Nothing Special   »   [go: up one dir, main page]

EP3218961A1 - Reconfigurable compact antenna device - Google Patents

Reconfigurable compact antenna device

Info

Publication number
EP3218961A1
EP3218961A1 EP15797135.9A EP15797135A EP3218961A1 EP 3218961 A1 EP3218961 A1 EP 3218961A1 EP 15797135 A EP15797135 A EP 15797135A EP 3218961 A1 EP3218961 A1 EP 3218961A1
Authority
EP
European Patent Office
Prior art keywords
radiating
ant
antenna
antenna device
floating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP15797135.9A
Other languages
German (de)
French (fr)
Inventor
Jean-Marie FLOC'H
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Institut National des Sciences Appliquees de Rennes
Original Assignee
Centre National de la Recherche Scientifique CNRS
Institut National des Sciences Appliquees de Rennes
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Institut National des Sciences Appliquees de Rennes filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP3218961A1 publication Critical patent/EP3218961A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/328Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors between a radiating element and ground
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • H01Q5/364Creating multiple current paths
    • H01Q5/371Branching current paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/378Combination of fed elements with parasitic elements
    • H01Q5/392Combination of fed elements with parasitic elements the parasitic elements having dual-band or multi-band characteristics

Definitions

  • the invention relates to the field of antennas for transmitting radio signals and more particularly to monopole antennas with a radiating element of the meandering type.
  • Antennas are essential elements of radio devices. A large number of antenna types exist and the characteristics of each of these types consequently influence the performance in terms of quality and range of a transmission.
  • the meander antenna is derived from a quarter-wave monopole.
  • the idea implemented with the meander antenna is to fold the original monopoly into several meanders of equal lengths. The size reduction is obtained by adjusting the number of meanders and the difference between each of them.
  • Such a meander antenna can be easily printed on a dielectric substrate. With such a structure, the shortest strands participate predominantly in radiation because the surface currents are in phase. Conversely, in the longest strands, the surface currents are in phase opposition. Meandering antennas are often defined by the ratio of their axial lengths, which creates the clutter and the equivalent length of the unfolded meander.
  • the resonance frequency of a meander antenna is less than that of the unfolded meander, in particular because of the coupling that exists between the meanders and bends created by the folding of the strands. It is estimated the performance in terms of reduction of such an antenna, the ratio I of its axial length and the length L an unfolded strand resonating at the same frequency. It is furthermore noted that the reduction factor increases with the number of meanders, but also as a function of the meander spacing and the section of the strand.
  • This meander antenna structure does not achieve an optimal level of reduction of its dimensions.
  • the invention makes it possible to improve the state of the art by proposing an antenna device comprising an electrical mass connection and a monopole meander-type radiating element, the radiating element being disposed on a first face of a plane dielectric support. on both sides, the antenna device further comprising, on a second face of the dielectric support, at least one floating plane conducting element disposed parallel to the radiating element, the non-radiating floating plane conducting element being isolated from the electrical ground.
  • the non-radiating floating plane conductive element is of a size substantially identical to that of the radiating element without, however, taking up the same pattern. This means that the maximum (overall) dimensions of the radiating element and the non-radiating floating plane element are substantially similar but that the floating plane element is designed to act on the overall permittivity of the antenna and does not is not intended to be a radiating element. In other words, the floating plane element is not configured to radiate.
  • the shape of the non-radiating floating plane conductive element is mechanically adjustable to modify characteristics of the antenna device.
  • the non-radiating floating plane conductive element comprises a liquid metal inserted in a closed container, which makes it possible to modify its shape by modifying the shape of the container, for example.
  • the liquid metal is galinstan or mercury.
  • the non-radiating floating plane conductive element is of rectangular or square shape.
  • FIG. 1 illustrates a monopole meander antenna device according to the prior art.
  • FIG. 2 illustrates a monopole meander antenna device according to a particular and non-limiting embodiment of the invention.
  • FIG. 3 represents a comparative diagram of characteristics of a monopole meander antenna device according to a particular and nonlimiting embodiment of the invention with a meander antenna device according to the prior art.
  • modules shown are functional units, which may or may not correspond to physically distinguishable units.
  • these modules or some of them are grouped into a single component, or consist of the functionality of the same software.
  • some modules are composed of separate physical entities.
  • FIG. 1 illustrates an ANT monopole meander antenna device according to the prior art.
  • the radiating element RE1 of the ANT antenna, monopole in the shape of a meander is printed on one face of a part D cut in a dielectric substrate of the FR4 type.
  • An incident signal is transmitted to the antenna ANT from a remote generator device via an antenna connection CON.
  • the antenna connection CON is connected to the radiator element RE1 of the antenna ANT as well as to a ground plane GND.
  • the ground plane GND of the antenna ANT is connected to the ground of the remote device distributing the incident signal to be transmitted via the antenna device ANT.
  • the dielectric substrate D is plane and comprises two faces S1 and S2.
  • the radiating element RE1 is printed on the face S1 of the substrate D.
  • FIG. 2 illustrates a monopole meander antenna device ANT according to a particular and nonlimiting embodiment of the invention.
  • a dielectric substrate D, plane or substantially plane is used and a radiating element RE1 is printed on a face S1 of the substrate D, as for the antenna shown in Figure 1, and known to the man of the job.
  • a floating conductive plane (not connected to the ground) FP1 is positioned on a face S2 of the dielectric substrate D, opposite to the face S1.
  • the dielectric substrate D consists of a type of material FR4, well known to those skilled in the art and conventionally used for the manufacture of printed circuits, and the floating conductive plane FP1 is printed (or screen printed) on the dielectric substrate D, on the face opposite to that which includes the radiating element RE1.
  • the dielectric substrate D consists of one or more materials having dielectric properties that are compatible with and useful for the use of a physical support element radiating from an antenna.
  • the non-radiating floating conductor plane FP1 is of a size substantially identical to the dimensions (width and length) of all the meanders constituting the radiator element RE1 of the antenna ANT, and disposed on the face opposite to that carrying the radiating element RE1, "facing" it.
  • This plane does not have a shape similar to the radiating element RE1, so that it does not operate as a radiating element induced by currents coming from the electromagnetic field emitted by RE1.
  • non-radiating driver plane a conductive plane not being deliberately configured to radiate since its possible radiation (even accidental) is not a desired effect.
  • the use of this term and the absence of a search for a radiating effect of the FP1 plane does not exclude a very small amplitude radiation resulting from induced currents coming from RE1 and of a much lower amplitude than the desired radiation. of the radiating element RE1.
  • the non-radiating floating conductor plane FP1 is seen by transparency through the substrate (support) D, in order to simplify the illustration of the antenna ANT produced on the two-faced substrate D and bearing the meander radiating element RE1 on a face S1 and non-radiating floating conductor plane on a face S2 opposite the face S1.
  • the presence of the non-radiating floating conductor element FP1 which is not connected to the ground of the antenna ANT, does not act as a shield but creates a significant increase in the permittivity of the dielectric substrate D "seen" by the radiating element RE1.
  • the permittivity effective is increased by a factor substantially equal to or greater than two.
  • the initial antenna structure is transformed and the behavior of the antenna is modified so that the antenna behaves like a micro-ribbon antenna, more than a dielectric antenna in the air.
  • the overall effective permittivity EPS g of the antenna ANT seen from the radiating element RE1 is a function of the permittivity EPS S of the materials constituting the dielectric substrate "support", the thickness e of this substrate, and that the presence of a w element (for example FP1), conductive but not deliberately radiating, positioned “facing" the radiating element RE1, on the face of the substrate opposite that carrying the radiating element RE1.
  • a w element for example FP1
  • the electrical length of the antenna ANT is inverse function of the square root of the effective permittivity "seen by" the radiating element RE1.
  • the presence of the FP1 non-radiating floating conductor plane makes it possible to reduce the dimensions of the ANT meander monopole antenna to achieve transmission quality and range performances equal to those which would be obtained in the absence of the non-conducting plane. radiating FP1 floating.
  • the overall dimensions of the meander antenna ANT can thus be reduced without this being detrimental to the quality of the transmission of a radio signal representative of the incident signal transmitted by conduction to the radiating element RE1, or to the range of this radio signal.
  • the dielectric substrate D is made of materials such that it can be flexible and that the antenna ANT can be used positioned on a flexible support, such as, for example, a textile support.
  • a flexible support such as, for example, a textile support.
  • the reduced size of the meander antenna ANT due to the presence of the non-radiating floating conductor plane FP1, makes it possible, at equal performance, to use the antenna on a textile support.
  • Many applications are then possible, such as the integration of a similar antenna to the ANT antenna in a garment (or a life jacket, for example).
  • the structure of a meander antenna is interesting insofar as such an antenna has a multiband antenna characteristic.
  • the addition of the non-radiating floating conductor FP1 makes it possible to obtain, for an identical radiating element RE1, a greater number of resonant frequencies of the antenna ANT.
  • the floating conductive plane FP1 is associated (or fixed) with an adhesive element (adhesive or self-adhesive surface, for example), and can thus be easily positioned on the dielectric substrate D.
  • the adjustment of the dimensions of the FP1 floating non-radiating conductive plane is achieved mechanically by sliding (and thus positioning) a plurality of non-radiating conductive planes, relative to each other, which has the effect of varying both the shape and dimensions of the overall non-radiating floating conductor thus produced.
  • a liquid metal conditioning technique is used in a container that can be modified in shape and in surface area to vary the shape and the position of the non-radiating FP1 floating conductor plane and thus to reconfigure the characteristics. of the ANT antenna (position of resonance frequencies in the frequency band).
  • FIG. 3 represents a comparative diagram of characteristics of the monopole meander antenna device ANT according to a particular and nonlimiting embodiment of the invention with comparable characteristics of a meander antenna device ANT according to the prior art.
  • the curve C1 represents the reflection coefficient as a function of the frequency of a monopole meander antenna ANT devoid of the FP1 non-radiating floating conductor plane on the face S2 of the substrate D.
  • the curve C2 represents the reflection coefficient as a function of the frequency d a similar monopole ANT meander antenna equipped with a floating conducting plane FP1 on the opposite side S2 to that (S1) bearing the radiating element RE1.
  • An increase in the multi-frequency capacitance of the antenna ANT is distinctly observed because of the presence of the FP1 non-radiating floating conducting plane not connected to the ground GND of the antenna ANT.
  • the reflection coefficient is expressed in dB (decibel) and the frequency is expressed in GHz (gigahertz).
  • the antenna device ANT comprises a GND electrical ground connection and a monomolar meander-type radiating element RE1 disposed on the first face S1 of the two-sided plane dielectric support D S1 and S2, the antenna ANT further comprises, on the second face S2 of the dielectric support D, at least the non-radiating floating plane conducting element FP1 disposed parallel to the radiating element RE1, the non-radiating floating plane conducting element FP1 being isolated from the GND electrical ground connection of the antenna ANT.
  • one or more capacitors CAP are positioned and connected between the meander radiator RE1 and the non-radiating floating conductor FP1.
  • capacitors CAP CAP1, CAP2, ... CAPn
  • these can be positioned on the face S2 of the substrate D, around the non-radiating floating conductor plane FP1 and the connections with the element radiating RE1 on the opposite face S1 are made by means of electrical connections (V1, V2, .... Vn) types via (metallized holes passing through the substrate D).
  • one or more varicap diodes D V CAP are positioned between the meander radiating element RE1 and the non-radiating floating conductor plane FP1.
  • one or more PCAP programmable capacitors are positioned between the meander radiating element RE1 and the non-radiating floating conductor plane FP1.
  • the invention does not concern only the embodiment described above but also relates to any monopole meander antenna made on a rigid or flexible two-sided support and comprising a non-radiating floating conductor plane, isolated from the ground, on the opposite face on the face carrying a radiating element meander.
  • the substrate may be made of a teflon glass type material and the non-deliberately radiating floating conductive plane may be a liquid metal such as galinstan or mercury.

Landscapes

  • Details Of Aerials (AREA)

Abstract

The present invention relates to an antenna device (ANT) including an earth conductor (GND) and a monopole meander-type radiating element (RE1) arranged on a first surface (S1) of a planar dielectric substrate (D) having two surfaces (S1, S2), the antenna device also including, on a second surface (S2) of the dielectric substrate (D), at least one non-radiating floating planar conductive element (FP1), arranged parallel to the radiating element (RE1), the non-radiating floating planar conductive element being insulated from the earth conductor (GND).

Description

DISPOSITIF ANTENNE COMPACTE RECONFIGURABLE.  RECONFIGURABLE COMPACT ANTENNA DEVICE
1. Domaine de l'invention. 1. Field of the invention
L'invention se rapporte au domaine des dispositifs antennes de transmission de signaux radioélectriques et plus particulièrement aux antennes monopoles à élément rayonnant de type méandre. The invention relates to the field of antennas for transmitting radio signals and more particularly to monopole antennas with a radiating element of the meandering type.
2. Etat de l'art. 2. State of the art
Les antennes sont des éléments essentiels des dispositifs radioélectriques. Un grand nombre de types d'antennes existent et les caractéristiques propres à chacun de ces types influencent conséquemment les performances en termes de qualité et de portée d'une transmission Antennas are essential elements of radio devices. A large number of antenna types exist and the characteristics of each of these types consequently influence the performance in terms of quality and range of a transmission.
Parmi les structures d'antennes de petites dimensions, l'antenne méandre est déduite d'un monopole quart d'onde. Pour diminuer les dimensions globales de la structure, l'idée mise en œuvre avec l'antenne méandre consiste à replier le monopole d'origine en plusieurs méandres d'égales longueurs. La réduction de taille est obtenue en ajustant le nombre de méandres et l'écart entre chacun d'entre eux. Une telle antenne méandre peut être aisément imprimée sur un substrat diélectrique. Avec une telle structure, les brins les plus courts participent de manière prépondérante au rayonnement car les courants surfaciques y sont en phase. A l'inverse, dans les brins les plus longs, les courants surfaciques sont en opposition de phase. Les antennes méandres sont souvent définies par le rapport de leurs longueurs axiales, qui crée l'encombrement et la longueur équivalent du méandre déplié. On constate que la fréquence de résonance d'une antenne méandre est inférieure à celle du méandre déplié, notamment du fait du couplage qui existe entre les méandres et des coudes créés par le repliement des brins. On estime la performance en termes de réduction d'une telle antenne, par le rapport I de sa longueur axiale et de la longueur L d'un brin déplié résonnant à la même fréquence. On constate en outre que le facteur de réduction augmente avec le nombre de méandres, mais également en fonction de l'écartement des méandres et de la section du brin. Among the small antenna structures, the meander antenna is derived from a quarter-wave monopole. To reduce the overall dimensions of the structure, the idea implemented with the meander antenna is to fold the original monopoly into several meanders of equal lengths. The size reduction is obtained by adjusting the number of meanders and the difference between each of them. Such a meander antenna can be easily printed on a dielectric substrate. With such a structure, the shortest strands participate predominantly in radiation because the surface currents are in phase. Conversely, in the longest strands, the surface currents are in phase opposition. Meandering antennas are often defined by the ratio of their axial lengths, which creates the clutter and the equivalent length of the unfolded meander. It can be seen that the resonance frequency of a meander antenna is less than that of the unfolded meander, in particular because of the coupling that exists between the meanders and bends created by the folding of the strands. It is estimated the performance in terms of reduction of such an antenna, the ratio I of its axial length and the length L an unfolded strand resonating at the same frequency. It is furthermore noted that the reduction factor increases with the number of meanders, but also as a function of the meander spacing and the section of the strand.
Cette structure d'antenne méandre ne permet toutefois pas d'atteindre un niveau de réduction optimal de ses dimensions.  This meander antenna structure, however, does not achieve an optimal level of reduction of its dimensions.
3. Résumé de l'invention. 3. Summary of the invention.
L'invention permet d'améliorer l'état de l'art en proposant un dispositif antenne comprenant une connexion de masse électrique et un élément rayonnant de type méandre monopole, l'élément rayonnant étant disposé sur une première face d'un support diélectrique plan à deux faces, le dispositif antenne comprenant en outre, sur une deuxième face du support diélectrique, au moins un élément conducteur plan flottant, disposé parallèlement à l'élément rayonnant, l'un élément conducteur plan flottant non rayonnant étant isolé de la connexion de masse électrique. The invention makes it possible to improve the state of the art by proposing an antenna device comprising an electrical mass connection and a monopole meander-type radiating element, the radiating element being disposed on a first face of a plane dielectric support. on both sides, the antenna device further comprising, on a second face of the dielectric support, at least one floating plane conducting element disposed parallel to the radiating element, the non-radiating floating plane conducting element being isolated from the electrical ground.
Selon un mode de réalisation de l'invention, l'élément conducteur plan flottant non rayonnant est de taille sensiblement identique à celle de l'élément rayonnant sans toutefois reprendre le même motif. Cela signifie que les dimensions maximales (hors-tout) de l'élément rayonnant et de l'élément plan flottant non rayonnant sont sensiblement similaires mais que l'élément plan flottant est conçu pour agir sur la permittivité globale de l'antenne et n'a pas vocation à être un élément rayonnant. En d'autres termes, l'élément plan flottant n'est pas configuré pour rayonner. According to one embodiment of the invention, the non-radiating floating plane conductive element is of a size substantially identical to that of the radiating element without, however, taking up the same pattern. This means that the maximum (overall) dimensions of the radiating element and the non-radiating floating plane element are substantially similar but that the floating plane element is designed to act on the overall permittivity of the antenna and does not is not intended to be a radiating element. In other words, the floating plane element is not configured to radiate.
Selon un mode de réalisation de l'invention, la forme de l'élément conducteur plan flottant non rayonnant est ajustable mécaniquement aux fins de modifier des caractéristiques du dispositif antenne. Avantageusement, l'élément conducteur plan flottant non rayonnant comprend un métal liquide inséré dans un conteneur clos, ce qui permet de modifier sa forme par modification de la forme du conteneur, par exemple. According to one embodiment of the invention, the shape of the non-radiating floating plane conductive element is mechanically adjustable to modify characteristics of the antenna device. Advantageously, the non-radiating floating plane conductive element comprises a liquid metal inserted in a closed container, which makes it possible to modify its shape by modifying the shape of the container, for example.
Selon un mode de réalisation de l'invention, le métal liquide est du galinstan ou du mercure. According to one embodiment of the invention, the liquid metal is galinstan or mercury.
Selon un mode de réalisation de l'invention, l'élément conducteur plan flottant non rayonnant est de forme rectangulaire ou carrée. According to one embodiment of the invention, the non-radiating floating plane conductive element is of rectangular or square shape.
4. Liste des figures. 4. List of figures.
L'invention sera mieux comprise, et d'autres particularités et avantages apparaîtront à la lecture de la description qui va suivre, la description faisant référence aux dessins annexés parmi lesquels : The invention will be better understood, and other features and advantages will appear on reading the description which follows, the description referring to the appended drawings among which:
- La figure 1 illustre un dispositif antenne méandre monopole selon l'art antérieur. - Figure 1 illustrates a monopole meander antenna device according to the prior art.
- La figure 2 illustre un illustre un dispositif antenne méandre monopole selon un mode de réalisation particulier et non limitatif de l'invention. FIG. 2 illustrates a monopole meander antenna device according to a particular and non-limiting embodiment of the invention.
- La figure 3 représente un diagramme comparatif de caractéristiques d'un dispositif antenne méandre monopole selon un mode de réalisation particulier et non limitatif de l'invention avec un dispositif antenne méandre selon l'art antérieur.  FIG. 3 represents a comparative diagram of characteristics of a monopole meander antenna device according to a particular and nonlimiting embodiment of the invention with a meander antenna device according to the prior art.
5. Description détaillée de modes de réalisation de l'invention. Sur les figures 1 à 2, les modules représentés sont des unités fonctionnelles, qui correspondent ou non à des unités physiquement distinguables. Par exemple, ces modules ou certains d'entre eux sont regroupés dans un unique composant, ou constitués des fonctionnalités d'un même logiciel. A contrario, selon d'autres modes de réalisation, certains modules sont composés d'entités physiques séparées. 5. Detailed description of embodiments of the invention. In Figures 1 to 2, the modules shown are functional units, which may or may not correspond to physically distinguishable units. For example, these modules or some of them are grouped into a single component, or consist of the functionality of the same software. In contrast, according to other embodiments, some modules are composed of separate physical entities.
La figure 1 illustre un dispositif antenne méandre monopole ANT selon l'art antérieur. Selon un mode de réalisation l'élément rayonnant RE1 de l'antenne ANT, monopole en forme de méandre, est imprimé sur une face d'une pièce D découpée dans un substrat diélectrique de type FR4. Un signal incident est transmis à l'antenne ANT depuis un dispositif générateur distant via une connexion d'antenne CON. La connexion d'antenne CON est reliée à l'élément rayonnant RE1 de l'antenne ANT ainsi qu'à un plan de masse GND. Le plan de masse GND de l'antenne ANT est relié à la masse du dispositif distant distribuant le signal incident à transmettre via le dispositif antenne ANT. Le substrat diélectrique D est plan et comprend deux faces S1 et S2. L'élément rayonnant RE1 est imprimé sur la face S1 du substrat D. FIG. 1 illustrates an ANT monopole meander antenna device according to the prior art. According to one embodiment, the radiating element RE1 of the ANT antenna, monopole in the shape of a meander, is printed on one face of a part D cut in a dielectric substrate of the FR4 type. An incident signal is transmitted to the antenna ANT from a remote generator device via an antenna connection CON. The antenna connection CON is connected to the radiator element RE1 of the antenna ANT as well as to a ground plane GND. The ground plane GND of the antenna ANT is connected to the ground of the remote device distributing the incident signal to be transmitted via the antenna device ANT. The dielectric substrate D is plane and comprises two faces S1 and S2. The radiating element RE1 is printed on the face S1 of the substrate D.
La figure 2 illustre un dispositif antenne méandre monopole ANT selon un mode de réalisation particulier et non limitatif de l'invention. Selon un mode de réalisation, un substrat diélectrique D, plan ou sensiblement plan est utilisé et un élément rayonnant RE1 est imprimé sur une face S1 du substrat D, comme pour l'antenne représentée sur la figure 1 , et connue de l'homme du métier. FIG. 2 illustrates a monopole meander antenna device ANT according to a particular and nonlimiting embodiment of the invention. According to one embodiment, a dielectric substrate D, plane or substantially plane is used and a radiating element RE1 is printed on a face S1 of the substrate D, as for the antenna shown in Figure 1, and known to the man of the job.
Astucieusement, et selon un mode de réalisation de l'invention, un plan conducteur flottant (non relié à la masse) FP1 est positionné sur une face S2 du substrat diélectrique D, opposée à la face S1 . Selon le mode de réalisation préféré de l'invention, le substrat diélectrique D est constitué d'un matériau de type FR4, bien connu de l'homme du métier et classiquement utilisé pour la fabrication de circuits imprimés, et le plan conducteur flottant FP1 est imprimé (ou sérigraphié) sur le substrat diélectrique D, sur la face opposée à celle où figure l'élément rayonnant RE1 . Selon des variantes, le substrat diélectrique D est constitué d'un ou plusieurs matériaux ayant des propriétés diélectriques compatibles avec et utiles à un usage de support physique d'élément rayonnant d'une antenne. Selon le mode de réalisation préféré de l'invention, le plan conducteur flottant non rayonnant FP1 est d'une taille sensiblement identique aux dimensions (largeur et longueur) de l'ensemble des méandres constituant l'élément rayonnant RE1 de l'antenne ANT, et disposé sur la face opposée à celle portant l'élément rayonnant RE1 , « en regard » de celui-ci. Ce plan n'a cependant pas une forme similaire à l'élément rayonnant RE1 , de sorte qu'il n'opère pas comme un élément rayonnant induit par des courants en provenance du champ électromagnétique émis par RE1 . Cleverly, and according to one embodiment of the invention, a floating conductive plane (not connected to the ground) FP1 is positioned on a face S2 of the dielectric substrate D, opposite to the face S1. According to the preferred embodiment of the invention, the dielectric substrate D consists of a type of material FR4, well known to those skilled in the art and conventionally used for the manufacture of printed circuits, and the floating conductive plane FP1 is printed (or screen printed) on the dielectric substrate D, on the face opposite to that which includes the radiating element RE1. According to variants, the dielectric substrate D consists of one or more materials having dielectric properties that are compatible with and useful for the use of a physical support element radiating from an antenna. According to the preferred embodiment of the invention, the non-radiating floating conductor plane FP1 is of a size substantially identical to the dimensions (width and length) of all the meanders constituting the radiator element RE1 of the antenna ANT, and disposed on the face opposite to that carrying the radiating element RE1, "facing" it. This plane, however, does not have a shape similar to the radiating element RE1, so that it does not operate as a radiating element induced by currents coming from the electromagnetic field emitted by RE1.
Il est entendu ici par « plan conducteur non rayonnant » un plan conducteur n'étant pas délibérément configuré pour rayonner puisque son rayonnement éventuel (voire accidentel) n'est pas un effet recherché. Cependant, l'usage de ce terme et l'absence de recherche d'un effet rayonnant du plan FP1 n'exclut pas un rayonnement de très faible amplitude résultant de courants induits en provenance de RE1 et d'une amplitude bien inférieure au rayonnement voulu de l'élément rayonnant RE1 .  It is understood here by "non-radiating driver plane" a conductive plane not being deliberately configured to radiate since its possible radiation (even accidental) is not a desired effect. However, the use of this term and the absence of a search for a radiating effect of the FP1 plane does not exclude a very small amplitude radiation resulting from induced currents coming from RE1 and of a much lower amplitude than the desired radiation. of the radiating element RE1.
Sur la figure 2, le plan conducteur flottant non rayonnant FP1 est vu par transparence à travers le substrat (support) D, et ce afin de simplifier l'illustration de l'antenne ANT réalisée sur le substrat D à deux faces et portant l'élément rayonnant méandre RE1 sur une face S1 et le plan conducteur flottant non rayonnant sur une face S2 opposée à la face S1 . In FIG. 2, the non-radiating floating conductor plane FP1 is seen by transparency through the substrate (support) D, in order to simplify the illustration of the antenna ANT produced on the two-faced substrate D and bearing the meander radiating element RE1 on a face S1 and non-radiating floating conductor plane on a face S2 opposite the face S1.
Astucieusement, la présence de l'élément conducteur flottant non rayonnant FP1 , non relié à la masse de l'antenne ANT, n'agit pas comme un blindage mais crée une augmentation significative de la permittivité du substrat diélectrique D « vu » par l'élément rayonnant RE1 . Ainsi, du fait de la présence de l'élément conducteur plan non rayonnant FP1 disposé comme indiqué précédemment, pour un substrat de type FR4, la permittivité effective est augmentée d'un facteur sensiblement égal ou supérieur à deux. La structure initiale de l'antenne est transformée et le comportement de l'antenne en est modifié de sorte que l'antenne se comporte alors comme une antenne micro-ruban, plus que comme une antenne à diélectrique dans l'air. Cleverly, the presence of the non-radiating floating conductor element FP1, which is not connected to the ground of the antenna ANT, does not act as a shield but creates a significant increase in the permittivity of the dielectric substrate D "seen" by the radiating element RE1. Thus, because of the presence of the non-radiating flat conductor element FP1 disposed as indicated above, for a substrate of the FR4 type, the permittivity effective is increased by a factor substantially equal to or greater than two. The initial antenna structure is transformed and the behavior of the antenna is modified so that the antenna behaves like a micro-ribbon antenna, more than a dielectric antenna in the air.
Il est à noter que la permittivité effective globale EPSg de l'antenne ANT vue de l'élément rayonnant RE1 est fonction de la permittivité EPSS du matériaux constituant le substrat diélectrique « support », de l'épaisseur e de ce substrat, ainsi que de la présence d'un élément w (par exemple FP1 ), conducteur mais non délibérément rayonnant, positionné « en regard » de l'élément rayonnant RE1 , sur la face du substrat opposée à celle portant l'élément rayonnant RE1 . It should be noted that the overall effective permittivity EPS g of the antenna ANT seen from the radiating element RE1 is a function of the permittivity EPS S of the materials constituting the dielectric substrate "support", the thickness e of this substrate, and that the presence of a w element (for example FP1), conductive but not deliberately radiating, positioned "facing" the radiating element RE1, on the face of the substrate opposite that carrying the radiating element RE1.
La longueur électrique de l'antenne ANT est fonction inverse de la racine carrée de la permittivité effective « vue par » l'élément rayonnant RE1 .  The electrical length of the antenna ANT is inverse function of the square root of the effective permittivity "seen by" the radiating element RE1.
Ainsi, avantageusement, la présence du plan conducteur flottant non rayonnant FP1 permet de réduire les dimensions de l'antenne monopole méandre ANT pour atteindre des performances de qualité de transmission et de portée égales à celles qui seraient obtenues en l'absence du plan conducteur non rayonnant FP1 flottant. Avantageusement, les dimensions globales de l'antenne méandre ANT peuvent ainsi être réduites sans que cela ne soit préjudiciable ni à la qualité de la transmission d'un signal radioélectrique représentatif du signal incident transmis par conduction à l'élément rayonnant RE1 , ni à la portée de ce signal radioélectrique. Thus, advantageously, the presence of the FP1 non-radiating floating conductor plane makes it possible to reduce the dimensions of the ANT meander monopole antenna to achieve transmission quality and range performances equal to those which would be obtained in the absence of the non-conducting plane. radiating FP1 floating. Advantageously, the overall dimensions of the meander antenna ANT can thus be reduced without this being detrimental to the quality of the transmission of a radio signal representative of the incident signal transmitted by conduction to the radiating element RE1, or to the range of this radio signal.
Selon une variante du mode de réalisation, le substrat diélectrique D est constitué de matériaux tels qu'il peut être souple et que l'antenne ANT puisse être utilisée positionnée sur un support souple, tel que, par exemple, un support textile. Avantageusement, la taille réduite de l'antenne méandre ANT, du fait de la présence du plan conducteur flottant non rayonnant FP1 , permet, à performances égales, d'utiliser l'antenne sur un support textile. De nombreuses applications sont alors possibles, telles que l'intégration d'une antenne similaire à l'antenne ANT dans un vêtement (ou un gilet de sauvetage, par exemple). According to a variant of the embodiment, the dielectric substrate D is made of materials such that it can be flexible and that the antenna ANT can be used positioned on a flexible support, such as, for example, a textile support. Advantageously, the reduced size of the meander antenna ANT, due to the presence of the non-radiating floating conductor plane FP1, makes it possible, at equal performance, to use the antenna on a textile support. Many applications are then possible, such as the integration of a similar antenna to the ANT antenna in a garment (or a life jacket, for example).
La structure d'une antenne méandre est intéressante dans la mesure où une telle antenne présente une caractéristique d'antenne multibandes. Avantageusement, l'adjonction du plan conducteur flottant non rayonnant FP1 permet d'obtenir, pour un élément rayonnant RE1 identique, un plus grand nombre de fréquences de résonnance de l'antenne ANT. The structure of a meander antenna is interesting insofar as such an antenna has a multiband antenna characteristic. Advantageously, the addition of the non-radiating floating conductor FP1 makes it possible to obtain, for an identical radiating element RE1, a greater number of resonant frequencies of the antenna ANT.
Astucieusement, il est ainsi possible de reconfigurer l'antenne par modification de la forme du plan conducteur flottant non rayonnant, ce qui a pour effet de modifier les écartements entre les différentes fréquences de résonnance, ainsi que leurs positions respectives dans la bande de fréquences de l'antenne ANT. Ainsi, en fonction des fréquences de résonnances souhaitées, une forme précise du plan conducteur flottant non rayonnant FP1 peut être définie expérimentalement en laboratoire et adoptée pour la fabrication en série d'un modèle d'antenne ANT, en corrélation avec un jeu de fréquences de résonnance donné. La reconfiguration de l'antenne (encore appelée « reconfigurabilité ») en est rendue particulièrement aisée puisque la forme du plan conducteur flottant non rayonnant ainsi définie avec justesse peut être sérigraphiée, ou imprimée par exemple. Selon une variante du mode de réalisation, le plan conducteur flottant FP1 est associé (ou fixé) à un élément adhésif (colle ou surface autocollante, par exemple), et peut être positionné ainsi aisément sur le substrat diélectrique D. Cleverly, it is thus possible to reconfigure the antenna by modifying the shape of the non-radiating floating conductive plane, which has the effect of modifying the spacings between the different resonance frequencies, as well as their respective positions in the frequency band of the antenna ANT. Thus, as a function of the desired resonant frequencies, a precise shape of the FP1 non-radiating floating conductor plane can be defined experimentally in the laboratory and adopted for the series production of an ANT antenna model, in correlation with a set of frequencies of resonance given. The reconfiguration of the antenna (also called "reconfigurability") is made particularly easy since the shape of the non-radiating floating conductive plane and accurately defined can be screen printed, or printed for example. According to a variant of the embodiment, the floating conductive plane FP1 is associated (or fixed) with an adhesive element (adhesive or self-adhesive surface, for example), and can thus be easily positioned on the dielectric substrate D.
Selon un mode de réalisation de l'invention, l'ajustement des dimensions du plan conducteur flottant non rayonnant FP1 est réalisé mécaniquement par glissement (et donc positionnement) d'une pluralité de plans conducteurs non rayonnants, les uns par rapport aux autres, ce qui a pour effet de faire varier à la fois la forme et les dimensions du plan conducteur flottant non rayonnant global ainsi réalisé. According to one embodiment of the invention, the adjustment of the dimensions of the FP1 floating non-radiating conductive plane is achieved mechanically by sliding (and thus positioning) a plurality of non-radiating conductive planes, relative to each other, which has the effect of varying both the shape and dimensions of the overall non-radiating floating conductor thus produced.
Selon une variante, on utilise une technique de conditionnement d'un métal liquide, dans un conteneur modifiable en forme et en surface d'encombrement, pour faire varier la forme et la position du plan conducteur flottant FP1 non rayonnant et donc pour reconfigurer les caractéristiques de l'antenne ANT(position des fréquences de résonnance dans la bande de fréquences). According to one variant, a liquid metal conditioning technique is used in a container that can be modified in shape and in surface area to vary the shape and the position of the non-radiating FP1 floating conductor plane and thus to reconfigure the characteristics. of the ANT antenna (position of resonance frequencies in the frequency band).
La figure 3 représente un diagramme comparatif de caractéristiques du dispositif antenne méandre monopole ANT selon un mode de réalisation particulier et non limitatif de l'invention avec des caractéristiques comparables d'un dispositif antenne méandre ANT selon l'art antérieur. FIG. 3 represents a comparative diagram of characteristics of the monopole meander antenna device ANT according to a particular and nonlimiting embodiment of the invention with comparable characteristics of a meander antenna device ANT according to the prior art.
La courbe C1 représente le coefficient de réflexion en fonction de la fréquence d'une antenne méandre monopole ANT dépourvue du plan conducteur flottant FP1 non rayonnant sur la face S2 du substrat D. La courbe C2 représente le coefficient de réflexion en fonction de la fréquence d'une antenne méandre ANT monopole similaire équipée d'un plan conducteur flottant FP1 sur la face S2 opposée à celle (S1 ) portant l'élément rayonnant RE1 . On observe distinctement un accroissement de la capacité multi-fréquentielle de l'antenne ANT du fait de la présence du plan conducteur flottant non rayonnant FP1 non relié à la masse GND de l'antenne ANT. The curve C1 represents the reflection coefficient as a function of the frequency of a monopole meander antenna ANT devoid of the FP1 non-radiating floating conductor plane on the face S2 of the substrate D. The curve C2 represents the reflection coefficient as a function of the frequency d a similar monopole ANT meander antenna equipped with a floating conducting plane FP1 on the opposite side S2 to that (S1) bearing the radiating element RE1. An increase in the multi-frequency capacitance of the antenna ANT is distinctly observed because of the presence of the FP1 non-radiating floating conducting plane not connected to the ground GND of the antenna ANT.
Sur la figure 3, le coefficient de réflexion est exprimé en dB (décibel) et la fréquence est exprimée en GHz (gigahertz).  In FIG. 3, the reflection coefficient is expressed in dB (decibel) and the frequency is expressed in GHz (gigahertz).
En d'autres termes et selon le mode de réalisation particulier et non limitatif de l'invention décrit, le dispositif antenne ANT comprend une connexion de masse électrique GND et un élément rayonnant RE1 de type méandre monopole disposé sur la première face S1 du support diélectrique plan D à deux faces S1 et S2, l'antenne ANT comprend en outre, sur la deuxième face S2 du support diélectrique D, au moins l'élément conducteur plan flottant non rayonnant FP1 , disposé parallèlement à l'élément rayonnant RE1 , l'élément conducteur plan flottant non rayonnant FP1 étant isolé de la connexion de masse électrique GND de l'antenne ANT. In other words and according to the particular and nonlimiting embodiment of the invention described, the antenna device ANT comprises a GND electrical ground connection and a monomolar meander-type radiating element RE1 disposed on the first face S1 of the two-sided plane dielectric support D S1 and S2, the antenna ANT further comprises, on the second face S2 of the dielectric support D, at least the non-radiating floating plane conducting element FP1 disposed parallel to the radiating element RE1, the non-radiating floating plane conducting element FP1 being isolated from the GND electrical ground connection of the antenna ANT.
Selon une variante du mode de réalisation, et aux fins d'ajuster plus finement la configuration de l'antenne ANT, une ou plusieurs capacités CAP sont positionnées et connectées entre l'élément rayonnant méandre RE1 et le plan conducteur flottant non rayonnant FP1 . Dans le cas d'une pluralité de capacités CAP (CAP1 , CAP2, ...CAPn), celles-ci peuvent être positionnées sur la face S2 du substrat D, autour du plan conducteur flottant non rayonnant FP1 et les connexions avec l'élément rayonnant RE1 sur la face opposée S1 sont réalisées au moyen de connexions électriques (V1 , V2, .... Vn) de types via (trous métallisés traversant le substrat D).  According to a variant of the embodiment, and in order to more finely adjust the configuration of the antenna ANT, one or more capacitors CAP are positioned and connected between the meander radiator RE1 and the non-radiating floating conductor FP1. In the case of a plurality of capacitors CAP (CAP1, CAP2, ... CAPn), these can be positioned on the face S2 of the substrate D, around the non-radiating floating conductor plane FP1 and the connections with the element radiating RE1 on the opposite face S1 are made by means of electrical connections (V1, V2, .... Vn) types via (metallized holes passing through the substrate D).
Selon une seconde variante du mode de réalisation, une ou plusieurs diodes varicap DVCAP sont positionnées entre l'élément rayonnant méandre RE1 et le plan conducteur flottant non rayonnant FP1 . According to a second variant of the embodiment, one or more varicap diodes D V CAP are positioned between the meander radiating element RE1 and the non-radiating floating conductor plane FP1.
Selon une troisième variante du mode de réalisation, une ou plusieurs capacités programmables PCAP sont positionnées entre l'élément rayonnant méandre RE1 et le plan conducteur flottant non rayonnant FP1 .  According to a third variant of the embodiment, one or more PCAP programmable capacitors are positioned between the meander radiating element RE1 and the non-radiating floating conductor plane FP1.
L'invention ne concerne pas que le mode de réalisation décrit ci- avant mais concerne également toute antenne méandre monopole réalisée sur un support rigide ou souple à deux faces et comprenant un plan conducteur flottant non rayonnant, isolé de la masse, sur la face opposée à la face portant un élément rayonnant méandre. A titre d'exemple, le substrat peut être réalisé dans un matériau de type verre téflon et le plan conducteur flottant non délibérément rayonnant peut être un métal liquide tel que du galinstan ou du mercure. The invention does not concern only the embodiment described above but also relates to any monopole meander antenna made on a rigid or flexible two-sided support and comprising a non-radiating floating conductor plane, isolated from the ground, on the opposite face on the face carrying a radiating element meander. By way of example, the substrate may be made of a teflon glass type material and the non-deliberately radiating floating conductive plane may be a liquid metal such as galinstan or mercury.

Claims

REVENDICATIONS
1 . Dispositif antenne (ANT) comprenant une connexion de masse électrique (GND) et un élément rayonnant (RE1 ) de type méandre monopole, ledit élément rayonnant (RE1 ) étant disposé sur une première face (S1 ) d'un support diélectrique plan (D) à deux faces (S1 , S2), ledit dispositif antenne étant caractérisé en en qu'il comprend en outre, sur une deuxième face (S2) dudit support diélectrique (D), au moins un élément conducteur plan flottant non délibérément rayonnant (FP1 ), disposé parallèlement audit élément rayonnant (RE1 ), ledit au moins un élément conducteur plan flottant non rayonnant étant isolé de ladite connexion de masse électrique (GND). 1. Antenna device (ANT) comprising an electrical ground connection (GND) and a monopole meander-type radiating element (RE1), said radiating element (RE1) being disposed on a first face (S1) of a plane dielectric support (D) with two faces (S1, S2), said antenna device being characterized in that it further comprises, on a second face (S2) of said dielectric support (D), at least one non-deliberately radiating floating plane conducting element (FP1) disposed parallel to said radiating element (RE1), said at least one non-radiating floating plane conductor element being isolated from said electrical ground connection (GND).
2. Dispositif antenne (ANT) selon la revendication précédente, caractérisé en ce que ledit au moins un élément conducteur plan flottant non rayonnant (FP1 ) est de taille sensiblement identique à celle dudit élément rayonnant (RE1 ) pour ce qui concerne ses dimensions maximales, mais sans similarité de motif. 2. antenna device (ANT) according to the preceding claim, characterized in that said at least one non-radiating floating plane conductor element (FP1) is of a size substantially identical to that of said radiating element (RE1) as regards its maximum dimensions, but without similarity of motive.
3. Dispositif antenne (ANT) selon l'une quelconque des revendications précédentes caractérisé en ce que ledit au moins un élément conducteur plan flottant non rayonnant (FP1 ) comprend un métal liquide inséré dans un conteneur clos. 3. antenna device (ANT) according to any one of the preceding claims characterized in that said at least one non-radiating floating plane conductor element (FP1) comprises a liquid metal inserted into a closed container.
4. Dispositif antenne (ANT) selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit métal liquide est du galinstan ou du mercure. 4. antenna device (ANT) according to any one of the preceding claims, characterized in that said liquid metal is galinstan or mercury.
5. Dispositif antenne (ANT) selon l'une quelconque des revendications précédentes caractérisé en ce que ledit au moins un élément conducteur plan flottant non rayonnant (FP1 ) est de forme rectangulaire ou carrée. 5. Antenna device (ANT) according to any one of the preceding claims characterized in that said at least one non-radiating floating plane conductor element (FP1) is of rectangular or square shape.
6. Dispositif antenne (ANT) selon l'une quelconque des revendications précédentes caractérisé en ce qu'une (CAP) ou plusieurs capacités (CAP1 , CAP2, CAPn) sont connectées entre l'élément méandre rayonnant (RE1 ) et le plan conducteur flottant non rayonnant (FP1 ) afin d'ajuster plus encore la configuration de l'antenne en matière de positions des fréquences de résonnance. Antenna device (ANT) according to any one of the preceding claims, characterized in that one (CAP) or several capacitors (CAP1, CAP2, CAPn) are connected between the radiating meander element (RE1) and the floating conducting plane. non-radiating (FP1) in order to further adjust the configuration of the antenna in terms of resonance frequency positions.
EP15797135.9A 2014-11-12 2015-10-29 Reconfigurable compact antenna device Withdrawn EP3218961A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1402543A FR3028355B1 (en) 2014-11-12 2014-11-12 RECONFIGURABLE COMPACT ANTENNA DEVICE
PCT/FR2015/052915 WO2016075387A1 (en) 2014-11-12 2015-10-29 Reconfigurable compact antenna device

Publications (1)

Publication Number Publication Date
EP3218961A1 true EP3218961A1 (en) 2017-09-20

Family

ID=52692682

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15797135.9A Withdrawn EP3218961A1 (en) 2014-11-12 2015-10-29 Reconfigurable compact antenna device

Country Status (4)

Country Link
US (1) US20180145417A1 (en)
EP (1) EP3218961A1 (en)
FR (1) FR3028355B1 (en)
WO (1) WO2016075387A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108832277A (en) * 2018-05-25 2018-11-16 哈尔滨工程大学 A kind of miniature antenna of inductance load
CN110635249B (en) * 2019-09-05 2021-03-16 南京邮电大学 Broadband transfer wave absorber based on mercury expansion with heat and contraction with cold regulation
CN112216992A (en) * 2020-09-15 2021-01-12 南京航空航天大学 Two-way type frequency reconfigurable meander line antenna

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5923305A (en) * 1997-09-15 1999-07-13 Ericsson Inc. Dual-band helix antenna with parasitic element and associated methods of operation
US6028567A (en) * 1997-12-10 2000-02-22 Nokia Mobile Phones, Ltd. Antenna for a mobile station operating in two frequency ranges
FI112983B (en) * 1997-12-10 2004-02-13 Nokia Corp Antenna
US6906680B2 (en) * 2003-07-24 2005-06-14 Harris Corporation Conductive fluid ground plane
US7450077B2 (en) * 2006-06-13 2008-11-11 Pharad, Llc Antenna for efficient body wearable applications
US7847736B2 (en) * 2006-08-24 2010-12-07 Cobham Defense Electronic Systems Multi section meander antenna
JP4956412B2 (en) * 2007-12-27 2012-06-20 株式会社東芝 ANTENNA DEVICE AND WIRELESS COMMUNICATION DEVICE
US8350770B1 (en) * 2010-07-06 2013-01-08 The United States Of America As Represented By The Secretary Of The Navy Configurable ground plane surfaces for selective directivity and antenna radiation pattern

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2016075387A1 *

Also Published As

Publication number Publication date
WO2016075387A1 (en) 2016-05-19
US20180145417A1 (en) 2018-05-24
FR3028355A1 (en) 2016-05-13
FR3028355B1 (en) 2018-02-02

Similar Documents

Publication Publication Date Title
EP2202846B1 (en) Planar radiating element with dual polarisation and network antenna comprising such a radiating element
FR2860927A1 (en) LOW VOLUME INTERNAL ANTENNA
EP2710676B1 (en) Radiating element for an active array antenna consisting of elementary tiles
FR3070224A1 (en) PLATED ANTENNA HAVING TWO DIFFERENT RADIATION MODES WITH TWO SEGREGATED WORK FREQUENCIES, DEVICE USING SUCH ANTENNA
FR2911725A1 (en) ANTENNA OR ANTENNA MEMBER ULTRA-LARGE BAND.
FR2751471A1 (en) WIDE-BAND RADIATION DEVICE WHICH MAY BE MULTIPLE POLARIZATION
EP3235058B1 (en) Wire-plate antenna having a capacitive roof incorporating a slot between the feed probe and the short-circuit wire
EP3417507B1 (en) Electromagnetically reflective plate with a metamaterial structure and miniature antenna device including such a plate
EP2095465A1 (en) Mono- or multi-frequency antenna
FR3108209A1 (en) Frequency reconfigurable monopolar wire-plate antenna
EP3218961A1 (en) Reconfigurable compact antenna device
EP3671953A1 (en) Monopolar wire-plate antenna
FR2830131A1 (en) Wide-band/multi-band antenna has two groups of photonic band gap plates
EP2817850B1 (en) Electromagnetic band gap device, use thereof in an antenna device, and method for determining the parameters of the antenna device
EP1903636B1 (en) Antenna with wide adaptation band
FR3054044B1 (en) FREQUENCY SELECTIVE SURFACE COMMANDABLE AND MULTIFUNCTIONAL
EP2449629B1 (en) Omnidirectional, broadband compact antenna system comprising two highly decoupled separate transmission and reception access lines
EP3266064B1 (en) Omnidirectional wideband antenna structure
EP3942649B1 (en) Compact directional antenna, device comprising such an antenna
FR2858469A1 (en) Antenna for e.g. motor vehicle obstacles detecting radar, has assembly with two zones of active material layer that are controlled by respective polarization zones defined by metallic patterned layers
FR2958458A1 (en) Antenna i.e. meandered planar inverted F-type reversible antenna, for use in e.g. portable telephone, has radiating plane including slot whose dimensions are different from than that of other plane to operate in one of frequency ranges
FR2816114A1 (en) MULTIBAND ANTENNA
WO2008059161A1 (en) Frequency- and polarisation-agile antenna
FR2951877A1 (en) Antenna for wireless communication device, has predetermined number of dielectric metals cells placed in field zone near electromagnetic wave source, where each cell is constituted of loop charged by electronic control element
FR3126818A1 (en) ELECTROMAGNETIC SYSTEM WITH ANGULAR DEVIATION OF THE MAIN RADIATION LOBE OF AN ANTENNA

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20170505

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: H01Q 1/38 20060101ALI20181214BHEP

Ipc: H01Q 1/36 20060101ALI20181214BHEP

Ipc: H01Q 1/48 20060101ALI20181214BHEP

Ipc: H01Q 5/314 20150101AFI20181214BHEP

Ipc: H01Q 9/42 20060101ALI20181214BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20190201

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20190612