EP3474374B1 - Antenna system for circular polarised satellite radio signals on a vehicle - Google Patents
Antenna system for circular polarised satellite radio signals on a vehicle Download PDFInfo
- Publication number
- EP3474374B1 EP3474374B1 EP18201246.8A EP18201246A EP3474374B1 EP 3474374 B1 EP3474374 B1 EP 3474374B1 EP 18201246 A EP18201246 A EP 18201246A EP 3474374 B1 EP3474374 B1 EP 3474374B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- antenna
- director
- antenna arrangement
- accordance
- directors
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004020 conductor Substances 0.000 claims description 62
- 239000002184 metal Substances 0.000 claims description 42
- 238000005388 cross polarization Methods 0.000 claims description 21
- 230000008878 coupling Effects 0.000 claims description 10
- 238000010168 coupling process Methods 0.000 claims description 10
- 238000005859 coupling reaction Methods 0.000 claims description 10
- 230000008859 change Effects 0.000 claims description 5
- 230000001427 coherent effect Effects 0.000 claims description 3
- 230000006735 deficit Effects 0.000 claims description 3
- 230000006872 improvement Effects 0.000 claims description 3
- 230000001788 irregular Effects 0.000 claims 2
- 230000005855 radiation Effects 0.000 description 25
- 238000009434 installation Methods 0.000 description 19
- 238000005452 bending Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 11
- 230000000694 effects Effects 0.000 description 9
- 230000010287 polarization Effects 0.000 description 8
- 101710195281 Chlorophyll a-b binding protein Proteins 0.000 description 7
- 101710143415 Chlorophyll a-b binding protein 1, chloroplastic Proteins 0.000 description 7
- 101710181042 Chlorophyll a-b binding protein 1A, chloroplastic Proteins 0.000 description 7
- 101710091905 Chlorophyll a-b binding protein 2, chloroplastic Proteins 0.000 description 7
- 101710095244 Chlorophyll a-b binding protein 3, chloroplastic Proteins 0.000 description 7
- 101710127489 Chlorophyll a-b binding protein of LHCII type 1 Proteins 0.000 description 7
- 101710184917 Chlorophyll a-b binding protein of LHCII type I, chloroplastic Proteins 0.000 description 7
- 101710102593 Chlorophyll a-b binding protein, chloroplastic Proteins 0.000 description 7
- 230000001771 impaired effect Effects 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000000284 resting effect Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/27—Adaptation for use in or on movable bodies
- H01Q1/32—Adaptation for use in or on road or rail vehicles
- H01Q1/325—Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle
- H01Q1/3275—Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle mounted on a horizontal surface of the vehicle, e.g. on roof, hood, trunk
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/14—Reflecting surfaces; Equivalent structures
- H01Q15/147—Reflecting surfaces; Equivalent structures provided with means for controlling or monitoring the shape of the reflecting surface
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q19/00—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
- H01Q19/005—Patch antenna using one or more coplanar parasitic elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q19/00—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
- H01Q19/28—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using a secondary device in the form of two or more substantially straight conductive elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/24—Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
- H01Q21/26—Turnstile or like antennas comprising arrangements of three or more elongated elements disposed radially and symmetrically in a horizontal plane about a common centre
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
- H01Q9/0428—Substantially flat resonant element parallel to ground plane, e.g. patch antenna radiating a circular polarised wave
- H01Q9/0435—Substantially flat resonant element parallel to ground plane, e.g. patch antenna radiating a circular polarised wave using two feed points
Definitions
- the invention relates to an antenna arrangement for receiving circularly polarized satellite radio signals, in particular for satellite radio navigation.
- Satellite radio signals are usually transmitted with circularly polarized electromagnetic waves and are used for all known satellite navigation systems.
- Modern navigation systems provide, in particular for global accessibility in connection with high navigation accuracy in mobile navigation, to evaluate the radio signals received from several satellite navigation systems at the same time.
- GNSS Global Navigation Satellite System
- Satellite antennas for navigation on vehicles are usually on the electrically conductive outer skin of the Vehicle body built up.
- Circularly polarized satellite receiving antennas are used, such as those from the publications DE-A-10 2009 040 910 , DE-A-40 08 505 and DE-A-101 63 793 are known.
- Antennas which are particularly suitable for installation on vehicles are those which are characterized by a low overall height in connection with low-cost manufacturability. This includes, for example, those from the Pamphlet DE-A-10 2009 040 910 known circular, polygonal or square ring line antenna designed as a resonance structure with a small structural volume, which is particularly required for mobile applications.
- the antenna has a necessary conductive footprint of relatively small size and is very low with a height of less than one tenth of the free space wavelength.
- Patch antennas are known according to the prior art as further antennas for satellite navigation on vehicles, but these are less efficient in terms of reception at a low elevation angle.
- One of the challenges for satellite antennas for GNSS is the requirement for a large frequency bandwidth, which, for example, in GPS is through the frequency band L1 with the center frequency 1575 MHz (required bandwidth approx. 80 MHz) and the frequency band L2 with the center frequency 1227 MHz (required bandwidth approx. 53 MHz) is specified. This requirement is covered, for example, by separate antennas assigned to one of the two frequency bands L1 or L2, or by an antenna comprising both frequency bands.
- Prior art antennas of this type are known as patch antennas. However, these are less efficient in terms of reception at a low elevation angle. This disadvantage is partially remedied by ring line antennas, such as those in the DE-A-10 2009 040 910 are described. However, it is also desirable for such antennas to improve the cross-polarization distance, in particular in the area of low elevation angles.
- Satellite antennas are usually set up on horizontal surfaces of the electrically conductive outer skin of a vehicle.
- the immediate vicinity of the upper edge of the cutout of the rear window - that is, the rear edge of the roof - is often specified as a preferred location of such a satellite receiving antenna on the electrically conductive vehicle roof.
- the vehicle roof is curved and sloping towards the edge of the window, so that the satellite antenna is not set up on an azimuthally flat and completely horizontal conductive surface.
- This disturbance of the reception properties of the satellite antenna always arises in those cases in which the antenna is partially built in the vicinity of the edge area of the horizontal body surface.
- the US 2013/0500371 A1 discloses an antenna arrangement with a receiving antenna which is surrounded by a plurality of parasitic elements in the form of directors or reflectors, the latter being each provided with a plurality of switches in order to change the directional characteristic of the antenna.
- the EP 0 340 404 A2 discloses L-shaped parasitic elements for receiving circularly polarized waves.
- an antenna arrangement (1) for receiving circularly polarized satellite radio signals with free space wavelength ⁇ and frequency f comprises at least one circularly polarized satellite receiving antenna (2) positioned over an electrically conductive base surface (3), in particular for satellite navigation with a relative antenna height ha / ⁇ ⁇ 0.15, whose floor plan is a Circle K is inscribed around its phase center PZ with the relative antenna radius ra / ⁇ ⁇ 0.15.
- a director (4) which comprises a horizontal electrical conductor (5) with two conductor ends (11) which is guided over a director length Ld at a director height hd above the conductive base area (3), at least approximately a lateral surface Mz of a cylinder oriented perpendicular to the conductive base area with a cylinder radius rz and a central axis Z through the phase center PZ of the satellite receiving antenna (2), the horizontal electrical conductor (5) being angled at its two conductor ends (11) and from there as vertical conductor (6) runs towards the conductive base surface (3) and is connected to it in an electrically conductive manner.
- the director (4) can design the director length Ld, the director height hd and the vertical conductor (6) be matched in such a way that its natural resonance frequency is set in the frequency vicinity of the frequency f.
- the elongated horizontal electrical conductor 5 is either curved in a plan view, or is straight-lined in the manner of a secant, as it approaches the curved lateral surface Mz of the cylinder.
- the director length Ld is selected to be somewhat shorter than the resonance length, i.e. about 90% of half the free space wavelength ⁇ and the cylinder radius rz about 20% of the free space wavelength ⁇ .
- At least three directors 4 are arranged azimuthally uniformly around the satellite receiving antenna 2 and the cylinder radius rz is chosen to be no more than half a free space wavelength.
- the at least one director 4 for targeted non-uniform change in the horizontal directional characteristic in one Distance of not more than half a free space wavelength ⁇ from the phase center PZ is appropriately positioned azimuthally.
- an electrically conductive ground plate 3a resting on the electrically conductive outer skin of the vehicle as a mechanical support for the satellite receiving antenna 2 and the at least one director 4, on which the ground points are formed for the electrically effective connection of the director 4 to the conductive base area 3 are.
- the director 4 is designed in the form of a wire.
- the ground plate 3a is at least partially designed from an electrically conductive sheet metal surface, and the director 4 as sheet metal strip 21 is cut out of this sheet metal surface except for a connecting web 26 as a ground point 8 and bent out of the sheet metal surface by the bending angle 10 is.
- At least two directors 4 are arranged closely adjacent to one another along the cylinder jacket Mz and the adjacent conductor ends 11 of the elongated horizontal electrical conductors 5 are capacitively coupled to one another.
- the satellite receiving antenna 2 is completely surrounded in azimuthally symmetrical form by directors 4 that are adjacent to one another and capacitively coupled with one another with regard to their conductor ends 11.
- the directors 4 consist of electrically conductive sheet metal and are each angularly shaped and bent at the conductor ends 11 of the elongated electrical conductor 5 in such a way that a sheet metal flag 12 is formed in each case and by the flag surfaces that are parallel to one another neighboring directors 4 the capacitive coupling is effected.
- the directors 4 arranged in a ring are combined to form a mechanically coherent ring made of sheet metal, the connection of the directors 4 to one another being provided via, in particular, short connecting webs 26, which are placed on the ground plate 3a and electrically connected to it at the ground points 8 are conductively connected.
- the satellite receiving antenna 2 consists of a circularly polarized loop antenna 13 with a relative height ha / ⁇ 0.1 and its vertical projection is inscribed in a circle with the relative antenna radius ra / ⁇ ⁇ 0.13 around its phase center PZ and the relative director length Ld / ⁇ ⁇ 0.3 and the relative director height hd / ⁇ ⁇ 0.07 and the relative cylinder radius are selected in the range rz / ⁇ ⁇ 0.2.
- the satellite receiving antenna 2 is formed as a circularly polarized patch antenna 14.
- An antenna arrangement 1 according to the invention has the advantage that when using a predetermined satellite receiving antenna 2 suitable for receiving the positioning satellites but not specified in more detail, the radiation properties can be improved in a targeted manner by the design and placement of the directors 4 according to the invention with regard to gain and cross-polarization suppression .
- a particular advantage of the invention is also that it makes it possible, in the case of an azimuthally non-uniform environment of the antenna arrangement 1, to remedy the disruption of its omnidirectional radiation pattern with regard to gain and cross-polarization distance caused thereby.
- an antenna arrangement 1 Another advantage of an antenna arrangement 1 according to the invention is that the directors 4 can be manufactured and attached particularly easily, which also enables them to be implemented using simple bent sheet-metal or wire structures.
- This has a relative antenna height ha / ⁇ ⁇ 0.15 and is inscribed with its vertical projection in a circle K with the relative antenna radius ra / ⁇ ⁇ 0.15 around its phase center PZ.
- At least one director 4 which is formed from a substantially elongated horizontal electrical conductor 5 and which over the director length Ld below the director height hd above the conductive base 3 approximately along the lateral surface of a vertically oriented cylinder with a cylinder radius rz and a central axis Z is passed through the phase center PZ of the satellite antenna 2.
- the horizontal electrical conductor 5 is kinked at both ends of the length L and runs as a vertical conductor 6 towards the conductive base surface 3 and is conductively connected to it.
- the relative director length Ld is selected in the range 0.2 ⁇ Ld / ⁇ ⁇ 0.4.
- the relative director height hd is selected in the range 0.03 ⁇ hd / ⁇ ⁇ 0.15.
- the relative cylinder radius is selected in the range 0.15 ⁇ rz / ⁇ ⁇ 0.4.
- the invention is based on a circularly polarized satellite receiving antenna 2 located above an electrically conductive base area 3, the relative antenna height ha / ⁇ of which, based on the free space wavelength ⁇ , is less than 0.15.
- This extremely small height ha of the antenna is associated with the problematic property that its radiation gain decreases very quickly towards smaller elevation angles. This is also associated with an increased decrease in the cross-polarization distance.
- This effect can be mitigated by the presence of the directors 4 to such an extent that a satellite receiving antenna 2 with the specified structural volume on the electrically conductive outer skin of a vehicle 7 can also be used for qualified location determination with the aid of satellite navigation.
- satellite reception signals are to be evaluated for the navigation, which are incident at the low elevation angle of 20 ° up to an elevation angle of 5 °.
- the extremely strong drop in antenna gain at such low elevation angles for the desired polarization direction of such a low one Satellite receiving antenna 2 over a conductive base 3 is based on the weakness of the horizontal component of its electric radiation field. According to the invention, this weakness is alleviated by the use of the directors 4 around the satellite receiving antenna 2 and the antenna gain is increased for low elevation angles.
- the directors form an arch or a (U-shaped) gate in relation to the base area (cf. Fig. 1 ), which consists of the vertical conductor 5 and the two vertical conductors 6.
- the mode of operation of the directors 4 can be checked for plausibility on the basis of the spatial representation of the antenna arrangement 1 according to the invention in FIG Fig. 1 and their top view in the Figures 1a and 2 explain approximately.
- the azimuthally almost complete encompassing of the satellite receiving antenna 2 with directors 4 leads to the desired increase in the antenna gain in the case of omnidirectional radiation.
- the satellite receiving antenna 2 designed for circular polarization excites the electrical conductors of the directors 4 with the currents flowing on it.
- the conductor ends 11 of the horizontal electrical conductors 5 are each connected to a ground point 8 with the conductive base 3 via the vertical conductors 6.
- secondary currents are formed on the electrically excited director 4 and in particular also on the horizontal electrical conductor 5, which, with a suitable choice of the director length in the range 0.2 ⁇ Ld / ⁇ ⁇ 0.45, the director height in the range 0.03 ⁇ hd / ⁇ ⁇ 0.15 and the cylinder radius in the range 0.15 ⁇ rz / ⁇ ⁇ 0.5, which determines the distance between the directors 4 and the center Z of the antenna arrangement 1, generate a radiation field. This is superimposed on the radiation field of the satellite receiving antenna 2 in such a way that the desired increase in the antenna gain occurs, in particular for low elevation angles.
- the small selected deviation of the satellite frequency f from the natural resonance frequency of the director 4 is the reason for the associated increase in the currents on the director 4 and, in combination with the appropriately set cylinder radius rz, the resulting, in relation on the phase position constructive superposition of the director radiation field with the radiation field of the satellite receiving antenna 2 in the sense of the task to be solved.
- the horizontal electrical conductors 5 above the electrically conductive base 3 below the director height hd each form an electrical line terminated at both conductor ends 11 via the vertical conductor 6 with the characteristic impedance ZL, the size of which depends on the conductor width 27 or the sheet metal strip width 21 and the conductor spacing 28 of the horizontal electrical conductor 5 is given by the conductive base 3.
- the wave impedance ZL can be varied within wide limits.
- a fine adjustment of the distance rz of the director 4 from the center Z as well as the choice of a suitable wave impedance ZL and the self-inductance of the vertical conductors 6 enables the optimization of the radiation pattern of the antenna arrangement 1 in terms of the object of the invention.
- the ground plate 3a resting on the outer skin of the vehicle 7 is designed as a mechanical support for the satellite receiving antenna 2 and the directors 4 and is made of sheet metal.
- a particular advantage here is the possibility, according to the invention, of cutting the directors 4 from the sheet metal and bending them out by the bending angle 10. The cutting and bending processes required for this can be carried out extremely inexpensively in mass production with very good reproducibility.
- the non-uniform change in the horizontal directional characteristic can be counteracted with a specifically positioned director 4.
- This measure according to the invention is particularly helpful when choosing the preferred installation spaces Br1, Br2, and Br6 on the vehicle roof 16, in which due to the abrupt breaking off of the conductive base surface 3 on the rear roof edge 18 at the upper edge of the rear window 15 and the curvature that is often present there of the vehicle roof 16, the radiation pattern of a satellite receiving antenna 2 is generally severely impaired.
- the installation spaces are more compact and the radiation characteristics are impaired by electromagnetic coupling.
- the satellite receiving antenna 2 for GNSS is attached in an arrangement according to the invention with two opposing directors 4 on the installation space Br2 and the satellite receiving antenna 23 for radio reception at approximately 2.3 GHz on the installation space Br6. Both antennas are designed as ring line antennas 13 in the example. It is shown to be very advantageous here that the strict requirements for the radiation characteristics of the satellite broadcast receiving antenna 23 are not impaired by the presence of the directors 4 according to the invention.
- the secondary currents which the satellite broadcast antenna 23 causes on the directors 4 are sufficiently small that their effect on the radiation characteristics of the satellite broadcast antenna 23 is negligible. This effect is pronounced in such a way that the disturbance of the radiation properties of the satellite broadcast antenna 23 in Fig. 11 is small even when the satellite receiving antenna 2 for GNSS is completely surrounded by directors 4.
- These secondary currents generate different voltages on the inductive effects of the adjacent vertical electrical conductors 6, the difference being via the capacitive Coupling produces the desired effect of improving the cross polarization distance.
- the directors 4 are cut out of the sheet-like ground plate 3a except for the short connecting webs 26 and bent out of the sheet-metal ground plate 3a along the bending line 24, the bending angle 10 being selected to be 90 °.
- the conductor ends 11 of the elongated electrical conductor 5 are shaped flat and angular in such a way that a sheet metal lug 12 is formed in each case.
- the sheet metal lugs 12 are bent radially outward - in relation to the center Z - in such a way that the surfaces of two adjacent sheet metal lugs 12 are aligned essentially parallel to one another and thus the increased capacitive coupling is achieved.
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Aerials With Secondary Devices (AREA)
- Details Of Aerials (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Waveguide Aerials (AREA)
Description
Die Erfindung betrifft eine Antennenanordnung für den Empfang zirkular polarisierter Satellitenfunksignale, insbesondere für die Satellitenfunk-Navigation.The invention relates to an antenna arrangement for receiving circularly polarized satellite radio signals, in particular for satellite radio navigation.
Insbesondere bei Satelliten-Navigationssystemen kommt es besonders auf die Wirtschaftlichkeit sowohl bezüglich der vom Satelliten abgestrahlten Sendeleistung als auch auf die Effizienz der Empfangsantenne an. Satellitenfunksignale werden aufgrund von Polarisationsdrehungen auf dem Übertragungsweg in der Regel mit zirkular polarisierten elektromagnetischen Wellen übertragen und werden für alle bekannten Satelliten-Navigationssystemen angewandt. Moderne Navigationssysteme sehen insbesondere für die globale Erreichbarkeit in Verbindung mit einer hohen Navigationsgenauigkeit bei der mobilen Navigation vor, die gleichzeitig empfangenen Funksignale mehrerer Satelliten-Navigationssysteme auszuwerten. Solche im Verbund empfangenden Systeme sind unter dem Begriff GNSS (Global Navigation Satellite System) zusammengefasst und beinhalten bekannte Systeme, wie zum Beispiel GPS, GLONASS, Galileo und Beidou etc. Satellitenantennen für die Navigation auf Fahrzeugen werden in der Regel auf der elektrisch leitenden Außenhaut der Fahrzeugkarosserie aufgebaut. Es kommen zirkular polarisierte Satelliten-Empfangsantennen zur Anwendung, wie sie zum Beispiel aus den Druckschriften
Andererseits ist die Realisierung einer Satelliten-Navigationsantenne technisch schwierig, welche bei einer Mittenfrequenz von etwa 1385 MHz beide Frequenzbänder mit einer Bandbreite von ca. 360 MHz überdeckt und zusätzlich die zum Teil strengen Anforderungen an den Kreuzpolarisationsabstand und an den Antennengewinn in Bereichen niedriger Elevationswinkel erfüllt.On the other hand, the realization of a satellite navigation antenna is technically difficult, which with a center frequency of about 1385 MHz covers both frequency bands with a bandwidth of about 360 MHz and also meets the sometimes strict requirements for the cross-polarization distance and the antenna gain in areas of low elevation angles.
Für die Anwendung auf Fahrzeugen eignen sich - wie bereits erwähnt - insbesondere Satellitenempfangsantennen mit kleinem Bauvolumen. Antennen dieser Art nach dem Stand der Technik sind als Patch-Antennen bekannt. Diese sind jedoch bezüglich des Empfangs unter niedrigem Elevationswinkel weniger leistungsfähig. Dieser Nachteil wird zum Teil behoben durch Ringleitungsantennen, wie sie zum Beispiel in der
Eine für die Anwendung auf Fahrzeugen spezifische Anforderung an die Gestaltung des Antennensystems ergibt sich vielfach auch aus der Beschränkung des verfügbaren Bauraums, welcher häufig durch eine azimutal ungleichförmige Umgebung der Satelliten-Navigationsantenne gekennzeichnet ist. Satellitenantennen werden in der Regel auf horizontalen Flächen der elektrisch leitenden Außenhaut eines Fahrzeugs aufgebaut. Als ein fahrzeugtechnisch bevorzugter Anbringungsort einer derartigen Satellitenempfangsantenne auf dem elektrisch leitenden Fahrzeugdach wird zum Beispiel die unmittelbare Nachbarschaft zum oberen Rand des Ausschnitts des Heckfensterscheibe - also die hintere Dachkante - häufig vorgegeben. In vielen Fällen ist das Fahrzeugdach zum Fensterrand hin gekrümmt und abfallend gestaltet, so dass die Satellitenantenne nicht auf einer azimutal ebenen und vollkommen horizontalen leitenden Grundfläche aufgebaut ist. Dies wirkt sich nachteilig sowohl auf das azimutale Runddiagramm wie auch in besonderem Maße azimutal richtungsabhängig auf den Kreuzpolarisationsabstand und den Gewinn insbesondere bei niedrigen Elevationswinkeln aus. Diese Störung der Empfangseigenschaften der Satellitenantenne ergibt sich stets in den Fällen, in denen die Antenne teilweise in der Nähe des Randbereichs der horizontalen Karosseriefläche aufgebaut ist.A specific requirement for the design of the antenna system for use on vehicles often results from the limitation of the available installation space, which is often characterized by an azimuthally non-uniform environment of the satellite navigation antenna. Satellite antennas are usually set up on horizontal surfaces of the electrically conductive outer skin of a vehicle. For example, the immediate vicinity of the upper edge of the cutout of the rear window - that is, the rear edge of the roof - is often specified as a preferred location of such a satellite receiving antenna on the electrically conductive vehicle roof. In many cases, the vehicle roof is curved and sloping towards the edge of the window, so that the satellite antenna is not set up on an azimuthally flat and completely horizontal conductive surface. This has a disadvantageous effect both on the azimuthal circular diagram and, in particular, on the azimuthal direction-dependently on the cross-polarization distance and the gain, in particular at low elevation angles. This disturbance of the reception properties of the satellite antenna always arises in those cases in which the antenna is partially built in the vicinity of the edge area of the horizontal body surface.
Die
Die
In der
Es ist die Aufgabe der Erfindung, eine Antennenanordnung mit niedriger Bauhöhe auf einem Fahrzeug für zirkular polarisierte Satellitenfunksignale anzugeben, welche bei ausreichendem Gewinn bei niedrigen Elevationswinkeln der Strahlungscharakteristik einen hohen Kreuzpolarisationsabstand aufweist.It is the object of the invention to specify an antenna arrangement with a low overall height on a vehicle for circularly polarized satellite radio signals which, with sufficient gain at low elevation angles of the radiation pattern, has a high cross-polarization spacing.
Diese Aufgabe wird durch die Merkmale des Patentanspruchs 1 gelöst.This object is achieved by the features of
Erfindungsgemäß umfasst eine Antennenanordnung (1) für den Empfang zirkular polarisierter Satellitenfunksignale mit der Freiraumwellenlänge λ und der Frequenz f, wenigstens eine über einer elektrisch leitenden Grundfläche (3) positionierte, zirkular polarisierte Satellitenempfangsantenne (2), insbesondere für die Satellitennavigation mit einer relativen Antennenhöhe ha/λ < 0.15, deren Grundriss einem Kreis K um ihr Phasenzentrum PZ mit dem relativen Antennenradius ra/λ < 0,15 einbeschrieben ist. Es ist ferner ein Direktor (4) vorhanden, der einen horizontalen elektrischen Leiter (5) mit zwei Leiterenden (11) umfasst, welcher über eine Direktorlänge Ld in einer Direktorhöhe hd über der leitenden Grundfläche (3) geführt ist, und zwar zumindest angenähert an eine Mantelfläche Mz eines zur leitenden Grundfläche senkrecht orientierten Zylinders mit einem Zylinderradius rz und einer zentralen Achse Z durch das Phasenzentrum PZ der Satellitenempfangsantenne (2), wobei der horizontale elektrische Leiter (5) an seinen beiden Leiterenden (11) abgewinkelt ist und von dort als vertikaler Leiter (6) jeweils zur leitenden Grundfläche (3) hin verläuft und mit dieser elektrisch leitend verbunden ist. Der Direktor (4) kann durch Gestaltung der Direktorlänge Ld, der Direktorhöhe hd und der vertikalen Leiter (6) in der Weise abgestimmt sein, dass seine Eigenresonanzfrequenz in der Frequenznähe der Frequenz f eingestellt ist.According to the invention, an antenna arrangement (1) for receiving circularly polarized satellite radio signals with free space wavelength λ and frequency f comprises at least one circularly polarized satellite receiving antenna (2) positioned over an electrically conductive base surface (3), in particular for satellite navigation with a relative antenna height ha / λ <0.15, whose floor plan is a Circle K is inscribed around its phase center PZ with the relative antenna radius ra / λ <0.15. There is also a director (4) which comprises a horizontal electrical conductor (5) with two conductor ends (11) which is guided over a director length Ld at a director height hd above the conductive base area (3), at least approximately a lateral surface Mz of a cylinder oriented perpendicular to the conductive base area with a cylinder radius rz and a central axis Z through the phase center PZ of the satellite receiving antenna (2), the horizontal electrical conductor (5) being angled at its two conductor ends (11) and from there as vertical conductor (6) runs towards the conductive base surface (3) and is connected to it in an electrically conductive manner. The director (4) can design the director length Ld, the director height hd and the vertical conductor (6) be matched in such a way that its natural resonance frequency is set in the frequency vicinity of the frequency f.
Vorteilhafte Ausführungsformen können wie folgt gestaltet sein:
- Es kann sein, dass
- die relative Direktorlänge im
0,2 < Ld /λ < 0,4 gewählt istBereich - die relative Direktorhöhe im
Bereich 0,03 < hd /λ < 0,15 gewählt ist - der relative Zylinderradius im
0,15 < rz/λ < 0,5 gewählt ist.Bereich
- It may be that
- the relative director length is selected in the range 0.2 <Ld / λ <0.4
- the relative director height is selected in the range 0.03 <hd / λ <0.15
- the relative cylinder radius is selected in the range 0.15 <rz / λ <0.5.
Es kann sein, dass der längsgestreckte horizontale elektrische Leiter 5 in Annäherung an die gekrümmte Mantelfläche Mz des Zylinders in Draufsicht entweder gekrümmt oder aber sekantenartig geradlinig gestaltet ist.It may be that the elongated horizontal
Es kann sein, dass die Direktorlänge Ld etwas kürzer als die Resonanzlänge, also etwa unter 90 % der halben Freiraumwellenlänge λ und der Zylinderradius rz etwa 20% der Freiraumwellenlänge λ gewählt sind.It may be that the director length Ld is selected to be somewhat shorter than the resonance length, i.e. about 90% of half the free space wavelength λ and the cylinder radius rz about 20% of the free space wavelength λ.
Es kann sein, dass zur Verkleinerung der Kreuzpolarisation bei niedrigen Elevationswinkeln über den gesamten Azimut-Winkelbereich mindestens drei Direktoren 4 azimutal gleichförmig um die Satellitenempfangsantenne 2 angeordnet sind und der Zylinderradius rz nicht mehr als eine halbe Freiraumwellenlänge gewählt ist.To reduce the cross polarization at low elevation angles over the entire azimuth angle range, at least three
Es kann sein, dass zur Kompensation einer durch azimutal sektoral ungleichförmige Umgebung verursachten Beeinträchtigung des azimutalen Richtdiagramms sowie des Kreuzpolarisationsabstands insbesondere bei Elevationswinkeln um 30° der mindestens eine Direktor 4 zur gezielten ungleichförmigen Veränderung der horizontalen Richtcharakteristik in einem Abstand von nicht mehr als einer halben Freiraumwellenlänge λ vom Phasenzentrum PZ entfernt azimutal entsprechend positioniert ist.It may be that to compensate for an impairment of the azimuthal directional diagram and the cross-polarization distance caused by the azimuthal sectorally non-uniform environment, in particular at elevation angles around 30 °, the at least one
Es kann sein, dass eine auf der elektrisch leitenden Außenhaut des Fahrzeugs aufliegende elektrisch leitende Masseplatte 3a als mechanischer Träger der Satellitenempfangsantenne 2 und des mindestens einen Direktors 4 vorhanden ist, auf welcher die Massepunkte zum elektrisch wirksamen Anschluss des Direktors 4 an die leitende Grundfläche 3 gebildet sind.It may be that there is an electrically
Es kann sein, dass der Direktor 4 drahtförmig ausgebildet ist.It may be that the
Es kann sein, dass die Masseplatte 3a zumindest teilweise aus einer elektrisch leitenden Blechfläche gestaltet ist, und der Direktor 4 als Blech-streifen 21 aus dieser Blechfläche bis auf einen Verbindungssteg 26 als Masse-punkt 8 ausgeschnitten und aus der Blechfläche um den Ausbiegewinkel 10 ausgebogen ist.It may be that the
Es kann sein, dass zur azimutal sektoralen Anhebung des Antennengewinns für niedrige Elevationswinkel mindestens zwei Direktoren 4 zueinander dicht benachbart entlang dem Zylindermantel Mz angeordnet sind und die zueinander benachbarten Leiterenden 11 der längsgestreckten horizontalen elektrischen Leiter 5 kapazitiv miteinander verkoppelt sind.It may be that for azimuthal sectoral increase of the antenna gain for low elevation angles at least two
Es kann sein, dass zur azimutal unabhängigen Anhebung des Antennengewinns und zur weiteren Verbesserung des Kreuzpolarisationsabstands die Satellitenempfangsantenne 2 in azimutal symmetrischer Form vollständig von zueinander benachbarten und bezüglich ihrer Leiterenden 11 kapazitiv miteinander verkoppelten Direktoren 4 umfangen ist.It may be that for azimuthally independent increase of the antenna gain and to further improve the cross-polarization distance, the
Es kann sein, dass die Direktoren 4 aus elektrisch leitendem Blech bestehen und jeweils an den Leiterenden 11 des längsgestreckten elektrischen Leiters 5 in der Weise eckig ausgeformt und gebogen sind, dass jeweils eine Blechfahne 12 gebildet ist und durch die parallel zueinander stehenden Fahnenflächen der jeweils zueinander benachbarten Direktoren 4 die kapazitive Kopplung bewirkt ist.It may be that the
Es kann sein, dass die ringförmig angeordneten Direktoren 4 zusammenhängend zu einem mechanisch zusammenhängenden Ring aus Blech zusammengefasst sind, wobei die Verbindung der Direktoren 4 miteinander über insbesondere kurze Verbindungsstege 26 gegeben ist, welche auf der Masseplatte 3a aufgesetzt und mit dieser an den Massepunkten 8 elektrisch leitend verbunden sind.It is possible that the
Es kann sein, dass die Satellitenempfangsantenne 2 in einer zirkular polarisierten Ringleitungsantenne 13 mit einer relativen Höhe ha/λ ∼ 0,1 besteht und ihre vertikale Projektion einem Kreis mit dem relativen Antennenradius ra/λ ∼ 0,13 um ihr Phasenzentrum PZ einbeschrieben ist und
die relative Direktorlänge Ld /λ ∼ 0,3 sowie
die relative Direktorhöhe hd /λ ∼ 0,07 und
der relative Zylinderradius im Bereich rz/λ ∼ 0,2 gewählt sind.It may be that the
the relative director length Ld / λ ∼ 0.3 and
the relative director height hd / λ ∼ 0.07 and
the relative cylinder radius are selected in the range rz / λ ∼ 0.2.
Es kann sein, dass die Satellitenempfangsantenne 2 als zirkular polarisierte Patchantenne 14 gebildet ist.It may be that the
Mit einer Antennenanordnung 1 nach der Erfindung ist der Vorteil verbunden, dass bei Einsatz einer vorgegebenen, für den Empfang der Ortungssatelliten geeigneten, jedoch nicht näher spezifizierten Satellitenempfangsantenne 2 die Strahlungseigenschaften durch die erfindungsgemäße Gestaltung und Platzierung der Direktoren 4 bezüglich Gewinn und Kreuzpolarisationsunterdrückung gezielt verbessert werden können.An
Ein besonderer Vorteil der Erfindung besteht auch darin, dass sie es ermöglicht, bei azimutal ungleichförmiger Umgebung der Antennenanordnung 1 die dadurch bewirkte Störung ihrer omnidirektionalen Strahlungscharakteristik in Bezug auf Gewinn und Kreuzpolarisationsabstand zu beheben.A particular advantage of the invention is also that it makes it possible, in the case of an azimuthally non-uniform environment of the
Ein weiterer Vorteil einer Antennenanordnung 1 nach der Erfindung ist die besonders einfache Herstellbarkeit und Anbringungsmöglichkeit der Direktoren 4, welche die Realisierung auch durch einfache gebogene Blech- oder Drahtstrukturen ermöglicht.Another advantage of an
Gemäß der Erfindung umfasst eine Antennenanordnung 1 für den Empfang zirkular polarisierter Satellitenfunksignale der Freiraumwellenlänge λ mit wenigstens einer über einer im Wesentlichen horizontal orientierten, als elektrisch leitende Grundfläche 3 dienende Außenhaut eines Fahrzeugs 7 angeordneten zirkular polarisierten Satellitenempfangsantenne 2 mit Phasenzentrum PZ. Diese besitzt eine relative Antennenhöhe ha/λ< 0.15 und ist mit ihrer vertikalen Projektion einem Kreis K mit dem relativen Antennenradius ra/λ < 0.15 um ihr Phasenzentrum PZ einbeschrieben. Es ist mindestens ein Direktor 4 vorhanden, welcher aus einem im Wesentlichen längsgestreckten horizontalen elektrischen Leiter 5 gebildet ist und welcher über die Direktorlänge Ld unter der Direktorhöhe hd über der leitenden Grundfläche 3 im annähernd entlang der Mantelfläche eines senkrecht orientierten Zylinders mit Zylinderradius rz und zentraler Achse Z durch das Phasenzentrum PZ der Satellitenantenne 2 geführt ist. Der horizontale elektrische Leiter 5 ist an beiden Enden der Länge L abgeknickt und verläuft als vertikaler Leiter 6 jeweils zur leitenden Grundfläche 3 hin und ist mit dieser leitend verbunden. Die relative Direktorlänge Ld ist im Bereich 0,2 < Ld/λ < 0,4 gewählt. Die relative Direktorhöhe hd ist im Bereich 0,03 < hd/λ < 0,15 gewählt. Der relative Zylinderradius ist im Bereich 0,15 < rz/λ < 0,4 gewählt.According to the invention, an
Die Erfindung wird im Folgenden anhand von Ausführungsbeispielen näher erläutert. Die zugehörigen Figuren zeigen im Einzelnen:
-
Fig. 1 :
RäumlicheDarstellung einer Antennenanordnung 1 nach der Erfindung mit elektrisch kleiner Satellitenempfangsantenne 2 mit Phasenzentrum PZ im Zentrum Z auf der Außenhaut eines Fahrzeugs 7 als elektrisch leitende Grundfläche 3, azimutal umgebenvon erfindungsgemäßen Direktoren 4. Diese bestehen beispielhaft jeweils aus einem geradlinigen horizontalen elektrischenLeiter 5 der Länge Ld, welcher unter einer Höhe hd geführt ist und welcher sich an seinen beiden Enden jeweils mit einem zur leitenden Grundfläche 3 hin führenden vertikalenLeiter 6 fortsetzt, dessen unteres Ende über einen Massepunkt 8 mit der leitenden Grundfläche 3 leitend verbunden ist.Die horizontalen Leiter 5 sind geradlinig annähernd entlang der Mantelfläche Mz eines senkrecht orientierten Zylinders mit Zylinderradius rz geführt. Dieelektrisch kleine Satellitenempfangsantenne 2 ist einem Bauraum der Höhe ha und dem Kreis K mit dem Antennenradius ra um ihr Zentrum Z einbeschrieben. -
Fig.1a
Draufsicht auf eine Antennenanordnung 1 nach der Erfindung, wie inFig. 1a , zur Darstellung der Anordnung der inDraufsicht gekrümmten Direktoren 4 mit jeweils einem entlang der Mantelfläche Mz unter der Höhe hd gekrümmt verlaufenden horizontalenLeiter 5 als Segment einer kreisförmigen Höhenlinie der Mantelfläche Mz des senkrecht orientierten Zylinders mit dem Zylinderradius rz. -
Fig. 2 :
Draufsicht auf eine Antennenanordnung 1 nach der Erfindung, wie inFig. 1 , zur Darstellung der Anordnung der Direktoren 4 mit jeweils einem unter der Höhe hd geradlinig verlaufenden horizontalenLeiter 5 im Wesentlichen als Sekante einer kreisförmigen Höhenlinie der Mantelfläche Mz des senkrecht orientierten Zylinders mit Zylinderradius rz. -
Fig. 3 :
Gegenüberstellung des vertikalen Richtdiagramms inFig. 3a einerSatellitenempfangsantenne 2 und des vertikalen Richtdiagramms inFig. 3b derselben Satellitenempfangsantenne 2 ineiner Antennenanordnung 1 nach der Erfindung jeweils für die gewünschte zirkulare Polarisationsrichtung RHCP und die Kreuzpolarisationsrichtung LHCP jeweils mit Kennzeichnung der Einfallsrichtung unterdem Elevationswinkel von 20° (Zenitwinkel 70°) unddem Elevationswinkel von 5° (Zenitwinkel 85°).
Es ergeben sich bei Bandmitte im Band L1 (f = 1.565 MHz):
Antennengewinn unter Elevationswinkel 20°: RHCP Fall a) 0dB, Fall b) 2dBAntennengewinn unter Elevationswinkel 20°: LHCP Fall a) -8dB, Fall b) -1.5dBAntennengewinn unter Elevationswinkel 5°: RHCP Fall a) -4dB, Fall b) 0dBAntennengewinn unter Elevationswinkel 5°: LHCP Fall a) -5,2dB, Fall b) -0,5dB Resultat: Der RHCP-Antennengewinn der Antennenanordnung 1 nach der Erfindung übertrifft den Antennengewinn der Einzelantenne um 4dB bei einemElevationswinkel von 5° und um ca. 2 dB bei einemElevationswinkel von 20°. -
Fig. 4 :
Vergleich der Azimutaldiagramme in Entsprechung der vertikalen Richtdiagramme inFig. 3 in Frequenzbandmitte von L1 (f = 1.565MHz).
Elevationswinkel = 20°.
a) Satellitenempfangsantenne 2 b)Antennenanordnung 1 nach der Erfindung. Resultat:mit der Antennenanordnung 1 nach der Erfindung wird bei einemElevationswinkel von 20° eine deutliche Erhöhung um ca. 2dB erzielt. -
Fig. 5 :
Vergleich der vertikalen Richtdiagramme wie inFig. 3 , jedoch bei Bandmitte im Band L2 (f= 1.225 MHz):
a) Satellitenempfangsantenne 2 b)Antennenanordnung 1 nach der Erfindung Resultat: Der RHCP-Antennengewinn der Antennenanordnung 1 nach der Erfindung übertrifft den Antennengewinnder Einzelantenne um 1,5dB bei einemElevationswinkel von 5° und um ca. 0,7dB bei einemElevationswinkel von 20°. -
Fig. 6 :
Vergleich der Azimutaldiagramme wie inFig. 5 bei Bandmitte im Band L2 (f = 1.225 MHz):
a) Satellitenempfangsantenne 2 b)Antennenanordnung 1 nach der Erfindung Resultat:Mit der Antennenanordnung 1 nach der Erfindung wird bei einemElevationswinkel von 20° eine Erhöhung um ca. 0,7 dB erzielt. -
Fig. 7 :
VertikaleRichtdiagramme der Antennenanordnung 1 nach der Erfindung an den Frequenzbandgrenzen des Frequenzbandes L2.- a) bei der unteren Frequenzbandgrenze (f = 1200 MHz) und
- b) der oberen Frequenzbandgrenze (f = 1250 MHz) des Navigations-Frequenzbandes L2.
-
Fig. 8 :
RäumlicheDarstellung einer Antennenanordnung 1 nach der Erfindung wie inFig. 1 , jedoch mit aus elektrisch leitendemBlech bestehenden Direktoren 4. Die auf der Fahrzeug-Außenhaut aufliegende Masseplatte 3a als mechanischer Träger desSatellitenempfangsantenne 2 und der Direktoren 4 ist imBeispiel als Blechfläche 3a dargestellt.Die Direktoren 4 sind aus dieser Blechfläche 3a bis auf einen, dieMasseanbindung bildenden Verbindungssteg 26 als Drehpunkt - welcher auchals Massepunkt 8 wirkt - ausgeschnitten und aus der Blechfläche 3aum den Ausbiegewinkel 10 ausgebogen. -
Fig. 9 :
Darstellung der aus fahrzeugtechnischer Sicht bevorzugten Bauräume Br1 - Br 7 für Satelliten-Empfangsantennen 2 auf der elektrisch leitenden Außenhaut eines Kraftfahrzeugs 7. Der als Br0 gekennzeichnete Ort in der Mitte des Fahrzeugdaches 16 ist aus antennentechnischer Sicht zu bevorzugen, scheidet jedoch im Allgemeinen aus fahrzeugtechnischer Sicht aus. Die aus fahrzeugtechnischer Sicht akzeptierten Bauräume Br1- Br6 befinden sich sämtlich im Randbereich des Fahrzeugdaches 17 mit den bekannten nachteiligen Einflüssen der seitlichen Dachkante 17, der vorderen Dachkante 18a und der hinteren Dachkante 18 bezüglich des Strahlungsdiagramms von Satelliten-Empfangsantennen 2 mit Rundstrahlcharakteristik. Wenig geeignet sind auch Bauräume aufdem Heckdeckel 19, zum Beispiel Br7, aufgrund der die Strahlung abschattenden Wirkung des Fahrzeug-Oberbaus. -
Fig.10 :
Anbringung der Antennenanordnung 1 nach der Erfindung mit den angegebenen Abmessungen für GNSS- Anwendungen zum Beispiel am Bauraum Br2 inFig. 9 . Der die Rundstrahlung einschränkende Effekt der hinteren Dachkante 18 sowie der Krümmung des Fahrzeugdachs 16 mithilfe der im Wesentlichen parallel zur hinteren Dachkante 18 verlaufenden Direktoren 4 wird erfindungsgemäß durch Anhebung des Antennengewinns in Fahrtrichtung für niedrige Strahlungs-Elevationswinkel wesentlich gemildert. Eine zum Beispiel seitlich am Bauraum Br6 angebrachte Satelliten-Empfangsantenne 23 für den Empfang von Satelliten-Rundfunksignalen bei der Frequenz von ca. 2,3 GHz wird in sehr vorteilhafter Weise bezüglich ihrer Strahlungseigenschaften durch dieAntennenanordnung 1 nach der Erfindung praktisch nicht beeinträchtigt. Der nach rechts weisende Pfeil bezeichnet die Fahrtrichtung. -
Fig. 11 :Anbringung der Satellitenempfangsantenne 2 am Bauraum Br2 und der Empfangsantenne 23am Bauraum Br 6 wie inFig. 10 , jedoch mit azimutal rundum angeordneten Direktoren 4 zur Anhebung des Antennengewinns für Rundstrahlung bei niedrigen Elevationswinkeln. DieStrahlungseigenschaften der Satellitenempfangsantennen 23 sind bei geeigneter Wahl der Direktorhöhe hd und des Ausbiegewinkels 10 durch dieAnwesenheit der Antennenanordnung 1 nach der Erfindung praktisch nicht beeinträchtigt. -
Fig. 12 :
Antennenanordnung 1 nach der Erfindung mit zueinander dicht benachbart - als Segmente entlang dem Zylindermantel -angeordneten Direktoren 4, welche ringförmig um dieSatellitenempfangsantenne 2 angeordnet sind. Die zueinander benachbarten Leiterenden 11 der längsgestreckten horizontalenLeiter 5 sind kapazitiv miteinander verkoppelt.Die Direktoren 4 sind, wie inFig. 8 als Blechstreifen 9 aus der Blechfläche der Masseplatte 3a ausgeschnitten und umden Ausbiegewinkel 10von 90° ausgebogen.Die Leiterenden 11 der längsgestreckten elektrischenLeiter 5 sind in der Weise eckig ausgeformt und bezogen auf das Zentrum Z radial nach außen gebogen, dass jeweils eine Blechfahne 12 gebildet ist und die kapazitive Kopplung durch die parallel zueinanderstehenden Fahnenflächen der jeweils einander benachbarten Direktoren 4 bewirkt ist. -
Fig. 13 :
Antennenanordnung 1 nach der Erfindung wie inFig. 12 mit dem Unterschied, dass zur Verringerung desPlatzbedarfs die Blechfahnen 12 zur Bildung der kapazitiven Kopplung - bezogen auf das Zentrum Z - radial nach innen gebogen sind. -
Fig. 14 :- a) Gestaltung der die
Satellitenempfangsantenne 2umringenden Direktoren 4, wie inFig. 13 , jedoch als zusammenhängend, aus einem Blech geschnittener und geformter Blechring 25. Die dabei entstandenen Verbindungsstege 26 an den unteren Enden der vertikalenLeiter 6 bilden durch Aufsetzen des Blechrings 25 auf dieMasseplatte 3a und mit deren elektrischen Verbindung dieMassepunkte 8. die vertikalen Pfeile beschreiben die Richtung, in welcher der Blechring 25 auf dieMasseplatte 3a aufgesetzt wird.Die Satellitenantenne 2 ist in dieser Figur nicht gezeigt. - b)
Darstellung der Antennenanordnung 1 nach der Erfindung mit einem auf der Masseplatte 3a aufgesetzten und mit dieser anden Massepunkten 8 elektrisch leitend verbundenen Blechring 25 wie unter a)mit der Satellitenempfangsantenne 2 im Zentrum zum Beispielam Bauraum Br 2.Die weitere Satellitenempfangsantenne 23 ist, wie in denFig. 10 und 11 ,am Bauraum 6 angebracht.
- a) Gestaltung der die
-
Fig. 1 :
Spatial representation of anantenna arrangement 1 according to the invention with an electrically smallsatellite receiving antenna 2 with phase center PZ in the center Z on the outer skin of a vehicle 7 as an electricallyconductive base area 3, azimuthally surrounded bydirectors 4 according to the invention Length Ld, which is guided below a height hd and which continues at both ends with avertical conductor 6 leading to theconductive base 3, the lower end of which is conductively connected to theconductive base 3 via aground point 8. Thehorizontal conductors 5 are guided in a straight line approximately along the lateral surface Mz of a vertically oriented cylinder with a cylinder radius rz. The electrically smallsatellite receiving antenna 2 is inscribed around its center Z in an installation space of height ha and the circle K with the antenna radius ra. -
Fig.1a
Top view of anantenna arrangement 1 according to the invention, as shown in FIGFig. 1a To illustrate the arrangement of thedirectors 4 curved in plan view, each with ahorizontal conductor 5 curved along the lateral surface Mz below the height hd as a segment of a circular contour line of the lateral surface Mz of the vertically oriented cylinder with the cylinder radius rz. -
Fig. 2 :
Top view of anantenna arrangement 1 according to the invention, as shown in FIGFig. 1 To illustrate the arrangement of thedirectors 4, each with ahorizontal ladder 5 running in a straight line below the height hd, essentially as a secant of a circular contour line of the lateral surface Mz of the vertically oriented cylinder with cylinder radius rz. -
Fig. 3 :
Comparison of the vertical directional diagram inFig. 3a asatellite receiving antenna 2 and the vertical directional diagram in FIGFigure 3b the samesatellite receiving antenna 2 in anantenna arrangement 1 according to the invention, each for the desired circular polarization direction RHCP and the cross polarization direction LHCP, each with marking of the direction of incidence at the elevation angle of 20 ° (zenith angle 70 °) and the elevation angle of 5 ° (zenith angle 85 °).
In the middle of the band in the L1 band (f = 1,565 MHz):
Antenna gain underelevation angle 20 °: RHCP case a) 0dB, case b) 2dB Antenna gain underelevation angle 20 °: LHCP case a) -8dB, case b) -1.5dB Antenna gain underelevation angle 5 °: RHCP case a) -4dB, case b ) 0dB antenna gain at an elevation angle of 5 °: LHCP case a) -5.2dB, case b) -0.5dB Result: The RHCP antenna gain of theantenna arrangement 1 according to the invention exceeds the antenna gain of the individual antenna by 4dB at an elevation angle of 5 ° and by approx. 2 dB at an elevation angle of 20 °. -
Fig. 4 :
Comparison of the azimuthal diagrams in correspondence with the vertical directional diagrams inFig. 3 in the middle of the frequency band of L1 (f = 1.565MHz).
Elevation angle = 20 °.
a) Satellite receiving antenna 2 b)Antenna arrangement 1 according to the invention. Result: with theantenna arrangement 1 according to the invention, a significant increase of approximately 2 dB is achieved at an elevation angle of 20 °. -
Fig. 5 :
Comparison of the vertical directional diagrams as inFig. 3 , but in the middle of the band L2 (f = 1,225 MHz):
a) Satellite receiving antenna 2 b)Antenna arrangement 1 according to the invention Result: The RHCP antenna gain of theantenna arrangement 1 according to the invention exceeds the antenna gain of the individual antenna by 1.5dB at an elevation angle of 5 ° and by about 0.7dB at an elevation angle of 20 °. -
Fig. 6 :
Comparison of the azimuthal diagrams as inFig. 5 at mid-band in band L2 (f = 1,225 MHz):
a) Satellite receiving antenna 2 b)Antenna arrangement 1 according to the invention Result: With theantenna arrangement 1 according to the invention, an increase of approximately 0.7 dB is achieved at an elevation angle of 20 °. -
Fig. 7 :
Vertical directional diagrams of theantenna arrangement 1 according to the invention at the frequency band limits of the frequency band L2.- a) at the lower frequency band limit (f = 1200 MHz) and
- b) the upper frequency band limit (f = 1250 MHz) of the navigation frequency band L2.
-
Fig. 8 :
Spatial representation of anantenna arrangement 1 according to the invention as in FIGFig. 1 , but withdirectors 4 made of electrically conductive sheet metal. Theground plate 3a resting on the vehicle outer skin as a mechanical carrier for thesatellite receiving antenna 2 and thedirectors 4 is shown in the example assheet metal surface 3a. Thedirectors 4 are cut out of thissheet metal surface 3a except for a connectingweb 26 forming the ground connection as a fulcrum - which also acts as a ground point 8 - and are bent out of thesheet metal surface 3a by the bendingangle 10. -
Fig. 9 :
Representation of the preferred installation spaces Br1 - Br 7 forsatellite receiving antennas 2 on the electrically conductive outer skin of a motor vehicle 7 from a vehicle technology point of view. The location marked Br0 in the middle of thevehicle roof 16 is preferable from an antenna technology point of view, but is generally different from a vehicle technology point of view out. The installation spaces Br1-Br6 accepted from a vehicle perspective are all located in the edge area of thevehicle roof 17 with the known disadvantageous influences of theside roof edge 17, thefront roof edge 18a and therear roof edge 18 with regard to the radiation pattern ofsatellite reception antennas 2 with omnidirectional characteristics. Installation spaces on thetrunk lid 19, for example Br7, are also not very suitable because of the effect of the vehicle superstructure which shadows the radiation. -
Fig. 10 :
Attachment of theantenna arrangement 1 according to the invention with the specified dimensions for GNSS applications, for example on the installation space Br2 inFig. 9 . The effect of therear roof edge 18, which restricts the omnidirectional radiation, as well as the curvature of thevehicle roof 16 with the aid of thedirectors 4, which run essentially parallel to therear roof edge 18, is substantially mitigated according to the invention by increasing the antenna gain in the direction of travel for low radiation elevation angles. Asatellite receiving antenna 23 attached to the side of the installation space Br6 for the reception of satellite broadcast signals at the frequency of approximately 2.3 GHz is very advantageously practically not impaired in terms of its radiation properties by theantenna arrangement 1 according to the invention. The arrow pointing to the right indicates the direction of travel. -
Fig. 11 :
Attachment of thesatellite receiving antenna 2 to the installation space Br2 and the receivingantenna 23 to theinstallation space Br 6 as in FIGFig. 10 , but with azimuthally arrangeddirectors 4 all around to increase the antenna gain for omnidirectional radiation at low elevation angles. The radiation properties of thesatellite receiving antennas 23 are practically not impaired by the presence of theantenna arrangement 1 according to the invention given a suitable choice of the director height hd and the bendingangle 10. -
Fig. 12 :
Antenna arrangement 1 according to the invention withdirectors 4 arranged closely adjacent to one another - as segments along the cylinder jacket - which are arranged in a ring around thesatellite receiving antenna 2. The conductor ends 11 of the elongatedhorizontal conductors 5 which are adjacent to one another are capacitively coupled to one another. Thedirectors 4 are, as inFig. 8 cut out as a sheet metal strip 9 from the sheet metal surface of theground plate 3a and bent out by the bendingangle 10 of 90 °. The conductor ends 11 of the elongatedelectrical conductors 5 are angularly shaped and bent radially outward relative to the center Z that asheet metal lug 12 is formed in each case and the capacitive coupling is brought about by the parallel lug surfaces of the respectiveadjacent directors 4. -
Fig. 13 :
Antenna arrangement 1 according to the invention as inFig. 12 with the difference that, in order to reduce the space requirement, the sheet metal lugs 12 to form the capacitive coupling - relative to the center Z - are bent radially inward. -
Fig. 14 :- a) Design of the
directors 4 surrounding thesatellite receiving antenna 2, as in FIGFig. 13 , but as a coherentsheet metal ring 25 cut and formed from sheet metal. The connectingwebs 26 at the lower ends of thevertical conductors 6 formed by placing thesheet metal ring 25 on theground plate 3a and with their electrical connection form the ground points 8 the direction in which thesheet metal ring 25 is placed on theground plate 3a. Thesatellite antenna 2 is not shown in this figure. - b) Representation of the
antenna arrangement 1 according to the invention with asheet metal ring 25 placed on theground plate 3a and electrically conductively connected to it at the ground points 8 as under a) with thesatellite receiving antenna 2 in the center, for example on theinstallation space Br 2. The furthersatellite receiving antenna 23 is as in theFig. 10 and11 , attached to theinstallation space 6.
- a) Design of the
Die Erfindung geht aus von einer zirkular polarisierten, über einer elektrisch leitenden Grundfläche 3 befindlichen Satellitenempfangsantenne 2, deren auf die Freiraumwellenlänge λ bezogene relative Antennenhöhe ha/λ kleiner ist als 0,15. Mit dieser extrem kleinen Höhe ha der Antenne ist die problematische Eigenschaft verbunden, dass ihr Strahlungsgewinn zu kleineren Elevationswinkeln hin sehr schnell abnimmt. Dies ist ebenfalls verbunden mit einer verstärkten Abnahme des Kreuzpolarisationsabstands. Dieser Effekt kann durch die Anwesenheit der Direktoren 4 so weit gemildert werden, dass eine Satellitenempfangsantenne 2 mit dem vorgegebenen Bauvolumen auf der elektrisch leitenden Außenhaut eines Fahrzeugs 7 auch für qualifizierte Ortsbestimmung mit Hilfe der Satellitennavigation eingesetzt werden kann. Dabei sind Satellitenempfangssignale für die Navigation auszuwerten, welche unter dem niedrigen Elevationswinkel von 20° bis hin zu einem Elevationswinkel von 5° einfallen. Das extrem starke Abfallen des Antennengewinns bei solch niedrigen Elevationswinkeln für die gewünschte Polarisationsrichtung einer derart niedrigen Satellitenempfangsantenne 2 über einer leitenden Grundfläche 3 beruht auf der Schwäche der horizontalen Komponente ihres elektrischen Strahlungsfeldes. Diese Schwäche wird erfindungsgemäß durch den Einsatz der Direktoren 4 um die Satellitenempfangsantenne 2 gemildert und es gelingt die Anhebung des Antennengewinns für niedrige Elevationswinkel.The invention is based on a circularly polarized
Die Direktoren bilden bezogen auf die Grundfläche einen Bogen bzw. ein (U-förmiges) Tor (vgl.
Eine Plausibilitätsbetrachtung kann die Wirkungsweise der Direktoren 4 anhand der räumlichen Darstellung der Antennenanordnung 1 nach der Erfindung in
In den
Für den Einsatz im Fahrzeugbau sind die Herstellungskosten sowie die einfache Implementierbarkeit essenziell. In einer vorteilhaften Ausgestaltung der Erfindung ist, wie in
Aus fahrzeugtechnischer Sicht stehen für die Anbringung einer Satellitenempfangsantenne 2 in der Hauptsache Bauräume - Br1 - Br6 in
Insbesondere bei Elevationswinkeln um 20° kann bereits mit einem gezielt platzierten Direktor 4 der ungleichförmigen Veränderung der horizontalen Richtcharakteristik entgegengewirkt werden. Besonders hilfreich ist diese erfindungsgemäße Maßnahme bei Wahl der fahrzeugtechnisch bevorzugten Bauräume Br1, Br2, und Br6 auf dem Fahrzeugdach 16, bei denen aufgrund des abrupten Abbrechens der leitenden Grundfläche 3 an der hinteren Dachkante 18 am oberen Rand der Rückfensterscheibe 15 und der dort häufig vorhandenen Krümmung des Fahrzeugdaches 16 die Strahlungscharakteristik einer Satellitenempfangsantenne 2 in der Regel stark beeinträchtigt ist.In particular at elevation angles around 20 °, the non-uniform change in the horizontal directional characteristic can be counteracted with a specifically positioned
Mit wachsender Anzahl der Satellitenfunkdienste für die Satelliten-Navigation und dem Satelliten-Rundfunk sind die Bauräume dichter gesteckt und die Strahlungscharakteristiken durch elektromagnetische Verkopplung beeinträchtigt. In dem bereits oben beschriebenen Beispiel in
Ähnlich wie in
Wie im Zusammenhang mit
In einer weiteren vorteilhaften Ausgestaltung der Erfindung sind in
-
Antennenanordnung 1
Antenna arrangement 1 -
Satellitenempfangsantenne 2
Satellite receiving antenna 2 -
elektrisch leitende Grundfläche 3electrically
conductive base 3 -
Masseplatte 3a
Ground plane 3a -
Direktor 4
Director 4 -
horizontaler elektrischen Leiter 5horizontal
electrical conductor 5 -
vertikaler Leiter 6
vertical conductor 6 - Außenhaut eines Fahrzeugs 7Outer skin of a vehicle 7
- Massepunkte 8Earth points 8
- Blechstreifen 9Sheet metal strips 9
-
Ausbiegewinkel 10Bending
angle 10 - Leiterenden 11Ladder ends 11
-
Blechfahne 12
Metal flag 12 -
Ringleitungsantenne 13
Loop antenna 13 -
Patchantenne 14
Patch antenna 14 -
Heckfensterscheibe 15
Rear window 15 -
Fahrzeugdach 16
Vehicle roof 16 -
seitliche Dachkante 17
lateral roof edge 17 -
hintere Dachkante 18
rear roof edge 18 -
vordere Dachkante 18a
front roof edge 18a -
Heckdeckel 19
Trunk lid 19 -
Frontdeckel 20
Front cover 20 - Blechstreifenbreite 21Sheet metal strip width 21
-
Schnittlinien 22Cutting
lines 22 -
weitere Satellitenempfangsantenne 23further
satellite receiving antenna 23 -
Biegelinie 24Bending
line 24 -
Blechring 25
Sheet metal ring 25 -
Verbindungsstege 26Connecting
webs 26 -
Leiterbreite 27
Ladder width 27 -
Leiterabstand 28Distance between
conductors 28 - Freiraumwellenlänge λFree space wavelength λ
- Antennenhöhe haAntenna height ha
- Phasenzentrum PZPhase center PZ
- Antennenradius raAntenna radius ra
- Zylinderradius rzCylinder radius rz
- zentraler Achse Zcentral axis Z
- Direktorlänge LdDirector length Ld
- Direktorhöhe hdDirector height hd
- Kreis KCircle K
- Zylindermantel MzCylinder jacket Mz
- Bauraum Br1 - Br7Installation space Br1 - Br7
- Wellen Widerstand ZLWave resistance ZL
Claims (15)
- An antenna arrangement (1) for the reception of circularly polarized satellite radio signals having the free space wavelength λ and the frequency f, said antenna arrangement (1) comprising at least one circularly polarized satellite reception antenna (2) positioned above an electrically conductive base surface (3), in particular for satellite navigation with a relative antenna height ha/λ < 0.15 whose outline is inscribed by a circle K about its phase center PZ having the relative antenna radius ra/λ < 0.15,
comprising the following features:a director (4) is present which comprises a horizontal electrical conductor (5) which has two conductor ends (11) and which is guided over a director length Ld at a director height hd above the conductive base surface (3), and indeed at least approximated to a jacket surface Mz of a cylinder oriented perpendicular to the conductive base surface and having a cylinder radius rz and a central axis Z through the phase center PZ of the satellite reception antenna (2), wherein the horizontal electrical conductor (5) is angled at its two conductor ends (11) and extends from there as a vertical conductor (6) in each case toward the conductive base surface (3) and is electrically conductively connected thereto;the director (4) is adapted by designing the director length Ld, the director height hd and the vertical conductors (6) in a manner such that its natural resonant frequency is set in frequency proximity to the frequency f. - An antenna arrangement (1) in accordance with claim 1,
characterized in that
the director length is selected in the range 0.2 < Ld /λ < 0.45;
the director height hd is selected in the range 0.03 < hd /λ < 0.15; and
the cylinder radius is selected in the range 0.15 < rz/λ < 0.5. - An antenna arrangement (1) in accordance with claim 1 or claim 2,
characterized in that
the horizontal electrical conductor (5) is designed in a straight line, with the two vertical conductors (6) in particular being arranged in the region of the jacket surface Mz. - An antenna arrangement (1) in accordance with any one of the claims 1 to 3,
characterized in that
the director length Ld is selected as shorter than approximately 90% half the free space wavelength λ and the cylinder radius rz is selected as approximately 20% of the free space wavelength λ. - An antenna arrangement (1) in accordance with any one of the claims 1 to 4,
characterized in that,
in order to reduce the cross-polarization at small angles of elevation over the total azimuth angle range, at least three directors (4) are arranged azimuthally uniformly about the satellite reception antenna (2), with the cylinder radius rz in particular being selected as not larger than half a free space wavelength. - An antenna arrangement (1) in accordance with any one of the claims 1 to 5,
characterized in that,
in order to compensate an impairment of the azimuthal directional pattern and of the cross-polarization spacing caused by an azimuthally sectorally irregular environment, in particular with angles of elevation around 30°, the at least one director (4) is positioned at a spacing of no more than half a free space frequency wavelength λ remote from the phase center PZ for a direct irregular change of the horizontal directionality. - An antenna arrangement (1) in accordance with any one of the claims 1 to 6,
characterized in that
an electrically conductive ground plate (3a) is present as a mechanical carrier of the satellite reception antenna (2) and of the at least one director (4), with ground points (8) being formed on said ground plate (3a) for an electrically effective connection of the director (4). - An antenna arrangement (1) in accordance with claim 7,
characterized in that
the ground plate (3a) is designed at least in part from an electrically conductive sheet metal surface; and in that the director (4) is cut as a sheet metal strip (21) out of this sheet metal surface, except for a connection web (26) as a ground point (8), and is bent out of the sheet metal surface by a bend angle (10). - An antenna arrangement (1) in accordance with any one of the claims 1 to 7,
characterized in that
the director (4) is configured in wire form. - An antenna arrangement (1) in accordance with any one of the claims 1 to 9,
characterized in that,
for the azimuthally sectoral raising of the antenna gain for small angles of elevation, at least two directors (4) are arranged closely adjacent to one another along the cylinder jacket Mz and the mutually adjacent conductor ends (11) of the horizontal electrical conductors (5) are capacitively coupled to one another. - An antenna arrangement (1) in accordance with any one of the claims 1 to 10,
characterized in that,
for the azimuthally independent raising of the antenna gain and for a further improvement of the cross-polarization spacing, the satellite reception antenna (2) is completely surrounded in an azimuthally symmetrical form by mutually adjacent directors (4) which are capacitively coupled to one another with respect to their conductor ends (11). - An antenna arrangement in accordance with any one of the claims 1 to 8 and 10 to 11,
characterized in that
a plurality of directors (4) are provided which comprise electrically conductive sheet metal and are respectively shaped and bent in angled form at the conductor ends (11) of the elongated electrical conductor (5) in a manner such that a respective sheet metal lug (12) is formed, with a capacitive coupling being effected by lug surfaces of the respective mutually adjacent directors (4) in parallel with one another. - An antenna arrangement (1) in accordance with claim 12,
characterized in that
the directors (4) are combined in a contiguous manner to form a mechanically coherent ring of sheet metal, with the connection of the directors (4) being given by connection webs (26) which are placed on a ground plate (3a) and are electrically conductively connected to it at ground points (8). - An antenna arrangement (1) in accordance with claims 1 to 13,
characterized in that
the satellite reception antenna (2) is a circularly polarized loop antenna (13) having a relative height ha/λ ∼ 0.1 and its vertical projection is inscribed by a circle having the relative antenna radius ra/λ ∼ 0.13 about its phase center PZ; and
the director length Ld /λ ∼ 0.3 is selected;
the director height hd/λ ∼ 0.07 is selected; and
the cylinder radius rz/λ ∼ 0.2 is selected. - An antenna arrangement (1) in accordance with any one of the claims 1 to 13,
characterized in that
the satellite reception antenna (2) is formed as a circularly polarized patch antenna (14).
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102017009758.5A DE102017009758A1 (en) | 2017-10-19 | 2017-10-19 | Antenna arrangement for circularly polarized satellite radio signals on a vehicle |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3474374A1 EP3474374A1 (en) | 2019-04-24 |
EP3474374B1 true EP3474374B1 (en) | 2021-05-26 |
Family
ID=63914883
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18201246.8A Active EP3474374B1 (en) | 2017-10-19 | 2018-10-18 | Antenna system for circular polarised satellite radio signals on a vehicle |
Country Status (4)
Country | Link |
---|---|
US (1) | US10833412B2 (en) |
EP (1) | EP3474374B1 (en) |
JP (1) | JP2019092151A (en) |
DE (1) | DE102017009758A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021033253A1 (en) * | 2019-08-20 | 2021-02-25 | 三菱電機株式会社 | Antenna device |
CN112201953B (en) * | 2020-11-03 | 2023-05-09 | 上海安费诺永亿通讯电子有限公司 | Satellite communication system and/or navigation system antenna |
CN112635977A (en) * | 2020-12-28 | 2021-04-09 | 无锡华信雷达工程有限责任公司 | UHF frequency band high-gain left-hand circular polarized antenna |
JP7573888B2 (en) | 2022-05-13 | 2024-10-28 | 株式会社フェニックスソリューション | RFID tags |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4864320A (en) | 1988-05-06 | 1989-09-05 | Ball Corporation | Monopole/L-shaped parasitic elements for circularly/elliptically polarized wave transceiving |
DE4008505A1 (en) | 1990-03-16 | 1991-09-19 | Lindenmeier Heinz | Mobile antenna for satellite communication system - uses etching process on substrate with two part assembly |
DE10163793A1 (en) | 2001-02-23 | 2002-09-05 | Heinz Lindenmeier | Antenna for mobile satellite communication in vehicle, has positions of impedance connection point, antenna connection point, impedance coupled to impedance connection point selected to satisfy predetermined condition |
US8188918B2 (en) * | 2006-11-02 | 2012-05-29 | Agc Automotive Americas R&D, Inc. | Antenna system having a steerable radiation pattern based on geographic location |
EP2458679B1 (en) | 2009-09-10 | 2016-07-27 | Delphi Delco Electronics Europe GmbH | Antenna for receiving circular polarised satellite radio signals |
US20130050037A1 (en) * | 2011-08-29 | 2013-02-28 | Yokohama National University | Antenna apparatus and wireless communication apparatus using the same |
-
2017
- 2017-10-19 DE DE102017009758.5A patent/DE102017009758A1/en not_active Withdrawn
-
2018
- 2018-10-18 US US16/164,563 patent/US10833412B2/en active Active
- 2018-10-18 EP EP18201246.8A patent/EP3474374B1/en active Active
- 2018-10-18 JP JP2018196567A patent/JP2019092151A/en active Pending
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
US10833412B2 (en) | 2020-11-10 |
DE102017009758A1 (en) | 2019-04-25 |
EP3474374A1 (en) | 2019-04-24 |
US20190260129A1 (en) | 2019-08-22 |
JP2019092151A (en) | 2019-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE10304911B4 (en) | Combination antenna arrangement for multiple radio services for vehicles | |
EP2784874B1 (en) | Broadband monopole antenna for vehicles for two frequency bands separated by a frequency gap in the decimeter wavelength | |
EP2664025B1 (en) | Multiband reception antenna for the combined reception of satellite signals and terrestrially emitted radio signals | |
EP3474374B1 (en) | Antenna system for circular polarised satellite radio signals on a vehicle | |
EP1616367B1 (en) | Multifunctional antenna | |
EP2135324B1 (en) | Antenna apparatus for transmitting and receiving electromagnetic signals | |
EP3440738B1 (en) | Antenna device | |
EP3178129B1 (en) | Multi-structure broadband monopole antenna for two frequency bands in the decimeter wave range separated by a frequency gap, for motor vehicles | |
EP2424036B1 (en) | Receiver antenna for circular polarised satellite radio signals | |
EP3382795A1 (en) | Antenna for receiving circular polarised satellite radio signals for satellite navigation on a vehicle | |
DE20221946U1 (en) | Combined antenna arrangement for receiving terrestrial and satellite signals | |
DE102012217113B4 (en) | Antenna structure of a circularly polarized antenna for a vehicle | |
DE102010015823A1 (en) | Antenna module for vehicle, has feeding pin extended to top surface of substrate, where pin has pin extension extending over patch antenna surface, which forms antenna structure for radiating or receiving electromagnetic waves | |
EP3483983A1 (en) | Receiving antenna for satellite navigation on a vehicle | |
DE102005030631B3 (en) | Motor vehicle antenna for e.g. terrestial mobile radio, has discone/cone antenna with electrically conductive surface formed according to type of cone or triangle or trapezoid, where surface is aligned transverse to base/measuring surface | |
DE102018201575B3 (en) | antenna device | |
EP4270647A1 (en) | Combination antenna for mobile radio and satellite reception | |
DE112013003272B4 (en) | Inverted F-type antenna | |
DE102016005556A1 (en) | Satellite antenna under an antenna cover | |
DE112021001945T5 (en) | antenna device | |
DE112018003964T5 (en) | antenna | |
DE69836674T2 (en) | Plane antenna and portable radio with such an antenna | |
DE9003588U1 (en) | Vertically polarized receiving antenna arrangement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20191015 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H01Q 1/32 20060101AFI20201110BHEP Ipc: H01Q 19/28 20060101ALI20201110BHEP Ipc: H01Q 9/04 20060101ALN20201110BHEP |
|
INTG | Intention to grant announced |
Effective date: 20201211 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1397158 Country of ref document: AT Kind code of ref document: T Effective date: 20210615 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502018005407 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210826 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210526 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210526 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210526 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210526 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210526 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210526 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210826 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210927 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210526 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210827 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210926 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210526 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210526 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210526 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210526 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210526 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210526 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210526 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210526 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502018005407 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20220301 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210926 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210526 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20211031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210526 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211018 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210526 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211031 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211018 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210526 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20181018 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231020 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20231019 Year of fee payment: 6 Ref country code: FR Payment date: 20231026 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210526 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20231227 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210526 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210526 |