drehfest und axial verschiebbar auf der Nockenwelle 24 angeordnet. Der Nockenträger 26 weist einen ersten Nocken 32, einen zweiten Nocken 34, eine erste Schaltkulisse 36 und eine zweite Schaltkulisse 38 auf.The
Der erste Nocken 32 und der zweiten Nocken 34 sind angrenzend aneinander angeordnet. Der erste Nocken 32 und der zweite Nocken 34 weisen unterschiedliche Nockenkonturen auf. Der erste Nocken 32 und der zweite Nocken 34 sind in einen Mittelbereich des Nockenträgers 26 vorgesehen. In Abhängigkeit von einer Axialposition des Nockenträgers 26 bezüglich der Nockenwelle 24 stellt die Kraftübertragungseinrichtung 18 eine Wirkverbindung zwischen dem ersten Nocken 32 und den Gaswechselventilen 12, 14 oder zwischen dem zweiten Nocken 34 und den Gaswechselventilen 12, 14 her.The
Im Einzelnen weist die Kraftübertragungseinrichtung 18 einen Kipphebel 40 und eine Kipphebelachse 42 auf. Der Kipphebel 40 folgt über einen Nockenfolger 44 je nach Axialposition des Nockenträgers 26 einer Nockenkontur des ersten Nockens 32 oder des zweite Nockens 34. der Nockenfolger 44 ist als eine drehbar gelagerte Rolle ausgebildet. Der Kipphebel 40 ist drehbar um die Kipphebelachse 42 gelagert. In einem Ventilhubbereich des Nockens 32 oder 34 werden die Gaswechselventile 12, 14 entsprechend über den Kipphebel 40 betätigt. In anderen Ausführungsformen kann die Kraftübertragungseinrichtung 18 beispielsweise einen Schlepphebel oder Stößel aufweisen.In detail, the
In dem in
Der erste Aktor 28 ist in dem ersten Lagerbock 20 aufgenommen und befestigt. Der zweite Aktor 30 ist in dem zweiten Lagerbock 22 aufgenommen und befestigt. Die Befestigung und Aufnahme der Aktoren 28, 30 in den Lagerböcken 20, 22 ist aus Bauraumgründen günstig. Es muss kein separater Bauraum für die Aktoren 28, 30 vorgesehen werden.The
Die erste Schaltkulisse 36 und die zweite Schaltkulisse 38 sind an gegenüberliegenden Axialenden des Nockenträgers 26 angeordnet. Die erste Schaltkulisse 36 wirkt mit dem ersten Aktor 28 zur Verschiebung des Nockenträgers 26 aus der zweiten Axialposition in die erste Axialposition zusammen. Der Nockenträger 26 ist durch den ersten Aktor 28 und die erste Schaltkulisse 36 in einer ersten Richtung verschiebbar. Die zweite Schaltkulisse 38 wirkt mit dem zweiten Aktor 30 zur Verschiebung des Nockenträgers 26 aus der ersten Axialposition in die zweite Axialposition zusammen. Der Nockenträger 26 ist durch den zweiten Aktor 30 und die zweite Schaltkulisse 38 in einer zweiten Richtung verschiebbar. Die zweite Richtung ist entgegengesetzt zu der ersten Richtung gerichtet. Die erste und zweite Richtung erstrecken sich parallel zu einer Längsachse der Nockenwelle 24.The
Jeder Aktor 28, 30 weist einen verschiebbaren Stift (Pin) 46, 48 auf. Der Stift 46 des ersten Aktors 28 ist in
Die erste Schaltkulisse 36 und die zweite Schaltkulisse 38 sind stufenförmig ausgebildet. Im Einzelnen weisen die Schaltkulisse 36, 38 jeweils eine Aktorkontaktfläche 50, 52 auf. Die Aktorkontaktflächen 50, 52 erstrecken sich in einer Umfangsrichtung um die Längsachse der Nockenwelle 24. Die Aktorkontaktfläche 50 weist eine erste Rampe 50A und eine zweite Rampe 50B auf. Die erste Rampe 50A vergrößert einen Abstand zwischen dem ersten Aktor 28 und der Aktorkontaktfläche 50 bezüglich einer Drehrichtung der Nockenwelle 24. Die zweite Rampe 50B verkleinert einen Abstand zwischen dem ersten Aktor 28 und der Aktorkontaktfläche 50 bezüglich einer Drehrichtung der Nockenwelle 24. Gleichermaßen weist die Aktorkontaktfläche 52 eine erste Rampe 52A und eine zweite Rampe 52B auf. Die erste Rampe 52A vergrößert einen Abstand zwischen dem zweiten Aktor 30 und der Aktorkontaktfläche 52 bezüglich einer Drehrichtung der Nockenwelle 24. Die zweite Rampe 52B verkleinert einen Abstand zwischen dem zweiten Aktor 30 und der Aktorkontaktfläche 52 bezüglich einer Drehrichtung der Nockenwelle 24. Mit anderen Worten gesagt, im Bereich der ersten Rampen 50A, 52A erstrecken sich die Aktorkontaktflächen 50, 52 spiralförmig (helixförmig) in einer Richtung zueinander bezüglich einer Drehrichtung der Nockenwelle 24. Im Bereich der zweiten Rampen 50B, 52B erstrecken sich die Aktorkontaktflächen 50, 52 spiralförmig (helixförmig) in entgegengesetzter Richtung bezüglich einer Drehrichtung der Nockenwelle 24.The
Zum Verschieben des Nockenträgers 26 aus der zweiten Axialposition in die erste Axialposition wird der Stift 46 des ersten Aktors 28 ausgefahren. Der Stift 46 des ersten Aktors 28 wird so ausgefahren, dass der Stift 46 vollständig ausgefahren ist, wenn der Nockenträger 26 eine Drehposition erreicht, in der ein Beginn der zweiten Rampe 50B den Stift 46 durch Drehung der Nockenwelle 24 passiert. Der Stift 46 kann beispielsweise ausgefahren werden, während er die erste Rampe 50A den Stift 46 aufgrund der Drehung der Nockenwelle 24 passiert. Aufgrund der Rampe 50B schiebt der ausgefahrene Stift 46 den Nockenträger 26 aus der zweiten Axialposition in die erste Axialposition.To move the
Die Verschiebung des Nockenträgers 26 aus der ersten Axialposition in die zweite Axialposition erfolgt auf analoge Weise durch den Stift 48 des zweiten Aktors 30. Aufgrund der Rampe 52B der Aktorkontaktfläche 52 schiebt der ausgefahrene Stift 48 den Nockenträger 26 in die zweite Axialposition.The
Das Schiebenockensystem 16 kann zusätzlich eine Arretierungsvorrichtung (nicht dargestellt) aufweisen. Die Arretierungsvorrichtung kann so ausgebildet sein, dass sie den Nockenträger 26 in der ersten Axialposition und der zweiten Axialposition axial sichert. Dazu kann die Arretierungsvorrichtung beispielsweise einen elastisch vorgespannten Sperrkörper aufweisen. Der Sperrkörper kann in der ersten Axialposition des Nockenträgers 26 in eine erste Ausnehmung des Nockenträgers eingreifen und in der zweiten Axialposition des Nockenträgers 26 in eine zweite Ausnehmung des Nockenträgers 26 eingreifen. Die Arretierungsvorrichtung kann beispielsweise in der Nockenwelle 24 vorgesehen sein.The sliding
Die Aktoren 28 und 30 können beispielsweise hydraulisch betätigte Aktuatoren sein. In der nachfolgenden Beschreibung sind Ausführungsbeispiele für Hydrauliksysteme zum Betätigen der Aktoren 28 und 30 beschrieben.The
Die
Der erste Aktor 28 ist über die erste Verbindungsleitung 56 mit der Haupthydraulikleitung 54 verbunden. Der zweite Aktor 30 ist über die zweite Verbindungsleitung 58 mit der Haupthydraulikleitung 54 verbunden. Ein erstes elektrisch betätigtes 2-Wegeventil 60, ein erstes mechanisch betätigtes 2-Wegeventils 62 und ein erstes Kontrollventil 64 sind in der ersten Verbindungsleitung 58 zum Steuern eines Zuflusses von Hydraulikfluid zu dem ersten Aktor 28 angeordnet. Ein zweites elektrisch betätigtes 2-Wegeventil 66, ein zweites mechanisch betätigtes 2-Wegeventil 68 und ein zweites Kontrollventil 70 sind in der zweiten Verbindungsleitung 58 zum Steuern eines Zuflusses von Hydraulikfluid zu dem zweiten Aktor 30 angeordnet.The
Zum Verschieben des Nockenträgers 26 durch den ersten Aktor 28 erfolgt zunächst eine elektrische Freigabe durch das erste elektrisch betätigte 2-Wegeventil 60. Das erste elektrisch betätigte 2-Wegeventil 60 stellt eine Fluidverbindung zwischen der Haupthydraulikleitung 54 und dem ersten mechanisch betätigten 2-Wegeventil 62 her. Mittels des ersten mechanisch betätigten 2-Wegeventil 62 kann bspw. sichergestellt werden, dass nur innerhalb eines gemeinsamen Nockengrundkreises der Nocken 32, 34 (siehe
Zum Verschieben des Nockenträgers 26 durch den zweiten Aktor 30 erfolgt wiederum zunächst eine elektrische Freigabe des zweiten elektrisch betätigten 2-Wegeventils 66. Innerhalb des Nockengrundkreises kann das zweite mechanisch betätigte 2-Wegeventil 68 eine Fluidverbindung zwischen dem zweiten Aktor 30 und der Haupthydraulikleitung 54 herstellen. Der Stift 48 des zweiten Aktors 30 fährt aus, berührt die Aktorkontaktflächen 52 und verschiebt den Nockenträger 26 in die zweite Axialposition, während sich der Nockenträger 26 dreht.In order to move the
Zum Dämpfen der axialen Verschiebung des Nockenträgers 26 sind elastische Elemente 72, 74, zum Beispiel Federn, vorgesehen. Die elastischen Elemente 72, 74 stützen den Nockenträger 26 an dem ersten Lagerbock 20 und dem zweiten Lagerbock 22 ab. Dazu sind die elastischen Elemente 72, 74 beispielsweise über Kugellager drehbar an dem entsprechenden Lagerbock 20, 22 gelagert. Alternativ könnten die elastischen Elemente 72, 74 auch an den Lagerböcken 20, 22 befestigt und beispielsweise über Kugellager drehbar mit dem Nockenträger 26 verbunden sein.To dampen the axial displacement of the
In der
Die
Ein Kolben des ersten Dämpfungszylinders 80 fährt aus, wenn der Stift 46 des ersten Aktors 28 ausfährt. Kontaktiert der Nockenträger 26 während der Axialverschiebung zur ersten Axialposition schließlich den Kolben des ersten Dämpfungszylinders 80, so wird der Kolben des ersten Dämpfungszylinders 80 eingeschoben. Dabei wird Hydraulikfluid aus dem ersten Dämpfungszylinder 80 ausgeschoben. Das Hydraulikfluid wird über eine erste Drossel 84 zu einem Hydraulikfluidraum der Brennkraftmaschine geleitet. Durch das Ausschieben des Hydraulikfluids wird die Axialbewegung des Nockenträgers 26 gedämpft.A piston of the first damping
Auf analoge Weise fährt ein Kolben des zweiten Dämpfungszylinders 82 aus, wenn der Stift 48 des zweiten Aktors 30 ausfährt. Aus dem zweiten Dämpfungszylinder 82 wird Hydraulikfluid ausgeschoben, wenn der Kolben des zweiten Dämpfungszylinders 82 durch den Nockenträger 26 eingeschoben wird. Das ausgeschobene Hydraulikfluid passiert die zweite Drossel 86 und gelangt zu dem Hydraulikfluidraum der Brennkraftmaschine.In an analogous manner, a piston of the second damping
Wenn Hydraulikfluid aus dem ersten Dämpfungszylinder 80 ausgeschoben wird, verhindert ein erstes Rückschlagventil 88, dass das Hydraulikfluid vom ersten Dämpfungszylinder 80 zu dem ersten Aktor 28 geleitet wird. Gleichermaßen verhindert ein zweites Rückschlagventil 90, das aus dem zweiten Dämpfungszylinder 82 ausgeschobenes Hydraulikfluid zu dem zweiten Aktor 30 geleitet wird.When hydraulic fluid is pushed out of the first damping
Der erste Dämpfungszylinder 80 dämpft eine Axialverschiebung des Nockenträgers 26 zur zweiten Axialposition. Der zweite Dämpfungszylinder 82 dämpft eine Axialverschiebung des Nockenträgers 26 zur ersten Axialposition. Die Drosseln 84, 86 stellen einen Widerstand für das aus den entsprechenden Dämpfungszylinder 80, 82 ausfließende Hydraulikfluid dar, sodass eine gewünschte Dämpfung ermöglicht wird.The first damping
Der Vorteil der Verwendung der Dämpfungszylinder 80, 82 gegenüber der Verwendung der elastischen Elemente 72, 74 (vgl.
Die
Im Einzelnen weist das Hydrauliksystem 92 ein erstes mechanisch betätigtes 4-Wegeventil 94 und ein zweites mechanisch betätigtes 4-Wegeventil 96 auf. Das erste mechanisch betätigte 4-Wegeventil 94 wird von dem ersten elektrisch betätigten 2-Wegeventil 60 angesteuert. Das zweite mechanisch betätigte 4-Wegeventil 96 wird von dem zweiten elektrisch betätigten 2-Wegeventil 66 angesteuert. Zusätzlich weist das Hydrauliksystem 92 ein drittes elektrisch betätigtes 2-Wegeventil 98 und ein viertes elektrisch betätigtes 2-Wegeventil 100 auf.In detail, the
Zur Axialverschiebung des Nockenträgers 26 in die erste Axialposition wird das erste mechanisch betätigte 4-Wegeventil 94 von dem ersten elektrisch betätigten 2-Wegeventil 60 angesteuert. Das erste mechanisch betätigte 4-Wegeventil 94 stellt eine Fluidverbindung zwischen der Haupthydraulikleitung 54 und dem ersten Aktor 28 her. Der Stift 46 des ersten Aktors 28 fährt aus. Der Nockenträger 26 wird in einer Richtung zu der ersten Axialposition verschoben.For the axial displacement of the
Zum Dämpfen der axialen Verschiebung des Nockenträgers 26 bei einer Verschiebung zur ersten Axialposition stellt das dritte elektrisch betätigte 2-Wegeventil 98 eine Fluidverbindung zwischen dem zweiten Aktor 30 und der Haupthydraulikleitung 54 her. Der ausgefahrene Stift 48 des zweiten Aktors 30 kontaktiert den Nockenträger 26, während der Nockenträger 26 sich zu der ersten Axialposition bewegt. Dabei wird der Stift 48 in den zweiten Aktor 30 eingeschoben. Hydraulikfluid wird aus dem zweiten Aktor 30 ausgeschoben. Das ausgeschobene Hydraulikfluid gelangt über das entsprechend eingestellte zweite mechanisch betätigte 4-Wegeventil 96 über die erste Drossel 84 zum Hydraulikfluidraum der Brennkraftmaschine. Beim Ausschieben des Hydraulikfluids wird die Verschiebebewegung des Nockenträgers 26 gedämpft.In order to dampen the axial displacement of the
Auf ähnliche Weise kann der Nockenträger 26 in die zweite Axialposition durch den zweiten Aktor 30 verschoben werden. Die Verschiebebewegung des Nockenträgers 26 kann dann durch den ersten Aktor 28 gedämpft werden. Dazu sind das vierte elektrisch betätigte 2-Wegeventil 100 und das erste mechanisch betätigte 4-Wegeventil 94 entsprechend geschaltet.In a similar manner, the
Wenn Hydraulikfluid aus dem ersten Aktor 28 ausgeschoben wird, verhindert das erste Rückschlagventil 88, dass das Hydraulikfluid zurück zum vierten elektrisch betätigten 2-Wegeventil 100 fließt. Gleichermaßen verhindert das zweite Rückschlagventil 90, dass aus dem zweiten Aktor 30 ausgeschobenes Hydraulikfluid zu dem dritten elektrisch betätigten 2-Wegeventil 98 geleitet wird.When hydraulic fluid is pushed out of the
Der Vorteil dieses Beispiels liegt insbesondere darin, dass keine separaten Dämpfungszylinder oder elastischen Elemente zum Dämpfen der Axialverschiebung des Nockenträgers 26 vorgesehen werden müssen.The advantage of this example is in particular that no separate damping cylinders or elastic elements have to be provided for damping the axial displacement of the
Die
Die
Das Hydrauliksystem 106 weist ein erstes elektrisch betätigtes 2-Wegeventil 108 und ein zweites elektrisch betätigtes 2-Wegeventil 110 auf. Zusätzlich weist das Hydrauliksystem 106 ein erstes Kontrollventil 112 und ein zweites Kontrollventil 114 sowie ein erstes Rückschlagventil 116 und ein zweites Rückschlagventil 118 auf. Ergänzend weist das Hydrauliksystem 106 die erste Drossel 84 und die zweite Drossel 86 auf.The
Neben dem Stift 46 weist der erste Aktor 28 einen verschiebbaren Kolben 120, eine erste verschiebbare Hülse 122, eine zweite verschiebbare Hülse 124, ein erstes elastisches Element 126, ein zweites elastisches Elementen 128 und ein drittes elastisches Element 130 auf. Das erste elastische Element 126 spannt den Kolben 120 in einer Richtung entgegengesetzt zu dem Stift 46 vor. Das zweite elastische Element 128 stützt den Stift 46 gegen die erste Hülse 124 ab. Das dritte elastische Element 130 spannt die zweite Hülse 124 in einer Richtung zu dem Kolben 120 vor. Eine Axialbewegung des Stifts 46 beim Ausfahren des Stifts 46 wird durch die zweite Hülse 124 begrenzt. Der Stift 46 ist in den Hülsen 122, 124 geführt.In addition to the
Der zweite Aktor 30 ist identisch wie der erste Aktor 28 aufgebaut, mit einem Kolben 132, einer ersten Hülse 134, einer zweiten Hülse 136, einem ersten elastischen Element 138, einem zweiten elastischen Element 140 und einem dritten elastischen Element 142.The
Die
Die
Die
Durch die Verschiebung der zweiten Hülse 124 und des Stifts 46 ist ein Hydraulikkanal der zweiten Hülse 124 mit einem Hydraulikkanal des Stifts 46 ausgerichtet. Der Hydraulikkanal der zweiten Hülse 124 und der Hydraulikkanal des Stifts 46 stellen eine Fluidverbindung zwischen der Hydraulikfluidquelle und einem Steuerfluidraum zum Verschieben des Kolbens 120 her. Hydraulikfluid fließt durch die Hydraulikkanäle der zweiten Hülse 124 und des Stifts 46 zu dem Steuerfluidraum zum Verschieben des Kolbens 120.As a result of the displacement of the
Die
Die
Die
Die
Die
Die
Aus dem in
In den
Die
Die
Die
Der Stift 46 wird erst ausfahren, wenn er in Kontakt mit der ersten Rampe 50A (siehe
Die Erfindung ist nicht auf die vorstehend beschriebenen bevorzugten Ausführungsbeispiele beschränkt. Insbesondere beansprucht die Erfindung auch Schutz für den Gegenstand und die Merkmale der Unteransprüche unabhängig von den in Bezug genommenen Ansprüchen.The invention is not restricted to the preferred exemplary embodiments described above. In particular, the invention also claims protection for the subject matter and the features of the subclaims independently of the claims referred to.
- 1010
- Variabler VentiltriebVariable valve train
- 1212th
- GaswechselventilGas exchange valve
- 1414th
- GaswechselventilGas exchange valve
- 1616
- SchiebenockensystemSliding cam system
- 1818th
- KraftübertragungseinrichtungPower transmission device
- 2020th
- Erster LagerbockFirst bearing block
- 2222nd
- Zweiter LagerbockSecond bearing block
- 2424
- Nockenwellecamshaft
- 2626th
- NockenträgerCam carrier
- 2828
- Erster AktorFirst actuator
- 3030th
- Zweiter AktorSecond actuator
- 3232
- Erster NockenFirst cam
- 3434
- Zweiter NockenSecond cam
- 3636
- Erste SchaltkulisseFirst shift gate
- 3838
- Zweite SchaltkulisseSecond shift gate
- 4040
- Kipphebelrocker arm
- 4242
- KipphebelachseRocker arm axis
- 4444
- NockenfolgerCam follower
- 4646
- Stiftpen
- 4848
- Stiftpen
- 5050
- AktorkontaktflächeActuator contact surface
- 50A50A
- Erste RampeFirst ramp
- 50B50B
- Zweite RampeSecond ramp
- 5252
- AktorkontaktflächeActuator contact surface
- 52A52A
- Erste RampeFirst ramp
- 52B52B
- Zweite RampeSecond ramp
- 5353
- HydrauliksystemHydraulic system
- 5454
- HydraulikhauptleitungHydraulic main line
- 5656
- Erste VerbindungsleitungFirst connection line
- 5858
- Zweite VerbindungsleitungSecond connection line
- 6060
- Erstes elektrisch betätigtes VentilFirst electrically operated valve
- 6262
- Erstes mechanisch betätigtes VentilFirst mechanically operated valve
- 6464
- Erstes KontrollventilFirst control valve
- 6666
- Zweites elektrisch betätigtes VentilSecond electrically operated valve
- 6868
- Zweites mechanisch betätigtes VentilSecond mechanically operated valve
- 7070
- Zweites KontrollventilSecond control valve
- 7272
- Erstes elastisches ElementFirst elastic element
- 7474
- Zweites elastisches ElementSecond elastic element
- 7676
- ArretierungsvorrichtungLocking device
- 7878
- HydrauliksystemHydraulic system
- 8080
- Erster DämpfungszylinderFirst damping cylinder
- 8282
- Zweiter DämpfungszylinderSecond damping cylinder
- 8484
- Erste DrosselFirst throttle
- 8686
- Zweite DrosselSecond throttle
- 8888
- Erstes RückschlagventilFirst check valve
- 9090
- Zweites RückschlagventilSecond check valve
- 9292
- HydrauliksystemHydraulic system
- 9494
- Erstes mechanisch betätigtes 4-WegeventilFirst mechanically operated 4-way valve
- 9696
- Zweites mechanisch betätigtes 4-WegeventilSecond mechanically operated 4-way valve
- 9898
- Drittes elektrisch betätigtes 2-WegeventilThird electrically operated 2-way valve
- 100100
- Viertes elektrisch betätigtes 2-WegeventilFourth electrically operated 2-way valve
- 102102
- HydrauliksystemHydraulic system
- 104104
- Gemeinsame DrosselCommon thrush
- 106106
- HydrauliksystemHydraulic system
- 108108
- Erstes elektrisch betätigtes 2-WegeventilFirst electrically operated 2-way valve
- 110110
- Zweites elektrisch betätigtes 2-WegeventilSecond electrically operated 2-way valve
- 112112
- Erstes KontrollventilFirst control valve
- 114114
- Zweites KontrollventilSecond control valve
- 116116
- Erstes RückschlagventilFirst check valve
- 118118
- Zweites RückschlagventilSecond check valve
- 120120
- Kolbenpiston
- 122122
- Erste HülseFirst sleeve
- 124124
- Zweite HülseSecond sleeve
- 126126
- Erstes elastisches ElementFirst elastic element
- 128128
- Zweites elastisches ElementSecond elastic element
- 130130
- Drittes elastisches ElementThird elastic element
- 132132
- Kolbenpiston
- 134134
- Erste HülseFirst sleeve
- 136136
- Zweite HülseSecond sleeve
- 138138
- Erstes elastisches ElementFirst elastic element
- 140140
- Zweites elastisches ElementSecond elastic element
- 142142
- Drittes elastisches ElementThird elastic element
Claims (13)
- Sliding cam system (16) for an internal combustion engine, comprising:a cam shaft (24);a cam carrier (26), which is arranged rotationally fixedly and axially movably on the cam shaft (24), wherein the cam carrier (26) comprises a first shifting gate (36) and a second shifting gate (38) ;a first actuator (28) with an element (46) able to move along a longitudinal axis of the cam shaft (24), especially a pin, which can be brought into contact with the first shifting gate (36) for the axial movement of the cam carrier (26) in a first direction; anda second actuator (30) with an element (48) able to move along the longitudinal axis of the cam shaft (24), especially a pin, which can be brought into contact with the second shifting gate (38) for the axial movement of the cam carrier (26) in a second direction which is opposite to the first direction;characterized by:a first elastic element (72), which biases the cam carrier (26) in the second direction, wherein the first elastic element (72) supports the cam carrier (26) on a second bearing block (22) for the rotary mounting of the cam shaft (24) and is mounted rotatably about the longitudinal axis of the cam shaft (24) relative to the second bearing block (22) or the cam carrier (26); and/ora second elastic element (74), which biases the cam carrier (26) in the first direction, wherein the second elastic element (74) supports the cam carrier (26) on a first bearing block (20) for the rotary mounting of the cam shaft (24) and is mounted rotatably about the longitudinal axis of the cam shaft (24) relative to the first bearing block (20) or the cam carrier (26).
- Sliding cam system (16) according to Claim 1, wherein:the first actuator (28) is received in or on the first bearing block (20), which supports the cam shaft (24) in a rotating manner; and/orthe second actuator (30) is received in or on the second bearing block (22), which supports the cam shaft (24) in a rotating manner.
- Sliding cam system (16) according to Claim 1 or Claim 2, wherein:the first shifting gate (36) and/or the second shifting gate (38) has a steplike configuration; and/orthe first shifting gate (36) is arranged at a first end of the cam carrier (26) and the second shifting gate (38) is arranged at an opposite second end of the cam carrier (26).
- Sliding cam system (16) according to one of the preceding claims, wherein:the first shifting gate (36) comprises an actuator contact surface (50), which extends in a circumferential direction about the longitudinal axis of the cam shaft (24); and/orthe second shifting gate (38) comprises an actuator contact surface (52), which extends in a circumferential direction about the longitudinal axis of the cam shaft (24).
- Sliding cam system (16) according to Claim 4, wherein:the actuator contact surface (50) of the first shifting gate (36) comprises a first ramp (50A) and a second ramp (50B), wherein the first ramp (50A) of the actuator contact surface (50) of the first shifting gate (36) increases a distance between the first actuator (28) and the actuator contact surface (50) of the first shifting gate (36) relative to a rotary direction of the cam shaft (24) and the second ramp (50B) of the actuator contact surface (50) of the first shifting gate (36) decreases a distance between the first actuator (28) and the actuator contact surface (50) of the first shifting gate (36) relative to a rotary direction of the cam shaft (24); and/orthe actuator contact surface (52) of the second shifting gate (38) comprises a first ramp (52A) and a second ramp (52B), wherein the first ramp (52A) of the actuator contact surface (52) of the second shifting gate (38) increases a distance between the second actuator (30) and the actuator contact surface (52) of the second shifting gate (38) relative to a rotary direction of the cam shaft (24) and the second ramp (52B) of the actuator contact surface (52) of the second shifting gate (38) decreases a distance between the second actuator (30) and the actuator contact surface (52) of the second shifting gate (38) relative to a rotary direction of the cam shaft (24).
- Sliding cam system (16) according to one of the preceding claims, wherein the first actuator (28) and/or the second actuator (30) is hydraulically, electrically and/or pneumatically operated.
- Sliding cam system (16) according to one of the preceding claims, wherein an axial displacement of the cam carrier (26) is dampened hydraulically.
- Sliding cam system (16) according to one of the preceding claims, further comprising:a first hydraulic damping cylinder (80), which is disposed to dampen an axial displacement of the cam carrier (26) in the first direction; and/ora second hydraulic damping cylinder (82), which is disposed to dampen an axial displacement of the cam carrier (26) in the second direction.
- Sliding cam system (16) according to Claim 8, further comprising:a first throttle (84), which is arranged downstream from the first hydraulic damping cylinder (80); and/ora second throttle (86), which is arranged downstream from the second hydraulic damping cylinder (82) .
- Sliding cam system (16) according to one of the preceding claims, wherein:the second actuator (30) dampens an axial displacement of the cam carrier (26) when the first actuator (28) moves the cam carrier (26) axially in the first direction; and/orthe first actuator (28) dampens an axial displacement of the cam carrier (26) when the second actuator (30) moves the cam carrier (26) axially in the second direction.
- Sliding cam system (16) according to Claim 10, wherein
the second actuator (30) dampens an axial displacement of the cam carrier (26) hydraulically and/or by an elastic element (140) of the second actuator (30); and/or
the first actuator (28) dampens an axial displacement of the cam carrier (26) hydraulically and/or by an elastic element (128) of the first actuator (28). - Variable valve train (10) for an internal combustion engine, having:a sliding cam system (16) according to one of the preceding claims;at least one gas exchange valve (12, 14);a force transmission device (18), which in dependence on an axial position of the cam carrier (26) optionally places a first cam (32) of the cam carrier (26) in an operative connection with the at least one gas exchange valve (12, 14) or places a second cam (34) of the cam carrier (26) in an operative connection with the at least one gas exchange valve (12, 14).
- Motor vehicle, especially utility vehicle, having a sliding cam system (16) according to one of Claims 1 to 11 or a variable valve train (10) according to Claim 12.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102017116820.6A DE102017116820A1 (en) | 2017-07-25 | 2017-07-25 | Sliding cam system |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3434871A1 EP3434871A1 (en) | 2019-01-30 |
EP3434871B1 true EP3434871B1 (en) | 2021-03-03 |
Family
ID=62841928
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18181090.4A Active EP3434871B1 (en) | 2017-07-25 | 2018-07-02 | Sliding cam system |
Country Status (6)
Country | Link |
---|---|
US (1) | US10648372B2 (en) |
EP (1) | EP3434871B1 (en) |
CN (1) | CN109296419B (en) |
BR (1) | BR102018014687B1 (en) |
DE (1) | DE102017116820A1 (en) |
RU (1) | RU2770373C2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT201600124647A1 (en) * | 2016-12-09 | 2018-06-09 | Ibs Motortech Italia Srl | "SYSTEM FOR THE REVERSIBLE TRANSFORMATION OF AN ALTERNATED MOTION IN ROTARY MOTION" |
DE102017114575A1 (en) * | 2017-06-29 | 2019-01-03 | Man Truck & Bus Ag | Variable valve train |
DE102019121902B4 (en) * | 2019-08-14 | 2021-04-29 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Valve drive for an internal combustion engine and internal combustion engine |
DE102019125100A1 (en) | 2019-09-18 | 2021-03-18 | Thyssenkrupp Ag | Shift gate, sliding cam system and camshaft |
DE102020214554A1 (en) | 2020-11-18 | 2022-05-19 | Thyssenkrupp Ag | sliding cam arrangement |
DE102023107438A1 (en) | 2023-03-24 | 2024-09-26 | Thyssenkrupp Ag | Sliding camshaft and method for moving a sliding cam |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102010022708A1 (en) * | 2010-06-04 | 2011-12-08 | Audi Ag | Valve drive for internal combustion engine, has camshaft where cam carrier is arranged in rotationally fixed and axially displaceable manner |
JP2014152654A (en) * | 2013-02-06 | 2014-08-25 | Mazda Motor Corp | Valve gear for engine |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5890338U (en) * | 1981-12-14 | 1983-06-18 | マツダ株式会社 | engine intake system |
JPS6075603U (en) * | 1983-10-31 | 1985-05-27 | いすゞ自動車株式会社 | variable valve timing device |
DE19611641C1 (en) | 1996-03-25 | 1997-06-05 | Porsche Ag | Valve operating cam drive for combustion engines |
DE19908286B4 (en) * | 1999-02-26 | 2007-03-01 | Dr.Ing.H.C. F. Porsche Ag | Variable valve control for internal combustion engines |
DE102005033018A1 (en) * | 2005-07-15 | 2007-01-25 | Schaeffler Kg | Valve train for an internal combustion engine |
RU2325540C2 (en) * | 2006-05-29 | 2008-05-27 | Ильшат Ахматгалиевич Галимов | Cam mechanism of gas engine valve-actuating gear |
DE102007052249B4 (en) * | 2007-11-02 | 2023-12-14 | Mercedes-Benz Group AG | Internal combustion engine valve train switching device |
DE102009006632B4 (en) * | 2009-01-29 | 2015-12-31 | Audi Ag | Valve gear of an internal combustion engine and method for operating an internal combustion engine |
US8875674B2 (en) * | 2010-03-31 | 2014-11-04 | Yan Engines, Inc. | Differential-stroke internal combustion engine |
DE102010022709A1 (en) * | 2010-06-04 | 2011-12-08 | Audi Ag | Valve train for internal combustion engine, has cam carriers and/or cam shaft supported in bearing, and end stop provided for limiting axial shifting of carriers, where end stop is formed as damping element and/or comprises damping element |
DE102011050484B4 (en) | 2011-05-19 | 2023-11-09 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Valve train of an internal combustion engine and internal combustion engine |
JP5772318B2 (en) * | 2011-07-11 | 2015-09-02 | スズキ株式会社 | Variable valve operating device for internal combustion engine |
DE102011052912B4 (en) * | 2011-08-23 | 2023-09-21 | Dr.Ing.H.C.F.Porsche Aktiengesellschaft | Internal combustion engine and valve train with sliding cams for an internal combustion engine |
JP2013060823A (en) * | 2011-09-12 | 2013-04-04 | Suzuki Motor Corp | Variable valve gear for internal combustion engine |
DE102011054218B4 (en) * | 2011-10-06 | 2023-03-23 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Internal combustion engine and valve train for an internal combustion engine |
JP6075603B2 (en) * | 2012-08-28 | 2017-02-08 | 株式会社ノーリツ | Drainage system and drain drainage switching unit |
JP5890338B2 (en) * | 2013-02-18 | 2016-03-22 | 株式会社三共 | Game machine |
JP2015206341A (en) * | 2014-04-23 | 2015-11-19 | スズキ株式会社 | Movable valve device for internal combustion engine |
-
2017
- 2017-07-25 DE DE102017116820.6A patent/DE102017116820A1/en not_active Withdrawn
-
2018
- 2018-07-02 EP EP18181090.4A patent/EP3434871B1/en active Active
- 2018-07-18 BR BR102018014687-4A patent/BR102018014687B1/en active IP Right Grant
- 2018-07-19 RU RU2018126552A patent/RU2770373C2/en active
- 2018-07-19 CN CN201810798037.1A patent/CN109296419B/en active Active
- 2018-07-25 US US16/045,479 patent/US10648372B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102010022708A1 (en) * | 2010-06-04 | 2011-12-08 | Audi Ag | Valve drive for internal combustion engine, has camshaft where cam carrier is arranged in rotationally fixed and axially displaceable manner |
JP2014152654A (en) * | 2013-02-06 | 2014-08-25 | Mazda Motor Corp | Valve gear for engine |
Also Published As
Publication number | Publication date |
---|---|
BR102018014687B1 (en) | 2023-05-16 |
BR102018014687A2 (en) | 2019-07-16 |
EP3434871A1 (en) | 2019-01-30 |
CN109296419A (en) | 2019-02-01 |
US10648372B2 (en) | 2020-05-12 |
CN109296419B (en) | 2022-03-11 |
DE102017116820A1 (en) | 2019-01-31 |
RU2018126552A (en) | 2020-01-20 |
US20190032521A1 (en) | 2019-01-31 |
RU2018126552A3 (en) | 2021-12-23 |
RU2770373C2 (en) | 2022-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3434871B1 (en) | Sliding cam system | |
EP3332100B1 (en) | Valve train for an internal combustion engine | |
EP2464835B1 (en) | Variable valve train for internal combustion engines for actuating gas exchange valves | |
DE102010011897B4 (en) | Valve gear with camshaft with axially displaceable cam unit | |
EP2464833B1 (en) | Valve train for internal combustion engines for actuating gas exchange valves | |
EP2464834B1 (en) | Valve train for internal combustion engines for actuating gas exchange valves | |
DE102012112461A1 (en) | Reversing valve for controlling engine oil of internal combustion engine i.e. petrol engine, in motor car, has groove connecting first and second hydraulic fluid lines to vent channel in first and second switch positions, respectively | |
EP3421741B1 (en) | Variable valve drive | |
DE102009039733A1 (en) | Valve drive for gas exchange valves of an internal combustion engine with axially displaceable cam units | |
DE102014210734A1 (en) | Variable valve drive for a cylinder unit of a reciprocating internal combustion engine | |
EP3385513B1 (en) | Variable valve drive | |
EP3418513A1 (en) | Power transmission device | |
EP3222828A2 (en) | Valve drive for an internal combustion engine | |
DE102017118852A1 (en) | Power transmission device for variable valve train | |
DE102009057691A1 (en) | Valve train for actuating gas exchange valves of internal combustion engine, has twistable adjusting shaft brought into engagement with and/or separable from cam shaft by adjusting gear for twisting adjusting shaft | |
EP2196638B1 (en) | Valve drive for actuating gas exchange valves of combustion engines | |
WO1991007574A1 (en) | Drive arrangement for a camshaft fitted in the cylinder head of an internal combustion engine | |
DE102014217584A1 (en) | Valve train device and shift gate | |
EP3450708B1 (en) | Sliding cam system | |
WO2017076482A1 (en) | Valve train device | |
DE102012001303B4 (en) | Verstellwellenbetätigung a valve train for internal combustion engines for the actuation of gas exchange valves | |
DE102017210661A1 (en) | Valve train device for a multi-cylinder internal combustion engine | |
DE102011085705A1 (en) | Valve train of internal combustion engine e.g. single-cylinder engine of motorcycle, has actuator that generates control movement in response to purely mechanical speed of camshaft | |
DE102017104631A1 (en) | Device and method for valve lift control and internal combustion engine | |
EP3564502B1 (en) | Variable valve drive |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: MAN TRUCK & BUS SE |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190729 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20191220 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20201030 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1367434 Country of ref document: AT Kind code of ref document: T Effective date: 20210315 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502018004104 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210604 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210603 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210603 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210705 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210703 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502018004104 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 |
|
26N | No opposition filed |
Effective date: 20211206 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210731 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210703 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210702 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210702 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20180702 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240725 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1367434 Country of ref document: AT Kind code of ref document: T Effective date: 20230702 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240730 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240724 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240725 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230702 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230702 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20240725 Year of fee payment: 7 Ref country code: IT Payment date: 20240722 Year of fee payment: 7 |