Nothing Special   »   [go: up one dir, main page]

EP3374620B1 - Internal combustion engine - Google Patents

Internal combustion engine Download PDF

Info

Publication number
EP3374620B1
EP3374620B1 EP16791311.0A EP16791311A EP3374620B1 EP 3374620 B1 EP3374620 B1 EP 3374620B1 EP 16791311 A EP16791311 A EP 16791311A EP 3374620 B1 EP3374620 B1 EP 3374620B1
Authority
EP
European Patent Office
Prior art keywords
coolant
rail
flow
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16791311.0A
Other languages
German (de)
French (fr)
Other versions
EP3374620A1 (en
Inventor
Andreas Boemer
Marco Jung
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutz AG
Original Assignee
Deutz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutz AG filed Critical Deutz AG
Publication of EP3374620A1 publication Critical patent/EP3374620A1/en
Application granted granted Critical
Publication of EP3374620B1 publication Critical patent/EP3374620B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/20Cooling circuits not specific to a single part of engine or machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/02Cylinders; Cylinder heads  having cooling means
    • F02F1/10Cylinders; Cylinder heads  having cooling means for liquid cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/02Cylinders; Cylinder heads  having cooling means
    • F02F1/10Cylinders; Cylinder heads  having cooling means for liquid cooling
    • F02F1/14Cylinders with means for directing, guiding or distributing liquid stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/26Cylinder heads having cooling means
    • F02F1/36Cylinder heads having cooling means for liquid cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/26Cylinder heads having cooling means
    • F02F1/36Cylinder heads having cooling means for liquid cooling
    • F02F1/40Cylinder heads having cooling means for liquid cooling cylinder heads with means for directing, guiding, or distributing liquid stream 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/28Layout, e.g. schematics with liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/29Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
    • F02M26/30Connections of coolers to other devices, e.g. to valves, heaters, compressors or filters; Coolers characterised by their location on the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/29Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
    • F02M26/32Liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • F01P2003/027Cooling cylinders and cylinder heads in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries

Definitions

  • the invention relates to an internal combustion engine according to the preamble of claim 1.
  • Such an internal combustion engine is z. B. from the DE 10 2013 113609 A1 famous.
  • Another internal combustion engine with cooling circuit is from DE 196 28 762 A1 famous.
  • This shows a cooling circuit of an internal combustion engine with a cast cylinder block with a cooling water jacket, a cylinder head with cooling water ducts, a common flange surface between the cylinder head and cylinder block, and with cooling water ducts within the cylinder block, which are designed as feed or return ducts, of which at least one cooling water duct runs into the Flange surface opens, wherein there is a connection between the cooling water jacket and at least one of the cooling water guides in the form of a cast-in from the flange surface slit in the cylinder block.
  • the advantage here is that the cooling circuit has a low pressure loss and an even distribution of the coolant. This saves pump power, generates less cylinder distortion and ensures an effective cooling effect.
  • FIG 1 a standard single-circuit water circuit is shown as an example, with an internal combustion engine 1 having a crankcase 2 and a cylinder head 3 fastened thereon.
  • the cooling circuit of the internal combustion engine 1 has a coolant pump 4, after which an engine oil cooler (MOC) 5 is arranged in the flow direction of the coolant.
  • MOC engine oil cooler
  • the coolant flow branches into the exhaust gas recirculation (EGR)s cooler 6 and the crankcase 2.
  • EGR exhaust gas recirculation
  • the coolant After the coolant has passed through the crankcase 2, it reaches the cylinder head 3. After the coolant enters the cylinder head 3 has flowed through, it combines with the partial flow of the coolant that flows out of the exhaust gas recirculation (EGR) cooler 6 .
  • This combined flow of coolant now reaches the thermostat 7 which, depending on the working position, directs the flow of coolant either directly to the coolant pump 4 or takes a detour via the cooler 8 .
  • figure 2 shows an example of a "common rail" water jacket single circuit water circuit.
  • a water flow in the crankcase 2 and in the cylinder head 3 that flows essentially in the transverse direction is advantageous from a cooling point of view.
  • the rail In front of the entry into the crankcase, there is an entry volume (“common rail”) into which the water from the pump can flow with little loss. From this rail, the water flows are evenly directed to the individual cylinders. In addition, water for other coolers such as e.g. B. EGR cooler and engine oil cooler can be removed as required. The respective water volume flows can be adjusted by the cross sections. Ideally, the rail should be conical to enable even water speeds and low-loss water extraction. After the water has crossed the cylinder passages in the crankcase, it flows up through the cylinder head gasket on the other side into the head. The head is then also flowed through transversely.
  • common rail In front of the entry into the crankcase, there is an entry volume (“common rail”) into which the water from the pump can flow with little loss. From this rail, the water flows are evenly directed to the individual cylinders. In addition, water for other coolers such as e.g. B. EGR cooler and engine oil cooler can be removed as required. The respective water volume flows can be
  • the water When leaving the head area (ideally on the side of the outlet channels for maximum cooling there), the water flows into a second volume, the outlet rail, which should also be conical in shape according to the amount of water. From there the water flows in the usual way to the thermostat. For a single circuit water cycle, this is shown schematically in figure 2 shown.
  • the internal combustion engine 1 is shown, which has a crankcase 2 and a cylinder head 3 fastened thereon.
  • the cooling circuit Internal combustion engine 1 has a coolant pump 4, after which an inlet rail 9 is arranged in the direction of flow of the coolant, with the coolant flow in the direction of flow in an engine oil cooler (M ⁇ K) 5 and an exhaust gas recirculation (EGR)s cooler 6, which are upstream or downstream are arranged on the intake rail 9 and branched into the crankcase 2 .
  • EGR exhaust gas recirculation
  • the coolant of the partial flow originating from the inlet rail 9 flows through the crankcase 2, after it has flowed through the crankcase 2 it reaches the cylinder head 3. After the coolant has flowed through the cylinder head 3, it flows into the outlet rail 10. This out Coolant flow originating from the outlet rail 10, M ⁇ K 5 and EGR 6 now reaches the thermostat 7, which, depending on the working position, directs the coolant flow either directly to the coolant pump 4 or via the cooler 8.
  • figure 3 discloses a "common-rail" water jacket - dual-circuit water circuit with "split cooling", ( 3 + 4).
  • the internal combustion engine 1 is shown by way of example, which has a crankcase 2 and a cylinder head 3 fastened thereon.
  • the cooling circuit of the internal combustion engine 1 has a coolant pump 4, after which an inlet rail 9 is arranged in the flow direction of the coolant, with the coolant flow in the flow direction in an engine oil cooler (M ⁇ K) 5 and an exhaust gas recirculation (EGR)s cooler 6, the are arranged after the intake rail 9 and branched into the crankcase 2 and the cylinder head 3 .
  • M ⁇ K engine oil cooler
  • EGR exhaust gas recirculation
  • the coolant flow In the flow direction of the coolant after the engine oil cooler (MOC) 5 and the exhaust gas recirculation (EGR)s cooler 6, the coolant flow combines with the coolant partial flow that emerges from the outlet rail 10 of the cylinder head and the outlet rail 11 of the crankcase.
  • the partial flow of coolant emerging from the outlet rail 11 of the crankcase flows through a regulated flap 12 which communicates with the engine control unit, which is not shown.
  • the regulated flap 12 is able to quantitatively control, or at least switch on and off, the flow of coolant originating from the outlet rail 11 of the crankcase.
  • the flow range of the controlled damper lies between the boundary conditions "full flow" and "completely closed”.
  • the coolant of the partial flow originating from the intake rail 9 flows through the crankcase 2 and the cylinder head 3 on the one hand. After the coolant has flowed through the crankcase 2, it reaches the outlet rail 11. After the other partial flow of the intake rail coolant has flowed through the cylinder head 3, it flows into the outlet rail 10 of the cylinder head.
  • This combined coolant flow originating from outlet rail 10, outlet rail 11, M ⁇ K 5 and EGR 6 now reaches the thermostat 7, which, depending on the working position, directs the coolant flow either directly to the coolant pump 4 or via the cooler 8 .
  • a water flow in the crankcase 2 and in the cylinder head 3 that flows essentially in the transverse direction is advantageous from a cooling point of view.
  • the cooling circuit of the internal combustion engine 1 has a coolant pump 4, after which an inlet rail 9 is arranged in the flow direction of the coolant, with the coolant flow in the flow direction in an engine oil cooler (M ⁇ K) 5 and an exhaust gas recirculation (EGR)s cooler 6, the are arranged after the intake rail 9 and branched into the crankcase 2 and the cylinder head 3 .
  • M ⁇ K engine oil cooler
  • EGR exhaust gas recirculation
  • the coolant after the engine oil cooler (M ⁇ K) 5 and the exhaust gas recirculation (EGR) s cooler 6 combines the Coolant flow with the coolant partial flow exiting the outlet rail 10 of the cylinder head and the outlet rail 11 of the crankcase.
  • the partial flow of coolant emerging from the outlet rail 11 of the crankcase flows through a regulated flap 12 which communicates with the engine control unit, which is not shown.
  • the regulated flap 12 is able to quantitatively control the flow of coolant originating from the outlet rail 11 of the crankcase.
  • the flow range of the controlled damper lies between the boundary conditions "full flow” and "completely closed”.
  • the coolant of the partial flow originating from the intake rail 9 flows through the crankcase 2 and the cylinder head 3 on the one hand.
  • figure 5 shows an example of the water flow in the crankcase 2 of the six-cylinder internal combustion engine 1 with flow guide vanes 14 designed as claws on the inlet side.
  • the flow guide vanes can be seen as a replacement or addition to the conical shape of the rail. In 6 they are not designed conically, for example.
  • the internal combustion engine 1 has claw-like flow guide vanes 14 in the water jacket guide.
  • the claw-like water jacket guide has an individual depth x(1-6) between the end tips of the flow guide vanes 14 on.
  • the conical outlet 10 and/or inlet 9 rails are part of the water jacket.
  • the cooling liquid flows inside the flow guide vanes upwards into the cylinder head 15.
  • the depth x is designed using CFD.
  • figure 6 shows the water flow in the crankcase 2 of the six-cylinder internal combustion engine 1 in this example with flow guide vanes 14 designed as claws on the inlet and outlet side.
  • the internal combustion engine 1 has claw-like flow guide vanes 14 in the water jacket guide, which are arranged both on the inlet side and on the outlet side.
  • the claw-like water jacket guide has an individual depth a(1-6), e(1-6) between the end tips of the flow guide vanes 14.
  • FIG. A targeted and low-loss flow control can thus be achieved.
  • the outlet 10, 11 and/or inlet 9 rails are part of the water jacket.
  • FIG 7 the water flow between the outlet valves 15, the inlet valves 16 and the injector 17 is shown.
  • the main cooling water flow occurs between the hot outlet channels.
  • the distances a, b, c, d between the valves are designed using computational fluid dynamics (CFD).
  • figure 8 shows the combustion floor 19 along the section line AA or BB between the valves 15, 16 in the cylinder head 3.
  • the water jacket bulges downwards with individually designed nose-like flow guide vanes 18.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)
  • Valve Device For Special Equipments (AREA)

Description

Die Erfindung betrifft eine Brennkraftmaschine nach dem Oberbegriff des Anspruchs 1.The invention relates to an internal combustion engine according to the preamble of claim 1.

Eine derartige Brennkraftmaschine ist z. B. aus der DE 10 2013 113609 A1 bekannt.Such an internal combustion engine is z. B. from the DE 10 2013 113609 A1 famous.

Eine andere Brennkraftmaschine mit Kühlkreislauf ist aus der DE 196 28 762 A1 bekannt. Diese zeigt einen Kühlkreislauf einer Brennkraftmaschine mit einem gegossenen Zylinderblock mit einem Kühlwassermantel, einem Zylinderkopf mit Kühlwasserkanälen, einer gemeinsamen Flanschfläche zwischen Zylinderkopf und Zylinderblock, sowie mit Kühlwasserführungen innerhalb des Zylinderblocks, die als Zuführ- oder Rückführkanäle ausgebildet sind, von denen mindestens eine Kühlwasserführung in die Flanschfläche mündet, wobei zwischen dem Kühlwassermantel und mindestens einer der Kühlwasserführungen eine Verbindung in Form eines von der Flanschfläche ausgehenden in den Zylinderblock eingegossenen Schlitzes besteht.Another internal combustion engine with cooling circuit is from DE 196 28 762 A1 famous. This shows a cooling circuit of an internal combustion engine with a cast cylinder block with a cooling water jacket, a cylinder head with cooling water ducts, a common flange surface between the cylinder head and cylinder block, and with cooling water ducts within the cylinder block, which are designed as feed or return ducts, of which at least one cooling water duct runs into the Flange surface opens, wherein there is a connection between the cooling water jacket and at least one of the cooling water guides in the form of a cast-in from the flange surface slit in the cylinder block.

Bei bisherigen bekannten Kühlwassermänteln wird das Wasser in unterschiedlicher Weise von der Pumpe zu den zu kühlenden Passagen im Kurbelgehäuse geleitet. Meist gibt es nur einen oder maximal zwei Eintritte in den Wassermantel des Kurbelgehäuses. Das Thermostat ist meist an einer Stirnseite des Zylinderkopfes angebracht. Dadurch entstehen ungleichmäßige Verteilungen des Wassers auf die einzelnen Zylinder, die nur durch angepasste Verkleinerungen der Durchtritte in der Zylinderkopfdichtung ausgeglichen werden können. Diese Durchtrittsverkleinerungen führen zu erhöhten Druckverlusten, erhöhter Pumpenleistung und damit letztendlich zu erhöhtem Kraftstoffverbrauch. Das durch die Dichtungsdurchtritte vom Kurbelgehäuse in den Kopf strömende Wasser kann den Kopf nur auf einer Seite verlassen, wodurch eine stark unterschiedliche Wasserversorgung der einzelnen Bereiche im Kopf unvermeidbar ist.In previously known cooling water jackets, the water is guided in different ways from the pump to the passages in the crankcase that are to be cooled. Usually there is only one or at most two entries into the water jacket of the crankcase. The thermostat is usually on one attached to the face of the cylinder head. This results in uneven distribution of the water on the individual cylinders, which can only be compensated for by appropriately reducing the passages in the cylinder head gasket. These passage reductions lead to increased pressure losses, increased pump performance and ultimately to increased fuel consumption. The water flowing through the seal passages from the crankcase into the head can only leave the head on one side, which means that the water supply to the individual areas in the head varies greatly.

Es ist die Aufgabe der vorliegenden Erfindung, die oben genannten Nachteile zu vermeiden und eine Brennkraftmaschine zu schaffen, die Kühlmittelströme weitgehend verlustarm zu den Kühlstellen führt.It is the object of the present invention to avoid the disadvantages mentioned above and to create an internal combustion engine which guides coolant flows to the cooling points with largely low losses.

Die Aufgabe der vorliegenden Erfindung wird durch eine Brennkraftmaschine mit den Merkmalen des Anspruchs 1 gelöst.The object of the present invention is achieved by an internal combustion engine having the features of claim 1.

Hierbei ist von Vorteil, dass der Kühlkreislauf einen geringen Druckverlust und eine gleichmäßige Verteilung des Kühlmittels aufweist. Dies spart Pumpenleistung, erzeugt geringeren Zylinderverzug und sorgt für effektive Kühlwirkung.The advantage here is that the cooling circuit has a low pressure loss and an even distribution of the coolant. This saves pump power, generates less cylinder distortion and ensures an effective cooling effect.

Weitere vorteilhafte Ausgestaltungen ergeben sich aus den Unteransprüchen.Further advantageous configurations emerge from the dependent claims.

Im Folgenden wird die Erfindung anhand eines in der Zeichnung dargestellten Ausführungsbeispiels näher erläutert. Dabei zeigt:

Figur 1:
einen Standard Einkreis-Wasserkreislauf
Figur 2:
"Common-Rail" Wassermantel, Einkreis-Wasserkreislauf
Figur 3:
"Common-Rail" Wassermantel, Zweikreis-Wasserkreislauf
Figur 4:
"Common-Rail" Wassermantel, Zweikreis-Wasserkreislauf mit Ölkühler im Einlass-Rail
Figur 5:
die Wasserführung im Kurbelgehäuse mit Strömungsleitschaufeln auf der Einlassseite
Figur 6:
die Wasserführung im Kurbelgehäuse mit Strömungsleitschaufeln auf der Einlass- und Auslassseite
Figur 7:
die Wasserführung zwischen den Ventilen
Figur 8:
den Brennboden.
The invention is explained in more detail below using an exemplary embodiment illustrated in the drawing. It shows:
Figure 1:
a standard single circuit water cycle
Figure 2:
"Common-Rail" water jacket, single circuit water cycle
Figure 3:
"Common-Rail" water jacket, dual circuit water circuit
Figure 4:
"Common-Rail" water jacket, dual circuit water circuit with oil cooler in the inlet rail
Figure 5:
the water flow in the crankcase with flow guide vanes on the inlet side
Figure 6:
the water flow in the crankcase with flow guide vanes on the inlet and outlet side
Figure 7:
the water flow between the valves
Figure 8:
the firing floor.

In Figur 1 wird beispielhaft ein Standard Einkreis-Wasserkreislauf dargestellt, mit Brennkraftmaschine 1, die ein Kurbelgehäuse 2 und einen darauf befestigten Zylinderkopf 3 aufweist. Der Kühlkreislauf der Brennkraftmaschine 1 weist eine Kühlmittelpumpe 4 auf, nach der in Strömungsrichtung des Kühlmittels ein Motorölkühler (MÖK) 5 angeordnet ist. In Strömungsrichtung des Kühlmittels nach dem Motorölkühler (MÖK) 5 verzweigt sich der Kühlmittelstrom in den Abgasrückführung(AGR)s-Kühler 6 und das Kurbelgehäuse 2. Nachdem das Kühlmittel das Kurbelgehäuse 2 durchströmt hat, erreicht es den Zylinderkopf 3. Nachdem das Kühlmittel den Zylinderkopf 3 durchströmt hat, vereinigt es sich mit dem Teilstrom des Kühlmittels, der aus dem Abgasrückführung(AGR)s-Kühler 6 strömt. Dieser vereinigte Kühlmittelstrom erreicht nun den Thermostat 7, der den Kühlmittelstrom je nach Arbeitsstellung entweder direkt zur Kühlmittelpumpe 4 leitet oder den Umweg über den Kühler 8 nehmen lässt.In figure 1 a standard single-circuit water circuit is shown as an example, with an internal combustion engine 1 having a crankcase 2 and a cylinder head 3 fastened thereon. The cooling circuit of the internal combustion engine 1 has a coolant pump 4, after which an engine oil cooler (MOC) 5 is arranged in the flow direction of the coolant. In the coolant flow direction after the engine oil cooler (MOC) 5, the coolant flow branches into the exhaust gas recirculation (EGR)s cooler 6 and the crankcase 2. After the coolant has passed through the crankcase 2, it reaches the cylinder head 3. After the coolant enters the cylinder head 3 has flowed through, it combines with the partial flow of the coolant that flows out of the exhaust gas recirculation (EGR) cooler 6 . This combined flow of coolant now reaches the thermostat 7 which, depending on the working position, directs the flow of coolant either directly to the coolant pump 4 or takes a detour via the cooler 8 .

Figur 2 zeigt beispielhaft einen "Common-Rail" Wassermantel-Einkreis-Wasserkreislauf. figure 2 shows an example of a "common rail" water jacket single circuit water circuit.

Vorteilhaft aus Kühlungssicht ist ein im Wesentlichen in Querrichtung strömender Wasserfluss im Kurbelgehäuse 2 und im Zylinderkopf 3.A water flow in the crankcase 2 and in the cylinder head 3 that flows essentially in the transverse direction is advantageous from a cooling point of view.

Vor dem Eintritt ins Kurbelgehäuse ist ein Eintrittsvolumen ("Common Rail") angebracht, in das das Wasser aus der Pumpe verlustarm einströmen kann. Aus diesem Rail werden die Wasserströme gleichmäßig zu den einzelnen Zylindern geleitet. Außerdem kann aus diesem Rail Wasser für andere Kühler wie z. B. AGR-Kühler und Motorölkühler bedarfsgerecht entnommen werden. Die jeweiligen Wassermengenströme können durch die Querschnitte angepasst werden. Das Rail sollte im Optimalfall konisch sein, um gleichmäßige Wassergeschwindigkeiten und verlustarme Wasserentnahmen zu ermöglichen. Nachdem das Wasser die Zylinderpassagen im Kurbelgehäuse quer durchströmt hat, strömt es durch die Zylinderkopfdichtung auf der anderen Seite nach oben in den Kopf. Der Kopf wird anschließend ebenfalls quer durchströmt. Das Wasser strömt beim Verlassen des Kopf-Bereiches (im Idealfall auf der Seite der Auslasskanäle, um dort maximal zu kühlen) in ein zweites Volumen, das Auslass-Rail, das ebenfalls entsprechend den Wassermengen konisch geformt sein sollte. Von dort strömt das Wasser in üblicher Weise weiter zum Thermostat. Für einen Einkreis-Wasserkreislauf ist das schematisch in Figur 2 dargestellt.In front of the entry into the crankcase, there is an entry volume ("common rail") into which the water from the pump can flow with little loss. From this rail, the water flows are evenly directed to the individual cylinders. In addition, water for other coolers such as e.g. B. EGR cooler and engine oil cooler can be removed as required. The respective water volume flows can be adjusted by the cross sections. Ideally, the rail should be conical to enable even water speeds and low-loss water extraction. After the water has crossed the cylinder passages in the crankcase, it flows up through the cylinder head gasket on the other side into the head. The head is then also flowed through transversely. When leaving the head area (ideally on the side of the outlet channels for maximum cooling there), the water flows into a second volume, the outlet rail, which should also be conical in shape according to the amount of water. From there the water flows in the usual way to the thermostat. For a single circuit water cycle, this is shown schematically in figure 2 shown.

Dargestellt wird die Brennkraftmaschine 1, die ein Kurbelgehäuse 2 und einen darauf befestigten Zylinderkopf 3 aufweist. Der Kühlkreislauf der Brennkraftmaschine 1 weist eine Kühlmittelpumpe 4 auf, nach der in Strömungsrichtung des Kühlmittels ein Einlass-Rail 9 angeordnet ist, wobei sich der Kühlmittelstrom in Strömungsrichtung in einen Motorölkühler (MÖK) 5 und einen Abgasrückführung(AGR)s-Kühler 6, die vor oder nach dem Einlass-Rail 9 angeordnet sind und in das Kurbelgehäuse 2 verzweigt. In Strömungsrichtung des Kühlmittels nach dem Motorölkühler (MÖK) 5 und dem Abgasrückführung(AGR)s-Kühler 6 vereinigt sich der Kühlmittelstrom mit dem Kühlmittelteilstrom, der aus dem Auslass-Rail 10 austritt. Das Kühlmittel des aus dem Einlass-Rail 9 stammenden Teilstroms durchströmt das Kurbelgehäuse 2, nachdem es das Kurbelgehäuse 2 durchströmt hat, erreicht es den Zylinderkopf 3. Nachdem das Kühlmittel den Zylinderkopf 3 durchströmt hat, strömt es in das Auslass-Rail 10. Dieser aus Auslass-Rail 10, MÖK 5 und AGR 6 stammende und vereinigte Kühlmittelstrom erreicht nun den Thermostat 7, der den Kühlmittelstrom je nach Arbeitsstellung entweder direkt zur Kühlmittelpumpe 4 leitet oder den Umweg über den Kühler 8 nehmen lässt.The internal combustion engine 1 is shown, which has a crankcase 2 and a cylinder head 3 fastened thereon. The cooling circuit Internal combustion engine 1 has a coolant pump 4, after which an inlet rail 9 is arranged in the direction of flow of the coolant, with the coolant flow in the direction of flow in an engine oil cooler (MÖK) 5 and an exhaust gas recirculation (EGR)s cooler 6, which are upstream or downstream are arranged on the intake rail 9 and branched into the crankcase 2 . In the flow direction of the coolant after the engine oil cooler (MOC) 5 and the exhaust gas recirculation (EGR)s cooler 6, the coolant flow combines with the coolant partial flow that emerges from the outlet rail 10. The coolant of the partial flow originating from the inlet rail 9 flows through the crankcase 2, after it has flowed through the crankcase 2 it reaches the cylinder head 3. After the coolant has flowed through the cylinder head 3, it flows into the outlet rail 10. This out Coolant flow originating from the outlet rail 10, MÖK 5 and EGR 6 now reaches the thermostat 7, which, depending on the working position, directs the coolant flow either directly to the coolant pump 4 or via the cooler 8.

Bei Verwendung eines Zweikreis-Wasserkreislaufs nach Figur 3 ("Split Cooling") werden zwei getrennte Auslass-Rails verwendet, sodass die Kühlung des Kurbelgehäuses für schnelleres Aufwärmen des Motors mit einer geregelten Klappe abgeschaltet werden kann. Ein solches Schema ist in Figur 3 dargestellt.When using a double-circuit water circuit according to figure 3 ("Split Cooling"), two separate exhaust rails are used so that cooling of the crankcase can be switched off with a controlled flap for faster engine warm-up. Such a scheme is in figure 3 shown.

Figur 3 offenbart einen "Common-Rail" Wassermantel - Zweikreis-Wasserkreislauf mit "Split Cooling", (Fig. 3 + 4). figure 3 discloses a "common-rail" water jacket - dual-circuit water circuit with "split cooling", ( 3 + 4).

Vorteilhaft aus Kühlungssicht ist ein im Wesentlichen in Querrichtung strömender Wasserfluss im Kurbelgehäuse 2 und im Zylinderkopf 3 und die Abschaltbarkeit der Kurbelgehäusekühlung zur schnelleren Erwärmung des Motors.Advantageous from a cooling point of view is a water flow in the crankcase 2 and in the cylinder head 3 that flows essentially in the transverse direction, and the ability to switch off the crankcase cooling for faster heating of the engine.

In Figur 3 wird beispielhaft die Brennkraftmaschine 1 gezeigt, die ein Kurbelgehäuse 2 und einen darauf befestigten Zylinderkopf 3 aufweist. Der Kühlkreislauf der Brennkraftmaschine 1 weist eine Kühlmittelpumpe 4 auf, nach der in Strömungsrichtung des Kühlmittels ein Einlass-Rail 9 angeordnet ist, wobei sich der Kühlmittelstrom in Strömungsrichtung in einen Motorölkühler (MÖK) 5 und einen Abgasrückführung(AGR)s-Kühler 6, die nach dem Einlass-Rail 9 angeordnet sind und in das Kurbelgehäuse 2 und den Zylinderkopf 3 verzweigt. In Strömungsrichtung des Kühlmittels nach dem Motorölkühler (MÖK) 5 und dem Abgasrückführung(AGR)s-Kühler 6 vereinigt sich der Kühlmittelstrom mit dem Kühlmittelteilstrom, der aus dem Auslass-Rail 10 des Zylinderkopfs und dem Auslass-Rail 11 des Kurbelgehäuses austritt. Der aus dem Auslass-Rail 11 des Kurbelgehäuses austretende Teilstrom des Kühlmittels durchströmt eine geregelte Klappe 12, die mit der nicht dargestellten Motorsteuerung kommuniziert. Die geregelte Klappe 12 ist in der Lage, den aus dem Auslass-Rail 11 des Kurbelgehäuses stammenden Kühlmittelstrom mengenmäßig zu steuern oder zumindest ein- und auszuschalten. Der Durchflussbereich der geregelten Klappe liegt zwischen den Randbedingungen "voller Durchfluss" und "komplett verschlossen". Das Kühlmittel des aus dem Einlass-Rail 9 stammenden Teilstroms durchströmt einerseits das Kurbelgehäuse 2 und den Zylinderkopf 3. Nachdem das Kühlmittel das Kurbelgehäuse 2 durchströmt hat, erreicht es das Auslass-Rail 11. Nachdem der andere Teilstrom des Einlass-Rail-Kühlmittels den Zylinderkopf 3 durchströmt hat, strömt es in das Auslass-Rail 10 des Zylinderkopfs. Dieser aus Auslass-Rail 10, Auslass-Rail 11, MÖK 5 und AGR 6 stammende und vereinigte Kühlmittelstrom erreicht nun den Thermostat 7, der den Kühlmittelstrom, je nach Arbeitsstellung, entweder direkt zur Kühlmittelpumpe 4 leitet oder den Umweg über den Kühler 8 nehmen lässt.In figure 3 the internal combustion engine 1 is shown by way of example, which has a crankcase 2 and a cylinder head 3 fastened thereon. The cooling circuit of the internal combustion engine 1 has a coolant pump 4, after which an inlet rail 9 is arranged in the flow direction of the coolant, with the coolant flow in the flow direction in an engine oil cooler (MÖK) 5 and an exhaust gas recirculation (EGR)s cooler 6, the are arranged after the intake rail 9 and branched into the crankcase 2 and the cylinder head 3 . In the flow direction of the coolant after the engine oil cooler (MOC) 5 and the exhaust gas recirculation (EGR)s cooler 6, the coolant flow combines with the coolant partial flow that emerges from the outlet rail 10 of the cylinder head and the outlet rail 11 of the crankcase. The partial flow of coolant emerging from the outlet rail 11 of the crankcase flows through a regulated flap 12 which communicates with the engine control unit, which is not shown. The regulated flap 12 is able to quantitatively control, or at least switch on and off, the flow of coolant originating from the outlet rail 11 of the crankcase. The flow range of the controlled damper lies between the boundary conditions "full flow" and "completely closed". The coolant of the partial flow originating from the intake rail 9 flows through the crankcase 2 and the cylinder head 3 on the one hand. After the coolant has flowed through the crankcase 2, it reaches the outlet rail 11. After the other partial flow of the intake rail coolant has flowed through the cylinder head 3, it flows into the outlet rail 10 of the cylinder head. This combined coolant flow originating from outlet rail 10, outlet rail 11, MÖK 5 and EGR 6 now reaches the thermostat 7, which, depending on the working position, directs the coolant flow either directly to the coolant pump 4 or via the cooler 8 .

In beiden Fällen wird durch den "Common-Rail" Wassermantel eine besonders effektive, gleichmäßige und druckverlustarme Querstromkühlung von Kurbelgehäuse 2 und Zylinderkopf 3 möglich. Die Details müssten mit Hilfe von CFD-Berechnungen ausgelegt werden.In both cases, the "common rail" water jacket enables a particularly effective, uniform and low-pressure-loss cross-flow cooling of the crankcase 2 and cylinder head 3. The details would have to be laid out using CFD calculations.

In Figur 4 wird ein "Common-Rail" Wassermantel mit Zweikreis-Wasserkreislauf und Ölkühler 13 im Einlass-Rail 9 dargestellt.In figure 4 a "common rail" water jacket with a two-circuit water circuit and oil cooler 13 in the inlet rail 9 is shown.

Vorteilhaft aus Kühlungssicht ist ein im Wesentlichen in Querrichtung strömender Wasserfluss im Kurbelgehäuse 2 und im Zylinderkopf 3.A water flow in the crankcase 2 and in the cylinder head 3 that flows essentially in the transverse direction is advantageous from a cooling point of view.

Fig. 4 zeigt beispielhaft die Brennkraftmaschine 1, die ein Kurbelgehäuse 2 und einen darauf befestigten Zylinderkopf 3 aufweist. Der Kühlkreislauf der Brennkraftmaschine 1 weist eine Kühlmittelpumpe 4 auf, nach der in Strömungsrichtung des Kühlmittels ein Einlass-Rail 9 angeordnet ist, wobei sich der Kühlmittelstrom in Strömungsrichtung in einen Motorölkühler (MÖK) 5 und einen Abgasrückführungs(AGR)s-Kühler 6, die nach dem Einlass-Rail 9 angeordnet sind und in das Kurbelgehäuse 2und den Zylinderkopf 3 verzweigt. In Strömungsrichtung des Kühlmittels nach dem Motorölkühler (MÖK) 5 und dem Abgasrückführungs(AGR)s-Kühler 6 vereinigt sich der Kühlmittelstrom mit dem Kühlmittelteilstrom, der aus dem Auslass-Rail 10 des Zylinderkopfs und dem Auslass-Rail 11 des Kurbelgehäuses austritt. Der aus dem Auslass-Rail 11 des Kurbelgehäuses austretende Teilstrom des Kühlmittels durchströmt eine geregelte Klappe 12, die mit der nicht dargestellten Motorsteuerung kommuniziert. Die geregelte Klappe 12 ist in der Lage, den aus dem Auslass-Rail 11 des Kurbelgehäuses stammenden Kühlmittelstrom mengenmäßig zu steuern. Der Durchflussbereich der geregelten Klappe liegt zwischen den Randbedingungen "voller Durchfluss" und "komplett verschlossen". Das Kühlmittel des aus dem Einlass-Rail 9 stammenden Teilstroms durchströmt einerseits das Kurbelgehäuse 2 und den Zylinderkopf 3. Nachdem das Kühlmittel das Kurbelgehäuse 2 durchströmt hat, erreicht es das Auslass-Rail 11. Nachdem der andere Teilstrom des Einlass-Rail-Kühlmittels den Zylinderkopf 3 durchströmt hat, strömt es in das Auslass-Rail 10 des Zylinderkopfs. Dieser aus Auslass-Rail 10, Auslass-Rail 11, MÖK 5 und AGR 6 stammende und vereinigte Kühlmittelstrom erreicht nun den Thermostat 7, der den Kühlmittelstrom je nach Arbeitsstellung entweder direkt zur Kühlmittelpumpe 4 leitet oder den Umweg über den Kühler 8 nehmen lässt. 4 shows an example of the internal combustion engine 1, which has a crankcase 2 and a cylinder head 3 fastened thereon. The cooling circuit of the internal combustion engine 1 has a coolant pump 4, after which an inlet rail 9 is arranged in the flow direction of the coolant, with the coolant flow in the flow direction in an engine oil cooler (MÖK) 5 and an exhaust gas recirculation (EGR)s cooler 6, the are arranged after the intake rail 9 and branched into the crankcase 2 and the cylinder head 3 . In the flow direction of the coolant after the engine oil cooler (MÖK) 5 and the exhaust gas recirculation (EGR) s cooler 6 combines the Coolant flow with the coolant partial flow exiting the outlet rail 10 of the cylinder head and the outlet rail 11 of the crankcase. The partial flow of coolant emerging from the outlet rail 11 of the crankcase flows through a regulated flap 12 which communicates with the engine control unit, which is not shown. The regulated flap 12 is able to quantitatively control the flow of coolant originating from the outlet rail 11 of the crankcase. The flow range of the controlled damper lies between the boundary conditions "full flow" and "completely closed". The coolant of the partial flow originating from the intake rail 9 flows through the crankcase 2 and the cylinder head 3 on the one hand. After the coolant has flowed through the crankcase 2, it reaches the outlet rail 11. After the other partial flow of the intake rail coolant the cylinder head 3, it flows into the outlet rail 10 of the cylinder head. This combined coolant flow originating from outlet rail 10, outlet rail 11, MÖK 5 and EGR 6 now reaches the thermostat 7, which, depending on the working position, directs the coolant flow either directly to the coolant pump 4 or via the cooler 8.

Figur 5 zeigt beispielhaft die Wasserführung im Kurbelgehäuse 2 der sechszylindrigen Brennkraftmaschine 1 mit als Krallen ausgebildeten Strömungsleitschaufeln 14 auf der Einlassseite. Die Strömungsleischaufeln sind als Ersatz oder Ergänzung für die konische Form des Rails zu sehen. In Fig. 6 sind sie beispielhaft nicht konisch ausgeführt. Die Brennkraftmaschine 1 weist in der Wassermantelführung krallenartige Strömungsleitschaufeln 14 auf. Die krallenartige Wassermantelführung weist eine individuelle Tiefe x(1-6) zwischen den Endspitzen der Strömungsleitschaufeln 14 auf. In Figur 5 ist zu sehen, dass die hier konisch ausgeführten Auslass- 10 und/oder Einlass- 9 Rails Bestandteil des Wassermantels sind. Die Strömung der Kühlflüssigkeit erfolgt innerhalb der Strömungsleitschaufeln nach oben in den Zylinderkopf 15. Die Tiefe x wird mittels CFD ausgelegt. figure 5 shows an example of the water flow in the crankcase 2 of the six-cylinder internal combustion engine 1 with flow guide vanes 14 designed as claws on the inlet side. The flow guide vanes can be seen as a replacement or addition to the conical shape of the rail. In 6 they are not designed conically, for example. The internal combustion engine 1 has claw-like flow guide vanes 14 in the water jacket guide. The claw-like water jacket guide has an individual depth x(1-6) between the end tips of the flow guide vanes 14 on. In figure 5 it can be seen that the conical outlet 10 and/or inlet 9 rails are part of the water jacket. The cooling liquid flows inside the flow guide vanes upwards into the cylinder head 15. The depth x is designed using CFD.

Figur 6 zeigt die Wasserführung im Kurbelgehäuse 2 der in diesem Beispiel sechszylindrigen Brennkraftmaschine 1 mit als Krallen ausgebildeten Strömungsleitschaufeln 14 auf der Einlass- und Auslassseite. Die Brennkraftmaschine 1 weist in der Wassermantelführung krallenartige Strömungsleitschaufeln 14 auf, die sowohl auf der Einlass- als auch auf der Auslassseite angeordnet sind. Die krallenartige Wassermantelführung weist eine individuelle Tiefe a(1-6), e(1-6) zwischen den Endspitzen der Strömungsleitschaufeln 14 auf. Damit kann eine gezielte und verlustarme Strömungsführung erreicht werden. In Figur 6 ist zu sehen, dass die Auslass- 10, 11 und/ oder Einlass- 9 Rails Bestandteil des Wassermantels sind. figure 6 shows the water flow in the crankcase 2 of the six-cylinder internal combustion engine 1 in this example with flow guide vanes 14 designed as claws on the inlet and outlet side. The internal combustion engine 1 has claw-like flow guide vanes 14 in the water jacket guide, which are arranged both on the inlet side and on the outlet side. The claw-like water jacket guide has an individual depth a(1-6), e(1-6) between the end tips of the flow guide vanes 14. FIG. A targeted and low-loss flow control can thus be achieved. In figure 6 it can be seen that the outlet 10, 11 and/or inlet 9 rails are part of the water jacket.

In Figur 7 wird die Wasserführung zwischen den Ventilen im Zylinderkopf 3 gezeigt.In figure 7 the water flow between the valves in cylinder head 3 is shown.

In Figur 7 wird die Wasserführung zwischen den Auslassventilen 15, den Einlassventilen 16 und dem Injektor 17 dargestellt. Der Hauptkühlwasserstrom erfolgt zwischen den heißen Auslasskanälen. Die Abstände a, b, c, d zwischen den Ventilen werden mittels Computational Fluid Dynamics (CFD) ausgelegt.In figure 7 the water flow between the outlet valves 15, the inlet valves 16 and the injector 17 is shown. The main cooling water flow occurs between the hot outlet channels. The distances a, b, c, d between the valves are designed using computational fluid dynamics (CFD).

Figur 8 zeigt den Brennboden 19 entlang der Schnittlinie A-A bzw. B-B zwischen den Ventilen 15, 16 im Zylinderkopf 3. Zur besseren Kühlung des Brennbodens 19 erfolgt eine Ausbeulung des Wassermantels nach unten mit individuell ausgelegten nasenartigen Strömungsleitschaufeln 18. figure 8 shows the combustion floor 19 along the section line AA or BB between the valves 15, 16 in the cylinder head 3. For better cooling of the combustion floor 19, the water jacket bulges downwards with individually designed nose-like flow guide vanes 18.

BezugszeichenReference sign

11
Brennkraftmaschineinternal combustion engine
22
Kurbelgehäusecrankcase
33
Zylinderkopfcylinder head
44
Kühlmittelpumpecoolant pump
55
Motorölkühler (MÖK)Engine Oil Cooler (MÖK)
66
Abgasrückführung (AGR)Exhaust gas recirculation (EGR)
77
Thermostatthermostat
88th
Kühlercooler
99
Einlass-Railinlet rail
1010
Auslass-Railoutlet rail
1111
Auslass-Railoutlet rail
1212
Geregelte KlappeRegulated flap
1313
Ölkühleroil cooler
1414
Strömungsleitschaufelnflow guide vanes
1515
Auslassventiloutlet valve
1616
Einlassventilintake valve
1717
Injektorinjector
1818
Strömungsleitschaufelnflow guide vanes
1919
Brennbodenfiring tray

Claims (7)

  1. Internal combustion engine comprising
    a crankcase (2) which has a water jacket and which conducts coolant,
    at least one coolant-receiving inlet rail (9) which is arranged upstream of the crankcase in a flow direction of the coolant and which communicates with said crankcase, or at least one coolant-receiving inlet rail (9) which is a constituent part of the water jacket, at least one coolant-conducting cylinder head (3), and at least one coolant-receiving outlet rail (10) which is arranged downstream of the cylinder head (3) in a flow direction of the coolant and which communicates with said cylinder head (3),
    characterized
    in that the inlet rail (9) is configured so as to communicate both with the crankcase (2) and with the cylinder head (3),
    in that the inlet rail (9) is of conical design, and in that the water jacket has a claw-like water jacket guide.
  2. Internal combustion engine according to Claim 1, characterized in that the outlet rail (10) is of conical design.
  3. Internal combustion engine according to Claim 1 or 2,
    characterized
    in that the claw-like water jacket guide has flow-guiding vanes (14).
  4. Internal combustion engine according to any one of the preceding claims, characterized in that the claw-like water jacket guide has an individual depth x1, a1, and e1.
  5. Internal combustion engine according to any one of the preceding claims, characterized
    in that at least one EGR cooler (6) is integrated in the inlet rail (9).
  6. Internal combustion engine according to any one of the preceding claims, characterized
    in that the cooling water main flow passes through between the hot outlet channels.
  7. Internal combustion engine according to any one of the preceding claims, characterized
    in that flow-guiding vanes (18) which are bulged in the manner of lugs toward the combustion base (19) are arranged between the inlet (16) and outlet (15) channels.
EP16791311.0A 2015-11-11 2016-11-03 Internal combustion engine Active EP3374620B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015014514.2A DE102015014514B4 (en) 2015-11-11 2015-11-11 "Common-Rail" water jacket
PCT/EP2016/001827 WO2017080636A1 (en) 2015-11-11 2016-11-03 Common rail water jacket

Publications (2)

Publication Number Publication Date
EP3374620A1 EP3374620A1 (en) 2018-09-19
EP3374620B1 true EP3374620B1 (en) 2022-05-04

Family

ID=57241043

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16791311.0A Active EP3374620B1 (en) 2015-11-11 2016-11-03 Internal combustion engine

Country Status (6)

Country Link
US (1) US10954844B2 (en)
EP (1) EP3374620B1 (en)
DE (1) DE102015014514B4 (en)
DK (1) DK3374620T3 (en)
ES (1) ES2918500T3 (en)
WO (1) WO2017080636A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019123878B3 (en) 2019-09-05 2021-03-11 Mtu Friedrichshafen Gmbh Crankcase for an internal combustion engine, internal combustion engine
DE102022003904A1 (en) 2022-10-13 2024-04-18 Deutz Aktiengesellschaft internal combustion engine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD101459A1 (en) * 1972-12-22 1973-11-12
FR2225628A1 (en) * 1973-04-12 1974-11-08 Perkins Engines Ltd
EP1491739A1 (en) * 2003-06-19 2004-12-29 Ab Volvo Penta Exhaust manifold
AT508178A2 (en) * 2010-03-22 2010-11-15 Avl List Gmbh COOLANT LINE FOR A LIQUID-COOLED INTERNAL COMBUSTION ENGINE
DE102010052830A1 (en) * 2010-11-29 2012-05-31 GM Global Technology Operations LLC Cylinder head with liquid cooling and method for cooling the cylinder head
DE102013113609A1 (en) * 2013-12-06 2015-06-11 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Crankcase with a cooling water distribution for a multi-cylinder internal combustion engine

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE101459C (en)
US2713332A (en) * 1953-03-27 1955-07-19 Int Harvester Co Internal combustion engine cooling system
DE1220203B (en) * 1962-10-30 1966-06-30 Steyr Daimler Puch Ag Device for coolant supply in the cylinder block of liquid-cooled internal combustion engines
US4348991A (en) * 1980-10-16 1982-09-14 Cummins Engine Company, Inc. Dual coolant engine cooling system
JPS60190646A (en) 1984-03-12 1985-09-28 Nissan Motor Co Ltd Cooling device for engine cylinder block
US5769038A (en) * 1996-03-11 1998-06-23 Sanshin Kogyo Kabushiki Kaisha Liquid cooling system for engine
DE19628762A1 (en) 1996-07-17 1998-01-22 Porsche Ag Cooling circuit of an internal combustion engine
DE10032184A1 (en) * 2000-07-01 2002-01-10 Bosch Gmbh Robert Device for cooling an internal combustion engine
DE10306695A1 (en) * 2003-02-18 2004-09-16 Daimlerchrysler Ag Internal combustion engine with a coolant circuit
US6810838B1 (en) * 2003-06-12 2004-11-02 Karl Harry Hellman Individual cylinder coolant control system and method
US7089890B2 (en) * 2004-07-12 2006-08-15 International Engine Intellectual Property Company, Llc Cooling system for an internal combustion engine with exhaust gas recirculation (EGR)
US7287493B2 (en) * 2004-11-10 2007-10-30 Buck Supply Co., Inc. Internal combustion engine with hybrid cooling system
JP5526982B2 (en) * 2010-04-27 2014-06-18 株式会社デンソー Internal combustion engine cooling device
US8757111B2 (en) 2011-03-24 2014-06-24 GM Global Technology Operations LLC Engine assembly including cooling system
GB2495932B (en) * 2011-10-25 2014-06-18 Perkins Engines Co Ltd Cooling Delivery Matrix
GB201209679D0 (en) * 2012-05-31 2012-07-18 Jaguar Cars Fluid flow control device and method
GB2519167A (en) * 2013-10-14 2015-04-15 Gm Global Tech Operations Inc Cooling system for an internal combustion engine
DE102015212733A1 (en) * 2015-07-08 2017-01-12 Bayerische Motoren Werke Aktiengesellschaft Coolant circuit for liquid-cooled gearboxes
GB2543353A (en) * 2015-10-16 2017-04-19 Gm Global Tech Operations Llc A cooling system for an internal combustion engine
JP6910155B2 (en) * 2017-02-07 2021-07-28 本田技研工業株式会社 Internal combustion engine cooling structure
DE102017202154A1 (en) * 2017-02-10 2018-08-16 Ford Global Technologies, Llc Charged liquid-cooled internal combustion engine
JP6610604B2 (en) * 2017-04-14 2019-11-27 トヨタ自動車株式会社 Cooling device for internal combustion engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD101459A1 (en) * 1972-12-22 1973-11-12
FR2225628A1 (en) * 1973-04-12 1974-11-08 Perkins Engines Ltd
EP1491739A1 (en) * 2003-06-19 2004-12-29 Ab Volvo Penta Exhaust manifold
AT508178A2 (en) * 2010-03-22 2010-11-15 Avl List Gmbh COOLANT LINE FOR A LIQUID-COOLED INTERNAL COMBUSTION ENGINE
DE102010052830A1 (en) * 2010-11-29 2012-05-31 GM Global Technology Operations LLC Cylinder head with liquid cooling and method for cooling the cylinder head
DE102013113609A1 (en) * 2013-12-06 2015-06-11 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Crankcase with a cooling water distribution for a multi-cylinder internal combustion engine

Also Published As

Publication number Publication date
EP3374620A1 (en) 2018-09-19
DK3374620T3 (en) 2022-07-25
US20180347443A1 (en) 2018-12-06
WO2017080636A1 (en) 2017-05-18
DE102015014514B4 (en) 2023-10-26
DE102015014514A1 (en) 2017-05-11
ES2918500T3 (en) 2022-07-18
US10954844B2 (en) 2021-03-23

Similar Documents

Publication Publication Date Title
AT515143B1 (en) Liquid-cooled internal combustion engine
DE102005031300A1 (en) Internal combustion engine with cooling system and exhaust gas recirculation system
DE102015016185A1 (en) Exhaust gas recirculation system for a motor
EP2309106A1 (en) Cooling system
DE10344834B4 (en) Engine cooling system
DE102008020408A1 (en) Internal combustion engine for use in vehicle, has control element arranged downstream to turbine in exhaust gas pipe, and bypass line branching from control valve and opening downstream to control element in exhaust gas pipe
EP3073089A1 (en) Combustion engine with exhaust gas circulation and/or water cooled charge air cooler
WO2020011926A1 (en) Cylinder head and crankcase for an internal combustion engine
EP3374620B1 (en) Internal combustion engine
DE102010018624B4 (en) Coolant circuit for an internal combustion engine
DE102004050436B4 (en) Cooling device for an internal combustion engine with at least three coolers
WO2021058124A1 (en) Internal combustion engine comprising an oil cooler integrated into the cylinder block, and cooling water control
AT522272A1 (en) COMBUSTION MACHINE
DE19943002A1 (en) Cooling device for an internal combustion engine
AT524566B1 (en) Liquid-cooled internal combustion engine
EP3959432B1 (en) Internal combustion engine with exhaust gas recirculation
EP0933510B1 (en) Internal combustion engine
DE102013011563B4 (en) Cooling circuit of an internal combustion engine and method for operating a cooling circuit
DE102005055580B4 (en) Internal combustion engine with a lubrication, cooling and starting system
DE102015104591A1 (en) Exhaust duct of an internal combustion engine, in particular with an exhaust gas turbocharger, and internal combustion engine with such an exhaust duct
DE102005057760B4 (en) Cooling system for a motor
DE102016216360B4 (en) Cylinder head for an internal combustion engine
DE102009035723B3 (en) Cooling device for an internal combustion engine
DE102019202928A1 (en) Exhaust heat recovery system and process for exhaust heat recovery
DE102006003447B4 (en) Exhaust gas cooler for an internal combustion engine

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180409

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190313

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIN1 Information on inventor provided before grant (corrected)

Inventor name: JUNG, MARCO

Inventor name: BOEMER, ANDREAS

INTG Intention to grant announced

Effective date: 20211202

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1489268

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016014853

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2918500

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20220718

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20220722

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: FI

Ref legal event code: FGE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220905

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220804

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220504

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220504

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220805

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220504

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220504

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220504

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220504

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220504

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220504

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220504

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016014853

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220504

26N No opposition filed

Effective date: 20230207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220504

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221103

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231026

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20161103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220504

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20241120

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20241125

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20241120

Year of fee payment: 9

Ref country code: FI

Payment date: 20241122

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20241120

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20241128

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20241121

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20241025

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20241120

Year of fee payment: 9

Ref country code: ES

Payment date: 20241230

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20241120

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20241201

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20241030

Year of fee payment: 9