EP3409636A1 - Method for damping torsional vibrations of a load-bearing element of a lifting device - Google Patents
Method for damping torsional vibrations of a load-bearing element of a lifting device Download PDFInfo
- Publication number
- EP3409636A1 EP3409636A1 EP18172846.0A EP18172846A EP3409636A1 EP 3409636 A1 EP3409636 A1 EP 3409636A1 EP 18172846 A EP18172846 A EP 18172846A EP 3409636 A1 EP3409636 A1 EP 3409636A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- load
- actuator
- controller
- damping
- receiving element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000013016 damping Methods 0.000 title claims abstract description 87
- 238000000034 method Methods 0.000 title claims abstract description 59
- 230000001133 acceleration Effects 0.000 claims description 7
- 238000012067 mathematical method Methods 0.000 claims description 3
- 238000013461 design Methods 0.000 description 8
- 230000005284 excitation Effects 0.000 description 3
- 238000007493 shaping process Methods 0.000 description 3
- 230000001687 destabilization Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000013178 mathematical model Methods 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000012905 input function Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66C—CRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
- B66C13/00—Other constructional features or details
- B66C13/04—Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66C—CRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
- B66C13/00—Other constructional features or details
- B66C13/04—Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
- B66C13/06—Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66C—CRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
- B66C13/00—Other constructional features or details
- B66C13/04—Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
- B66C13/06—Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads
- B66C13/063—Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads electrical
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66C—CRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
- B66C13/00—Other constructional features or details
- B66C13/04—Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
- B66C13/08—Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for depositing loads in desired attitudes or positions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66C—CRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
- B66C13/00—Other constructional features or details
- B66C13/04—Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
- B66C13/08—Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for depositing loads in desired attitudes or positions
- B66C13/085—Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for depositing loads in desired attitudes or positions electrical
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66C—CRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
- B66C13/00—Other constructional features or details
- B66C13/16—Applications of indicating, registering, or weighing devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66C—CRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
- B66C13/00—Other constructional features or details
- B66C13/18—Control systems or devices
- B66C13/46—Position indicators for suspended loads or for crane elements
Definitions
- the subject invention relates to a method for damping a torsional vibration about a vertical axis of a load-receiving element of a lifting device with a damping controller with at least one controller parameter, wherein the load-receiving element is connected to at least three holding elements with a support member of the lifting device and the length of at least one holding element between the load-receiving element and the support element an actuator acting on the at least one holding element is adjusted by the damping controller.
- Hoisting devices in particular cranes, are available in many different embodiments and are used in many different fields of application.
- tower cranes which are mainly used for civil engineering
- mobile cranes eg for the installation of wind turbines.
- Bridge cranes are used, for example, as overhead cranes in factory halls and gantry cranes eg for the manipulation of transport containers at transhipment locations for intermodal cargo handling, such as in ports for handling ships on the railroad or truck or on freight yards for handling from the railroad to the truck or vice versa
- the goods are stored for transport in standardized containers, so-called ISO containers, which are equally suitable for transport in the three modes of transport road, rail, water.
- the structure and operation of a gantry crane is well known and is eg in the US 2007/0289931 A1 described using a "ship-to-shore crane".
- the crane has a supporting structure or a portal on which a boom is arranged.
- the portal with wheels for example, is arranged movably on a track and can be moved in one direction.
- the boom is firmly connected to the portal and the boom in turn a movable along the boom trolley is arranged.
- the trolley is connected by means of four cables with a load-receiving element, a so-called spreader.
- the spreader can be raised or lowered by means of winches, here by means of two winches for two ropes.
- the spreader can also be adapted to different sized containers.
- a very rapid cargo handling is required, ie, for example, very fast loading and unloading operations of cargo ships and correspondingly fast movement of the load-bearing elements and the gantry cranes as a whole.
- rapid movement processes can lead to build up unwanted vibrations of the load-bearing element, which in turn delay the manipulation process, since the container is not precise on the intended Place can be placed.
- torsional vibrations of the load-bearing element that is to say vibrations about the vertical axis, are disturbing, since they are difficult to compensate for with conventional cranes by the crane operator.
- Such torsional vibrations can additionally be caused or even intensified by, for example, uneven loading of the container or by wind influences.
- the US 2007/0289931 A1 mentions, among other things, the problem of oscillations around the vertical axis (skew), but does not propose a satisfactory solution.
- a target object consisting of light-emitting elements is provided on the load-receiving element and a corresponding CCD camera is provided on the trolley.
- Angle deviations around the vertical axis (skew), the longitudinal axis (list) and the transverse axis (trim) can thus be determined.
- an actuator is provided per tether, with which the length of the tether can be changed.
- the actuators are controlled in different ways, so that the individual tethers are shortened or lengthened and the corresponding error is compensated.
- the disadvantage here is that the method proposes only a compensation of angular errors, without taking into account the dynamics of a torsional vibration. Thus, no torsional vibrations can be compensated.
- the DE 102010054502 A1 proposes to compensate for torsional vibrations of the load-receiving element to arrange a slewing gear between the load-bearing element and tethers.
- this is very complex and therefore expensive, in addition, the payload is reduced by the weight of the slewing gear.
- the input-shaping process is a type of feedforward control with which it is possible to adjust the angle of rotation of the load-bearing element. A damping of an existing torsional vibration is therefore not possible.
- Another disadvantage is that the mathematical model used in the input-shaping method must be very accurate, since there is no way to compensate for parameter deviations.
- the object is achieved in that the at least one controller parameter is determined on the basis of a torsional vibration model of the load-bearing element as a function of the lifting height and that for damping the torsional vibration of the load-receiving element at any stroke height, the at least one controller parameter is adapted to this lifting height.
- This simple method makes it possible to damp a torsional vibration of a load-bearing element at any lifting height without having to manually set the control parameter or parameters of the damping controller.
- the operation of the lifting device or a rapid movement and accurate positioning of a load is considerably simplified, which leads to a time savings and thus to an increase in productivity.
- the load-bearing element is excited to a torsional vibration at a certain lifting height of the load-receiving element, wherein at least one actual rotation angle of the load-receiving element about the vertical axis and an actual actuator position are detected and thus model parameters of the torsional vibration model of the load-bearing element at the given lifting height are identified by an identification method.
- unknown model parameters of a selected torsional vibration model can be determined by means of a suitable identification method, whereby an unknown vibration behavior of the load-bearing element can be determined and used to dampen the torsional vibration.
- the at least one actuator is actuated hydraulically or electrically, whereby standard components such as e.g. Hydraulic cylinders or electric motors can be used and an existing power supply system can be used.
- standard components such as e.g. Hydraulic cylinders or electric motors can be used and an existing power supply system can be used.
- At least two actuators are provided, in particular an actuator per holding element.
- a redundancy of the torsional vibration damping can be realized, whereby the reliability can be increased.
- smaller actuators of lesser inertia can be used, whereby the response time of the damping control can be lowered and the control quality can be increased.
- the lifting height is measured by means of a camera system arranged on the carrying element or on the load receiving element or by means of a lifting drive of the lifting device.
- the angle of rotation of the load-bearing element is preferably measured by means of a camera system arranged on the support element or on the load-receiving element. With this simple method, the angle of rotation of the load-bearing element can be determined very accurately.
- a camera system is also relatively easy to retrofit to an existing lifting device.
- the torsional vibration model is a differential equation of the second order with at least three model parameters, in particular with a dynamics parameter ⁇ , a damping parameter ⁇ and a path gain parameter i ⁇ .
- the identification method is a mathematical method, in particular an online least-square method.
- model parameters can be determined easily and with sufficient accuracy.
- a state controller with preferably five controller parameters K I , K 1 , K 2 , K FF , K P is used as a damping controller.
- an integrated feedforward control controller parameter K FF
- the leadership behavior can be improved and by an integrator (controller parameter K I ) to achieve stationary accuracy or model uncertainties can be compensated.
- a desired rotational angle of the load-receiving element is specified to the damping controller and the damping controller adjusts this desired rotational angle in a predetermined angular range, in particular in an angular range of -10 ° ⁇ ⁇ soll ⁇ + 10 °.
- a desired rotation of the load-receiving element can be achieved whereby loads such as containers can also be positioned on targets that are not precisely aligned, such as, for example, inclined trucks.
- an anti-wind-up protection is integrated in the damping controller, wherein the damping controller actuator limitations of the at least one actuator are specified, in particular a maximum / minimum permissible actuator position s zul , a maximum / minimum allowable actuator speed v zul and a maximum / minimum allowable actuator acceleration a zul of the actuator.
- Fig.1 shows a lifting device 1 by way of example with reference to a schematic container crane 2, which is used for example for loading and unloading of ships in a port.
- a container crane 2 has a supporting structure 3, which is either fixed or movable on the ground.
- the supporting structure 3 can for example be arranged movably on rails in the Y-direction, as shown schematically in FIG Fig.1 is shown. By this degree of freedom in the Y direction of the container crane 2 is used locally flexible.
- the supporting structure 3 has a boom 4 which is fixedly connected to the supporting structure 3.
- a support member 5 is usually arranged, which is movable in the longitudinal direction of the arm 4, that is in the illustrated example in the X direction, for example, a support member 5 may be mounted by means of rollers in guides.
- the support element 5 is usually connected by means of holding elements 6 with a load-receiving element 7 for receiving a load 8.
- the load 8 is usually a container 9, in most cases an ISO container having a length of 20, 40 or 45 feet and a width of 8 feet. But there are also load-bearing elements 7, which are suitable to simultaneously accommodate two containers 9 side by side (so-called dual spreader).
- the type and design of the load-bearing element 7 is not further relevant; any desired embodiments of the load-bearing element 7 can be used.
- the holding elements 6 are usually designed as ropes, four retaining elements 6 are arranged on the support member 5 in most cases, but it can also be more or less holding elements 6 may be provided, but at least three holding elements 6.
- a load 8 such as a Containers 9
- the lifting height I H is usually adjusted by means of one or more winches 10a, 10b as shown schematically in FIG Figure 3 is shown.
- the lifting device 1 or the container crane 2 can thus be moved in the direction of three axes. Due to rapid movements, uneven loading of the container 9 or wind influences, it may happen that on the holding elements 6 arranged load-receiving element 7 is excited with the container 9 arranged thereon to vibrate, as described below with reference to FIG 2a and 2b is shown.
- 2a schematically shows a support member 5, on which a load-receiving element 7 incl.
- Load 8 is arranged by means of four retaining elements 6.
- the coordinate system shows the degrees of freedom of the load-receiving element 7.
- the straight double arrows symbolize the possible directions of movement of the load-bearing element 7, wherein the movement in the Y-direction in the example shown by a movement of the entire lifting device 1, the movement in the X direction by movement of the support member. 5 on the boom 4 (lifting device 1 and boom 4 in Fig.1 a not shown) and the movement in the Z direction by changing the lifting height I H by means of the holding elements 6 and a lifting drive 10 (not shown).
- the curved double arrows symbolize the possible rotations of the load-bearing element 7 about the respective axis.
- Twists about the X-axis and the Y-axis can be relatively easily compensated by the user of the lifting device 1 and the container crane 2 and are not described in more detail here.
- a twist around the Z-axis ie around the vertical axis
- it is very disturbing, since, in particular, a torsional vibration of the load-bearing element 7 around the Z-axis would make it difficult or delay the positioning of a load 8 at a specific location, such as on the loading area of a truck or railway wagon.
- a method is provided with which such a torsional vibration of a load-bearing element 7 around the vertical axis can be easily and quickly damped, so that rapid movement of the load-receiving element 7 with load 8 arranged thereon are made possible, which should contribute to an increase in efficiency of goods manipulation.
- a detailed description of the method is described below with reference to Figure 3 and Figure 4 described.
- the described embodiment of the lifting device 1 as a container crane 2 according to the Fig.1-Fig.3 only to be understood as an example.
- the lifting device 1 may also be designed differently for the application of the method according to the invention, for example as a hall crane, tower crane, mobile crane, etc. Important is only the basic function of the lifting device 1 and that the lifting device 1 has the essential components for carrying out the damping method according to the invention, as described below.
- Fig. 3 the essential components of a lifting device 1 are shown, here on the basis of the components of a container crane 2.
- the essential parts of the invention are shown.
- the structure and operation of such cranes have been described, are well known and therefore need not be specified.
- According to a preferred embodiment of the invention are between support member 5 (in Figure 3 shown schematically by dashed lines) and load receiving element 7 four holding elements 6a, 6b, 6c, 6d arranged, for example, as high-strength ropes, in particular as steel cables, may be formed.
- a lifting drive 10 is provided for lifting and lowering of the load-receiving element 7 in the Z direction, ie for adjusting the lifting height I H .
- the lifting drive 10 is performed by winches 10a and 10b, wherein on each winch 10a, 10b two holding elements 6a, 6c and 6b, 6d are wound.
- at least one actuator 11a, 11b, 11c, 11d for changing the length of the holding element 6 is provided on at least one holding element 6a, 6b, 6c, 6d.
- an actuator 11a, 11b, 11c, 11d is provided on each holding element 6a, 6b, 6c, 6d.
- four retaining elements 6a, 6b, 6c, 6d, each with an actuator 11a, 11b, 11c, 11d are arranged on the lifting device 1.
- a linear actuator 10 as in Figure 3
- the holding elements 6a, 6b, 6c, 6d are shown guided over deflecting rollers, which are arranged on the load-receiving element 7.
- the respective free end of the holding elements 6a, 6b, 6c, 6d is fixed to a stationary holding point, for example on the support element 5.
- An actuator 11a, 11b, 11c, 11d in this embodiment is preferably fixed to a stationary holding point, for example on the support element 5, and the free end of the holding elements 6a, 6b, 6c, 6d on the actuator 11a, 11b, 11c, 11d.
- This can be adjusted by adjusting the actuator 11a, 11b, 11c, 11d, the length of a holding element 6a, 6b, 6c, 6d, whereby the distance between the support member 5 and the load-receiving element 7 is adjusted.
- An actuator 11a, 11b, 11c, 11d can be controlled by a damping controller 12 for changing the length of the corresponding holding element 6a, 6b, 6c, 6d between the carrying element 5 and the load receiving element 7, preferably the actuator 11a, 11b, 11c, 11d at least one desired actuator position s soll or a desired actuator speed v soll should be specified. At least one actual actuator position s ist of the at least one actuator 11a, 11b, 11c, 11d can be detected by the damping controller 12 for the damping control 12 (damping controller 12 in FIG Figure 3 not shown).
- the damping controller 12 may be embodied, for example, as a separate component in the form of hardware and / or software, or else implemented in an existing crane control system.
- the at least one actuator 11a, 11b, 11c, 11d be controlled by the damping controller 12 so that by changing the actuator position and / or actuator speed on the one hand the load receiving element 7 is excited to a torsional vibration (as in Figure 3 symbolized by the double arrow) or on the other hand be controlled so that a torsional vibration of the load-bearing member 7 is attenuated.
- the lengths of two diagonally opposite holding elements 6a, 6b between support element 5 and load receiving element 7 by means of the corresponding actuators 11a, 11b are preferably increased to excite or for damping a torsional vibration and the lengths of the two other diagonally opposite holding elements 6c, 6d reduced by means of the corresponding actuators 11c, 11d or vice versa.
- the corresponding actuators 11c, 11d are preferably increased to excite or for damping a torsional vibration and the lengths of the two other diagonally opposite holding elements 6c, 6d reduced by means of the corresponding actuators 11c, 11d or vice versa.
- only three holding elements 6 between support element 5 and load receiving element 7 could be arranged and only one actuator 11 for changing the length of one of the three holding elements 6.
- the length of at least one retaining element 6a, 6b, 6c, 6d between support member 5 and load-receiving element 7 is variable, so that a torsional vibration of the load-bearing member 7 about the vertical axis, in Figure 3 around the Z-axis, can be excited or damped.
- An actuator 11a, 11b, 11c, 11d may be arbitrary, preferably a hydraulic or electrical embodiment is used, which allows a longitudinal adjustment. If, as in Figure 3 shown, actuators 11a, 11b, 11c, 11d are used in the form of hydraulic cylinders, for example, the energy for actuating the actuators 11a, 11b, 11c, 11d can be obtained from an existing hydraulic system. An actuator 11a, 11b, 11c, 11d, however, can also be designed, for example, as a cable winch and electrically controlled, wherein the actuating energy can be obtained from an existing power supply.
- an actuator 11a, 11b, 11c, 11d is also conceivable which are suitable for changing the length of a holding element 6 between the carrying element 5 and the load receiving element 7.
- an actuator 11a, 11b, 11c, 11d must control the expected forces during the lifting and lowering of a load 8.
- an actuator 11a, 11b, 11c, 11d may, for example, also have an additional transmission gear.
- a measuring device 14 may be provided in the form of a camera system, wherein the support element 5 a Camera 14a and the load receiving element 7, a cooperating with the camera 14a measuring element 14b is arranged, or vice versa.
- the actual rotational angle ⁇ is important by means of a gyro-sensor, that a measuring signal for the actual rotational angle ⁇ is present, which can be fed to the attenuator 12th
- the lifting height I H between the support member 5 and the load-receiving element. 7 can be detected.
- the lifting height I H can be detected via the lifting drive 10, for example in the form of a position signal of a cable winch 10a, 10b available in the crane control.
- the lifting height I H could also be obtained from the crane control.
- the lifting height I H can also be detected by means of the measuring device 14, for example, but can detect, for example, by means of a camera system which is ⁇ both the lifting height H I and the actual rotational angle.
- Such measuring devices 14 are known in the prior art, which is why will not be discussed in detail here.
- FIG 4 shows a block diagram of a possible embodiment of the control structure according to the invention with a damping controller 12, which can be implemented as already explained either as a separate component or preferably in the control of the lifting device 1, and a controlled system 15, which is controlled by the damping controller 12.
- the damping controller 12 is designed as a state controller 13 in the embodiment shown. But it is basically any other suitable controller used.
- the controlled system 15 provides the basis Figure 3
- the reference variable of the damping controller 12 is a desired rotational angle ⁇ soll of the load-bearing element 7 and the manipulated variable is preferably a desired actuator position s soll of the at least one actuator 11a, 11b, 11c, 11d.
- the actual rotational angle ⁇ can be with a measuring device 14, for example, detected by means of a camera system as already described. As feedback, at least the detected actual rotational angle ⁇ ist of the load receiving element 7 is supplied to the damping controller 12 (and in the case of the use of the nominal actuator speed v soll as the manipulated variable also the detected actual actuator position s is ). It would also be conceivable, in addition, an actual angular velocity is ⁇ and fed into the variable attenuator 12, whereby the damping control could be further improved. From the detected actual rotation angle ⁇ is, of course, can be used when needed, an actual angular velocity is ⁇ or an actual angular acceleration ⁇ is derived, for example by derivation with respect to time.
- the actual variables required can either be measured directly or can be estimated, at least partially, also in an observer.
- An advantage of the use of the estimated means of an observer actual values such as an actual turning angle is ⁇ is that wherein A possibly existing and undesirable for the damping control measurement noise of measured values of a measuring device can be avoided fourteenth That's the Main reason why in a preferred embodiment according to Fig. 3 the actual rotational angle ⁇ is measured with a measuring device 14, but an estimated actual rotational angle ⁇ is nevertheless used for the damping control (in addition, an estimated actual angular velocity ⁇ ist could also be used; Fig. 5 ).
- any suitable and well-known observers such as a Kalman filter, can be used, which determines estimated values of the required actual variables. In the following, estimated values are marked with ⁇ if necessary.
- controller structure for the damping method according to the invention is secondary and in principle any suitable controller could be used.
- the required actual variables can then be supplied as measured values or estimated values to the damping controller 12.
- the damping controller 12 has at least one controller parameter, preferably five controller parameters.
- the characteristic of the regulation can be adjusted, e.g. Responsiveness, dynamics, overshoot, damping, etc., whereby one of the properties can be adjusted by means of a controller parameter. If several properties are to be influenced, a corresponding number of controller parameters is required. As a result, the system behavior of the controlled system can be adapted.
- the torsional vibration behavior of the load-bearing element 7 is mapped around the Z-axis with a torsional vibration model, for example with a 2nd-order differential equation in the mold
- the spring constant c ⁇ is modeled depending on the lifting height I H.
- this torsional vibration model is to be understood as exemplary only and other torsional vibration models could be used which are able to approximate the real torsional vibration.
- the model parameters of the torsional vibration model may be known, but are generally unknown. Therefore, in a first step, the model parameters can be identified with an identification method.
- identification methods are well known, for example from Isermann, R.Identtechnisch dynamic systems, 2nd edition, Springer-Verlag, 1992 or Ljung, L .: System Identification: Theory for the User, 2nd edition, Prentice Hall, 2009, so here will not be discussed further.
- Common to the identification methods is that the system to be identified is excited with an input function (eg a jump function) and the output variable is detected and compared with an output variable of the model. The model parameters are then varied to minimize the error between the measured output and the output calculated with the model.
- the damping controller 12 may be used to excite the load-receiving element 7 arranged thereon load 8 in a certain lifting height I H to a torsional vibration about the Z-axis.
- a separate excitation controller may be implemented in the attenuation controller 12, for example in the form of a two-point controller. With the two-position controller, the at least one actuator 11a, 11b, 11c, 11d is actuated, for example, as a function of the actual rotational angle ⁇ ist of the load receiving element 7 with the maximum possible nominal actuator speed v soll .
- the excitation advantageously takes place counteracting, for example by activating the actuators 11a, 11b with the maximum possible positive actuator speed v and the actuators 11c, 11d be driven with the maximum possible negative actuator speed v or vice versa.
- the excitation of the torsional vibration can take place in any but fixed lifting height I H of the load-receiving element 7.
- the model parameters of the implemented torsional vibration model the predetermined lifting height I H.
- an identification method For example, according to one embodiment of the invention, a mathematical online least-square method is used for identifying the model parameters, but it would also be conceivable to use other methods, for example offline least-squares methods or optimization-based methods.
- a damping controller 12 can now be designed for the torsional vibration model.
- a suitable controller structure is selected, for example a PID controller or a state controller.
- each controller structure has a number of controller parameters K k , k ⁇ 1, which must be adjusted by means of a controller design method so that a desired control behavior results.
- controller design methods are also well known and therefore will not be described in detail. Examples include the frequency characteristic method, the root locus method, the controller design by Polvorgabe and the Riccati method, which of course there are a wealth of other methods.
- the desired control behavior of course, taking into account stability criteria and other boundary conditions, can be chosen substantially arbitrarily for the invention.
- the controller parameters are determined depending on the lifting height I H. This can also be done in various ways.
- controller parameters K k must be set only for a lifting height I H and can then be easily converted to other heights I H. From the formulaic relationship, however, the controller parameters K k for different lifting heights I H can also be calculated offline and from this a characteristic curve or a characteristic field can be created, which is then used in a further sequence.
- the controller parameters K k in each time step of the control adapted to the current lifting height I H , for example by reading from a map or by calculation.
- the damping controller 12 determines with the adjusted controller parameters K k the manipulated variable which is set with the at least one actuator 11 a, 11 b, 11 c, 11 d in the respective time step.
- the controller parameters K k are thus at the current Lifting height I H adapted to damp torsional vibrations of the load-bearing element 7 at any stroke height I H optimally
- the inventive method will be explained below with reference to a concrete embodiment. It is from a torsional vibration model in the form as described above.
- the model parameters of the torsional vibration model eg ⁇ , ⁇ and i ⁇ can be identified as described for a specific lifting height I H.
- a state controller 13 is used because of its high control quality or control performance, as in Fig. 4 shown.
- five parameters K I , K P , K 1 , K 2 , K FF are provided as controller parameters K k .
- the actuator position s, the rotation angle ⁇ , the angular velocity and a deviation e ⁇ between target rotation angle ⁇ soll and actual rotation angle ⁇ is used.
- d 0 is a damping constant of the closed loop, ie the almost undamped system is converted by means of the damping controller 12 in a muted.
- the parameters ⁇ i determine the dynamics and the response behavior of the control loop and are bound to the system properties of the torsional vibration model to be identified (the index i ⁇ 0 stands for the number of parameters of the damping controller, in the example given these are the parameters ⁇ 0 , ⁇ 1 , ⁇ 2 ).
- the damping constant d 0 and the parameters ⁇ i are preferred pre-parameterized or predetermined, but can be adapted by the user if required.
- K p 2 d 0 ⁇ 0 + ⁇ 1 + ⁇ 2
- K 1 1 i ⁇ K P 2 d 0 ⁇ 0 ⁇ 1 ⁇ 2 - ⁇ 1 + ⁇ 2 ⁇ 0 2 ⁇ -
- the controller parameters of the state controller 13 are then calculated on the basis of the current lifting height I H in each time step of the control and based on the control. So that the torsional vibration of the load receiving element 7 can be effectively damped during a lifting operation, because the SAS 12 automatically to the current lift height I H adapts.
- the damping controller 12 can determine an actuator position s soll to be set or an actuator speed v soll for the at least one actuator 11a, 11b, 11c, 11d and output it at an interface 16. To this end receives the damping controller 12 via an interface 17, the required actual values, for example the actual position s of the at least one actuator 11a, 11b, 11c, 11d and the actual rotational angle ⁇ of the load receiving element 7. The time derivative of the actual rotational angle ⁇ is can be detected in the attenuator 12 or is also measured.
- a state estimator 20 (FIG. Figure 5 ), Be provided in the form of hardware and / or software that ⁇ is the load receiving member 7 from measured actual values, for example of the actual rotation angle determined estimated values of the required input of the variable attenuator 12, here for example-an estimated actual rotational angle ⁇ is and an estimated actual angular velocity
- the state estimator 20 may be implemented, for example, as a well-known Kalman filter.
- the torsional vibration model can also be used in the state estimation unit 20 for this purpose.
- a load 8 such as a container 9 are rotated in a predetermined angular range and thereby eg unloaded on a loading area of an inaccurately positioned truck.
- a rotational angle ⁇ of the load-receiving element 7 in a range of, for example ⁇ 10 °.
- an anti-wind-up protection is integrated in the damping controller (12), the damping controller 12 being given actuator limitations of the at least one actuator 11, in particular a maximum / minimum allowable actuator position s zul , a maximum / minimum allowable actuator speed v zul and a maximum / minimum allowable actuator acceleration a zul of the actuator 11.
- This integrated anti-wind-up protection of the damping controller 12 can be adapted to the type of or the available actuators 11 of the lifting device 1.
- the damping controller 12 calculates, as described, a manipulated variable of the at least one actuator 11, for example the desired actuator speed v soll .
- this desired actuator speed v soll exceeds a maximum permissible actuator limit, for example the actuator speed v zul
- the setpoint actuator speed v soll is limited to this maximum permissible actuator speed v zul .
- the damping controller 12 calculates too high a nominal actuator speed v soll that the at least one actuator 11 could not follow because of its design. This would lead to a control error and the damping controller 12, in particular the integrated in the damping controller 12 integrator would try to compensate for this control error by the manipulated variable, for example, the target actuator speed v soll , would be further increased.
- the target actuator speed v soll can also be used to calculate a desired actuator acceleration a soll and to compare it with a maximum / minimum allowable actuator acceleration a zul of the corresponding actuator 11a, 11b, 11c, 11d. If this maximum / minimum allowable actuator acceleration a zul is exceeded, this can also be taken into account with a limitation of the desired actuator speed v soll .
- This allows different embodiments and sizes of Actuators 11a, 11b, 11c, 11d are taken into account in the damping controller, whereby the method is very flexible applicable to a variety of lifting devices 1.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Automation & Control Theory (AREA)
- Control And Safety Of Cranes (AREA)
- Vibration Prevention Devices (AREA)
Abstract
Es wird ein Verfahren zum Dämpfen von Drehschwingungen eines Lastaufnahmeelements (7) einer Hebeeinrichtung (1) geschaffen, wobei zumindest ein Reglerparameter anhand eines Drehschwingungsmodells des Lastaufnahmeelements (7) als Funktion der Hubhöhe (IH) ermittelt wird und wobei zur Dämpfung der Drehschwingung des Lastaufnahmeelements (7) in einer beliebigen Hubhöhe (IH) der zumindest eine Reglerparameter an diese Hubhöhe (IH) adaptiert wird. A method is provided for damping torsional vibrations of a load-bearing element (7) of a lifting device (1), wherein at least one controller parameter is determined on the basis of a torsional vibration model of the load-bearing element (7) as a function of the lifting height (I H ) and wherein for damping the torsional vibration of the load-bearing element (7) at any stroke height (I H ) of the at least one controller parameters to this lifting height (I H ) is adapted.
Description
Die gegenständliche Erfindung betrifft ein Verfahren zum Dämpfen einer Drehschwingung um eine Hochachse eines Lastaufnahmeelements einer Hebeeinrichtung mit einem Dämpfungsregler mit zumindest einem Reglerparameter, wobei das Lastaufnahmeelement mit zumindest drei Halteelementen mit einem Tragelement der Hebeeinrichtung verbunden wird und die Länge zumindest eines Halteelements zwischen Lastaufnahmeelement und Tragelement mit einem auf das zumindest eine Halteelement wirkenden Aktuator durch den Dämpfungsregler verstellt wird.The subject invention relates to a method for damping a torsional vibration about a vertical axis of a load-receiving element of a lifting device with a damping controller with at least one controller parameter, wherein the load-receiving element is connected to at least three holding elements with a support member of the lifting device and the length of at least one holding element between the load-receiving element and the support element an actuator acting on the at least one holding element is adjusted by the damping controller.
Hebeeinrichtungen, insbesondere Kräne gibt es in vielen verschiedenen Ausführungsformen und sie kommen in vielen unterschiedlichen Anwendungsgebieten zum Einsatz. Zum Beispiel gibt es Turmkräne, die vorwiegend für den Hoch- und Tiefbau verwendet werden, oder es gibt Mobilkräne, z.B. für die Montage von Windkraftanlagen. Brückenkräne werden z.B. als Hallenkräne in Fabrikshallen verwendet und Portalkräne z.B. für die Manipulation von Transportcontainern an Umschlagsorten für den intermodalen Güterumschlag, wie z.B. in Häfen zum Umschlag von Schiffen auf die Eisenbahn oder den LKW oder auf Güterbahnhöfen zum Umschlag von der Eisenbahn auf den LKW oder umgekehrt. Vorwiegend werden dabei die Güter für den Transport in standardisierten Containern gelagert, sogenannten ISO-Containern, welche gleichermaßen für den Transport in den drei Transport-Modi Straße, Schiene, Wasser geeignet sind. Der Aufbau und die Funktionsweise eines Portalkrans ist hinlänglich bekannt und ist z.B. in der
Um die Wirtschaftlichkeit von Logistik-Prozessen zu erhöhen, wird unter anderem ein sehr rascher Güterumschlag gefordert, d.h. z.B. sehr rasche Be- und Entladungsvorgänge von Frachtschiffen und entsprechend schnelle Bewegungsvorgänge der Lastaufnahmeelemente und der Portalkräne insgesamt. Solche schnellen Bewegungsvorgänge können aber dazu führen, dass sich unerwünschte Schwingungen des Lastaufnahmeelements aufbauen, welche wiederum den Manipulationsvorgang verzögern, da die Container nicht präzise am vorgesehenen Ort platziert werden können. Insbesondere sind Drehschwingungen des Lastaufnahmeelements, also Schwingungen um die Hochachse störend, da diese mit herkömmlichen Kränen vom Kranführer nur schwer auszugleichen sind. Solche Drehschwingungen können zusätzlich auch durch z.B. eine ungleichmäßige Beladung des Containers oder durch Windeinflüsse hervorgerufen oder noch verstärkt werden.In order to increase the efficiency of logistics processes, inter alia, a very rapid cargo handling is required, ie, for example, very fast loading and unloading operations of cargo ships and correspondingly fast movement of the load-bearing elements and the gantry cranes as a whole. However, such rapid movement processes can lead to build up unwanted vibrations of the load-bearing element, which in turn delay the manipulation process, since the container is not precise on the intended Place can be placed. In particular, torsional vibrations of the load-bearing element, that is to say vibrations about the vertical axis, are disturbing, since they are difficult to compensate for with conventional cranes by the crane operator. Such torsional vibrations can additionally be caused or even intensified by, for example, uneven loading of the container or by wind influences.
Die
Die
In der Veröffentlichung
Demzufolge ist es die Aufgabe der Erfindung, die Nachteile des Standes der Technik zu beseitigen, insbesondere soll ein Verfahren zum Dämpfen von Drehschwingungen eines Lastaufnahmeelements einer Hebeeinrichtung geschaffen werden.Accordingly, it is the object of the invention to eliminate the disadvantages of the prior art, in particular a method for damping torsional vibrations of a load-receiving element of a lifting device is to be created.
Erfindungsgemäß wird die Aufgabe dadurch gelöst, dass der zumindest eine Reglerparameter anhand eines Drehschwingungsmodells des Lastaufnahmeelements als Funktion der Hubhöhe ermittelt wird und dass zur Dämpfung der Drehschwingung des Lastaufnahmeelements in einer beliebigen Hubhöhe der zumindest eine Reglerparameter an diese Hubhöhe adaptiert wird. Mit diesem einfachen Verfahren wird es ermöglicht, eine Drehschwingung eines Lastaufnahmeelements in einer beliebigen Hubhöhe zu dämpfen, ohne dass der oder die Reglerparameter des Dämpfungsreglers manuell festgelegt werden müssen. Dadurch wird der Betrieb der Hebeeinrichtung bzw. ein rasches Bewegen und genaues Positionieren einer Last wesentlich vereinfacht, was zu einer Zeitersparnis und damit zu einer Steigerung der Produktivität führt.According to the invention, the object is achieved in that the at least one controller parameter is determined on the basis of a torsional vibration model of the load-bearing element as a function of the lifting height and that for damping the torsional vibration of the load-receiving element at any stroke height, the at least one controller parameter is adapted to this lifting height. This simple method makes it possible to damp a torsional vibration of a load-bearing element at any lifting height without having to manually set the control parameter or parameters of the damping controller. As a result, the operation of the lifting device or a rapid movement and accurate positioning of a load is considerably simplified, which leads to a time savings and thus to an increase in productivity.
Bevorzugterweise wird das Lastaufnahmeelement bei einer bestimmten Hubhöhe des Lastaufnahmeelements zu einer Drehschwingung angeregt, wobei zumindest ein Ist-Drehwinkel des Lastaufnahmeelements um die Hochachse und eine Ist-Aktuatorposition erfasst werden und damit Modellparameter des Drehschwingungsmodells des Lastaufnahmeelements bei der gegebenen Hubhöhe anhand einer Identifikationsmethode identifiziert werden. Dadurch können mittels einer geeigneten Identifikationsmethode unbekannte Modellparameter eines gewählten Drehschwingungsmodells ermittelt werden, wodurch ein unbekanntes Schwingungsverhalten des Lastaufnahmeelements ermittelt und zur Dämpfung der Drehschwingung herangezogen werden kann.Preferably, the load-bearing element is excited to a torsional vibration at a certain lifting height of the load-receiving element, wherein at least one actual rotation angle of the load-receiving element about the vertical axis and an actual actuator position are detected and thus model parameters of the torsional vibration model of the load-bearing element at the given lifting height are identified by an identification method. As a result, unknown model parameters of a selected torsional vibration model can be determined by means of a suitable identification method, whereby an unknown vibration behavior of the load-bearing element can be determined and used to dampen the torsional vibration.
Vorteilhafterweise wird der zumindest eine Aktuator hydraulisch oder elektrisch betätigt, wodurch Standardkomponenten wie z.B. Hydraulikzylinder oder Elektromotoren verwendet werden können und ein vorhandenes Energieversorgungssystem genutzt werden kann.Advantageously, the at least one actuator is actuated hydraulically or electrically, whereby standard components such as e.g. Hydraulic cylinders or electric motors can be used and an existing power supply system can be used.
Wenn zumindest vier Halteelemente zwischen Lastaufnahmeelement und Trageelement vorgesehen sind, können größere Lasten manipuliert werden.If at least four holding elements are provided between the load-receiving element and the carrying element, larger loads can be manipulated.
Es ist vorteilhaft, wenn zumindest zwei Aktuatoren vorgesehen sind, insbesondere ein Aktuator je Halteelement. Dadurch kann einerseits eine Redundanz der Drehschwingungsdämpfung realisiert werden, wodurch die Ausfallsicherheit erhöht werden kann. Andererseits können kleinere Aktuatoren geringerer Trägheit verwendet werden, wodurch die Ansprechzeit der Dämpfungsregelung gesenkt und die Regelgüte erhöht werden kann.It is advantageous if at least two actuators are provided, in particular an actuator per holding element. As a result, on the one hand a redundancy of the torsional vibration damping can be realized, whereby the reliability can be increased. On the other hand, smaller actuators of lesser inertia can be used, whereby the response time of the damping control can be lowered and the control quality can be increased.
Vorteilhafterweise wird die Hubhöhe mittels einer, am Trageelement oder am Lastaufnahmeelement angeordneten Kamerasystems oder mittels eines Hubantriebs der Hebeeinrichtung gemessen. Dadurch kann die Hubhöhe sehr genau und in einfacher Weise erfasst werden. Bevorzugterweise wird der Drehwinkel des Lastaufnahmeelements mittels einer, am Trageelement oder am Lastaufnahmeelement angeordneten Kamerasystems gemessen. Mit dieser einfachen Methode kann der Drehwinkel des Lastaufnahmeelements sehr genau bestimmt werden. Ein Kamerasystem ist zudem relativ einfach auf einer bestehenden Hebeeinrichtung nachrüstbar.Advantageously, the lifting height is measured by means of a camera system arranged on the carrying element or on the load receiving element or by means of a lifting drive of the lifting device. As a result, the lifting height can be detected very accurately and in a simple manner. The angle of rotation of the load-bearing element is preferably measured by means of a camera system arranged on the support element or on the load-receiving element. With this simple method, the angle of rotation of the load-bearing element can be determined very accurately. A camera system is also relatively easy to retrofit to an existing lifting device.
Gemäß einer bevorzugten Ausführungsform ist das Drehschwingungsmodell eine Differentialgleichung zweiter Ordnung mit zumindest drei Modellparametern, insbesondere mit einem Dynamikparameter δ, einem Dämpfungsparameter ξ und einem Streckenverstärkungsparameter iβ. Mit der mathematischen Modellierung des Drehschwingungssystems durch eine Differentialgleichung zweiter Ordnung wird eine einfache aber ausreichend genaue Abbildung der realen Drehschwingung geschaffen.According to a preferred embodiment, the torsional vibration model is a differential equation of the second order with at least three model parameters, in particular with a dynamics parameter δ, a damping parameter ξ and a path gain parameter i β . With the mathematical modeling of the torsional vibration system by a differential equation of second order, a simple but sufficiently accurate mapping of the real torsional vibration is created.
Es ist vorteilhaft, wenn die Identifikationsmethode ein mathematisches Verfahren ist, insbesondere ein online Least-Square Verfahren. Mit dieser gängigen mathematischen Methode können Modellparameter in einfacher Weise und ausreichend genau ermittelt werden.It is advantageous if the identification method is a mathematical method, in particular an online least-square method. With this popular mathematical method, model parameters can be determined easily and with sufficient accuracy.
Es ist vorteilhaft, wenn als Dämpfungsregler ein Zustandsregler mit vorzugsweise fünf Reglerparametern KI, K1, K2, KFF, KP verwendet wird. Dadurch wird ein schneller und stabiler Dämpfungsregler mit hoher Regelgüte geschaffen. Durch eine integrierte Vorsteuerung (Reglerparameter KFF) kann das Führungsverhalten verbessert werden und durch einen Integrator (Reglerparameter KI) erreicht man stationäre Genauigkeit bzw. können Modellunsicherheiten ausgeglichen werden.It is advantageous if a state controller with preferably five controller parameters K I , K 1 , K 2 , K FF , K P is used as a damping controller. This creates a fast and stable damping controller with high control quality. By an integrated feedforward control (controller parameter K FF ), the leadership behavior can be improved and by an integrator (controller parameter K I ) to achieve stationary accuracy or model uncertainties can be compensated.
Gemäß einer bevorzugten Ausführungsform wird dem Dämpfungsregler ein Soll-Drehwinkel des Lastaufnahmeelements vorgegeben und der Dämpfungsregler regelt diesen Soll-Drehwinkel in einem vorgegebenen Winkelbereich ein, insbesondere in einem Winkelbereich von -10° ≤ βsoll ≤ +10°. Dadurch kann eine gewünschte Verdrehung des Lastaufnahmeelements erreicht werden wodurch Lasten wie z.B. Container auch auf nicht exakt ausgerichtete Ziele wie z.B. schräg stehende LKW's positioniert werden können.According to a preferred embodiment, a desired rotational angle of the load-receiving element is specified to the damping controller and the damping controller adjusts this desired rotational angle in a predetermined angular range, in particular in an angular range of -10 ° ≤ β soll ≤ + 10 °. As a result, a desired rotation of the load-receiving element can be achieved whereby loads such as containers can also be positioned on targets that are not precisely aligned, such as, for example, inclined trucks.
Vorteilhafterweise wird im Dämpfungsregler ein Anti-Wind-Up Schutz integriert, wobei dem Dämpfungsregler Aktuatorbeschränkungen des zumindest einen Aktuators vorgegeben werden, insbesondere eine maximal/minimal zulässige Aktuatorposition szul, eine maximal/minimal zulässige Aktuatorgeschwindigkeit vzul und eine maximal/minimal zulässige Aktuatorbeschleunigung azul des Aktuators. Durch diesen sogenannten Anti-Wind-Up Schutz können unzulässig hohe Stellgrößen des zumindest einen Aktuators vermieden werden, die zu einer Destabilisierung des Dämpfungsreglers führen könnten.Advantageously, an anti-wind-up protection is integrated in the damping controller, wherein the damping controller actuator limitations of the at least one actuator are specified, in particular a maximum / minimum permissible actuator position s zul , a maximum / minimum allowable actuator speed v zul and a maximum / minimum allowable actuator acceleration a zul of the actuator. By means of this so-called anti-wind-up protection, inadmissibly high manipulated variables of the at least one actuator can be avoided, which could lead to a destabilization of the damping controller.
Die gegenständliche Erfindung wird nachfolgend unter Bezugnahme auf die
-
Fig.1 den grundsätzlichen Aufbau einer Hebeeinrichtung anhand eines Containerkrans, -
Fig.2a und 2b ein Lastaufnahmeelement inklusive Last zur Darstellung einer Drehschwingung, -
Fig.3 einen Ausschnitt einer schematischen Hebeeinrichtung, -
Fig.4 eine Reglerstruktur eines Dämpfungsreglers, -
Fig. 5 eine Zustandsschätzeinheit.
-
Fig.1 the basic structure of a lifting device on the basis of a container crane, -
2a and 2b a load receiving element including load for representing a torsional vibration, -
Figure 3 a section of a schematic lifting device, -
Figure 4 a controller structure of a damping controller, -
Fig. 5 a state estimator.
Erfindungsgemäß ist deshalb ein Verfahren vorgesehen, mit dem eine derartige Drehschwingung eines Lastaufnahmeelements 7 um die Hochachse einfach und schnell gedämpft werden kann, sodass rasche Bewegungsvorgänge des Lastaufnahmeelements 7 mit daran angeordneter Last 8 ermöglicht werden, was zu einer Effizienzsteigerung der Gütermanipulation beitragen soll. Eine detaillierte Beschreibung des Verfahrens ist nachfolgend anhand der
Natürlich ist die beschriebene Ausführungsform der Hebeeinrichtung 1 als Containerkran 2 gemäß den
In
Bei einem Hubantrieb 10 wie in
Ein Aktuator 11a, 11b, 11c, 11d kann dabei zur Veränderung der Länge des entsprechenden Halteelements 6a, 6b, 6c, 6d zwischen Trageelement 5 und Lastaufnahmeelement 7 von einem Dämpfungsregler 12 angesteuert werden, vorzugsweise kann dem Aktuator 11a, 11b, 11c, 11d dabei zumindest eine Soll-Aktuatorposition ssoll oder eine Soll-Aktuatorgeschwindigkeit vsoll vorgegeben werden. Für die Dämpfungsregelung kann vom Dämpfungsregler 12 zumindest eine Ist-Aktuatorposition sist des zumindest einen Aktuators 11a, 11b, 11c, 11d erfasst werden (Dämpfungsregler 12 in
In der dargestellten Ausführungsform werden dabei zur Anregung oder zur Dämpfung einer Drehschwingung vorzugsweise die Längen von zwei diagonal gegenüberliegenden Halteelementen 6a, 6b zwischen Trageelement 5 und Lastaufnahmeelement 7 mittels der korrespondierenden Aktuatoren 11a, 11b vergrößert und die Längen der zwei anderen diagonal gegenüberliegenden Halteelemente 6c, 6d mittels der korrespondierenden Aktuatoren 11c, 11d verringert oder umgekehrt. Beispielsweise könnten aber auch nur drei Halteelemente 6 zwischen Trageelement 5 und Lastaufnahmeelement 7 angeordnet sein und nur ein Aktuator 11 zur Änderung der Länge eines der drei Halteelemente 6. Wichtig ist nur, dass mittels des zumindest einen Aktuators 11a, 11b, 11c, 11d die Länge von zumindest eines Halteelements 6a, 6b, 6c, 6d zwischen Trageelement 5 und Lastaufnahmeelement 7 veränderbar ist, sodass eine Drehschwingung des Lastaufnahmeelements 7 um die Hochachse, in
Ein Aktuator 11a, 11b, 11c, 11d kann beliebig ausgeführt sein, bevorzugt wird eine hydraulische oder elektrische Ausführungsform verwendet, die eine Längsverstellung ermöglicht. Wenn, wie in
Zur Durchführung des erfindungsgemäßen Dämpfungsverfahrens ist vorgesehen, dass zumindest ein Ist-Drehwinkel βist des Lastaufnahmeelements 7 um die Z-Achse (bzw. Hochachse) erfasst werden kann, beispielsweise kann eine Messeinrichtung 14 in Form eines Kamerasystems vorgesehen sein, wobei am Trageelement 5 eine Kamera 14a und am Lastaufnahmeelement 7 ein mit der Kamera 14a zusammenwirkendes Messelement 14b angeordnet ist, oder umgekehrt. Der Ist-Drehwinkel βist kann aber auch auf andere Weise gemessen werden, z.B. mittels eines Gyro-Sensors, wichtig ist, dass ein Messsignal für den Ist-Drehwinkel βist vorliegt, das dem Dämpfungsregler 12 zugeführt werden kann. Weiters ist vorgesehen, dass die Hubhöhe IH zwischen Trageelement 5 und Lastaufnahmeelement 7 erfasst werden kann. Beispielsweise kann die Hubhöhe IH über den Hubantrieb 10 erfasst werden, z.B. in Form eines, in der Kransteuerung verfügbaren Positionssignals einer Seilwinde 10a, 10b. Die Hubhöhe IH könnte auch aus der Kransteuerung bezogen werden. Die Hubhöhe IH kann beispielsweise aber auch mittels der Messeinrichtung 14 erfasst werden, z.B. mittels eines Kamerasystems, das sowohl die Hubhöhe IH als auch den Ist-Drehwinkel βist erfassen kann. Solche Messeinrichtungen 14 sind im Stand der Technik bekannt, weshalb hier nicht näher darauf eingegangen wird.For carrying out the damping method according to the invention, it is provided that at least one actual rotational angle β ist of the load-
Die einzelnen Schritte des Dämpfungsverfahrens sind nachfolgend anhand von
Die benötigten Istgrößen, also insbesondere der Ist-Drehwinkel βist und gegebenenfalls zeitliche Ableitungen davon, können entweder direkt gemessen werden oder können, zumindest teilweise, auch in einem Beobachter geschätzt werden. Ein Vorteil der Verwendung von mittels eines Beobachters geschätzter Istgrößen, wie z.B. eines Ist-Drehwinkels βist, ist, dass dadurch ein etwaig vorhandenes und für die Dämpfungsregelung unerwünschtes Messrauschen von Messwerten einer Messeinrichtung 14 vermieden werden kann. Das ist der Hauptgrund, warum in einer bevorzugten Ausgestaltung nach
Es ist allerdings anzumerken, dass die Reglerstruktur für das erfindungsgemäße Dämpfungsverfahren sekundär ist und grundsätzlich jeder geeignete Regler verwendet werden könnte. Dem Dämpfungsregler 12 sind dann je nach Implementierung die benötigten Istgrößen als Messwerte oder Schätzwerte zuzuführen.It should be noted, however, that the controller structure for the damping method according to the invention is secondary and in principle any suitable controller could be used. Depending on the implementation, the required actual variables can then be supplied as measured values or estimated values to the damping
Der Dämpfungsregler 12 weist zumindest einen Reglerparameter auf, vorzugsweise fünf Reglerparameter. Mittels des bzw. der Reglerparameter kann die Charakteristik der Regelung eingestellt werden, also z.B. Ansprechverhalten, Dynamik, Überschwingen, Dämpfung, usw., wobei mittels eines Reglerparameters jeweils eine der Eigenschaften verstellt werden kann. Sollen mehrere Eigenschaften beeinflusst werden, ist eine entsprechende Anzahl von Reglerparameter erforderlich. Dadurch kann das Systemverhalten des geregelten Systems adaptiert werden.The damping
Für den Entwurf eines geeigneten Dämpfungsreglers 12 ist zuerst die Regelstrecke, also das zu regelnde technische System (z.B. wie in
Es sei angemerkt, dass dieses Drehschwingungsmodell nur beispielhaft zu verstehen ist und es könnten auch andere Drehschwingungsmodelle verwendet werden, die in der Lage sind die reale Drehschwingung abzubilden bzw. anzunähern.It should be noted that this torsional vibration model is to be understood as exemplary only and other torsional vibration models could be used which are able to approximate the real torsional vibration.
Die Modellparameter des Drehschwingungsmodells, also z.B. δ, ξ und iβ, können bekannt sein, sind aber in der Regel unbekannt. Daher können in einem ersten Schritt die Modellparameter mit einer Identifikationsmethode identifiziert werden. Solche Identifikationsmethoden sind hinlänglich bekannt, beispielsweise aus Isermann, R.Identifikation dynamischer Systeme, 2.Auflage, Springer-Verlag, 1992 oder Ljung, L.: System Identification: Theory for the User, 2.Auflage, Prentice Hall, 2009, weshalb hier nicht näher darauf eingegangen wird. Den Identifikationsmethoden gemein ist, dass das zu identifizierende System mit einer Eingangsfunktion (z.B. eine Sprungfunktion) angeregt wird und die Ausgangsgröße erfasst und mit einer Ausgangsgröße des Modells verglichen wird. Die Modellparameter werden dann variiert, um den Fehler zwischen der gemessenen Ausgangsgröße und der mit dem Modell berechneten Ausgangsgröße zu minimieren. Zur eventuell notwendigen Identifikation kann der Dämpfungsregler 12 verwendet werden, um das Lastaufnahmeelement 7 mit daran angeordneter Last 8 in einer bestimmten Hubhöhe IH zu einer Drehschwingung um die Z-Achse anzuregen. Zu diesem Zweck kann im Dämpfungsregler 12 ein eigener Anregungsregler implementiert sein, z.B. in Form eines Zweipunktreglers. Mit dem Zweipunktregler wird der zumindest eine Aktuator 11a, 11b, 11c, 11d beispielsweise in Abhängigkeit des Ist-Drehwinkels βist des Lastaufnahmeelements 7 mit der maximal möglichen Soll-Aktuatorgeschwindigkeit vsoll angesteuert. Das bedeutet, dass beispielsweise bei einem Drehwinkel βist ≥ 0° des Lastaufnahmeelements 7 der zumindest eine Aktuator 11a, 11b, 11c, 11d mit der maximal möglichen negativen Aktuatorgeschwindigkeit v angesteuert wird und bei einem Drehwinkel βist ≤ 0° des Lastaufnahmeelements 7 der zumindest eine Aktuator 11a, 11b, 11c, 11d mit der maximal möglichen positiven Aktuatorgeschwindigkeit v angesteuert wird. Im Falle einer Ausgestaltung der Hebeeinrichtung 1 gemäß
Mit den bekannten (vorab bekannten oder identifizierten) Modellparametern kann für das Drehschwingungsmodell nun ein Dämpfungsregler 12 entworfen werden. Hierfür wird eine geeignete Reglerstruktur gewählt, beispielsweise ein PID-Regler oder ein Zustandsregler. Jede Reglerstrukur hat natürlich eine Anzahl von Reglerparametern Kk, k≥1, die mittels eines Reglerentwurfverfahrens so eingestellt werden müssen, sodass sich ein gewünschtes Regelverhalten ergibt. Solche Reglerentwurfverfahren sind ebenfalls hinlänglich bekannt und werden deshalb nicht im Detail beschrieben. Beispielhaft seien das Frequenzkennlinienverfahren, das Wurzelortskurvenverfahren, der Reglerentwurf durch Polvorgabe und das Riccati-Verfahren genannt, wobei es natürlich noch eine Fülle weiterer Verfahren gibt. Für die gegenständliche Erfindung kommt es aber weder auf die konkrete Reglerstruktur noch auf das konkrete Reglerentwurfsverfahren an. Auch das gewünschte Regelverhalten kann, natürlich unter Berücksichtigung von Stabilitätskriterien und anderen Randbedingungen, für die Erfindung im Wesentlichen beliebig gewählt werden. Für die Erfindung wesentlich ist lediglich, dass die Reglerparameter abhängig von der Hubhöhe IH festgelegt werden. Auch das kann auf verschiedenste Weise erfolgen.With the known (previously known or identified) model parameters, a damping
Denkbar wäre, die Modellparameter für verschiedene Hubhöhen IH zu identifizieren und die Reglerparameter Kk dann jeweils für die verschiedenen Hubhöhen zu bestimmen. Auf diese Weise kann man sich Kennlinien der Reglerparameter Kk in Abhängigkeit von der Hubhöhe IH oder Kennfelder in Abhängigkeit von der Hubhöhe IH und anderen Größen, wie beispielsweise einem Massenträgheitsmoment Jβ, aufbauen. Das wäre natürlich sehr aufwendig und wenig praktikabel. Vorzugsweise werden daher die Reglerparameter Kk des Dämpfungsreglers 12 als formelmäßiger Zusammenhang als Funktion von zumindest der Hubhöhe IH, und gegebenenfalls anderer Modellparameter, angegeben, also beispielsweise Kk=f(IH) oder Kk=f(IH, ...). Damit müssen die Reglerparameter Kk nur für eine Hubhöhe IH festgelegt werden und können dann einfach auf andere Hubhöhen IH umgerechnet werden. Aus dem formelmäßigen Zusammenhang können aber offline ebenfalls die Reglerparameter Kk für verschiedene Hubhöhen IH berechnet werden und daraus eine Kennlinie oder ein Kennfeld erstellt werden, das dann in weitere Folge verwendet wird.It would be conceivable to identify the model parameters for different lifting heights I H and then to determine the controller parameters K k for the different lifting heights. In this way it is possible to build up characteristic curves of the controller parameters K k as a function of the lifting height I H or characteristic diagrams as a function of the lifting height I H and other variables, such as a moment of inertia J β . Of course that would be very costly and not very practical. Preferably, therefore, the controller parameters K k of the damping
Für die Dämpfungsregelung werden die Reglerparameter Kk in jedem Zeitschritt der Regelung, an die aktuelle Hubhöhe IH angepasst, beispielsweise durch Auslesen aus einem Kennfeld oder durch Berechnung. Der Dämpfungsregler 12 ermittelt dann mit den angepassten Reglerparameter Kk die Stellgröße, die mit dem zumindest einen Aktuator 11a, 11b, 11c, 11d im jeweiligen Zeitschritt eingestellt wird. Die Reglerparameter Kk werden so an die aktuelle Hubhöhe IH angepasst, um Drehschwingungen des Lastaufnahmeelements 7 in einer beliebigen Hubhöhe IH optimal dämpfen zu könnenFor the damping control, the controller parameters K k in each time step of the control, adapted to the current lifting height I H , for example by reading from a map or by calculation. The damping
Insbesondere im Fall einer Hebeeinrichtung 1 mit einem Lastaufnahmeelement 7 ist oftmals üblich für verschiedene Lasten 8, z.B. für Container verschiedener Größe, verschiedene Lastaufnahmeelemente 7 oder in der Größe anpassbare Lastaufnahmeelemente 7 zu verwenden. Das hätte natürlich unmittelbar Einfluss auf das Massenträgheitsmoment Jβ. Daher kann vorgesehen sein, die obige Prozedur für verschiedene Lastaufnahmeelemente 7 durchzuführen. Damit würde man für verschiedene Lastaufnahmeelemente 7 verschiedene Reglerparameter Kk erhalten.In particular, in the case of a
Das erfindungsgemäße Verfahren wird nachfolgend anhand eines konkreten Ausführungsbeispiels erläutert. Es wird von einem Drehschwingungsmodell in der Form
Als Zustände des Systems werden die Aktuatorposition s, der Drehwinkel β, die Winkelgeschwindigkeit und eine Abweichung eβ zwischen Soll-Drehwinkel βsoll und Ist-Drehwinkel βist verwendet. Die Reglerparameter Kk wurden als Funktion der Hubhöhe IH, die in den Modellparametern
Im Dämpfungsregler 12 werden dann in jedem Zeitschritt der Regelung die Reglerparameter des Zustandsreglers 13 anhand der aktuellen Hubhöhe IH berechnet und der Regelung zugrunde gelegt. Damit kann die Drehschwingung des Lastaufnahmeelements 7 wirkungsvoll während eines Hubvorganges gedämpft werden, weil sich der Dämpfungsregler 12 selbsttätig an die aktuelle Hubhöhe IH anpasst.In the damping
Als Stellgröße der Regelung kann der Dämpfungsregler 12 eine einzustellende Aktuatorposition ssoll oder eine Aktuatorgeschwindigkeit vsoll für den zumindest einen Aktuator 11a, 11b, 11c, 11d ermitteln und an einer Schnittstelle 16 ausgeben. Dazu erhält der Dämpfungsregler 12 über eine Schnittstelle 17 die benötigten Istgrößen, beispielsweise die Ist-Position sist des zumindest einen Aktuators 11a, 11b, 11c, 11d und den Ist-Drehwinkel βist des Lastaufnahmeelements 7. Die zeitliche Ableitung des Ist-Drehwinkel βist kann im Dämpfungsregler 12 ermittelt werden oder wird auch gemessen.As a manipulated variable of the control, the damping
Alternativ kann eine Zustandsschätzeinheit 20 (
Dem Dämpfungsregler 12 wird ein Soll-Drehwinkel βsoll des Lastaufnahmeelements 7 vorgegeben, der durch den Dämpfungsregler 12 eingeregelt wird. Normalerweise wird ein Soll-Drehwinkel βsoll=0 vorgegeben, womit Drehschwingungen um eine definierte Nullstellung ausgeregelt werden. Es kann aber auch ein davon abweichender Soll-Drehwinkel βsoll vorgegeben werden, womit das Lastaufnahmeelement 7 durch den Dämpfungsregler 12 und unabhängig von der Hebeeinrichtung 1 auf diesen Winkel geregelt wird und dabei auch Drehschwingungen um diesen Winkel gedämpft werden. Dadurch kann beispielsweise eine Last 8, wie z.B. ein Container 9, in einem vorgegebenen Winkelbereich verdreht werden und dadurch z.B. auch auf einer Ladefläche eines ungenau positionierten LKW's abgeladen werden. Hierfür ist keine zusätzliche Einrichtung zum Verdrehen des Lastaufnahmeelements 7 um die Hochachse erforderlich. Je nach Art und Ausführung der Hebeeinrichtung 1 und ihrer Komponenten kann dabei durch den Dämpfungsregler 12 ein Drehwinkel β des Lastaufnahmeelements 7 in einem Bereich von beispielsweise ±10° eingestellt werden.The damping
Gemäß einer vorteilhaften Ausführungsform der Erfindung wird im Dämpfungsregler (12) ein Anti-Wind-Up Schutz integriert, wobei dem Dämpfungsregler 12 Aktuatorbeschränkungen des zumindest einen Aktuators 11 vorgegeben werden, insbesondere eine maximal/minimal zulässige Aktuatorposition szul, eine maximal/minimal zulässige Aktuatorgeschwindigkeit vzul und eine maximal/minimal zulässige Aktuatorbeschleunigung azul des Aktuators 11. Durch diesen integrierten Anti-Wind-Up Schutz kann der Dämpfungsregler 12 an die Bauart des oder der verfügbaren Aktuatoren 11 der Hebeeinrichtung 1 angepasst werden. Zur Dämpfung der Drehschwingung des Lastaufnahmeelements 7 berechnet der Dämpfungsregler 12 wie beschrieben eine Stellgröße des zumindest einen Aktuators 11, beispielsweise die Soll-Aktuatorgeschwindigkeit vsoll. Überschreitet diese Soll-Aktuatorgeschwindigkeit vsoll eine maximal zulässige Aktuatorbeschränkung, z.B. die Aktuatorgeschwindigkeit vzul, wird die Soll-Aktuatorgeschwindigkeit vsoll auf diese maximal zulässige Aktuatorgeschwindigkeit vzul limitiert. Ohne Aktuatorbeschränkung bzw. Anti-Wind-Up Schutz könnte es z.B. vorkommen, dass der Dämpfungsregler 12 eine zu hohe Soll-Aktuatorgeschwindigkeit vsoll berechnet, der der zumindest eine Aktuator 11 aufgrund seiner Ausgestaltung nicht folgen könnte. Dies würde zu einem Regelfehler führen und der Dämpfungsregler 12, insbesondere der im Dämpfungsregler 12 integrierte Integrator, würde versuchen diesen Regelfehler zu kompensieren, indem die Stellgröße, beispielsweise die Soll-Aktuatorgeschwindigkeit vsoll, weiter erhöht werden würde. Dieses "Aufladen" des Dämpfungsreglers 12 bzw. insbesondere des im Dämpfungsregler integrierten Integrators könnte zu einer Destabilisierung des Dämpfungsreglers 12 führen, was durch den integrierten Anti-Wind-Up Schutz zuverlässig vermieden werden kann. Zusätzlich kann von der Soll-Aktuatorgeschwindigkeit vsoll auch auf eine Soll-Aktuatorbeschleunigung asoll gerechnet werden und diese mit einer maximal/minimal zulässigen Aktuatorbeschleunigung azul des entsprechenden Aktuators 11a, 11b, 11c, 11d verglichen werden. Wird diese maximal/minimal zulässige Aktuatorbeschleunigung azul überschritten, kann dies ebenfalls mit einer Limitierung der Soll-Aktuatorgeschwindigkeit vsoll berücksichtigt werden. Damit können unterschiedliche Ausführungsformen und Baugrößen von Aktuatoren 11a, 11b, 11c, 11d im Dämpfungsregler berücksichtigt werden, wodurch das Verfahren sehr flexibel auf unterschiedlichsten Hebeeinrichtungen 1 anwendbar ist.According to an advantageous embodiment of the invention, an anti-wind-up protection is integrated in the damping controller (12), the damping
Claims (12)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ATA50448/2017A AT520008B1 (en) | 2017-05-29 | 2017-05-29 | Method for damping torsional vibrations of a load-bearing element of a lifting device |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3409636A1 true EP3409636A1 (en) | 2018-12-05 |
EP3409636B1 EP3409636B1 (en) | 2020-07-08 |
Family
ID=62196449
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18172846.0A Active EP3409636B1 (en) | 2017-05-29 | 2018-05-17 | Method for damping torsional vibrations of a load-bearing element of a lifting device |
Country Status (9)
Country | Link |
---|---|
US (1) | US10676327B2 (en) |
EP (1) | EP3409636B1 (en) |
JP (1) | JP2019019001A (en) |
KR (1) | KR20180130461A (en) |
CN (1) | CN108928739B (en) |
AT (1) | AT520008B1 (en) |
BR (1) | BR102018010641A2 (en) |
CA (1) | CA3006453A1 (en) |
SG (1) | SG10201804565TA (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3453669A1 (en) * | 2017-09-08 | 2019-03-13 | Siemens Aktiengesellschaft | Control equipment for a hoisting gear and method for operating the same |
EP3653562A1 (en) * | 2018-11-19 | 2020-05-20 | B&R Industrial Automation GmbH | Method and oscillating regulator for regulating oscillations of an oscillatory technical system |
CZ2019387A3 (en) * | 2019-06-19 | 2020-02-26 | České vysoké učenà technické v Praze | A device for changing the dynamic stiffness of a gantry or overhung structure |
CN110342400B (en) * | 2019-06-25 | 2021-02-19 | 河南科技大学 | Bridge crane positioning anti-swing control method based on load energy coupling |
EP4017825A4 (en) * | 2019-08-23 | 2023-10-11 | Oceaneering International, Inc. | Motion arresting and dampening device |
DE102021117938A1 (en) | 2021-07-12 | 2023-01-12 | Amova Gmbh | Storage and retrieval device for a high-bay warehouse |
CN113536571B (en) * | 2021-07-16 | 2022-12-23 | 重庆大学 | Dynamics modeling method and system for mine multi-rope winding type hoist and storage medium |
US11608252B1 (en) * | 2022-02-15 | 2023-03-21 | Innovative Minds, LLC | Damper systems for suspended loads |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5769250A (en) * | 1995-08-30 | 1998-06-23 | Kci Konecranes International Corporation | Method and apparatus for controlling the loading element and load of a crane |
EP2878566A1 (en) * | 2013-11-28 | 2015-06-03 | Siemens Aktiengesellschaft | Method for influencing a movement of a load lifted by a crane |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT981544B (en) * | 1972-03-24 | 1974-10-10 | Krupp Gmbh | DEVICE FOR DAMPING OSCILLATIONS |
US4531647A (en) * | 1976-01-14 | 1985-07-30 | Hitachi, Ltd. | Device for stopping the swinging movement of a load hung by a crane |
JP2633830B2 (en) * | 1986-03-12 | 1997-07-23 | 株式会社日立製作所 | Attitude control device for hanging equipment |
US5819962A (en) * | 1993-03-05 | 1998-10-13 | Mitsubishi Jukogyo Kabushiki Kaisha | Apparatus for stopping the oscillation of hoisted cargo |
FI109990B (en) * | 2001-03-23 | 2002-11-15 | Kci Kone Cranes Int Oy | Arrangement for placement of a lifting crane driver |
DE10245868B4 (en) * | 2002-09-30 | 2019-10-10 | Siemens Aktiengesellschaft | Method and device for positioning a load |
FI117969B (en) * | 2004-09-01 | 2007-05-15 | Kalmar Ind Oy Ab | Plant and method for stopping a rotary pendulum movement of a container |
WO2007000256A1 (en) | 2005-06-28 | 2007-01-04 | Abb Ab | Load control device for a crane |
ES2401439T3 (en) * | 2006-08-29 | 2013-04-19 | Abb Ab | Load control device for a crane |
DE102010054502A1 (en) | 2010-12-14 | 2012-06-14 | Wolfgang Wichner | Method and device for positioning a hanging on a cable suspension of a crane crane load in the direction of rotation about its vertical axis |
-
2017
- 2017-05-29 AT ATA50448/2017A patent/AT520008B1/en not_active IP Right Cessation
-
2018
- 2018-05-17 EP EP18172846.0A patent/EP3409636B1/en active Active
- 2018-05-24 BR BR102018010641-4A patent/BR102018010641A2/en not_active Application Discontinuation
- 2018-05-25 JP JP2018100408A patent/JP2019019001A/en not_active Withdrawn
- 2018-05-25 US US15/990,052 patent/US10676327B2/en active Active
- 2018-05-29 CA CA3006453A patent/CA3006453A1/en not_active Abandoned
- 2018-05-29 KR KR1020180061009A patent/KR20180130461A/en not_active Application Discontinuation
- 2018-05-29 CN CN201810528132.XA patent/CN108928739B/en active Active
- 2018-05-30 SG SG10201804565TA patent/SG10201804565TA/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5769250A (en) * | 1995-08-30 | 1998-06-23 | Kci Konecranes International Corporation | Method and apparatus for controlling the loading element and load of a crane |
EP2878566A1 (en) * | 2013-11-28 | 2015-06-03 | Siemens Aktiengesellschaft | Method for influencing a movement of a load lifted by a crane |
Also Published As
Publication number | Publication date |
---|---|
BR102018010641A2 (en) | 2019-03-12 |
KR20180130461A (en) | 2018-12-07 |
SG10201804565TA (en) | 2018-12-28 |
EP3409636B1 (en) | 2020-07-08 |
US10676327B2 (en) | 2020-06-09 |
JP2019019001A (en) | 2019-02-07 |
CA3006453A1 (en) | 2018-11-29 |
US20180339888A1 (en) | 2018-11-29 |
AT520008B1 (en) | 2020-02-15 |
CN108928739A (en) | 2018-12-04 |
CN108928739B (en) | 2021-10-19 |
AT520008A1 (en) | 2018-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3409636B1 (en) | Method for damping torsional vibrations of a load-bearing element of a lifting device | |
EP3649072B1 (en) | Crane and method for controlling such a crane | |
EP3461783B1 (en) | Lifting device and method for controlling a lifting device | |
DE102018005068A1 (en) | Crane and method for controlling such a crane | |
EP1326798B1 (en) | Crane or digger for swinging a load hanging on a support cable with damping of load oscillations | |
EP2272784B1 (en) | Crane for covering a load suspended on a load rope | |
DE102012220036B4 (en) | MOVEMENT SYSTEM DESIGNED TO MOVE A USE LOAD INTO MORE DIRECTIONS | |
EP2272786B1 (en) | Crane control for controlling a crane's hoisting gear | |
EP3408208B1 (en) | Crane, and method for controlling such a crane | |
EP4013713B1 (en) | Crane and method for controlling such a crane | |
EP2878566B1 (en) | Method for influencing a movement of a load lifted by a crane | |
DE102014008094A1 (en) | Method for controlling the alignment of a crane load and a jib crane | |
DE19907989B4 (en) | Method for controlling the path of cranes and device for path-accurate method of a load | |
WO2004031065A2 (en) | Method and device for positioning a load | |
EP3653562A1 (en) | Method and oscillating regulator for regulating oscillations of an oscillatory technical system | |
DE102015100669A1 (en) | ANTI-PENDULUM CONTROL PROCEDURE WITH ADJUSTABLE SUPPORT FOR THE TRANSPORT OF AN ANCHORED LOAD | |
DE10029579B4 (en) | Method for orienting the load in crane installations | |
EP1834920B1 (en) | Method for automatic handling of a crane load with sway damping and path control | |
DE69432653T2 (en) | Control and control system for the speed of a moving, oscillating load and lifting device with such a system | |
EP3652104B1 (en) | Control equipment for a hoisting gear and method for operating the same | |
DE102005002192B4 (en) | Method for operating a crane installation, in particular a container crane, and crane installation, in particular a container crane | |
DE102021121818A1 (en) | Tower crane, method and control unit for operating a tower crane, trolley and trolley | |
EP4174013A1 (en) | Method for moving a load with a crane | |
EP4186848B1 (en) | Trajectory planning with flexible obstacle planning functionality | |
DE102019102453A1 (en) | Adjustable counterweight for a robot manipulator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20181212 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200107 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: CH Ref legal event code: NV Representative=s name: VALIPAT S.A. C/O BOVARD SA NEUCHATEL, CH Ref country code: AT Ref legal event code: REF Ref document number: 1288250 Country of ref document: AT Kind code of ref document: T Effective date: 20200715 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502018001831 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: FI Ref legal event code: FGE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: T2 Effective date: 20200708 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200708 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201009 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201008 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201109 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200708 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200708 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200708 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200708 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200708 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201108 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502018001831 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200708 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200708 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200708 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200708 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200708 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200708 |
|
26N | No opposition filed |
Effective date: 20210409 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200708 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FI Payment date: 20210401 Year of fee payment: 4 Ref country code: NO Payment date: 20210414 Year of fee payment: 4 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200708 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20210401 Year of fee payment: 4 Ref country code: CH Payment date: 20210408 Year of fee payment: 4 Ref country code: SE Payment date: 20210427 Year of fee payment: 4 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20210401 Year of fee payment: 4 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200708 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210517 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210517 |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: MMEP |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20220601 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20220531 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20220517 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220518 Ref country code: NO Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220531 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220531 Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220517 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220517 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220601 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200708 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230615 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20180517 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200708 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240502 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1288250 Country of ref document: AT Kind code of ref document: T Effective date: 20230517 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230517 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230517 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240404 Year of fee payment: 7 Ref country code: FR Payment date: 20240502 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200708 |