EP3385637A1 - Electrical hot water processing system - Google Patents
Electrical hot water processing system Download PDFInfo
- Publication number
- EP3385637A1 EP3385637A1 EP18165855.0A EP18165855A EP3385637A1 EP 3385637 A1 EP3385637 A1 EP 3385637A1 EP 18165855 A EP18165855 A EP 18165855A EP 3385637 A1 EP3385637 A1 EP 3385637A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- layer
- heat transfer
- transfer element
- substrate
- hot water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 50
- 238000010438 heat treatment Methods 0.000 claims abstract description 76
- 239000000758 substrate Substances 0.000 claims abstract description 47
- 238000000576 coating method Methods 0.000 claims abstract description 23
- 239000011248 coating agent Substances 0.000 claims abstract description 22
- 239000000463 material Substances 0.000 claims abstract description 12
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 11
- 238000007751 thermal spraying Methods 0.000 claims description 7
- 239000010936 titanium Substances 0.000 claims description 7
- 229910052719 titanium Inorganic materials 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 5
- 238000001746 injection moulding Methods 0.000 claims description 4
- 238000002955 isolation Methods 0.000 claims description 2
- 238000009413 insulation Methods 0.000 abstract description 13
- 239000010410 layer Substances 0.000 description 143
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 23
- 239000010949 copper Substances 0.000 description 23
- 229910052802 copper Inorganic materials 0.000 description 23
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 11
- 239000004020 conductor Substances 0.000 description 9
- 238000007789 sealing Methods 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000010292 electrical insulation Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- QDZRBIRIPNZRSG-UHFFFAOYSA-N titanium nitrate Chemical compound [O-][N+](=O)O[Ti](O[N+]([O-])=O)(O[N+]([O-])=O)O[N+]([O-])=O QDZRBIRIPNZRSG-UHFFFAOYSA-N 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 3
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000002346 layers by function Substances 0.000 description 3
- 230000000873 masking effect Effects 0.000 description 3
- 229910000623 nickel–chromium alloy Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 2
- 229910018487 Ni—Cr Inorganic materials 0.000 description 2
- 235000011941 Tilia x europaea Nutrition 0.000 description 2
- 230000002146 bilateral effect Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000005388 borosilicate glass Substances 0.000 description 2
- 230000002308 calcification Effects 0.000 description 2
- 239000012876 carrier material Substances 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000005338 heat storage Methods 0.000 description 2
- 239000004571 lime Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- 238000004659 sterilization and disinfection Methods 0.000 description 2
- 239000004575 stone Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 238000009423 ventilation Methods 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- QLJCFNUYUJEXET-UHFFFAOYSA-K aluminum;trinitrite Chemical compound [Al+3].[O-]N=O.[O-]N=O.[O-]N=O QLJCFNUYUJEXET-UHFFFAOYSA-K 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000010285 flame spraying Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- 150000002826 nitrites Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 238000007750 plasma spraying Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- -1 polyoxymethylenes Polymers 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000005546 reactive sputtering Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000012815 thermoplastic material Substances 0.000 description 1
- 150000003608 titanium Chemical class 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H1/00—Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
- F24H1/10—Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
- F24H1/101—Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium using electric energy supply
- F24H1/102—Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium using electric energy supply with resistance
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2203/00—Aspects relating to Ohmic resistive heating covered by group H05B3/00
- H05B2203/013—Heaters using resistive films or coatings
Definitions
- the present invention relates to an electric hot water treatment system.
- a tubular heater of a tubular heater heating system consists of a coiled Schuleiterdraht, this being electrically isolated by an inorganic insulating material from the outer metallic jacket tube.
- the system has a high thermal mass and a relatively poor thermal conductivity. Because of this, it is sluggish and leads to significant losses in the performance characteristics.
- the pipe heating system is strongly calcification prone.
- the advantage of the pipe heating system is the worldwide use in all water qualities. In addition, no discharge lines are needed and thus the flow pressure losses are low.
- the bare-wire heating system has clear advantages. Due to the low mass of the heating wire, which is located directly in the flowing medium, there is an excellent transient temperature behavior. As a result, such a system can be controlled fully electronically without any problem. Furthermore, the high surface load on the bare wire results in a significantly longer service life. This is based on the fact that in lime-containing water the lime is blasted off the bare wire due to the high surface loads.
- a disadvantage of the bare-wire heating system is the limitation to water qualities with low electrical conductivity. Another disadvantage is that the metallic heating element is located directly in the flowing water and due to its certain discharge lines must be provided before and after the bare wire.
- US 6,376,816 shows a heating system for a hot water treatment system.
- the heating system is tubular and has a substrate and an electrically conductive thin film on the substrate as a heating element.
- US 6,037,574 shows a heating system for an electric hot water treatment system, which is designed as a tube with a substrate and a heating element in the form of an electrical thin film.
- the hot water treatment system comprises a layer heat transfer element comprising a substrate and a heating unit made of an electrical coating material.
- the electrical coating material is arranged on the substrate.
- the layer heat transfer element is configured as a double-walled heat transfer element and has an inwardly leading flow channel, an outward flow channel, a thermally sprayed electrically conductive layer, a thermally sprayed electrically insulating layer, a substrate and an insulation unit.
- an alternative heating for the electrical flow heating is provided.
- a thin electrical layer is provided on a substrate, which has a relatively high ohmic resistance, so that the medium to be heated is heated by the Joule effect.
- the heating system according to the invention is inexpensive to manufacture and efficient and reliable in operation.
- the functional thin layers of the heating system are thermally stable, electrically conductive and electrically insulating against the medium to be heated.
- the layer according to the invention is a thermally conductive and electrically insulating layer which protects the electrically conductive layer against corrosion, deposits (fouling) and the removal by particles in the medium to be heated.
- the thermally conductive and electrically insulating layer has a high thermal stability and a high dielectric strength.
- the layer has a high insulation resistance, so that no leakage currents occur in the flowing medium.
- a heating for example, a water heater, the flow pressure losses and the volume of construction could be reduced.
- an efficient substrate geometry of the layer is provided.
- a suitable coating technology as well as an efficient arrangement of the multifunctional layers on the layer is also provided.
- a suitable contacting of the electrically conductive layers of the layer is provided.
- an implementation of the layer in a heating system for the electric water heating is proposed.
- the electric hot water treatment system described above in a domestic appliance such as a water heater, a hot water tank, a boiling water device, a hot water machine, a hand dryer, a heat pump, a ventilation unit, an air conditioner, a dehumidifier, a heat storage, a natural stone heating, underfloor heating , a direct heating or a radiator
- a domestic appliance such as a water heater, a hot water tank, a boiling water device, a hot water machine, a hand dryer, a heat pump, a ventilation unit, an air conditioner, a dehumidifier, a heat storage, a natural stone heating, underfloor heating , a direct heating or a radiator
- the electric water heating system can also be used in household appliances, such as coffee machines, Tumble dryers, laundry machines, dishwashers, cleaning machines, disinfection machines or the like can be used.
- the invention also relates to a method for producing an electric hot water treatment system.
- an electrical coating material can be applied to a substrate.
- the layer heat transfer element may be configured as a double-walled heat transfer element.
- An electrically conductive layer may be thermally deposited on the substrate.
- An electrically insulating layer may be thermally sprayed on the electrically conductive layer.
- the double-walled heating element can be manufactured by an injection molding process.
- electrical power components may be thermally sprayed.
- an alumina layer may be provided on a substrate, a titanium suboxide layer may be provided on the first alumina layer, and another alumina layer may be deposited on the titanium suboxide layer.
- Fig. 1A to 1D each show a schematic representation of an electrical layer heat transfer element. As in the Fig. 1A to 1D to see four different configurations of the heat transfer element are shown.
- Fig. 1A is an annular or cylindrical heat transfer element
- Fig. 1B is a flat-shaped heat transfer element
- Fig. 1C is a spiral heat transfer element
- Fig. 1D a helical heat transfer element is shown.
- the heat transfer element has a substrate 100 and a coating region 200.
- Circular substrates can be coated externally and internally after pretreatment of the surfaces. The coatings on the annular substrates can be applied over the entire surface via appropriate masking or special etching.
- the substrate 100 according to Fig. 1A is annular and the coating area 200, ie the area in or on which the layer according to the invention is provided, is applied inside or outside.
- the heat transfer element according to Fig. 1B is flat-shaped and a coating area 200 is provided on the flat-shaped substrate 100.
- the heat transfer element according to Fig. 1C is at least partially configured in a spiral shape.
- the substrate 100 has a first, for example, flat end 110, a second, for example, flat end 120, and a coating region 200 therebetween, wherein the coating region is configured at least partially in a spiral shape.
- a substrate 100 having a flat first end, a flat second end, and a coating region 200 therebetween is provided which is helically shaped.
- the flat, spiral as well as the helical substrates can in principle also be made of all materials.
- thermoplastic materials polyamides and polyoxymethylenes as well as the ceramic materials aluminum oxides and nitrites can be used.
- Fig. 2 shows a schematic representation of an electrical layer heat transfer element.
- the heat transfer element can be configured as two half shells, wherein these half shells can be at least partially coated on their inner side to provide the heat transfer layers.
- the heat transfer element 300 has an inlet 310, an outlet 320, at least one channel 330 between the inlet and outlet 310, 320 and coating regions 200, which extend along the channel 330.
- Fig. 3 and 4 show a schematic representation of a layer structure of a sheet-like electrical layer heat transfer element.
- the preparation of the flat-shaped layer heat transfer elements begins with the complete cleaning in the surfactant wet bath. Thereafter, a nickel-chromium alloy layer is realized over the whole surface - with a distance of 1 mm being kept to the edge. Furthermore, the front and the back of the flat-shaped Aiuminiumoxidsubstrates 101 are provided with a mask, so that the distance to the boundary of 1 mm is maintained. As a result, two electrically separate areas are generated. By separating the electrical heating conductor, the heating element can later the two areas use either in series or in parallel.
- the electrically insulating aluminum oxide layer is applied over its entire surface on both sides. It is masked only a small recess at the two ends of the heating element, at the point where the electrical contact is later attached.
- a heat conductor layer 102 nickel-chromium, indium-tin oxide, titanium nitrate
- a first contact layer 100a made of copper can be applied.
- a second contact layer 100b for example also made of copper, may be provided.
- an insulating layer 103 for example aluminum oxide
- contact layer bolts 100c for example of copper, may be provided at the ends.
- a sealing bolt 100d with a groove for an O-ring may be provided.
- an electrical contacting bolt 100e may be provided.
- Fig. 5 shows a schematic representation of a layer structure of an annular or cylindrical electric layer heat transfer element.
- the annular electric layer heat transfer element has a substrate 101, an insulation layer 102, a heat conductor layer 103, a heat conductor contact layer 103a, and an insulation layer 104.
- the substrate 101 may be made of alumina, borosilicate glass or copper.
- the insulating layer 102 may be made of silicon oxide, for example.
- the heating conductor layer 103 may be made of nickel-chromium, indium-zinc oxide or, for example, titanium nitrate.
- the heating conductor contact layer 103a may be made of copper, for example.
- the second insulating layer 104 may be made of, for example, aluminum oxide.
- these layers can be used by thermal spraying, sputtering from physical vapor deposition.
- thermal spraying, sputtering from physical vapor deposition By means of these methods, full-area and partially electrically conductive and electrically insulating functional layers are deposited on the annular and flat substrate geometries.
- aluminum oxide and also copper pipes and stainless steel pipes are coated by means of thermal spraying and sputtering.
- the Fig. 5 shows the layer structure of the annular heat transfer elements.
- the annular heat transfer elements lead inside the tube to be heated medium.
- the electrically insulating and electrically conductive layers 102, 103 the electrical power is generated outside of the medium to be heated (water).
- the big advantage of this is that the flow pressure losses are reduced.
- the flat-layered heat transfer elements ( Fig. 2 ) lie directly in passing medium. Here is the great advantage that the electrical power can be fed directly to the medium.
- Thermal spraying in the form of atmospheric plasma spraying (APS), initially produces a defined sub-titanium suboxide layer on the outside of the aluminum oxide tube 101.
- This titanium suboxide layer with a resistivity of 0.04 ohm cm can serve as a heating conductor and generates a power, depending on the layer thickness and length of the heating element, from 500 W to 5000 W.
- the alumina tube can be provided by means of a corresponding masking.
- the masking can be constructed so that recesses are provided for contacting at corresponding locations.
- copper 103a can be injected at the contact points. The copper serves to improve the surface roughness and to minimize local hotspots.
- the contact and contact resistances are reduced later with appropriate electrical contact with, for example, a clamp.
- electrically conductive paints could be used.
- the manufacturing process is completed with the application of a final electrical insulation layer, which is also a thermal insulation layer at the same time.
- a final electrical insulation layer is also a thermal insulation layer at the same time.
- an aluminum oxide layer is used by the APS method.
- an electrically insulating aluminum oxide layer is applied during the thermal spraying before the titanium suboxide layer.
- the aim is to realize an electrical separation between copper and the titanium suboxide with the electrically insulating layer.
- an electrical insulation between the medium to be heated and the heating element is generated. All other process steps are similar to the construction and manufacture of the alumina tube described above.
- sputtering In addition to the coating of the annular substrates, sputtering also offers the possibility of providing flat, spiral and helical substrates by means of a defined layer. In the annular substrates, all substrates are cleaned and subjected to plasma pretreatment before coating. Thereafter, the copper and alumina tube provided with multifunctional layers.
- the nickel-chromium alloy has a resistivity of approximately 0.000112 ohmcm. This allows power to be realized in the range of 500 W to 2500 W.
- an aluminum oxide layer with the reactive sputtering is previously formed, ie in this case, a reactive gas (oxygen, nitrogen) is additionally integrated into the process and used up.
- a reactive gas oxygen, nitrogen
- a mask is applied to deposit a copper layer at the outer sites for later contacting.
- an aluminum oxide layer is applied as a protective layer for electrical and thermal insulation.
- Fig. 6 shows a schematic sectional view of a hydraulic seal and an electrical contact of a flat-shaped heat transfer element.
- a solderable copper layer for sealing the hydraulic sealing bolt, the hydraulic sealing bolt 3 being provided at the end.
- outer circumferential electrically insulating layers of alumina are present.
- an electrical contact pin 2 is provided, for example made of brass. Recesses for soldering between the copper contacting layer and the electrical contact pin 2 may be provided on the substrate of the heat transfer element.
- a flat-shaped layer heat transfer element 8a is shown.
- the flat-shaped layer heat transfer element 8a has a solderable copper layer 8c for sealing the hydraulic sealing bolt 3.
- an outer circumferential electrically insulating layer 8d of, for example, aluminum oxide is present. Recesses 8e may be provided in the substrate for soldering between the copper contacting layer and the studs.
- Fig. 7 shows a schematic sectional view of a double-walled layer heat transfer element according to an embodiment of the invention.
- the double-walled layer transmission element 1060 comprises a copper substrate 1020, a thin outer tube 1030, an inward flow channel 1040, an outer flow channel 1050, an insulation block 1060, an electrically insulating polymer or ceramic stud 1070, a thermally sprayed electrically insulating layer electrically insulating compaction mass) 1080, a thermally sprayed electrically conductive TiO x layer 1090 and optionally a circumferentially fixed lead frame 1091, which is then thermally sprayed or thermally compressed on.
- the electrical contact is in the annular heat transfer elements over clamps or over formed punched grid components ( Fig. 7 ) or via one or more bolts ( Fig. 6 ) realized in the flat-shaped layer heat transfer elements.
- a double-walled layer heat transfer element is presented.
- the stamped grid components can be applied to an electrically insulating layer. Then positioned accordingly and sprayed with a further electrical insulation layer by thermal spraying or compressed with magnesium oxide powder.
- the consideration of such a double-walled heating element could also provide the opportunity to squirt the electronic power components such as triacs and thus minimize the hitherto effort in electrical connection technology.
- a double-walled heat transfer element has a substrate 1020 (made of copper, for example) with an inner flow channel 1040 and an outer flow channel 1050.
- the outer flow channel 1050 may optionally be bounded by an isolation block 1060.
- the heat transfer element further comprises a thermally sprayed electrically conductive layer 1090 and a thermally sprayed electrically insulating layer 1080. Between the electrically conductive layer 1090 and the water in the inner or outer flow channel 1040, 1050, an electrically insulating layer is optionally present, so that the electrically conductive layer is not in direct contact with the water. This can be dispensed with discharge lines.
- Fig. 8 to Fig. 10 each show a schematic representation of a heating unit for a double-walled layer heat transfer element according to an embodiment of the invention.
- Fig. 8 shows a schematic representation of a heating unit for a double-walled layer heat transfer element according to an embodiment of the invention.
- the heating unit 2000 has a circuit board 2100 for contacting the heating elements, an upper flange 2200, an upper intermediate flange 2300, a heater 1000, an insulating body 2400, a lower intermediate flange 2500 and a lower flange 2600.
- a heating is shown, which allows implementation of the layer heat transfer elements in the field of electric hot water treatment.
- the designed double-walled layer heat transfer elements have a basic layer structure, like this one in Fig. 5 has been described for thermally sprayed heating elements.
- the double-walled heat transfer element is characterized by receiving the molded stamped grid components for electrical contacting.
- the stamped grid components are thermally sprayed in an additional step with an electrically insulating layer or compacted with an electrically insulating powder.
- the double-walled layer heat transfer element yet another process step. After the insulation layer has been applied, a thin copper or stainless steel tube is drawn over the prepared heating element in the heated state. By subsequent cooling, this tube forges around the heating element.
- the essential advantage of the double-walled layer heat transfer elements is based on the two-way flow around the fluid along the heat-transferring surface.
- the bilateral flow around, as in Fig. 7 is shown, reduces the surface temperatures and thus promotes the calcification resistance with simultaneous effective heat transfer.
- the layer heat transfer system 1000 has a substrate 1020, an insulation layer 1070, a heating conductor layer 1090, a second insulation layer 104, optionally a stamped grid 1091, an insulation layer 1080, an electrically insulating stud 1070, an insulating body 1060.
- an upper flange 2200 and an upper intermediate flange 2300 may be provided.
- Fig. 10 shows a schematic representation of a hydraulic seal of the layer heat transfer element in a heating block. Furthermore, the heating is characterized by a two-stage hydraulic seal, as in Fig. 14 is shown. On the one hand, sealing with O-rings 2310 between insulating body 2400 and upper intermediate flange 2300 is realized and, secondly, a profile seal 2210 is inserted at the interface between upper intermediate flange 2300 and upper flange 2200. Thus, the conditions are met to implement the bilateral flow around the double-walled layer heat transfer elements.
- the advantages of the invention are, compared to the bare-wire heating system lower pressure losses.
- the electrical layer heat transfer elements can be compared with the Bare wire heating system without restriction of water quality can be used everywhere. Compared to the bare-wire heating system, the electrical layer heat transfer elements can manage without upstream and downstream sections and thus require a smaller volume. Compared to the tubular heater faster heating and cooling times can be realized. Compared to the tubular heater is a greater resistance to deposits (CaCO 3 , CaSO 4 , Mg (OH) 2 ) and air bubbles present.
- the layer heat transfer elements of the invention can in all water heaters, such as: water heater, hot water storage, Boilers, hot water machines, hand dryers, heat pumps, ventilation equipment, air conditioners, dehumidifiers, heat storage, natural stone heaters, underfloor heating / underfloor heating, direct heaters, bathroom radiators, coffee machines, dryers, Washing machines, dishwashers / dishwashers, automatic cleaning machines / devices, disinfection machines / devices.
- Fig. 11A and 11B each show a schematic representation of a layer heat transfer element according to the invention.
- the heat transfer element 1000 has a tube 1020 on which a thermally sprayed electrically insulating layer 1080 and a thermally sprayed electrically conductive layer 1090 is applied.
- the electrically conductive layer 1090 then forms the core of the electrical heating element.
- the heating element may further include an outer tube 1030 and placed in another tube so that water may flow through both an inner flow channel 1040 and an outer flow channel 1050 and be heated by the heating element as it flows through the tube.
- Fig. 11B the heating element is shown without outer tube.
- the heating element furthermore has an electrical connection bolt 1092 and an electrically insulating sleeve 1093.
- Fig. 12A and 12B each show a schematic sectional view of a layer heat transfer element according to one aspect of the present invention.
- the layered heat transfer element comprises a tube or cylindrical substrate 1020, thermally sprayed electrically insulating layers 1080 and thermally sprayed electrically conductive layers 1090.
- the electrically conductive layer 1090 may be contacted via the electrically conductive bolts 1092.
- the sleeves 1093 are configured electrically insulating.
- Fig. 12B shows an enlarged section of the heat transfer element of Fig. 12A .
- Fig. 13A shows a schematic representation of a water heater
- Fig. 13B shows a schematic sectional view of the water heater.
- the instantaneous water heater comprises a layered heat transfer element according to the invention, wherein the layered heat transfer element is incorporated directly during injection molding.
- the heating element 1000 is thus encapsulated with plastic.
- the heating element is then integrated directly into the injection molding.
- Fig. 14 shows a schematic sectional view of a heat transfer element according to another embodiment.
- the heat transfer element comprises a tubular substrate 1040 having thermally sprayed electrically insulating layers 1080 and thermally sprayed electrically conductive layers 1090.
- the electrically conductive layer 1090 may be contacted via the electrically conductive stud 1092.
- a Biank wire heating system 1094 may be integrated to support the heating performance of the layered element.
- a double-walled heat transfer element is provided with a heating conductor of a bare Schuleiterdraht.
- An inner tube of the double-walled heat transfer element may be configured as a copper tube or as an SS tube.
- a thermally sprayed insulating layer may be provided on the inner tube.
- a heating wire eg NiCr 8020
- an electrically insulating layer can be thermally sprayed.
- post-treatment of the layer may take place, whereby tips of the upper insulating layer, which have arisen due to the roughness of the treatment, can be ground off. Subsequently, an outer tube can be pulled over.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Resistance Heating (AREA)
Abstract
Es wird ein elektrisches Warmwasseraufbereitungssystem vorgesehen. Das Warmwasseraufbereitungssystem weist ein Schicht-Wärmeübertragungselement auf, welches ein Substrat und eine Heizeinheit aus einem elektrischen Beschichtungsmaterial aufweist. Das elektrische Beschichtungsmaterial ist auf dem Substrat angeordnet. Das Schicht-Wärmeübertragungselement ist als ein doppelwandiges Wärmeübertragungselement ausgestaltet und weist einen innenführenden Strömungskanal, einen außenführenden Strömungskanal, eine thermisch gespritzte elektrisch leitende Schicht, eine thermisch gespritzte elektrisch isolierende Schicht, ein Substrat und eine Isolationseinheit auf. An electric water heating system is provided. The hot water treatment system comprises a layer heat transfer element comprising a substrate and a heating unit made of an electrical coating material. The electrical coating material is arranged on the substrate. The layered heat transfer element is configured as a double-walled heat transfer element and has an inwardly leading flow channel, an outward flow channel, a thermally sprayed electrically conductive layer, a thermally sprayed electrically insulating layer, a substrate and an insulation unit.
Description
Die vorliegende Erfindung betrifft ein elektrisches Warmwasseraufbereitungssystem.The present invention relates to an electric hot water treatment system.
Kommerzielle Heizsysteme für die elektrische Warmwasseraufbereitung, wie z.B. in Warmwasserspeichern oder auch in Durchlauferhitzern, basieren auf Rohrheizkörper-Heizsystemen oder Blankdraht-Heizsystemen. Beide Systeme erzeugen joulesehe Wärme durch elektrische Energie, die durch einen ohmschen Widerstand fließt Diese Energie wird durch Wärmeübertragung an das zu erhitzende Medium übergeben.Commercial heating systems for electric hot water preparation, such as e.g. in hot water storage tanks or in instantaneous water heaters, are based on tubular heater heating systems or bare-wire heating systems. Both systems generate Joule heat by electrical energy flowing through an ohmic resistor. This energy is transferred by heat transfer to the medium to be heated.
Ein Rohrheizkörper eines Rohrheizkörper-Heizsystem besteht aus einem gewendelten Heizleiterdraht, wobei dieser durch eine anorganische Isolationsmasse von dem äußeren metallischen Mantelrohr elektrisch isoliert ist. Dadurch hat das System eine hohe thermische Masse und eine relativ schlechte Wärmeleitfähigkeit. Aufgrund dessen ist es träge und führt zu erheblichen Einbußen in den Gebrauchseigenschaften. Weiterhin ist das Rohrheizsystem stark verkalkungsanfällig. Der Vorteil des Rohrheizsystems hingegen stellt die weltweite Verwendung in allen Wasserqualitäten dar. Außerdem werden keine Ableitstrecken benötigt und somit sind die Fließdruckverluste gering.A tubular heater of a tubular heater heating system consists of a coiled Heizleiterdraht, this being electrically isolated by an inorganic insulating material from the outer metallic jacket tube. As a result, the system has a high thermal mass and a relatively poor thermal conductivity. Because of this, it is sluggish and leads to significant losses in the performance characteristics. Furthermore, the pipe heating system is strongly calcification prone. The advantage of the pipe heating system, however, is the worldwide use in all water qualities. In addition, no discharge lines are needed and thus the flow pressure losses are low.
Das Blankdraht-Heizsystem hat hierbei deutliche Vorteile. Durch die geringe Masse des Heizdrahtes, welches direkt im vorbeifließenden Medium liegt, ergibt sich ein hervorragendes instationäres Temperaturverhalten. Dadurch kann ein solches System problemlos vollelektronisch geregelt werden. Weiterhin ergibt sich durch die hohe Oberflächenbelastung am Blankdraht eine deutlich höhere Lebensdauer. Diese beruht darauf, dass im kalkhaltigen Wasser der Kalk durch die hohen Oberflächenbelastungen vom Blankdraht abgesprengt wird. Ein Nachteil des Blankdraht-Heizsystems ist die Beschränkung auf Wasserqualitäten mit geringer elektrischer Leitfähigkeit. Ein weiterer Nachteil liegt darin, dass der metallische Heizleiter direkt im fließenden Wasser liegt und aufgrund dessen gewisser Ableitstrecken vor und nach dem Blankdraht vorgesehen werden müssen.The bare-wire heating system has clear advantages. Due to the low mass of the heating wire, which is located directly in the flowing medium, there is an excellent transient temperature behavior. As a result, such a system can be controlled fully electronically without any problem. Furthermore, the high surface load on the bare wire results in a significantly longer service life. This is based on the fact that in lime-containing water the lime is blasted off the bare wire due to the high surface loads. A disadvantage of the bare-wire heating system is the limitation to water qualities with low electrical conductivity. Another disadvantage is that the metallic heating element is located directly in the flowing water and due to its certain discharge lines must be provided before and after the bare wire.
Diese dünnen und langen Ableitstrecken führen zu relativ hohen Fließdruckverlusten und können in Gebäuden mit einem geringen Wassernetzdruck zu Problemen führen.These thin and long discharge lines lead to relatively high flow pressure losses and can lead to problems in buildings with a low water pressure.
Es ist daher eine Aufgabe der Erfindung hinsichtlich dieser Nachteile ein alternatives elektrisches Warmwasseraufbereitungssystem und ein Heizsystem zu entwickeln, welche die Vorteile der konventionellen und bewährten Heizsysteme beibehalten und somit zuverlässig, effizient und wirtschaftlich für den Endverbraucher sind.It is therefore an object of the invention with respect to these disadvantages to develop an alternative electric hot water treatment system and heating system which retain the advantages of the conventional and proven heating systems and thus are reliable, efficient and economical for the end user.
Diese Aufgabe wird durch ein elektrisches Warmwasseraufbereitungssystem nach Anspruch 1 gelöst.This object is achieved by an electric hot water treatment system according to
Diese Aufgabe wird durch ein elektrisches Warmwasseraufbereitungssystem gelöst. Das Warmwasseraufbereitungssystem weist ein Schicht-Wärmeübertragungselement auf, welches ein Substrat und eine Heizeinheit aus einem elektrischen Beschichtungsmaterial aufweist. Das elektrische Beschichtungsmaterial ist auf dem Substrat angeordnet. Das Schicht-Wärmeübertragungselement ist als ein doppelwandiges Wärmeübertragungselement ausgestaltet und weist einen innenführenden Strömungskanal, einen außenführenden Strömungskanal, eine thermisch gespritzte elektrisch leitende Schicht, eine thermisch gespritzte elektrisch isolierende Schicht, ein Substrat und eine Isolationseinheit auf.This task is solved by an electric water heating system. The hot water treatment system comprises a layer heat transfer element comprising a substrate and a heating unit made of an electrical coating material. The electrical coating material is arranged on the substrate. The layer heat transfer element is configured as a double-walled heat transfer element and has an inwardly leading flow channel, an outward flow channel, a thermally sprayed electrically conductive layer, a thermally sprayed electrically insulating layer, a substrate and an insulation unit.
Gemäß der Erfindung wird eine alternative Beheizung für die elektrische Durchflusserwärmung vorgesehen. Dazu werden die Erkenntnisse auf dem Gebiet der Beschichtungstechnologie, definierte funktionale Schichten auf einem polymerischen, keramischen oder auch auf einem metallischen Trägermaterial abzuscheiden, angewendet. Gemäß der Erfindung wird eine dünne elektrische Schicht auf einem Substrat vorgesehen, welche einen relativ hohen ohmschen Widerstand aufweist, so dass das zu erwärmende Medium durch den jouleschen Effekt erwärmt wird.According to the invention, an alternative heating for the electrical flow heating is provided. For this purpose, the findings in the field of coating technology to deposit defined functional layers on a polymeric, ceramic or even on a metallic carrier material applied. According to the invention, a thin electrical layer is provided on a substrate, which has a relatively high ohmic resistance, so that the medium to be heated is heated by the Joule effect.
Das erfindungsgemäße Heizsystem ist in der Herstellung kostengünstig und im Betrieb effizient und zuverlässig. Die funktionalen dünnen Schichten des Heizsystems sind thermisch stabil, elektrisch leitfähig und gegenüber dem zu erwärmenden Medium elektrisch isolierend. Die erfindungsgemäße Schicht ist eine wärmeleitfähige und elektrisch isolierende Schicht, welche die elektrisch leitfähige Schicht vor Korrosion, Ablagerungen (Fouling) und der Abtragung durch Partikel im zu erwärmenden Medium schützt. Die wärmeleitfähige und elektrisch isolierende Schicht weist eine hohe thermische Stabilität und eine hohe Durchschlagsfestigkeit auf.The heating system according to the invention is inexpensive to manufacture and efficient and reliable in operation. The functional thin layers of the heating system are thermally stable, electrically conductive and electrically insulating against the medium to be heated. The layer according to the invention is a thermally conductive and electrically insulating layer which protects the electrically conductive layer against corrosion, deposits (fouling) and the removal by particles in the medium to be heated. The thermally conductive and electrically insulating layer has a high thermal stability and a high dielectric strength.
Die Schicht weist eine hohe Isolationsfestigkeit auf, so dass keine Ableitströme im strömenden Medium auftreten. Durch geringe bzw. keine Ableitströme im zu erwärmenden Medium könnten in einer Beheizung, beispielweise eines Durchlauferhitzers, die Fließdruckverluste und das Bauvolumen reduziert werden.The layer has a high insulation resistance, so that no leakage currents occur in the flowing medium. By low or no leakage in the medium to be heated in a heating, for example, a water heater, the flow pressure losses and the volume of construction could be reduced.
Da es sich um dünne funktionale Schichten handelt, die durch definierte Leistungsansteuerung die gewünschten Temperaturen in dem durchströmenden Medium erzeugen, entstehen an den Schichten sehr hohe Temperaturen. Damit die hohen lokalen Schichttemperaturen die polymerischen oder auch keramischen Trägermaterialien nicht beschädigen, muss die elektrische Leistung gezielt an das durchströmende Medium abgegeben werden. Die konstruktive Gestaltung ist hierbei so realisiert, dass es zu einer großen Wärmeübertragungsfläche zwischen den dünnen Schichten und dem vorbeiströmenden Medium kommt.Since these are thin functional layers that generate the desired temperatures in the medium flowing through defined power control, very high temperatures are generated at the layers. So that the high local layer temperatures do not damage the polymeric or even ceramic carrier materials, the electrical power has to be specifically delivered to the medium flowing through. The structural design is in this case realized so that it comes to a large heat transfer surface between the thin layers and the flowing medium.
Gemäß der Erfindung wird eine effiziente Substratgeometrie der Schicht vorgesehen. Eine geeignete Beschichtungstechnologie, sowie eine effiziente Anordnung der multifunktionalen Schichten auf der Schicht wird ebenfalls vorgesehen. Ferner wird eine geeignete Kontaktierung der elektrisch leitenden Schichten der Schicht vorgesehen. Und eine Umsetzung der Schicht in ein Heizsystem für die elektrische Warmwasseraufbereitung wird vorgeschlagen.According to the invention, an efficient substrate geometry of the layer is provided. A suitable coating technology as well as an efficient arrangement of the multifunctional layers on the layer is also provided. Furthermore, a suitable contacting of the electrically conductive layers of the layer is provided. And an implementation of the layer in a heating system for the electric water heating is proposed.
Gemäß der Erfindung kann das oben beschriebene elektrische Warmwasseraufbereitungssystem in einem Haustechnikgerät wie bspw. einem Durchlauferhitzer, einem Warmwasserspeicher, einem Kochendwassergerät, einem Heißwasserautomaten, einem Händetrockner, einer Wärmepumpe, einem Lüftungsgerät, einem Klimagerät, einem Luftentfeuchter, einem Wärmespeicher, einer Natursteinheizung, einer Fußbodenheizung, einer Direktheizung oder einem Heizkörper verwendet werden. Das elektrische Warmwasseraufbereitungssystem kann ebenfalls in Haushaltsgeräten, wie bspw. Kaffeemaschinen, Wäschetrocknern, Wäschemaschinen, Geschirrspülern, Reinigungsautomaten, Desinfektionsautomaten oder dergleichen verwendet werden.According to the invention, the electric hot water treatment system described above in a domestic appliance such as a water heater, a hot water tank, a boiling water device, a hot water machine, a hand dryer, a heat pump, a ventilation unit, an air conditioner, a dehumidifier, a heat storage, a natural stone heating, underfloor heating , a direct heating or a radiator can be used. The electric water heating system can also be used in household appliances, such as coffee machines, Tumble dryers, laundry machines, dishwashers, cleaning machines, disinfection machines or the like can be used.
Die Erfindung betrifft ebenfalls ein Verfahren zum Herstellen eines elektrischen Warmwasseraufbereitungssystems. Hierbei kann ein elektrisches Beschichtungsmaterial auf einem Substrat aufgebracht werden. Das Schicht-Wärmeübertragungselement kann als ein doppelwandiges Wärmeübertragungselement ausgestaltet sein. Eine elektrisch leitende Schicht kann thermisch auf dem Substrat aufgebracht werden. Eine elektrisch isolierende Schicht kann auf der elektrisch leitenden Schicht thermisch gespritzt werden.The invention also relates to a method for producing an electric hot water treatment system. In this case, an electrical coating material can be applied to a substrate. The layer heat transfer element may be configured as a double-walled heat transfer element. An electrically conductive layer may be thermally deposited on the substrate. An electrically insulating layer may be thermally sprayed on the electrically conductive layer.
Gemäß einem Aspekt der vorliegenden Erfindung kann das doppelwandige Heizelement in einem Spritzgussverfahren hergestellt werden.According to one aspect of the present invention, the double-walled heating element can be manufactured by an injection molding process.
Gemäß einem weiteren Aspekt der vorliegenden Erfindung können elektrische Leistungsbauteile thermisch verspritzt werden.According to another aspect of the present invention, electrical power components may be thermally sprayed.
Gemäß der Erfindung kann eine Aluminiumoxid-Schicht auf einem Substrat vorgesehen werden, eine Titansuboxid-Schicht kann auf der ersten Aluminiumoxid-Schicht vorgesehen werden und eine weitere Aluminiumoxid-Schicht kann auf der Titansuboxid-Schicht aufgebracht werden.According to the invention, an alumina layer may be provided on a substrate, a titanium suboxide layer may be provided on the first alumina layer, and another alumina layer may be deposited on the titanium suboxide layer.
Weitere Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche.Further embodiments of the invention are the subject of the dependent claims.
Vorteile und Ausführungsbespiele der Erfindung werden nachstehend unter Bezugnahme auf die Zeichnung näher erläutert.
- Fig. 1A bis 1D
- zeigen jeweils eine schematische Darstellung eines elektrischen Schicht-Wärmeübertragungselementes,
- Fig. 2
- zeigt eine schematische Darstellung eines elektrischen Schicht-Wärmeübertragungselementes,
- Fig. 3 und 4
- zeigen jeweils eine schematische Darstellung eines Schichtaufbaus eines flächigen elektrischen Schicht-Wärmeübertragungselementes,
- Fig. 5
- zeigt eine schematische Darstellung eines Schichtaufbaus eines kreisringförmigen elektrischen Schicht-Wärmeübertragungselementes,
- Fig. 6
- zeigt eine schematische Schnittansicht einer hydraulischen Abdichtung und einer elektrischen Kontaktierung eines flachförmigen Wärmeübertragungselementes,
- Fig. 7
- zeigt eine schematische Schnittansicht eines doppelwandigen Schicht-Wärmeübertragungselementes gemäß einem Ausführungsbeispiel der Erfindung,
- Fig. 8 - 10
- zeigen jeweils eine schematische Darstellung einer Heizeinheit für ein doppelwandiges Schicht-Wärmeübertragungselementes,
- Fig. 11A und 11B
- zeigen jeweils eine schematische Darstellung eines SchichtWärmeübertragungselementes gemäß der Erfindung,
- Fig. 12A und 12B
- zeigen jeweils eine schematische Schnittdarstellung eines SchichtWärmeübertragungselementes gemäß einem Aspekt der vorliegenden Erfindung,
- Fig. 13A
- zeigt eine schematische Darstellung eines Durchlauferhitzers,
- Fig. 13B
- zeigt eine schematische Schnittansicht des Durchlauferhitzers, und
- Fig. 14
- zeigt eine schematische Schnittansicht eines Wärmeübertragungselementes gemäß einem weiteren Ausführungsbeispiel.
- Fig. 1A to 1D
- each show a schematic representation of an electrical layer heat transfer element,
- Fig. 2
- shows a schematic representation of an electrical layer heat transfer element,
- 3 and 4
- each show a schematic representation of a layer structure of a planar electrical layer heat transfer element,
- Fig. 5
- shows a schematic representation of a layer structure of an annular electrical layer heat transfer element,
- Fig. 6
- shows a schematic sectional view of a hydraulic seal and an electrical contact of a flat-shaped heat transfer element,
- Fig. 7
- shows a schematic sectional view of a double-walled layer heat transfer element according to an embodiment of the invention,
- Fig. 8 - 10
- each show a schematic representation of a heating unit for a double-walled layer heat transfer element,
- Figs. 11A and 11B
- each show a schematic representation of a layer heat transfer element according to the invention,
- Figs. 12A and 12B
- each show a schematic sectional view of a layer heat transfer element according to one aspect of the present invention,
- Fig. 13A
- shows a schematic representation of a water heater,
- Fig. 13B
- shows a schematic sectional view of the water heater, and
- Fig. 14
- shows a schematic sectional view of a heat transfer element according to another embodiment.
Das Substrat 100 gemäß
Die flach-, spiral- als auch die helixförmigen Substrate können im Prinzip auch aus allen Werkstoffen gefertigt werden. Als Werkstoffe können thermoplastische Kunststoffe Polyamide und Polyoxymethylene als auch die keramischen Werkstoffe Aluminiumoxide und -nitrite verwendet werden.The flat, spiral as well as the helical substrates can in principle also be made of all materials. As materials thermoplastic materials polyamides and polyoxymethylenes as well as the ceramic materials aluminum oxides and nitrites can be used.
Auf einem flachförmigen Substrat 101 wird eine Heizleiterschicht 102 (Nickel-Chrom, Indium-Zinnoxid, Titannitrat) aufgebracht. Anschließend kann eine erste Kontaktschicht 100a aus Kupfer aufgebracht werden. Danach kann eine zweite Kontaktschicht 100b, beispielsweise ebenfalls aus Kupfer, vorgesehen sein. Anschließend kann eine Isolationsschicht 103 (beispielsweise Aluminiumoxid) aufgebracht werden. Dann können Kontaktschichtbolzen 100c, beispielsweise aus Kupfer, an den Enden vorgesehen werden. Ein Dichtbolzen 100d mit Nut für einen O-Ring kann vorgesehen werden. Schließlich kann ein elektrischer Kontaktierungsbolzen 100e vorgesehen sein.On a flat-shaped
Das Substrat 101 kann aus Aluminiumoxid, Borsilikat-Glas oder aus Kupfer hergestellt sein. Die Isolationsschicht 102 kann beispielsweise aus Siliziumoxid hergestellt sein. Die Heizleiterschicht 103 kann aus Nickel-Chrom, Indium-Zinkoxid oder beispielsweise Titannitrat hergestellt sein. Die Heizleiter-Kontaktschicht 103a kann beispielsweise aus Kupfer hergestellt sein. Die zweite Isolationsschicht 104 kann beispielsweise aus Aluminiumoxid hergestellt sein.The
Gemäß der Erfindung können diese Schichten durch thermisches Spritzen, Sputtern aus der physikalischen Gasphasenabscheidung verwendet werden. Mittels dieser Verfahren werden auf den kreisring- und flachförmigen Substratgeometrien vollflächige und partielle elektrisch leitende und elektrisch isolierende Funktionsschichten abgeschieden. Bei den kreisförmigen Substratgeometrien werden mittels des thermischen Spritzens, sowie mit dem Sputtern Aluminiumoxid- und auch Kupferrohre und Edelstahlrohre beschichtet.According to the invention, these layers can be used by thermal spraying, sputtering from physical vapor deposition. By means of these methods, full-area and partially electrically conductive and electrically insulating functional layers are deposited on the annular and flat substrate geometries. In the case of circular substrate geometries, aluminum oxide and also copper pipes and stainless steel pipes are coated by means of thermal spraying and sputtering.
Die
Das thermische Spritzen, in Form des atmosphärischen Plasmaspritzens (APS), erzeugt außen auf dem Aluminiumoxidrohr 101 zunächst eine definierte unterstochimetrische Titansuboxid- Schicht. Diese Titansuboxidschicht mit einem spezifischen Widerstand von 0,04 Ohmcm kann als Heizleiter dienen und erzeugt eine Leistung, je nach Schichtdicke und Länge des Heizelementes, von 500 W bis 5000 W. Anschließend kann das Aluminiumoxidrohr mittels einer entsprechenden Maskierung versehen werden. Die Maskierung kann so aufgebaut sein, das an entsprechenden Stellen Aussparungen für die Kontaktierung vorgesehen werden. Anschließend kann mittels des Hochgeschwindigkeitsflammspritzens Kupfer 103a an die Kontaktstellen gespritzt werden. Das Kupfer dient zur Verbesserung der Oberflächenrauhigkeit und zur Minimierung lokaler Hotspots. Damit werden die Kontakt- und Übergangswiderstände später bei entsprechender elektrischer Kontaktierung mit zum Beispiel einer Schelle reduziert. Alternativ könnten auch elektrisch leitende Lacke verwendet werden. Der Herstellungsprozess wird mit der Auftragung einer abschließenden elektrischen Isolationsschicht, die gleichzeitig auch eine thermische Isolationsschicht ist, abgeschlossen. Zur elektrischen Isolation wird mittels des APS-Verfahrens eine Aluminiumoxidschicht verwendet.Thermal spraying, in the form of atmospheric plasma spraying (APS), initially produces a defined sub-titanium suboxide layer on the outside of the
Bei der Beschichtung des Kupferrohres bzw. eines Edelstahlrohres 101 als Substrat wird bei dem thermischen Spritzen vor der Titansuboxidschicht noch eine elektrisch isolierende Aluminiumoxidschicht aufgetragen. Ziel ist es, mit der elektrisch isolierenden Schicht eine elektrische Trennung zwischen Kupfer und dem Titansuboxid zu realisieren. Damit wird auch eine elektrische Isolation zwischen dem zu erwärmenden Medium und dem Heizleiter erzeugt. Alle weiteren Prozessschritte ähneln dem Aufbau und der Herstellung des oben beschriebenen Aluminiumoxidrohres.When coating the copper tube or a
Das Sputtern bietet neben der Beschichtung der kreisringförmigen Substrate auch die Möglichkeit flach-, spiral- und helixförmige Substrate mittels einer definierten Schicht zu versehen. Bei den kreisringförmigen Substraten werden vor dem Beschichten alle Substrate gereinigt und einer Plasmavorbehandlung unterzogen. Danach wird das Kupfer- und Aluminiumoxidrohr mit multifunktionalen Schichten versehen. Als Heizleiterwerkstoff wird beim Sputtern eine Nickel-Chromlegierung verwendet. Die Nickel-Chromlegierung hat einen spezifischen Widerstand von ca. 0,000112 Ohmcm. Damit lassen sich Leistungen im Bereich von 500 W bis 2500 W realisieren. Beim Kupferrohr wird vorher noch eine Aluminiumoxidschicht mit den reaktiven Sputtern, d.h. in diesem Fall wird zusätzlich noch ein reaktives Gas (Sauerstoff, Stickstoff) in den Prozess integriert, aufgebraucht. In beiden Fällen wird eine Maske aufgetragen, um an den äußeren Stellen eine Kupferschicht für die spätere Kontaktierung abzuscheiden. Nachdem die partielle Kupferschicht aufgetragen wurde, wird zur elektrischen und thermischen Isolation noch eine Aluminiumoxidschicht als Schutzschicht aufgebracht.In addition to the coating of the annular substrates, sputtering also offers the possibility of providing flat, spiral and helical substrates by means of a defined layer. In the annular substrates, all substrates are cleaned and subjected to plasma pretreatment before coating. Thereafter, the copper and alumina tube provided with multifunctional layers. When Heizleiterwerkstoff a nickel-chromium alloy is used during sputtering. The nickel-chromium alloy has a resistivity of approximately 0.000112 ohmcm. This allows power to be realized in the range of 500 W to 2500 W. In the case of the copper tube, an aluminum oxide layer with the reactive sputtering is previously formed, ie in this case, a reactive gas (oxygen, nitrogen) is additionally integrated into the process and used up. In both cases, a mask is applied to deposit a copper layer at the outer sites for later contacting. After the partial copper layer has been applied, an aluminum oxide layer is applied as a protective layer for electrical and thermal insulation.
In
Gemäß einem Aspekt der vorliegenden Erfindung wird ein doppelwandiges Wärmeübertragungselement vorgesehen. Das Übertragungselement 1000 weist ein Substrat 1020 (beispielsweise aus Kupfer) mit einem inneren Strömungskanal 1040 und einem äußeren Strömungskanal 1050 auf. Der äußere Strömungskanal 1050 kann optional durch einen Isolationsblock 1060 begrenzt sein. Das Wärmeübertragungselement weist ferner eine thermisch gespritzte elektrisch leitende Schicht 1090 sowie eine thermisch gespritzte elektrisch isolierende Schicht 1080 auf. Zwischen der elektrisch leitenden Schicht 1090 und dem Wasser in dem inneren oder äußeren Strömungskanal 1040, 1050 ist optional eine elektrisch isolierende Schicht vorhanden, so dass die elektrisch leitende Schicht nicht in direktem Kontakt mit dem Wasser steht. Damit kann auf Ableitstrecken verzichtet werden.According to one aspect of the present invention, a double-walled heat transfer element is provided. The
Der wesentliche Vorteil der doppelwandigen Schicht-Wärmeübertragungselemente basiert auf dem beidseitigen Umströmen des Fluids entlang der wärmeübertragenden Oberfläche. Die beidseitige Umströmung, wie sie in
In
Die Vorteile der Erfindung sind, gegenüber dem Blankdraht-Heizsystem geringere Druckverluste. Die elektrischen Schicht-Wärmeübertragungselemente können gegenüber dem Blankdraht-Heizsystem ohne Einschränkung der Wasserqualität überall eingesetzt werden. Gegenüber dem Blankdraht-Heizsystem können die elektrischen Schicht- Wärmeübertragungselemente ohne Vor- und Nachschaltstrecken auskommen und benötigen damit ein geringeres Bauvolumen. Gegenüber dem Rohrheizkörper können schnellere Aufheiz- und Abkühlzeiten realisiert werden. Gegenüber dem Rohrheizkörper ist eine größere Beständigkeit gegen Ablagerungen (CaCO3, CaSO4, Mg(OH)2) und Luftblasen vorhanden.The advantages of the invention are, compared to the bare-wire heating system lower pressure losses. The electrical layer heat transfer elements can be compared with the Bare wire heating system without restriction of water quality can be used everywhere. Compared to the bare-wire heating system, the electrical layer heat transfer elements can manage without upstream and downstream sections and thus require a smaller volume. Compared to the tubular heater faster heating and cooling times can be realized. Compared to the tubular heater is a greater resistance to deposits (CaCO 3 , CaSO 4 , Mg (OH) 2 ) and air bubbles present.
Die erfindungsgemäßen Schicht-Wärmeübertragungselemente können in allen Warmwasseraufbereitern, wie zum Beispiel: Durchlauferhitzer, Warmwasser-Speicher, Kochendwassergeräte, Heißwasserautomaten, Händetrockner, Wärmepumpen, Lüftungsgeräte, Klimageräte, Luftentfeuchter, Wärmespeicher, Natursteinheizungen, Flächenheizungen/Fußbodenheizungen, Direktheizer, Badheizkörper, Kaffeemaschinen, Wäschetrockner, Waschmaschinen, Spülmaschinen/Geschirrspüler, Reinigungsautomaten/- geräte, Desinfektionsautomaten/-geräte, eingesetzt werden.The layer heat transfer elements of the invention can in all water heaters, such as: water heater, hot water storage, Boilers, hot water machines, hand dryers, heat pumps, ventilation equipment, air conditioners, dehumidifiers, heat storage, natural stone heaters, underfloor heating / underfloor heating, direct heaters, bathroom radiators, coffee machines, dryers, Washing machines, dishwashers / dishwashers, automatic cleaning machines / devices, disinfection machines / devices.
In
Gemäß diesem Aspekt der vorliegenden Erfindung wird ein doppelwandiges Wärmeübertragungselement mit einem Heizleiter aus einem blanken Heizleiterdraht vorgesehen. Ein inneres Rohr des doppelwandigen Wärmeübertragungselementes kann als Kupferrohr oder als SS-Rohr ausgestaltet sein. Eine thermisch gespritzte Isolierschicht kann auf dem inneren Rohr vorgesehen sein. Über die thermisch isolierende Schicht kann ein Heizdraht (beispielsweise NiCr 8020) gewickelt werden. Danach kann eine elektrisch isolierende Schicht thermisch verspritzt werden. Nachdem die thermisch gespritzten Schichten aufgetragen worden sind, kann eine Nachbehandlung der Schicht stattfinden, wobei Spitzen der oberen Isolierschicht, welche auf Grund der Rauigkeit der Behandlung entstanden sind, abgeschliffen werden können. Anschließend kann ein Außenrohr übergezogen werden.According to this aspect of the present invention, a double-walled heat transfer element is provided with a heating conductor of a bare Heizleiterdraht. An inner tube of the double-walled heat transfer element may be configured as a copper tube or as an SS tube. A thermally sprayed insulating layer may be provided on the inner tube. A heating wire (eg NiCr 8020) can be wound over the thermally insulating layer. Thereafter, an electrically insulating layer can be thermally sprayed. After the thermally sprayed layers have been applied, post-treatment of the layer may take place, whereby tips of the upper insulating layer, which have arisen due to the roughness of the treatment, can be ground off. Subsequently, an outer tube can be pulled over.
Claims (7)
einem Schicht-Wärmeübertragungselement, welches ein Substrat (101) und eine Heizeinheit (103) aus einem elektrischen Beschichtungsmaterial aufweist, wobei das elektrische Beschichtungsmaterial (103) auf dem Substrat (101) angeordnet ist,
wobei das Schicht-Wärmeübertragungselement als ein doppelwandiges Wärmeübertragungselement ausgestaltet ist und einen innenführenden Strömungskanal (1040), einen außenführenden Strömungskanal (1050), eine thermisch gespritzte elektrisch leitende Schicht (1090), eine thermisch gespritzte elektrisch isolierende Schicht (1080), ein Substrat (1020) und eine Isolationseinheit (1060) aufweist.Electric water heating system, with
a layer heat transfer member having a substrate (101) and a heating unit (103) of an electric coating material, wherein the electric coating material (103) is disposed on the substrate (101),
wherein the layer heat transfer element is configured as a double-walled heat transfer element and has an inwardly directed flow channel (1040), an outward flow channel (1050), a thermally sprayed electrically conductive layer (1090), a thermally sprayed electrically insulating layer (1080), a substrate (1020 ) and an isolation unit (1060).
das doppelwandige Wärmeübertragungselement in einem Spritzgussprozess umspritzt wird.An electric hot water treatment system according to claim 1, wherein
the double-walled heat transfer element is encapsulated in an injection molding process.
elektrischen Leistungsbauteilen, wobei die elektrischen Leistungsbauteile thermisch eingespritzt sind.Electric hot water treatment system according to claim 1 or 2, with
electrical power components, wherein the electrical power components are thermally injected.
das Schicht-Wärmeübertragungselement mindestens eine Schicht Aluminiumoxid, gefolgt von einer Titansuboxid-Schicht und wiederum einer Aluminiumoxid-Schicht aufweist.Electric hot water treatment system according to one of claims 1 to 3, wherein
the layered heat transfer element comprises at least one layer of alumina followed by a titanium suboxide layer and in turn an alumina layer.
einem elektrischen Warmwasseraufbereitungssystem nach einem der Ansprüche 1 bis 3.Domestic appliance, with
an electric hot water treatment system according to one of claims 1 to 3.
mindestens einem elektrischen Warmwasseraufbereitungssystem nach einem der Ansprüche 1 bis 3.Household appliance, with
at least one electric hot water treatment system according to one of claims 1 to 3.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102017003416.8A DE102017003416A1 (en) | 2017-04-07 | 2017-04-07 | Electric water heating system |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3385637A1 true EP3385637A1 (en) | 2018-10-10 |
EP3385637B1 EP3385637B1 (en) | 2021-06-09 |
Family
ID=61906742
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18165855.0A Active EP3385637B1 (en) | 2017-04-07 | 2018-04-05 | Electrical hot water processing system |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP3385637B1 (en) |
DE (1) | DE102017003416A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10312728A1 (en) * | 2003-03-21 | 2004-09-30 | BSH Bosch und Siemens Hausgeräte GmbH | Heater |
DE10322034A1 (en) * | 2003-05-16 | 2004-12-02 | Stiebel Eltron Gmbh & Co. Kg | A throughflow water heater has concentric tubes having a spiral fin around the inner and thick film surface heating elements with the water flowing through the tubes |
WO2006023979A2 (en) * | 2004-08-20 | 2006-03-02 | Thermoceramix, Inc. | Water heater and method of providing the same |
DE102013213342A1 (en) * | 2013-07-08 | 2015-01-08 | Mahle International Gmbh | Fuel filter |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3903649C1 (en) * | 1989-02-08 | 1990-04-12 | Tuerk & Hillinger Gmbh, 7200 Tuttlingen, De | Electric flow heater for liquids |
US6037574A (en) | 1997-11-06 | 2000-03-14 | Watlow Electric Manufacturing | Quartz substrate heater |
US6376816B2 (en) | 2000-03-03 | 2002-04-23 | Richard P. Cooper | Thin film tubular heater |
DE10162276C5 (en) * | 2001-12-19 | 2019-03-14 | Watlow Electric Manufacturing Co. | Tubular water heater and heating plate and method for their preparation |
ITTO20040253A1 (en) * | 2004-04-23 | 2004-07-23 | Incos Spa | PROCEDURE FOR THE PRODUCTION OF A COMPONENT FOR INJECTION MOLDING EQUIPMENT |
KR101372256B1 (en) * | 2012-02-29 | 2014-03-10 | 한라비스테온공조 주식회사 | Cooling-water heating type heater |
-
2017
- 2017-04-07 DE DE102017003416.8A patent/DE102017003416A1/en not_active Withdrawn
-
2018
- 2018-04-05 EP EP18165855.0A patent/EP3385637B1/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10312728A1 (en) * | 2003-03-21 | 2004-09-30 | BSH Bosch und Siemens Hausgeräte GmbH | Heater |
DE10322034A1 (en) * | 2003-05-16 | 2004-12-02 | Stiebel Eltron Gmbh & Co. Kg | A throughflow water heater has concentric tubes having a spiral fin around the inner and thick film surface heating elements with the water flowing through the tubes |
WO2006023979A2 (en) * | 2004-08-20 | 2006-03-02 | Thermoceramix, Inc. | Water heater and method of providing the same |
DE102013213342A1 (en) * | 2013-07-08 | 2015-01-08 | Mahle International Gmbh | Fuel filter |
Also Published As
Publication number | Publication date |
---|---|
EP3385637B1 (en) | 2021-06-09 |
DE102017003416A1 (en) | 2018-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69534857T2 (en) | POLYMER RESISTANCE HEATING ELEMENT | |
DE202013006214U1 (en) | heat exchangers | |
WO2013117603A1 (en) | Pump with integrated heating element | |
DE2551980B2 (en) | Sealed, thermostatic heating device, especially for hair curling tongs | |
EP2842386A1 (en) | Heating element | |
DE102007058833A1 (en) | Heating device for a washing machine, washing machine with a heating device and method for operating a heating device | |
EP2861914B1 (en) | Continuous flow heater | |
EP3385637B1 (en) | Electrical hot water processing system | |
EP3477178B1 (en) | Heatable flexible hose with applied heating element | |
DE19856087A1 (en) | Electric instantaneous water heater and process for its manufacture | |
DE10029244A1 (en) | A fuel oil pre-heater has a PTC coated tube over which the oil is passed inside an outer tube. | |
WO2015025022A1 (en) | Method and device for producing a heating coil on a metal body | |
DE2850111C2 (en) | ||
DE102016118931A1 (en) | media line | |
WO2017021076A1 (en) | Connecting thermally-sprayed layer structures of heating devices | |
EP2348251A2 (en) | Device for heating a liquid and method for producing a heating device for heating a liquid | |
DE102016014300A1 (en) | Device for preparing at least one intended for consumption liquid | |
DE2322509A1 (en) | ELECTRIC TUBULAR RADIATOR AND METHOD OF ITS MANUFACTURING | |
DE102005054611B4 (en) | Method for producing meander-shaped resistance layers of electrically heatable mirror glasses | |
EP2471339B1 (en) | Heat exchanger | |
DE102004020166A1 (en) | A method for manufacturing a glass tube liquid heating cartridge has a metal oxide external surface coating endowed with fluorine or antimony | |
DE3218442A1 (en) | Process for heating water and thereafter operating a water heater | |
DE10355491B4 (en) | heater | |
DE1141737B (en) | Process for the production of flat electrical heating elements for high temperatures up to 600 ° C and electrical heating element produced according to the process | |
DE102006053001A1 (en) | Heating device for heating tool parts of injection molding machines comprises a first thin film layer made from single layers placed on each other |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190410 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F24H 1/10 20060101AFI20201022BHEP |
|
INTG | Intention to grant announced |
Effective date: 20201120 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1400837 Country of ref document: AT Kind code of ref document: T Effective date: 20210615 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502018005580 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210609 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210609 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210609 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210909 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210609 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210910 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210609 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210609 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210909 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210609 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210609 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211011 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210609 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210609 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210609 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210609 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210609 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210609 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210609 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502018005580 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210609 |
|
26N | No opposition filed |
Effective date: 20220310 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210609 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210609 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20220405 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20220430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210609 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220405 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220405 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220405 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230524 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20220620 Year of fee payment: 6 Ref country code: CH Payment date: 20230502 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20180405 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210609 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210609 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1400837 Country of ref document: AT Kind code of ref document: T Effective date: 20230405 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230405 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230405 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210609 |