EP3375855A1 - Fabric softener composition comprising encapsulated benefit agent - Google Patents
Fabric softener composition comprising encapsulated benefit agent Download PDFInfo
- Publication number
- EP3375855A1 EP3375855A1 EP17161465.4A EP17161465A EP3375855A1 EP 3375855 A1 EP3375855 A1 EP 3375855A1 EP 17161465 A EP17161465 A EP 17161465A EP 3375855 A1 EP3375855 A1 EP 3375855A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fabric softener
- softener composition
- composition
- use according
- mpa
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 196
- 239000002979 fabric softener Substances 0.000 title claims abstract description 120
- 239000003795 chemical substances by application Substances 0.000 title claims abstract description 42
- 239000007788 liquid Substances 0.000 claims abstract description 105
- 238000000034 method Methods 0.000 claims abstract description 51
- 229920003043 Cellulose fiber Polymers 0.000 claims abstract description 50
- 230000008021 deposition Effects 0.000 claims abstract description 27
- 229920002994 synthetic fiber Polymers 0.000 claims abstract description 15
- 239000002304 perfume Substances 0.000 claims description 95
- 239000004744 fabric Substances 0.000 claims description 72
- -1 quaternary ammonium ester Chemical class 0.000 claims description 49
- 239000002775 capsule Substances 0.000 claims description 34
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 33
- 229920001296 polysiloxane Polymers 0.000 claims description 24
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims description 23
- 239000000463 material Substances 0.000 claims description 22
- 229920000728 polyester Polymers 0.000 claims description 22
- 239000011257 shell material Substances 0.000 claims description 20
- 229920000642 polymer Polymers 0.000 claims description 18
- 229920002678 cellulose Polymers 0.000 claims description 13
- 239000001913 cellulose Substances 0.000 claims description 13
- 229920000058 polyacrylate Polymers 0.000 claims description 12
- 239000004758 synthetic textile Substances 0.000 claims description 10
- JZMJDSHXVKJFKW-UHFFFAOYSA-M methyl sulfate(1-) Chemical compound COS([O-])(=O)=O JZMJDSHXVKJFKW-UHFFFAOYSA-M 0.000 claims description 9
- 229920000098 polyolefin Polymers 0.000 claims description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 8
- 125000003545 alkoxy group Chemical group 0.000 claims description 7
- 239000004698 Polyethylene Substances 0.000 claims description 6
- 150000004676 glycans Chemical class 0.000 claims description 6
- 125000001183 hydrocarbyl group Chemical group 0.000 claims description 6
- CERQOIWHTDAKMF-UHFFFAOYSA-M methacrylate group Chemical group C(C(=C)C)(=O)[O-] CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 claims description 6
- 229920000573 polyethylene Polymers 0.000 claims description 6
- 229920001282 polysaccharide Polymers 0.000 claims description 6
- 239000005017 polysaccharide Substances 0.000 claims description 6
- 125000000217 alkyl group Chemical group 0.000 claims description 5
- 239000002023 wood Substances 0.000 claims description 5
- 241000196324 Embryophyta Species 0.000 claims description 4
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 claims description 4
- 238000005406 washing Methods 0.000 claims description 4
- 125000006273 (C1-C3) alkyl group Chemical group 0.000 claims description 3
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 claims description 3
- 240000000491 Corchorus aestuans Species 0.000 claims description 3
- 235000011777 Corchorus aestuans Nutrition 0.000 claims description 3
- 235000010862 Corchorus capsularis Nutrition 0.000 claims description 3
- KIWBPDUYBMNFTB-UHFFFAOYSA-N Ethyl hydrogen sulfate Chemical compound CCOS(O)(=O)=O KIWBPDUYBMNFTB-UHFFFAOYSA-N 0.000 claims description 3
- 235000013399 edible fruits Nutrition 0.000 claims description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 3
- 125000002768 hydroxyalkyl group Chemical group 0.000 claims description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 3
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 3
- 235000013311 vegetables Nutrition 0.000 claims description 3
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 claims description 2
- 229920001661 Chitosan Polymers 0.000 claims description 2
- 241000207199 Citrus Species 0.000 claims description 2
- 108010010803 Gelatin Proteins 0.000 claims description 2
- 239000004952 Polyamide Substances 0.000 claims description 2
- 239000004793 Polystyrene Substances 0.000 claims description 2
- 229920001800 Shellac Polymers 0.000 claims description 2
- 229920006397 acrylic thermoplastic Polymers 0.000 claims description 2
- 229940072056 alginate Drugs 0.000 claims description 2
- 235000010443 alginic acid Nutrition 0.000 claims description 2
- 229920000615 alginic acid Polymers 0.000 claims description 2
- 229920003180 amino resin Polymers 0.000 claims description 2
- WPKYZIPODULRBM-UHFFFAOYSA-N azane;prop-2-enoic acid Chemical group N.OC(=O)C=C WPKYZIPODULRBM-UHFFFAOYSA-N 0.000 claims description 2
- 230000001580 bacterial effect Effects 0.000 claims description 2
- 235000020971 citrus fruits Nutrition 0.000 claims description 2
- 239000003822 epoxy resin Substances 0.000 claims description 2
- 239000008273 gelatin Substances 0.000 claims description 2
- 229920000159 gelatin Polymers 0.000 claims description 2
- 235000019322 gelatine Nutrition 0.000 claims description 2
- 235000011852 gelatine desserts Nutrition 0.000 claims description 2
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 claims description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 2
- 229920002647 polyamide Polymers 0.000 claims description 2
- 239000004417 polycarbonate Substances 0.000 claims description 2
- 229920000515 polycarbonate Polymers 0.000 claims description 2
- 229920000647 polyepoxide Polymers 0.000 claims description 2
- 229920001195 polyisoprene Polymers 0.000 claims description 2
- 229920002223 polystyrene Polymers 0.000 claims description 2
- ZLGIYFNHBLSMPS-ATJNOEHPSA-N shellac Chemical compound OCCCCCC(O)C(O)CCCCCCCC(O)=O.C1C23[C@H](C(O)=O)CCC2[C@](C)(CO)[C@@H]1C(C(O)=O)=C[C@@H]3O ZLGIYFNHBLSMPS-ATJNOEHPSA-N 0.000 claims description 2
- 239000004208 shellac Substances 0.000 claims description 2
- 229940113147 shellac Drugs 0.000 claims description 2
- 235000013874 shellac Nutrition 0.000 claims description 2
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 claims description 2
- 229920002554 vinyl polymer Polymers 0.000 claims description 2
- 238000001035 drying Methods 0.000 claims 5
- 150000004665 fatty acids Chemical class 0.000 description 40
- 235000014113 dietary fatty acids Nutrition 0.000 description 32
- 239000000194 fatty acid Substances 0.000 description 32
- 229930195729 fatty acid Natural products 0.000 description 32
- 239000000243 solution Substances 0.000 description 29
- 239000003921 oil Substances 0.000 description 25
- 235000019198 oils Nutrition 0.000 description 25
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 24
- 238000002156 mixing Methods 0.000 description 21
- 239000002994 raw material Substances 0.000 description 18
- 229920000742 Cotton Polymers 0.000 description 17
- 239000003995 emulsifying agent Substances 0.000 description 16
- 150000001412 amines Chemical class 0.000 description 15
- 239000002245 particle Substances 0.000 description 14
- 239000007787 solid Substances 0.000 description 14
- 229920000877 Melamine resin Polymers 0.000 description 13
- 239000000839 emulsion Substances 0.000 description 13
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 12
- 125000002091 cationic group Chemical group 0.000 description 12
- 229910052740 iodine Inorganic materials 0.000 description 12
- 239000011630 iodine Substances 0.000 description 12
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 12
- 239000006185 dispersion Substances 0.000 description 10
- 239000000835 fiber Substances 0.000 description 10
- 239000000523 sample Substances 0.000 description 10
- 239000011162 core material Substances 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 9
- 239000012530 fluid Substances 0.000 description 9
- 238000005259 measurement Methods 0.000 description 9
- 238000009835 boiling Methods 0.000 description 8
- 238000009826 distribution Methods 0.000 description 8
- 239000002736 nonionic surfactant Substances 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 7
- IVJISJACKSSFGE-UHFFFAOYSA-N formaldehyde;1,3,5-triazine-2,4,6-triamine Chemical compound O=C.NC1=NC(N)=NC(N)=N1 IVJISJACKSSFGE-UHFFFAOYSA-N 0.000 description 7
- VFXXTYGQYWRHJP-UHFFFAOYSA-N 4,4'-azobis(4-cyanopentanoic acid) Chemical compound OC(=O)CCC(C)(C#N)N=NC(C)(CCC(O)=O)C#N VFXXTYGQYWRHJP-UHFFFAOYSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 229920003270 Cymel® Polymers 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- 239000004640 Melamine resin Substances 0.000 description 6
- MBHRHUJRKGNOKX-UHFFFAOYSA-N [(4,6-diamino-1,3,5-triazin-2-yl)amino]methanol Chemical class NC1=NC(N)=NC(NCO)=N1 MBHRHUJRKGNOKX-UHFFFAOYSA-N 0.000 description 6
- 229920006317 cationic polymer Polymers 0.000 description 6
- 239000008367 deionised water Substances 0.000 description 6
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 6
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 150000003445 sucroses Chemical class 0.000 description 6
- 238000011282 treatment Methods 0.000 description 6
- 235000015112 vegetable and seed oil Nutrition 0.000 description 6
- 239000004372 Polyvinyl alcohol Substances 0.000 description 5
- 229920002472 Starch Polymers 0.000 description 5
- 238000013019 agitation Methods 0.000 description 5
- 238000004630 atomic force microscopy Methods 0.000 description 5
- 238000004891 communication Methods 0.000 description 5
- 229910021641 deionized water Inorganic materials 0.000 description 5
- 229920002451 polyvinyl alcohol Polymers 0.000 description 5
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 5
- 238000000638 solvent extraction Methods 0.000 description 5
- 235000019698 starch Nutrition 0.000 description 5
- 239000004094 surface-active agent Substances 0.000 description 5
- 238000011144 upstream manufacturing Methods 0.000 description 5
- 239000008158 vegetable oil Substances 0.000 description 5
- XDOFQFKRPWOURC-UHFFFAOYSA-N 16-methylheptadecanoic acid Chemical compound CC(C)CCCCCCCCCCCCCCC(O)=O XDOFQFKRPWOURC-UHFFFAOYSA-N 0.000 description 4
- 229920002126 Acrylic acid copolymer Polymers 0.000 description 4
- 229920002873 Polyethylenimine Polymers 0.000 description 4
- 229930006000 Sucrose Natural products 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- DMSMPAJRVJJAGA-UHFFFAOYSA-N benzo[d]isothiazol-3-one Chemical compound C1=CC=C2C(=O)NSC2=C1 DMSMPAJRVJJAGA-UHFFFAOYSA-N 0.000 description 4
- BPOZNMOEPOHHSC-UHFFFAOYSA-N butyl prop-2-enoate;prop-2-enoic acid Chemical compound OC(=O)C=C.CCCCOC(=O)C=C BPOZNMOEPOHHSC-UHFFFAOYSA-N 0.000 description 4
- KBPLFHHGFOOTCA-UHFFFAOYSA-N caprylic alcohol Natural products CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 4
- 239000003240 coconut oil Substances 0.000 description 4
- 235000019864 coconut oil Nutrition 0.000 description 4
- 239000000084 colloidal system Substances 0.000 description 4
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000005538 encapsulation Methods 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- 239000003607 modifier Substances 0.000 description 4
- 238000005192 partition Methods 0.000 description 4
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 125000001453 quaternary ammonium group Chemical group 0.000 description 4
- 239000008107 starch Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 239000005720 sucrose Substances 0.000 description 4
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 3
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- 150000003973 alkyl amines Chemical class 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 150000001450 anions Chemical class 0.000 description 3
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 3
- 239000001110 calcium chloride Substances 0.000 description 3
- 229910001628 calcium chloride Inorganic materials 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- 239000003599 detergent Substances 0.000 description 3
- 239000004205 dimethyl polysiloxane Substances 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 238000007046 ethoxylation reaction Methods 0.000 description 3
- 235000019253 formic acid Nutrition 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 3
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000010445 mica Substances 0.000 description 3
- 229910052618 mica group Inorganic materials 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 3
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 description 3
- 239000003755 preservative agent Substances 0.000 description 3
- 230000002335 preservative effect Effects 0.000 description 3
- 238000005086 pumping Methods 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 235000012424 soybean oil Nutrition 0.000 description 3
- 239000003549 soybean oil Substances 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 3
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 2
- AVTLBBWTUPQRAY-UHFFFAOYSA-N 2-(2-cyanobutan-2-yldiazenyl)-2-methylbutanenitrile Chemical compound CCC(C)(C#N)N=NC(C)(CC)C#N AVTLBBWTUPQRAY-UHFFFAOYSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 2
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 2
- HIQIXEFWDLTDED-UHFFFAOYSA-N 4-hydroxy-1-piperidin-4-ylpyrrolidin-2-one Chemical compound O=C1CC(O)CN1C1CCNCC1 HIQIXEFWDLTDED-UHFFFAOYSA-N 0.000 description 2
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 2
- 244000198134 Agave sisalana Species 0.000 description 2
- 235000019737 Animal fat Nutrition 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 244000004281 Eucalyptus maculata Species 0.000 description 2
- QZRGKCOWNLSUDK-UHFFFAOYSA-N Iodochlorine Chemical compound ICl QZRGKCOWNLSUDK-UHFFFAOYSA-N 0.000 description 2
- AXISYYRBXTVTFY-UHFFFAOYSA-N Isopropyl tetradecanoate Chemical compound CCCCCCCCCCCCCC(=O)OC(C)C AXISYYRBXTVTFY-UHFFFAOYSA-N 0.000 description 2
- 101710176178 Kidney androgen-regulated protein Proteins 0.000 description 2
- OYHQOLUKZRVURQ-HZJYTTRNSA-N Linoleic acid Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(O)=O OYHQOLUKZRVURQ-HZJYTTRNSA-N 0.000 description 2
- 101100085226 Mus musculus Ptprn gene Proteins 0.000 description 2
- 239000005642 Oleic acid Substances 0.000 description 2
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 2
- 235000019482 Palm oil Nutrition 0.000 description 2
- 241000218657 Picea Species 0.000 description 2
- 206010040904 Skin odour abnormal Diseases 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000004133 Sodium thiosulphate Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- GCPWJFKTWGFEHH-UHFFFAOYSA-N acetoacetamide Chemical compound CC(=O)CC(N)=O GCPWJFKTWGFEHH-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 238000004002 angle-resolved photoelectron spectroscopy Methods 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- 239000003945 anionic surfactant Substances 0.000 description 2
- 239000002518 antifoaming agent Substances 0.000 description 2
- DZGUJOWBVDZNNF-UHFFFAOYSA-N azanium;2-methylprop-2-enoate Chemical group [NH4+].CC(=C)C([O-])=O DZGUJOWBVDZNNF-UHFFFAOYSA-N 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000000828 canola oil Substances 0.000 description 2
- 235000019519 canola oil Nutrition 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 239000004359 castor oil Substances 0.000 description 2
- 235000019438 castor oil Nutrition 0.000 description 2
- 239000003093 cationic surfactant Substances 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 238000005094 computer simulation Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 2
- 150000002016 disaccharides Chemical class 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 235000021588 free fatty acids Nutrition 0.000 description 2
- KTCBAPXXHQDEER-PMOSZIESSA-N furan-2,5-dione;(z)-4-methoxy-4-oxobut-2-enoic acid;styrene Chemical compound O=C1OC(=O)C=C1.C=CC1=CC=CC=C1.COC(=O)\C=C/C(O)=O KTCBAPXXHQDEER-PMOSZIESSA-N 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- 230000003301 hydrolyzing effect Effects 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 2
- UWKAYLJWKGQEPM-LBPRGKRZSA-N linalyl acetate Chemical compound CC(C)=CCC[C@](C)(C=C)OC(C)=O UWKAYLJWKGQEPM-LBPRGKRZSA-N 0.000 description 2
- 239000000944 linseed oil Substances 0.000 description 2
- 235000021388 linseed oil Nutrition 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 2
- ZQXSMRAEXCEDJD-UHFFFAOYSA-N n-ethenylformamide Chemical compound C=CNC=O ZQXSMRAEXCEDJD-UHFFFAOYSA-N 0.000 description 2
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000002540 palm oil Substances 0.000 description 2
- 238000004987 plasma desorption mass spectroscopy Methods 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 239000000700 radioactive tracer Substances 0.000 description 2
- AKHNMLFCWUSKQB-UHFFFAOYSA-L sodium thiosulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=S AKHNMLFCWUSKQB-UHFFFAOYSA-L 0.000 description 2
- 235000019345 sodium thiosulphate Nutrition 0.000 description 2
- 238000002470 solid-phase micro-extraction Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 210000004243 sweat Anatomy 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- 150000005691 triesters Chemical class 0.000 description 2
- 239000002383 tung oil Substances 0.000 description 2
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- PUAQLLVFLMYYJJ-UHFFFAOYSA-N 2-aminopropiophenone Chemical compound CC(N)C(=O)C1=CC=CC=C1 PUAQLLVFLMYYJJ-UHFFFAOYSA-N 0.000 description 1
- PYSRRFNXTXNWCD-UHFFFAOYSA-N 3-(2-phenylethenyl)furan-2,5-dione Chemical compound O=C1OC(=O)C(C=CC=2C=CC=CC=2)=C1 PYSRRFNXTXNWCD-UHFFFAOYSA-N 0.000 description 1
- GHCVXTFBVDVFGE-UHFFFAOYSA-N 4-amino-6-chloro-1,3,5-triazin-2-ol Chemical compound NC1=NC(O)=NC(Cl)=N1 GHCVXTFBVDVFGE-UHFFFAOYSA-N 0.000 description 1
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 1
- 235000017491 Bambusa tulda Nutrition 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- 208000035985 Body Odor Diseases 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 235000007542 Cichorium intybus Nutrition 0.000 description 1
- 244000298479 Cichorium intybus Species 0.000 description 1
- 235000005979 Citrus limon Nutrition 0.000 description 1
- 244000131522 Citrus pyriformis Species 0.000 description 1
- 240000000560 Citrus x paradisi Species 0.000 description 1
- 229920000858 Cyclodextrin Polymers 0.000 description 1
- 235000002767 Daucus carota Nutrition 0.000 description 1
- 244000000626 Daucus carota Species 0.000 description 1
- 239000004667 Diesterquat Substances 0.000 description 1
- 208000033962 Fontaine progeroid syndrome Diseases 0.000 description 1
- 241001251054 Formica truncorum Species 0.000 description 1
- 241000219146 Gossypium Species 0.000 description 1
- 229920002488 Hemicellulose Polymers 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229920000271 Kevlar® Polymers 0.000 description 1
- 235000004431 Linum usitatissimum Nutrition 0.000 description 1
- 240000006240 Linum usitatissimum Species 0.000 description 1
- 229920000161 Locust bean gum Polymers 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 244000070406 Malus silvestris Species 0.000 description 1
- 229920002821 Modacrylic Polymers 0.000 description 1
- 239000004666 Monoesterquat Substances 0.000 description 1
- 240000005561 Musa balbisiana Species 0.000 description 1
- 240000000907 Musa textilis Species 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 229920000784 Nomex Polymers 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 208000025174 PANDAS Diseases 0.000 description 1
- 208000021155 Paediatric autoimmune neuropsychiatric disorders associated with streptococcal infection Diseases 0.000 description 1
- 235000016496 Panda oleosa Nutrition 0.000 description 1
- 240000000220 Panda oleosa Species 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 241000479842 Pella Species 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 244000082204 Phyllostachys viridis Species 0.000 description 1
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 1
- 235000010582 Pisum sativum Nutrition 0.000 description 1
- 240000004713 Pisum sativum Species 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 235000014443 Pyrus communis Nutrition 0.000 description 1
- 235000019484 Rapeseed oil Nutrition 0.000 description 1
- 235000019774 Rice Bran oil Nutrition 0.000 description 1
- 235000019485 Safflower oil Nutrition 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 235000003434 Sesamum indicum Nutrition 0.000 description 1
- 244000040738 Sesamum orientale Species 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 229920002334 Spandex Polymers 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 229920000147 Styrene maleic anhydride Polymers 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 235000019486 Sunflower oil Nutrition 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- AHAAPZHVJKSMCB-OHDVSKATSA-M [Na+].[Na+].COC(\C=C/C(=O)[O-])=O.C1(\C=C/C(=O)O1)=O.C=CC1=CC=CC=C1 Chemical compound [Na+].[Na+].COC(\C=C/C(=O)[O-])=O.C1(\C=C/C(=O)O1)=O.C=CC1=CC=CC=C1 AHAAPZHVJKSMCB-OHDVSKATSA-M 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 125000002015 acyclic group Chemical group 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 229920013822 aminosilicone Polymers 0.000 description 1
- RWZYAGGXGHYGMB-UHFFFAOYSA-N anthranilic acid Chemical class NC1=CC=CC=C1C(O)=O RWZYAGGXGHYGMB-UHFFFAOYSA-N 0.000 description 1
- 235000021016 apples Nutrition 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 238000000089 atomic force micrograph Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- CBVUMGMCQGQDGS-IHFQCQFOSA-N azanium;furan-2,5-dione;(z)-4-methoxy-4-oxobut-2-enoate;styrene Chemical compound [NH4+].O=C1OC(=O)C=C1.C=CC1=CC=CC=C1.COC(=O)\C=C/C([O-])=O CBVUMGMCQGQDGS-IHFQCQFOSA-N 0.000 description 1
- 239000011425 bamboo Substances 0.000 description 1
- 235000021015 bananas Nutrition 0.000 description 1
- 235000015278 beef Nutrition 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- UHZZMRAGKVHANO-UHFFFAOYSA-M chlormequat chloride Chemical compound [Cl-].C[N+](C)(C)CCCl UHZZMRAGKVHANO-UHFFFAOYSA-M 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- 229940097362 cyclodextrins Drugs 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 125000005265 dialkylamine group Chemical group 0.000 description 1
- 150000005690 diesters Chemical class 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- UAKOZKUVZRMOFN-JDVCJPALSA-M dimethyl-bis[(z)-octadec-9-enyl]azanium;chloride Chemical compound [Cl-].CCCCCCCC\C=C/CCCCCCCC[N+](C)(C)CCCCCCCC\C=C/CCCCCCCC UAKOZKUVZRMOFN-JDVCJPALSA-M 0.000 description 1
- IQDGSYLLQPDQDV-UHFFFAOYSA-N dimethylazanium;chloride Chemical compound Cl.CNC IQDGSYLLQPDQDV-UHFFFAOYSA-N 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000007720 emulsion polymerization reaction Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 235000019197 fats Nutrition 0.000 description 1
- 150000002194 fatty esters Chemical class 0.000 description 1
- 239000010685 fatty oil Substances 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000003988 headspace gas chromatography Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 239000008172 hydrogenated vegetable oil Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 150000002443 hydroxylamines Chemical class 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000006317 isomerization reaction Methods 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- UWKAYLJWKGQEPM-UHFFFAOYSA-N linalool acetate Natural products CC(C)=CCCC(C)(C=C)OC(C)=O UWKAYLJWKGQEPM-UHFFFAOYSA-N 0.000 description 1
- 235000020778 linoleic acid Nutrition 0.000 description 1
- OYHQOLUKZRVURQ-IXWMQOLASA-N linoleic acid Natural products CCCCC\C=C/C\C=C\CCCCCCCC(O)=O OYHQOLUKZRVURQ-IXWMQOLASA-N 0.000 description 1
- 238000000622 liquid--liquid extraction Methods 0.000 description 1
- 239000000711 locust bean gum Substances 0.000 description 1
- 235000010420 locust bean gum Nutrition 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000004763 nomex Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000003346 palm kernel oil Substances 0.000 description 1
- 235000019865 palm kernel oil Nutrition 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 239000001814 pectin Substances 0.000 description 1
- 235000010987 pectin Nutrition 0.000 description 1
- 229920001277 pectin Polymers 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 150000003003 phosphines Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 229950008882 polysorbate Drugs 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 235000012015 potatoes Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 239000013557 residual solvent Substances 0.000 description 1
- 239000008165 rice bran oil Substances 0.000 description 1
- 235000005713 safflower oil Nutrition 0.000 description 1
- 239000003813 safflower oil Substances 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 210000002374 sebum Anatomy 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 229920005573 silicon-containing polymer Polymers 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 238000001542 size-exclusion chromatography Methods 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000004759 spandex Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 125000000185 sucrose group Chemical group 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000002600 sunflower oil Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000003784 tall oil Substances 0.000 description 1
- 239000003760 tallow Substances 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 125000005270 trialkylamine group Chemical group 0.000 description 1
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 1
- 125000004417 unsaturated alkyl group Chemical group 0.000 description 1
- 150000003673 urethanes Chemical class 0.000 description 1
- 239000000341 volatile oil Substances 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/38—Cationic compounds
- C11D1/62—Quaternary ammonium compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/0039—Coated compositions or coated components in the compositions, (micro)capsules
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/0005—Other compounding ingredients characterised by their effect
- C11D3/001—Softening compositions
- C11D3/0015—Softening compositions liquid
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/20—Organic compounds containing oxygen
- C11D3/22—Carbohydrates or derivatives thereof
- C11D3/222—Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/50—Perfumes
- C11D3/502—Protected perfumes
- C11D3/505—Protected perfumes encapsulated or adsorbed on a carrier, e.g. zeolite or clay
Definitions
- the invention is directed to liquid fabric softener compositions comprising encapsulated benefit agent and cellulose fibers.
- Liquid fabric softener compositions provide benefits to treated fabrics, particularly in the rinse phase of the laundry process, after the addition of the detergent composition. Such benefits include providing a pleasant smell to treated fabrics. Especially when doing sports, whilst wearing sports cloths, consumers appreciate the scent experience imparted by rinse added compositions to neutralize or mask sweat or body odor. A pleasant smell can be provided by the incorporation of perfumes into the fabric softener compositions. Because such benefit agents are often expensive components, encapsulation is used in order to improve the delivery and longevity of the benefit agent to the treated fabric.
- fabric softener actives are quaternised, having a net positive charge, and hence deposit very effectively onto cotton fabrics, which comprise a negative residual charge.
- other co-actives such as encapsulated benefit agents
- encapsulated benefit agents are entrained by the fabric softener active and deposit more effectively onto cotton fabrics.
- Fabric softener actives are less efficiently deposited onto synthetic fabrics.
- co-actives, such as encapsulated benefit agents are also less likely to deposit.
- synthetic fabrics are also more hydrophobic, they are also more substantive to sebum and other malodourous compounds found in sweat and the like.
- sportswear which typically is made from synthetic materials, especially polyester.
- further improved deposition and release of encapsulated benefit agent on synthetic fabrics is needed due to the intense exercise and body odour associated with sport.
- WO2009937060A1 describes deposition aids substantive to polyester, preferably those containing dicarboxylic aromatic acid/polyol polymer, particularly a phthalate containing polymer wherein the deposition aid is grafted onto melamine formaldehyde perfume capsules.
- WO2008/076753 (A1 ) relates to surfactant systems comprising micro fibrous cellulose to suspend particulates.
- WO2008/079693 (A1 ) relates to a cationic surfactant composition comprising micro fibrous cellulose to suspend particulates.
- WO2015/006635 relates to structured fabric care compositions comprising a fabric softener active and microfibrillated cellulose.
- WO03/062361 (A1 ) discloses liquid fabric conditioners comprising cellulose fibers and esterquats.
- the present invention relates to the use of liquid fabric softener compositions comprising cellulose fibers, and benefit agent capsules.
- the use of compositions of the present invention provides improved deposition and release of encapsulated benefit agent on synthetic fabrics.
- quaternary ammonium esters typically contain the following impurities: the monoester form of the quaternary ammonium ester, residual non-reacted fatty acid, and non-quaternized esteramines.
- synthetic fabric refers to fabrics made of materials selected from the list comprising polyester, nylon, spandex, acrylic, modacrylic, Kevlar®, and nomex®.
- polyester means both fabrics which comprise only polyester and blends of polyester with other materials, such as a "poly-cotton” blends.
- the liquid fabric softener composition is the liquid fabric softener composition
- liquid fabric softener composition refers to any treatment composition comprising a liquid capable of softening fabrics e.g., clothing in a domestic washing machine.
- the composition can include solids or gases in suitably subdivided form, but the overall composition excludes product forms which are non-liquid overall, such as tablets or granules.
- the liquid fabric softener composition preferably has a density in the range from 0.9 to 1.3 g.cm -3 , excluding any solid additives but including any bubbles, if present.
- Aqueous liquid fabric softening compositions are preferred.
- the water content can be present at a level of from 50% to 97%, preferably from 60% to 96%, more preferably from 70% to 95% by weight of the liquid fabric softener composition.
- the pH of the neat fabric softener composition is typically acidic to improve hydrolytic stability of the quaternary ammonium ester softening active and may be from pH 2.0 to 6.0, preferably from pH 2.0 to 4.5, more preferably from pH 2.0 to 3.5 (see Methods).
- the viscosity of the fabric softener composition may be from 50 mPa.s to 800 mPa.s, preferably from 70 mPa.s to 600 mPa.s, more preferably from 100 mPa.s to 500 mPa.s as measured with a Brookfield ® DV-E rotational viscometer (see Methods).
- the dynamic yield stress (see Methods) at 20°C of the fabric softener composition may be from 0.001 Pa to 1.0 Pa, preferably from 0.005 Pa to 0.8 Pa, more preferably from 0.01 Pa to 0.5 Pa.
- the absence of a dynamic yield stress may lead to phase instabilities such as particle creaming or settling in case the fabric softener composition comprises suspended particles such as benefit agent benefit agent capsules.
- Very high dynamic yield stresses may lead to undesired air entrapment during filling of a bottle with the fabric softener composition.
- the liquid fabric softener composition of the present invention may comprise a quaternary ammonium ester softening active (Fabric Softening Active, "FSA") at a level of from 3% to 25%, preferably from 4% to 18%, more preferably from 5% to 15%.
- FSA quaternary ammonium ester softening Active
- the iodine value (see Methods) of the parent fatty acid from which the quaternary ammonium fabric softening active is formed is from 25 to 50, preferably from 30 to 48, more preferably from 32 to 45.
- lower melting points resulting in easier processability of the FSA are obtained when the parent fatty acid from which the quaternary ammonium fabric softening active is formed is at least partially unsaturated.
- the parent fatty acid from which the quaternary ammonium softening actives is formed comprises from 2.0% to 20.0%, preferably from 3.0% to 15.0%, more preferably from 4.0% to 15.0% of double unsaturated C18 chains ("C18:2") by weight of total fatty acid chains (see Methods).
- C18:2 double unsaturated C18 chains
- very high levels of unsaturated fatty acid chains are to be avoided to minimize malodour formation as a result of oxidation of the fabric softener composition over time.
- the quaternary ammonium ester softening active is present at a level of from 4.0% to 18%, more preferably from 4.5% to 15%, even more preferably from 5.0% to 12% by weight of the composition.
- the level of quaternary ammonium ester softening active may depend of the desired concentration of total softening active in the composition (diluted or concentrated composition) and of the presence or not of other softening active.
- the risk on increasing viscosities over time is typically higher in fabric softener compositions with higher FSA levels.
- the viscosity may no longer be sufficiently controlled which renders the product unfit for use.
- Suitable quaternary ammonium ester softening actives include but are not limited to, materials selected from the group consisting of monoester quats, diester quats, triester quats and mixtures thereof.
- the level of monoester quat is from 2.0% to 40.0%
- the level of diester quat is from 40.0% to 98.0%
- the level of triester quat is from 0.0% to 25.0% by weight of total quaternary ammonium ester softening active.
- Said quaternary ammonium ester softening active may comprise compounds of the following formula: ⁇ R 2 (4-m) -N+-[X-Y-R 1 ] m ⁇ A - wherein:
- quaternary ammonium ester softening actives are commercially available from Evonik under the tradename Rewoquat WE18, Rewoquat WE20, from Stepan under the tradename Stepantex GA90, Stepantex VK90, Stepantex VL90A.
- the liquid fabric softener composition of the present invention comprises cellulose fibers.
- Cellulose fibers thicken and improve the phase stability of the fabric softener composition but we also surprisingly found that cellulose fibers improve deposition of encapsulated benefit agent on synthetic fabrics.
- composition of the present invention may comprise, based on the total composition weight, from 0.01% to 5%, preferably 0.05% to 1%, more preferably from 0.1% to 0.75% of cellulose fibers.
- cellulose fibers it is meant herein cellulose micro or nano fibrils.
- the cellulose fibers can be of bacterial or botanical origin, i.e. produced by fermentation or extracted from vegetables, plants, fruits or wood.
- Cellulose fiber sources may be selected from the group consisting of citrus peels, such as lemons, oranges and/or grapefruit; fruits, such as apples, bananas and/or pear; vegetables such as carrots, peas, potatoes and/or chicory; plants such as bamboo, jute, abaca, flax, cotton and/or sisal, cereals, and different wood sources such as spruces, eucalyptus and/or oak.
- the cellulose fiber source is selected from the group consisting of wood or plants, in particular, spruce, eucalyptus, jute and sisal.
- the content of cellulose in the cellulose fibers will vary depending on the source and treatment applied for the extraction of the fibers, and will typically range from 15% to 100%, preferably above 30%, more preferably above 50%, and even more preferably above 80% of cellulose by weight of the cellulose fibers.
- Such cellulose fibers may comprise pectin, hemicellulose, proteins, lignin and other impurities inherent to the cellulose based material source such as ash, metals, salts and combinations thereof.
- the cellulose fibers are preferably substantially non-ionic.
- Such fibers are commercially available, for instance Citri-Fi 100FG from Fiberstar, Herbacel® Classic from Herbafood, and Exilva® from Borregaard.
- the cellulose fibers may have an average diameter from 10 nm to 350 nm, preferably from 30 nm to 250 nm, more preferably from 50 nm to 200 nm.
- the liquid fabric softener composition of the present invention comprises a dispersed perfume composition.
- dispersed perfume we herein mean a perfume composition that is freely dispersed in the fabric softener composition and is not encapsulated. Perfume is typically added to provide the fabric softener composition with a pleasant smell.
- a perfume composition comprises one or more perfume raw materials. Perfume raw materials are the individual chemical compounds that are used to make a perfume composition. The choice of type and number of perfume raw materials is dependent upon the final desired scent. In the context of the present invention, any suitable perfume composition may be used. Those skilled in the art will recognize suitable compatible perfume raw materials for use in the perfume composition, and will know how to select combinations of ingredients to achieve desired scents.
- the level of dispersed perfume is at a level of from 0.1% to 10%, preferably from 0.5% to 7.5%, more preferably from 1.0% to 5.0% by weight of the composition.
- the perfume composition may comprise from 2.5% to 30%, preferably from 5% to 30% by weight of perfume composition of perfume raw materials characterized by a logP lower than 3.0, and a boiling point lower than 250°C.
- the perfume composition may comprise from 5% to 30%, preferably from 7% to 25% by weight of perfume composition of perfume raw materials characterized by having a logP lower than 3.0 and a boiling point higher than 250°C.
- the perfume composition may comprise from 35% to 60%, preferably from 40% to 55% by weight of perfume composition of perfume raw materials characterized by having a logP higher than 3.0 and a boiling point lower than 250°C.
- the perfume composition may comprise from 10% to 45%, preferably from 12% to 40% by weight of perfume composition of perfume raw materials characterized by having a logP higher than 3.0 and a boiling point higher than 250°C.
- Preferred fabric softener composition comprise dispersed perfume consisting of at least 20% by weight of perfume composition of perfume raw materials selected from the list consisting of alcohols, aldehydes containing a benzyl group, linalyl acetate, and mixtures thereof.
- the liquid fabric softener composition of the present invention comprises particles.
- the liquid fabric softener composition may comprise, based on the total liquid fabric softener composition weight, from 0.02% to 10%, preferably from 0.1% to 4%, more preferably from 0.25% to 2.5% of particles.
- Said particles include beads, pearlescent agents, encapsulated benefit agent, and mixtures thereof.
- the liquid fabric softener composition comprises encapsulated benefit agent.
- Capsules encapsulating benefit agent comprise an outer shell defining an inner space in which a benefit agent is held until rupture of the shell.
- the shell of the capsules may include a shell material.
- the shell material may include a material selected from the group consisting of polyethylenes; polyamides; polystyrenes; polyisoprenes; polycarbonates; polyesters; polyacrylates; acrylics; aminoplasts; polyolefins; polysaccharides, such as alginate and/or chitosan; gelatin; shellac; epoxy resins; vinyl polymers; water insoluble inorganics; silicone; and mixtures thereof.
- the shell material comprises polyacrylate to reduce leakage from the capsules.
- the shell material of the capsules may include a polymer derived from a material that comprises one or more multifunctional acrylate moieties.
- the multifunctional acrylate moiety may be selected from the group consisting of tri-functional acrylate, tetra- functional acrylate, penta-functional acrylate, hexa-functional acrylate, hepta-functional acrylate and mixtures thereof.
- the multifunctional acrylate moiety is preferably hexa-functional acrylate.
- the shell material may include a polyacrylate that comprises a moiety selected from the group consisting of an acrylate moiety, methacrylate moiety, amine acrylate moiety, amine methacrylate moiety, a carboxylic acid acrylate moiety, carboxylic acid methacrylate moiety and combinations thereof, preferably an amine methacrylate or carboxylic acid acrylate moiety.
- the shell material may include a material that comprises one or more multifunctional acrylate and/or methacrylate moieties.
- the ratio of material that comprises one or more multifunctional acrylate moieties to material that comprises one or more methacrylate moieties may be from about 999:1 to about 6:4, preferably from about 99:1 to about 8:1, more preferably from about 99:1 to about 8.5:1.
- the core/shell capsule may comprise an emulsifier, wherein the emulsifier is preferably selected from anionic emulsifiers, nonionic emulsifiers, cationic emulsifiers or mixtures thereof, preferably nonionic emulsifiers.
- the core/shell capsule may comprise from 0.1 % to 1.1 % by weight of the core/shell capsule of polyvinyl alcohol.
- the polyvinyl alcohol has at least one the following properties, or a mixture thereof:
- the core/shell capsule may comprise an emulsifier, wherein the emulsifier is preferably selected from styrene maleic anhydride monomethylmaleate, and/or a salt thereof, in one aspect, styrene maleic anhydride monomethylmaleate di-sodium salt and/or styrene maleic anhydride monomethylmaleate ammonia-salt; in one aspect, said styrene maleic anhydride monomethylmaleate, and/or a salt thereof.
- the emulsifier is preferably selected from styrene maleic anhydride monomethylmaleate, and/or a salt thereof, in one aspect, styrene maleic anhydride monomethylmaleate di-sodium salt and/or styrene maleic anhydride monomethylmaleate ammonia-salt; in one aspect, said styrene maleic anhydride monomethylmaleate, and/or a salt thereof.
- Perfume compositions are the preferred encapsulated benefit agent.
- the perfume composition comprises perfume raw materials.
- the encapsulated benefit agent may further comprise essential oils, malodour reducing agents, odour controlling agents, silicone, and combinations thereof.
- the perfume raw materials are typically present in an amount of from 10% to 95%, preferably from 20% to 90% by weight of the capsule.
- the perfume composition may comprise from 2.5% to 30%, preferably from 5% to 30% by weight of perfume composition of perfume raw materials characterized by a logP lower than 3.0, and a boiling point lower than 250°C.
- the perfume composition may comprise from 5% to 30%, preferably from 7% to 25% by weight of perfume composition of perfume raw materials characterized by having a logP lower than 3.0 and a boiling point higher than 250°C.
- the perfume composition may comprise from 35% to 60%, preferably from 40% to 55% by weight of perfume composition of perfume raw materials characterized by having a logP higher than 3.0 and a boiling point lower than 250°C.
- the perfume composition may comprise from 10% to 45%, preferably from 12% to 40% by weight of perfume composition of perfume raw materials characterized by having a logP higher than 3.0 and a boiling point higher than 250°C.
- the core also comprises a partitioning modifier.
- Suitable partitioning modifiers include vegetable oil, modified vegetable oil, propan-2-yl tetradecanoate and mixtures thereof.
- the modified vegetable oil may be esterified and/or brominated.
- the vegetable oil comprises castor oil and/or soy bean oil.
- the partitioning modifier may be propan-2-yl tetradecanoate.
- the partitioning modifier may be present in the core at a level, based on total core weight, of greater than 20%, or from greater than 20% to about 80%, or from greater than 20% to about 70%, or from greater than 20% to about 60%, or from about 30% to about 60%, or from about 30% to about 50%.
- the core/shell capsule have a volume weighted mean particle size from 0.5 microns to 100 microns, preferably from 1 micron to 60 microns, even more preferably from 5 microns to 30 microns.
- the liquid fabric softener composition may comprise a ratio of perfume oil capsules to dispersed perfume oil of from 3:1 to 1:40, preferably from 1:1 to 1:20, more preferably from 1:2 to 1:10.
- the liquid fabric softener composition of the present invention may comprise from 0.01% to 10%, preferably from 0.1% to 10%, more preferably from 0.1% to 5% by weight of fabric softener composition of additional fabric softening active.
- Suitable fabric softening actives include, but are not limited to, materials selected from the group consisting of non-ester quaternary ammonium compounds, amines, fatty esters, sucrose esters, silicones, dispersible polyolefins, polysaccharides, fatty acids, softening oils, polymer latexes and combinations thereof.
- Suitable non-ester quaternary ammonium compounds comprise compounds of the formula: [R (4-m) -N + -R 1 m ]X - wherein each R comprises either hydrogen, a short chain C 1 -C 6 , in one aspect a C 1 -C 3 alkyl or hydroxyalkyl group, for example methyl, ethyl, propyl, hydroxyethyl, poly(C 2-3 alkoxy), polyethoxy, benzyl, or mixtures thereof; each m is 1, 2 or 3 with the proviso that the value of each m is the same; the sum of carbons in each R 1 may be C 12 -C 22 , with each R 1 being a hydrocarbyl, or substituted hydrocarbyl group; and X - may comprise any softener-compatible anion.
- the softener-compatible anion may comprise chloride, bromide, methylsulfate, ethylsulfate, sulfate, and nitrate.
- the softener-compatible anion may comprise chloride or methyl sulfate.
- Non-limiting examples include dialkylenedimethylammonium salts such as dicanoladimethylammonium chloride, di(hard)tallowdimethylammonium chloride dicanoladimethylammonium methylsulfate, and mixtures thereof.
- dialkylenedimethylammonium salts such as dicanoladimethylammonium chloride, di(hard)tallowdimethylammonium chloride dicanoladimethylammonium methylsulfate, and mixtures thereof.
- An example of commercially available dialkylenedimethylammonium salts usable in the present invention is dioleyldimethylammonium chloride available from Witco Corporation under the trade name Adogen® 472 and dihardtallow dimethylammonium chloride available from Akzo Nobel Arquad 2HT75.
- Suitable amines include but are not limited to, materials selected from the group consisting of amidoesteramines, amidoamines, imidazoline amines, alkyl amines, and combinations thereof.
- Suitable ester amines include but are not limited to, materials selected from the group consisting of monoester amines, diester amines, triester amines and combinations thereof.
- Suitable amidoamines include but are not limited to, materials selected from the group consisting of monoamido amines, diamido amines and combinations thereof.
- Suitable alkyl amines include but are not limited to, materials selected from the group consisting of mono alkylamines, dialkyl amines quats, trialkyl amines, and combinations thereof.
- the liquid fabric softener composition may comprise a fatty acid, such as a free fatty acid as fabric softening active.
- fatty acid is used herein in the broadest sense to include unprotonated or protonated forms of a fatty acid.
- the fatty acid may be in its unprotonated, or salt form, together with a counter ion, such as, but not limited to, calcium, magnesium, sodium, potassium, and the like.
- a counter ion such as, but not limited to, calcium, magnesium, sodium, potassium, and the like.
- free fatty acid means a fatty acid that is not bound to another chemical moiety (covalently or otherwise).
- the fatty acid may include those containing from 12 to 25, from 13 to 22, or even from 16 to 20, total carbon atoms, with the fatty moiety containing from 10 to 22, from 12 to 18, or even from 14 (mid-cut) to 18 carbon atoms.
- the fatty acids may be derived from (1) an animal fat, and/or a partially hydrogenated animal fat, such as beef tallow, lard, etc.; (2) a vegetable oil, and/or a partially hydrogenated vegetable oil such as canola oil, safflower oil, peanut oil, sunflower oil, sesame seed oil, rapeseed oil, cottonseed oil, corn oil, soybean oil, tall oil, rice bran oil, palm oil, palm kernel oil, coconut oil, other tropical palm oils, linseed oil, tung oil, castor oil, etc.
- an animal fat, and/or a partially hydrogenated animal fat such as beef tallow, lard, etc.
- a vegetable oil, and/or a partially hydrogenated vegetable oil such as canola oil, safflower oil, peanut oil, sunflower oil, sesame seed oil, rapeseed oil, cottonseed oil, corn oil, soybean oil, tall oil, rice bran oil, palm oil, palm kernel oil, coconut oil, other tropical palm oils, l
- processed and/or bodied oils such as linseed oil or tung oil via thermal, pressure, alkali-isomerization and catalytic treatments; (4) combinations thereof, to yield saturated (e.g. stearic acid), unsaturated (e.g. oleic acid), polyunsaturated (linoleic acid), branched (e.g. isostearic acid) or cyclic (e.g. saturated or unsaturated ⁇ -disubstituted cyclopentyl or cyclohexyl derivatives of polyunsaturated acids) fatty acids.
- saturated e.g. stearic acid
- unsaturated e.g. oleic acid
- branched e.g. isostearic acid
- cyclic e.g. saturated or unsaturated ⁇ -disubstituted cyclopentyl or cyclohexyl derivatives of polyuns
- Mixtures of fatty acids from different fat sources can be used.
- the cis/trans ratio for the unsaturated fatty acids may be important, with the cis/trans ratio (of the C18:1 material) being from at least 1:1, at least 3:1, from 4:1 or even from 9:1 or higher.
- Branched fatty acids such as isostearic acid are also suitable since they may be more stable with respect to oxidation and the resulting degradation of color and odor quality.
- the fatty acid may have an iodine value from 0 to 140, from 50 to 120 or even from 85 to 105.
- the liquid fabric softener composition may comprise a polysaccharide as a fabric softening active, such as cationic starch.
- a polysaccharide such as cationic starch.
- Suitable cationic starches for use in the present compositions are commercially available from Cerestar under the trade name C*BOND ® and from National Starch and Chemical Company under the trade name CATO ® 2A.
- the liquid fabric softener composition may comprise a sucrose esters as a fabric softening active.
- Sucrose esters are typically derived from sucrose and fatty acids.
- Sucrose ester is composed of a sucrose moiety having one or more of its hydroxyl groups esterified.
- Sucrose is a disaccharide having the following formula:
- sucrose molecule can be represented by the formula: M(OH) 8 , wherein M is the disaccharide backbone and there are total of 8 hydroxyl groups in the molecule.
- sucrose esters can be represented by the following formula: M(OH) 8-x (OC(O)R 1 ) x wherein x is the number of hydroxyl groups that are esterified, whereas (8-x) is the hydroxyl groups that remain unchanged; x is an integer selected from 1 to 8, alternatively from 2 to 8, alternatively from 3 to 8, or from 4 to 8; and R 1 moieties are independently selected from C 1 -C 22 alkyl or C 1 -C 30 alkoxy, linear or branched, cyclic or acyclic, saturated or unsaturated, substituted or unsubstituted.
- R 1 moieties may comprise linear alkyl or alkoxy moieties having independently selected and varying chain length.
- R 1 may comprise a mixture of linear alkyl or alkoxy moieties wherein greater than 20% of the linear chains are C 18 , alternatively greater than 50% of the linear chains are C 18 , alternatively greater than 80% of the linear chains are C 18 .
- the R 1 moieties may comprise a mixture of saturate and unsaturated alkyl or alkoxy moieties.
- the iodine value of the sucrose esters suitable for use herein ranges from 1 to 150, or from 2 to 100, or from 5 to 85.
- the R 1 moieties may be hydrogenated to reduce the degree of unsaturation. In the case where a higher iodine value is preferred, such as from 40 to 95, then oleic acid and fatty acids derived from soybean oil and canola oil are suitable starting materials.
- the unsaturated R 1 moieties may comprise a mixture of "cis” and “trans” forms the unsaturated sites.
- the "cis” / "trans” ratios may range from 1:1 to 50:1, or from 2:1 to 40:1, or from 3:1 to 30:1, or from 4:1 to 20:1.
- the polyolefins can be in the form of waxes, emulsions, dispersions or suspensions.
- the polyolefin may be chosen from a polyethylene, polypropylene, or combinations thereof.
- the polyolefin may be at least partially modified to contain various functional groups, such as carboxyl, alkylamide, sulfonic acid or amide groups.
- the polyolefin may be at least partially carboxyl modified or, in other words, oxidized.
- Non-limiting examples of fabric softening active include dispersible polyethylene and polymer latexes. These agents can be in the form of emulsions, latexes, dispersions, suspensions, and the like. In one aspect, they are in the form of an emulsion or a latex. Dispersible polyethylenes and polymer latexes can have a wide range of particle size diameters ( ⁇ 50) including but not limited to from 1 nm to 100 ⁇ m; alternatively from 10 nm to 10 ⁇ m. As such, the particle sizes of dispersible polyethylenes and polymer latexes are generally, but without limitation, smaller than silicones or other fatty oils.
- any surfactant suitable for making polymer emulsions or emulsion polymerizations of polymer latexes can be used as emulsifiers for polymer emulsions and latexes used as fabric softeners active in the present invention.
- Suitable surfactants include anionic, cationic, and non-ionic surfactants, and combinations thereof. In one aspect, such surfactants are non-ionic and/or anionic surfactants. In one aspect, the ratio of surfactant to polymer in the fabric softening active is 1:5, respectively.
- the liquid fabric softener composition may comprise a silicone as fabric softening active.
- Useful silicones can be any silicone comprising compound.
- the silicone polymer may be selected from the group consisting of cyclic silicones, polydimethylsiloxanes, aminosilicones, cationic silicones, silicone polyethers, silicone resins, silicone urethanes, and combinations thereof.
- the silicone may be a polydialkylsilicone, alternatively a polydimethyl silicone (polydimethyl siloxane or "PDMS”), or a derivative thereof.
- the silicone may be chosen from an aminofunctional silicone, amino-polyether silicone, alkyloxylated silicone, cationic silicone, ethoxylated silicone, propoxylated silicone, ethoxylated/propoxylated silicone, quaternary silicone, or combinations thereof.
- the composition may comprise, based on the total liquid fabric softener composition weight, from 0.01% to 10%, preferably from 0.01% to 5%, more preferably from 0.1 % to 3.0%, most preferably from 0.5% to 2.0% of a non-ionic surfactant, preferably ethoxylated non-ionic surfactant, more preferably an ethoxylated non-ionic surfactant having a hydrophobic lipophilic balance value of 8 to 18.
- Non-ionic surfactants facilitate dispersing perfume into the fabric softener composition.
- non-ionic surfactants are commercially available from BASF under the tradename Lutensol AT80 (ethoxylated alcohol with an average degree of ethoxylation of 80 from BASF), from Clariant under the tradename Genapol T680 (ethoxylated alcohol with an average degree of ethoxylation of 68), from Sigma Aldrich under the tradename Tween 20 (polysorbate with an average degree of ethoxylation of 20).
- the liquid fabric softener composition may comprise one or more perfume delivery technologies that stabilize and enhance the deposition and release of perfume ingredients from treated substrate. Such perfume delivery technologies can be used to increase the longevity of perfume release from the treated substrate. Perfume delivery technologies, methods of making certain perfume delivery technologies and the uses of such perfume delivery technologies are disclosed in US 2007/0275866 A1 .
- the liquid fabric softener composition may comprise from 0.001% to 20%, from 0.01 % to 10%, or from 0.05% to 5%, or even from 0.1% to 0.5% by toal weight of fabric softener composition of the perfume delivery technology.
- Said perfume delivery technologies may be selected from the group consisting of: pro-perfumes, cyclodextrins, starch encapsulated accord, zeolite and inorganic carrier, and combinations thereof.
- ARP Amine Reaction Product
- ARP is a subclass or species of pro-perfumes.
- the reactive amines are primary and/or secondary amines, and may be part of a polymer or a monomer (non-polymer).
- Such ARPs may also be mixed with additional PRMs to provide benefits of polymer-assisted delivery and/or amine-assisted delivery.
- Nonlimiting examples of polymeric amines include polymers based on polyalkylimines, such as polyethyleneimine (PEI), or polyvinylamine (PVAm).
- Nonlimiting examples of monomeric (non-polymeric) amines include hydroxyl amines, such as 2-aminoethanol and its alkyl substituted derivatives, and aromatic amines such as anthranilates.
- the ARPs may be premixed with perfume or added separately in leave-on or rinse-off applications.
- a material that contains a heteroatom other than nitrogen, for example oxygen, sulfur, phosphorus or selenium, may be used as an alternative to amine compounds.
- the aforementioned alternative compounds can be used in combinations with amine compounds.
- a single molecule may comprise an amine moiety and one or more of the alternative heteroatom moieties, for example, thiols, and phosphines. The benefit may include improved delivery of perfume as well as controlled perfume release.
- the liquid fabric softener composition may comprise, based on the total liquid fabric softener composition weight, from 0.0001% to 3%, preferably from 0.0005% to 2%, more preferably from 0.001% to 1% of a deposition aid.
- the deposition aid may be a cationic or amphoteric polymer.
- the cationic polymer may comprise a cationic acrylate. Cationic polymers in general and their method of manufacture are known in the literature. Deposition aids can be added concomitantly with particles or directly in the liquid fabric softener composition.
- the deposition aid is selected from the group consisting of polyvinylformamide, partially hydroxylated polyvinylformamide, polyvinylamine, polyethylene imine, ethoxylated polyethylene imine, polyvinylalcohol, polyacrylates, and combinations thereof.
- the weight-average molecular weight of the polymer may be from 500 to 5000000 or from 1000 to 2000000 or from 2500 to 1500000 Dalton, as determined by size exclusion chromatography relative to polyethyleneoxide standards using Refractive Index (RI) detection.
- the weight-average molecular weight of the cationic polymer may be from 5000 to 37500 Dalton.
- the pH is measured on the neat fabric softener composition, using a Sartorius PT-10P pH meter with gel-filled probe (such as the Toledo probe, part number 52 000 100), calibrated according to the instructions manual.
- the viscosity of neat fabric softener composition is determined using a Brookfield ® DV-E rotational viscometer, at 60 rpm, at 21°C.
- Spindle 2 is used for viscosities from 50 mPa.s to 400 mPa.s.
- Spindle 3 is used for viscosities from 401 mPa.s to 2.0 Pa.s.
- Dynamic yield stress is measured using a controlled stress rheometer (such as an HAAKE MARS from Thermo Scientific, or equivalent), using a 60 mm parallel plate and a gap size of 500 microns at 20°C.
- the dynamic yield stress is obtained by measuring quasi steady state shear stress as a function of shear rate starting from 10s -1 to 10 -4 s -1 , taking 25 points logarithmically distributed over the shear rate range.
- Quasi-steady state is defined as the shear stress value once variation of shear stress over time is less than 3%, after at least 30 seconds and a maximum of 60 seconds at a given shear rate. Variation of shear stress over time is continuously evaluated by comparison of the average shear stress measured over periods of 3 seconds.
- the iodine value of a quaternary ammonium ester fabric softening active is the iodine value of the parent fatty acid from which the fabric softening active is formed, and is defined as the number of grams of iodine which react with 100 grams of parent fatty acid from which the fabric softening active is formed.
- the quaternary ammonium ester fabric softening active is hydrolysed according to the following protocol: 25 g of fabric softener composition is mixed with 50 mL of water and 0.3 mL of sodium hydroxide (50% activity). This mixture is boiled for at least an hour on a hotplate while avoiding that the mixture dries out. After an hour, the mixture is allowed to cool down and the pH is adjusted to neutral (pH between 6 and 8) with sulfuric acid 25% using pH strips or a calibrated pH electrode.
- the fatty acid is extracted from the mixture via acidified liquid-liquid extraction with hexane or petroleum ether: the sample mixture is diluted with water/ethanol (1:1) to 160 mL in an extraction cylinder, 5 grams of sodium chloride, 0.3 mL of sulfuric acid (25% activity) and 50 mL of hexane are added. The cylinder is stoppered and shaken for at least 1 minute. Next, the cylinder is left to rest until 2 layers are formed. The top layer containing the fatty acid in hexane is transferred to another recipient. The hexane is then evaporated using a hotplate leaving behind the extracted fatty acid.
- the iodine value of the parent fatty acid from which the fabric softening active is formed is determined following ISO3961:2013.
- the method for calculating the iodine value of a parent fatty acid comprises dissolving a prescribed amount (from 0.1-3g) into 15mL of chloroform. The dissolved parent fatty acid is then reacted with 25 mL of iodine monochloride in acetic acid solution (0.1M). To this, 20 mL of 10% potassium iodide solution and 150 mL deionised water is added.
- the excess of iodine monochloride is determined by titration with sodium thiosulphate solution (0.1M) in the presence of a blue starch indicator powder.
- a blank is determined with the same quantity of reagents and under the same conditions. The difference between the volume of sodium thiosulphate used in the blank and that used in the reaction with the parent fatty acid enables the iodine value to be calculated.
- the fatty acid chain length distribution of the quaternary ammonium ester fabric softening active refers to the chain length distribution of the parent fatty acid from which the fabric softening active is formed. It can be measured on the quaternary ammonium ester softening active or on the fatty acid extracted from the fabric softener composition as described in the method to determine the iodine value of a quaternary ammonium ester fabric softening active.
- the fatty acid chain length distribution is measured by dissolving 0.2 g of the quaternary ammonium ester softening active or extracted fatty acid in 3 mL of 2-butanol, 3 glass beads are added and the sample is vortexed at high speed for 4 minutes.
- the average cellulose fiber diameter can be determined directly from the cellulose fiber raw material or from the fabric softener composition comprising cellulose fibers.
- the fabric softener composition sample is centrifuged at 4,000 rpm for 10 minutes using a 5804 centrifuge from Eppendorf, in order to remove potential particles to avoid interference in the measurement of the fiber size.
- the clarified fabric softener composition is then decanted as the supernatant.
- the cellulose fibers present in the fabric softener composition are redispersed in ethanol using an Ultra Turrax device from IKA, T25 S 25 N - 25 G - ST, at a speed of 21 000 rpm for 10 minutes.
- sample is centrifuged at 4 000 rpm for 10 minutes using a 5804 centrifuge from Eppendorf and supernatant is removed. Remaining cellulose fibers at the bottom are analyzed. The process is repeated as many times as needed to have enough amount for the analysis.
- Average cellulose fiber diameter is analysed using Atomic force microscopy (AFM).
- a 0.02% cellulose fiber dispersion in demineralized water is prepared, and a drop of this dispersion is deposited onto freshly cleaved mica (highest grade V1 Mica, 15x15mm - TED PELLA , INC., or equivalent). The sample is then allowed to dry in an oven at 40°C.
- the mica sheet is mounted in an AFM (Nanosurf Flex AFM, ST Instruments or equivalent) and imaged in air under ambient conditions using a Si cantilever in dynamic mode with dynamic mode tip (ACTA -50 - APPNANO or equivalent).
- AFM Nanofluorf Flex AFM, ST Instruments or equivalent
- the image dimensions are 20 micron by 20 micron, and 256 points per line are captured.
- the AFM image is opened using suitable AFM data analysis software (such as Mountainsmap SPM 7.3, ST Instruments, or equivalent). Each image is leveled line by line. One or more profiles are extracted crossing perpendicularly one or multiple fibers avoiding bundles of fibers, and from each profile, a distance measurement is performed to obtain the diameter of the fibers. Ten diameter measurements are performed per picture counting each fiber only once.
- suitable AFM data analysis software such as Mountainsmap SPM 7.3, ST Instruments, or equivalent.
- sample preparation Three sets of measurements (sample preparation, AFM measurement and image analysis) are made.
- the arithmetic mean of all fibers measured in all images is the Average Cellulose Fiber Diameter.
- the method to treat fabrics with fabric softener composition comprises a fabric pretreatment phase followed by a fabric treatment phase.
- ballast fabrics containing cotton, polyester, polycotton, 3 white knitted cotton fabric tracers (from Warwick Equest) and 3 white polyester tracers are washed 4 times with 50 g Non-perfumed Ariel Sensitive (Nordics) at 60°C with 2grains per gallon (gpg) water, 1h 26 min cycle, 1600 rpm, in a front loader washing machine such as Miele (Novotronic W986/Softronic W467/W526/W527/W1614/W1714/W2261) or equivalent and then washed once with no detergent at 60°C with 2gpg water.
- Miele Novotronic W986/Softronic W467/W526/W527/W1614/W1714/W2261
- fabrics are dried in a 5 kg drum tumble drier with hot air outlet such as Miele Novotronic (T490/T220/T454/T430/T410/T7634) or equivalent and then they are ready to be used for testing.
- hot air outlet such as Miele Novotronic (T490/T220/T454/T430/T410/T7634) or equivalent
- ballast fabrics containing cotton, polyester, polycotton, 3 white knitted cotton fabric tracers (from Warwick Equest) and 3 white polyester tracers are washed in 15gpg water at 40°C, 56 minutes cycle, 1200 rpm without laundry detergent to avoid interference in the fabric softener evaluation.
- Liquid fabric softener composition is pre-diluted in 2 L of 15°C water with a hardness of 15 gpg 5 min before the starting of the last rinse and added to the last rinse while the washing machine is taking the water. This is a requirement to ensure homogeneous dispensability over the load and minimize the variability of the test results. All fabrics are line dried in a control temperature (25°C) and humidity (60%) room for 24 hours prior to head space concentration determination.
- the 3 white knitted cotton fabric tracers and 3 white polyester fabric tracers treated with fabric softener compositions are used for the analysis.
- a piece of 5x5cm is gently cut from the center of each fabric tracer and analyzed by fast head space gas chromatography / mass spectroscopy ("GC/MS") using an Agilent DB-5UI 30m X 0.25 X0.25 column (part # 122-5532UI) in splitless mode.
- GC/MS fast head space gas chromatography / mass spectroscopy
- the fabric samples are allowed to equilibrate for 10 minutes at 65°C before the headspace above the fabrics is sampled using a 23 gauge 50/30UM DVB/CAR/PDMS SPME fiber (Sigma-Aldrich part # 57298-U) for 5 minutes.
- the SPME fiber is subsequently on-line thermally desorbed into the GC using a ramp from 40°C (0.5 min) to 270°C (0.25 min) at 17°C/min.
- the perfume raw materials with a molecular weight between 35 and 300 m/z are analyzed by fast GC/MS in full scan mode. The amount of perfume in the headspace is expressed as nmol/L.
- the partition coefficient, P is the ratio of concentrations of a compound in a mixture of two immiscible phases at equilibrium, in this case n-Octanol/Water.
- the value of the log of the n-Octanol/Water Partition Coefficient (logP) can be measured experimentally using well known means, such as the "shake-flask” method, measuring the distribution of the solute by UV/VIS spectroscopy (for example, as described in " The Measurement of Partition Coefficients", Molecular Informatics, Volume 7, Issue 3, 1988, Pages 133-144 , by Dearden JC, Bresnan). Alternatively, the logP can be computed for each PRM in the perfume mixture being tested.
- the logP of an individual PRM is preferably calculated using the Consensus logP Computational Model, version 14.02 (Linux) available from Advanced Chemistry Development Inc. (ACD/Labs) (Toronto, Canada) to provide the unitless logP value.
- the ACD/Labs' Consensus logP Computational Model is part of the ACD/Labs model suite.
- compositions of the present invention can be formulated into any suitable form and prepared by any process chosen by the formulator, non-limiting examples of which are described in Applicant's examples and in US 2013/0109612 A1 which is incorporated herein by reference.
- compositions disclosed herein may be prepared by combining the components thereof in any convenient order and by mixing, e.g., agitating, the resulting component combination to form a phase stable fabric care composition.
- a fluid matrix may be formed containing at least a major proportion, or even substantially all, of the fluid components with the fluid components being thoroughly admixed by imparting shear agitation to this liquid combination. For example, rapid stirring with a mechanical stirrer may be employed.
- liquid fabric softener compositions described herein can also be made as follows:
- the process comprises introducing, in the form of separate streams, the fabric softener active in a liquid form and a second liquid composition comprising other components of a fabric softener composition into the pre-mixing chamber 2 of Apparatus A so that the liquids pass through the orifice component 5.
- the fabric softener active in a liquid form and the second liquid composition pass through the orifice component 5 under pressure.
- the fabric softener active in liquid form and the second liquid composition can be at the same or different operating pressures.
- the orifice component 5 is configured, either alone, or in combination with some other component, to mix the liquid fabric softener active and the second liquid composition and/or produce shear and/or turbulence in each liquid, or the mixture of the liquids.
- the liquids can be supplied to the apparatus A and B in any suitable manner including, but not limited to through the use of pumps and motors powering the same.
- the pumps can supply the liquids to the apparatus A under the desired operating pressure.
- an '8 frame block-style manifold' is used with a 781 type Plunger pump available from CAT pumps (1681 94th Lane NE, Minneapolis, MN 55449).
- the operating pressure of conventional shear and/or turbulence apparatuses is typically between 2 bar and 490 bar.
- the operating pressure is the pressure of the liquid in the inlet 1A near inlet 1B.
- the operating pressure is provided by the pumps.
- the operating pressure of Apparatus A is measured using a Cerphant T PTP35 pressure switch with a RVS membrane, manufactured by Endress Hauser (Endress+Hauser Instruments, International AG, Kaegenstrasse 2, CH-4153, Reinach).
- the switch is connected with the inlet 1A near inlet 1B using a conventional thread connection (male thread in the pre-mix chamber housing, female thread on the Cerphant T PTP35 pressure switch).
- the operating pressure of Apparatus A may be lower than conventional shear and/or turbulence processes, yet the same degree of liquid mixing is achievable as seen with processes using conventional apparatuses. Also, at the same operating pressures, the process of the present invention results in better mixing than is seen with conventional shear and/orturbulence processes.
- a given volume of liquid can have any suitable residence time and/or residence time distribution within the apparatus A. Some suitable residence times include, but are not limited to from 1 microsecond to 1 second, or more.
- the liquid(s) can flow at any suitable flow rate through the apparatus A. Suitable flow rates range from 1 to 1 500 L/min, or more, or any narrower range of flow rates falling within such range including, but not limited to from 5 to 1000 L/min.
- Circulation Loop Flow Rate Ratio which is equal to the Circulation Flow Rate divided by the Inlet Flow Rate.
- Said Circulation Loop Flow Rate Ratio for producing the desired fabric softener composition microstructure can be from 1 to 100, from 1 to 50, and even from 1 to 20.
- the fluid flow in the circulation loop imparts shear and turbulence to the liquid fabric softener to transform the liquid fabric softener intermediate into a desired dispersion microstructure.
- the duration of time said liquid fabric softener intermediate spends in said Apparatus B may be quantified by a Residence Time equal to the total volume of said Circulation Loop System divided by said fabric softener intermediate inlet flow rate.
- Said Circulation Loop Residence Time for producing desirable liquid fabric softener composition microstructures may be from 0.1 1 seconds to 10 minutes, from 1 second to 1 minute, or from 2 seconds to 30 seconds. It is desirable to minimize the residence time distribution.
- Shear and/or turbulence imparted to said liquid fabric softener intermediate may be quantified by estimating the total kinetic energy per unit fluid volume.
- the kinetic energy per unit volume imparted in the Circulation Loop System to the fabric softener intermediate in Apparatus B may be from 10 to 1 000 000 g.cm -1 .s -2 , from 50 to 500 000 g.cm -1 .s -2 , or from 100 to 100 000 g.cm -1 .s -2 .
- the liquid(s) flowing through Apparatus B can flow at any suitable flow rate.
- Suitable inlet and outlet flow rates range from 1 to 1 500 L/min, or more, or any narrower range of flow rates falling within such range including, but not limited to from 5 to 1 000 L/min.
- Suitable Circulation Flow Rates range from 1 L/min to 20 000 L/min or more, or any narrower range of flow rates falling within such range including but not limited to from 5 to 10 000 L/min.
- Apparatus A is ideally operated at the same time as Apparatus B to create a continuous process.
- the liquid fabric softener intermediate created in Apparatus A may also be stored in a suitable vessel and processed through apparatus B at a later time.
- a fabric softener composition was prepared by first preparing a dispersion of the quaternary ammonium ester softener active ("FSA") using apparatus A and B in a continuous fluid making process with 3 orifices.
- FSA quaternary ammonium ester softener active
- Coconut oil and isopropanol were added to the hot FSA at 81°C to form an FSA premix.
- Heated FSA premix at 81°C and heated deionized water at 65°C containing adjunct materials NaHEDP chelant, HCl, formic acid, and the preservative were fed using positive displacement pumps, through Apparatus A, through apparatus B, a circulation loop fitted with a centrifugal pump.
- CaCl 2 was added as an aqueous dilution through the in-line fluid injector of Apparatus B.
- the liquid fabric softener composition was immediately cooled to 25°C with a plate heat exchanger.
- the total flow rate was 3.1 kg/min; pressure at Apparatus A Inlet 5 bar; pressure at Apparatus A Outlet 2.5 bar; Apparatus B Circulation Loop Flow rate Ratio 8.4; Apparatus B Kinetic Energy 18000 g.cm -1 .s -2 ; Apparatus B Residence Time 14 s; Apparatus B Outlet pressure 3 bar.
- the fabric softener composition was finished by adding encapsulated perfume using an IKA Ultra Turrax (dispersing element 8G) operated at 10 000 rpm for 1 minute.
- IKA Ultra Turrax dispenser element 8G
- the cationic polymer or cellulose fibers were added to the fabric softener with an IKA Ultra Turrax (dispersing element 8G) for 10 min at 20 000 rpm.
- Table 1 Liquid fabric softener compositions I through IV.
- Suitable melamine formaldehyde based perfume capsules can be purchased from Encapsys (825 East Wisconsin Ave, Appleton, WI 54911), and are made as follows: 25 grams of butyl acrylate-acrylic acid copolymer emulsifier (Colloid C351, 25% solids, pka 4.5-4.7, (Kemira Chemicals, Inc. Kennesaw, Georgia U.S.A.)) is dissolved and mixed in 200 grams deionized water.
- the pH of the solution is adjusted to pH of 4.0 with sodium hydroxide solution.
- 8 grams of partially methylated methylol melamine resin (Cymel 385, 80% solids, (Cytec Industries West Paterson, New Jersey, U.S.A.)) is added to the emulsifier solution.
- 200 grams of perfume oil is added to the previous mixture under mechanical agitation and the temperature is raised to 50 °C. After mixing at higher speed until a stable emulsion is obtained, the second solution and 4 grams of sodium sulfate salt are added to the emulsion.
- This second solution contains 7 grams of butyl acrylate-acrylic acid copolymer emulsifier (Colloid C121, 25% solids, Kemira), 120 grams of distilled water, sodium hydroxide solution to adjust pH to 4.8, 25 grams of partially methylated methylol melamine resin (Cymel 385, 80% solids, Cytec). This mixture is heated to 85 °C and maintained overnight with continuous stirring to complete the encapsulation process. 23 grams of acetoacetoamide (Sigma-Aldrich, Saint Louis, Mo USA) are added. A volume-mean particle size of 18 microns is obtained.
- perfume capsules are coated with a polyvinylformamide deposition aid as follows: 0.5 grams of a cationic modified co-polymer of polyvinylamine and N-vinyl formamide (BASF Corp) is added.
- e Polyacrylate based capsules encapsulating perfume.
- Suitable perfume capsules can be purchased from Encapsys, (825 East Wisconsin Ave, Appleton, WI 54911), and are made as follows: a first oil phase, consisting of 37.5 g perfume, 0.2 g tert-butylamino ethyl methoacrylate, and 0.2 g beta hydroxyethyl acrylate is mixed for about 1 hour before the addition of 18 g CN975 (Sartomer, Exter, PA).
- a second oil phase consisting of 65 g of the perfume oil, 84 g isopropyl myristate, 1 g 2,2'-azobis(2-methylbutyronitrile), and 0.8 g 4,4'-azobis[4-cyanovaleric acid] is added to a jacketed steel reactor.
- the reactor is held at 35°C and the oil solution in mixed at 500 rpm's with a 2" flat blade mixer.
- a nitrogen blanket is applied to the reactor at a rate of 300cc/min.
- the solution is heated to 70°C in 45 minutes and held at 70°C for 45 minutes, before cooling to 50°C in 75 minutes.
- the first oil phase is added and the combined oils are mixed for another 10 minutes at 50°C.
- a water phase containing 85 g Celvol 540 PVA (Sekisui Specialty Chemicals, Dallas, TX) at 5% solids, 268 g water, 1.2 g 4,4'-azobis[4-cyanovaleric acid], and 1.1 g 21.5% NaOH, is prepared and mixed until the 4,4'-AZOBIS[4-CYANOVALERIC ACID] dissolves.
- the water phase pH for this batch was 4.90. Once the oil phase temperature has decreased to 50°C, mixing is stopped and the water phase is added to the mixed oils.
- High shear agitation is applied to produce an emulsion with the desired size characteristics (1900 rpm's for 60 minutes).
- the temperature was increased to 75°C in 30 minutes, held at 75°C for 4 hours, increased to 95°C in 30 minutes, and held at 95°C for 6 hours.
- the batch was allowed to cool to room temperature.
- f Rheovis ® CDE cationic polymeric acrylate thickener supplied by BASF g Exilva®, micro fibrous cellulose, expressed as 100% dry matter, supplied by Borregaard as an aqueous 10% microfibrous cellulose dispersion.
- Fabrics were treated with compositions I through IV according to the method to treat fabrics with fabric softener composition (see METHODS).
- the headspace above the dry fabrics was measured by GCMS (see Methods) and the headspace concentration above treated cotton fabrics was compared to that above polyester fabrics as shown in Table 2. Because of the absence of dispersed perfume in compositions I through IV, the headspace concentration can be linked to the deposition and release of encapsulated benefit agent.
- Table 2 Examples 1 through 8 of perfume headspace analysis above cotton and polyester fabrics treated with compositions I through IV. Comparative examples are indicated with an asterisk (*). Ex. 1* Ex. 2* Ex. 3* Ex. 4* Ex. 5* Ex. 6 Ex. 7* Ex.
- Cellulose fibers can act as deposition aid for encapsulated benefit agent on cotton fabrics. Indeed, the headspace concentration from comparative example 2 and 4, comprising cellulose fibers, showed an increase as compared to comparative example 1 and 3. This increase was a factor 3.5 and 1.4, for melamine formaldehyde and polyacrylate based capsules, respectively.
- cellulose fibers especially improves headspace and deposition of encapsulated benefit agent on synthetic fabrics. Because this was demonstrated for benefit agent capsules comprising different shell compositions, cellulose fibers can be considered as a versatile deposition aid which does not require additional synthesis or grafting steps related to the production of such benefit agent capsules.
- Table 3 Liquid fabric softener compositions V through X. V VI VII VIII IX X Weight % Deionized water To balance To balance To balance To balance To balance To balance To balance To balance To balance To balance To balance NaHEDP 0.007 0.007 0.007 0.007 0.007 0.007 0.007 Formic acid 0.045 0.08 0.1 0.05 0.05 0.05 HCl 0.001 0.001 0.001 0.001 0.001 0.001 0.001 Preservative a 0.023 0.023 0.023 0.023 - 0.023 FSA b 12.0 9.0 7.0 8.5 4.0 15.0 Antifoam c 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 0.101 Water
- the pH of the solution is adjusted to pH of 4.0 with sodium hydroxide solution.
- 8 grams of partially methylated methylol melamine resin (Cymel 385, 80% solids, (Cytec Industries West Paterson, New Jersey, U.S.A.)) is added to the emulsifier solution.
- 200 grams of perfume oil is added to the previous mixture under mechanical agitation and the temperature is raised to 50 °C. After mixing at higher speed until a stable emulsion is obtained, the second solution and 4 grams of sodium sulfate salt are added to the emulsion.
- This second solution contains 7 grams of butyl acrylate-acrylic acid copolymer emulsifier (Colloid C121, 25% solids, Kemira), 120 grams of distilled water, sodium hydroxide solution to adjust pH to 4.8, 25 grams of partially methylated methylol melamine resin (Cymel 385, 80% solids, Cytec). This mixture is heated to 85 °C and maintained overnight with continuous stirring to complete the encapsulation process. 23 grams of acetoacetoamide (Sigma-Aldrich, Saint Louis, Mo USA) are added. A volume-mean particle size of 18 microns is obtained.
- perfume capsules are coated with a polyvinylformamide deposition aid as follows: 0.5 grams of a cationic modified co-polymer of polyvinylamine and N-vinyl formamide (BASF Corp) is added.
- e Polyacrylate based capsules encapsulating perfume.
- Suitable perfume capsules can be purchased from Encapsys, (825 East Wisconsin Ave, Appleton, WI 54911), and are made as follows: a first oil phase, consisting of 37.5 g perfume, 0.2 g tert-butylamino ethyl methoacrylate, and 0.2 g beta hydroxyethyl acrylate is mixed for about 1 hour before the addition of 18 g CN975 (Sartomer, Exter, PA).
- a second oil phase consisting of 65 g of the perfume oil, 84 g isopropyl myristate, 1 g 2,2'-azobis(2-methylbutyronitrile), and 0.8 g 4,4'-azobis[4-cyanovaleric acid] is added to a jacketed steel reactor.
- the reactor is held at 35°C and the oil solution in mixed at 500 rpm's with a 2" flat blade mixer.
- a nitrogen blanket is applied to the reactor at a rate of 300cc/min.
- the solution is heated to 70°C in 45 minutes and held at 70°C for 45 minutes, before cooling to 50°C in 75 minutes.
- the first oil phase is added and the combined oils are mixed for another 10 minutes at 50°C.
- a water phase containing 85 g Celvol 540 PVA (Sekisui Specialty Chemicals, Dallas, TX) at 5% solids, 268 g water, 1.2 g 4,4'-azobis[4-cyanovaleric acid], and 1.1 g 21.5% NaOH, is prepared and mixed until the 4,4'-AZOBIS[4-CYANOVALERIC ACID] dissolves.
- the water phase pH for this batch was 4.90. Once the oil phase temperature has decreased to 50°C, mixing is stopped and the water phase is added to the mixed oils.
- a first mixture is prepared by combining 200 grams of water with 60 grams of styrene maleic anhydride copolymer (Ashland Water technologies, NC , USA). This first mixture is adjusted to pH 5.8 using citric acid solution. 6 grams of partially methylated methylol melamine resin (Cymel 3 85, 80% solids, Cytec, N.J., USA) is added to the emulsifier solution.
- the capsule core material which comprise a fragrance oil is added to the first mixture at a temperature of 50C to form an emulsion.
- a low speed blending is used to achieve a volume-mean particle size of 30 micrometers.
- a second solution and 3 grams of sodium sulfate salt are added to the emulsion.
- This second solution contains 3 grams of acrylic acid (Sigma Aldrich, USA), 120 grams of distilled water, sodium hydroxide solution to adjust the pH to 4.8, 10 grams of partially methylated methylol melamine resin (Cymel 385, 80% solids, Cytec, N.J., USA).
- the temperature of the mixture is gradually raised to 85 degrees Centigrade, and is maintained at this temperature overnight with continuous stirring to complete the encapsulation.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Emergency Medicine (AREA)
- Dispersion Chemistry (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
Abstract
Description
- The invention is directed to liquid fabric softener compositions comprising encapsulated benefit agent and cellulose fibers.
- Liquid fabric softener compositions provide benefits to treated fabrics, particularly in the rinse phase of the laundry process, after the addition of the detergent composition. Such benefits include providing a pleasant smell to treated fabrics. Especially when doing sports, whilst wearing sports cloths, consumers appreciate the scent experience imparted by rinse added compositions to neutralize or mask sweat or body odor. A pleasant smell can be provided by the incorporation of perfumes into the fabric softener compositions. Because such benefit agents are often expensive components, encapsulation is used in order to improve the delivery and longevity of the benefit agent to the treated fabric.
- A problem in the field is still that much of the encapsulated benefit agents are either not deposited or rinsed away before use. Improved deposition of perfume capsules on cotton is exemplified in
EP2496676 (B1).WO2007062833A1 describes deposition aids also substantive to cotton, such as polysaccharides, preferably locust bean gum. However, the art is lacking in teaching deposition aids that improve the deposition of encapsulated benefit agents onto synthetic fabrics. - Typically, fabric softener actives are quaternised, having a net positive charge, and hence deposit very effectively onto cotton fabrics, which comprise a negative residual charge. In addition, other co-actives, such as encapsulated benefit agents, are entrained by the fabric softener active and deposit more effectively onto cotton fabrics. Fabric softener actives are less efficiently deposited onto synthetic fabrics. As such, co-actives, such as encapsulated benefit agents are also less likely to deposit. Since synthetic fabrics are also more hydrophobic, they are also more substantive to sebum and other malodourous compounds found in sweat and the like. Hence, there remains a problem especially with respect to sportswear, which typically is made from synthetic materials, especially polyester. As such further improved deposition and release of encapsulated benefit agent on synthetic fabrics is needed due to the intense exercise and body odour associated with sport.
-
WO2009937060A1 describes deposition aids substantive to polyester, preferably those containing dicarboxylic aromatic acid/polyol polymer, particularly a phthalate containing polymer wherein the deposition aid is grafted onto melamine formaldehyde perfume capsules.WO2008/076753 (A1 ) relates to surfactant systems comprising micro fibrous cellulose to suspend particulates.WO2008/079693 (A1 ) relates to a cationic surfactant composition comprising micro fibrous cellulose to suspend particulates.WO2015/006635 relates to structured fabric care compositions comprising a fabric softener active and microfibrillated cellulose.WO03/062361 (A1 - Therefore, there remains a need to improve the deposition of encapsulated benefit agent onto synthetic fabrics. We have surprisingly found that the use of cellulose fibers in a liquid fabric softener composition comprising benefit agent improves the deposition of the encapsulated benefit agent on synthetic fabrics.
- The present invention relates to the use of liquid fabric softener compositions comprising cellulose fibers, and benefit agent capsules. The use of compositions of the present invention provides improved deposition and release of encapsulated benefit agent on synthetic fabrics.
- As used herein, the articles including "a" and "an" when used in a claim, are understood to mean one or more of what is claimed or described.
- As used herein, the terms "include", "includes" and "including" are meant to be non-limiting.
- Unless otherwise noted, all component or composition levels are in reference to the active portion of that component or composition, and are exclusive of impurities, for example, residual solvents or by-products, which may be present in commercially available sources of such components or compositions. For example, it is known that quaternary ammonium esters typically contain the following impurities: the monoester form of the quaternary ammonium ester, residual non-reacted fatty acid, and non-quaternized esteramines.
- All percentages and ratios are calculated by weight unless otherwise indicated. All percentages and ratios are calculated based on the total composition unless otherwise indicated.
- All ratios are calculated as a weight/weight level of the active material, unless otherwise specified.
- All measurements are performed at 25°C unless otherwise specified.
- It should be understood that every maximum numerical limitation given throughout this specification includes every lower numerical limitation, as if such lower numerical limitations were expressly written herein. Every minimum numerical limitation given throughout this specification will include every higher numerical limitation, as if such higher numerical limitations were expressly written herein. Every numerical range given throughout this specification will include every narrower numerical range that falls within such broader numerical range, as if such narrower numerical ranges were all expressly written herein.
- As used herein, the term "synthetic fabric" refers to fabrics made of materials selected from the list comprising polyester, nylon, spandex, acrylic, modacrylic, Kevlar®, and nomex®.
- In the context of the present invention the term "polyester" means both fabrics which comprise only polyester and blends of polyester with other materials, such as a "poly-cotton" blends.
- As used herein, "liquid fabric softener composition" refers to any treatment composition comprising a liquid capable of softening fabrics e.g., clothing in a domestic washing machine. The composition can include solids or gases in suitably subdivided form, but the overall composition excludes product forms which are non-liquid overall, such as tablets or granules. The liquid fabric softener composition preferably has a density in the range from 0.9 to 1.3 g.cm-3, excluding any solid additives but including any bubbles, if present.
- Aqueous liquid fabric softening compositions are preferred. For such aqueous liquid fabric softener compositions, the water content can be present at a level of from 50% to 97%, preferably from 60% to 96%, more preferably from 70% to 95% by weight of the liquid fabric softener composition.
- The pH of the neat fabric softener composition is typically acidic to improve hydrolytic stability of the quaternary ammonium ester softening active and may be from pH 2.0 to 6.0, preferably from pH 2.0 to 4.5, more preferably from pH 2.0 to 3.5 (see Methods).
- To provide a rich appearance while maintaining pourability of the fabrics softener composition, the viscosity of the fabric softener composition may be from 50 mPa.s to 800 mPa.s, preferably from 70 mPa.s to 600 mPa.s, more preferably from 100 mPa.s to 500 mPa.s as measured with a Brookfield® DV-E rotational viscometer (see Methods).
- To improve phase stability of the fabric softener composition, the dynamic yield stress (see Methods) at 20°C of the fabric softener composition may be from 0.001 Pa to 1.0 Pa, preferably from 0.005 Pa to 0.8 Pa, more preferably from 0.01 Pa to 0.5 Pa. The absence of a dynamic yield stress may lead to phase instabilities such as particle creaming or settling in case the fabric softener composition comprises suspended particles such as benefit agent benefit agent capsules. Very high dynamic yield stresses may lead to undesired air entrapment during filling of a bottle with the fabric softener composition.
- The liquid fabric softener composition of the present invention may comprise a quaternary ammonium ester softening active (Fabric Softening Active, "FSA") at a level of from 3% to 25%, preferably from 4% to 18%, more preferably from 5% to 15%. Preferably, the iodine value (see Methods) of the parent fatty acid from which the quaternary ammonium fabric softening active is formed is from 25 to 50, preferably from 30 to 48, more preferably from 32 to 45. Without being bound by theory, lower melting points resulting in easier processability of the FSA are obtained when the parent fatty acid from which the quaternary ammonium fabric softening active is formed is at least partially unsaturated. Especially double unsaturated fatty acids enable easy to process FSA's. In preferred liquid fabric softener compositions, the parent fatty acid from which the quaternary ammonium softening actives is formed comprises from 2.0% to 20.0%, preferably from 3.0% to 15.0%, more preferably from 4.0% to 15.0% of double unsaturated C18 chains ("C18:2") by weight of total fatty acid chains (see Methods). On the other hand, very high levels of unsaturated fatty acid chains are to be avoided to minimize malodour formation as a result of oxidation of the fabric softener composition over time.
- In preferred liquid fabric softener compositions, the quaternary ammonium ester softening active is present at a level of from 4.0% to 18%, more preferably from 4.5% to 15%, even more preferably from 5.0% to 12% by weight of the composition. The level of quaternary ammonium ester softening active may depend of the desired concentration of total softening active in the composition (diluted or concentrated composition) and of the presence or not of other softening active. However, the risk on increasing viscosities over time is typically higher in fabric softener compositions with higher FSA levels. On the other hand, at very high FSA levels, the viscosity may no longer be sufficiently controlled which renders the product unfit for use.
- Suitable quaternary ammonium ester softening actives include but are not limited to, materials selected from the group consisting of monoester quats, diester quats, triester quats and mixtures thereof. Preferably, the level of monoester quat is from 2.0% to 40.0%, the level of diester quat is from 40.0% to 98.0%, the level of triester quat is from 0.0% to 25.0% by weight of total quaternary ammonium ester softening active.
- Said quaternary ammonium ester softening active may comprise compounds of the following formula:
{R2 (4-m)-N+-[X-Y-R1]m}A-
wherein: - m is 1, 2 or 3 with proviso that the value of each m is identical;
- each R1 is independently hydrocarbyl, or branched hydrocarbyl group, preferably R1 is linear, more preferably R1 is partially unsaturated linear alkyl chain;
- each R2 is independently a C1-C3 alkyl or hydroxyalkyl group, preferably R2 is selected from methyl, ethyl, propyl, hydroxyethyl, 2-hydroxypropyl, 1-methyl-2-hydroxyethyl, poly(C2-C3 alkoxy), polyethoxy, benzyl;
- each X is independently -(CH2)n-, -CH2-CH(CH3)- or -CH-(CH3)-CH2- and
- each n is independently 1, 2, 3 or 4, preferably each n is 2;
- each Y is independently -O-(O)C- or -C(O)-O-;
- A- is independently selected from the group consisting of chloride, methyl sulfate, and ethyl sulfate, preferably A- is selected from the group consisting of chloride and methyl sulfate, more preferably A- is methyl sulfate;
- Examples of suitable quaternary ammonium ester softening actives are commercially available from Evonik under the tradename Rewoquat WE18, Rewoquat WE20, from Stepan under the tradename Stepantex GA90, Stepantex VK90, Stepantex VL90A.
- These types of agents and general methods of making them are disclosed in U.S.P.N.
4,137,180 . - The liquid fabric softener composition of the present invention comprises cellulose fibers. Cellulose fibers thicken and improve the phase stability of the fabric softener composition but we also surprisingly found that cellulose fibers improve deposition of encapsulated benefit agent on synthetic fabrics.
- The composition of the present invention may comprise, based on the total composition weight, from 0.01% to 5%, preferably 0.05% to 1%, more preferably from 0.1% to 0.75% of cellulose fibers.
- By cellulose fibers it is meant herein cellulose micro or nano fibrils. The cellulose fibers can be of bacterial or botanical origin, i.e. produced by fermentation or extracted from vegetables, plants, fruits or wood. Cellulose fiber sources may be selected from the group consisting of citrus peels, such as lemons, oranges and/or grapefruit; fruits, such as apples, bananas and/or pear; vegetables such as carrots, peas, potatoes and/or chicory; plants such as bamboo, jute, abaca, flax, cotton and/or sisal, cereals, and different wood sources such as spruces, eucalyptus and/or oak. Preferably, the cellulose fiber source is selected from the group consisting of wood or plants, in particular, spruce, eucalyptus, jute and sisal.
- The content of cellulose in the cellulose fibers will vary depending on the source and treatment applied for the extraction of the fibers, and will typically range from 15% to 100%, preferably above 30%, more preferably above 50%, and even more preferably above 80% of cellulose by weight of the cellulose fibers.
- Such cellulose fibers may comprise pectin, hemicellulose, proteins, lignin and other impurities inherent to the cellulose based material source such as ash, metals, salts and combinations thereof. The cellulose fibers are preferably substantially non-ionic. Such fibers are commercially available, for instance Citri-Fi 100FG from Fiberstar, Herbacel® Classic from Herbafood, and Exilva® from Borregaard.
- The cellulose fibers may have an average diameter from 10 nm to 350 nm, preferably from 30 nm to 250 nm, more preferably from 50 nm to 200 nm.
- Preferably, the liquid fabric softener composition of the present invention comprises a dispersed perfume composition. By dispersed perfume we herein mean a perfume composition that is freely dispersed in the fabric softener composition and is not encapsulated. Perfume is typically added to provide the fabric softener composition with a pleasant smell. A perfume composition comprises one or more perfume raw materials. Perfume raw materials are the individual chemical compounds that are used to make a perfume composition. The choice of type and number of perfume raw materials is dependent upon the final desired scent. In the context of the present invention, any suitable perfume composition may be used. Those skilled in the art will recognize suitable compatible perfume raw materials for use in the perfume composition, and will know how to select combinations of ingredients to achieve desired scents.
- Preferably, the level of dispersed perfume is at a level of from 0.1% to 10%, preferably from 0.5% to 7.5%, more preferably from 1.0% to 5.0% by weight of the composition.
- The perfume composition may comprise from 2.5% to 30%, preferably from 5% to 30% by weight of perfume composition of perfume raw materials characterized by a logP lower than 3.0, and a boiling point lower than 250°C.
- The perfume composition may comprise from 5% to 30%, preferably from 7% to 25% by weight of perfume composition of perfume raw materials characterized by having a logP lower than 3.0 and a boiling point higher than 250°C. The perfume composition may comprise from 35% to 60%, preferably from 40% to 55% by weight of perfume composition of perfume raw materials characterized by having a logP higher than 3.0 and a boiling point lower than 250°C. The perfume composition may comprise from 10% to 45%, preferably from 12% to 40% by weight of perfume composition of perfume raw materials characterized by having a logP higher than 3.0 and a boiling point higher than 250°C.
- Preferred fabric softener composition comprise dispersed perfume consisting of at least 20% by weight of perfume composition of perfume raw materials selected from the list consisting of alcohols, aldehydes containing a benzyl group, linalyl acetate, and mixtures thereof.
- The liquid fabric softener composition of the present invention comprises particles. The liquid fabric softener composition may comprise, based on the total liquid fabric softener composition weight, from 0.02% to 10%, preferably from 0.1% to 4%, more preferably from 0.25% to 2.5% of particles. Said particles include beads, pearlescent agents, encapsulated benefit agent, and mixtures thereof.
- The liquid fabric softener composition comprises encapsulated benefit agent. Capsules encapsulating benefit agent comprise an outer shell defining an inner space in which a benefit agent is held until rupture of the shell.
- The shell of the capsules may include a shell material. The shell material may include a material selected from the group consisting of polyethylenes; polyamides; polystyrenes; polyisoprenes; polycarbonates; polyesters; polyacrylates; acrylics; aminoplasts; polyolefins; polysaccharides, such as alginate and/or chitosan; gelatin; shellac; epoxy resins; vinyl polymers; water insoluble inorganics; silicone; and mixtures thereof. Preferably the shell material comprises polyacrylate to reduce leakage from the capsules.
- The shell material of the capsules may include a polymer derived from a material that comprises one or more multifunctional acrylate moieties. The multifunctional acrylate moiety may be selected from the group consisting of tri-functional acrylate, tetra- functional acrylate, penta-functional acrylate, hexa-functional acrylate, hepta-functional acrylate and mixtures thereof. The multifunctional acrylate moiety is preferably hexa-functional acrylate. The shell material may include a polyacrylate that comprises a moiety selected from the group consisting of an acrylate moiety, methacrylate moiety, amine acrylate moiety, amine methacrylate moiety, a carboxylic acid acrylate moiety, carboxylic acid methacrylate moiety and combinations thereof, preferably an amine methacrylate or carboxylic acid acrylate moiety.
- The shell material may include a material that comprises one or more multifunctional acrylate and/or methacrylate moieties. The ratio of material that comprises one or more multifunctional acrylate moieties to material that comprises one or more methacrylate moieties may be from about 999:1 to about 6:4, preferably from about 99:1 to about 8:1, more preferably from about 99:1 to about 8.5:1.
- The core/shell capsule may comprise an emulsifier, wherein the emulsifier is preferably selected from anionic emulsifiers, nonionic emulsifiers, cationic emulsifiers or mixtures thereof, preferably nonionic emulsifiers.
- The core/shell capsule may comprise from 0.1 % to 1.1 % by weight of the core/shell capsule of polyvinyl alcohol. Preferably, the polyvinyl alcohol has at least one the following properties, or a mixture thereof:
- (i) a hydrolysis degree from 55% to 99%;
- (ii) a viscosity of from 40 mPa.s to 120 mPa.s in 4% water solution at 20°C;
- (iii) a degree of polymerization of from 1,500 to 2,500;
- (iv) number average molecular weight of from 65,000 Da to 110,000 Da.
- The core/shell capsule may comprise an emulsifier, wherein the emulsifier is preferably selected from styrene maleic anhydride monomethylmaleate, and/or a salt thereof, in one aspect, styrene maleic anhydride monomethylmaleate di-sodium salt and/or styrene maleic anhydride monomethylmaleate ammonia-salt; in one aspect, said styrene maleic anhydride monomethylmaleate, and/or a salt thereof.
- Perfume compositions are the preferred encapsulated benefit agent. The perfume composition comprises perfume raw materials. The encapsulated benefit agent may further comprise essential oils, malodour reducing agents, odour controlling agents, silicone, and combinations thereof.
- The perfume raw materials are typically present in an amount of from 10% to 95%, preferably from 20% to 90% by weight of the capsule.
- The perfume composition may comprise from 2.5% to 30%, preferably from 5% to 30% by weight of perfume composition of perfume raw materials characterized by a logP lower than 3.0, and a boiling point lower than 250°C.
- The perfume composition may comprise from 5% to 30%, preferably from 7% to 25% by weight of perfume composition of perfume raw materials characterized by having a logP lower than 3.0 and a boiling point higher than 250°C. The perfume composition may comprise from 35% to 60%, preferably from 40% to 55% by weight of perfume composition of perfume raw materials characterized by having a logP higher than 3.0 and a boiling point lower than 250°C. The perfume composition may comprise from 10% to 45%, preferably from 12% to 40% by weight of perfume composition of perfume raw materials characterized by having a logP higher than 3.0 and a boiling point higher than 250°C.
- Preferably, the core also comprises a partitioning modifier. Suitable partitioning modifiers include vegetable oil, modified vegetable oil, propan-2-yl tetradecanoate and mixtures thereof. The modified vegetable oil may be esterified and/or brominated. The vegetable oil comprises castor oil and/or soy bean oil. The partitioning modifier may be propan-2-yl tetradecanoate. The partitioning modifier may be present in the core at a level, based on total core weight, of greater than 20%, or from greater than 20% to about 80%, or from greater than 20% to about 70%, or from greater than 20% to about 60%, or from about 30% to about 60%, or from about 30% to about 50%.
- Preferably the core/shell capsule have a volume weighted mean particle size from 0.5 microns to 100 microns, preferably from 1 micron to 60 microns, even more preferably from 5 microns to 30 microns.
- The liquid fabric softener composition may comprise a ratio of perfume oil capsules to dispersed perfume oil of from 3:1 to 1:40, preferably from 1:1 to 1:20, more preferably from 1:2 to 1:10.
- The liquid fabric softener composition of the present invention may comprise from 0.01% to 10%, preferably from 0.1% to 10%, more preferably from 0.1% to 5% by weight of fabric softener composition of additional fabric softening active. Suitable fabric softening actives, include, but are not limited to, materials selected from the group consisting of non-ester quaternary ammonium compounds, amines, fatty esters, sucrose esters, silicones, dispersible polyolefins, polysaccharides, fatty acids, softening oils, polymer latexes and combinations thereof.
- Suitable non-ester quaternary ammonium compounds comprise compounds of the formula:
[R(4-m)-N+-R1 m]X-
wherein each R comprises either hydrogen, a short chain C1-C6, in one aspect a C1-C3 alkyl or hydroxyalkyl group, for example methyl, ethyl, propyl, hydroxyethyl, poly(C2-3 alkoxy), polyethoxy, benzyl, or mixtures thereof; each m is 1, 2 or 3 with the proviso that the value of each m is the same; the sum of carbons in each R1 may be C12-C22, with each R1 being a hydrocarbyl, or substituted hydrocarbyl group; and X- may comprise any softener-compatible anion. The softener-compatible anion may comprise chloride, bromide, methylsulfate, ethylsulfate, sulfate, and nitrate. The softener-compatible anion may comprise chloride or methyl sulfate. - Non-limiting examples include dialkylenedimethylammonium salts such as dicanoladimethylammonium chloride, di(hard)tallowdimethylammonium chloride dicanoladimethylammonium methylsulfate, and mixtures thereof. An example of commercially available dialkylenedimethylammonium salts usable in the present invention is dioleyldimethylammonium chloride available from Witco Corporation under the trade name Adogen® 472 and dihardtallow dimethylammonium chloride available from Akzo Nobel Arquad 2HT75.
- Suitable amines include but are not limited to, materials selected from the group consisting of amidoesteramines, amidoamines, imidazoline amines, alkyl amines, and combinations thereof. Suitable ester amines include but are not limited to, materials selected from the group consisting of monoester amines, diester amines, triester amines and combinations thereof. Suitable amidoamines include but are not limited to, materials selected from the group consisting of monoamido amines, diamido amines and combinations thereof. Suitable alkyl amines include but are not limited to, materials selected from the group consisting of mono alkylamines, dialkyl amines quats, trialkyl amines, and combinations thereof.
- The liquid fabric softener composition may comprise a fatty acid, such as a free fatty acid as fabric softening active. The term "fatty acid" is used herein in the broadest sense to include unprotonated or protonated forms of a fatty acid. One skilled in the art will readily appreciate that the pH of an aqueous composition will dictate, in part, whether a fatty acid is protonated or unprotonated. The fatty acid may be in its unprotonated, or salt form, together with a counter ion, such as, but not limited to, calcium, magnesium, sodium, potassium, and the like. The term "free fatty acid" means a fatty acid that is not bound to another chemical moiety (covalently or otherwise).
- The fatty acid may include those containing from 12 to 25, from 13 to 22, or even from 16 to 20, total carbon atoms, with the fatty moiety containing from 10 to 22, from 12 to 18, or even from 14 (mid-cut) to 18 carbon atoms.
- The fatty acids may be derived from (1) an animal fat, and/or a partially hydrogenated animal fat, such as beef tallow, lard, etc.; (2) a vegetable oil, and/or a partially hydrogenated vegetable oil such as canola oil, safflower oil, peanut oil, sunflower oil, sesame seed oil, rapeseed oil, cottonseed oil, corn oil, soybean oil, tall oil, rice bran oil, palm oil, palm kernel oil, coconut oil, other tropical palm oils, linseed oil, tung oil, castor oil, etc. ; (3) processed and/or bodied oils, such as linseed oil or tung oil via thermal, pressure, alkali-isomerization and catalytic treatments; (4) combinations thereof, to yield saturated (e.g. stearic acid), unsaturated (e.g. oleic acid), polyunsaturated (linoleic acid), branched (e.g. isostearic acid) or cyclic (e.g. saturated or unsaturated α-disubstituted cyclopentyl or cyclohexyl derivatives of polyunsaturated acids) fatty acids.
- Mixtures of fatty acids from different fat sources can be used.
- The cis/trans ratio for the unsaturated fatty acids may be important, with the cis/trans ratio (of the C18:1 material) being from at least 1:1, at least 3:1, from 4:1 or even from 9:1 or higher.
- Branched fatty acids such as isostearic acid are also suitable since they may be more stable with respect to oxidation and the resulting degradation of color and odor quality.
- The fatty acid may have an iodine value from 0 to 140, from 50 to 120 or even from 85 to 105.
- The liquid fabric softener composition may comprise a polysaccharide as a fabric softening active, such as cationic starch. Suitable cationic starches for use in the present compositions are commercially available from Cerestar under the trade name C*BOND® and from National Starch and Chemical Company under the trade name CATO® 2A.
- The liquid fabric softener composition may comprise a sucrose esters as a fabric softening active. Sucrose esters are typically derived from sucrose and fatty acids. Sucrose ester is composed of a sucrose moiety having one or more of its hydroxyl groups esterified.
-
- Alternatively, the sucrose molecule can be represented by the formula: M(OH)8, wherein M is the disaccharide backbone and there are total of 8 hydroxyl groups in the molecule.
- Thus, sucrose esters can be represented by the following formula:
M(OH)8-x(OC(O)R1)x
wherein x is the number of hydroxyl groups that are esterified, whereas (8-x) is the hydroxyl groups that remain unchanged; x is an integer selected from 1 to 8, alternatively from 2 to 8, alternatively from 3 to 8, or from 4 to 8; and R1 moieties are independently selected from C1-C22 alkyl or C1-C30 alkoxy, linear or branched, cyclic or acyclic, saturated or unsaturated, substituted or unsubstituted. - The R1 moieties may comprise linear alkyl or alkoxy moieties having independently selected and varying chain length. For example, R1 may comprise a mixture of linear alkyl or alkoxy moieties wherein greater than 20% of the linear chains are C18, alternatively greater than 50% of the linear chains are C18, alternatively greater than 80% of the linear chains are C18.
- The R1 moieties may comprise a mixture of saturate and unsaturated alkyl or alkoxy moieties. The iodine value of the sucrose esters suitable for use herein ranges from 1 to 150, or from 2 to 100, or from 5 to 85. The R1 moieties may be hydrogenated to reduce the degree of unsaturation. In the case where a higher iodine value is preferred, such as from 40 to 95, then oleic acid and fatty acids derived from soybean oil and canola oil are suitable starting materials.
- The unsaturated R1 moieties may comprise a mixture of "cis" and "trans" forms the unsaturated sites. The "cis" / "trans" ratios may range from 1:1 to 50:1, or from 2:1 to 40:1, or from 3:1 to 30:1, or from 4:1 to 20:1.
- Generally, all dispersible polyolefins that provide fabric softening benefits can be used as fabric softening active in the present invention. The polyolefins can be in the form of waxes, emulsions, dispersions or suspensions.
- The polyolefin may be chosen from a polyethylene, polypropylene, or combinations thereof. The polyolefin may be at least partially modified to contain various functional groups, such as carboxyl, alkylamide, sulfonic acid or amide groups. The polyolefin may be at least partially carboxyl modified or, in other words, oxidized.
- Non-limiting examples of fabric softening active include dispersible polyethylene and polymer latexes. These agents can be in the form of emulsions, latexes, dispersions, suspensions, and the like. In one aspect, they are in the form of an emulsion or a latex. Dispersible polyethylenes and polymer latexes can have a wide range of particle size diameters (χ50) including but not limited to from 1 nm to 100 µm; alternatively from 10 nm to 10 µm. As such, the particle sizes of dispersible polyethylenes and polymer latexes are generally, but without limitation, smaller than silicones or other fatty oils.
- Generally, any surfactant suitable for making polymer emulsions or emulsion polymerizations of polymer latexes can be used as emulsifiers for polymer emulsions and latexes used as fabric softeners active in the present invention. Suitable surfactants include anionic, cationic, and non-ionic surfactants, and combinations thereof. In one aspect, such surfactants are non-ionic and/or anionic surfactants. In one aspect, the ratio of surfactant to polymer in the fabric softening active is 1:5, respectively.
- The liquid fabric softener composition may comprise a silicone as fabric softening active. Useful silicones can be any silicone comprising compound. The silicone polymer may be selected from the group consisting of cyclic silicones, polydimethylsiloxanes, aminosilicones, cationic silicones, silicone polyethers, silicone resins, silicone urethanes, and combinations thereof. The silicone may be a polydialkylsilicone, alternatively a polydimethyl silicone (polydimethyl siloxane or "PDMS"), or a derivative thereof. The silicone may be chosen from an aminofunctional silicone, amino-polyether silicone, alkyloxylated silicone, cationic silicone, ethoxylated silicone, propoxylated silicone, ethoxylated/propoxylated silicone, quaternary silicone, or combinations thereof.
- The composition may comprise, based on the total liquid fabric softener composition weight, from 0.01% to 10%, preferably from 0.01% to 5%, more preferably from 0.1 % to 3.0%, most preferably from 0.5% to 2.0% of a non-ionic surfactant, preferably ethoxylated non-ionic surfactant, more preferably an ethoxylated non-ionic surfactant having a hydrophobic lipophilic balance value of 8 to 18. Non-ionic surfactants facilitate dispersing perfume into the fabric softener composition.
- Examples of suitable non-ionic surfactants are commercially available from BASF under the tradename Lutensol AT80 (ethoxylated alcohol with an average degree of ethoxylation of 80 from BASF), from Clariant under the tradename Genapol T680 (ethoxylated alcohol with an average degree of ethoxylation of 68), from Sigma Aldrich under the tradename Tween 20 (polysorbate with an average degree of ethoxylation of 20).
- The liquid fabric softener composition may comprise one or more perfume delivery technologies that stabilize and enhance the deposition and release of perfume ingredients from treated substrate. Such perfume delivery technologies can be used to increase the longevity of perfume release from the treated substrate. Perfume delivery technologies, methods of making certain perfume delivery technologies and the uses of such perfume delivery technologies are disclosed in
US 2007/0275866 A1 . - The liquid fabric softener composition may comprise from 0.001% to 20%, from 0.01 % to 10%, or from 0.05% to 5%, or even from 0.1% to 0.5% by toal weight of fabric softener composition of the perfume delivery technology. Said perfume delivery technologies may be selected from the group consisting of: pro-perfumes, cyclodextrins, starch encapsulated accord, zeolite and inorganic carrier, and combinations thereof.
- Amine Reaction Product (ARP): For purposes of the present application, ARP is a subclass or species of pro-perfumes. One may also use "reactive" polymeric amines in which the amine functionality is pre-reacted with one or more PRMs to form an amine reaction product (ARP). Typically the reactive amines are primary and/or secondary amines, and may be part of a polymer or a monomer (non-polymer). Such ARPs may also be mixed with additional PRMs to provide benefits of polymer-assisted delivery and/or amine-assisted delivery. Nonlimiting examples of polymeric amines include polymers based on polyalkylimines, such as polyethyleneimine (PEI), or polyvinylamine (PVAm). Nonlimiting examples of monomeric (non-polymeric) amines include hydroxyl amines, such as 2-aminoethanol and its alkyl substituted derivatives, and aromatic amines such as anthranilates. The ARPs may be premixed with perfume or added separately in leave-on or rinse-off applications. A material that contains a heteroatom other than nitrogen, for example oxygen, sulfur, phosphorus or selenium, may be used as an alternative to amine compounds. The aforementioned alternative compounds can be used in combinations with amine compounds. A single molecule may comprise an amine moiety and one or more of the alternative heteroatom moieties, for example, thiols, and phosphines. The benefit may include improved delivery of perfume as well as controlled perfume release.
- The liquid fabric softener composition may comprise, based on the total liquid fabric softener composition weight, from 0.0001% to 3%, preferably from 0.0005% to 2%, more preferably from 0.001% to 1% of a deposition aid. The deposition aid may be a cationic or amphoteric polymer. The cationic polymer may comprise a cationic acrylate. Cationic polymers in general and their method of manufacture are known in the literature. Deposition aids can be added concomitantly with particles or directly in the liquid fabric softener composition. Preferably, the deposition aid is selected from the group consisting of polyvinylformamide, partially hydroxylated polyvinylformamide, polyvinylamine, polyethylene imine, ethoxylated polyethylene imine, polyvinylalcohol, polyacrylates, and combinations thereof.
- The weight-average molecular weight of the polymer may be from 500 to 5000000 or from 1000 to 2000000 or from 2500 to 1500000 Dalton, as determined by size exclusion chromatography relative to polyethyleneoxide standards using Refractive Index (RI) detection. In one aspect, the weight-average molecular weight of the cationic polymer may be from 5000 to 37500 Dalton.
- The pH is measured on the neat fabric softener composition, using a Sartorius PT-10P pH meter with gel-filled probe (such as the Toledo probe, part number 52 000 100), calibrated according to the instructions manual.
- The viscosity of neat fabric softener composition is determined using a Brookfield ® DV-E rotational viscometer, at 60 rpm, at 21°C. Spindle 2 is used for viscosities from 50 mPa.s to 400 mPa.s. Spindle 3 is used for viscosities from 401 mPa.s to 2.0 Pa.s.
- Dynamic yield stress is measured using a controlled stress rheometer (such as an HAAKE MARS from Thermo Scientific, or equivalent), using a 60 mm parallel plate and a gap size of 500 microns at 20°C. The dynamic yield stress is obtained by measuring quasi steady state shear stress as a function of shear rate starting from 10s-1 to 10-4 s-1, taking 25 points logarithmically distributed over the shear rate range. Quasi-steady state is defined as the shear stress value once variation of shear stress over time is less than 3%, after at least 30 seconds and a maximum of 60 seconds at a given shear rate. Variation of shear stress over time is continuously evaluated by comparison of the average shear stress measured over periods of 3 seconds. If after 60 seconds measurement at a certain shear rate, the shear stress value varies more than 3%, the final shear stress measurement is defined as the quasi state value for calculation purposes. Shear stress data is then fitted using least squares method in logarithmic space as a function of shear rate following a Herschel - Bulkley model:
- The iodine value of a quaternary ammonium ester fabric softening active is the iodine value of the parent fatty acid from which the fabric softening active is formed, and is defined as the number of grams of iodine which react with 100 grams of parent fatty acid from which the fabric softening active is formed.
- First, the quaternary ammonium ester fabric softening active is hydrolysed according to the following protocol: 25 g of fabric softener composition is mixed with 50 mL of water and 0.3 mL of sodium hydroxide (50% activity). This mixture is boiled for at least an hour on a hotplate while avoiding that the mixture dries out. After an hour, the mixture is allowed to cool down and the pH is adjusted to neutral (pH between 6 and 8) with sulfuric acid 25% using pH strips or a calibrated pH electrode.
- Next the fatty acid is extracted from the mixture via acidified liquid-liquid extraction with hexane or petroleum ether: the sample mixture is diluted with water/ethanol (1:1) to 160 mL in an extraction cylinder, 5 grams of sodium chloride, 0.3 mL of sulfuric acid (25% activity) and 50 mL of hexane are added. The cylinder is stoppered and shaken for at least 1 minute. Next, the cylinder is left to rest until 2 layers are formed. The top layer containing the fatty acid in hexane is transferred to another recipient. The hexane is then evaporated using a hotplate leaving behind the extracted fatty acid.
- Next, the iodine value of the parent fatty acid from which the fabric softening active is formed is determined following ISO3961:2013. The method for calculating the iodine value of a parent fatty acid comprises dissolving a prescribed amount (from 0.1-3g) into 15mL of chloroform. The dissolved parent fatty acid is then reacted with 25 mL of iodine monochloride in acetic acid solution (0.1M). To this, 20 mL of 10% potassium iodide solution and 150 mL deionised water is added. After the addition of the halogen has taken place, the excess of iodine monochloride is determined by titration with sodium thiosulphate solution (0.1M) in the presence of a blue starch indicator powder. At the same time a blank is determined with the same quantity of reagents and under the same conditions. The difference between the volume of sodium thiosulphate used in the blank and that used in the reaction with the parent fatty acid enables the iodine value to be calculated.
- The fatty acid chain length distribution of the quaternary ammonium ester fabric softening active refers to the chain length distribution of the parent fatty acid from which the fabric softening active is formed. It can be measured on the quaternary ammonium ester softening active or on the fatty acid extracted from the fabric softener composition as described in the method to determine the iodine value of a quaternary ammonium ester fabric softening active. The fatty acid chain length distribution is measured by dissolving 0.2 g of the quaternary ammonium ester softening active or extracted fatty acid in 3 mL of 2-butanol, 3 glass beads are added and the sample is vortexed at high speed for 4 minutes. An aliquot of this extract is then transferred into a 2 mL gas chromatography vial, which is then injected into the gas chromatogram inlet (250°C) of the gas chromatograph (Agilent GC6890N) and the resultant bi-products are separated on a DB-5ms column (30 m x 250 µm x 1.0 µm, 2.0 mL/min). These bi-products are identified using a mass-spectrometer (Agilent MSD5973N, Chemstation Software version E.02.02) and the peak areas of the corresponding fatty acid chain lengths are measured. The fatty acid chain length distribution is determined by the relative ratios of the peak areas corresponding to each fatty acid chain length of interest as compared to the sum of all peaks corresponding to all fatty acid chain lengths.
- The average cellulose fiber diameter can be determined directly from the cellulose fiber raw material or from the fabric softener composition comprising cellulose fibers.
- A) Cellulose fibers raw material: A cellulose fibers sample is prepared by adding 1% dry matter of cellulose fibers to water and activating it with a high pressure homogenizer (PANDA from GEA, 350 bars, 10 passes). The obtained sample is analyzed.
- B) Fabric softener composition comprising cellulose fibers:
- The fabric softener composition sample is centrifuged at 4,000 rpm for 10 minutes using a 5804 centrifuge from Eppendorf, in order to remove potential particles to avoid interference in the measurement of the fiber size. The clarified fabric softener composition is then decanted as the supernatant. The cellulose fibers present in the fabric softener composition (supernatant) are redispersed in ethanol using an Ultra Turrax device from IKA, T25 S 25 N - 25 G - ST, at a speed of 21 000 rpm for 10 minutes. Then, sample is centrifuged at 4 000 rpm for 10 minutes using a 5804 centrifuge from Eppendorf and supernatant is removed. Remaining cellulose fibers at the bottom are analyzed. The process is repeated as many times as needed to have enough amount for the analysis.
- Average cellulose fiber diameter is analysed using Atomic force microscopy (AFM). A 0.02% cellulose fiber dispersion in demineralized water is prepared, and a drop of this dispersion is deposited onto freshly cleaved mica (highest grade V1 Mica, 15x15mm - TED PELLA , INC., or equivalent). The sample is then allowed to dry in an oven at 40°C.
- The mica sheet is mounted in an AFM (Nanosurf Flex AFM, ST Instruments or equivalent) and imaged in air under ambient conditions using a Si cantilever in dynamic mode with dynamic mode tip (ACTA -50 - APPNANO or equivalent). The image dimensions are 20 micron by 20 micron, and 256 points per line are captured.
- The AFM image is opened using suitable AFM data analysis software (such as Mountainsmap SPM 7.3, ST Instruments, or equivalent). Each image is leveled line by line. One or more profiles are extracted crossing perpendicularly one or multiple fibers avoiding bundles of fibers, and from each profile, a distance measurement is performed to obtain the diameter of the fibers. Ten diameter measurements are performed per picture counting each fiber only once.
- Three sets of measurements (sample preparation, AFM measurement and image analysis) are made. The arithmetic mean of all fibers measured in all images is the Average Cellulose Fiber Diameter.
- The method to treat fabrics with fabric softener composition comprises a fabric pretreatment phase followed by a fabric treatment phase.
- 2.9±0.1 kg of ballast fabrics containing cotton, polyester, polycotton, 3 white knitted cotton fabric tracers (from Warwick Equest) and 3 white polyester tracers are washed 4 times with 50 g Non-perfumed Ariel Sensitive (Nordics) at 60°C with 2grains per gallon (gpg) water, 1h 26 min cycle, 1600 rpm, in a front loader washing machine such as Miele (Novotronic W986/Softronic W467/W526/W527/W1614/W1714/W2261) or equivalent and then washed once with no detergent at 60°C with 2gpg water. After the last wash, fabrics are dried in a 5 kg drum tumble drier with hot air outlet such as Miele Novotronic (T490/T220/T454/T430/T410/T7634) or equivalent and then they are ready to be used for testing.
- 2.9±0.1 kg of ballast fabrics containing cotton, polyester, polycotton, 3 white knitted cotton fabric tracers (from Warwick Equest) and 3 white polyester tracers are washed in 15gpg water at 40°C, 56 minutes cycle, 1200 rpm without laundry detergent to avoid interference in the fabric softener evaluation. Liquid fabric softener composition is pre-diluted in 2 L of 15°C water with a hardness of 15 gpg 5 min before the starting of the last rinse and added to the last rinse while the washing machine is taking the water. This is a requirement to ensure homogeneous dispensability over the load and minimize the variability of the test results. All fabrics are line dried in a control temperature (25°C) and humidity (60%) room for 24 hours prior to head space concentration determination.
- The 3 white knitted cotton fabric tracers and 3 white polyester fabric tracers treated with fabric softener compositions (see Method for treating fabrics with fabric softener composition prior to head space concentration determination) are used for the analysis. A piece of 5x5cm is gently cut from the center of each fabric tracer and analyzed by fast head space gas chromatography / mass spectroscopy ("GC/MS") using an Agilent DB-5UI 30m X 0.25 X0.25 column (part # 122-5532UI) in splitless mode. Each fabric tracer cut is transferred into 25 mL glass headspace vials. The fabric samples are allowed to equilibrate for 10 minutes at 65°C before the headspace above the fabrics is sampled using a 23 gauge 50/30UM DVB/CAR/PDMS SPME fiber (Sigma-Aldrich part # 57298-U) for 5 minutes. The SPME fiber is subsequently on-line thermally desorbed into the GC using a ramp from 40°C (0.5 min) to 270°C (0.25 min) at 17°C/min. The perfume raw materials with a molecular weight between 35 and 300 m/z are analyzed by fast GC/MS in full scan mode. The amount of perfume in the headspace is expressed as nmol/L.
- The partition coefficient, P, is the ratio of concentrations of a compound in a mixture of two immiscible phases at equilibrium, in this case n-Octanol/Water. The value of the log of the n-Octanol/Water Partition Coefficient (logP) can be measured experimentally using well known means, such as the "shake-flask" method, measuring the distribution of the solute by UV/VIS spectroscopy (for example, as described in "The Measurement of Partition Coefficients", Molecular Informatics, Volume 7, Issue 3, 1988, Pages 133-144, by Dearden JC, Bresnan). Alternatively, the logP can be computed for each PRM in the perfume mixture being tested. The logP of an individual PRM is preferably calculated using the Consensus logP Computational Model, version 14.02 (Linux) available from Advanced Chemistry Development Inc. (ACD/Labs) (Toronto, Canada) to provide the unitless logP value. The ACD/Labs' Consensus logP Computational Model is part of the ACD/Labs model suite.
- The compositions of the present invention can be formulated into any suitable form and prepared by any process chosen by the formulator, non-limiting examples of which are described in Applicant's examples and in
US 2013/0109612 A1 which is incorporated herein by reference. - The compositions disclosed herein may be prepared by combining the components thereof in any convenient order and by mixing, e.g., agitating, the resulting component combination to form a phase stable fabric care composition. A fluid matrix may be formed containing at least a major proportion, or even substantially all, of the fluid components with the fluid components being thoroughly admixed by imparting shear agitation to this liquid combination. For example, rapid stirring with a mechanical stirrer may be employed.
- The liquid fabric softener compositions described herein can also be made as follows:
- Taking an apparatus A (see
Figure 1 ) comprising:- at least a first inlet 1A and a second inlet 1B; a pre-mixing chamber 2, the pre-mixing chamber 2 having an upstream end 3 and a downstream end 4, the upstream end 3 of the pre-mixing chamber 2 being in liquid communication with the first inlet 1A and the second inlet 1B; an orifice component 5, the orifice component 5 having an upstream end 6 and a downstream end 7, the upstream end of the orifice component 6 being in liquid communication with the downstream end 4 of the pre-mixing chamber 2, wherein the orifice component 5 is configured to spray liquid in a jet and produce shear and/or turbulence in the liquid; a secondary mixing chamber 8, the secondary mixing chamber 8 being in liquid communication with the downstream end 7 of the orifice component 5; at least one outlet 9 in liquid communication with the secondary mixing chamber 8 for discharge of liquid following the production of shear and/or turbulence in the liquid, the inlet 1A, pre-mixing chamber 2, the orifice component 5 and secondary mixing chamber 8 are linear and in straight line with each other, at least one outlet 9 being located at the downstream end of the secondary mixing chamber 8; the orifice component 5 comprising at least one orifice unit, a specific example, as shown in
Figure 2 , is that the orifice component 5 comprises two orifice units 10 and 11 arranged in series to one another and each orifice unit comprises an orifice plate 12 comprising at least one orifice 13, an orifice chamber 14 located upstream from the orifice plate 12 and in liquid communication with the orifice plate 12; and wherein neighboring orifice plates are distinct from each other;
- at least a first inlet 1A and a second inlet 1B; a pre-mixing chamber 2, the pre-mixing chamber 2 having an upstream end 3 and a downstream end 4, the upstream end 3 of the pre-mixing chamber 2 being in liquid communication with the first inlet 1A and the second inlet 1B; an orifice component 5, the orifice component 5 having an upstream end 6 and a downstream end 7, the upstream end of the orifice component 6 being in liquid communication with the downstream end 4 of the pre-mixing chamber 2, wherein the orifice component 5 is configured to spray liquid in a jet and produce shear and/or turbulence in the liquid; a secondary mixing chamber 8, the secondary mixing chamber 8 being in liquid communication with the downstream end 7 of the orifice component 5; at least one outlet 9 in liquid communication with the secondary mixing chamber 8 for discharge of liquid following the production of shear and/or turbulence in the liquid, the inlet 1A, pre-mixing chamber 2, the orifice component 5 and secondary mixing chamber 8 are linear and in straight line with each other, at least one outlet 9 being located at the downstream end of the secondary mixing chamber 8; the orifice component 5 comprising at least one orifice unit, a specific example, as shown in
- connecting one or more suitable liquid pumping devices to the first inlet 1A and to the second inlet 1B;
- pumping a second liquid composition into the first inlet 1A, and, pumping a liquid fabric softener active composition into the second inlet 1B, wherein the operating pressure of the apparatus is from 2.5 bar to 50 bar, from 3.0 bar to 20 or from 3.5 bar to 10 bar the operating pressure being the pressure of the liquid as measured in the first inlet 1A near to inlet 1B. The operating pressure at the outlet of apparatus A needs to be high enough to prevent cavitation in the orifice;
- allowing the liquid fabric softener active and the second liquid composition to pass through the apparatus A at a desired flow rate, wherein as they pass through the apparatus A, they are dispersed one into the other, herein, defined as a liquid fabric softener intermediate.
- passing said liquid fabric softener intermediate from Apparatus A's outlet, to Apparatus B's (
Figure 3 )inlet 16 to subject the liquid fabric softener intermediate to additional shear and/or turbulence for a period of time within Apparatus B. - circulating said liquid fabric softener intermediate within apparatus B with a
circulation Loop pump 17 at a Circulation Loop 18 Flow Rate equal to or greater than said inlet liquid fabric softener intermediate flow rate in said Circulation Loop System. A tank, with or without a recirculation loop, or a long conduit may also be employed to deliver the desired shear and/or turbulence for the desired time. - adding by means of a
pump 19, piping and in-line fluid injector 20, an adjunct fluid, in one aspect, but not limited to a dilute salt solution, into Apparatus B to mix with the liquid fabric softener intermediate - allowing the liquid fabric softener composition with the desired microstructure to exit
Apparatus B 21 at a rate equal to the inlet flow rate into Apparatus B. - passing said liquid fabric softener composition exiting Apparatus B outlet through a heat exchanger to be cooled to ambient temperature, if necessary.
- discharging the resultant liquid fabric softener composition produced out of the outlet of the process.
- The process comprises introducing, in the form of separate streams, the fabric softener active in a liquid form and a second liquid composition comprising other components of a fabric softener composition into the pre-mixing chamber 2 of Apparatus A so that the liquids pass through the orifice component 5. The fabric softener active in a liquid form and the second liquid composition pass through the orifice component 5 under pressure. The fabric softener active in liquid form and the second liquid composition can be at the same or different operating pressures. The orifice component 5 is configured, either alone, or in combination with some other component, to mix the liquid fabric softener active and the second liquid composition and/or produce shear and/or turbulence in each liquid, or the mixture of the liquids.
- The liquids can be supplied to the apparatus A and B in any suitable manner including, but not limited to through the use of pumps and motors powering the same. The pumps can supply the liquids to the apparatus A under the desired operating pressure. In one embodiment, an '8 frame block-style manifold' is used with a 781 type Plunger pump available from CAT pumps (1681 94th Lane NE, Minneapolis, MN 55449).
- The operating pressure of conventional shear and/or turbulence apparatuses is typically between 2 bar and 490 bar. The operating pressure is the pressure of the liquid in the inlet 1A near inlet 1B. The operating pressure is provided by the pumps.
- The operating pressure of Apparatus A is measured using a Cerphant T PTP35 pressure switch with a RVS membrane, manufactured by Endress Hauser (Endress+Hauser Instruments, International AG, Kaegenstrasse 2, CH-4153, Reinach). The switch is connected with the inlet 1A near inlet 1B using a conventional thread connection (male thread in the pre-mix chamber housing, female thread on the Cerphant T PTP35 pressure switch).
- The operating pressure of Apparatus A may be lower than conventional shear and/or turbulence processes, yet the same degree of liquid mixing is achievable as seen with processes using conventional apparatuses. Also, at the same operating pressures, the process of the present invention results in better mixing than is seen with conventional shear and/orturbulence processes.
- As the fabric softener active and the second liquid composition flow through the Apparatus A, they pass through the
orifices orifice 13 and/or 15 in the form of a jet. This jet produces shear and/or turbulence in the fabric softener active and the second liquid composition, thus dispersing them one in the other to form a uniform mixture. - In conventional shear and/or turbulence processes, the fact that the liquids are forced through the
orifice 13 and/or 15 under high pressure causes them to mix. This same degree of mixing is achievable at lower pressures when the liquids are forced through a series of orifices, rather than one at a high pressure. Also, at equivalent pressures, the process of the present invention results in better liquid mixing than shear and/or turbulence processes, due to the fact that the liquids are now forced through a series of orifices. - A given volume of liquid can have any suitable residence time and/or residence time distribution within the apparatus A. Some suitable residence times include, but are not limited to from 1 microsecond to 1 second, or more. The liquid(s) can flow at any suitable flow rate through the apparatus A. Suitable flow rates range from 1 to 1 500 L/min, or more, or any narrower range of flow rates falling within such range including, but not limited to from 5 to 1000 L/min.
- For Apparatus B Circulating Loop System example, one may find it convenient to characterize the circulation flow by a Circulation Loop Flow Rate Ratio which is equal to the Circulation Flow Rate divided by the Inlet Flow Rate. Said Circulation Loop Flow Rate Ratio for producing the desired fabric softener composition microstructure can be from 1 to 100, from 1 to 50, and even from 1 to 20. The fluid flow in the circulation loop imparts shear and turbulence to the liquid fabric softener to transform the liquid fabric softener intermediate into a desired dispersion microstructure.
- The duration of time said liquid fabric softener intermediate spends in said Apparatus B may be quantified by a Residence Time equal to the total volume of said Circulation Loop System divided by said fabric softener intermediate inlet flow rate. Said Circulation Loop Residence Time for producing desirable liquid fabric softener composition microstructures may be from 0.1 1 seconds to 10 minutes, from 1 second to 1 minute, or from 2 seconds to 30 seconds. It is desirable to minimize the residence time distribution.
- Shear and/or turbulence imparted to said liquid fabric softener intermediate may be quantified by estimating the total kinetic energy per unit fluid volume. The kinetic energy per unit volume imparted in the Circulation Loop System to the fabric softener intermediate in Apparatus B may be from 10 to 1 000 000 g.cm-1.s-2, from 50 to 500 000 g.cm-1.s-2, or from 100 to 100 000 g.cm-1.s-2. The liquid(s) flowing through Apparatus B can flow at any suitable flow rate. Suitable inlet and outlet flow rates range from 1 to 1 500 L/min, or more, or any narrower range of flow rates falling within such range including, but not limited to from 5 to 1 000 L/min. Suitable Circulation Flow Rates range from 1 L/min to 20 000 L/min or more, or any narrower range of flow rates falling within such range including but not limited to from 5 to 10 000 L/min. Apparatus A is ideally operated at the same time as Apparatus B to create a continuous process. The liquid fabric softener intermediate created in Apparatus A may also be stored in a suitable vessel and processed through apparatus B at a later time.
- A fabric softener composition was prepared by first preparing a dispersion of the quaternary ammonium ester softener active ("FSA") using apparatus A and B in a continuous fluid making process with 3 orifices. Coconut oil and isopropanol were added to the hot FSA at 81°C to form an FSA premix. Heated FSA premix at 81°C and heated deionized water at 65°C containing adjunct materials NaHEDP chelant, HCl, formic acid, and the preservative were fed using positive displacement pumps, through Apparatus A, through apparatus B, a circulation loop fitted with a centrifugal pump. CaCl2 was added as an aqueous dilution through the in-line fluid injector of Apparatus B. The liquid fabric softener composition was immediately cooled to 25°C with a plate heat exchanger. The total flow rate was 3.1 kg/min; pressure at Apparatus A Inlet 5 bar; pressure at Apparatus A Outlet 2.5 bar; Apparatus B Circulation Loop Flow rate Ratio 8.4; Apparatus B Kinetic Energy 18000 g.cm-1.s-2; Apparatus B Residence Time 14 s; Apparatus B Outlet pressure 3 bar.
- The fabric softener composition was finished by adding encapsulated perfume using an IKA Ultra Turrax (dispersing element 8G) operated at 10 000 rpm for 1 minute. When present, the cationic polymer or cellulose fibers were added to the fabric softener with an IKA Ultra Turrax (dispersing element 8G) for 10 min at 20 000 rpm.
Table 1: Liquid fabric softener compositions I through IV. I II III IV Weight % Deionized water To balance To balance To balance To balance NaHEDP 0.007 0.007 0.007 0.007 Formic acid 0.045 0.045 0.045 0.045 HCl 0.001 0.001 0.001 0.001 Preservativea 0.023 0.023 0.023 0.023 FSAb 9.19 9.19 9.19 9.19 Antifoamc 0.101 0.101 0.101 0.101 Coconut oil 0.31 0.31 0.31 0.31 Isopropanol 0.94 0.94 0.94 0.94 CaCl2 0.008 0.008 0.008 0.008 Encapsulated perfumed 0.4 0.4 - - Encapsulated perfumee - - 0.4 0.4 Cationic polymerf 0.3 - 0.3 - Cellulose fiber deposition aidg - 0.3 - 0.3 a Proxel GXL, 20% aqueous dipropylene glycol solution of 1,2-benzisothiazolin-3-one, supplied by Lonza. This material is part of the dispersion that is made and is not added at another point in the process.
b DEEDMAC: diethyl-ester-dimethyl-ammonium-chloride
c MP10®, supplied by Dow Corning, 8% activity
d Suitable melamine formaldehyde based perfume capsules can be purchased from Encapsys (825 East Wisconsin Ave, Appleton, WI 54911), and are made as follows: 25 grams of butyl acrylate-acrylic acid copolymer emulsifier (Colloid C351, 25% solids, pka 4.5-4.7, (Kemira Chemicals, Inc. Kennesaw, Georgia U.S.A.)) is dissolved and mixed in 200 grams deionized water. The pH of the solution is adjusted to pH of 4.0 with sodium hydroxide solution. 8 grams of partially methylated methylol melamine resin (Cymel 385, 80% solids, (Cytec Industries West Paterson, New Jersey, U.S.A.)) is added to the emulsifier solution. 200 grams of perfume oil is added to the previous mixture under mechanical agitation and the temperature is raised to 50 °C. After mixing at higher speed until a stable emulsion is obtained, the second solution and 4 grams of sodium sulfate salt are added to the emulsion. This second solution contains 7 grams of butyl acrylate-acrylic acid copolymer emulsifier (Colloid C121, 25% solids, Kemira), 120 grams of distilled water, sodium hydroxide solution to adjust pH to 4.8, 25 grams of partially methylated methylol melamine resin (Cymel 385, 80% solids, Cytec). This mixture is heated to 85 °C and maintained overnight with continuous stirring to complete the encapsulation process. 23 grams of acetoacetoamide (Sigma-Aldrich, Saint Louis, Mo USA) are added. A volume-mean particle size of 18 microns is obtained. Then perfume capsules are coated with a polyvinylformamide deposition aid as follows: 0.5 grams of a cationic modified co-polymer of polyvinylamine and N-vinyl formamide (BASF Corp) is added.
e Polyacrylate based capsules encapsulating perfume. Suitable perfume capsules can be purchased from Encapsys, (825 East Wisconsin Ave, Appleton, WI 54911), and are made as follows: a first oil phase, consisting of 37.5 g perfume, 0.2 g tert-butylamino ethyl methoacrylate, and 0.2 g beta hydroxyethyl acrylate is mixed for about 1 hour before the addition of 18 g CN975 (Sartomer, Exter, PA). The solution is allowed to mix until needed later in the process. A second oil phase consisting of 65 g of the perfume oil, 84 g isopropyl myristate, 1 g 2,2'-azobis(2-methylbutyronitrile), and 0.8 g 4,4'-azobis[4-cyanovaleric acid] is added to a jacketed steel reactor. The reactor is held at 35°C and the oil solution in mixed at 500 rpm's with a 2" flat blade mixer. A nitrogen blanket is applied to the reactor at a rate of 300cc/min. The solution is heated to 70°C in 45 minutes and held at 70°C for 45 minutes, before cooling to 50°C in 75 minutes. At 50°C, the first oil phase is added and the combined oils are mixed for another 10 minutes at 50°C. A water phase, containing 85 g Celvol 540 PVA (Sekisui Specialty Chemicals, Dallas, TX) at 5% solids, 268 g water, 1.2 g 4,4'-azobis[4-cyanovaleric acid], and 1.1 g 21.5% NaOH, is prepared and mixed until the 4,4'-AZOBIS[4-CYANOVALERIC ACID] dissolves. The water phase pH for this batch was 4.90. Once the oil phase temperature has decreased to 50°C, mixing is stopped and the water phase is added to the mixed oils. High shear agitation is applied to produce an emulsion with the desired size characteristics (1900 rpm's for 60 minutes). The temperature was increased to 75°C in 30 minutes, held at 75°C for 4 hours, increased to 95°C in 30 minutes, and held at 95°C for 6 hours. The batch was allowed to cool to room temperature.
fRheovis® CDE, cationic polymeric acrylate thickener supplied by BASF
g Exilva®, micro fibrous cellulose, expressed as 100% dry matter, supplied by Borregaard as an aqueous 10% microfibrous cellulose dispersion. - Fabrics were treated with compositions I through IV according to the method to treat fabrics with fabric softener composition (see METHODS). The headspace above the dry fabrics was measured by GCMS (see Methods) and the headspace concentration above treated cotton fabrics was compared to that above polyester fabrics as shown in Table 2. Because of the absence of dispersed perfume in compositions I through IV, the headspace concentration can be linked to the deposition and release of encapsulated benefit agent.
Table 2: Examples 1 through 8 of perfume headspace analysis above cotton and polyester fabrics treated with compositions I through IV. Comparative examples are indicated with an asterisk (*). Ex. 1* Ex. 2* Ex. 3* Ex. 4* Ex. 5* Ex. 6 Ex. 7* Ex. 8 Treatment composition I II III IV I II III IV Encapsulated benefit agent capsule shell type Melamine formaldehyde Polyacrylate Melamine formaldehyde Polyacrylate Fabric type Cotton Cotton Polyester Polyester Headspace [nM/L] 520 1802 919 1265 314 2047 340 1268 Headspace ratio 3.5 1.4 6.5 3.7 cellulose fibers / no cellulose fibers - Cellulose fibers can act as deposition aid for encapsulated benefit agent on cotton fabrics. Indeed, the headspace concentration from comparative example 2 and 4, comprising cellulose fibers, showed an increase as compared to comparative example 1 and 3. This increase was a factor 3.5 and 1.4, for melamine formaldehyde and polyacrylate based capsules, respectively.
- However, comparison of example 6 vs 5 and 8 vs 7 surprisingly showed that the increase in headspace concentration above polyester fabrics treated with compositions comprising cellulose fibers was more improved as compared to treated cotton fabrics. For compositions comprising melamine formaldehyde based capsules in combination with cellulose fibers, the improvement was a factor 6.5 for treated polyester fabrics, while for treated cotton fabrics this was only a factor 3.5. Similarly, the improvement on treated polyester fabrics was a factor 3.7 while on treated cotton fabrics this was only a factor 1.4 in case the fabric softener compositions comprised polyacrylate based capsules in combination with cellulose fibers.
- Therefore, the data of Table 2 demonstrates that the use of cellulose fibers especially improves headspace and deposition of encapsulated benefit agent on synthetic fabrics. Because this was demonstrated for benefit agent capsules comprising different shell compositions, cellulose fibers can be considered as a versatile deposition aid which does not require additional synthesis or grafting steps related to the production of such benefit agent capsules.
- Additional suitable examples of liquid fabric softener compositions of use according to the present invention are provided in Table 3.
Table 3: Liquid fabric softener compositions V through X. V VI VII VIII IX X Weight % Deionized water To balance To balance To balance To balance To balance To balance NaHEDP 0.007 0.007 0.007 0.007 0.007 0.007 Formic acid 0.045 0.08 0.1 0.05 0.05 0.05 HCl 0.001 0.001 0.001 0.001 0.001 0.001 Preservativea 0.023 0.023 0.023 0.023 - 0.023 FSAb 12.0 9.0 7.0 8.5 4.0 15.0 Antifoamc 0.101 0.101 0.101 0.101 0.101 0.101 Coconut oil 0.31 - - 0.31 0.9 Isopropanol 1.0 0.94 0.8 0.9 0.5 2.0 CaCl2 0.02 0.008 0.008 0.01 - 0.1 Encapsulated perfumed 0.2 0.2 0.1 - 0.05 - Encapsulated perfumee 0.1 - 0.1 0.4 0.2 0.2 Encapsulated perfumef 0.15 0.1 0.1 0.1 - 0.1 Dispersed perfume 0.2 2.3 1.5 1.7 0.5 3.4 Cationic polymerg 0.3 - 0.1 - - - Cellulose fiber deposition aidh 0.1 0.2 0.25 0.2 0.4 0.05 a Proxel GXL, 20% aqueous dipropylene glycol solution of 1,2-benzisothiazolin-3-one, supplied by Lonza. This material is part of the dispersion that is made and is not added at another point in the process.
b DEEDMAC: diethyl-ester-dimethyl-ammonium-chloride,
c MP10®, supplied by Dow Corning, 8% activity
d Suitable melamine formaldehyde based perfume capsules from Encapsys (825 East Wisconsin Ave, Appleton, WI 54911), and are made as follows: 25 grams of butyl acrylate-acrylic acid copolymer emulsifier (Colloid C351, 25% solids, pka 4.5-4.7, (Kemira Chemicals, Inc. Kennesaw, Georgia U.S.A.)) is dissolved and mixed in 200 grams deionized water. The pH of the solution is adjusted to pH of 4.0 with sodium hydroxide solution. 8 grams of partially methylated methylol melamine resin (Cymel 385, 80% solids, (Cytec Industries West Paterson, New Jersey, U.S.A.)) is added to the emulsifier solution. 200 grams of perfume oil is added to the previous mixture under mechanical agitation and the temperature is raised to 50 °C. After mixing at higher speed until a stable emulsion is obtained, the second solution and 4 grams of sodium sulfate salt are added to the emulsion. This second solution contains 7 grams of butyl acrylate-acrylic acid copolymer emulsifier (Colloid C121, 25% solids, Kemira), 120 grams of distilled water, sodium hydroxide solution to adjust pH to 4.8, 25 grams of partially methylated methylol melamine resin (Cymel 385, 80% solids, Cytec). This mixture is heated to 85 °C and maintained overnight with continuous stirring to complete the encapsulation process. 23 grams of acetoacetoamide (Sigma-Aldrich, Saint Louis, Mo USA) are added. A volume-mean particle size of 18 microns is obtained. Then perfume capsules are coated with a polyvinylformamide deposition aid as follows: 0.5 grams of a cationic modified co-polymer of polyvinylamine and N-vinyl formamide (BASF Corp) is added.
e Polyacrylate based capsules encapsulating perfume.
Suitable perfume capsules can be purchased from Encapsys, (825 East Wisconsin Ave, Appleton, WI 54911), and are made as follows: a first oil phase, consisting of 37.5 g perfume, 0.2 g tert-butylamino ethyl methoacrylate, and 0.2 g beta hydroxyethyl acrylate is mixed for about 1 hour before the addition of 18 g CN975 (Sartomer, Exter, PA). The solution is allowed to mix until needed later in the process.
A second oil phase consisting of 65 g of the perfume oil, 84 g isopropyl myristate, 1 g 2,2'-azobis(2-methylbutyronitrile), and 0.8 g 4,4'-azobis[4-cyanovaleric acid] is added to a jacketed steel reactor. The reactor is held at 35°C and the oil solution in mixed at 500 rpm's with a 2" flat blade mixer. A nitrogen blanket is applied to the reactor at a rate of 300cc/min. The solution is heated to 70°C in 45 minutes and held at 70°C for 45 minutes, before cooling to 50°C in 75 minutes. At 50°C, the first oil phase is added and the combined oils are mixed for another 10 minutes at 50°C.
A water phase, containing 85 g Celvol 540 PVA (Sekisui Specialty Chemicals, Dallas, TX) at 5% solids, 268 g water, 1.2 g 4,4'-azobis[4-cyanovaleric acid], and 1.1 g 21.5% NaOH, is prepared and mixed until the 4,4'-AZOBIS[4-CYANOVALERIC ACID] dissolves. The water phase pH for this batch was 4.90.
Once the oil phase temperature has decreased to 50°C, mixing is stopped and the water phase is added to the mixed oils. High shear agitation is applied to produce an emulsion with the desired size characteristics (1900 rpm's for 60 minutes.)
The temperature was increased to 75°C in 30 minutes, held at 75°C for 4 hours, increased to 95°C in 30 minutes, and held at 95°C for 6 hours. The batch was allowed to cool to room temperature.
f A first mixture is prepared by combining 200 grams of water with 60 grams of styrene maleic anhydride copolymer (Ashland Water technologies, NC , USA). This first mixture is adjusted to pH 5.8 using citric acid solution. 6 grams of partially methylated methylol melamine resin (Cymel 3 85, 80% solids, Cytec, N.J., USA) is added to the emulsifier solution. 200 grams of the capsule core material which comprise a fragrance oil is added to the first mixture at a temperature of 50C to form an emulsion. A low speed blending is used to achieve a volume-mean particle size of 30 micrometers. A second solution and 3 grams of sodium sulfate salt are added to the emulsion. This second solution contains 3 grams of acrylic acid (Sigma Aldrich, USA), 120 grams of distilled water, sodium hydroxide solution to adjust the pH to 4.8, 10 grams of partially methylated methylol melamine resin (Cymel 385, 80% solids, Cytec, N.J., USA). The temperature of the mixture is gradually raised to 85 degrees Centigrade, and is maintained at this temperature overnight with continuous stirring to complete the encapsulation.
g Rheovis® CDE, cationic polymeric acrylate thickener supplied by BASF
h Exilva®, micro fibrous cellulose, expressed as 100% dry matter, supplied by Borregaard as an aqueous 10% microfibrous cellulose dispersion. - The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as "40 mm" is intended to mean "about 40 mm".
- Every document cited herein, including any cross referenced or related patent or application, is hereby incorporated herein by reference in its entirety unless expressly excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any invention disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests or discloses any such invention. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition of the same term in a document incorporated by reference, the meaning of definition assigned to that term in this document shall govern.
- While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.
Claims (15)
- Use of cellulose fibers in a liquid fabric softener composition comprising encapsulated benefit agent, to increase the deposition of said encapsulated benefit agent on synthetic fabrics.
- The use according to claim 1 wherein the fabrics contain polyester.
- The use according to any preceding claim wherein the liquid fabric softener composition further comprises quaternary ammonium ester softening active at a level of from 3% to 25%, preferably from 4% to 18%, more preferably from 5% to 15% by weight of the composition.
- The use according to claim 3 wherein the quaternary ammonium ester softening active has the following formula:
{R2 (4-m) - N+ - [X - Y - R1]m} A-
wherein:m is 1, 2 or 3 with proviso that the value of each m is identical;each R1 is independently hydrocarbyl, or branched hydrocarbyl group, preferably R1 is linear, more preferably R1 is partially unsaturated linear alkyl chain;each R2 is independently a C1-C3 alkyl or hydroxyalkyl group, preferably R2 is selected from methyl, ethyl, propyl, hydroxyethyl, 2-hydroxypropyl, 1-methyl-2-hydroxyethyl, poly(C2-C3 alkoxy), polyethoxy, benzyl;each X is independently -(CH2)n-, -CH2-CH(CH3)- or -CH-(CH3)-CH2- and each n is independently 1, 2, 3 or 4, preferably each n is 2;each Y is independently -O-(O)C- or -C(O)-O-;A- is independently selected from the group consisting of chloride, methyl sulfate, and ethyl sulfate, preferably A- is selected from the group consisting of chloride and methyl sulfate, more preferably A- is methyl sulfate;with the proviso that when Y is -O-(O)C-, the sum of carbons in each R1 is from 13 to 21, preferably from 13 to 19. - The use according to any preceding claim wherein the cellulose fiber is present at a level of from 0.01% to 5 %, preferably 0.05% to 1 %, more preferably from 0.1% to 0.75 % by weight of the liquid fabric softener composition.
- The use according to any preceding claim wherein, wherein the cellulose fiber is microfibrous cellulose, preferably microfibrous cellulose derived from: bacterial or botanical origin, preferably from sources selected from the group consisting of citrus peel, fruit; vegetables; plants, wood, and mixtures thereof, more preferably from wood or jute.
- The use according to any preceding claim wherein, wherein the cellulose fibers have an average diameter from 10 nm to 350 nm, preferably from 30 nm to 250 nm, more preferably from 50 nm to 200 nm.
- The use according to any preceding claim wherein the level of encapsulated benefit agent is from 0.05% to 10 %, preferably from 0.05% to 3 %, more preferably from 0.05% to 2.0 % by weight of liquid fabric softener composition.
- The use according to any preceding claim wherein said encapsulated benefit agent is encapsulated in capsules wherein said capsules comprise a capsule shell, said capsule shell comprising shell material selected from the group consisting of polyethylenes; polyamides; polystyrenes; polyisoprenes; polycarbonates; polyesters; polyacrylates; acrylics; aminoplasts; polyolefins; polysaccharides, such as alginate and/or chitosan; gelatin; shellac; epoxy resins; vinyl polymers; water insoluble inorganics; silicone; and mixtures thereof.
- The use according to claim 9 wherein said shell comprises a polymer derived from a material that comprises one or more multifunctional acrylate and/or methacrylate moieties, preferably the ratio of material that comprises one or more multifunctional acrylate moieties to material that comprises one or more methacrylate moieties is 999:1 to 6:4, more preferably from 99:1 to 8:1, most preferably from 99:1 to 8.5:1; preferably said multifunctional acrylate moiety is selected from group consisting of tri-functional acrylate, tetra- functional acrylate, penta-functional acrylate, hexa-functional acrylate, hepta-functional acrylate and mixtures thereof; and optionally a polyacrylate that comprises a moiety selected from the group consisting of an amine acrylate moiety, methacrylate moiety, a carboxylic acid acrylate moiety, carboxylic acid methacrylate moiety and combinations thereof.
- The use according to any preceding claim, wherein the liquid fabric softener composition further comprises dispersed perfume at a level of from 0.1% to 10 %, preferably 0.5% to 7.5%, more preferably from 1.0% to 5.0 % by weight of the composition.
- The use according to any preceding claim, wherein the liquid fabric softener composition has a viscosity from 50 mPa.s and 800 mPa.s, preferably from 70 mPa.s and 600 mPa.s, more preferably from 100 mPa.s to 500 mPa.s as measured with a Brookfield® DV-E rotational viscometer, spindle 2 for viscosities between 50 mPa.s and 400 mPa.s, spindle 3 for viscosities between 401 mPa.s and 800 mPa.s, at 60 rpm, at 21°C.
- The use according to any preceding claim, wherein the liquid fabric softener composition has a dynamic yield stress at 20°C from 0.001 Pa to 1.0 Pa, preferably from 0.005 Pa to 0.8 Pa, more preferably from 0.010 Pa to 0.5 Pa.
- A method of treating a synthetic fabric, said method comprisinga) optionally washing, rinsing and/or drying said fabric;b) contacting said fabric with a liquid fabric softener composition comprising encapsulated benefit agent, quaternary ammonium ester softening active, and cellulose fibers; andc) optionally drying said fabric wherein said drying steps comprise active drying and/or passive drying.
- The method according to claim 14 wherein the synthetic fabric contains polyester.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17161465.4A EP3375855B1 (en) | 2017-03-16 | 2017-03-16 | Fabric softener composition comprising encapsulated benefit agent |
PCT/US2018/022791 WO2018170356A1 (en) | 2017-03-16 | 2018-03-16 | Fabric softener composition comprising encapsulated benefit agent |
JP2019544908A JP2020508402A (en) | 2017-03-16 | 2018-03-16 | Fabric softener composition comprising encapsulated benefit agent |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17161465.4A EP3375855B1 (en) | 2017-03-16 | 2017-03-16 | Fabric softener composition comprising encapsulated benefit agent |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3375855A1 true EP3375855A1 (en) | 2018-09-19 |
EP3375855B1 EP3375855B1 (en) | 2021-04-21 |
Family
ID=58358440
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17161465.4A Active EP3375855B1 (en) | 2017-03-16 | 2017-03-16 | Fabric softener composition comprising encapsulated benefit agent |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3375855B1 (en) |
JP (1) | JP2020508402A (en) |
WO (1) | WO2018170356A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3375856B1 (en) | 2017-03-16 | 2021-09-01 | The Procter & Gamble Company | Fabric softener composition comprising encapsulated benefit agent |
WO2022152644A1 (en) * | 2021-01-13 | 2022-07-21 | Unilever Ip Holdings B.V. | Benefit agent delivery particles |
WO2023275093A1 (en) * | 2021-06-30 | 2023-01-05 | Unilever Ip Holdings B.V. | Benefit agent delivery particles |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4000725A1 (en) | 2020-11-19 | 2022-05-25 | The Procter & Gamble Company | Consumer product comprising poly acrylate and poly(beta-amino ester) delivery capsules with enhanced degradability |
WO2022109081A1 (en) | 2020-11-19 | 2022-05-27 | The Procter & Gamble Company | Consumer product comprising biodegradable delivery particles |
CN116472332A (en) | 2020-11-19 | 2023-07-21 | 宝洁公司 | Consumer product comprising biodegradable delivery particles |
EP4247320A1 (en) | 2020-11-19 | 2023-09-27 | The Procter & Gamble Company | Consumer product comprising biodegradable delivery particles |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4137180A (en) | 1976-07-02 | 1979-01-30 | Lever Brothers Company | Fabric treatment materials |
US4145184A (en) * | 1975-11-28 | 1979-03-20 | The Procter & Gamble Company | Detergent composition containing encapsulated perfume |
WO2003062361A1 (en) | 2002-01-25 | 2003-07-31 | Henkel Kommanditgesellschaft Auf Aktien | Conditioning agent for protecting textiles |
WO2007062833A1 (en) | 2005-12-02 | 2007-06-07 | Unilever Plc | Improvements relating to fabric treatment compositions |
US20070275866A1 (en) | 2006-05-23 | 2007-11-29 | Robert Richard Dykstra | Perfume delivery systems for consumer goods |
WO2008076753A1 (en) | 2006-12-15 | 2008-06-26 | Cp Kelco U.S., Inc. | Surfactant thickened systems comprising microfibrous cellulose and methods of making same |
WO2008079693A1 (en) | 2006-12-19 | 2008-07-03 | Cp Kelco U.S. Inc. | Cationic surfactant systems comprising microfibrous cellulose |
WO2009037060A1 (en) | 2007-09-22 | 2009-03-26 | Unilever Plc | Improvements relating to fabric treatment compositions |
WO2011054389A1 (en) * | 2009-11-05 | 2011-05-12 | Unilever Plc | Laundry compositions |
US20130109612A1 (en) | 2011-10-28 | 2013-05-02 | The Procter & Gamble Company | Fabric care compositions |
US20140338134A1 (en) * | 2013-05-20 | 2014-11-20 | The Procter & Gamble Company | Encapsulates |
EP2824169A1 (en) * | 2013-07-12 | 2015-01-14 | The Procter & Gamble Company | Structured fabric care compositions |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA935955A (en) | 1969-08-22 | 1973-10-30 | Kanegafuchi Boseki Kabushiki Kaisha | Process of treating fibrous articles with microcapsules containing hydrophobic treating agent |
US20030216488A1 (en) | 2002-04-18 | 2003-11-20 | The Procter & Gamble Company | Compositions comprising a dispersant and microcapsules containing an active material |
US20030215417A1 (en) | 2002-04-18 | 2003-11-20 | The Procter & Gamble Company | Malodor-controlling compositions comprising odor control agents and microcapsules containing an active material |
US20040071742A1 (en) | 2002-10-10 | 2004-04-15 | Popplewell Lewis Michael | Encapsulated fragrance chemicals |
US9993793B2 (en) | 2010-04-28 | 2018-06-12 | The Procter & Gamble Company | Delivery particles |
WO2012022034A1 (en) | 2010-08-18 | 2012-02-23 | Unilever Plc | Improvements relating to fabric treatment compositions comprising targeted benefit agents |
US11717471B2 (en) | 2010-12-01 | 2023-08-08 | Isp Investments Llc | Hydrogel microcapsules |
CN103582696B (en) | 2011-06-03 | 2015-11-25 | 宝洁公司 | Comprise the laundry care composition of dyestuff |
EP2620211A3 (en) | 2012-01-24 | 2015-08-19 | Takasago International Corporation | New microcapsules |
DK2836581T3 (en) | 2012-04-13 | 2023-05-15 | Cp Kelco Us Inc | HIGHLY EFFICIENT AND PRACTICAL FORM OF MICROFIBER CELLULOSE |
JP6096287B2 (en) | 2012-05-21 | 2017-03-15 | ザ プロクター アンド ギャンブル カンパニー | Fabric treatment composition |
WO2014047496A2 (en) * | 2012-09-20 | 2014-03-27 | The Procter & Gamble Company | Spray drying microcapsules |
EP3447113B1 (en) | 2013-07-12 | 2021-06-02 | The Procter & Gamble Company | Structured liquid compositions |
US9714397B2 (en) | 2014-10-16 | 2017-07-25 | Encapsys Llc | Controlled release microcapsules |
EP3339411B1 (en) | 2016-12-22 | 2019-12-11 | The Procter & Gamble Company | Fabric softener composition having improved viscosity stability |
EP3339408B1 (en) | 2016-12-22 | 2020-01-29 | The Procter & Gamble Company | Fabric softener composition having improved dispensing properties |
EP3375856B1 (en) | 2017-03-16 | 2021-09-01 | The Procter & Gamble Company | Fabric softener composition comprising encapsulated benefit agent |
JP7005329B2 (en) * | 2017-12-21 | 2022-01-21 | ライオン株式会社 | Liquid fabric softener composition |
-
2017
- 2017-03-16 EP EP17161465.4A patent/EP3375855B1/en active Active
-
2018
- 2018-03-16 WO PCT/US2018/022791 patent/WO2018170356A1/en active Application Filing
- 2018-03-16 JP JP2019544908A patent/JP2020508402A/en active Pending
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4145184A (en) * | 1975-11-28 | 1979-03-20 | The Procter & Gamble Company | Detergent composition containing encapsulated perfume |
US4137180A (en) | 1976-07-02 | 1979-01-30 | Lever Brothers Company | Fabric treatment materials |
WO2003062361A1 (en) | 2002-01-25 | 2003-07-31 | Henkel Kommanditgesellschaft Auf Aktien | Conditioning agent for protecting textiles |
WO2007062833A1 (en) | 2005-12-02 | 2007-06-07 | Unilever Plc | Improvements relating to fabric treatment compositions |
US20070275866A1 (en) | 2006-05-23 | 2007-11-29 | Robert Richard Dykstra | Perfume delivery systems for consumer goods |
WO2008076753A1 (en) | 2006-12-15 | 2008-06-26 | Cp Kelco U.S., Inc. | Surfactant thickened systems comprising microfibrous cellulose and methods of making same |
WO2008079693A1 (en) | 2006-12-19 | 2008-07-03 | Cp Kelco U.S. Inc. | Cationic surfactant systems comprising microfibrous cellulose |
WO2009037060A1 (en) | 2007-09-22 | 2009-03-26 | Unilever Plc | Improvements relating to fabric treatment compositions |
WO2011054389A1 (en) * | 2009-11-05 | 2011-05-12 | Unilever Plc | Laundry compositions |
EP2496676B1 (en) | 2009-11-05 | 2016-06-29 | Unilever PLC | Laundry compositions |
US20130109612A1 (en) | 2011-10-28 | 2013-05-02 | The Procter & Gamble Company | Fabric care compositions |
US20140338134A1 (en) * | 2013-05-20 | 2014-11-20 | The Procter & Gamble Company | Encapsulates |
EP2824169A1 (en) * | 2013-07-12 | 2015-01-14 | The Procter & Gamble Company | Structured fabric care compositions |
WO2015006635A1 (en) | 2013-07-12 | 2015-01-15 | The Procter & Gamble Company | Structured fabric care compositions |
Non-Patent Citations (1)
Title |
---|
DEARDEN JC, BRESNAN: "The Measurement of Partition Coefficients", MOLECULAR INFORMATICS, vol. 7, no. 3, 1988, pages 133 - 144 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3375856B1 (en) | 2017-03-16 | 2021-09-01 | The Procter & Gamble Company | Fabric softener composition comprising encapsulated benefit agent |
WO2022152644A1 (en) * | 2021-01-13 | 2022-07-21 | Unilever Ip Holdings B.V. | Benefit agent delivery particles |
WO2023275093A1 (en) * | 2021-06-30 | 2023-01-05 | Unilever Ip Holdings B.V. | Benefit agent delivery particles |
Also Published As
Publication number | Publication date |
---|---|
WO2018170356A1 (en) | 2018-09-20 |
EP3375855B1 (en) | 2021-04-21 |
JP2020508402A (en) | 2020-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3375855B1 (en) | Fabric softener composition comprising encapsulated benefit agent | |
EP3339411B1 (en) | Fabric softener composition having improved viscosity stability | |
EP3339408B1 (en) | Fabric softener composition having improved dispensing properties | |
EP3559183B1 (en) | Fabric softener composition having improved detergent scavenger compatibility | |
US11142723B2 (en) | Fabric softener composition comprising encapsulated benefit agent | |
EP3339409B1 (en) | Fabric softener composition having improved freeze thaw stability | |
CA3067882C (en) | Packaged liquid fabric softener composition having improved stability | |
WO2019094408A1 (en) | Process for making a fabric softener composition by diluting a concentrated fabric softener premix |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190319 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20200103 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20201104 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602017036955 Country of ref document: DE Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1384659 Country of ref document: AT Kind code of ref document: T Effective date: 20210515 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1384659 Country of ref document: AT Kind code of ref document: T Effective date: 20210421 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210421 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210721 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210721 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210823 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210722 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210821 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R026 Ref document number: 602017036955 Country of ref document: DE |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
26 | Opposition filed |
Opponent name: HENKEL AG & CO. KGAA Effective date: 20220121 Opponent name: CABINET BEAU DE LOMENIE Effective date: 20220120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210821 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20220331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220316 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220331 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220316 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220331 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230429 |
|
PLCK | Communication despatched that opposition was rejected |
Free format text: ORIGINAL CODE: EPIDOSNREJ1 |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
R26 | Opposition filed (corrected) |
Opponent name: HENKEL AG & CO. KGAA Effective date: 20220121 |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
APBM | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOSNREFNO |
|
APBP | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2O |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20170316 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240130 Year of fee payment: 8 Ref country code: GB Payment date: 20240201 Year of fee payment: 8 |
|
APBQ | Date of receipt of statement of grounds of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA3O |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240213 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 |