EP3225707B1 - Component for media-conducting gas or water lines comprising a copper alloy - Google Patents
Component for media-conducting gas or water lines comprising a copper alloy Download PDFInfo
- Publication number
- EP3225707B1 EP3225707B1 EP17151949.9A EP17151949A EP3225707B1 EP 3225707 B1 EP3225707 B1 EP 3225707B1 EP 17151949 A EP17151949 A EP 17151949A EP 3225707 B1 EP3225707 B1 EP 3225707B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- weight
- alloy
- lead
- component
- component according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000881 Cu alloy Inorganic materials 0.000 title claims description 31
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims description 17
- 229910045601 alloy Inorganic materials 0.000 claims description 62
- 239000000956 alloy Substances 0.000 claims description 62
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 22
- 239000003651 drinking water Substances 0.000 claims description 22
- 235000020188 drinking water Nutrition 0.000 claims description 22
- 239000011701 zinc Substances 0.000 claims description 18
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 14
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 14
- 239000000463 material Substances 0.000 claims description 14
- 229910052725 zinc Inorganic materials 0.000 claims description 14
- 239000010949 copper Substances 0.000 claims description 13
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 12
- 229910052802 copper Inorganic materials 0.000 claims description 12
- 229910052759 nickel Inorganic materials 0.000 claims description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 9
- 230000005012 migration Effects 0.000 claims description 9
- 238000013508 migration Methods 0.000 claims description 9
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 6
- 229910052698 phosphorus Inorganic materials 0.000 claims description 6
- 239000011574 phosphorus Substances 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims description 5
- 230000001681 protective effect Effects 0.000 claims description 5
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 4
- 229910052796 boron Inorganic materials 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 3
- 229910052787 antimony Inorganic materials 0.000 claims description 3
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- 239000005864 Sulphur Substances 0.000 claims 1
- 238000012360 testing method Methods 0.000 description 49
- 230000007797 corrosion Effects 0.000 description 45
- 238000005260 corrosion Methods 0.000 description 45
- 239000011133 lead Substances 0.000 description 29
- 239000002245 particle Substances 0.000 description 28
- 230000015572 biosynthetic process Effects 0.000 description 27
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 23
- 230000032683 aging Effects 0.000 description 19
- 239000010410 layer Substances 0.000 description 15
- 238000001816 cooling Methods 0.000 description 13
- 239000011593 sulfur Substances 0.000 description 13
- 229910052717 sulfur Inorganic materials 0.000 description 13
- 238000009826 distribution Methods 0.000 description 11
- 229910001369 Brass Inorganic materials 0.000 description 10
- 239000010951 brass Substances 0.000 description 10
- 235000019589 hardness Nutrition 0.000 description 10
- 239000000155 melt Substances 0.000 description 10
- 150000004763 sulfides Chemical class 0.000 description 10
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 9
- 238000010586 diagram Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 238000005266 casting Methods 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 238000007711 solidification Methods 0.000 description 6
- 230000008023 solidification Effects 0.000 description 6
- 239000003643 water by type Substances 0.000 description 6
- OMZSGWSJDCOLKM-UHFFFAOYSA-N copper(II) sulfide Chemical compound [S-2].[Cu+2] OMZSGWSJDCOLKM-UHFFFAOYSA-N 0.000 description 5
- 238000001000 micrograph Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 238000009434 installation Methods 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 238000007528 sand casting Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000010191 image analysis Methods 0.000 description 3
- 238000011835 investigation Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910021645 metal ion Inorganic materials 0.000 description 3
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 208000036829 Device dislocation Diseases 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- 239000005083 Zinc sulfide Substances 0.000 description 2
- 238000009749 continuous casting Methods 0.000 description 2
- BWFPGXWASODCHM-UHFFFAOYSA-N copper monosulfide Chemical class [Cu]=S BWFPGXWASODCHM-UHFFFAOYSA-N 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 210000001787 dendrite Anatomy 0.000 description 2
- MAHNFPMIPQKPPI-UHFFFAOYSA-N disulfur Chemical class S=S MAHNFPMIPQKPPI-UHFFFAOYSA-N 0.000 description 2
- 238000005553 drilling Methods 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000002076 thermal analysis method Methods 0.000 description 2
- 229910052984 zinc sulfide Inorganic materials 0.000 description 2
- 229910000967 As alloy Inorganic materials 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 241001295925 Gegenes Species 0.000 description 1
- 229910000846 In alloy Inorganic materials 0.000 description 1
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000006355 external stress Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- LQBJWKCYZGMFEV-UHFFFAOYSA-N lead tin Chemical compound [Sn].[Pb] LQBJWKCYZGMFEV-UHFFFAOYSA-N 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910052976 metal sulfide Inorganic materials 0.000 description 1
- 238000010120 permanent mold casting Methods 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 229910021653 sulphate ion Inorganic materials 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- 125000000101 thioether group Chemical group 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/02—Alloys based on copper with tin as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/04—Alloys based on copper with zinc as the next major constituent
-
- E—FIXED CONSTRUCTIONS
- E03—WATER SUPPLY; SEWERAGE
- E03B—INSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
- E03B7/00—Water main or service pipe systems
Definitions
- the present invention relates to a component for media-carrying gas or water pipes, in particular a fitting or armature for drinking water pipes, the component at least partially consisting of a lead-free copper alloy.
- the corrosion resistance should be mentioned.
- Non-ferrous metal alloys with a high copper content such as bronze, brass or gunmetal, also contain a certain amount of lead because lead improves the machinability of such alloys.
- nickel is also present in such alloys to increase the strength and corrosion resistance of the alloys. Due to the toxicity of these metals, however, such materials must have a low tendency for metal ions to migrate into the medium, ie a low release of ions from the alloy components to the medium.
- the materials used to protect consumers must comply with very narrow limits, which are regulated by the drinking water regulations.
- This is from the EP 1 798 298 A1 a largely lead- and nickel-free copper alloy which, in addition to copper and unavoidable impurities, contains 2% by weight to 4.5% by weight silicon, 1% to 15% by weight zinc, 0.05% by weight up to 2% by weight manganese and optionally 0.05% by weight to 0.4% by weight aluminum and 0.05% by weight to 2% by weight tin.
- the ones in the EP 1 798 298 A1 The alloy described shows an improved migration behavior for lead, nickel, copper and zinc ions compared to a conventional gunmetal. After casting, the alloy can be subjected to a heat treatment in order to achieve a high proportion of ⁇ mixed crystal and thus a particularly favorable migration behavior of the alloy.
- the gunmetal alloy CuSn5Zn5Pb2 with contents of around 5% by weight tin and around 5% by weight zinc is currently widely used for use in drinking water installations.
- This copper alloy has excellent corrosion resistance and can therefore be used in all water qualities within the drinking water supply.
- Alloys of this type usually have a single-phase structure and therefore offer high plastic deformability. However, it is precisely this plastic deformability that causes problems during machining.
- Single-phase copper materials tend to form long chips. This type of chip inhibits the workflow during fully automated turning or drilling and leads to heavy wear on the tool cutting edges. In order to still be able to process the products economically, lead is added to the alloys as a chip-breaking additive. Lead enables economical, fully automated mechanical processing.
- Lead is practically insoluble in copper and has a low melting point. As a result, it is the last element to solidify in copper-tin alloys.
- This constitutional behavior means that, at the end of solidification, lead is present in the structure in the form of evenly distributed, small, drop-shaped particles between the dendrite arms. These fine, drop-shaped particles act as chip breakers without affecting the original properties of the material. This can be seen particularly clearly from the corrosion resistance, since the lead particles are present as incoherent phases and thus cannot interact with the surrounding matrix.
- the uniform distribution of small, drop-shaped lead particles also ensures that consistently similar mechanical parameters can be expected over a uniform cross-section.
- nickel In copper alloys, nickel is able to both increase corrosion resistance and improve the distribution of sulfide phases in the structure. However, high nickel contents lead to a high release of metal ions into drinking water and are therefore classified as hygienically questionable.
- the specified alloy range in the patent US 8,470,101 B2 cannot guarantee over the entire scope described therein that sufficiently high corrosion, strength, processing or hygiene properties are present. But these properties in particular are essential for thin-walled components that carry drinking water.
- the present invention is based on the object of specifying a lead-free copper alloy for the production of components for media-carrying gas or water pipes which, compared to a conventional gunmetal alloy, e.g. CuSn5Zn5Pb2, a corrosion-resistant matrix, has good strength properties combined with good processing properties, high pressure tightness and improved migration behavior.
- the lead-free copper alloy should have good casting behavior, for example in sand or continuous casting.
- a lead-free copper alloy which as alloy components in wt .-% in addition to copper (Cu) and unavoidable impurities still 3.5 wt .-% ⁇ tin (Sn) ⁇ 4.8 wt .-% , 1.5% by weight ⁇ zinc (Zn) ⁇ 3.5% by weight, 0.25% by weight ⁇ sulfur (S) ⁇ 0.65% by weight, 0.04% by weight Phosphorus (P) 0.1 wt%, optionally not more than 0.09 wt% lead; optionally no more than 0.4 wt% nickel; optionally no more than 0.1 wt% antimony; as well as optionally not more than 0.3% by weight iron, zirconium and / or boron alone or in combination of two or more of the elements mentioned, in contact with water of different water qualities one compared to standard brass (CuZn40Pb2) and dezincification-resistant brass (CuZn36Pb2As) Improved
- the lead-free copper alloy Due to this improved formation of the top layer, the lead-free copper alloy shows no dezincification or similar selective corrosion attacks. Therefore, the lead-free copper alloy has improved corrosion resistance over the entire framework specified by the Drinking Water Ordinance (hereinafter referred to as "TWVO"). Accordingly, the present invention preferably represents a component for media-carrying gas or water lines, in particular a fitting or a fitting for drinking water pipes, the component at least partially consisting of the lead-free copper alloy according to the invention, the component having a wall thickness in the range from 0.5 mm to 6.0 mm at least in sections.
- the tin content influences the strength, corrosion resistance and phase distribution and, in the claimed range of 3.5% by weight to ⁇ 4.8% by weight, achieves an optimally balanced, economic ratio of the properties described above.
- a tin content of more than 4.8% by weight the strength and corrosion resistance in the matrix increase further, but under normal cooling conditions in sand casting, the distribution of the sulfides becomes coarser and the size increases.
- tin contents below 3.5% by weight there is insufficient corrosion inhibition.
- the weak solid solution strengthening the properties necessary for practice are not achieved.
- a high tensile strength can be achieved at contents of more than 4.8% wt.% Tin, whereas the elongation values of the material are reduced. Contents of far more than 4.8 wt .-% tin lead to the formation of a structure which has an embrittling and unfavorable effect on the processing.
- the sulfur content of 0.25% by weight to 0.65% by weight also determines the volume fraction of the sulfides. From 0.25% by weight sulfur, an amount of sulfide particles is generated which ensures that the alloy is sufficiently machinable. A sulfur content above 0.65% by weight sulfur can lead to the formation of undesirable, coarse sulfide particles. In addition, due to the high proportion of sulfide particles, the load-transferring cross-section, ie the cross-section of the component that absorbs external stresses, can be reduced so much that the mechanical parameters, such as elongation at break and the like, deteriorate.
- the metal sulfides are present in the lead-free copper alloy as an incoherent, finely divided, disperse phase in the form of finely divided particles with such a sulfur content. This offers the advantage that any corrosion that may occur occurs only to a small extent locally on these particles and not along coherent, larger, individual phases of the alloy structure, as is the case, for example, with standard brass. Due to the small size of the particles, there is no significant corrosion attack.
- the proportion of phosphorus (P) in the lead-free copper alloy is 0.04% by weight to 0.1% by weight. Below 0.04% by weight of phosphorus, there is insufficient deoxidation of the melt, which has a negative effect on the phase formation of the alloy. In contrast, the lead-free copper alloy with a phosphorus content of more than 0.1% by weight tends to have adverse effects on the mechanical properties, such as reduced elongation at break. From these points of view, the proportion by weight of phosphorus in the lead-free copper alloy is preferably in the range from 0.04% by weight to 0.08% by weight, particularly preferably in the range from 0.04% by weight to 0.06% by weight. -%.
- the term "lead-free copper alloy” means a copper alloy that includes lead as an unavoidable impurity in an amount of not more than 0.09% by weight, more preferably not more than 0.05% by weight.
- the lead content in the alloy is a maximum of 0.09% by weight and particularly preferably a maximum of less than or equal to 0.05% by weight.
- the alloy shows no signs of increased lead release in the first few weeks. Instead, you can From the eighth week of the test, no more significant lead migration into the drinking water can be determined or is within the range of the measurement accuracy of the method.
- the low lead content in the alloy used according to the invention thus leads to a significant reduction in metal ion migration in drinking water, the low lead content having no negative effects on chip breaking and thus on the machinability of the alloy used according to the invention.
- the nickel content in the alloy used according to the invention is a maximum of 0.4% by weight, preferably the nickel content is a maximum of 0.3% by weight.
- the addition of nickel increases the corrosion resistance of the alloy without contradicting the hygienic safety. Similar to lead, the values of nickel migration in a test according to DIN EN 15664-1 are far below the legally required limit value.
- an antimony content of a maximum of 0.1% by weight is not critical with regard to the properties of drinking water migration.
- the alloy can also have an iron content of a maximum of 0.3% by weight.
- the lead-free copper alloy can also contain proportions of the elements iron (Fe), zirconium (Zr) and / or boron (B) alone or in a combination of at least two of the elements mentioned as grain refiners. It is preferred that iron in a weight fraction of up to 0.3 wt .-%, zirconium in a weight fraction of up to 0.01 wt .-% and / or boron in a weight fraction of up to 0.01 wt. -% are contained in the lead-free copper alloy.
- the grain refiners avoid hot cracking and influence the mechanical properties, e.g. Tensile strength, material hardness and the like are positive.
- the copper content of the lead-free copper alloy is preferably at least 90% by weight, preferably more than 91% by weight.
- the sulfides of the lead-free copper alloy are homogeneously distributed in the structure.
- the number of sulphide particles should be high and their mean size should be small in order to ensure uniform mechanical parameters, good corrosion resistance, improved machinability and high pressure tightness over the entire structure.
- Copper sulfide is preferred as the material of the sulfide particles, since the occurrence of copper sulfide makes it possible to substitute the volume of lead with a significantly lower content of sulfur.
- the component according to the invention has, at least in sections, a wall thickness in the range from 0.5 mm to 6.0 mm, since the thin wall thickness leads to cooling rates suitable for the formation of the copper sulfides. It is also preferred if the entire component according to the invention has a wall thickness within the stated ranges of 0.5 mm to 4.0 mm, since a wall thickness in this range leads to a particularly increased formation of the desired sulfide particles. A wall thickness below 0.5 mm could not have sufficient mechanical strength of the component according to the invention due to the small cross section. From this point of view, it is preferred that the component according to the invention has, at least in sections, a wall thickness in the range from 1.0 mm to 4.0 mm.
- the cross-section of the component according to the invention has a wall thickness of less than 6 mm at least 1.6 percent by area of sulfide particles and / or an area index ASP% less than 1000.
- Such values lead to sulfur sulphides being present as an incoherent, finely divided, disperse phase. This avoids deep trough-shaped and / or hole-shaped attacks, in particular corrosion attacks, on the components according to the invention.
- area index ASP% is the mathematical description for the measure of the shape and position of a bell curve, which is obtained from a plot of the mean values of the area classes (abscissa) in combination with the percentage distribution of the sulfide particles in these area classes (ordinate ) results (cf. Fig. 1 ).
- the value of the area index ASP% is obtained by measuring the area of the respective particles, for example from an enlarged photograph of a micrograph, the percentage allocation of the particles recognizable in the recording into classes, the multiplication of the percentage values of the allocation by the mean value of the class and the formation of a large mean value from the resulting mean values of the classes, the large mean value being assumed to be the "area index ASP%".
- the alloy used according to the invention has the excellent property of forming a top layer very quickly on the inner surface wetted with drinking water.
- the cover layer has a thickness of preferably at least 2 ⁇ m, particularly preferably of at least 3 ⁇ m.
- This top layer increases the corrosion resistance and ensures the longevity of the components made of this material, since further corrosion is prevented. Migration from the material to the drinking water can only take place if corrosion processes take place in the material.
- the top layer functions as a protective layer and limits the further metal release to the drinking water to a minimum.
- the copper content in the alloy described is higher than in conventional gunmetal alloys, such as. B. CuSnZn5Pb2, there is only a reduced copper metal release.
- the components according to the invention for media-carrying gas or water pipes can be produced using conventional casting processes, such as sand, permanent mold or continuous casting processes.
- the cast part produced by such a casting process can be machined well.
- the term "component for media-carrying gas or drinking water lines" is to be understood as meaning in particular those components that come into contact with a house installation pipe system, in particular with drinking water, fittings and fittings of such house installation pipe systems being preferred according to the invention.
- An example of such a fitting is in particular that from EP 2 250 421 A1 to name known connector.
- Fig. 2 shows a Turner diagram for the test waters used in the artificial aging test.
- the carbonate hardness (as a measure of the water hardness) is plotted against the chloride ion content of the test water.
- the line labeled "Turner classic” represents the corrosion characteristic for dezincification developed by Turner (" The Influence of Water Composition on the Decincification of Duplex Brass Fittings "; 1965 ). According to the current interpretation of the corrosion experts, no dezincification takes place in the area below this line, but above this line there is a very high risk of damage to the component in question due to dezincification.
- the points shown give an overview of the different test waters that were used in the artificial aging test described.
- test specimens For the production of test specimens, half cylinders with a wall thickness of 5 mm were cast from alloys 1 and 2. The test specimens were then turned on the outside to a roughness Rz of max. 25 ⁇ m and machined on the inside by means of drilling with a through-hole with a roughness Rz of max. 40 ⁇ m. This special surface treatment should enable the test specimens to be compared with actually manufactured components.
- test specimen was cleaned with acetone.
- test specimens were then placed in a test container in a freely hanging manner.
- the test containers were then placed in a heating cabinet at 90 ° C. for five months, the test medium being changed at seven-day intervals.
- Table 2 ⁇ u> Table 2: ⁇ /u> Water number PH value Carbonate hardness in ° dH Chloride in mg / l Sulphate in mg / l 1 8th 0.5 10 - 2 8th 0.5 100 - 3 8th 0.5 250 - 4th 8th 0.5 1000 - 5 8th 1.5 15th - 6th 8th 1.5 60 - 7th 8th 1.5 140 - 8th 8th 3.0 30th - 9 8th 3.0 100 - 10 8th 5.5 80 - 11 8th 5.5 120 - 12 8th 5.5 250 - 13th 7th 9.0 100 - 14th 7th 9.0 160 - 15th 7th 14.0 140 - 16 7th 18.0 40 - 17th 7th 18.0 100 - 18th 7th 18.0 250 - 19th 8th 0.5 250 250 20th 8th 5.5 250 250 21st 7th 18.0 250 250 250
- test containers are removed from the heating cabinet, cooled to room temperature, the test specimens are removed from the respective test containers, dried, cut open and the cut surface is examined with a light microscope after appropriate processing.
- Alloys 1 and 2 showed, over the entire area of the drinking water ordinance tested in the artificial aging, an outstanding formation of a protective, firmly adhering, closed top layer which is necessary for copper alloys, which in the artificial aging test has a thickness of at least 2 ⁇ m and thus an improved top layer in relation to a conventional, lead-containing copper alloy based on a CuSnZn alloy (eg CuSn5Zn5Pb). Furthermore, this layer is almost free from disturbances or defects and thus unfolds its complete protection by avoiding a deeper, local corrosion attack (see Fig. 4 and Fig. 6 ).
- Fig. 4 shows the behavior of the top layer formation of a lead-free copper alloy (alloy 1 and alloy 2) after a five-month artificial aging test for the respective test waters. It turns out that only a protective top layer is formed. No selective corrosion attack whatsoever is visible.
- the thickness of the firmly adhering protective cover layer formed is at least 4 ⁇ m.
- Fig. 5 is a photograph of the microstructure of standard brass (CuZn40Pb2) as the result of an exemplary corrosion attack after the five-month artificial aging test, based on Turner, with a chloride content of 250 mg / l and a carbonate hardness of 5.5 ° dH. An uneven, partially disturbed structure of the top layer and the selective corrosion attack in the form of dezincification can be clearly seen.
- Fig. 6 a photographic recording of the microstructure of a result of the five-month artificial aging test, based on Turner, with a chloride content of 250 mg / l and a carbonate hardness of 5.5 ° dH, of a component according to the invention made of alloy 2 (alloy 1 shows a behavior analogous to this ) was carried out.
- alloy 2 shows a behavior analogous to this .
- the microstructure shown shows no selective corrosion attack in the component after an identical heat exposure test, but a uniform, homogeneous structure of a protective, firmly adhering cover layer with a thickness of 4 ⁇ m to 23 ⁇ m.
- the artificial aging test carried out here shows that the alloy is free of selective corrosion attacks (e.g. dezincification and stress corrosion cracking) and almost all other signs of corrosion based on Turner's approach.
- Fig. 7 represents a thermal analysis in a temperature-time diagram, by means of which thermal effects (e.g. release of latent heat) can be detected in metals, which can arise during transitions from solid to liquid or during phase transformations in the solid state.
- the cooling temperature of the alloy and the first time derivative of the measurement signal are plotted against the time, which is described as the cooling rate.
- a change in the peak in the cooling rate curve corresponds to a thermal effect in the material.
- a sulfide formation should be aimed for shortly before the end of solidification at a low temperature, since this way the sulfides are distributed more homogeneously in the structure, similar to lead.
- Table 3 ⁇ /u> alloy Cu Sn Zn S.
- the cooling rate in Fig. 7 corresponds to the typical solidification process of a copper-tin alloy up to 5% by weight tin in sand casting.
- a further comparison of the two curves shows that in alloy 3 at approx. 400 s there is an early thermal effect during the ongoing solidification process, which is due to the formation of sulfide.
- alloy 4 according to the invention the sulfide formation takes place with a delay, shortly before the end of solidification.
- the fact that both samples were cooled under identical conditions underpins the further course of the cooling rate of the samples, which is identical after the phase formation. The varying point in time of the phase formation is therefore due to the different zinc content in the alloys.
- the early sulfide formation influences the sulfide form and the distribution in the structure.
- the early sulfide formation in alloy 3 thus leads to a heterogeneous, partial phase distribution, which has a negative impact on the mechanical parameters such as elongation.
- Fig. 8 (Alloy 3) and Fig. 9 (Alloy 4 used according to the invention) are the differences in the structure of components that are made from melts according to alloy 3 and 4 Fig. 7 can be seen with the different zinc contents.
- the material composition is adjusted in a way that avoids premature sulfide formation and promotes homogeneous distribution.
- FIG. 10 and 11 shows microstructural images of components according to the invention from an identical melt that was cooled under varying conditions. In the case of rapid cooling, the microstructure shows in Fig. 11 a structure that leads to higher mechanical characteristics such as tensile strength, elongation at break and the like.
- the particles were examined and characterized by means of image analysis on ground structures of the test specimens.
- the volume of sulphides and the area can be determined by means of this image analysis.
- the alloys used according to the invention can be characterized with an area index ASP% of less than 1000.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Public Health (AREA)
- Water Supply & Treatment (AREA)
- Domestic Plumbing Installations (AREA)
- Contacts (AREA)
- Preventing Corrosion Or Incrustation Of Metals (AREA)
Description
Die vorliegende Erfindung betrifft ein Bauteil für medienführende Gas- oder Wasserleitungen, insbesondere Fitting oder Armatur für Trinkwasserleitungen, wobei das Bauteil zumindest teilweise aus einer bleifreien Kupferlegierung besteht.The present invention relates to a component for media-carrying gas or water pipes, in particular a fitting or armature for drinking water pipes, the component at least partially consisting of a lead-free copper alloy.
An metallische Werkstoffe für den Einsatz in Bauteilen für wasserführende, insbesondere trinkwasserführende Gewerke, wie beispielsweise Fittings, Armaturen, Rohre, Pressverbinder, Dach- oder Ablaufrinnen, sind besondere Anforderungen zu stellen. Insbesondere im Falle von mit Trinkwasser in Kontakt stehenden Bauteilen ist dabei die Korrosionsbeständigkeit zu nennen. Speziell stark kupferhaltige Buntmetall-Legierungen wie Bronze, Messing oder Rotguss enthalten auch einen gewissen Anteil an Blei, weil Blei die Bearbeitbarkeit derartiger Legierungen verbessert. In der Praxis ist in solchen Legierungen auch Nickel vorhanden, um die Festigkeit und Korrosionsbeständigkeit der Legierungen zu erhöhen. Aufgrund der Toxizität dieser Metalle müssen solche Werkstoffe allerdings eine geringe Migrationsneigung von Metallionen in das Medium aufweisen, d.h. eine geringe Abgabe von Ionen der Legierungskomponenten an das Medium. Hierzu sind von den Werkstoffen zum Schutz der Verbraucher sehr enge Grenzen einzuhalten, die durch die Trinkwasserordnung geregelt sind. Dazu ist aus der
Für den Einsatz in der Trinkwasserinstallation findet derzeit die Rotgusslegierung CuSn5Zn5Pb2 mit Gehalten von etwa 5 Gew.-% Zinn und etwa 5 Gew.-% Zink eine breite Anwendung. Diese Kupferlegierung besitzt eine hervorragende Korrosionsbeständigkeit und ist daher in allen Wasserqualitäten innerhalb der Trinkwasserversorgung einsetzbar. Legierungen dieser Art sind üblicherweise im Gefüge einphasig ausgebildet und bieten daher eine hohe plastische Verformbarkeit. Jedoch bereitet gerade diese plastische Verformbarkeit bei der spanabhebenden mechanischen Bearbeitung Probleme. Einphasige Kupferwerkstoffe neigen zu einer Langspanbildung. Diese Spanart hemmt den Arbeitsablauf beim vollautomatisierten Drehen, bzw. Bohren, und führt zu einem starken Verschleiß an den Werkzeugschneiden. Um die Produkte dennoch wirtschaftlich bearbeiten zu können, werden den Legierungen Blei als spanbrechender Zusatz hinzugegeben. Blei ermöglicht eine wirtschaftliche, vollautomatisierte mechanische Bearbeitung.The gunmetal alloy CuSn5Zn5Pb2 with contents of around 5% by weight tin and around 5% by weight zinc is currently widely used for use in drinking water installations. This copper alloy has excellent corrosion resistance and can therefore be used in all water qualities within the drinking water supply. Alloys of this type usually have a single-phase structure and therefore offer high plastic deformability. However, it is precisely this plastic deformability that causes problems during machining. Single-phase copper materials tend to form long chips. This type of chip inhibits the workflow during fully automated turning or drilling and leads to heavy wear on the tool cutting edges. In order to still be able to process the products economically, lead is added to the alloys as a chip-breaking additive. Lead enables economical, fully automated mechanical processing.
Blei ist in Kupfer praktisch unlöslich und besitzt einen niedrigen Schmelzpunkt. Infolgedessen handelt es sich um das zuletzt erstarrende Element in Kupfer-Zinn-Legierungen. Dieses Konstitutionsverhalten führt dazu, dass Blei am Ende der Erstarrung im Gefüge in Form von gleichmäßig verteilten, kleinen, tropfenförmigen Partikeln zwischen den Dendritenarmen vorliegt. Diese feinen, tropfenförmigen Partikel wirken als Spanbrecher, ohne dass die ursprünglichen Eigenschaften des Werkstoffs, beeinflusst werden. Dies ist besonders deutlich an der Korrosionsbeständigkeit erkenntlich, da die Bleipartikel als inkohärente Phasen vorliegen und somit nicht mit der umgebenden Matrix interagieren können. Auch wird durch die gleichmäßige Verteilung kleiner, tropfenförmiger Bleipartikel gewährleistet, dass über einen gleichmäßigen Querschnitt durchgehend ähnliche mechanische Kennwerte zu erwarten sind.Lead is practically insoluble in copper and has a low melting point. As a result, it is the last element to solidify in copper-tin alloys. This constitutional behavior means that, at the end of solidification, lead is present in the structure in the form of evenly distributed, small, drop-shaped particles between the dendrite arms. These fine, drop-shaped particles act as chip breakers without affecting the original properties of the material. This can be seen particularly clearly from the corrosion resistance, since the lead particles are present as incoherent phases and thus cannot interact with the surrounding matrix. The uniform distribution of small, drop-shaped lead particles also ensures that consistently similar mechanical parameters can be expected over a uniform cross-section.
In der Patentschrift
Nickel ist in Kupferlegierungen in der Lage, sowohl die Korrosionsbeständigkeit zu erhöhen als auch die Verteilung von Sulfidphasen im Gefüge zu verbessern. Hohe Nickelgehalte führen aber zu einer hohen Metallionenabgabe ins Trinkwasser und sind daher als hygienisch bedenklich eingestuft. Der vorgegebene Legierungsbereich in der Patentschrift
Vor diesem Hintergrund liegt der vorliegenden Erfindung die Aufgabe zugrunde, eine bleifreie Kupferlegierung zur Herstellung von Bauteilen für medienführende Gas- oder Wasserleitungen anzugeben, die im Vergleich zu einer konventionellen Rotgusslegierung, wie z.B. CuSn5Zn5Pb2, eine korrosionsbeständige Matrix, gute Festigkeitseigenschaften bei gleichzeitig guten Bearbeitungseigenschaften, eine hohe Druckdichtigkeit und ein verbessertes Migrationsverhalten aufweist. Darüber hinaus soll die bleifreie Kupferlegierung ein gutes Gießverhalten, bspw. im Sand- oder Strangguss, besitzen.Against this background, the present invention is based on the object of specifying a lead-free copper alloy for the production of components for media-carrying gas or water pipes which, compared to a conventional gunmetal alloy, e.g. CuSn5Zn5Pb2, a corrosion-resistant matrix, has good strength properties combined with good processing properties, high pressure tightness and improved migration behavior. In addition, the lead-free copper alloy should have good casting behavior, for example in sand or continuous casting.
Diese und andere Aufgaben werden durch ein Bauteil für medienführende Gas- oder Wasserleitungen mit den Merkmalen des Anspruchs 1 gelöst. Bevorzugte Ausführungsformen des erfindungsgemäßen Bauteils sind in den abhängigen Ansprüchen beschrieben.These and other objects are achieved by a component for media-carrying gas or water lines with the features of
Gemäß der vorliegenden Erfindung wurde überaschenderweise erkannt, dass eine bleifreie Kupferlegierung, die als Legierungskomponenten in Gew.-% neben Kupfer (Cu) und unvermeidbaren Verunreinigungen noch 3,5 Gew.-% ≤ Zinn (Sn) ≤ 4,8 Gew.-%, 1,5 Gew.-% ≤ Zink (Zn) ≤ 3,5 Gew.-%, 0,25 Gew.-% ≤ Schwefel (S) ≤ 0,65 Gew.-%, 0,04 Gew.-% ≤ Phosphor (P) ≤ 0,1 Gew.-%, optional nicht mehr als 0,09 Gew.-% Blei; optional nicht mehr als 0,4 Gew.-% Nickel; optional nicht mehr als 0,1 Gew.-% Antimon; sowie optional nicht mehr als 0,3 Gew.-% Eisen, Zirkonium und/oder Bor allein oder in Kombination von zwei oder mehr der genannten Elemente umfasst, bei Kontakt mit Wassern verschiedener Wasserqualitäten eine gegenüber Standardmessing (CuZn40Pb2) und entzinkungsbeständigem Messing (CuZn36Pb2As) verbesserte Deckschichtbildung zeigt, was u.a. durch geeignete Warmauslagerungsversuche belegt wurde. Aufgrund dieser verbesserten Deckschichtbildung, zeigt die bleifreie Kupferlegierung keinerlei Entzinkung oder ähnliche selektive Korrosionsangriffe. Daher verfügt die bleifreie Kupferlegierung über eine verbesserte Korrosionsbeständigkeit über den gesamten, durch die Trinkwasserverordnung (nachstehend als "TWVO" bezeichnet) vorgegebenen Rahmen. Dementsprechend stellt die vorliegende Erfindung bevorzugt ein Bauteil für medienführende Gas- oder Wasserleitungen dar, insbesondere ein Fitting oder eine Armatur für Trinkwasserleitungen, wobei das Bauteil zumindest teilweise aus der erfindungsgemäßen bleifreien Kupferlegierung besteht, wobei das Bauteil zumindest abschnittsweise eine Wandstärke im Bereich von 0,5 mm bis 6,0 mm aufweist.According to the present invention, it was surprisingly recognized that a lead-free copper alloy, which as alloy components in wt .-% in addition to copper (Cu) and unavoidable impurities still 3.5 wt .-% ≤ tin (Sn) ≤ 4.8 wt .-% , 1.5% by weight ≤ zinc (Zn) ≤ 3.5% by weight, 0.25% by weight ≤ sulfur (S) ≤ 0.65% by weight, 0.04% by weight Phosphorus (P) 0.1 wt%, optionally not more than 0.09 wt% lead; optionally no more than 0.4 wt% nickel; optionally no more than 0.1 wt% antimony; as well as optionally not more than 0.3% by weight iron, zirconium and / or boron alone or in combination of two or more of the elements mentioned, in contact with water of different water qualities one compared to standard brass (CuZn40Pb2) and dezincification-resistant brass (CuZn36Pb2As) Improved surface layer formation shows what has been proven, among other things, by suitable artificial aging tests. Due to this improved formation of the top layer, the lead-free copper alloy shows no dezincification or similar selective corrosion attacks. Therefore, the lead-free copper alloy has improved corrosion resistance over the entire framework specified by the Drinking Water Ordinance (hereinafter referred to as "TWVO"). Accordingly, the present invention preferably represents a component for media-carrying gas or water lines, in particular a fitting or a fitting for drinking water pipes, the component at least partially consisting of the lead-free copper alloy according to the invention, the component having a wall thickness in the range from 0.5 mm to 6.0 mm at least in sections.
Es wurde festgestellt, dass sich in der erfindungsgemäß verwendeten Legierung zwei schwefelhaltige Phasen, Kupfersulfid und Zinksulfid, im Gefüge temperaturabhängig und versetzt voneinander ausbilden. Um durch Sulfidpartikel optimale Zerspanungseigenschaften zu erreichen, sollten diese möglichst rund, feinverteilt und klein vorliegen. Dieses Verhalten ist bevorzugt bei der Bildung von Kupfersulfiden zu beobachten. Zinksulfide hingegen neigen zu einer geometrisch ungünstigen Form. Es wurde erkannt, dass der Zeitpunkt der Phasenausbildung, die Art, die Anzahl und die Verteilung der schwefelhaltigen Partikel entscheidend für die Zerspanbarkeit und für die mechanischen Eigenschaften, wie etwa der Dehnung, des Bauteils sind. Die ausgebildeten Sulfide, bevorzugt als Kupfersulfid, bieten ähnlich den Bleipartikeln den Vorteil, als inkohärente Phasen vorzuliegen.It was found that in the alloy used according to the invention two sulfur-containing phases, copper sulfide and zinc sulfide, are formed in the structure as a function of temperature and offset from one another. In order to achieve optimal machining properties with sulfide particles, they should be as round, finely divided and small as possible. This behavior can be observed preferentially with the formation of copper sulfides. Zinc sulfides, on the other hand, tend to have a geometrically unfavorable shape. It was recognized that the point in time of phase formation, the type, number and distribution of the sulfur-containing particles are decisive for the machinability and for the mechanical properties, such as elongation, of the component. The sulfides formed, preferably as copper sulfide, have the advantage, similar to lead particles, of being present as incoherent phases.
Der Zinngehalt nimmt Einfluss auf die Festigkeit, Korrosionsbeständigkeit und auf die Phasenverteilung und erreicht im beanspruchten Bereich von 3,5 Gew.-% bis ≤ 4,8 Gew.-% ein optimal ausgewogenes, wirtschaftliches Verhältnis der davor beschriebenen Eigenschaften. Mit einem Zinngehalt von über 4,8 Gew.-% steigt zwar die Festigkeit und Korrosionsbeständigkeit in der Matrix weiter an, bei üblichen Abkühlungsbedingungen im Sandguss wird die Verteilung der Sulfide aber gröber und die Größe nimmt zu. Bei Gehalten unter 3,5 Gew.-% Zinn liegt keine ausreichende Korrosionsinhibierung vor. Auch werden wegen der schwachen Mischkristallverfestigung die für die Praxis notwendigen Eigenschaften nicht erreicht. Bei Gehalten über 4,8% Gew.-% Zinn kann zwar eine hohe Zugfestigkeit erreicht werden, wohingegen die Dehnungswerte des Materials reduziert werden. Gehalte von weit über 4,8 Gew.-% Zinn führen zur Ausbildung eines Gefüges, welches sich versprödend und ungünstig auf die Bearbeitung auswirkt.The tin content influences the strength, corrosion resistance and phase distribution and, in the claimed range of 3.5% by weight to ≤ 4.8% by weight, achieves an optimally balanced, economic ratio of the properties described above. With a tin content of more than 4.8% by weight, the strength and corrosion resistance in the matrix increase further, but under normal cooling conditions in sand casting, the distribution of the sulfides becomes coarser and the size increases. In the case of tin contents below 3.5% by weight, there is insufficient corrosion inhibition. Also, because of the weak solid solution strengthening, the properties necessary for practice are not achieved. A high tensile strength can be achieved at contents of more than 4.8% wt.% Tin, whereas the elongation values of the material are reduced. Contents of far more than 4.8 wt .-% tin lead to the formation of a structure which has an embrittling and unfavorable effect on the processing.
Es konnte festgestellt werden, dass bei gleichbleibenden Abkühlungsbedingungen mit steigendem Zinkgehalt der Anteil von Kupfersulfid abnimmt und der Anteil von Zinksulfid steigt. Mit einem Zinkgehalt von 1,5 Gew.-% bis 3,5 Gew.-%, besonders bevorzugt mit einem Zinkgehalt im Bereich von 1,8 Gew.-% bis 3,0 Gew.-%, kann gesichert werden, dass in Wänden von bis zu 6 mm eine homogene Verteilung kleinerer Sulfide begünstigt wird. Unter diesem Gesichtspunkt ist ein Zinkgehalt von 2,0 Gew-% bis 2,8 Gew-% besonders bevorzugt. Der Gehalt von max. 3,5 Gew.-% Zink sichert zusätzlich, dass partielle Korrosionserscheinungen vermieden und eine hohe Korrosionsbeständigkeit erreicht werden kann. Der Schwefelgehalt von 0,25 Gew.-% bis 0,65 Gew.-% bestimmt den Volumenanteil der Sulfide mit. Ab 0,25 Gew.-% Schwefel wird eine Menge an Sulfidpartikeln erzeugt, welche eine ausreichende Zerspanbarkeit der Legierung gewährleistet. Ein Schwefelgehalt über 0,65 Gew.-% Schwefel kann zur Ausbildung von unerwünschten, groben Sulfidpartikeln führen. Darüber hinaus kann sich durch den hohen Sulfidpartikelanteil der lastübertragene Querschnitt, d.h. der Querschnitt des Bauteiles, welcher Spannungen von außen aufnimmt, so stark reduzieren, dass es zu einer Verschlechterung der mechanischen Kennwerte, wie z.B. Bruchdehnung und dergleichen, kommt. Weiter verbesserte Eigenschaften wurden mit einer Legierung erzielt, deren Schwefelanteil im Bereich von 0,3 Gew.-% bis 0,6 Gew.-%, insbesondere im Bereich von 0,35 Gew.-% bis 0,55 Gew.-% liegt. Aufgrund der erfindungsgemäß verwendeten Legierungszusammensetzung liegen die Metallsulfide bei einem derartigen Schwefelgehalt in der bleifreien Kupferlegierung als inkohärente, fein verteilte, disperse Phase in Form von fein verteilten Partikeln vor. Dies bietet den Vorteil, dass eine eventuell auftretende Korrosion nur in einem geringem Umfang lokal an diesen Partikeln und nicht entlang zusammenhängender, größerer, einzelner Phasen des Legierungsgefüges stattfindet, wie dies beispielsweise bei Standardmessing der Fall ist. Bedingt durch die geringe Größe der Partikel findet kein signifikanter Korrosionsangriff statt.It was found that, given constant cooling conditions, the proportion of copper sulfide decreases and the proportion of zinc sulfide increases with increasing zinc content. With a zinc content of 1.5% by weight to 3.5% by weight, particularly preferably with a zinc content in the range of 1.8% by weight to 3.0% by weight, it can be ensured that in Walls of up to 6 mm a homogeneous distribution of smaller sulfides is favored. From this point of view, a zinc content of 2.0 wt% to 2.8 wt% is particularly preferred. The salary of max. 3.5% by weight of zinc also ensures that partial corrosion phenomena are avoided and a high level of corrosion resistance can be achieved. The sulfur content of 0.25% by weight to 0.65% by weight also determines the volume fraction of the sulfides. From 0.25% by weight sulfur, an amount of sulfide particles is generated which ensures that the alloy is sufficiently machinable. A sulfur content above 0.65% by weight sulfur can lead to the formation of undesirable, coarse sulfide particles. In addition, due to the high proportion of sulfide particles, the load-transferring cross-section, ie the cross-section of the component that absorbs external stresses, can be reduced so much that the mechanical parameters, such as elongation at break and the like, deteriorate. Further improved properties were achieved with an alloy whose sulfur content is in the range from 0.3% by weight to 0.6% by weight, in particular in the range from 0.35% by weight to 0.55% by weight . Due to the alloy composition used according to the invention, the metal sulfides are present in the lead-free copper alloy as an incoherent, finely divided, disperse phase in the form of finely divided particles with such a sulfur content. This offers the advantage that any corrosion that may occur occurs only to a small extent locally on these particles and not along coherent, larger, individual phases of the alloy structure, as is the case, for example, with standard brass. Due to the small size of the particles, there is no significant corrosion attack.
Der Anteil an Phosphor (P) in der bleifreien Kupferlegierung beträgt erfindungsgemäß 0,04 Gew.-% bis 0,1 Gew.-%. Unterhalb von 0,04 Gew.-% Phosphor erfolgt keine ausreichende Desoxidation der Schmelze, was sich auf die Phasenbildung der Legierung negativ auswirkt. Hingegen neigt die bleifreie Kupferlegierung bei einem Phosphoranteil von mehr als 0,1 Gew.-% zu ungünstigen Auswirkungen auf die mechanischen Eigenschaften, wie z.B reduzierter Bruchdehnung. Unter diesen Gesichtspunkten liegt der Gewichtsanteil an Phosphor in der bleifreien Kupferlegierung vorzugsweise im Bereich von 0,04 Gew.-% bis 0,08 Gew.-%, besonders bevorzugt im Bereich von 0,04 Gew.-% bis 0,06 Gew.-%.According to the invention, the proportion of phosphorus (P) in the lead-free copper alloy is 0.04% by weight to 0.1% by weight. Below 0.04% by weight of phosphorus, there is insufficient deoxidation of the melt, which has a negative effect on the phase formation of the alloy. In contrast, the lead-free copper alloy with a phosphorus content of more than 0.1% by weight tends to have adverse effects on the mechanical properties, such as reduced elongation at break. From these points of view, the proportion by weight of phosphorus in the lead-free copper alloy is preferably in the range from 0.04% by weight to 0.08% by weight, particularly preferably in the range from 0.04% by weight to 0.06% by weight. -%.
Wie hierin verwendet, bedeutet der Begriff "bleifreie Kupferlegierung" eine Kupferlegierung, die Blei als unvermeidbare Verunreinigung in einer Menge von nicht mehr als 0,09 Gew.-%, besonders bevorzugt nicht mehr als 0,05 Gew.-% umfasst. In der Legierung liegt der Bleianteil bei maximal 0,09 Gew.-% und besonders bevorzugt bei maximal kleiner gleich 0,05 Gew.-%. Bei einer Prüfung der Bleimigration nach Norm DIN EN 15664-1 zeigt die Legierung keine Anzeichen einer erhöhten Bleiabgabe in den ersten Wochen. Stattdessen lässt sich ab der achten Prüfwoche keine nennenswerte Bleimigration mehr ins Trinkwasser ermitteln oder liegt im Bereich der Messgenauigkeit des Verfahrens. Der niedrige Bleigehalt in der erfindungsgemäß verwendeten Legierung, führt somit zu einer deutlichen Reduzierung der Metallionenmigration im Trinkwasser, wobei der niedrige Bleigehalt keine negativen Auswirkungen auf den Spanbruch und somit auf die Zerspanbarkeit der erfindungsgemäß verwendeten Legierung besitzt.As used herein, the term "lead-free copper alloy" means a copper alloy that includes lead as an unavoidable impurity in an amount of not more than 0.09% by weight, more preferably not more than 0.05% by weight. The lead content in the alloy is a maximum of 0.09% by weight and particularly preferably a maximum of less than or equal to 0.05% by weight. When the lead migration is tested in accordance with the DIN EN 15664-1 standard, the alloy shows no signs of increased lead release in the first few weeks. Instead, you can From the eighth week of the test, no more significant lead migration into the drinking water can be determined or is within the range of the measurement accuracy of the method. The low lead content in the alloy used according to the invention thus leads to a significant reduction in metal ion migration in drinking water, the low lead content having no negative effects on chip breaking and thus on the machinability of the alloy used according to the invention.
Der Nickelanteil in der erfindungsgemäß verwendeten Legierung beträgt maximal 0,4 Gew.-%, bevorzugt beträgt der Nickelanteil maximal 0,3 Gew.-%. Der Nickelzusatz erhöht die Korrosionsbeständigkeit der Legierung, ohne im Widerspruch zur hygienischen Unbedenklichkeit zu stehen. Ähnlich wie beim Blei, befinden sich die Werte der Nickelmigration bei einer Prüfung nach Norm DIN EN 15664-1 weit unter den gesetzlich geforderten Grenzwert.The nickel content in the alloy used according to the invention is a maximum of 0.4% by weight, preferably the nickel content is a maximum of 0.3% by weight. The addition of nickel increases the corrosion resistance of the alloy without contradicting the hygienic safety. Similar to lead, the values of nickel migration in a test according to DIN EN 15664-1 are far below the legally required limit value.
Des Weiteren konnte festgestellt werden, dass ein Antimongehalt von maximal 0,1 Gew.-% bzgl. der Eigenschaften der Trinkwassermigration unkritisch ist. Die Legierung kann weiterhin einen Eisengehalt von maximal 0,3 Gew.-% aufwiesen.Furthermore, it was found that an antimony content of a maximum of 0.1% by weight is not critical with regard to the properties of drinking water migration. The alloy can also have an iron content of a maximum of 0.3% by weight.
In bevorzugten Ausführungsformen kann die bleifreie Kupferlegierung auch Anteile der Elemente Eisen (Fe), Zirconium (Zr) und/oder Bor (B) allein oder in einer Kombination von mindestens zwei der genannten Elemente als Kornfeiner enthalten. Dabei ist es bevorzugt, dass Eisen in einem Gewichtsanteil von bis zu 0,3 Gew.-%, Zirconium in einem Gewichtsanteil von bis zu 0,01 Gew.-% und/oder Bor in einem Gewichtsanteil von bis zu 0,01 Gew.-% in der bleifreien Kupferlegierung enthalten sind. Die Kornfeiner vermeiden Warmrissigkeit und beeinflussen die mechanischen Eigenschaften, wie z.B. Zugfestigkeit, Materialhärte und dergleichen positiv.In preferred embodiments, the lead-free copper alloy can also contain proportions of the elements iron (Fe), zirconium (Zr) and / or boron (B) alone or in a combination of at least two of the elements mentioned as grain refiners. It is preferred that iron in a weight fraction of up to 0.3 wt .-%, zirconium in a weight fraction of up to 0.01 wt .-% and / or boron in a weight fraction of up to 0.01 wt. -% are contained in the lead-free copper alloy. The grain refiners avoid hot cracking and influence the mechanical properties, e.g. Tensile strength, material hardness and the like are positive.
Vorzugsweise beträgt der Kupfergehalt der bleifreien Kupferlegierung mindestens 90 Gew.-%, vorzugsweise mehr als 91 Gew.-%.The copper content of the lead-free copper alloy is preferably at least 90% by weight, preferably more than 91% by weight.
Erfindungsgemäß ist es bevorzugt, wenn die Sulfide der bleifreien Kupferlegierung homogen im Gefüge verteilt vorliegen sind. Die Anzahl der Sulfidpartikel sollte hoch und deren mittlere Größe gering sein, um über das gesamte Gefüge gleichmäßige mechanische Kennwerte, eine gute Korrosionsbeständigkeit, eine verbesserte Spanbarkeit und eine hohe Druckdichtigkeit zu gewährleisten. Als Material der Sulfidpartikel ist Kupfersulfid bevorzugt, da das Auftreten von Kupfersulfid ermöglicht, mit einem deutlich geringeren Gehalt an Schwefel das Volumen von Blei zu substituieren.According to the invention, it is preferred if the sulfides of the lead-free copper alloy are homogeneously distributed in the structure. The number of sulphide particles should be high and their mean size should be small in order to ensure uniform mechanical parameters, good corrosion resistance, improved machinability and high pressure tightness over the entire structure. Copper sulfide is preferred as the material of the sulfide particles, since the occurrence of copper sulfide makes it possible to substitute the volume of lead with a significantly lower content of sulfur.
Das erfindungsgemäße Bauteil weist zumindest abschnittsweise eine Wandstärke im Bereich von 0,5 mm bis 6,0 mm auf, da die dünne Wandstärke zu für die Ausbildung der Kupfersulfide geeigneten Abkühlungsraten führt. Weiterhin ist es bevorzugt, wenn das gesamte erfindungsgemäße Bauteil eine Wandstärke innerhalb der genannten Bereiche von 0,5 mm bis 4,0 mm besitzt, da es bei einer Wandstärke in diesem Bereich zu einer besonders erhöhten Ausbildung der gewünschten Sulfidpartikel kommt. Eine Wandstärke unterhalb von 0,5 mm könnte aufgrund des geringen Querschnitts keine ausreichende mechanische Festigkeit des erfindungsgemäßen Bauteils aufweisen. Unter diesen Gesichtspunkten ist es bevorzugt, dass das erfindungsgemäße Bauteil zumindest abschnittsweise eine Wandstärke im Bereich von 1,0 mm bis 4,0 mm aufweist.The component according to the invention has, at least in sections, a wall thickness in the range from 0.5 mm to 6.0 mm, since the thin wall thickness leads to cooling rates suitable for the formation of the copper sulfides. It is also preferred if the entire component according to the invention has a wall thickness within the stated ranges of 0.5 mm to 4.0 mm, since a wall thickness in this range leads to a particularly increased formation of the desired sulfide particles. A wall thickness below 0.5 mm could not have sufficient mechanical strength of the component according to the invention due to the small cross section. From this point of view, it is preferred that the component according to the invention has, at least in sections, a wall thickness in the range from 1.0 mm to 4.0 mm.
Es kann auch von Vorteil sein, wenn bei einer Wandstärke unter 6 mm im Querschliff des erfindungsgemäßen Bauteiles mindestens ein Anteil von 1,6 Flächenprozent Sulfidpartikeln und/oder eine Flächeninhaltskennzahl ASP % kleiner als 1000 vorliegt. Derartige Werte führen dazu, dass Schwefelsulfide als inkohärente, fein verteilte, disperse Phase vorliegen. Dadurch werden tiefe mulden- und/oder lochförmige Angriffe, insbesondere Korrosionsangriffe, auf die erfindungsgemäßen Bauteile vermieden. Wie hierin verwendet ist der Begriff "Flächeninhaltskennzahl ASP %" die mathematische Beschreibung für das Maß der Form und der Lage einer Glockenkurve, welche sich aus einer Auftragung der Mittelwerte der Flächenklassen (Abszisse) in Kombination mit der prozentualen Verteilung der Sulfidpartikel in diesen Flächenklassen (Ordinate) ergibt (vgl.
Die erfindungsgemäß verwendete Legierung weist die hervorragende Eigenschaft auf, sehr schnell auf der inneren, trinkwasserbenetzten Oberfläche eine Deckschicht zu bilden. Die Deckschicht weist eine Dicke von vorzugsweise mindestens 2 µm, besonders bevorzugt von mindestens 3 µm, auf. Diese Deckschicht erhöht die Korrosionsbeständigkeit und sichert die Langlebigkeit der Bauteile aus diesem Werkstoff, da eine weitere Korrosion verhindert wird. Eine Migration aus dem Werkstoff an das Trinkwasser kann nur stattfinden, wenn Korrosionsvorgänge im Werkstoff ablaufen. Hier fungiert die Deckschicht also als Schutzschicht und begrenzt die weitere Metallabgabe an das Trinkwasser auf ein Minimum. Obwohl der Kupfergehalt in der beschriebenen Legierung höher liegt als in konventionellen Rotgusslegierungen, wie z. B. CuSnZn5Pb2, findet nur eine reduzierte Kupfermetallabgabe statt. Die guten Ergebnisse der Prüfung nach DIN EN 15664-1 beweisen, dass ohne weitgehende Einschränkungen in der Bearbeitbarkeit die Zusammensetzung der erfindungsgemäß verwendeten Legierung über den gesamten beanspruchten Bereich die Qualität des Trinkwassers nicht beeinträchtigt. Dabei weist die erfindungsgemäß verwendete Legierung im Vergleich zu konventionellen Rotguss-Legierungen, wie z.B. CuSnZn5Pb2, gleichzeitig ein verbessertes Migrationsverhalten in Kombination mit einer ausgezeichneten Korrosionsbeständigkeit auf.The alloy used according to the invention has the excellent property of forming a top layer very quickly on the inner surface wetted with drinking water. The cover layer has a thickness of preferably at least 2 μm, particularly preferably of at least 3 µm. This top layer increases the corrosion resistance and ensures the longevity of the components made of this material, since further corrosion is prevented. Migration from the material to the drinking water can only take place if corrosion processes take place in the material. Here the top layer functions as a protective layer and limits the further metal release to the drinking water to a minimum. Although the copper content in the alloy described is higher than in conventional gunmetal alloys, such as. B. CuSnZn5Pb2, there is only a reduced copper metal release. The good results of the test in accordance with DIN EN 15664-1 show that, without extensive restrictions in terms of machinability, the composition of the alloy used according to the invention does not impair the quality of the drinking water over the entire area claimed. In comparison to conventional gunmetal alloys, such as, for example, CuSnZn5Pb2, the alloy used according to the invention has at the same time improved migration behavior in combination with excellent corrosion resistance.
In Gussversuchen konnte belegt werden, das die erfindungsgemäßen Bauteile für medienführende Gas- oder Wasserleitungen mit den herkömmlichen Gussverfahren, wie Sand-, Kokillen-, oder Stranggussverfahren herstellbar sind. Das durch derartige Gussverfahren hergestellte Gussteil lässt sich gut spanhebend bearbeiten.In casting tests, it was possible to prove that the components according to the invention for media-carrying gas or water pipes can be produced using conventional casting processes, such as sand, permanent mold or continuous casting processes. The cast part produced by such a casting process can be machined well.
Hierin verwendet sind unter dem Begriff "Bauteil für medienführende Gas- oder Trinkwasserleitungen" insbesondere solche Bauteile zu verstehen, die einem Hausinstallationsrohrsystem mit Wasser, insbesondere mit Trinkwasser in Verbindung kommen, wobei Fitting und Armaturen derartiger Hausinstallationsrohrsysteme erfindungsgemäß bevorzugt sind. Als Beispiel für ein derartiges Fitting ist insbesondere das aus der
Nachstehend soll die vorliegende Erfindung unter Bezugnahme auf Ausführungsbeispiele und damit durchgeführte Tests sowie beigefügte Zeichnungen näher erläutert werden. Es versteht sich, dass diese Beispiele nicht als die Erfindung in irgendeiner Weise einschränkend zu betrachten sind. Sofern nichts Anderes angegeben ist, sind in der vorliegenden Anmeldung einschließlich der Ansprüche sämtliche Prozentangaben und Anteilsangaben auf das Gewicht bezogen.The present invention is to be explained in more detail below with reference to exemplary embodiments and tests carried out therewith, as well as the accompanying drawings. It will be understood that these examples are not to be regarded as limiting the invention in any way. Unless stated otherwise, all percentages and proportions in the present application including the claims are based on weight.
In den Zeichnungen zeigen
- Fig. 1
- exemplarische Auftragungen der Flächen der Partikel gegen die prozentuale Verteilung der Partikel in verschiedenen Größenklassen, welche als Basis zur Ermittlung der ASP% dienen ("Glockenkurve");
- Fig. 2
- eine Übersicht der Prüfwässer im Diagramm nach Turner;
- Fig. 3
- ein Diagramm, aus dem die Angriffstiefen der Entzinkung beim Standardmessing im durchgeführten Warmauslagerungstest nach 5 Monaten Auslagerungsdauer hervorgehen;
- Fig. 4
- ein Übersichtsdiagramm, dass die Bildung der Deckschicht bei der verwendeten bleifreien Kupferlegierung im durchgeführten Warmauslagerungstest nach 5 Monaten Auslagerungsdauer zeigt;
- Fig. 5
- eine fotografische Aufnahme, die ein Beispiel eines Korrosionsangriffs von Standardmessing im Warmauslagerungstest (angelehnt an Turner mit
einem Chloridgehalt von 250 mg/l und einer 5,5 °dH) zeigt;Karbonathärte von - Fig. 6
- eine fotografische Aufnahme der Legierung 2, die ein Beispiel einer durchgängigen Deckschicht im Warmauslagerungstest (angelehnt an Turner mit
einem Chloridgehalt von 250 mg/l und einer 5,5 °dH) zeigt;Karbonathärte von - Fig. 7
- ein Diagramm der thermischen Analyse zweier Schmelzen mit unterschiedlichen Zinkgehalten, die unter gleichen Bedingungen vergossen wurden;
- Fig. 8
- ein Gefügeschliffbild eines Bauteiles aus einer Schmelze, die mit einem Zinkgehalt von ca. 3,9 Gew.-% vergossen wurde;
- Fig. 9
- ein Gefügeschliffbild eines erfindungsgemäßen Bauteiles aus einer Schmelze, die mit einem Zinkgehalt von ca. 2,4 Gew.-% vergossen wurde;
- Fig. 10
- ein Gefügeschliffbild eines erfindungsgemäßen Bauteiles aus einer Schmelze, die langsam abgekühlt wurde; und
- Fig. 11
- ein Gefügeschliffbild eines erfindungsgemäßen Bauteiles aus einer Schmelze, die schnell abgekühlt wurde.
- Fig. 1
- exemplary plots of the areas of the particles against the percentage distribution of the particles in different size classes, which serve as the basis for determining the ASP% ("bell curve");
- Fig. 2
- an overview of the test waters in the Turner diagram;
- Fig. 3
- a diagram showing the depth of attack of dezincification on standard brass in the artificial aging test carried out after 5 months of aging;
- Fig. 4
- an overview diagram that shows the formation of the top layer in the lead-free copper alloy used in the artificial aging test carried out after 5 months of aging;
- Fig. 5
- a photograph showing an example of a corrosion attack on standard brass in the artificial aging test (based on Turner with a chloride content of 250 mg / l and a carbonate hardness of 5.5 ° dH);
- Fig. 6
- a photograph of
alloy 2 showing an example of a continuous top layer in the artificial aging test (based on Turner with a chloride content of 250 mg / l and a carbonate hardness of 5.5 ° dH); - Fig. 7
- a diagram of the thermal analysis of two melts with different zinc contents, which were cast under the same conditions;
- Fig. 8
- a micrograph of a component from a melt cast with a zinc content of approx. 3.9% by weight;
- Fig. 9
- a micrograph of a component according to the invention from a melt that was cast with a zinc content of approx. 2.4% by weight;
- Fig. 10
- a micrograph of a component according to the invention from a melt that was slowly cooled; and
- Fig. 11
- a micrograph of a component according to the invention from a melt that has been rapidly cooled.
Zur Beurteilung der Korrosionsbeständigkeit von Kupferlegierungen wurde ein Warmauslagerungstest entwickelt, der das Langzeitkorrosionsverhalten von Legierungen in einem fünfmonatigen Versuchszeitraum simuliert. Aufbau und Durchführung des Tests lehnen sich an die seit Jahrzehnten etablierten Korrosionstest und das darauf basierende Diagramm
Für die durchgeführten Warmauslagerungstests wurden unter anderem die folgenden bleifreien Kupferlegierungen eingesetzt, wobei die Anteile der Komponenten in nachstehender Tabelle 1 in Gew.-% angegeben sind:
Zur Herstellung von Prüfkörpern wurden, aus den Legierungen 1 und 2 Halbzylinder mit einer Wandstärke von 5 mm gegossen. Danach wurden die Prüfkörper an der Außenseite mittels einer Drehbearbeitung auf eine Rauigkeit Rz von max. 25µm bearbeitet und an der Innenseite mittels einer Bohrbearbeitung mit einer Durchgangsbohrung der Rauigkeit Rz von max. 40 µm versehen. Diese spezielle Oberflächenbehandlung soll eine Vergleichbarkeit der Probekörper mit real gefertigten Bauteilen ermöglichen.For the production of test specimens, half cylinders with a wall thickness of 5 mm were cast from
Die Oberfläche der Prüfkörper wurde mit Aceton gereinigt. Anschließend wurden die Prüfkörper frei hängend in ein Prüfbehältnis eingebracht. Die Prüfbehältnisse wurden dann für fünf Monate in einen Wärmeschrank bei 90°C eingestellt, wobei das Prüfmedium jeweils in Intervallen von sieben Tagen gewechselt wurde.The surface of the test specimen was cleaned with acetone. The test specimens were then placed in a test container in a freely hanging manner. The test containers were then placed in a heating cabinet at 90 ° C. for five months, the test medium being changed at seven-day intervals.
Als Prüfmedien wurden jeweils 21 verschiedene Prüfwasser mit unterschiedlichen pH-Werten und Karbonathärten (Die Karbonathärte (KH) ist jener Anteil an Calcium- und Magnesiumionen, für den in der Volumeneinheit eine äquivalente Konzentration an Hydrogencarbonationen vorliegt) eingestellt, darüber hinaus wurden verschiedene Gehalte an Chloridionen und/oder Sulfationen eingestellt. Die Gehalte können aus Tabelle 2 entnommen werden:
Nach Abschluss des fünfmonatigen Testzeitraums werden die Prüfbehältnisse aus dem Wärmeschrank entnommen, auf Raumtemperatur abgekühlt, die Prüfkörper aus den jeweiligen Prüfbehältnissen entnommen, getrocknet, aufgeschnitten und die Schnittfläche wird jeweils nach entsprechender Aufarbeitung lichtmikroskopisch untersucht.At the end of the five-month test period, the test containers are removed from the heating cabinet, cooled to room temperature, the test specimens are removed from the respective test containers, dried, cut open and the cut surface is examined with a light microscope after appropriate processing.
Die Legierungen 1 und 2 zeigten über den gesamten in der Warmauslagerung geprüften Bereich der Trinkwasserverordnung eine herausragende Bildung einer für Kupferlegierungen notwendigen schützenden festhaftenden, geschlossenen Deckschicht, welche im Warmauslagerungstest eine Dicke von mindestens 2 µm besitzt und damit eine verbesserte Deckschicht im Bezug auf eine herkömmliche, bleihaltige Kupferlegierung auf Basis einer CuSnZn-Legierung (z.B. CuSn5Zn5Pb) aufweist. Des Weiteren ist diese Schicht nahezu frei von Störungen bzw. Defekten und entfaltet damit ihren vollständigen Schutz durch die Vermeidung eines tiefergehenden, lokalen Korrosionsangriffes (siehe
Im Diagramm gemäß
In
Im Vergleich dazu zeigt
Im Vergleich zum Standardmessing zeigt sich die Legierung in dem hier durchgeführten Warmauslagerungstest in Anlehnung an Turner frei von selektiven Korrosionsangriffen (z.B. Entzinkung und Spannungsrisskorrosion) und nahezu allen anderen Korrosionserscheinungen.Compared to the standard brass, the artificial aging test carried out here shows that the alloy is free of selective corrosion attacks (e.g. dezincification and stress corrosion cracking) and almost all other signs of corrosion based on Turner's approach.
Die Versuche zeigen darüber hinaus, dass Schwefelsulfide als inkohärente, fein verteilte, disperse Phasen einen deutlichen korrosiven Vorteil zeigen. Dies resultiert aus der Vermeidung von tiefen mulden- und/oder lochförmigen Angriffen, welche durch ein mögliches Absinken des pH-Wertes und einer Aufkonzentration der kritischen Inhaltsstoffe des Mediums zu einer deutlich beschleunigten Korrosion führen könnten. Darüber hinaus werden keine korrosionstechnisch ungünstigen unedleren, flächenmäßig sehr großen Phasen gebildet, welche wie oben bereits beschrieben durch Korrosion angegriffen werden könnten und dann zu einem schnellen Ausfall des Bauteiles führen (vgl. β-Phase im Standardmessing).The tests also show that sulfur sulfides, as incoherent, finely divided, disperse phases, have a clear corrosive advantage. This results from the avoidance of deep trough-shaped and / or hole-shaped attacks, which could lead to significantly accelerated corrosion due to a possible drop in the pH value and a concentration of the critical constituents of the medium. In addition, no less noble, non-noble phases with a very large surface area are formed which, as already described above, could be attacked by corrosion and then lead to rapid failure of the component (cf. β-phase in standard brass).
Es konnte aus Versuchen ermittelt werden, dass die Legierungszusammensetzung die Verteilung, die Form und den Zeitpunkt der Phasenausbildung entscheidend mitbeeinflusst und ungünstige Gehalte sich negativ auf die Phasen- und Gefügeausbildung auswirken.It could be determined from experiments that the alloy composition has a decisive influence on the distribution, the shape and the point in time of the phase formation and that unfavorable contents have a negative effect on the phase and structure formation.
Zuerst wurden thermische Versuche durchgeführt, die anschließend mittels Bildanalyse verifiziert worden sind.First, thermal tests were carried out, which were then verified by means of image analysis.
Die Abkühlungsrate in
In
Desweiten wurde erkannt, dass die Abkühlungsbedingungen der Schmelze zu einem erfindungsgemäßen Bauteil, einen Einfluss auf die Sulfidausbildung besitzen. Durch eine hohe Abkühlrate wie sie bei einer dünnen Wand bevorzugt vorliegt entsteht ein feinmaschiges Dendritennetzwerk mit feinen Restschmelzegebieten, aus denen eine globulare Ausbildung der Sulfide unterstützt wird. Insofern ist ein schnelles Abkühlen erfindungsgemäß bevorzugt.
Zur Bestätigung dieser Charakteristik wurden die Partikel mittels Bildanalyse an Gefügeschliffen der Probekörper untersucht und charakterisiert.To confirm this characteristic, the particles were examined and characterized by means of image analysis on ground structures of the test specimens.
Dabei hat sich gezeigt, dass sich bei der Herstellung erfindungsgemäßer Bauteile unter den genannten Abkühlungsbedingungen einer Schmelze, einer erfindungsgemäß zusammengesetzten Legierung, erreicht werden kann, dass zumindest abschnittsweise in einem Gefügeschliff des Gussteiles mindestens 1,8 Flächenprozent der Gesamtfläche als Sulfidpartikel ausgebildet vorliegt.It has been shown that in the production of components according to the invention under the stated cooling conditions of a melt, a melt composed according to the invention Alloy, it can be achieved that at least in sections in a microstructure of the cast part at least 1.8 area percent of the total area is formed as sulfide particles.
Unter anderem kann das Volumen der Sulfide und die Flächeninhalte mittels dieser Bildanalyse ermittelt werden.Among other things, the volume of sulphides and the area can be determined by means of this image analysis.
Zur näheren Bestimmung der Sulfidpartikel werden verschiedene Größenklassen eingeführt (vgl. Tabelle 4). Anschließend werden die Partikel vermessen und den Klassen prozentual zugerechnet. Nun werden die prozentualen Zurechnungen mit dem Mittelwert der Klasse multipliziert. Die sich ergebenden Mittelwerte der Klassen werden zu einem großen Mittelwert zusammengefasst. Der sich ergebende Wert stellt die Flächeninhaltskennzahl Sulfidpartikel ASP% dar.Various size classes are introduced to determine the sulfide particles more precisely (see Table 4). The particles are then measured and assigned to the classes as a percentage. Now the percentage allocations are multiplied by the mean value of the class. The resulting mean values of the classes are combined into a large mean value. The resulting value represents the area index for sulphide particles ASP%.
Die erfindungsgemäß verwendeten Legierungen lassen sich mit einer Flächeninhaltskennzahl ASP% kleiner als 1000 charakterisieren.
Voranstehend wurde die vorliegende Erfindung unter Bezugnahme auf Beispiele und Vergleichsbeispiele beschrieben. Für den Fachmann ist es jedoch ersichtlich, dass die Erfindung nicht auf diese Beispiele eingeschränkt ist, sondern sich der Umfang der vorliegenden Erfindung aus den beiliegenden Ansprüchen ergibt.In the foregoing, the present invention has been described with reference to examples and comparative examples. However, it will be apparent to those skilled in the art that the invention is not limited to these examples, but the scope of the present invention is determined from the appended claims.
Claims (9)
- Component for media-carrying gas or water pipes, in particular fitting or valve for drinking water pipes, wherein the component consists at least partially of a lead-free copper alloy, which has the following alloy components in % by weight:3.5 % by weight ≤ Sn ≤ 4.8 % by weight;1.5 % by weight ≤ Zn ≤ 3.5 % by weight;0.25 % by weight ≤ S ≤ 0.65 % by weight;0.04 % by weight ≤ P ≤ 0.1 % by weight;optionally no more than 0.09 % by weight lead;optionally no more than 0.4 % by weight nickel;optionally no more than 0.1 % by weight antimony;
optionally no more than 0.3 % by weight iron, zirconium and/or boron alone or in combination of two or more of said elements;unavoidable impurities andto the remainder copper,
wherein the component has a wall thickness at least in sections in the range of 0.5 mm to 6.0 mm. - Component according to claim 1, characterised in that the sulphur proportion in the alloy is 0.3 % by weight ≤ S ≤ 0.60 % by weight, in particular 0.35 % by weight ≤ S ≤ 0.55 % by weight.
- Component according to claim 1 or claim 2, characterised in that the zinc proportion in the alloy is 2.0 % by weight ≤ Zn ≤ 3.0 % by weight.
- Component according to one of the preceding claims, characterised in that the phosphorus proportion in the alloy is 0.04 % by weight ≤ P ≤ 0.08 % by weight, in particular 0.04 % by weight ≤ P ≤ 0.06 % by weight.
- Component according to one of the preceding claims, characterised in that the lead content is not more than 0.05 % by weight.
- Component according to one of the preceding claims, characterised in that copper is contained in the lead-free copper alloy in a quantity of more than 90 % by weight.
- Component according to one of the preceding claims, characterised in that the component has a wall thickness at least in sections in the range from 1.0 mm to 4.0 mm.
- Component according to one of claims 1 to 7, characterised in that it has a homogeneous, protective cover layer of at least 2 µm.
- Component according to one of the preceding claims, characterised in that the material has no increased lead or nickel migration according to DIN EN 15664-2 after 16 weeks and conforms to the provisions of DIN EN 15664-2.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL17151949T PL3225707T3 (en) | 2016-03-29 | 2017-01-18 | Component for media-conducting gas or water lines comprising a copper alloy |
PCT/EP2017/000374 WO2017167441A2 (en) | 2016-03-29 | 2017-03-28 | Component for media-conducting gas or water lines |
RU2018137812A RU2712161C1 (en) | 2016-03-29 | 2017-03-28 | Constructive element for heat-conducting gas- or water pipes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE202016101661.4U DE202016101661U1 (en) | 2016-03-29 | 2016-03-29 | Component for media-carrying gas or water pipes |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3225707A1 EP3225707A1 (en) | 2017-10-04 |
EP3225707B1 true EP3225707B1 (en) | 2020-12-30 |
Family
ID=57838272
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17151949.9A Active EP3225707B1 (en) | 2016-03-29 | 2017-01-18 | Component for media-conducting gas or water lines comprising a copper alloy |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP3225707B1 (en) |
DE (1) | DE202016101661U1 (en) |
DK (1) | DK3225707T3 (en) |
PL (1) | PL3225707T3 (en) |
RU (1) | RU2712161C1 (en) |
WO (1) | WO2017167441A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4411009A1 (en) | 2023-02-03 | 2024-08-07 | Wieland-Werke AG | Copper alloy, semi-finished product and electrical connection element made of copper alloy |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT520560B1 (en) * | 2018-01-29 | 2019-05-15 | Miba Gleitlager Austria Gmbh | Multilayer plain bearing element |
DE102018004702A1 (en) | 2018-06-12 | 2019-12-12 | Gebr. Kemper Gmbh + Co. Kg Metallwerke | Moldings made of a corrosion-resistant and machinable copper alloy |
DE102019106131A1 (en) * | 2019-03-11 | 2020-09-17 | M.G. Meccanica Srl | Process for the production of components for media-carrying gas or water pipes and the component produced thereby |
DE102019106136A1 (en) * | 2019-03-11 | 2020-09-17 | M.G. Meccanica Srl | Process for the production of metallic components as well as the metallic component produced thereby |
AT522440B1 (en) | 2019-05-07 | 2020-11-15 | Miba Gleitlager Austria Gmbh | Multi-layer plain bearing element |
DE102021106229A1 (en) | 2020-12-17 | 2022-06-23 | REHAU Industries SE & Co. KG | Connecting element system for producing a pipe connection, pipe connection comprising this, and method for producing such a pipe connection |
EP4264105A1 (en) | 2020-12-17 | 2023-10-25 | REHAU Industries SE & Co. KG | Connecting element system for producing a tube connection, tube connection comprising the former, and method for producing a tube connection of this type |
DE202020107328U1 (en) | 2020-12-17 | 2022-03-18 | REHAU Industries SE & Co. KG | Pipe connection and connecting element for producing a pipe connection |
DE102021110302A1 (en) * | 2021-04-22 | 2022-10-27 | Ks Gleitlager Gmbh | Copper-tin continuously cast alloy |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1694676A1 (en) * | 1989-03-01 | 1991-11-30 | Московский институт стали и сплавов | Copper base alloy |
DE4404194C2 (en) * | 1994-02-10 | 1996-04-18 | Reinecke Alfred Gmbh & Co Kg | Fitting made of metal for drinking water, in particular of copper and its alloys with parts of zinc and lead |
EP1798298B2 (en) | 2005-12-14 | 2016-05-04 | Gebr. Kemper GmbH + Co. KG Metallwerke | Use of a low-migration copper alloy and parts made of such alloy |
DE202008003352U1 (en) | 2008-03-07 | 2009-07-23 | Rehau Ag + Co | Connector for a clamp connector |
JP5335558B2 (en) * | 2009-05-26 | 2013-11-06 | 滋賀バルブ協同組合 | Lead-free copper alloy for castings with excellent mechanical properties |
JP5916464B2 (en) * | 2012-03-26 | 2016-05-11 | 古河電気工業株式会社 | Copper alloy wrought material, method for producing copper alloy wrought material, and method for producing copper alloy parts |
-
2016
- 2016-03-29 DE DE202016101661.4U patent/DE202016101661U1/en active Active
-
2017
- 2017-01-18 EP EP17151949.9A patent/EP3225707B1/en active Active
- 2017-01-18 DK DK17151949.9T patent/DK3225707T3/en active
- 2017-01-18 PL PL17151949T patent/PL3225707T3/en unknown
- 2017-03-28 RU RU2018137812A patent/RU2712161C1/en active
- 2017-03-28 WO PCT/EP2017/000374 patent/WO2017167441A2/en active Application Filing
Non-Patent Citations (1)
Title |
---|
None * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4411009A1 (en) | 2023-02-03 | 2024-08-07 | Wieland-Werke AG | Copper alloy, semi-finished product and electrical connection element made of copper alloy |
DE102023000334A1 (en) | 2023-02-03 | 2024-08-08 | Wieland-Werke Aktiengesellschaft | Copper alloy, semi-finished product and electrical connecting element made of a copper alloy |
Also Published As
Publication number | Publication date |
---|---|
PL3225707T3 (en) | 2021-07-19 |
DK3225707T3 (en) | 2021-04-06 |
EP3225707A1 (en) | 2017-10-04 |
WO2017167441A3 (en) | 2018-03-01 |
RU2712161C1 (en) | 2020-01-24 |
DE202016101661U1 (en) | 2017-06-30 |
WO2017167441A2 (en) | 2017-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3225707B1 (en) | Component for media-conducting gas or water lines comprising a copper alloy | |
DE69828818T2 (en) | AUTOMATED ALLOY ON COPPER BASE | |
DE69832097T2 (en) | LEAD-FREE AUTOMATIC COPPER ALLOY | |
EP2964798B1 (en) | Copper-zinc alloy for a plumbing fitting and method for the production thereof | |
DE69703420T2 (en) | AlMgMn alloy product for welded structures with improved corrosion resistance | |
AT522440B1 (en) | Multi-layer plain bearing element | |
EP2742161B1 (en) | Copper zinc alloy | |
DE10301552B3 (en) | Use of a brass alloy for corrosion resistant drinking water molded parts, especially coupling parts, angular parts, angular bent parts, T-pieces, distribution parts and fittings | |
EP1817438A1 (en) | Low-migration copper alloy | |
WO2017084731A1 (en) | Copper-nickel-zinc alloy and use thereof | |
DE60029260T2 (en) | cutting alloy | |
DE112014002690T5 (en) | copper alloy | |
DE4233668C2 (en) | Corrosion-resistant copper-based alloy | |
EP0642596B1 (en) | Brass alloy | |
DE10132055A1 (en) | Dezincification-resistant copper-zinc alloy and process for its production | |
EP3436615A2 (en) | Component for media-conducting gas or water lines, which contains a copper alloy | |
EP3938552A1 (en) | Method for producing metal components and metal component produced in this way | |
WO2020182846A1 (en) | Method for producing metal components and metal component produced in this way | |
EP0572959A1 (en) | Brass alloy | |
DE4318377C2 (en) | Brass alloy | |
DE102018212942B4 (en) | Method for producing a melt of a copper casting alloy and casting produced from this melt | |
WO1994024325A1 (en) | Brass alloy | |
DE2040031B2 (en) | COPPER-ZINC ALLOY FOR PRESSURE SEALED CASTINGS | |
DE2629491A1 (en) | Copper based alloy for mfr. of valves, stop cocks etc. - has excellent corrosion resistance, and machinability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180404 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20181128 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200121 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: GEBR. KEMPER GMBH + CO. KG, METALLWERKE Owner name: REHAU AG + CO Owner name: GEBERIT INTERNATIONAL AG |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
GRAL | Information related to payment of fee for publishing/printing deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR3 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
INTC | Intention to grant announced (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200721 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: GEBR. KEMPER GMBH + CO. KG, METALLWERKE Owner name: REHAU AG + CO Owner name: GEBERIT INTERNATIONAL AG |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1349974 Country of ref document: AT Kind code of ref document: T Effective date: 20210115 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502017008800 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20210330 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210330 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210330 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: T3 Ref document number: E 37115 Country of ref document: SK |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210430 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210430 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502017008800 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20211001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502017008800 Country of ref document: DE Owner name: REHAU INDUSTRIES SE & CO. KG, DE Free format text: FORMER OWNERS: GEBERIT INTERNATIONAL AG, JONA, CH; GEBR. KEMPER GMBH + CO. KG, 57462 OLPE, DE; REHAU AG + CO, 95111 REHAU, DE Ref country code: DE Ref legal event code: R081 Ref document number: 502017008800 Country of ref document: DE Owner name: GEBR. KEMPER GMBH + CO. KG, DE Free format text: FORMER OWNERS: GEBERIT INTERNATIONAL AG, JONA, CH; GEBR. KEMPER GMBH + CO. KG, 57462 OLPE, DE; REHAU AG + CO, 95111 REHAU, DE Ref country code: DE Ref legal event code: R081 Ref document number: 502017008800 Country of ref document: DE Owner name: GEBERIT INTERNATIONAL AG, CH Free format text: FORMER OWNERS: GEBERIT INTERNATIONAL AG, JONA, CH; GEBR. KEMPER GMBH + CO. KG, 57462 OLPE, DE; REHAU AG + CO, 95111 REHAU, DE |
|
REG | Reference to a national code |
Ref country code: LU Ref legal event code: PD Owner name: GEBERIT INTERNATIONAL AG; CH Free format text: FORMER OWNER: REHAU AG + CO Effective date: 20220329 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: PD Owner name: GEBERIT INTERNATIONAL AG; CH Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT; FORMER OWNER NAME: REHAU AUTOMOTIVE SE & CO. KG Effective date: 20220425 Ref country code: NL Ref legal event code: HC Owner name: GEBERIT INTERNATIONAL AG; CH Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGE OF OWNER(S) NAME; FORMER OWNER NAME: REHAU AG + CO Effective date: 20220425 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PK Free format text: BERICHTIGUNGEN |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210430 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: PC Ref document number: 1349974 Country of ref document: AT Kind code of ref document: T Owner name: GEBERIT INTERNATIONAL AG, CH Effective date: 20220419 Ref country code: AT Ref legal event code: PC Ref document number: 1349974 Country of ref document: AT Kind code of ref document: T Owner name: GEBR. KEMPER GMBH + CO. KG, METALLWERKE, DE Effective date: 20220419 Ref country code: AT Ref legal event code: PC Ref document number: 1349974 Country of ref document: AT Kind code of ref document: T Owner name: REHAU INDUSTRIES SE & CO. KG, DE Effective date: 20220419 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20220526 AND 20220601 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: PD Owner name: GEBERIT INTERNATIONAL AG; CH Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), OTHER; FORMER OWNER NAME: GEBERIT INTERNATIONAL AG Effective date: 20220414 |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: TE4A Ref document number: E 37115 Country of ref document: SK Owner name: REHAU INDUSTRIES SE & CO. KG, REHAU, DE Effective date: 20230124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20170118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
REG | Reference to a national code |
Ref country code: LU Ref legal event code: HC Owner name: GEBR. KEMPER GMBH + CO. KG, METALLWERKE; DE Free format text: FORMER OWNER: REHAU INDUSTRIES SE & CO. KG Effective date: 20230828 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SK Payment date: 20231122 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231121 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20231215 Year of fee payment: 8 Ref country code: NL Payment date: 20231213 Year of fee payment: 8 Ref country code: LU Payment date: 20231213 Year of fee payment: 8 Ref country code: IE Payment date: 20231213 Year of fee payment: 8 Ref country code: FR Payment date: 20231024 Year of fee payment: 8 Ref country code: DK Payment date: 20231215 Year of fee payment: 8 Ref country code: CZ Payment date: 20231122 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20231121 Year of fee payment: 8 Ref country code: BE Payment date: 20231213 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20231213 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240131 Year of fee payment: 8 Ref country code: CH Payment date: 20240201 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240130 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |