EP3420308A1 - Road monitoring method and system - Google Patents
Road monitoring method and systemInfo
- Publication number
- EP3420308A1 EP3420308A1 EP17710798.4A EP17710798A EP3420308A1 EP 3420308 A1 EP3420308 A1 EP 3420308A1 EP 17710798 A EP17710798 A EP 17710798A EP 3420308 A1 EP3420308 A1 EP 3420308A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- roughness
- road
- speed
- vehicle
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 51
- 238000012544 monitoring process Methods 0.000 title abstract description 8
- 230000001133 acceleration Effects 0.000 claims abstract description 60
- 238000006243 chemical reaction Methods 0.000 claims abstract description 54
- 230000015654 memory Effects 0.000 claims description 19
- 238000012545 processing Methods 0.000 claims description 19
- 238000004891 communication Methods 0.000 claims description 5
- 238000004590 computer program Methods 0.000 claims description 4
- 230000000007 visual effect Effects 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 2
- 235000019592 roughness Nutrition 0.000 description 86
- 238000005070 sampling Methods 0.000 description 14
- 238000005259 measurement Methods 0.000 description 8
- 238000004439 roughness measurement Methods 0.000 description 6
- 238000006073 displacement reaction Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000009795 derivation Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000000611 regression analysis Methods 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000013213 extrapolation Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000005291 magnetic effect Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C7/00—Tracing profiles
- G01C7/02—Tracing profiles of land surfaces
- G01C7/04—Tracing profiles of land surfaces involving a vehicle which moves along the profile to be traced
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/02—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
- B60W40/06—Road conditions
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C23/00—Auxiliary devices or arrangements for constructing, repairing, reconditioning, or taking-up road or like surfaces
- E01C23/01—Devices or auxiliary means for setting-out or checking the configuration of new surfacing, e.g. templates, screed or reference line supports; Applications of apparatus for measuring, indicating, or recording the surface configuration of existing surfacing, e.g. profilographs
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B21/00—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
- G01B21/30—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring roughness or irregularity of surfaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W2050/0001—Details of the control system
- B60W2050/0043—Signal treatments, identification of variables or parameters, parameter estimation or state estimation
- B60W2050/005—Sampling
- B60W2050/0051—Sampling combined with averaging
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2520/00—Input parameters relating to overall vehicle dynamics
- B60W2520/10—Longitudinal speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2530/00—Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2556/00—Input parameters relating to data
- B60W2556/45—External transmission of data to or from the vehicle
- B60W2556/50—External transmission of data to or from the vehicle of positioning data, e.g. GPS [Global Positioning System] data
Definitions
- This invention relates to a method and system for monitoring road condition, including road roughness.
- Road roughness is characterised by undulations along the longitudinal axis of the road.
- Road roughness can be expressed in different measuring standards or roughness indexes, of which the International Roughness Index (IRI) is the international standard.
- IRI International Roughness Index
- the IRI is a mathematical representation of the accumulated suspension stroke of a vehicle divided by the distance travelled. Consequently, the IRI has a unit of slope.
- HRI Half-Car Roughness Index
- HRI Half-Car Roughness Index
- road roughness measurements are divided into four broad generic classes based on devices and methods of operation, the reproducibility of the measurements and degree of accuracy and precision of the measurements.
- the main classes of roughness measurements are: Class 1 which is measured by profilometers configured to measure a road profile with the highest degree of accuracy and precision. Maximum longitudinal sampling interval ⁇ 25 mm.
- Class 2 which is measured by profilometers that can measure a road profile accurately.
- Maximum longitudinal sampling interval > 25 mm and ⁇ 150 mm.
- Precision of the vertical elevation measures > 0.1 mm and ⁇ 0.2 mm.
- Class 3 which is measured by response-type devices which are calibrated by relating the measurements obtained to known IRI figures on particular road sections.
- Maximum longitudinal sampling interval > 150 mm and ⁇ 300 mm.
- Precision of the vertical elevation measures > 0.2 mm and ⁇ 0.5 mm.
- Class 4 which is measured by devices that are not calibrated and include subjective ratings of road roughness. The measurements are not suitable for network level surveillance. Maximum longitudinal sampling interval > 300 mm. Precision of the vertical elevation measures > 0.5 mm.
- Class 1 and Class 2 roughness measurements are obtained from very expensive profilometers which provide a detailed indication of road condition. In practice it is not possible or practical to use these profilometers throughout the extended road network on a regular basis to provide accurate measurements of the condition of all the roads in the network.
- a method for providing, for a portion of a road, an approximation of a roughness figure in accordance with a roughness index comprising:
- the first speed-based conversion equation may be selected based on the speed data, from a first set of speed-based conversion equations.
- the first set may comprise a plurality of conversion equations, with each of the conversion equations of the first set relating to a different predetermined speed.
- the first speed-based equation may be selectable on the basis of the speed data.
- the first speed based equation may have as a variable the speed data.
- Each speed-based conversion equation of the first set may be pre-derived by:
- the first set of speed-based conversion equations may be pre-stored in a memory arrangement and may relate to a first class of vehicle.
- a plurality of classes of vehicles may be defined while a respective set of speed- based conversion equations may be pre-derived for each class of vehicles defined.
- the plurality of classes of vehicles may include at least some of: small hatchbacks, medium hatchbacks, small sedans, medium sedans, sports utility vehicles (SUVs), minibuses, and pick-up trucks.
- the measuring device may be mounted fast on the vehicle, may move in sympathy with the vehicle and may be a vehicle telematics device concealed by the body of the vehicle.
- the vehicle telematics device may comprise a three-axis accelerometer, three-axis gyroscope, Global Positioning System (GPS) that measures latitude, longitude and speed data of the telematics device, a local controller with an associated memory arrangement and a radio frequency (RF) transceiver enabling wireless data communications between the device and a central backend.
- GPS Global Positioning System
- RF radio frequency
- the acceleration data and speed data may be transmitted periodically via the transceiver to the central backend, to be processed.
- the roughness index may be one of International Roughness Index (IRI) and Half Car Index (HRI).
- the parameter value may be a statistical parameter value obtained by processing the z-axis acceleration data statistically and may be a Coefficient of Variation (CoV) which is defined as a ratio between the standard deviation ( ⁇ ) and the mean ( ⁇ ) of the acceleration data received for the portion of the road.
- CoV Coefficient of Variation
- the parameter value may be a mathematical parameter value.
- the local controller of the telematics device may be utilised to process the acceleration data to provide the parameter value.
- Parameter values of adjacent portions may be transmitted periodically via the RF transceiver to the central backend to be converted into the approximation of the roughness figure in accordance with the roughness index and combined to generate an approximated roughness profile of the road section in accordance with the roughness index.
- the profile may be distributed to a user in the form of a visual representation which may comprise a map representing road roughness in accordance with a predetermined key.
- the acceleration data may be sampled by the measuring device at a rate from 80 Hz to 800 Hz while the length of the portion of the road may be from 1 m to 100m.
- a system which may be used for providing, for a portion of a road, an approximation of a roughness figure in accordance with a roughness index, the system comprising:
- a fleet of vehicles each comprising: a measuring device for measuring acceleration data perpendicular to the portion of the road and for providing speed data of the vehicle along the portion of the road; and having a radio frequency (RF) transmitting device for communicating with the central backend;
- RF radio frequency
- a memory arrangement comprising a first speed-based conversion equation used to convert the parameter value into an approximation of a roughness figure in accordance with the roughness index;
- the measuring device may be a vehicle telematics device comprising the controller and the memory arrangement.
- the backend may comprise the memory arrangement.
- a fourth aspect of the invention there is provided computer readable medium having stored thereon data relating to at least a first pre- derived speed-based conversion equation for use by a computer program running on a processor to perform the method of claim 1 .
- figure 1 is a diagrammatic representation of a system for monitoring the condition of roads
- figure 2(a) is a block diagram illustrating a method for providing, for a portion of a road, an approximation of a roughness figure in accordance with a roughness index such as HRI or IRI;
- figure 2(b) is a block diagram illustrating a method of deriving a number of sets of speed-based conversion equations
- figure 3 is a diagrammatic representation of a reference road section comprising a plurality of reference portions, used in the derivation according to the method illustrated in figure 2(b)
- figure 4 is an actual roughness profile of the reference road section of figure 3, obtained by a Class 1 profilometer;
- figure 5 shows CoV values obtained by a reference vehicle having been driven over the reference road section of figure 3 at three different predetermined speeds
- figure 6 is a first set of conversion equations, derived from a regression analysis of the data of the figures 4 and 5.
- An example embodiment of a system for monitoring the condition of roads is generally designated by the reference numeral 10 in figure 1 .
- a road 12 to be monitored may be any road within a larger road network and is divided into a plurality of adjacent portions (14.1 to 14.m), each portion being of equal length, such as 100m or 10m for example.
- the system 10 is utilised to provide, for each of portions 14.1 to 14.m of the road 12, an approximation of a roughness figure in accordance with a roughness index.
- the system 10 is utilised in performing a method for providing, for each of the portions 14.1 to 14.m of the road 12, an approximation of a roughness figure in accordance with a roughness index.
- the method is generally designated by the reference numeral 20 in figure 2(a).
- the measuring device 18 measures z-axis acceleration data of the device 18. As stated above, speed data of the vehicle 16 is also obtained.
- the z-axis acceleration measurement is sampled at a predetermined frequency, so that a plurality of measurements are made in each of the portions 14.1 to 14.m.
- the z-axis acceleration data of each portion is processed to provide a parameter value relating to the z-axis acceleration data measured by the first measuring device 18 while the vehicle was travelling over each respective one of the portions 14.1 to 14.m of the road 12.
- a first speed-based conversion equation is utilised to convert the parameter value into an approximation of a roughness figure in accordance with the roughness index.
- the first measuring device 18 is a vehicle telematics device of a known kind which is used for the recovery of stolen/hijacked vehicles, insurance purposes including monitoring driver behaviour and vehicle fleet monitoring and management.
- the telematics device 18 is mounted fast to the first vehicle 16 and is concealed by the body of the vehicle 16.
- the telematics device 18 thus moves in sympathy with the vehicle, which enables it to measure z-axis vibrations and accelerations experienced by the vehicle 16, caused by the roughness of the road.
- the device may be removable but rigidly connectable to the body or chassis in a cradle or the like.
- the vehicle telematics device 18 comprises a three-axis accelerometer 22, a three- axis gyroscope 24, a Global Positioning System (GPS) 26, a local controller 28 comprising a processor and an associated memory arrangement 30, a radio frequency (RF) transceiver 32 enabling wireless data communication between the telematics device 18 and a central backend 34 and a local power supply for the device comprising a battery 36.
- GPS Global Positioning System
- RF radio frequency
- each portion (14.1 to 14.m) of the road 1 2 is determined by means of the GPS providing longitude and latitude data of the vehicle to an accuracy of approximately 2.5 Circular Error Probability (CEP).
- CEP Circular Error Probability
- the transceiver 32 periodically transmits data to the backend 34.
- the frequency at which z-axis acceleration data is measured (the sampling rate) and the capacity of the memory arrangement 30 and processor 28 of the telematics device 18 influence the rate of transmitting data to the backend 34.
- the backend 34 comprises a computer system 37 comprising processing means 38 and a memory arrangement 39; and a receiver 40 enabling wireless communication between the telematics device 18 and the backend 34.
- the wireless communication between the telematics device 18 and the backend 34 may be by way of a Global System for Mobile Communication (GSM) network 42.
- GSM Global System for Mobile Communication
- the GPS 26 of the telematics device communicates extra-terrestrially with a satellite 44 in a known manner.
- the roughness index in accordance with which the acceleration data is approximated may be one of the International Roughness Index (IRI) and the Half Car Roughness Index (HRI).
- the parameter value is a statistical parameter value and may be obtained by processing the acceleration data of each of the portions 14.1 to 14.m of the road 12 statistically, to obtain a Coefficient of Variation (CoV) for the particular portion, relating to z-axis acceleration of the device 18.
- CoV Coefficient of Variation
- the CoV is a dimensionless quantity of dispersion. It is often used to measure the variability or dispersion of data in relation to the mean of a distribution. It is more simply defined as the ratio of the standard deviation to the mean of the data.
- the dimensionless property of the CoV allows data from different vehicles or vehicles travelling at different speeds to be compared more readily.
- NcoV Naive Coefficient of Variation
- the standard deviation as used in the CoV calculation is thus supplanted by a running standard deviation (or na ' ive deviation) of the z-acceleration data.
- reference to the CoV is to be interpreted as including as an alternative the use of the NCoV.
- the data output shown in figure 5 can be viewed as a standard first order data set that can be obtained from a cloud of data collected from all the vehicles in a population of vehicles fitted with telematics devices 18.
- the sampling rate of the data is 100 Hz while the length of each of the portions 14.1 to 14.m of the road 12 is 100 m. At this frequency, and at an example speed of 100 km/h, z-axis acceleration data is sampled every 278 mm along each of the portions 14.1 to 14.m of the road 12, which corresponds well to Class 3 roughness measurements.
- the length of the portion can be reduced to 10 m, to improve the accuracy of results obtained thereby.
- Other sampling rates such as 80 Hz, are feasible. However, the higher the sampling rate, the more accurate the approximation will be.
- New generation telematics devices are capable of sampling rates of up to 400 Hz.
- a single CoV value, based on all the sampled acceleration data points is therefore determined for each of the portions 14.1 to 14.m of the road 12.
- a Root Mean Square (RMS) value may alternatively be determined for each portion 14.1 to 14.m. It has however been found that, particularly at sampling frequencies of about 100 Hz, utilising CoV instead of the RMS results in a stronger correlation to actually measured roughness according to the roughness index (IRI or HRI).
- IRI or HRI roughness index
- An advantage of the current system relates to the use of easily obtainable z-axis acceleration data, instead of actually measured displacement data (as used by known profilometers), without the need to transform the acceleration data into displacement data. However, should the need arise, the acceleration data could be transformed into displacement data by means of a double integral. Thus, mathematical processing, where the acceleration data is converted to displacement data, may be utilised instead of statistical processing as mentioned above. This inevitably has a negative impact on processing requirements.
- the relatively low rate of change of the speed of travel of the vehicle 16, compared to the rate of change of the z-axis acceleration, means that the speed of the vehicle 16 data sampling rate may differ from the z-axis acceleration sampling rate.
- speed data (as shown at 208 on figure 2(a)) is measured at a frequency of 1 Hz, while using linear interpolation to ascribe speed data values for each z-axis acceleration value.
- the speed data is processed so that a single speed data value is ascribed to each of portions 14.1 to 14.m respectively and thus to each CoV value.
- the speed data 208 is used to convert the CoV value 206 into an approximation of roughness figure in accordance with the roughness index (IRI or HRI) for each of portions 14.1 to 14.m.
- the conversion of the CoV value 206 into the approximation of the roughness figure is shown at 210 in figure 2(a). This is done by utilising a speed-based conversion equation, depending on the measured speed of the vehicle.
- a suitable speed-based conversion equation is selected (as shown at 212 in figure 2(a)) from a first set of pre-derived speed-based conversion equations 80.1 (as shown in figure 6).
- Each conversion equation of the first set 80.1 relates to one of a plurality of different, predetermined speeds.
- the first set of conversion equations 46.1 is stored on the memory arrangement 39 at the back end 34.
- the method of deriving the speed-based conversion equations is generally indicated by reference numeral 250 in figure 2(b).
- a reference road section 60 shown in figure 3 is selected (shown at 252 in figure 2(b)) and divided into a plurality of reference portions 62.
- the reference road section 60 has a known length I and varying roughness along its length I.
- the length I of the reference road section 60 must be adequate to provide a wide range of different surface roughnesses.
- a known profilometer is utilised to measure the actual roughness profile (preferably in accordance with Class 1 ) of the reference road section 60 in terms of the known roughness index (IRI or HRI) (shown at 254 in figure 2(b)).
- Figure 4 shows an example of an actual roughness profile 64 in terms of the HRI roughness index that was determined by the profilometer for the reference road section 60. From figure 4, the actual roughness figure, in terms of the HRI, for each portion 62 of the reference road 60 is thus determinable (shown at 256 in figure 2(b)).
- a first reference vehicle (not shown), which is fitted with a first reference measuring device comprising at least an accelerometer, is driven over the reference road section 60.
- a first reference measuring device comprising at least an accelerometer
- the first reference vehicle is driven over the reference road section 60 at each of the speeds.
- the z-axis acceleration data obtained from the reference measuring device is processed to obtain the CoV value for each portion 62 of the reference road section 60 (calculation of the CoV for each portion 62 is performed as described above, and is shown at 258 in figure 2(b)).
- Figure 5 shows three different profiles in terms of the reference statistical parameter (in this case CoV) obtained from the reference measuring device.
- profiles 52, 54 and 56 refer to instances where the first reference vehicle was travelling along the reference road section 60 at speeds of 40 km/h, 50 km/h and 60 km/h respectively. It will be understood that in practice, many different predetermined speeds will be utilised to derive the conversion equations. From a comparison of the actual profile 64 of figure 4 and the profiles (52, 54 and 56) of figure 5, it is clear that all of the profiles have corresponding shapes. This indicates the strong correlation between the reference CoV values and the actual roughness in accordance with the roughness index. However, the differences in the values of the profiles (52, 54 and 56) of figure 5 clearly show the need to correlate the data to a scale of common interest.
- a relationship is derived by comparing the reference CoV values and the actual roughness figures for each of the reference portions 62 of the reference road 60 (shown at 260 in figure 2(b)). The derivation of the aforementioned relationship is shown at 262 in figure 2(b) and the resulting conversion equations are illustrated in figure 6.
- the conversion equations 82, 84 and 86 as shown in figure 6 comprise a regression analysis of the reference statistical parameter values and the actual roughness figures for each of the reference portions 62 of the reference road 60.
- the conversion equations 82, 84 and 86 correspond to the CoV profiles 52, 54 and 56 respectively. Thus each of the conversion equations (82, 84 and 86) corresponds to a specific speed.
- Figure 6 therefore represents an example embodiment of a first set of conversion equations 46.1 .
- a suitable equation is selected from the first set of equations 80.1 and used to convert the parameter relating to acceleration data obtained by any vehicle for any road portion 14.1 to 14.m of a road 12 in a road network to an approximation of a roughness figure in relation to the HRI, as shown at 210 in figure 2(a).
- a vehicle 1 6 travelling on a road 12 (which does not have to be the reference road 60) at a speed of 50 km/h records acceleration data and speed data over a specific portion 14.2 of the road 12. Processing of the acceleration data statistically for the portion 14.2 results in a CoV value equal to x1_.
- conversion equation 84 (which is selected based on the speed of 50 km/h) an HRI approximation figure ⁇ is obtained.
- This procedure is repeated for the acceleration data and speed data of each portion 14.1 to 14.m of the road 12, so that a roughness profile (typically Class 3), approximating a profile measured by a profilometer in terms of the HRI, may be obtained for the road section 12.
- the converted CoV of the acceleration (z-direction) data may be compared directly to the HRI for the portions of the road sections.
- a plurality of reference vehicles are used, to derive a plurality of sets of speed-based conversion equations.
- the reference vehicles are classified into a number (k) of classes. At least one reference vehicle per class is utilised to derive a set of speed-based-equations relating to that class.
- the classes include, but are not limited to, small hatchbacks, medium hatchbacks, small sedans, medium sedans, small sport utility vehicles (SUVs), large SUVs, small pickup trucks, large pickup trucks etc. Classes may also be defined for commercial vehicles and may specifically be based on the payload of a vehicle. Classification of the vehicles results in more accurate approximations of the roughness figures. The classes may therefore make provision for different makes and models of vehicles.
- the class of the vehicle (shown at 214 in figure 2(a)) will determine which set of conversion equations is utilised, while the speed of the vehicle will determine which specific conversion equation within that set is utilised.
- the selected equation is then used to convert the CoV value into a roughness index figure (as shown at 210 in figure 2(a)) as explained above.
- an approximated roughness figure is therefore obtained for each of portions 14.1 to 14.m of the road 12.
- an approximated roughness profile of the road 12 is generated (shown at 216 in figure 2(a)).
- approximated roughness figures for the sections may be averaged to obtain a more accurate roughness profile for the road section 12.
- vehicle telematics devices that are already installed in a large fleet of vehicles, a large portion of roads within a road network can be measured in a cost efficient manner.
- the roughness profile can be used to inform road maintenance service providers of areas in need of maintenance.
- the roughness profiles can also be used to analyse surface deterioration of the roads in the road network so that a preventative maintenance scheme may be implemented.
- the profiles may further be presented visually (shown at 218 in figure 2(a)) and distributed to users. This may be particularly useful to persons travelling along roads they are not familiar with, or at night.
- Road transport service providers may utilise the roughness profiles to select a route that will minimise damage to their vehicles, especially their tyres, and that will minimise maintenance requirements.
- the information can be displayed on Portable Navigation Devices (PND) as well as on smartphones in terms of a unique application.
- PND Portable Navigation Devices
- the visual representation of the roughness profiles may be in the form of a map showing the extent of road roughness according to a key, typically a colour based key.
- the roughness profiles may be communicated to a client in the form of a roughness report.
- step of processing the z-axis accelerometer data into a statistical or mathematical parameter value may be performed either by the controller 28 of the telematics device 18, in which case CoV, RMS or displacement data together with speed data will periodically or intermittently be transmitted to the backend 34, or may be undertaken at the backend 34 itself, in which case raw z-axis acceleration data and speed data will periodically or intermittently be transmitted from the telematics device 18 to the backend 34 as specified above.
- the system 10 therefore provides a cost effective means to monitor the condition of a vast network of roads. Even though the data obtained from the system 10 may be classified as Class 3 roughness measurements, the applicant has found that the correlation between the approximated roughness profiles produced by the system, and an actually measured roughness profile in accordance with the IRI or HRI indexes is strong enough to draw inferences from.
- the system 10 may be used to provide a first level analysis to prioritise the use of actual profilometers. This may assist in ensuring that agencies without direct access to funding for Class 1 road condition data may be able to obtain an indication of their road network conditions.
- the system 1 0 and method 20 herein described and/or defined may also contribute towards the safety and comfort of road users in that the determined estimated road roughness data may be plotted in a mapping application which can be distributed to road users.
- the above disadvantages of current RTRRMS may be overcome or at least alleviated.
- the reference road section 60 must include varying roughness and must be long enough to produce accurate correlations. Furthermore, the variety of classes of vehicles used to derive the different sets of conversion equations must be representative of a large fleet of vehicles generally using the road network. To further improve the accuracy of the conversion equations, more than one reference road may be used (for instance, different reference roads may be used when converting data relating to paved and unpaved roads).
- Figure 1 shows a diagrammatic representation of machines in the exemplary form of a computer system 37 and a vehicle telematics device 18 within which a program code or set of instructions, for causing the machine to perform any one or more of the methodologies discussed herein, may be executed.
- the machines operate and is capable of executing the set of instructions (sequential or otherwise) that specify actions to be taken by that machine.
- the term "machine” shall also be taken to include any collection of machines that individually or jointly execute a set (or multiple sets) of instructions to perform any one or more of the methodologies discussed herein.
- the exemplary machines 37 and 18 comprise a respective processor (e.g., a central processing unit (CPU) and an associated computer or machine- readable medium in the form of a respective memory arrangement 39 and 30 on which is stored software in the form of one or more sets of instructions 41 and data structures, equations or algorithms 46.1 to 46. k embodying or utilized by any one or more of the methodologies or functions described herein.
- the software may also reside, completely or at least partially, within the memory and/or within the processor during execution thereof so that the memory and the processor also constituting machine-readable media.
- machine-readable media 39 and 30 are shown in an exemplary embodiment to be a single medium, the term “machine-readable medium” should be taken to include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more sets of instructions.
- the term “machine- readable medium” shall also be taken to include any medium that is capable of storing, encoding or carrying a set of instructions for execution by the machine and that cause the machine to perform any one or more of the methodologies of the present invention, or that is capable of storing, encoding or carrying data structures, equations or algorithms utilized by or associated with such a set of instructions.
- the term “machine-readable medium” shall accordingly be taken to include, but not be limited to, solid- state memories, optical and magnetic media, and carrier wave signals.
- sampling rates, reporting frequencies, speeds at which conversion equations are derived, classes of vehicles, lengths of any section or portion etc. are not limited to the examples provided herein.
- the lengths of the portions may further be changed depending on the client requirements, whereas the sampling rates may increase as telematics technology improves.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Multimedia (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Mathematical Physics (AREA)
- Automation & Control Theory (AREA)
- Traffic Control Systems (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Abstract
Description
Claims
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DK21216508.8T DK4008994T3 (en) | 2016-02-22 | 2017-02-22 | METHOD AND SYSTEM FOR ROAD MONITORING |
EP21216508.8A EP4008994B1 (en) | 2016-02-22 | 2017-02-22 | Road monitoring method and system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ZA201601207 | 2016-02-22 | ||
PCT/IB2017/051008 WO2017145069A1 (en) | 2016-02-22 | 2017-02-22 | Road monitoring method and system |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21216508.8A Division EP4008994B1 (en) | 2016-02-22 | 2017-02-22 | Road monitoring method and system |
EP21216508.8A Division-Into EP4008994B1 (en) | 2016-02-22 | 2017-02-22 | Road monitoring method and system |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3420308A1 true EP3420308A1 (en) | 2019-01-02 |
EP3420308B1 EP3420308B1 (en) | 2022-02-16 |
Family
ID=58277307
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21216508.8A Active EP4008994B1 (en) | 2016-02-22 | 2017-02-22 | Road monitoring method and system |
EP17710798.4A Active EP3420308B1 (en) | 2016-02-22 | 2017-02-22 | Road monitoring method and system |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21216508.8A Active EP4008994B1 (en) | 2016-02-22 | 2017-02-22 | Road monitoring method and system |
Country Status (11)
Country | Link |
---|---|
US (2) | US11054256B2 (en) |
EP (2) | EP4008994B1 (en) |
CN (1) | CN109154498B (en) |
AU (1) | AU2017223240B2 (en) |
CA (1) | CA3015320C (en) |
DK (2) | DK3420308T3 (en) |
ES (2) | ES2980880T3 (en) |
LT (2) | LT4008994T (en) |
PL (2) | PL4008994T3 (en) |
WO (1) | WO2017145069A1 (en) |
ZA (1) | ZA201805542B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107761527B (en) * | 2017-09-29 | 2019-12-17 | 上海二十冶建设有限公司 | Road flatness monitoring device and using method thereof |
CA3084799A1 (en) * | 2017-12-04 | 2019-06-13 | University Of Massachusetts | Method to measure road roughness characteristics and pavement induced vehicle fuel consumption |
DE102018203071A1 (en) * | 2018-03-01 | 2019-09-05 | Ford Global Technologies, Llc | Method for determining the International Roughness Index (IRI) of a roadway |
GB2582280B (en) * | 2019-03-08 | 2021-08-04 | Trakm8 Ltd | Pothole monitoring |
JP2020144764A (en) * | 2019-03-08 | 2020-09-10 | シャープ株式会社 | Communication terminal |
CN111746537B (en) * | 2020-06-22 | 2022-05-17 | 重庆长安汽车股份有限公司 | Self-adaptive cruise speed control system and method based on road surface flatness and vehicle |
US20220412756A1 (en) * | 2021-06-25 | 2022-12-29 | Toyota Jidosha Kabushiki Kaisha | Information processing apparatus, information processing method, and storage medium |
CN114996654B (en) * | 2022-04-28 | 2023-05-09 | 中国公路工程咨询集团有限公司 | Road surface flatness detection method and device, electronic equipment and medium |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5586028A (en) * | 1993-12-07 | 1996-12-17 | Honda Giken Kogyo Kabushiki Kaisha | Road surface condition-detecting system and anti-lock brake system employing same |
US6202020B1 (en) * | 1999-08-20 | 2001-03-13 | Meritor Heavy Vehicle Systems, Llc | Method and system for determining condition of road |
US6484089B1 (en) | 1999-10-15 | 2002-11-19 | Magellan Dis, Inc. | Navigation system with road condition sampling |
JP5226437B2 (en) * | 2008-09-09 | 2013-07-03 | 国立大学法人北見工業大学 | Road surface flatness measuring device |
CN102644229A (en) * | 2011-02-16 | 2012-08-22 | 鸿富锦精密工业(深圳)有限公司 | Pavement evenness statistic system and method |
CN102607505B (en) * | 2012-03-23 | 2014-04-16 | 中国科学院深圳先进技术研究院 | Road evenness detection method and road evenness detection system |
DE102012014331A1 (en) * | 2012-07-20 | 2014-01-23 | Man Truck & Bus Ag | Method and device for mapping road conditions |
US20150260614A1 (en) * | 2012-10-19 | 2015-09-17 | Roadroid Ab | Method and system for monitoring road conditions |
US8457880B1 (en) * | 2012-11-28 | 2013-06-04 | Cambridge Mobile Telematics | Telematics using personal mobile devices |
CN104120644B (en) | 2013-04-26 | 2016-03-02 | 同济大学 | A kind of detection method of road-surface evenness based on Gravity accelerometer |
WO2014179481A1 (en) * | 2013-04-30 | 2014-11-06 | Diamond Maxim Sokol | Methods and systems for monitoring roadway parameters |
JP6265634B2 (en) | 2013-06-25 | 2018-01-24 | 川田テクノシステム株式会社 | Road surface repair support device, road surface repair support program, and road surface repair support method |
US20150100273A1 (en) * | 2013-10-09 | 2015-04-09 | Mehran Safdar | Automatic vehicle monitoring system and navigation monitoring system |
DE102014207084A1 (en) | 2014-04-14 | 2015-10-15 | Siemens Aktiengesellschaft | Method, device and system for detecting road damage |
CN103981795B (en) * | 2014-05-28 | 2016-03-30 | 江苏科技大学 | A Method of Using Vehicle Suspension Sensors to Realize Road Spectrum Soft Sensing |
CN104792937B (en) * | 2015-04-02 | 2017-02-22 | 同济大学 | Bridge head bump detection evaluation method based on vehicle-mounted gravitational acceleration sensor |
-
2017
- 2017-02-22 CA CA3015320A patent/CA3015320C/en active Active
- 2017-02-22 ES ES21216508T patent/ES2980880T3/en active Active
- 2017-02-22 US US16/079,037 patent/US11054256B2/en active Active
- 2017-02-22 DK DK17710798.4T patent/DK3420308T3/en active
- 2017-02-22 CN CN201780020018.XA patent/CN109154498B/en active Active
- 2017-02-22 LT LTEP21216508.8T patent/LT4008994T/en unknown
- 2017-02-22 AU AU2017223240A patent/AU2017223240B2/en active Active
- 2017-02-22 EP EP21216508.8A patent/EP4008994B1/en active Active
- 2017-02-22 LT LTEPPCT/IB2017/051008T patent/LT3420308T/en unknown
- 2017-02-22 DK DK21216508.8T patent/DK4008994T3/en active
- 2017-02-22 WO PCT/IB2017/051008 patent/WO2017145069A1/en active Application Filing
- 2017-02-22 EP EP17710798.4A patent/EP3420308B1/en active Active
- 2017-02-22 PL PL21216508.8T patent/PL4008994T3/en unknown
- 2017-02-22 PL PL17710798.4T patent/PL3420308T3/en unknown
- 2017-02-22 ES ES17710798T patent/ES2913159T3/en active Active
-
2018
- 2018-08-20 ZA ZA2018/05542A patent/ZA201805542B/en unknown
-
2021
- 2021-05-25 US US17/330,195 patent/US20210278209A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
LT3420308T (en) | 2022-06-10 |
WO2017145069A1 (en) | 2017-08-31 |
US11054256B2 (en) | 2021-07-06 |
AU2017223240A1 (en) | 2018-09-06 |
ES2980880T3 (en) | 2024-10-03 |
PL3420308T3 (en) | 2022-08-16 |
PL4008994T3 (en) | 2024-09-16 |
NZ745665A (en) | 2023-08-25 |
EP4008994B1 (en) | 2024-03-20 |
CA3015320C (en) | 2023-11-21 |
DK3420308T3 (en) | 2022-05-23 |
ZA201805542B (en) | 2022-10-26 |
US20210278209A1 (en) | 2021-09-09 |
DK4008994T3 (en) | 2024-06-03 |
EP4008994A1 (en) | 2022-06-08 |
CN109154498A (en) | 2019-01-04 |
US20190056224A1 (en) | 2019-02-21 |
ES2913159T3 (en) | 2022-05-31 |
CN109154498B (en) | 2022-03-11 |
LT4008994T (en) | 2024-06-25 |
EP3420308B1 (en) | 2022-02-16 |
CA3015320A1 (en) | 2017-08-31 |
AU2017223240B2 (en) | 2021-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210278209A1 (en) | Road monitoring method and system | |
US20230316829A1 (en) | Systems and Methods for Monitoring and Reporting Road Quality | |
KR101912109B1 (en) | Detection of short term irregularities in a road surface | |
Chang et al. | Estimating real-time traffic carbon dioxide emissions based on intelligent transportation system technologies | |
CN108475358B (en) | Method and system for evaluating driver's trip performance | |
CN108431837B (en) | Method and system for evaluating driver's trip performance | |
CN108369682B (en) | Method and system for evaluating driver's trip performance | |
JP6593798B2 (en) | Vehicle, system for communicating with vehicle communication module, and system for communicating with a set of vehicles | |
CN107044858B (en) | Energy efficient navigation route for electric transportation device | |
CN108369683B (en) | Method and system for evaluating driver's trip performance | |
US20210312726A1 (en) | Asset and Vehicle Coupling | |
CN108475359B (en) | Method and system for evaluating driver's trip performance | |
WO2014196115A1 (en) | Method for presenting result of determination of whether vehicle is stopped, device for determining whether vehicle is stopped, and system for determining whether vehicle is stopped | |
US20200408561A1 (en) | Method of characterizing the condition of a road | |
CN108369681B (en) | Method and system for evaluating driver's trip performance | |
CN108475357B (en) | Method and system for evaluating driver's trip performance | |
CN112959859B (en) | Driving reminding method and device, electronic equipment and storage medium | |
CN105702024A (en) | Method and system for surveying road condition through terminal | |
NZ745665B2 (en) | Road monitoring method and system | |
KR102018583B1 (en) | Apparatus for providing traffic information and method thereof | |
JP2022143401A (en) | WEAR Amount Estimating System, Calculation Model Generating System, and WEAR Amount Estimating Method | |
KR20170111240A (en) | Method for collecting real time vehicle driving summary information for evaluating emission index of vehicle unit, and method for analyzing emission index of vehicle unit by using drving information which is collected in safe driving index measuring system | |
Wessels et al. | Telematics-based technology and the development of road condition trends from cloud-sourced data | |
KR20240125028A (en) | Method and system for detecting and providing information indicating particulate emissions resulting from the use of a vehicle's braking system | |
CN115374138A (en) | Data processing method and device, electronic equipment and storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180821 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20190821 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B60W 50/00 20060101ALN20210825BHEP Ipc: B60W 40/06 20120101ALI20210825BHEP Ipc: G01B 21/30 20060101ALI20210825BHEP Ipc: E01C 23/01 20060101ALI20210825BHEP Ipc: G01C 7/04 20060101AFI20210825BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20211007 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602017053397 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1469147 Country of ref document: AT Kind code of ref document: T Effective date: 20220315 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: RO Ref legal event code: EPE |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20220518 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2913159 Country of ref document: ES Kind code of ref document: T3 Effective date: 20220531 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: EP Ref document number: 20220401009 Country of ref document: GR Effective date: 20220608 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1469147 Country of ref document: AT Kind code of ref document: T Effective date: 20220216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220216 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220616 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220516 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220216 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220617 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220216 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220222 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220216 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602017053397 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220216 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220216 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20221117 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220222 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220216 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230511 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20170222 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GR Payment date: 20240222 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LT Payment date: 20240213 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240222 Year of fee payment: 8 Ref country code: ES Payment date: 20240308 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220216 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220216 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: RO Payment date: 20240212 Year of fee payment: 8 Ref country code: DE Payment date: 20240222 Year of fee payment: 8 Ref country code: CZ Payment date: 20240221 Year of fee payment: 8 Ref country code: BG Payment date: 20240222 Year of fee payment: 8 Ref country code: GB Payment date: 20240214 Year of fee payment: 8 Ref country code: SK Payment date: 20240214 Year of fee payment: 8 Ref country code: CH Payment date: 20240301 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20240220 Year of fee payment: 8 Ref country code: SE Payment date: 20240218 Year of fee payment: 8 Ref country code: PL Payment date: 20240216 Year of fee payment: 8 Ref country code: LV Payment date: 20240222 Year of fee payment: 8 Ref country code: IT Payment date: 20240222 Year of fee payment: 8 Ref country code: FR Payment date: 20240214 Year of fee payment: 8 Ref country code: DK Payment date: 20240214 Year of fee payment: 8 Ref country code: BE Payment date: 20240221 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220216 |