EP3441157A1 - Method and apparatus for cintinuous casting of a metallic product - Google Patents
Method and apparatus for cintinuous casting of a metallic product Download PDFInfo
- Publication number
- EP3441157A1 EP3441157A1 EP18183113.2A EP18183113A EP3441157A1 EP 3441157 A1 EP3441157 A1 EP 3441157A1 EP 18183113 A EP18183113 A EP 18183113A EP 3441157 A1 EP3441157 A1 EP 3441157A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- strand
- cooling section
- region
- cooling
- edge regions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 18
- 238000005266 casting Methods 0.000 title 1
- 238000001816 cooling Methods 0.000 claims abstract description 178
- 238000009749 continuous casting Methods 0.000 claims abstract description 41
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- 238000003303 reheating Methods 0.000 claims description 9
- 230000001965 increasing effect Effects 0.000 claims description 8
- 239000002826 coolant Substances 0.000 claims description 7
- 238000005728 strengthening Methods 0.000 claims description 2
- 230000003014 reinforcing effect Effects 0.000 claims 2
- 238000005452 bending Methods 0.000 description 6
- 239000007788 liquid Substances 0.000 description 5
- 239000007921 spray Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000013459 approach Methods 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/04—Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
- B22D11/041—Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds for vertical casting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/12—Accessories for subsequent treating or working cast stock in situ
- B22D11/124—Accessories for subsequent treating or working cast stock in situ for cooling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/14—Plants for continuous casting
- B22D11/141—Plants for continuous casting for vertical casting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/16—Controlling or regulating processes or operations
- B22D11/22—Controlling or regulating processes or operations for cooling cast stock or mould
- B22D11/225—Controlling or regulating processes or operations for cooling cast stock or mould for secondary cooling
Definitions
- the invention relates to a method for the continuous casting of a metallic product according to the preamble of claim 1, and to a corresponding continuous casting plant according to the preamble of claim 11.
- the liquid metal is poured continuously in a mold, where it forms a first strand shell.
- the strand emerges downwards from the mold, wherein the strand is subsequently transported along a strand guide and transferred into a bending radius in a so-called bending region, in order thereby to achieve a deflection of the strand in the direction of the horizontal.
- the strand guide further includes a so-called straightening region, in which the strand is then completely deflected in the horizontal direction. In this straightening area, strains occur on an upper side (loose side) of the strand, which can lead to cracks or surface cross cracks.
- the strand during continuous casting by the two-dimensional heat radiation cooled at its edges more than in the middle of the strand. This implies the danger of edge cracks. Lower cooling of the strand at its edges attempts to counteract this effect. Accordingly, in a conventional continuous casting according to Fig. 8 the amount of spray water in the edge regions of the strand - compared to an area in the middle of the strand - reduced, which then leads to less cooling in the edge regions and consequently to the generation of higher edge temperatures. Such a reduced cooling of the edge regions of the strand takes place in a so-called Fig. 8 is indicated and in the conveying direction of the strand in particular in front of the straightening area I, and possibly also within the straightening, is. Only after the short cooling section or the straightening area I is the strand then again cooled evenly over the entire strand width (also in Fig. 8 indicated).
- the object of the invention is to achieve a uniform sump tip over the strand width during the continuous casting of a metallic product, without the edge temperature dropping below the critical temperature determined by the course of the ductility curve.
- the invention provides a method for continuous casting of a metallic product in which a strand of the metallic product emerges continuously from a mold, in particular vertically downwards, in a continuous casting plant and is subsequently transported along a strand guide in a conveying direction.
- the strand is deflected in a directional region in the horizontal direction, wherein the edge regions of the strand within a Minderkühlabitess which is provided at least in the conveying direction before the straightening region and preferably also within the straightening region, reduced be cooled as compared to a horizontal region of the strand guide, which lies in the conveying direction after the straightening area.
- the edge regions of the strand are cooled at least as strongly as a central region of the strand in an intensive cooling section of the strand guide, which starts immediately after the strand emerges from the mold and lies in the conveying direction before the minor cooling section.
- the invention also provides a continuous casting plant which serves to produce a metallic product.
- This continuous casting plant comprises a mold, and a strand guide adjoining the mold, along which a strand issuing from the mold, in particular vertically downwards, can be transported in a conveying direction.
- the strand guide has a straightening area, through which the strand can be deflected in the horizontal direction.
- the strand guide has an at least in the conveying direction in front of the straightening area provided on the cooling section, in which the edge regions of the strand are cooled less than compared to a horizontal region of the strand guide, which lies in the conveying direction after the straightening.
- the minimum cooling section can also be provided within the straightening area.
- the strand guide Immediately after the strand has emerged from the mold, the strand guide has an intensive cooling section lying in the conveying direction in front of the minor cooling section, in which the edge regions of the strand can be cooled at least as strongly as a central region of the strand.
- the invention is thus based on the essential knowledge that in the Intensive cooling section, the edge regions of the strand are cooled at least as strong as the central region, so that this type of cooling completely affects the liquid strand core, and thus the formation of a desired uniform or uniform Sumpfspitze the strand across its width.
- the length difference in the sump tip over the strand width is at least reduced. Accordingly, over the strand width uniform bottom tip is realized for the strand.
- the above-described cooling strategy takes place in any case while maintaining the condition that the minimum temperature determined by the ductility curve is not undershot along the entire length of the strand guide, and thus also within or along the intensive cooling section.
- the intensive cooling section in which the edge regions of the strand are cooled at least as strong as the central region of the strand, be provided within a first third of the length of the continuous casting, calculated from the Kokillenaustritt the strand. Subsequent to the intensive cooling section, the cooling of the edge regions of the strand is then reduced or reduced in the minor cooling section. This ensures that the temperature of the strand does not fall below the critical temperature determined by the ductility curve even in its edge regions or near-edge zones. This is especially true for those areas of the strand where additional stresses occur, e.g. in the bending area and / or in the straightening area. As a result, according to the invention, the formation of possible surface cracks in the strand is avoided even in the minor cooling section of the strand guide.
- the edge regions of the strand are cooled more than within the intensive cooling section of the strand guide the central area of the strand.
- This can be conveniently achieved in that the specific amounts of water in the edge control loops are higher than the amounts of water, which is applied to the central region of the strand.
- a temperature rise for the strand between these two cooling sections does not become too high.
- a so-called rewarming factor WEF (° C / (mm * sec )]
- WEF Difference between the temperature T 1 at a first measuring point P 1 and the temperature T 2 at a second measuring point P 2 / average thickness of the strand shell at the measuring points P 1 and P 2 / Transport time of the strand between the measuring points P 1 and P 2 ,
- the respective current position or position of the sump tip is checked or taken into account.
- a calculation of the sump length profile over the strand width is made. If it is determined on the basis of this calculation that the computed sump tip difference is too high in comparison to a predetermined maximum sump tip difference, which represents an allowed upper limit, then the cooling in the edge regions of the strand is amplified according to one of the two variants mentioned. Otherwise, namely, in the event that the detected sump tip difference should not be too high, the cooling in the intensive cooling section is not further enhanced.
- the intensive cooling section comprises at least one cooling zone with additional cooling nozzles, which are associated with an edge region of the strand and can be switched on to reinforce the cooling of the edge regions of the strand.
- Fig. 1 is a continuous casting 10 according to the invention shown in principle simplified in a side view.
- the continuous caster 10 is used to produce a metallic product 11, and for this purpose comprises a mold 12 and an adjoining strand guide 14, along which one of the mold 12 preferably downwardly emerging strand S of the metallic product 11 is transported in a conveying direction F.
- a plurality of support rollers 2 are arranged, wherein spray water 4 is sprayed onto the strand S, for the purpose of cooling the bar S.
- the strand S is marked with the reference line "5", the strand still has a liquid sump.
- the sump tip of the strand S is indicated by the reference numeral "6".
- the strand S is completely solidified, eg at the in Fig. 1 with the reference line "11d" marked position.
- a water cooling is also provided along the strand guide 14, which is marked with the reference line "8".
- the strand guide 14 of the continuous caster 10 comprises a straightening region I, by means of which the strand S is completely deflected in the horizontal direction. Furthermore, the strand guide 14 comprises a bending region II, through which the strand S, after it has emerged from the mold 12, is deflected in the direction of the horizontal.
- the straightening area I and the bending area II are shown in FIG Fig. 1 each simplified symbolized by dashed rectangles.
- the conveying direction in which the strand S is transported along the strand guide 14 of the continuous casting plant 10 is shown in FIG Fig. 1 denoted by "F".
- the strand guide 14 comprises a minimum cooling section 16 which, viewed in the conveying direction F of the strand S, lies upstream or in front of a horizontal region 18 of the strand guide 14.
- the minor cooling section 16 can be designed such that it detects the straightening region I at least partially or completely.
- the minimum cooling section 16 of the strand guide 14 is characterized in that the cooling zones provided therein are designed such that the edge regions of the strand S are cooled in a reduced manner compared to the horizontal region 18 of the strand guide 14.
- the strand guide 14 has an intensive cooling section 20, which begins immediately after the emergence of the strand S from the mold 12 and - as in Fig. 1 illustrated - in the conveying direction F seen before the minor cooling section 16 is located.
- the intensive cooling section 20 is formed with at least one cooling zone provided therein such that the edge regions of the strand S are cooled at least as strongly as a central region of the strand S.
- Fig. 2 shows the continuous caster 10 of Fig. 1 again in a simplified side view.
- the longitudinal extensions of the lower cooling section 16 and the intensive cooling section 20 along the strand guide 14 of the continuous casting installation 10 are illustrated.
- the length of the intensive cooling section 20 is denoted by “L 20 ", wherein this length may amount to about one third of the length L 10 of the continuous caster 10.
- the intensive cooling section 20 is provided within a first third of the length L 10 of the continuous caster 10, starting from the exit of the strand S from the mold 12.
- a length of the minor cooling section 16 is shown in FIG Fig. 2 denoted by "L 16 ".
- the difference in length in the sump tip is advantageously reduced in comparison to the prior art , This is in the presentation of Fig. 3 with the curve "A" showing a course of the sump tip 6 over the strand width.
- the length difference d is the swamp , which is a measure of the unevenness of the swamp tip, for example only about 150 mm.
- a substantially uniform or uniform sump tip over the strand width is achieved without the edge temperature dropping below the critical temperature determined by the ductility profile.
- the realized by the present invention length difference d sump is substantially smaller than in the prior art, the as initially on the basis of Fig. 9 explained may be 1.5 m.
- the temperature profile after the intensive cooling section (B) is not constant over the strand width.
- the temperature is lower than in the center of the strand. Due to the reduced cooling of the edge region in the subsequent so-called.
- Minderkühlabites the temperature difference largely compensates and the temperature profile after the minimum cooling section (C) over the strand width is substantially constant.
- a temperature rise In operation of the continuous casting 10 according to the invention or in carrying out a corresponding method for continuous casting of a metallic product 11 is between the intensive cooling section 20, in which the edge regions of the strand S subjected to increased edge cooling, and the Minor cooling section 16, in which a reduced coolant for the edge regions of the strand S is provided, a temperature rise. It is important for the invention that such a temperature rise is not too high. An excessive and too rapid rise of the already solidified material of the strand S can otherwise lead to internal cracks.
- a reheating factor WEF [° C / (mm * sec)].
- a reheating factor WEF is determined by the quotient of the difference between a temperature T 1 at a first measuring point P 1 and a temperature T 2 at a second measuring point P 2 , the average thickness of the strand shell at the measuring points P 1 and P 2 , and Transport time of the strand S between the measuring points P 1 and P 2 . Accordingly, the unit for reheating factor WEF is determined to be [° C / (mm * sec)].
- the first measuring point P 1 is arranged in a cooling zone within the intensive cooling section 20, the second measuring point P 2 being arranged in a cooling zone within the minor cooling section 16.
- the first measuring point P 1 is located at the end of the last cooling zone of the intensive cooling section 20 (with reinforced edge cooling), the second measuring point P 2 being located at the end of the first cooling zone of the minor cooling section 16 (with reduced edge cooling).
- the temperatures T 1 and T 2 are the average strand shell temperatures at the measuring points P 1 and P 2 .
- a mathematical-physical calculation model is used to calculate the strand temperatures T 1 , T 2 , the sump tip positions and the strand shell thicknesses.
- FIG Fig. 1 A position of the first and second measuring points along the strand guide 14 is shown in FIG Fig. 1 simplified with the designations "P 1 " and "P 2 " indicated.
- the flowchart of Fig. 4 illustrates an optimization of the amount of coolant, preferably in the form of spray, with which the strand S is cooled in its edge regions.
- all relevant temperatures of the strand S are calculated, in this case, inter alia, the edge temperatures of the strand S, ie the temperature of the strand S in its edge regions.
- the edge temperature thus calculated is greater than a minimum allowable edge temperature T edge target . If this is not the case, the cooling in the intensive cooling section 20 is not amplified, so that no further minimization of the sump tip difference is possible. This is because of the proviso that the edge temperature should not fall below the critical temperature determined by the ductility curve, referred to above as T edge target .
- the calculated edge temperature should be greater than the minimum permissible edge temperature T edge target
- the strand shell temperatures T 1 and T 2 at the measurement points P 1 and P 2 and the average strand shell thickness between these measurement points are calculated using the mathematical-physical calculation model also determines the transport time of the strand S between the measuring points P 1 and P 2 . Taking into account the values thus calculated or determined, the actual reheating factor WEF is then actually determined on the basis of the above equation.
- the value of the current rewarming factor WEF is currently compared with a permissible maximum rewarming factor WEF max . If WEF is currently greater than WEF max , this is an indication that the temperature rise between the intensive cooling section 20 and the minimum cooling section 16 is already too large, so that the cooling in the intensive cooling section 20 is not amplified, or the amount of coolant used in this section is not increased. However, if the condition WEF actual ⁇ WEF max should be fulfilled, in a next step the sump length course over the strand width is calculated on the basis of a mathematical-physical calculation model.
- cooling in the intensive cooling section 20 can be appropriately enhanced by increasing the associated amount of refrigerant in At least one cooling zone of the intensive cooling section 20, preferably in all cooling zones of the intensive cooling section 20.
- the cooling performance in the intensive cooling section 20 remains unchanged, if the calculated sump point difference for the strand S is not too high.
- FIG. 4 illustrates that the above-described sequence of steps is formed in the form of a control loop.
- a control circuit preferably detects all the cooling nozzles of the cooling zones, which are arranged within the intensive cooling section 20 in the edge regions of the strand S.
- the flowchart of Fig. 5 illustrates a scheme for optimizing the nozzle assembly or the use of cooling nozzles in the edge regions of the strand S.
- a starting point for the flowchart of Fig. 5 serves a mode of operation of the continuous casting 10, in which the edge regions or the edges of the strand S are not overspent.
- the edge temperature of the strand S within the intensive cooling section 20 is calculated, followed by a query as to whether the calculated edge temperature is greater than a minimum edge temperature T edge target before the directional region I or within the directional region I. From this step, the flowchart corresponds to FIG. 5 essentially the logic of the flowchart of Fig. 4 so that reference may be made to avoid it.
- the flowchart of Fig. 5 differs from the flowchart according to Fig. 4 solely in that, if the calculated sump tip difference should be classified as too high, then in at least one cooling zone of the intensive cooling section 20 additional cooling nozzles in the edge regions of the strand S are switched on. In this way, the cooling in the edge regions of the strand S is suitably reinforced.
- Fig. 6 shows a schematically simplified plan view of cooling zones within the intensive cooling section 20 and the lower cooling section 16.
- the additional cooling nozzles which according to the flowchart of Fig. 5 can be switched to strengthen the cooling of the edge regions of the strand S are in Fig. 6 denoted by "22".
- the flowcharts of Fig. 4 and Fig. 5 and the determination of the current reheat factor WEF currently carried out in this case relate, for example, to the first and second measuring points P 1 , P 2 , which in the Fig. 6 also symbolically indicated by arrows.
- these measuring points are provided in individual cooling zones of the intensive cooling section 20 or the minimum cooling section 16.
- the determination of the current reheating factor WEF currently enables an evaluation of the temperature rise between the intensive cooling section 20 and the minor cooling section 16.
- the measuring points P 1 and P 2 are also at different locations than in the illustration of FIG Fig. 1 and Fig. 6 can be provided indicated.
- a plurality of first measuring points P 1 or of second measuring points P 2 are also possible, which are respectively provided within the intensive cooling section 20 and within the minimum cooling section 16.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Continuous Casting (AREA)
Abstract
Die Erfindung betrifft Verfahren zum Stranggießen eines metallischen Produkts (11), und eine entsprechende Stranggießanlage (10). Hierbei tritt ein Strang (S) des metallischen Produkts (11) kontinuierlich aus einer Kokille (12) aus, und wird anschließend entlang einer Strangführung (14) in einer Förderrichtung (F) transportiert. Der Strang (S) wird in einem Richtbereich (I) in die horizontale Richtung umgelenkt, wobei die Randbereiche (R) des Stranges (S) innerhalb eines Minderkühlabschnitts (16) der Strangführung (14) vermindert gekühlt werden als im Vergleich zu einem horizontalen Bereich (18) der Strangführung (14), der in Förderrichtung (F) nach dem Richtbereich (I) liegt. Die Randbereiche (R) des Stranges (S) werden in einem Intensivkühlabschnitt (20) der Strangführung (14) zumindest genauso stark gekühlt wie ein mittiger Bereich (M) des Stranges (S).The invention relates to processes for continuous casting of a metallic product (11), and to a corresponding continuous casting plant (10). Here, a strand (S) of the metallic product (11) emerges continuously from a mold (12), and is subsequently transported along a strand guide (14) in a conveying direction (F). The strand (S) is deflected in a directional region (I) in the horizontal direction, wherein the edge regions (R) of the strand (S) within a lower cooling section (16) of the strand guide (14) cooled less than compared to a horizontal region (18) of the strand guide (14) which lies in the conveying direction (F) after the straightening region (I). The edge regions (R) of the strand (S) are cooled in an intensive cooling section (20) of the strand guide (14) at least as strong as a central region (M) of the strand (S).
Description
Die Erfindung betrifft ein Verfahren zum Stranggießen eines metallischen Produkts nach dem Oberbegriff von Anspruch 1, und eine entsprechende Stranggießanlage nach dem Oberbegriff von Anspruch 11.The invention relates to a method for the continuous casting of a metallic product according to the preamble of
Bei der Herstellung von metallischen Produkten in einer Stranggießanlage wird das flüssige Metall kontinuierlich in einer Kokille vergossen, wobei sich dort eine erste Strangschale ausbildet. In der Regel tritt der Strang nach unten aus der Kokille aus, wobei der Strang anschließend entlang einer Strangführung transportiert und in einem sog. Biegebereich in einen Biegeradius überführt wird, um dadurch eine Umlenkung des Stranges in Richtung der Horizontalen zu erreichen. Bei einer Kreisbogenanlage beginnt die Krümmung des Stranges bereits in der Kokille, wobei dann der Biegebereich entfällt. Die Strangführung umfasst im weiteren Verlauf auch einen sog. Richtbereich, in dem der Strang dann vollständig in die horizontale Richtung umgelenkt wird. In diesem Richtbereich treten an einer Oberseite (Losseite) des Stranges Dehnungen auf, die zu Rissen bzw. Oberflächenquerrissen führen können.In the production of metallic products in a continuous casting plant, the liquid metal is poured continuously in a mold, where it forms a first strand shell. As a rule, the strand emerges downwards from the mold, wherein the strand is subsequently transported along a strand guide and transferred into a bending radius in a so-called bending region, in order thereby to achieve a deflection of the strand in the direction of the horizontal. In a circular arc, the curvature of the strand already begins in the mold, in which case the bending range is eliminated. The strand guide further includes a so-called straightening region, in which the strand is then completely deflected in the horizontal direction. In this straightening area, strains occur on an upper side (loose side) of the strand, which can lead to cracks or surface cross cracks.
Die Bedeutung einer optimalen Kühlung beim Stranggießen eines metallischen Produkts nach dem Austreten des Stranges aus der Kokille ist im Stand der Technik hinreichend bekannt, z.B. aus
Eine Problematik beim Stranggießen besteht darin, dass für den Strang insbesondere im Richtbereich der Strangführung in Folge der dort erzeugten Krümmungen Dehnungen auftreten, die zu Rissen im Strang bzw. an dessen Oberfläche führen können. Dies ist in der
Zur Vermeidung der vorstehend erläuterten Problematik einer erhöhten Rissgefahr wird nach dem Stand der Technik ein Ansatz verfolgt, wonach die Oberflächentemperatur des Stranges über der kritischen Duktilitätstemperatur des Metalls bzw. stranggegossenen Materials gehalten wird. Dies ist auf der Strangmitte in der Regel möglich und für eine herkömmliche Stranggießanlage in
Im Allgemeinen kühlt der Strang beim Stranggießen durch die zweidimensionale Wärmestrahlung an seinen Kanten stärker aus als in der Strangmitte. Dies impliziert die Gefahr von Kantenrissen. Durch eine geringere Kühlung des Stranges an seinen Kanten wird versucht, diesem Effekt zu begegnen. Entsprechend werden bei einer herkömmlichen Stranggießanlage gemäß
Bei Vorsehen eines Minderkühlabschnitts stellt sich - wie vorstehend erläutert - ein Anstieg der Oberflächentemperatur im kantennahen Bereich des Stranges ein. Dies kann nachteilig zu einer ungleichmäßigen Sumpfspitze über die Strangbreite führen. Eine solche ungleichmäßige Sumpfspitze kann einen Längenunterschied von z.B. 1,5 m annehmen, was in
Entsprechend liegt der Erfindung die Aufgabe zugrunde, beim Stranggießen eines metallischen Produkts eine uniforme Sumpfspitze über der Strangbreite zu erreichen, ohne dass die Kantentemperatur unter die durch den Duktilitätsverlauf bestimmte kritische Temperatur absinkt.Accordingly, the object of the invention is to achieve a uniform sump tip over the strand width during the continuous casting of a metallic product, without the edge temperature dropping below the critical temperature determined by the course of the ductility curve.
Die obige Aufgabe wird durch ein Verfahren zum Stranggießen eines metallischen Produkts mit den im Anspruch 1 angegebenen Merkmalen, und durch eine Stranggießanlage mit den in Anspruch 11 definierten Merkmalen gelöst. Vorteilhafte Weiterbildungen der Erfindung sind in den abhängigen Ansprüchen definiert.The above object is achieved by a method for continuous casting of a metallic product having the features specified in
Die Erfindung sieht ein Verfahren zum Stranggießen eines metallischen Produkts vor, bei dem in einer Stranggießanlage ein Strang des metallischen Produkts kontinuierlich aus einer Kokille insbesondere senkrecht nach unten austritt und anschließend entlang einer Strangführung in einer Förderrichtung transportiert wird. Hierbei wird der Strang in einem Richtbereich in die horizontale Richtung umgelenkt, wobei die Randbereiche des Stranges innerhalb eines Minderkühlabschnitts, der zumindest in Förderrichtung vor den Richtbereich und vorzugsweise auch innerhalb des Richtbereichs vorgesehen ist, vermindert gekühlt werden als im Vergleich zu einem horizontalen Bereich der Strangführung, der in Förderrichtung nach dem Richtbereich liegt. Die Randbereiche des Stranges werden in einem Intensivkühlabschnitt der Strangführung, der unmittelbar nach dem Austreten des Stranges aus der Kokille beginnt und in Förderrichtung vor dem Minderkühlabschnitt liegt, zumindest genauso stark gekühlt wie ein mittiger Bereich des Stranges. Durch eine solche Kühlstrategie wird erreicht, dass eine im Wesentlichen einheitliche Sumpflänge ausgebildet wird, was sich z.B. bei Durchführung einer Softreduktion positiv auswirkt.The invention provides a method for continuous casting of a metallic product in which a strand of the metallic product emerges continuously from a mold, in particular vertically downwards, in a continuous casting plant and is subsequently transported along a strand guide in a conveying direction. Here, the strand is deflected in a directional region in the horizontal direction, wherein the edge regions of the strand within a Minderkühlabschnitts which is provided at least in the conveying direction before the straightening region and preferably also within the straightening region, reduced be cooled as compared to a horizontal region of the strand guide, which lies in the conveying direction after the straightening area. The edge regions of the strand are cooled at least as strongly as a central region of the strand in an intensive cooling section of the strand guide, which starts immediately after the strand emerges from the mold and lies in the conveying direction before the minor cooling section. By such a cooling strategy is achieved that a substantially uniform sump length is formed, which has a positive effect, for example, when performing a Softreduktion.
Die Erfindung sieht auch eine Stranggießanlage vor, die zur Herstellung eines metallischen Produkts dient. Diese Stranggießanlage umfasst eine Kokille, und eine sich an die Kokille anschließende Strangführung, entlang der ein aus der Kokille insbesondere senkrecht nach unten austretender Strang in einer Förderrichtung transportiert werden kann. Die Strangführung weist einen Richtbereich auf, durch den der Strang in die horizontale Richtung umlenkbar ist. Ferner weist die Strangführung einen zumindest in Förderrichtung vor dem Richtbereich vorgesehenen Minderkühlabschnitt auf, in dem die Randbereiche des Stranges vermindert gekühlt werden als im Vergleich zu einem horizontalen Bereich der Strangführung, der in Förderrichtung nach dem Richtbereich liegt. Vorzugsweise kann der Minderkühlabschnitt auch innerhalb des Richtbereichs vorgesehen sein. Die Strangführung weist unmittelbar nach dem Austreten des Stranges aus der Kokille einen in Förderrichtung vor dem Minderkühlabschnitt liegenden Intensivkühlabschnitt auf, in dem die Randbereiche des Stranges zumindest genauso stark kühlbar sind wie ein mittiger Bereich des Stranges.The invention also provides a continuous casting plant which serves to produce a metallic product. This continuous casting plant comprises a mold, and a strand guide adjoining the mold, along which a strand issuing from the mold, in particular vertically downwards, can be transported in a conveying direction. The strand guide has a straightening area, through which the strand can be deflected in the horizontal direction. Furthermore, the strand guide has an at least in the conveying direction in front of the straightening area provided on the cooling section, in which the edge regions of the strand are cooled less than compared to a horizontal region of the strand guide, which lies in the conveying direction after the straightening. Preferably, the minimum cooling section can also be provided within the straightening area. Immediately after the strand has emerged from the mold, the strand guide has an intensive cooling section lying in the conveying direction in front of the minor cooling section, in which the edge regions of the strand can be cooled at least as strongly as a central region of the strand.
Grundsätzlich ist es auf dem Gebiet des Stranggießens von metallischen Produkten bekannt, dass für die Ausbildung der Sumpflänge hauptsächlich die Kühlung des Stranges direkt nach dessen Austritt aus der Kokille verantwortlich ist. Hier ist die Strangschale noch sehr dünn, so dass die Kühlwirkung auch den noch flüssigen Strangkern beeinflusst. Unter Berücksichtigung dessen liegt der Erfindung somit die wesentliche Erkenntnis zu Grunde, dass in dem Intensivkühlabschnitt die Randbereiche des Stranges zumindest genauso stark gekühlt werden wie dessen mittiger Bereich, so dass sich diese Art von Kühlung vollständig auf den flüssigen Strangkern, und damit auf die Ausbildung einer gewünschten gleichmäßigen bzw. uniformen Sumpfspitze des Stranges über dessen Breite auswirkt. Anders ausgedrückt, wird durch die Einstellung einer gleichmäßigen spezifischen Spritzwassermenge über der Strangbreite bzw. durch eine Verstärkung der Randkühlung innerhalb des Intensivkühlabschnitts erreicht, dass die Längendifferenz in der Sumpfspitze über der Strangbreite zumindest vermindert wird. Entsprechend wird für den Strang eine über der Strangbreite gleichmäßige Sumpfspitze realisiert. Insgesamt erfolgt die vorstehend erläuterte Kühlstrategie jedenfalls unter Einhaltung der Bedingung, dass die durch den Duktilitätsverlauf bestimmte minimale Temperatur entlang der gesamten Länge der Strangführung, und somit auch innerhalb bzw. entlang des Intensivkühlabschnitts, nicht unterschritten wird.Basically, it is known in the field of continuous casting of metallic products that is responsible for the formation of the swamp length mainly the cooling of the strand directly after its exit from the mold. Here, the strand shell is still very thin, so that the cooling effect also affects the still liquid strand core. Taking this into account, the invention is thus based on the essential knowledge that in the Intensive cooling section, the edge regions of the strand are cooled at least as strong as the central region, so that this type of cooling completely affects the liquid strand core, and thus the formation of a desired uniform or uniform Sumpfspitze the strand across its width. In other words, by setting a uniform specific amount of spray water over the strand width or by increasing the edge cooling within the intensive cooling section, the length difference in the sump tip over the strand width is at least reduced. Accordingly, over the strand width uniform bottom tip is realized for the strand. Overall, the above-described cooling strategy takes place in any case while maintaining the condition that the minimum temperature determined by the ductility curve is not undershot along the entire length of the strand guide, and thus also within or along the intensive cooling section.
In vorteilhafter Weiterbildung der Erfindung kann der Intensivkühlabschnitt, in dem die Randbereiche des Stranges zumindest so stark gekühlt werden wie der mittige Bereich des Stranges, innerhalb eines ersten Drittels der Länge der Stranggießanlage vorgesehen sein, gerechnet ab dem Kokillenaustritt des Stranges. Im Anschluss an den Intensivkühlabschnitt wird dann in dem Minderkühlabschnitt die Kühlung der Randbereiche des Stranges reduziert bzw. vermindert. Hierdurch wird erreicht, dass die Temperatur des Stranges auch in seinen Randbereichen bzw. kantennahen Zonen nicht unter die durch den Duktilitätsverlauf bestimmte kritische Temperatur absinkt. Dies gilt insbesondere für die Bereiche des Stranges, in denen zusätzliche Beanspruchungen auftreten, z.B. im Biegebereich und/oder im Richtbereich. Dadurch wird erfindungsgemäß die Ausbildung von möglichen Oberflächenrissen in dem Strang auch in dem Minderkühlabschnitt der Strangführung vermieden.In an advantageous embodiment of the invention, the intensive cooling section, in which the edge regions of the strand are cooled at least as strong as the central region of the strand, be provided within a first third of the length of the continuous casting, calculated from the Kokillenaustritt the strand. Subsequent to the intensive cooling section, the cooling of the edge regions of the strand is then reduced or reduced in the minor cooling section. This ensures that the temperature of the strand does not fall below the critical temperature determined by the ductility curve even in its edge regions or near-edge zones. This is especially true for those areas of the strand where additional stresses occur, e.g. in the bending area and / or in the straightening area. As a result, according to the invention, the formation of possible surface cracks in the strand is avoided even in the minor cooling section of the strand guide.
In vorteilhafter Weiterbildung der Erfindung werden innerhalb des Intensivkühlabschnitts der Strangführung die Randbereiche des Stranges stärker gekühlt als der mittige Bereich des Stranges. Dies kann zweckmäßigerweise dadurch erreicht werden, dass die spezifischen Wassermengen in den Randregelkreisen höher sind als die Wassermengen, mit denen der mittige Bereich des Stranges beaufschlagt wird. Dies führt zu dem Vorteil, dass im Bereich des Intensivkühlabschnitts der Strangführung ein Längenunterschied in der Sumpfspitze des Stranges über dessen Breite weiter vermindert wird, um damit eine (möglichst) uniforme Sumpfspitze zu erreichen.In an advantageous embodiment of the invention, the edge regions of the strand are cooled more than within the intensive cooling section of the strand guide the central area of the strand. This can be conveniently achieved in that the specific amounts of water in the edge control loops are higher than the amounts of water, which is applied to the central region of the strand. This leads to the advantage that in the region of the intensive cooling section of the strand guide, a difference in length in the sump tip of the strand over its width is further reduced in order to achieve a (possibly) uniform sump tip.
Unter Berücksichtigung der Anordnung des Intensivkühlabschnitts und des Minderkühlabschnitts, nämlich - in Förderrichtung des Stranges gesehen - nachfolgend hintereinander, ist für die vorliegende Erfindung von Bedeutung, dass ein Temperaturanstieg für den Strang zwischen diesen beiden Kühlabschnitten nicht zu hoch wird. Zu diesem Zweck wird erfindungsgemäß, und vorzugsweise unter Einhaltung der Maßgabe, dass innerhalb des Intensivkühlabschnitts die Temperatur in den Randbereichen des Stranges einer minimal zulässigen Kantentemperatur entspricht bzw. stets größer als diese ist, ein sog. Wiedererwärmungsfaktor WEF [°C/(mm*sec)] berechnet, der sich wie folgt bestimmt:
Hierin sind beispielsweise:
- P1:
- Ende der letzten Kühlzone des Intensivkühlabschnitts, jedenfalls zumindest ein Messpunkt innerhalb des Intensivkühlabschnitts,
- T1:
- mittlere Strangschalentemperatur an dem ersten Messpunkt P1,
- P2:
- Ende der ersten Kühlzone des Minderkühlabschnitts, jedenfalls zumindest ein Messpunkt innerhalb des Minderkühlabschnitts, und
- T2:
- mittlere Strangschalentemperatur an dem zweiten Messpunkt P2.
- P 1 :
- End of the last cooling zone of the intensive cooling section, in any case at least one measuring point within the intensive cooling section,
- T 1 :
- average strand shell temperature at the first measuring point P 1 ,
- P 2 :
- End of the first cooling zone of the lower cooling section, in any case at least one measuring point within the lower cooling section, and
- T 2 :
- mean strand shell temperature at the second measuring point P 2 .
Zur Berechnung der Strangtemperaturen T1 und T2 und der Strangschalendicken bei den Messpunkten P1 und P2 und der zugehörigen Sumpfspitzenpositionen wird ein mathematisch - physikalisches Rechenmodell verwendet. Ein solcherart bestimmter bzw. gemessener Wiedererwärmungsfaktor WEF wird anschließend mit einem maximalen Wiedererwärmungsfaktor WEFmax verglichen, der materialabhängig ist und im Voraus bestimmt bzw. festgelegt worden ist. Solange der aktuell gemessene Wiedererwärmungsfaktor WEFaktuell kleiner ist als der maximale Wiedererwärmungsfaktor WEFmax, wird in zumindest einer Kühlzone des Intensivkühlabschnitts die Kühlung der Randbereiche des Stranges verstärkt, z.B. durch Zuschaltung von weiteren zusätzlichen Kühldüsen im Kantenbereich des Stranges und/oder durch Erhöhung des eingestellten Kühlmittelstroms, mit dem der Strang in seinen Randbereichen beaufschlagt bzw. gekühlt wird. Beide diese Varianten, d.h. die Zuschaltung von zusätzlichen Kühldüsen bzw. die Erhöhung der zugehörigen Kühlmittelmenge (z.B. Spritzwasser), erfolgen stets unter Beachtung bzw. Einhaltung der folgenden Aspekte:
- Die Temperatur an der Strangkante bzw. in den Randbereichen des Stranges liegt nicht unter der durch den Duktilitätsverlauf vorgegebenen kritischen Temperatur;
- Die Sumpfspitze besitzt keine oder eine möglichst gering ausgeprägte W - Form über der Strangbreite; und
- Der Temperaturanstieg zwischen der letzten Kantendüse (d.h. an dem ersten Messpunkt P1 innerhalb des Intensivkühlabschnitts) und der ersten Zone ohne Kantendüsen (d.h. an dem zweiten Messpunkt P2 innerhalb des Minderkühlabschnitts) darf nicht zu hoch sein, bzw. den zulässigen maximalen Wiedererwärmungsfaktor WEFmax nicht überschreiten.
- The temperature at the edge of the strand or in the edge regions of the strand is not below the critical temperature given by the course of the ductility;
- The sump tip has no or as little as possible W - shape over the strand width; and
- The temperature increase between the last edge nozzle (ie at the first measuring point P 1 within the intensive cooling section) and the first zone without edge nozzles (ie at the second measuring point P 2 within the minor cooling section) must not be too high, or the maximum permissible rewarming factor WEF max do not exceed.
Ergänzend kann für die obigen beiden Varianten zur Verstärkung der Kühlung in den Randbereichen des Stranges vorgesehen sein, dass auch die jeweils aktuelle Lage bzw. Position der Sumpfspitze überprüft bzw. mit berücksichtigt wird. Hierzu wird eine Berechnung des Sumpflängenverlaufs über der Strangbreite vorgenommen. Falls auf Grundlage dieser Berechnung festgestellt wird, dass die berechnete Sumpfspitzendifferenz im Vergleich zu einer vorbestimmten maximalen Sumpfspitzendifferenz, die einen erlaubten oberen Grenzwert darstellt, zu hoch ist, wird dann die Kühlung in den Randbereichen des Stranges nach einer der beiden genannten Varianten verstärkt. Andernfalls, nämlich für den Fall, dass die festgestellte Sumpfspitzendifferenz nicht zu hoch sein sollte, wird die Kühlung in dem Intensivkühlabschnitt nicht weiter verstärkt.In addition, it can be provided for the above two variants for enhancing the cooling in the edge regions of the strand, that the respective current position or position of the sump tip is checked or taken into account. For this a calculation of the sump length profile over the strand width is made. If it is determined on the basis of this calculation that the computed sump tip difference is too high in comparison to a predetermined maximum sump tip difference, which represents an allowed upper limit, then the cooling in the edge regions of the strand is amplified according to one of the two variants mentioned. Otherwise, namely, in the event that the detected sump tip difference should not be too high, the cooling in the intensive cooling section is not further enhanced.
In vorteilhafter Weiterbildung der Erfindung umfasst der Intensivkühlabschnitt zumindest eine Kühlzone mit zusätzlichen Kühldüsen, die einem Randbereich des Stranges zugeordnet sind und zur Verstärkung der Kühlung der Randbereiche des Stranges zugeschaltet werden können.In an advantageous embodiment of the invention, the intensive cooling section comprises at least one cooling zone with additional cooling nozzles, which are associated with an edge region of the strand and can be switched on to reinforce the cooling of the edge regions of the strand.
Nachstehend sind bevorzugte Ausführungsformen der Erfindung anhand einer schematisch vereinfachten Zeichnung im Detail beschrieben. Es zeigen:
-
Fig. 1 ,Fig. 2 jeweils eine Seitenansicht einer erfindungsgemäßen Stranggießanlage, -
Fig. 3 eine Darstellung des Sumpfspitzenverlaufen (A) sowie des Temperaturverlaufes nach dem Intensivkühlbereich (B) und des Temperaturverlaufes nach dem Minderkühlabschnitt (C), -
Fig. 4 ,Fig. 5 jeweils Ablaufdiagramme zur Optimierung einer Kühlung innerhalb des Intensivkühlabschnitts der Stranggießanlage vonFig. 1 , und -
Fig. 6 eine Draufsicht auf Kühlzonen innerhalb des Intensivkühlabschnitts einer Stranggießanlage vonFig. 1 .
-
Fig. 1 .Fig. 2 each a side view of a continuous casting plant according to the invention, -
Fig. 3 a representation of the Sumpfspitzenverläufe (A) and the temperature profile after the intensive cooling area (B) and the temperature profile after the Minor cooling section (C), -
Fig. 4 .Fig. 5 each flowchart for optimizing cooling within the intensive cooling section of the continuous casting ofFig. 1 , and -
Fig. 6 a plan view of cooling zones within the intensive cooling section of a continuous casting ofFig. 1 ,
In
Die Strangführung 14 der Stranggießanlage 10 umfasst einen Richtbereich I, durch den der Strang S vollständig in die horizontale Richtung umgelenkt wird. Des Weiteren umfasst die Strangführung 14 einen Biegebereich II, durch den der Strang S, nachdem er aus der Kokille 12 ausgetreten ist, in Richtung der Horizontalen umgelenkt wird. Der Richtbereich I und der Biegebereich II sind in der Darstellung von
Die Förderrichtung, in der der Strang S entlang der Strangführung 14 der Stranggießanlage 10 transportiert wird, ist in der Darstellung von
Ein wesentliches Merkmal der Stranggießanlage 10 besteht darin, dass die Strangführung 14 einen Intensivkühlabschnitt 20 aufweist, der unmittelbar nach dem Austreten des Stranges S aus der Kokille 12 beginnt und - wie in
Durch die vorstehend genannte intensive Kühlung der Randbereiche des Stranges S in dem Intensivkühlabschnitt 20, die wegen der hier noch sehr dünnen Strangschale auch den noch flüssigen Strangkern beeinflusst, wird erfindungsgemäß erreicht, dass der Längenunterschied in der Sumpfspitze im Vergleich zum Stand der Technik vorteilhaft vermindert wird. Dies ist in der Darstellung von
Wie aus
Im Betrieb der erfindungsgemäßen Stranggießanlage 10 bzw. bei Durchführung eines entsprechenden Verfahrens zum Stranggießen eines metallischen Produkts 11 stellt sich zwischen dem Intensivkühlabschnitt 20, in dem die Randbereiche des Stranges S einer verstärkten Kantenkühlung unterzogen werden, und dem Minderkühlabschnitt 16, in dem eine reduzierte Kühlmittelbeaufschlagung für die Randbereiche des Stranges S vorgesehen ist, ein Temperaturanstieg ein. Hierbei ist für die Erfindung von Bedeutung, dass ein solcher Temperaturanstieg nicht zu hoch wird. Ein zu starker und zu schneller Anstieg des bereits erstarrten Materials des Stranges S kann ansonsten zu Innenrissen führen.In operation of the
Die Einhaltung eines nicht zu hohen Temperaturanstiegs zwischen dem Intensivkühlabschnitt 20 und dem Minderkühlabschnitt 16 wird erfindungsgemäß durch die Bildung eines Wiedererwärmungsfaktors WEF [°C/(mm * sec)] gewährleistet. Ein solcher Wiedererwärmungsfaktor WEF bestimmt sich durch den Quotienten der Differenz zwischen einer Temperatur T1 an einem ersten Messpunkt P1 und einer Temperatur T2 an einem zweiten Messpunkt P2, zur mittleren Dicke der Strangschale an den Messpunkten P1 und P2, und zur Transportzeit des Stranges S zwischen den Messpunkten P1 und P2. Entsprechend bestimmt sich die Einheit für den Wiedererwärmungsfaktor WEF zu [°C/(mm * sec)]. Diesbezüglich versteht sich, dass der erste Messpunkt P1 in einer Kühlzone innerhalb des Intensivkühlabschnitts 20 angeordnet ist, wobei der zweite Messpunkt P2 in einer Kühlzone innerhalb des Minderkühlabschnitts 16 angeordnet ist. Beispielsweise befindet sich der erste Messpunkt P1 am Ende der letzten Kühlzone des Intensivkühlabschnitts 20 (mit verstärkter Kantenkühlung), wobei der zweite Messpunkt P2 sich am Ende der ersten Kühlzone des Minderkühlabschnitts 16 (mit reduzierter Kantenkühlung) befindet. Bei den Temperaturen T1 und T2 handelt es sich um die mittleren Strangschalentemperaturen an den Messpunkten P1 bzw. P2. Zur Berechnung der Strangtemperaturen T1, T2, der Sumpfspitzenpositionen und der Strangschalendicken wird ein mathematisch-physikalisches Rechenmodell verwendet.The maintenance of a not too high temperature increase between the
Eine Position der ersten und zweiten Messpunkte entlang der Strangführung 14 ist in der Darstellung von
Unter Verwendung der vorstehend erläuterten Messpunkte P1 und P2 wird bei Durchführung eines Verfahrens nach der vorliegenden Erfindung zunächst ein aktueller Wiedererwärmungsfaktor bestimmt bzw. berechnet, nämlich unter Verwendung von folgender Beziehung:
Im Anschluss hieran wird dann der aktuelle Wiedererwärmungsfaktor mit WEFaktuell mit einem zulässigen maximalen Wiedererwärmungsfaktor WEFmax verglichen, der materialabhängig ist und im Voraus festgelegt wird. In Abhängigkeit des Vergleichs zwischen WEFaktuell und WEFmax kann dann die Kühlung der Randbereiche des Stranges S innerhalb des Intensivkühlabschnitts 20 verstärkt werden, was nachfolgend anhand der Ablaufdiagramme im Einzelnen erläutert ist:
Das Ablaufdiagramm von
The flowchart of
In einem nächsten Schritt wird der Wert des aktuellen Wiedererwärmungsfaktors WEFaktuell mit einem zulässigen maximalen Wiedererwärmungsfaktor WEFmax verglichen. Falls WEFaktuell größer als WEFmax sein sollte, ist dies ein Anzeichen dafür, dass der Temperaturanstieg zwischen dem Intensivkühlabschnitt 20 und dem Minderkühlabschnitt 16 bereits zu groß ist, so dass die Kühlung in dem Intensivkühlabschnitt 20 nicht verstärkt wird, bzw. die in diesem Abschnitt eingesetzte Kühlmittelmenge nicht erhöht wird. Falls jedoch die Bedingung WEFaktuell < WEFmax erfüllt sein sollte, wird in einem nächsten Schritt der Sumpflängenverlauf über der Strangbreite anhand eines mathematisch-physikalischen Rechenmodells berechnet. Falls sich hierbei bei einem Vergleich mit einer vorbestimmten maximalen Sumpfspitzendifferenz, die einen erlaubten oberen Grenzwert darstellt, herausstellen sollte, dass die berechnete Sumpfspitzendifferenz zu hoch ist, kann in Folge dessen die Kühlung im Intensivkühlabschnitt 20 geeignet verstärkt werden, nämlich durch Erhöhung der zugehörigen Kühlmittelmenge in zumindest einer Kühlzone des Intensivkühlabschnitts 20, vorzugsweise in allen Kühlzonen des Intensivkühlabschnitts 20. Demgegenüber bleibt die Kühlleistung in dem Intensivkühlabschnitt 20 unverändert, falls die berechnete Sumpfspitzendifferenz für den Strang S sich als nicht zu hoch darstellt.In a next step, the value of the current rewarming factor WEF is currently compared with a permissible maximum rewarming factor WEF max . If WEF is currently greater than WEF max , this is an indication that the temperature rise between the
Das Ablaufdiagramm gemäß
Das Ablaufdiagramm von
Das Ablaufdiagramm von
In gleicher Weise wie bei
Die Ablaufdiagramme von
- 22
- Stützrolle(n)Support roller (s)
- 44
- Kühlmittel, z.B. SpritzwasserCoolant, e.g. splash
- 55
- Flüssiger Sumpf (des Stranges S)Liquid swamp (Strand S)
- 66
- Sumpfspitzecrater tip
- 77
- Durcherstarrter Teil des Sranges SSteady part of the S S
- 88th
- Wasserkühlungwater cooling
- 1010
- Stranggießanlagecontinuous casting plant
- 1111
- Metallisches ProduktMetallic product
- 1212
- Kokillemold
- 1414
- Strangführungstrand guide
- 1616
- Minderkühlabschnitt (der Strangführung 14)Minor cooling section (strand guide 14)
- 1818
- Horizontaler Bereich (der Strangführung 14)Horizontal area (strand guide 14)
- 2020
- Intensivkühlabschnitt (der Strangführung 14)Intensive cooling section (the strand guide 14)
- 2222
- Zusätzliche (zuschaltbare) Kühldüse(n)Additional (switchable) cooling nozzle (s)
- FF
- Förderrichtung (des Stranges S)Conveying direction (strand S)
- II
- Richtbereich (der Strangführung 14)Straightening range (strand guide 14)
- IIII
- Biegebereich (der Strangführung 14)Bending area (strand guide 14)
- L10 L 10
-
Länge der Stranggießanlage 10Length of the
continuous casting plant 10 - L16 L 16
-
Länge des Minderkühlabschnitts 16Length of the
minimum cooling section 16 - L20 L 20
-
Länge des Intensivkühlabschnitts 20Length of the
intensive cooling section 20 - MM
- Mittiger Bereich (des Stranges S)Middle section (strand S)
- P1 P 1
- Erster Messpunkt (innerhalb des Intensivkühlabschnitts 20)First measuring point (within the intensive cooling section 20)
- P2 P 2
- Zweiter Messpunkt (innerhalb des Minderkühlabschnitts 16)Second measuring point (within the lower cooling section 16)
- RR
- Randbereich(e) des Stranges SEdge region (s) of the strand S
- SS
- Strang (des metallischen Produkts 11)Strand (of the metallic product 11)
- T1 T 1
- Temperatur am ersten Messpunkt P1 Temperature at the first measuring point P 1
- T2 T 2
- Temperatur am zweiten Messpunkt P2 Temperature at the second measuring point P 2
- WEFaktuell WEF current
- Aktueller WiedererwärmungsfaktorCurrent reheat factor
- WEFmax WEF max
- Zulässiger maximaler WiedererwärmungsfaktorPermissible maximum reheating factor
Claims (15)
dadurch gekennzeichnet,
dass die Randbereiche (R) des Stranges (S) in einem Intensivkühlabschnitt (20) der Strangführung (14), der unmittelbar nach dem Austreten des Stranges (S) aus der Kokille (12) beginnt und in Förderrichtung (F) vor dem Minderkühlabschnitt (16) liegt, zumindest genauso stark gekühlt werden wie ein mittiger Bereich (M) des Stranges (S).Method for continuous casting of a metallic product (11), wherein in a continuous casting plant (10) a strand (S) of the metallic product (11) emerges continuously from a mold (12), in particular vertically downwards, and then along a strand guide (14) a conveying direction (F) is transported, wherein the strand (S) in a directional region (I) is deflected in the horizontal direction, wherein the edge regions (R) of the strand (S) within a Minderkühlabschnitts (16) of the strand guide (14), which is provided at least in the conveying direction (F) in front of the straightening region (I) and preferably also within the straightening region (I) are cooled less than compared to a horizontal region (18) of the strand guide (14) in the conveying direction (F) after Straightening range (I),
characterized,
in that the edge regions (R) of the strand (S) begin in an intensive cooling section (20) of the strand guide (14) which starts immediately after the strand (S) leaves the mold (12) and in the conveying direction (F) in front of the minor cooling section (FIG. 16), be cooled at least as strong as a central region (M) of the strand (S).
dass die Strangführung (14) unmittelbar nach dem Austreten des Stranges (S) aus der Kokille (12) einen in Förderrichtung (F) vor dem Minderkühlabschnitt (16) liegenden Intensivkühlabschnitt (20) aufweist, in dem die Randbereiche (R) des Stranges (S) zumindest genauso stark kühlbar sind wie ein mittiger Bereich (M) des Stranges (S).Continuous casting plant (10) for producing a metallic product (11), comprising
that the strand guide (14) immediately after the exit of the strand (S) from the mold (12) comprises in the conveying direction (F) prior to reducing cooling section (16) lying intensive cooling section (20) in which the edge regions (R) of the strand ( S) are at least as strong coolable as a central region (M) of the strand (S).
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102017213842.4A DE102017213842A1 (en) | 2017-08-08 | 2017-08-08 | Method and plant for continuous casting of a metallic product |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3441157A1 true EP3441157A1 (en) | 2019-02-13 |
EP3441157B1 EP3441157B1 (en) | 2021-04-21 |
Family
ID=62947993
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18183113.2A Active EP3441157B1 (en) | 2017-08-08 | 2018-07-12 | Method and apparatus for cintinuous casting of a metallic product |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP3441157B1 (en) |
DE (1) | DE102017213842A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113414362A (en) * | 2021-05-31 | 2021-09-21 | 中南大学 | Cooling system method for simultaneously improving strength and plasticity of corner of high-carbon steel small square billet |
CN113695548A (en) * | 2021-08-26 | 2021-11-26 | 宝武杰富意特殊钢有限公司 | Production process of continuous casting billet and continuous casting billet |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4417808A1 (en) * | 1993-05-24 | 1994-12-01 | Voest Alpine Ind Anlagen | Method for the continuous casting of a metal billet |
JPH09225607A (en) * | 1996-02-23 | 1997-09-02 | Sumitomo Metal Ind Ltd | Steel continuous casting method |
DE19931331A1 (en) * | 1999-07-07 | 2001-01-18 | Siemens Ag | Method and device for producing a strand of metal |
WO2001091943A1 (en) * | 2000-06-02 | 2001-12-06 | Voest-Alpine Industrieanlagenbau Gmbh & Co. | Method for continuously casting a metal strand |
DE102006056683A1 (en) * | 2006-01-11 | 2007-07-12 | Sms Demag Ag | Continuous casting of metal profiles, first cools cast strip then permits thermal redistribution to re-heat surface before mechanical deformation |
DE102008032970A1 (en) * | 2008-07-10 | 2010-01-14 | Sms Siemag Aktiengesellschaft | A method of cooling a strand emerging from a continuous casting mold |
WO2016012131A1 (en) * | 2014-07-23 | 2016-01-28 | Sms Group Gmbh | Method for producing a metal product |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3596290B2 (en) * | 1998-06-30 | 2004-12-02 | Jfeスチール株式会社 | Steel continuous casting method |
DE19916190C2 (en) * | 1998-12-22 | 2001-03-29 | Sms Demag Ag | Slab continuous casting method and apparatus |
DE10001073A1 (en) * | 2000-01-13 | 2001-07-19 | Sms Demag Ag | Prevention of intensive cooling of band edge regions of cast rod involves producing energy-rich spray beam of deviating medium and directing across band edge regions against running water |
DE10051959A1 (en) * | 2000-10-20 | 2002-05-02 | Sms Demag Ag | Method and device for continuous casting and subsequent shaping of a steel casting strand, in particular a casting strand with block format or pre-profile format |
DE10329030A1 (en) * | 2003-03-11 | 2004-09-23 | Sms Demag Ag | Optimizing the edge regions of extrusion surfaces in extrusion equipment useful in extrusion operations avoiding or greatly reducing the throwing out of casting powder |
DE102011077322A1 (en) | 2011-06-09 | 2012-12-13 | Sms Siemag Ag | Process for processing a continuously cast material |
DE102015223788A1 (en) * | 2015-11-30 | 2017-06-01 | Sms Group Gmbh | Method of continuous casting of a metal strand and cast strand obtained by this method |
-
2017
- 2017-08-08 DE DE102017213842.4A patent/DE102017213842A1/en not_active Withdrawn
-
2018
- 2018-07-12 EP EP18183113.2A patent/EP3441157B1/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4417808A1 (en) * | 1993-05-24 | 1994-12-01 | Voest Alpine Ind Anlagen | Method for the continuous casting of a metal billet |
JPH09225607A (en) * | 1996-02-23 | 1997-09-02 | Sumitomo Metal Ind Ltd | Steel continuous casting method |
DE19931331A1 (en) * | 1999-07-07 | 2001-01-18 | Siemens Ag | Method and device for producing a strand of metal |
WO2001091943A1 (en) * | 2000-06-02 | 2001-12-06 | Voest-Alpine Industrieanlagenbau Gmbh & Co. | Method for continuously casting a metal strand |
DE102006056683A1 (en) * | 2006-01-11 | 2007-07-12 | Sms Demag Ag | Continuous casting of metal profiles, first cools cast strip then permits thermal redistribution to re-heat surface before mechanical deformation |
DE102008032970A1 (en) * | 2008-07-10 | 2010-01-14 | Sms Siemag Aktiengesellschaft | A method of cooling a strand emerging from a continuous casting mold |
WO2016012131A1 (en) * | 2014-07-23 | 2016-01-28 | Sms Group Gmbh | Method for producing a metal product |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113414362A (en) * | 2021-05-31 | 2021-09-21 | 中南大学 | Cooling system method for simultaneously improving strength and plasticity of corner of high-carbon steel small square billet |
CN113414362B (en) * | 2021-05-31 | 2022-04-22 | 中南大学 | A cooling system method for simultaneously improving the strength and plasticity of high carbon steel billet corners |
CN113695548A (en) * | 2021-08-26 | 2021-11-26 | 宝武杰富意特殊钢有限公司 | Production process of continuous casting billet and continuous casting billet |
Also Published As
Publication number | Publication date |
---|---|
DE102017213842A1 (en) | 2019-02-14 |
EP3441157B1 (en) | 2021-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2155411B1 (en) | Device for influencing the temperature distribution over a width | |
DE69529513T2 (en) | METHOD FOR CONTINUOUS CASTING FOR THIN CASTING PIECE | |
DE1452117C3 (en) | Process and rolling train for hot rolling slabs | |
EP1478479B1 (en) | Method for the continuous casting and direct shaping of a metal strand, in particular a steel cast strand | |
EP0121148A1 (en) | Method of making hot rolled strip with a high quality section and flatness | |
DE10163070A1 (en) | Method and device for the controlled straightening and cooling of wide metal strip, in particular steel strip or sheet metal, emerging from a hot strip rolling mill | |
DE3006544C2 (en) | Device for controlling the width of a slab during hot rough rolling | |
EP3441157B1 (en) | Method and apparatus for cintinuous casting of a metallic product | |
DE102020209794A1 (en) | Process for controlling or regulating the temperature of a cast strand in a continuous casting plant | |
EP2025432B2 (en) | Method for creating steel long products through strand casting and rolling | |
EP4122622A1 (en) | Strand guiding device and method for continuous casting of a metallic product in a continuous casting plant with such a strand guiding device | |
EP3016762B1 (en) | Cast-rolling installation and method for producing metallic rolled stock | |
DE4243857C1 (en) | Process for producing a steel strip by casting a strand and then rolling it | |
EP3849729B1 (en) | Method for open-loop or closed-loop control of the temperature of a casting strand in a continuous casting machine | |
DE60010803T2 (en) | Method and device for rolling a strip | |
WO2004065030A1 (en) | Method and device for producing continuously cast steel slabs | |
EP0054867A1 (en) | Method of cooling a continuously cast steel strand | |
EP3628416A1 (en) | Process and system for continuously casting a metal product | |
EP1080800B1 (en) | Method for flexibly rolling a metal strip | |
DE2853868C2 (en) | Process for the continuous casting of steel as well as the correspondingly produced steel strand | |
DE102018220386A1 (en) | Method and device for setting the target temperatures of cooling segments of a continuous caster | |
DE3401894A1 (en) | Method for the production of rolled strip with high strip shape accuracy and flatness | |
EP3535071B1 (en) | Method and system for producing a metal strip | |
EP1827735B1 (en) | Method and device for continuous casting of metals | |
WO2000000307A1 (en) | Method and device for rolling hot strips |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20180712 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20201111 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502018004870 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1384096 Country of ref document: AT Kind code of ref document: T Effective date: 20210515 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210421 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210721 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210823 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210721 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210722 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210821 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502018004870 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
26N | No opposition filed |
Effective date: 20220124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210731 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210821 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210712 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210731 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210712 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210731 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20220712 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220712 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20180712 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230707 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20230724 Year of fee payment: 6 Ref country code: AT Payment date: 20230720 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20230719 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 |