EP3210195B1 - Vorrichtung und verfahren zur prüfung von wertdokumenten, insbesondere banknoten, sowie wertdokumentbearbeitungssystem - Google Patents
Vorrichtung und verfahren zur prüfung von wertdokumenten, insbesondere banknoten, sowie wertdokumentbearbeitungssystem Download PDFInfo
- Publication number
- EP3210195B1 EP3210195B1 EP15791248.6A EP15791248A EP3210195B1 EP 3210195 B1 EP3210195 B1 EP 3210195B1 EP 15791248 A EP15791248 A EP 15791248A EP 3210195 B1 EP3210195 B1 EP 3210195B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- electromagnetic radiation
- spectral
- radiation
- sensor signals
- sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 23
- 238000012360 testing method Methods 0.000 title description 5
- 230000003595 spectral effect Effects 0.000 claims description 93
- 230000005855 radiation Effects 0.000 claims description 71
- 230000005670 electromagnetic radiation Effects 0.000 claims description 59
- 238000009826 distribution Methods 0.000 claims description 45
- 230000005540 biological transmission Effects 0.000 claims description 41
- 238000012937 correction Methods 0.000 claims description 41
- 239000011159 matrix material Substances 0.000 claims description 30
- 230000035945 sensitivity Effects 0.000 claims description 23
- 238000011156 evaluation Methods 0.000 claims description 16
- 238000012545 processing Methods 0.000 claims description 12
- 238000009795 derivation Methods 0.000 claims description 6
- 238000001514 detection method Methods 0.000 claims description 2
- 230000001678 irradiating effect Effects 0.000 claims description 2
- 230000006386 memory function Effects 0.000 claims description 2
- 230000032258 transport Effects 0.000 description 9
- 238000005286 illumination Methods 0.000 description 8
- 238000005259 measurement Methods 0.000 description 6
- 238000001228 spectrum Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000011109 contamination Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 238000010606 normalization Methods 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 238000000411 transmission spectrum Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07D—HANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
- G07D7/00—Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
- G07D7/06—Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using wave or particle radiation
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07D—HANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
- G07D7/00—Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
- G07D7/06—Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using wave or particle radiation
- G07D7/12—Visible light, infrared or ultraviolet radiation
- G07D7/1205—Testing spectral properties
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07D—HANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
- G07D7/00—Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
- G07D7/181—Testing mechanical properties or condition, e.g. wear or tear
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07D—HANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
- G07D7/00—Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
- G07D7/181—Testing mechanical properties or condition, e.g. wear or tear
- G07D7/187—Detecting defacement or contamination, e.g. dirt
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07D—HANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
- G07D7/00—Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
- G07D7/20—Testing patterns thereon
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07D—HANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
- G07D7/00—Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
Definitions
- the invention relates to a device and a method for checking valuable documents, in particular banknotes, as well as a valuable document processing system.
- properties of banknotes such as printed image, denomination, authenticity and condition, are determined by recording the physical properties of the banknotes using sensors and evaluating the sensor data generated in the process.
- one banknote is irradiated with the light of one or more light sources and the light remitted by the banknote, i.e. diffusely reflected or transmitted, is detected using one or more sensors.
- the reflectance or transmission curves determined in this way can deviate from the actual reflectance or transmission behavior of the banknote.
- LEDs light-emitting diodes
- the device according to the invention for checking documents of value, in particular banknotes, according to claim 1 has: at least two radiation sources for emitting electromagnetic radiation, with which a document of value is irradiated; at least one sensor for detecting the electromagnetic radiation reflected and/or transmitted directed or diffusely by the document of value and generating corresponding sensor signals, with components assigned to the radiation sources, the sensor signals being corresponding reflection and/or transmission signals; an evaluation device which is designed to derive corrected sensor signals from the sensor signals generated by the at least one sensor, taking into account at least one spectral property of the electromagnetic radiation of the at least two radiation sources, wherein in deriving the corrected sensor signals at least one linear combination of components assigned to the different radiation sources the sensor signals are formed.
- the method according to the invention for checking documents of value, in particular banknotes, according to claim 16 has the following steps: irradiation of a document of value with electromagnetic radiation from at least two radiation sources; Detecting the electromagnetic radiation reflected and/or transmitted in a directed or diffuse manner by the document of value and generating corresponding sensor signals, with components assigned to the radiation sources, the sensor signals being corresponding reflection and/or transmission signals; Derivation of corrected sensor signals from the sensor signals generated by the at least one sensor, taking into account at least one spectral property of the electromagnetic radiation of the at least two radiation sources, wherein in the derivation of the corrected sensor signals at least one linear combination is formed from components of the sensor signals assigned to the different radiation sources.
- the valuable document processing system has at least one device for processing, in particular for transporting and/or counting and/or sorting, valuable documents, in particular banknotes, and is characterized by the device according to the invention for checking valuable documents.
- the invention is based on the idea of subjecting the reflection or transmission signals generated by sensors when detecting the light reflected and/or transmitted by the document of value, which together preferably represent a spectral reflection and/or transmission signal curve, to a correction in which corrected Reflection or transmission signals, which together preferably represent a corrected spectral reflection or transmission signal curve, are obtained.
- a correction in which corrected Reflection or transmission signals, which together preferably represent a corrected spectral reflection or transmission signal curve, are obtained.
- at least one spectral property of the electromagnetic radiation emitted by the at least two radiation sources is used.
- the spectral property of the electromagnetic radiation taken into account can refer to any property, in particular to the intensity, of the electromagnetic radiation emitted by the radiation source at one or more wavelengths or in one or more wavelength ranges.
- the spectral property of the electromagnetic radiation taken into account relates to a value for the radiation intensity of a radiation source in the range of a first wavelength of a main emission and to a corresponding value in the range of a second wavelength of a further emission, which is also a secondary emission referred to as.
- the spectral property of the electromagnetic radiation taken into account relates to a value for the radiation intensity in the range of a first wavelength of a main emission as well as to several corresponding values in ranges of further wavelengths of further emissions, which are also referred to as secondary emissions.
- the spectral property can also relate to a wavelength-dependent intensity curve of the electromagnetic radiation emitted by the radiation sources in a broader wavelength range, in which in particular the main emission and the secondary emission or the secondary emissions are included.
- the spectral property of the electromagnetic radiation can also be taken into account in the form of parameters that are derived from the above-mentioned properties, in particular the intensity values at certain wavelengths or in certain wavelength ranges, such as quotients, differences or sums the intensity values mentioned.
- the spectral property of at least one light source can be taken into account when evaluating the sensor signals.
- the at least one spectral property of the electromagnetic radiation from the at least two radiation sources is given by at least one spectral distribution of the electromagnetic radiation from the at least two radiation sources.
- the spectral distributions of the n radiation sources differ from one another.
- At least one spectral distribution of the electromagnetic radiation of the radiation sources is given by a first spectral distribution of the electromagnetic radiation emitted by the radiation sources and a second spectral distribution, which is different from the first spectral distribution.
- a first spectral distribution of the electromagnetic radiation emitted by the radiation source corresponds to a spectral distribution with a main emission and at least one secondary emission.
- a second spectral distribution preferably corresponds to the first spectral distribution, but without having at least one secondary emission.
- the first spectral distribution is preferably determined by measuring, for example using a spectrometer, the radiation source or using associated data sheets.
- the second spectral distribution can then be derived from the first spectral distribution by eliminating the spurious emission.
- a particularly reliable and precise correction of the sensor signals can be achieved, particularly with regard to disruptive influences due to secondary emissions.
- the corrected sensor signals are calculated by multiplying the generated sensor signals R with a correction matrix B.
- the at least one spectral property of the electromagnetic radiation of the radiation sources is given by at least one parameter which has one or more spectral components, in particular the intensity, of the electromagnetic radiation of the radiation source, in particular at one or more wavelengths or Wavelength ranges, characterized.
- the sensitivity of the respective sensor in particular at the wavelengths or wavelength ranges mentioned, can also be taken into account in the parameter.
- the parameter corresponds then preferably a product of the intensity of the radiation emitted by a radiation source at a specific wavelength and the sensitivity of the respective sensor at this wavelength.
- the at least one parameter can also be derived from two or more intensity values and possibly sensor sensitivity values at different wavelengths, for example by forming a quotient.
- the relevant spectral properties of the radiation sources can be easily taken into account when correcting the sensor signals, so that relatively low computing capacities are sufficient even for spectral reflection or transmission curves in a wide spectral range, for example between 400 and 1100 nm to enable correction of the sensor signals in real time.
- At least a first parameter a 1 characterizes the spectral portion of a main emission of the electromagnetic radiation of the radiation source and at least a second parameter a 2 characterizes the spectral portion of an emission occurring in addition to the main emission, a so-called secondary emission, of the electromagnetic radiation of the radiation source.
- the evaluation device is designed in such a way that the corrected sensor signals are derived from the sensor signals, taking into account the first and second parameters a 1 or a 2 or a parameter a derived from the first and second parameters a 1 or a 2 , which in particular corresponds to the quotient a 1 / a 2 corresponds to the first and second parameters a 1 and a 2 , respectively.
- the corrected sensor signals are normalized based on corrected reference signals, the corrected reference signals being generated from reference signals that are generated by the at least one sensor when detecting the electromagnetic radiation emitted by a reference document, a so-called white reference, are derived taking into account the at least one spectral property of the electromagnetic radiation of the at least two radiation sources.
- the sensitivity of the at least one sensor for electromagnetic radiation in particular in the form of at least one spectral curve of the sensitivity, is preferably taken into account.
- the corrected reference signals used in the normalization of the corrected sensor signals are preferably corrected analogously to the sensor signals.
- Fig. 1 shows an example of a schematic structure of a value document processing system 1 with an input compartment 2, in which a stack of value documents to be processed, in particular banknotes 3, is provided, and a separator 8, from which the bottom banknote of the entered stack is recorded and sent to a - in
- the selected representation is only shown schematically - transport device 10 is handed over, which transports the banknote in the transport direction T to a sensor device 20.
- the sensor device 20 comprises light sources 24 and 25 - which are shown only in a very schematic form - for irradiating the banknote with light, in particular in the visible and/or infrared and/or ultraviolet spectral range, as well as a first, second and third sensor 21, 22 respectively.
- 23, which is preferably designed as a so-called line camera and detects light emanating from the banknote, in particular in the visible and / or infrared and / or ultraviolet spectral range, by means of sensor elements arranged along a line and converts it into corresponding sensor signals.
- LEDs Light-emitting diodes
- LEDs are preferably used as light sources 24 and 25. Even if two light sources 24 and 25 are indicated in the example shown, it may be preferred to provide more than two light sources. Likewise, any other light sources such as fluorescent lamps, flash lamps, (filtered) incandescent lamps or the like can be used for the inventive method instead of LEDs.
- the at least two light sources can also be implemented by a light source in conjunction with at least one switchable filter, provided that at least two individually addressable, different spectra are thereby made available.
- this constellation is further described as two light sources or several light sources.
- the sensor device 20 preferably has a plurality of light sources which emit light in different spectral ranges.
- the respective spectral ranges of the light sources can be selected so that they together emit light in the spectral range in which the remission or transmission behavior of the banknote is to be tested.
- This spectral range is preferably between approximately 350 and 1100 nm.
- three LEDs can be combined, each of which emits light in the ultraviolet, visible and near infrared spectral range.
- the first and second sensors 21 and 22 detect light remitted, ie diffusely reflected and/or directed reflected, from the front and back of the banknote and convert this into corresponding sensor signals.
- the third sensor 23 located in the area of the front of the banknote detects the light emitted by a light source 24 and preferably hitting the banknote at an angle and passing through it passing through, ie transmitted, light and converts this into corresponding sensor signals.
- the line with the sensor elements of the respective sensor 21, 22 or 23 runs essentially perpendicular to the transport direction T of the banknotes, so that with each reading process of the sensor line of the respective sensor 21, 22 or 23, a sensor signal curve is obtained along the sensor line, which corresponds to an intensity profile of the light that is transmitted or remitted by the banknote in a direction perpendicular to the transport direction T.
- the sensor device 20 shown is preferably designed to check reflectance and/or transmission curves at different locations on a banknote.
- one location on the banknote is illuminated with light from one of the light sources 24, 25 at a specific wavelength ⁇ and the light remitted or transmitted by the banknote is detected with one of the sensors 21, 22 or 23 and converted into corresponding sensor signals.
- these sensor signals are then each divided by a reference signal determined using a white reference, whereby a standardized reflectance or transmission value is obtained at the location of the banknote at the wavelength ⁇ .
- the banknote is successively illuminated with light of different wavelengths and the respectively remitted or transmitted light is detected.
- several, up to (n-1) light sources can also be active at the same time.
- the light sources 24 and 25 are clocked so quickly that the banknote has hardly moved despite the transport during a cycle in which all the different wavelengths are switched through, so that for all different wavelengths are measured at essentially the same location on the banknote. In this way, not only a possibly standardized reflectance or transmission value but also a possibly standardized reflectance or transmission curve is obtained for this point.
- the sensor signals generated by the sensors 21 to 23 of the sensor device 20, in particular the corresponding reflectance or transmission curves, are forwarded to a control device 50 and an evaluation device 51.
- the evaluation device 51 can be contained in the control device 50 or can also form a unit separate from the control device 50.
- the evaluation device (51) has a memory function for storing previously calculated correction parameters that are used to calculate corrected sensor signals.
- the sensor signals are used to check the banknote, with statements about various properties of the respective banknote being derived from the respective sensor signals, such as authenticity, degree of contamination, wear, defects and the presence of Foreign objects, such as adhesive strips.
- the transport device 10 and the switches 11 and 12 are controlled along the transport route by the control device 50 in such a way that the banknote is fed to one of several output compartments 30 and 31 and stored there. For example, 30 banknotes that were recognized as genuine are stored in a first output compartment, while banknotes that are classified as inauthentic or suspected of being counterfeit are stored in a second output compartment 31.
- the reference number 13 at the end of the transport route shown is intended to indicate that there are additional output compartments and/or other facilities, for example for storing or destroying banknotes, can be provided. If, for example, the examination of a banknote shows that it is genuine, but does not meet certain fitness criteria with regard to contamination, wear, defects or the presence of foreign objects, it can be sent directly to a shredder for destruction.
- the value document processing system 1 further comprises an input/output device 40 for inputting data and/or control commands by an operator, for example using a keyboard or a touch screen, and outputting or displaying data and/or information about the processing process, in particular about the processed banknotes.
- an input/output device 40 for inputting data and/or control commands by an operator, for example using a keyboard or a touch screen, and outputting or displaying data and/or information about the processing process, in particular about the processed banknotes.
- corrected sensor signals in particular corresponding corrected reflectance or transmission curves, are preferably used to check the banknote, which reflect the actual reflectance or transmission behavior of the banknote much more accurately than the uncorrected reflectance or transmission curves. This is explained in more detail below.
- Figure 2 shows an uncorrected reflectance curve 15 obtained with the sensor device 20 in the spectral range between approximately 400 and 1050 nm in comparison with a reflectance curve 16 measured with a calibrated spectrometer, which reflects the actual reflectance behavior of the location of the banknote under consideration.
- the uncorrected reflectance curve 15 shows noticeable artifacts, which in this example appear as jagged reflectance peaks at approximately 590 nm and approximately 650 nm.
- These reflectance peaks occur despite normalization of the reflectance curve 16 using reference signals that were determined on a white reference.
- the invention achieves, among other things, that such reflectance peaks are eliminated from the reflectance curve 15 or at least significantly reduced, so that the corrected reflectance curve obtained here comes significantly closer to the actual reflectance curve 16.
- Figure 3 shows a reflectance curve 17 corrected in accordance with the invention in the spectral range between approximately 400 and 1050 nm in comparison with the reflectance curve 16 measured with a spectrometer.
- the course of the corrected reflectance curve 17 corresponds significantly better to the course of the reflectance curve 17 with the spectrometer measured reflectance curve 16 corresponds to that of the uncorrected reflectance curve 15 (cf. Fig. 2 ) the case is.
- the spectral illumination distributions of LEDs correspond to laser-like Dirac functions at the corresponding wavelengths, that is, they have a "needle-shaped" spectral intensity distribution of the emitted light around a nominal wavelength.
- the spectral illumination distributions of real LEDs usually have a certain extent around the nominal wavelength, so that the remission spectrum is somewhat smoothed.
- This emission of light is also referred to as main emission in connection with the invention.
- some LEDs, in addition to the main emission also show secondary emissions in completely different wavelength ranges, which change the shape of the remission curve in a surprisingly noticeable and particularly disturbing manner.
- the approach according to the invention for correcting the remission or transmission curves is based, among other things, on the knowledge that disturbing artifacts, in particular remission or transmission peaks, can be caused by secondary emissions from the respective light sources, in particular LEDs.
- the correction methods according to the invention for the mathematical elimination or at least reduction of these effects are explained in more detail below.
- the original reflectance or transmission curves in the wavelength range of LEDs with secondary emissions could simply be smoothed, e.g. with a moving average over three reference points. Although this smoothes the representation of the curves in a simple and quick manner, it also potentially creates new artifacts, particularly in the case of highly structured remission or transmission spectra with steep edges.
- a correction method is preferably used that takes physical properties into account in the emission, remission or transmission and detection processes.
- the generated sensor signals for a reflectance curve are simulated with knowledge of the illumination distributions and the detector sensitivity distribution for all LEDs.
- captured the sensor device 20 records both the main and secondary emissions of the light sources 24, 25 or the remission or transmission caused thereby.
- I k ⁇ S k ⁇ D ⁇ r ⁇ d ⁇ , where S k ( ⁇ ) is the illumination distribution of channel k , i.e. the kth LED, D ( ⁇ ) is the detector sensitivity, i.e. the sensitivity of the sensor, and r ( ⁇ ) is the actual reflectance curve of the banknote.
- the vector I is preferably normalized using a white balance.
- the generated sensor signals i.e. the measured reflectance curves
- the generated sensor signals can then be corrected as follows.
- the remission vector r is mapped onto the (correct) sensor signals BR in the n radiation channels with the discretization at m wavelengths either without secondary emissions with A 0 , or alternatively via the measurement with secondary emissions (R) and their subsequent correction via the correction matrix B.
- a + is the pseudoinverse of A.
- n m
- this method can be provided not only to remove the secondary emissions of the LEDs when creating A 0 , but also to replace their Gaussian-like or even asymmetrical distributions with discrete Dirac functions in the entries for the respective wavelength range. This has the advantage that the edges of the reflectance curves become steeper and therefore more precise.
- the correction method described allows a reliable elimination or at least reduction of remission or transmission peaks due to secondary emissions from the light sources, so that it can be used in an advantageous manner - especially in sensor and / or evaluation devices with sufficiently high computing power.
- a spectral correction is carried out by changing the shape of the remission spectrum. This correction is dynamic, i.e. the correction parameter depends not only on the systematic (static) alternating interference between the radiation source channels, but also on the current measured values of the radiation source channels involved.
- a reliable correction of the sensor signals can be carried out in real time even with lower computing capacities.
- LEDs are used to irradiate the banknote, each of which has at most one secondary emission, which is preferably close to a wavelength at which one or more of the other LEDs is or are available, which in turn preferably has or have no secondary emission .
- the wavelength of the main emission of the other LED is shifted by less than 120nm from the wavelength of the secondary emission of the first LED, more preferably by less than 50nm, even more preferably by less than 10nm, depending on the desired spectral Resolution of the transmission or remission curves and the number of light sources.
- the intensity I of the emission from two light sources 24, 24' is shown as an example.
- the second light source 24 ' is required, which has a main emission with a wavelength that is the same or similar to the wavelength ⁇ 2 of the correcting secondary emission of the first light source 24.
- LEDs with a main emission at 570 nm for example, it has been shown that there is often a secondary emission at 850 - 870 nm.
- a second LED is therefore used for correction, which has a main emission at approx. 850 nm.
- the correction parameter a a 2 / a 1 is preferably determined using two methods.
- the a i are determined directly via the product of the measured spectral distributions of the light emission of the light source 24 with the measured sensitivity of the detector or detectors at the wavelength ⁇ i .
- the intensities of the main and secondary emission of the first light source 24 with the secondary emission as well as the detector sensitivities at the wavelengths ⁇ 1 and ⁇ 2 must be measured.
- the intensity of the further light source 24', which emits with its main emission in the range of ⁇ 2 does not necessarily have to be measured.
- the actual reflectance of the test sample can be known using standard color charts, or can be determined by direct measurement with a spectrometer on the test sample.
- the test sample preferably has sufficiently high reflectance values >0.2, particularly preferably >0.5, so that sufficiently high signal intensities and thus sufficient accuracy in determining a is achieved.
- the invention also includes the variants and embodiments set out below.
- the spectral illumination contributions can come not only from the main and secondary emissions of individual light sources, but also from simultaneous illumination of the document of value with at least two light sources with different spectral distribution.
- the correction of the sensor signals according to the invention via the algorithm according to the invention enables a correct extraction of the remission or transmission curves.
- LED A emits light in the UV range
- LED B in the visible (VIS) or IR range.
- the UV signal can then be determined without the banknote having to be irradiated solely by the UV LED.
- the sensor device 20 is designed so that the banknote is always simultaneously irradiated with LEDs of different wavelength ranges.
- the banknote can be illuminated simultaneously with the various overlays of LEDs A + B + C, of LEDs A + B, and of LEDs A + C one after the other.
- the algorithm according to the invention can then be used as described above if the spectra of the individual LED light emissions are used by the spectra of the kth combined LED overlays.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Inspection Of Paper Currency And Valuable Securities (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Description
- Die Erfindung betrifft eine Vorrichtung und ein Verfahren zur Prüfung von Wertdokumenten, insbesondere Banknoten, sowie ein Wertdokumentbearbeitungssystem.
- In Banknotenbearbeitungssystemen werden Eigenschaften von Banknoten, wie z.B. Druckbild, Stückelung, Echtheit und Zustand, ermittelt, indem physikalische Eigenschaften der Banknoten mittels Sensoren erfasst und die hierbei erzeugten Sensordaten ausgewertet werden.
- Bei der Prüfung der Banknoten werden häufig deren Remissions- und/ oder Transmissionseigenschaften herangezogen. Dazu wird jeweils eine Banknote mit dem Licht einer oder mehrerer Lichtquellen bestrahlt und das von der Banknote remittierte, d.h. diffus reflektierte, bzw. transmittierte Licht mittels eines oder mehrerer Sensoren erfasst. In Abhängigkeit von der Art der verwendeten Lichtquellen können die auf diese Weise ermittelten Remissions- bzw. Transmissionskurven vom tatsächlichen Remissions- bzw. Transmissionsverhalten der Banknote abweichen. So können beispielsweise bei der Verwendung von Leuchtdioden (LEDs) als Lichtquellen in bestimmten Bereichen der Remissions- bzw. Transmissionskurven Artefakte auftreten, die nicht den tatsächlichen Eigenschaften der Banknote entsprechen.
- Es ist Aufgabe der vorliegenden Erfindung, eine Vorrichtung, ein Verfahren sowie ein Wertdokumentbearbeitungssystem anzugeben, welche bzw. welches eine möglichst genaue Ermittlung der Reflexions- und/ oder Transmissionseigenschaften von Wertdokumenten erlaubt.
- Diese Aufgabe wird durch die Vorrichtung, das Verfahren sowie das Wertdokumentbearbeitungssystem gemäß den unabhängigen Ansprüchen gelöst. Die erfindungsgemäße Vorrichtung zur Prüfung von Wertdokumenten, insbesondere Banknoten, nach Anspruch 1 weist auf: mindestens zwei Strahlungsquellen zur Abgabe von elektromagnetischer Strahlung, mit welchen ein Wertdokument bestrahlt wird; mindestens einen Sensor zur Erfassung der vom Wertdokument gerichtet oder diffus reflektierten und/ oder transmittierten elektromagnetischen Strahlung und Erzeugung von entsprechenden Sensorsignalen, mit den Strahlungsquellen zugeordneten Komponenten, wobei die Sensorsignale entsprechende Reflexions- und/ oder Transmissionssignale sind; eine Auswertungseinrichtung, welche dazu ausgebildet ist, aus den von dem mindestens einen Sensor erzeugten Sensorsignalen unter Berücksichtigung mindestens einer spektralen Eigenschaft der elektromagnetischen Strahlung der mindestens zwei Strahlungsquellen korrigierte Sensorsignale abzuleiten, wobei bei der Ableitung der korrigierten Sensorsignale mindestens eine Linearkombination aus den unterschiedlichen Strahlungsquellen zugeordneten Komponenten der Sensorsignale gebildet wird.
- Das erfindungsgemäße Verfahren zur Prüfung von Wertdokumenten, insbesondere Banknoten, nach Anspruch 16 weist folgende Schritte auf: Bestrahlung eines Wertdo-kuments mit elektromagnetischer Strahlung mindestens zweier Strahlungsquellen; Erfassung der vom Wertdokument gerichtet oder diffus reflektierten und/oder transmittierten elektromagnetischen Strahlung und Erzeugung von entsprechenden Sensorsignalen, mit den Strahlungsquellen zugeordneten Komponenten, wobei die Sensorsignale entsprechende Reflexions- und/oder Transmissionssignale sind; Ableitung von korrigierten Sensorsignalen aus den von dem mindestens einen Sensor erzeugten Sensorsignalen unter Berücksichtigung mindestens einer spektralen Eigenschaft der elektromagnetischen Strahlung der mindestens zwei Strahlungsquellen, wobei bei der Ableitung der korrigierten Sensorsignale mindestens eine Linearkombination aus den unterschiedlichen Strahlungsquellen zugeordneten Komponenten der Sensorsignale gebildet wird.
- Das erfindungsgemäße Wertdokumentbearbeitungssystem weist mindestens eine Vorrichtung zum Bearbeiten, insbesondere zum Befördern und/oder Zählen und/ oder Sortieren, von Wertdokumenten, insbesondere Banknoten, auf und zeichnet sich durch die erfindungsgemäße Vorrichtung zur Prüfung von Wertdokumenten aus.
- Die Erfindung basiert auf dem Gedanken, die bei der Erfassung des vom Wertdokument reflektierten und/oder transmittierten Lichts mittels Sensoren erzeugten Reflexions- bzw. Transmissionssignale, welche vorzugsweise zusammen einen spektralen Reflexions- und/ oder Transmissionssignalverlauf darstellen, einer Korrektur zu unterziehen, bei welcher korrigierte Reflexions- bzw. Transmissionssignale, welche vorzugsweise zusammen einen korrigierten spektralen Reflexions- bzw. Transmissionssignalverlauf darstellen, erhalten werden. Bei der Korrektur der Reflexions- bzw. Transmissionssignale wird mindestens eine spektrale Eigenschaft der elektromagnetischen Strahlung, die von den mindestens zwei Strahlungsquellen abgegeben wird, herangezogen.
- Die berücksichtigte spektrale Eigenschaft der elektromagnetischen Strahlung kann sich hierbei auf jede Eigenschaft, insbesondere auf die Intensität, der von der Strahlungsquelle abgegebenen elektromagnetischen Strahlung bei einer oder mehreren Wellenlängen oder in einem oder mehreren Wellenlängenbereichen beziehen. Beispielsweise bezieht sich die berücksichtigte spektrale Eigenschaft der elektromagnetischen Strahlung auf einen Wert für die Strahlungsintensität einer Strahlungsquelle im Bereich einer ersten Wellenlänge einer Hauptemission sowie auf einen entsprechenden Wert im Bereich einer zweiten Wellenlänge einer weiteren Emission, welche auch als Nebenemission bezeichnet wird. In einem anderen Beispiel bezieht sich die berücksichtigte spektrale Eigenschaft der elektromagnetischen Strahlung auf einen Wert für die Strahlungsintensität im Bereich einer ersten Wellenlänge einer Hauptemission sowie auf mehrere entsprechende Werte in Bereichen weiterer Wellenlängen von weiteren Emissionen, welche auch als Nebenemissionen bezeichnet werden.
- Alternativ oder zusätzlich kann sich die spektrale Eigenschaft aber auch auf einen wellenlängenabhängigen Intensitätsverlauf der von den Strahlungsquellen jeweils abgebebenen elektromagnetischen Strahlung in einem breiteren Wellenlängenbereich, in welchem insbesondere die Hauptemission und die Nebenemission oder die Nebenemissionen eingeschlossen sind, beziehen.
- Die spektrale Eigenschaft der elektromagnetischen Strahlung kann bei der erfindungsgemäßen Korrektur der Sensorsignale aber auch in Form von Parametern berücksichtigt werden, die von den o.g. Eigenschaften, insbesondere den Intensitätswerten bei bestimmten Wellenlängen oder in bestimmten Wellenlängenbereichen, abgeleitet werden, wie z.B. Quotienten, Differenzen oder Summen aus den genannten Intensitätswerten.
- In einer bevorzugten Ausführungsform kann bei sequentieller Beleuchtung des zu prüfenden Wertdokuments durch die mindestens zwei Lichtquellen mit Hauptemissionen in unterschiedlichen Wellenlängenbereichen die spektrale Eigenschaft von mindestens einer Lichtquelle bei der Auswertung der Sensorsignale berücksichtigt werden.
- Hierdurch wird auf einfache und zuverlässige Weise erreicht, dass die korrigierten Reflexions- bzw. Transmissionssignale wesentlich besser mit dem tatsächlichen Remissions- bzw. Transmissionsverhalten des Wertdokuments übereinstimmen als ohne Korrektur. Insbesondere wird hierdurch ein möglicher Einfluss aufgrund der Art der jeweils verwendeten Lichtquellen, wie z.B. LEDs, eliminiert oder zumindest vermindert. Insgesamt erlaubt die Erfindung dadurch eine wesentlich genauere Ermittlung der Reflexions- und/oder Transmissionseigenschaften von Wertdokumenten.
- Vorzugsweise ist die mindestens eine spektrale Eigenschaft der elektromagnetischen Strahlung der mindestens zwei Strahlungsquellen durch mindestens eine spektrale Verteilung der elektromagnetischen Strahlung der mindestens zwei Strahlungsquellen gegeben. Die spektrale Verteilung einer k-ten (k = 1 ... n) Strahlungsquelle kann hierbei vorzugsweise in Form eines von der Wellenlänge λ abhängigen kontinuierlichen Intensitätsverlaufs Sk (λ) angegeben werden. Alternativ kann die spektrale Verteilung der k-ten Strahlungsquelle aber auch durch eine Vielzahl von Intensitätswerten Ski bei diskreten Wellenlängen λ i (i = 1 ... m) gegeben sein. In einer bevorzugten Ausführungsform unterscheiden sich die spektralen Verteilungen der n Strahlungsquellen voneinander. Weiterhin ist die Variante m=n besonders bevorzugt, da dann die Korrektur der Reflexions- bzw. Transmissionssignale besonders einfach bestimmt werden kann. Durch die Berücksichtigung der spektralen Verteilung der Strahlungsquellen stimmen die korrigierten Sensorsignale mit noch höherer Genauigkeit mit dem tatsächlichen Reflexions-bzw. Transmissionsverlauf des Wertdokuments überein.
- Es ist ferner bevorzugt, dass mindestens eine spektrale Verteilung der elektromagnetischen Strahlung der Strahlungsquellen durch eine erste spektrale Verteilung der von den Strahlungsquellen abgegebenen elektromagnetischen Strahlung und eine zweite spektrale Verteilung, welche von der ersten spektralen Verteilung verschieden ist, gegeben ist. Vorzugsweise entspricht eine erste spektrale Verteilung der von der Strahlungsquelle abgegebenen elektromagnetischen Strahlung einer spektralen Verteilung mit einer Hauptemission und mindestens einer Nebenemission. Eine zweite spektrale Verteilung entspricht vorzugsweise der ersten spektralen Verteilung, ohne jedoch die mindestens eine Nebenemission aufzuweisen. Vorzugsweise wird die erste spektrale Verteilung durch eine Vermessung, z.B. mittels Spektrometer, der Strahlungsquelle oder anhand zugehöriger Datenblätter ermittelt. Die zweite spektrale Verteilung kann dann aus der ersten spektralen Verteilung abgeleitet werden, indem die Nebenemission eliminiert wird. Anhand der ersten und/ oder zweiten spektralen Verteilung lässt sich eine besonders zuverlässige und genaue Korrektur der Sensorsignale insbesondere hinsichtlich störender Einflüsse aufgrund von Nebenemissionen erreichen.
- Gemäß einer weiteren bevorzugten Ausgestaltung der Erfindung werden die korrigierten Sensorsignale durch eine Multiplikation der erzeugten Sensorsignale R mit einer Korrekturmatrix B berechnet. Dabei wird der Vektor R durch die an einem Ort jeweils mit den n Strahlungsquellen gemessenen Intensitätswerte gebildet. Jede Signalkomponente Rk des Vektors R entspricht folglich der Intensität bei Messung mit der jeweiligen Strahlungsquelle k=1...n.
- Die Korrekturmatrix B wird aus der mindestens einen diskreten spektralen Verteilung Ski, mit k = 1 ...n und i = 1 ... m, der elektromagnetischen Strahlung einer ersten Anzahl n von Strahlungsquellen bei einer zweiten Anzahl m von diskreten Wellenlängen λ i und mindestens einem spektralen Verlauf Di der Empfindlichkeit des mindestens einen Sensors für elektromagnetische Strahlung abgeleitet. Dabei weist die Korrekturmatrix B mindestens ein von 0 verschiedenes Nichtdiagonalelement auf. Damit wird bei der Berechnung der korrigierten Sensorsignale BR immer mindestens eine Linearkombination aus den unterschiedlichen Strahlungsquellen zugeordneten Komponenten der Sensorsignale Rk gebildet. Diese Linearkombination ist nichttrivial, d.h. insgesamt mindestens zwei Koeffizienten sind ungleich 0, so dass eine Summe bzw. Differenz aus mindestens zwei unterschiedlichen Komponenten der Sensorsignale Rk (mit k=1..n) gebildet wird.
- Vorzugsweise entspricht die Korrekturmatrix B hierbei dem Produkt B = A0A + aus einer zweiten Matrix A0 und einer Pseudoinversen A + einer ersten das Sensorsystem beschreibenden Matrix A, deren Matrixelemente Aki durch das Produkt aus der ersten spektralen Verteilung Ski der von den n Strahlungsquellen bei m diskreten Wellenlängen λ i abgegebenen elektromagnetischen Strahlung mit dem spektralen Verlauf Di der Empfindlichkeit des mindestens einen Sensors und einem Wellenlängenabstandswert Δλ zwischen jeweils zwei diskreten Wellenlängen λi gegeben sind: Aki = Ski D i Δλ. Vorzugsweise entsprechen die Matrixelemente A0ki der zweiten Matrix A0 dem Produkt aus der zweiten spektralen Verteilung S' ki der elektromagnetischen Strahlung, aus welcher die mindestens eine Nebenemission eliminiert wurde, mit dem spektralen Verlauf Di der Empfindlichkeit des mindestens einen Sensors und dem Wellenlängenabstandswert Δλ zwischen jeweils zwei diskreten Wellenlängen λi : A0ki = S' ki DiΔλ. Durch die Multiplikation der Sensorsignale R mit der Korrekturmatrix B kann der Einfluss des spektralen Verhaltens der Strahlungsquellen, insbesondere von Nebenemissionen, auf die Sensorsignale mit besonders hoher Genauigkeit korrigiert werden.
- Alternativ oder zusätzlich zu den oben beschriebenen bevorzugten Ausgestaltungen ist die mindestens eine spektrale Eigenschaft der elektromagnetischen Strahlung der Strahlungsquellen durch mindestens einen Parameter gegeben, welcher einen oder mehrere spektrale Anteile, insbesondere die Intensität, der elektromagnetischen Strahlung der Strahlungsquelle, insbesondere bei einer oder mehreren Wellenlängen oder Wellenlängenbereichen, charakterisiert. Vorzugsweise kann in dem Parameter zusätzlich die Empfindlichkeit des jeweiligen Sensors, insbesondere bei den genannten Wellenlängen bzw. Wellenlängenbereichen, berücksichtigt sein. Der Parameter entspricht dann vorzugsweise einem Produkt aus der Intensität der von einer Strahlungsquelle bei einer bestimmten Wellenlänge emittierten Strahlung und der Empfindlichkeit des jeweiligen Sensors bei dieser Wellenlänge. Alternativ oder zusätzlich kann der mindestens eine Parameter aber auch aus zwei oder mehreren Intensitätswerten und ggf. Sensorempfindlichkeitswerten bei jeweils unterschiedlichen Wellenlängen abgeleitet werden, beispielsweise durch Quotientenbildung. Durch die Verwendung eines oder mehrerer solcher Parameter können die relevanten spektralen Eigenschaften der Strahlungsquellen auf einfache Weise bei der Korrektur der Sensorsignale berücksichtigt werden, sodass selbst bei spektralen Reflexions- bzw. Transmissionskurven in einem breiten Spektralbereich, z.B. zwischen 400 und 1100 nm relativ niedrige Rechenkapazitäten ausreichen, um eine Korrektur der Sensorsignale in Echtzeit zu ermöglichen.
- Erfindungsgemäß charakterisiert mindestens ein erster Parameter a1 den spektralen Anteil einer Hauptemission der elektromagnetischen Strahlung der Strahlungsquelle und mindestens ein zweiter Parameter a 2 den spektralen Anteil einer zusätzlich zur Hauptemission auftretenden Emission, einer sog. Nebenemission, der elektromagnetischen Strahlung der Strahlungsquelle. Die Auswertungseinrichtung ist so ausgestaltet, dass die korrigierten Sensorsignale aus den Sensorsignalen unter Berücksichtigung des ersten und zweiten Parameters a1 bzw. a2 oder eines aus dem ersten und zweiten Parameter a1 bzw. a2 abgeleiteten Parameters a, welcher insbesondere dem Quotienten a1 /a2 aus dem ersten und zweiten Parameter a1 bzw. a2 entspricht, abgeleitet werden. Vorzugsweise errechnen sich hierbei die korrigierten (r1) und vorzugsweise auf eine Weißreferenz (w1) normierten Sensorsignale r1 /w1 aus den gemessenen Sensorsignalen R, dem vorzugsweise normierten Wert r2 /w2 der vom Wertdokument im Bereich der Nebenemission tatsächlich remittierten bzw. transmittierten Strahlung und dem Korrekturparameter a = a1 /a2 anhand der Gleichung
- Bei einer bereits erwähnten, besonders bevorzugten Ausführung werden die korrigierten Sensorsignale anhand von korrigierten Referenzsignalen normiert, wobei die korrigierten Referenzsignale aus Referenzsignalen, die von dem mindestens einen Sensor bei der Erfassung der von einem Referenzdokument, einer sog. Weißreferenz, ausgehenden elektromagnetischen Strahlung erzeugt werden, unter Berücksichtigung der mindestens einen spektralen Eigenschaft der elektromagnetischen Strahlung der mindestens zwei Strahlungsquellen abgeleitet werden. Vorzugsweise wird bei der Ableitung der korrigierten Referenzsignale aus den Referenzsignalen die Empfindlichkeit des mindestens einen Sensors für elektromagnetische Strahlung, insbesondere in Form mindestens eines spektralen Verlaufs der Empfindlichkeit, berücksichtigt. Die bei der Normierung der korrigierten Sensorsignale verwendeten korrigierten Referenzsignale werden vorzugsweise also analog zu den Sensorsignalen korrigiert. Die vorstehenden Ausführungen und angegebenen Vorteile im Zusammenhang mit der Korrektur der Sensorsignale gelten für eine entsprechende Korrektur der Referenzsignale entsprechend.
- Weitere Vorteile, Merkmale und Anwendungsmöglichkeiten der vorliegenden Erfindung ergeben sich aus der nachfolgenden Beschreibung in Zusammenhang mit den Figuren. Es zeigen:
- Fig. 1
- ein Beispiel eines schematischen Aufbaus eines Wertdokumentbearbeitungssystems;
- Fig. 2
- Beispiele einer nicht korrigierten Remissionskurve und einer mit einem Spektrometer gemessenen Remissionskurve;
- Fig. 3
- Beispiele einer korrigierten Remissionskurve und einer mit einem Spektrometer gemessenen Remissionskurve; und
- Fig. 4
- Beispiele für die Emission unterschiedlicher Lichtquellen.
-
Fig. 1 zeigt ein Beispiel eines schematischen Aufbaus eines Wertdokumentbearbeitungssystems 1 mit einem Eingabefach 2, in welchem ein Stapel von zu bearbeitenden Wertdokumenten, insbesondere Banknoten 3, bereitgestellt wird, und einem Vereinzeler 8, von welchem die jeweils unterste Banknote des eingegebenen Stapels erfasst und an eine - in der gewählten Darstellung nur schematisch wiedergegebene - Transporteinrichtung 10 übergeben wird, welche die Banknote in Transportrichtung T zu einer Sensoreinrichtung 20 befördert. - Die Sensoreinrichtung 20 umfasst im dargestellten Beispiel - nur stark schematisiert dargestellte - Lichtquellen 24 und 25 zur Bestrahlung der Banknote mit Licht, insbesondere im sichtbaren und/oder infraroten und/ oder ultravioletten Spektralbereich, sowie einen ersten, zweiten und dritten Sensor 21, 22 bzw. 23, welcher jeweils vorzugsweise als sog. Zeilenkamera ausgebildet ist und von der Banknote ausgehendes Licht, insbesondere im sichtbaren und/oder infraroten und/oder ultravioletten Spektralbereich, mittels entlang einer Zeile angeordneter Sensorelemente erfasst und in entsprechende Sensorsignale umwandelt.
- Als Lichtquellen 24 und 25 werden vorzugweise Leuchtdioden (LEDs) verwendet. Auch wenn im dargestellten Beispiel zwei Lichtquellen 24 und 25 angedeutet sind, kann es bevorzugt sein, mehr als zwei Lichtquellen vorzusehen. Ebenso können für das erfinderische Verfahren statt LEDs beliebige andere Lichtquellen wie z.B. Fluoreszenzlampen, Blitzlampen, (gefilterte) Glühlampen o.ä. verwendet werden.
- Prinzipiell können die mindestens zwei Lichtquellen auch durch eine Lichtquelle in Verbindung mit mindestens einem zuschaltbaren Filter realisiert werden, sofern dadurch mindestens zwei einzeln adressierbare, sich unterscheidende Spektren zur Verfügung gestellt werden. In der weiteren Beschreibung wird diese Konstellation weiterhin als zwei Lichtquellen oder mehrere Lichtquellen beschrieben.
- Vorzugsweise weist die Sensoreinrichtung 20 mehrere Lichtquellen auf, welche Licht in unterschiedlichen Spektralbereichen emittieren. Insbesondere können die jeweiligen Spektralbereiche der Lichtquellen so gewählt werden, dass diese zusammen Licht in dem Spektralbereich abgeben, in welchem das Remissions- bzw. Transmissionsverhalten der Banknote geprüft werden soll. Vorzugsweise liegt dieser Spektralbereich zwischen etwa 350 und 1100 nm. Beispielsweise können drei LEDs kombiniert werden, welche jeweils Licht im ultravioletten, sichtbaren und nahen infraroten Spektralbereich emittieren.
- Im dargestellten Beispiel erfassen der erste und zweite Sensor 21 bzw. 22 von der Vorderseite bzw. Rückseite der Banknote remittiertes, d.h. diffus reflektiertes, und/oder gerichtet reflektiertes Licht und wandeln dieses in entsprechende Sensorsignale um. Der im Bereich der Vorderseite der Banknote befindliche dritte Sensor 23 dagegen erfasst das von einer Lichtquelle 24 abgegebene und vorzugsweise schräg auf die Banknote treffende und durch diese hindurchtretende, d.h. transmittierte, Licht und wandelt dieses in entsprechende Sensorsignale um.
- Vorzugsweise verläuft die Zeile mit den Sensorelementen des jeweiligen Sensors 21, 22 bzw. 23 im Wesentlichen senkrecht zur Transportrichtung T der Banknoten, so dass bei jedem Auslesevorgang der Sensorzeile des jeweiligen Sensors 21, 22 bzw. 23 ein Sensorsignalverlauf entlang der Sensorzeile erhalten wird, welcher einem Intensitätsverlauf des Lichts entspricht, das in einer senkrecht zur Transportrichtung T verlaufenden Richtung von der Banknote transmittiert bzw. remittiert wird.
- Die gezeigte Sensoreinrichtung 20 ist vorzugsweise dazu ausgebildet, Remissions- und/oder Transmissionskurven an unterschiedlichen Stellen einer Banknote zu überprüfen. Dazu wird jeweils eine Stelle der Banknote mit Licht aus einer der Lichtquellen 24, 25 bei einer bestimmten Wellenlänge λ beleuchtet und das von der Banknote remittierte bzw. transmittierte Licht mit einem der Sensoren 21, 22 bzw. 23 detektiert und in entsprechende Sensorsignale umgewandelt. Vorzugsweise werden diese Sensorsignale dann jeweils durch ein anhand einer Weißreferenz ermitteltes Referenzsignal dividiert, wodurch ein normierter Remissions- bzw. Transmissionswert an der Stelle der Banknote bei der Wellenlänge λ erhalten wird.
- Vorzugsweise wird die Banknote nacheinander mit Licht unterschiedlicher Wellenlängen beleuchtet und das jeweils remittierte bzw. transmittierte Licht erfasst. In einer anderen Ausführungsform können aber auch mehrere, bis zu (n-1) Lichtquellen gleichzeitig aktiv sein.
- Die Lichtquellen 24 und 25 werden dabei so schnell getaktet, dass sich die Banknote während eines Zyklus, in dem alle verschiedenen Wellenlängen durchgeschaltet werden, trotz des Transports kaum bewegt hat, so dass für alle verschiedenen Wellenlängen im Wesentlichen an derselben Stelle der Banknote gemessen wird. Auf diese Weise wird für diese Stelle nicht nur ein, ggf. normierter, Remissions- bzw. Transmissionswert sondern eine, ggf. normierte, Remissions- bzw. Transmissionskurve erhalten.
- Die von den Sensoren 21 bis 23 der Sensoreinrichtung 20 erzeugten Sensorsignale, insbesondere die entsprechenden Remissions- bzw. Transmissionskurven, werden an eine Steuerungseinrichtung 50 sowie eine Auswertungseinrichtung 51 weitergeleitet. Die Auswertungseinrichtung 51 kann in der Steuerungseinrichtung 50 enthalten sein oder aber auch eine von der Steuerungseinrichtung 50 separate Einheit bilden. Insbesondere weist die Auswerteeinrichtung (51) eine Speicherfunktion zur Vorhaltung vorab berechneter Korrekturparameter auf, die für die Berechnung korrigierter Sensorsignale verwendet werden.
- In der Auswertungseinrichtung 51 werden die Sensorsignale, insbesondere die Remissions- bzw. Transmissionskurven, zur Prüfung der Banknote herangezogen, wobei aus den jeweiligen Sensorsignalen Aussagen über verschiedene Eigenschaften der jeweiligen Banknote abgeleitet werden, wie z.B. Echtheit, Verschmutzungsgrad, Abnutzung, Defekte und das Vorhandensein von Fremdobjekten, wie z.B. Klebestreifen. Abhängig von den in der Auswertungseinrichtung 51 ermittelten Eigenschaften der jeweiligen Banknote werden die Transporteinrichtung 10 sowie die Weichen 11 und 12 entlang der Transportstrecke durch die Steuerungseinrichtung 50 derart gesteuert, dass die Banknote einem von mehreren Ausgabefächern 30 und 31 zugeführt und dort abgelegt wird. Beispielsweise werden in einem ersten Ausgabefach 30 Banknoten abgelegt, die als echt erkannt wurden, während als unecht oder fälschungsverdächtig eingestufte Banknoten in einem zweiten Ausgabefach 31 abgelegt werden. Durch die Bezugsziffer 13 am Ende der dargestellten Transportstrecke soll angedeutet werden, dass weitere Ausgabefächer und/oder andere Einrichtungen, beispielsweise zur Aufbewahrung oder Zerstörung von Banknoten, vorgesehen sein können. Falls beispielsweise die Prüfung einer Banknote ergibt, dass diese echt ist, aber bestimmte Fitnesskriterien hinsichtlich Verschmutzung, Abnutzung, Defekten oder vorhandenen Fremdobjekten nicht erfüllt, so kann diese direkt einem Schredder zur Vernichtung zugeführt werden.
- Das Wertdokumentbearbeitungssystem 1 umfasst im dargestellten Beispiel ferner eine Ein-/ Ausgabeeinrichtung 40 zur Eingabe von Daten und/ oder Steuerungsbefehlen durch eine Bedienperson, beispielsweise mittels einer Tastatur oder eines Touchscreens, und Ausgabe oder Anzeige von Daten und/ oder Informationen zum Bearbeitungsprozess, insbesondere zu den jeweils bearbeiteten Banknoten.
- In der Auswertungseinrichtung 51 werden zur Prüfung der Banknote vorzugsweise korrigierte Sensorsignale, insbesondere entsprechende korrigierte Remissions- bzw. Transmissionskurven, herangezogen, welche das tatsächliche Remissions- bzw. Transmissionsverhalten der Banknote wesentlich genauer wiedergeben als die nicht korrigierten Remissions- bzw. Transmissionskurven. Dies wird im Folgenden näher erläutert.
-
Figur 2 zeigt eine mit der Sensoreinrichtung 20 erhaltene, nicht korrigierte Remissionskurve 15 im Spektralbereich zwischen etwa 400 und 1050 nm im Vergleich mit einer mit einem kalibrierten Spektrometer gemessenen Remissionskurve 16, welche das tatsächliche Remissionsverhalten der betrachteten Stelle der Banknote widerspiegelt. Wie dem Vergleich zu entnehmen ist, zeigt die nicht korrigierte Remissionskurve 15 auffällige Artefakte, die sich in diesem Beispiel als zackenförmige Remissionsspitzen bei etwa 590 nm und etwa 650 nm zeigen. Wie Versuche überraschenderweise ergeben haben, treten diese Remissionsspitzen trotz einer Normierung der Remissionskurve 16 mittels Referenzsignalen, die an einer Weißreferenz ermittelt wurden, auf. - Durch die Erfindung wird unter anderem erreicht, dass solche Remissionsspitzen aus der Remissionskurve 15 eliminiert oder zumindest signifikant reduziert werden, so dass die hierbei erhaltene korrigierte Remissionskurve der tatsächlichen Remissionskurve 16 wesentlich näher kommt.
-
Figur 3 zeigt eine in erfindungsgemäßer Weise korrigierte Remissionskurve 17 im Spektralbereich zwischen etwa 400 und 1050 nm im Vergleich mit der mit einem Spektrometer gemessenen Remissionskurve 16. Wie dem Diagramm zu entnehmen ist, stimmt der Verlauf der korrigierten Remissionskurve 17 erheblich besser mit dem Verlauf der mit dem Spektrometer gemessenen Remissionskurve 16 überein, als dies bei der nicht korrigierten Remissionskurve 15 (vgl.Fig. 2 ) der Fall ist. - Idealerweise entsprechen die spektralen Beleuchtungsverteilungen von LEDs laserähnlichen Dirac-Funktionen bei den entsprechenden Wellenlängen, d.h. sie weisen eine "nadelförmige" spektrale Intensitätsverteilung des emittierten Lichts um eine nominelle Wellenlänge auf. Weil dies in der Praxis jedoch oft nicht der Fall ist, werden die mittels LED-Beleuchtung von Banknoten erhaltenen Remissionskurven etwas verfälscht. So haben die spektralen Beleuchtungsverteilungen von realen LEDs in der Regel eine gewisse Ausdehnung um die nominelle Wellenlänge, so dass das Remissionsspektrum etwas geglättet wird. Diese Emission von Licht wird im Zusammenhang mit der Erfindung auch als Hauptemission bezeichnet. Darüber hinaus hat sich herausgestellt, dass manche LEDs neben der Hauptemission auch Nebenemissionen in ganz anderen Wellenlängenbereichen zeigen, welche die Form der Remissionskurve überraschend auffällig und besonders störend verändern.
- Dem erfindungsgemäßen Ansatz zur Korrektur der Remissions- bzw. Transmissionskurven liegt u.a. die Erkenntnis zugrunde, dass störende Artefakte, insbesondere Remissions- bzw. Transmissionsspitzen durch Nebenemissionen der jeweiligen Lichtquellen, insbesondere LEDs, verursacht werden können. Die erfindungsgemäßen Korrekturverfahren zur rechnerischen Elimination oder zumindest Reduktion dieser Effekte werden nachfolgend näher erläutert.
- Bei einer einfachen numerischen Korrekturmethode könnten die ursprünglichen Remissions- bzw. Transmissionskurven im Bereich der Wellenlängen von LEDs mit Nebenemissionen einfach geglättet werden, z.B. mit einem gleitenden Mittelwert über drei Stützstellen. Hierdurch wird zwar die Darstellung der Kurven auf einfache und schnelle Weise geglättet, aber insbesondere im Fall von stark strukturierten Remissions- bzw. Transmisisonsspektren mit steilen Flanken aber auch möglicherweise neue Artefakte erzeugt.
- Um eine bessere Annäherung der Remissions- bzw. Transmissionskurven an die tatsächlichen Remissionskurven 16 (siehe
Fig. 2 und3 ) bzw. Transmissionskurven zu erreichen, wird vorzugsweise eine Korrekturmethode angewendet, die physikalische Eigenschaften bei den Emissions-, Remissions- bzw. Transmissions- und Detektionsprozesse berücksichtigt. - Dieses Modell wird im Folgenden exemplarisch für Remissionsmessung erläutert, kann aber selbstverständlich auch in völlig analoger Weise auf Transmissionsmessungen angewendet werden.
- Mit Hilfe dieses Modells werden die erzeugten Sensorsignale für eine Remissionskurve mit Kenntnis der Beleuchtungsverteilungen und der Detektorempfindlichkeitsverteilung für alle LEDs simuliert. Wie zuvor erläutert, erfasst die Sensoreinrichtung 20 sowohl die Haupt- als auch die Nebenemissionen der Lichtquellen 24, 25 bzw. die dadurch hervorgerufene Remission bzw. Transmission.
- Für das Sensorsignal Ik , das bei einer Beleuchtung einer Banknote mit der k-ten LED (k = 1 ... n) erzeugt wird, gilt die Formel
- Falls Sk (λ) eine Dirac-Funktion an der Stelle λk wäre, würde gelten
- Bei konkreten Anwendungen kann r(λ) häufig bei diskreten, äquidistanten Wellenlängen λi (i = 1 ... m) liegen. Dementsprechend sind auch Sk (λ) und D(λ) für diese Wellenlängenwerte λi zu bestimmen, gegebenenfalls durch Interpolation.
-
-
-
-
- Unter Berücksichtigung dieses Modells kann dann eine Korrektur der erzeugten Sensorsignale, d.h. der gemessenen Remissionskurven, wie folgt vorgenommen werden.
-
-
- Dabei wird der Remissionsvektor r mit der Diskretisierung bei m Wellenlängen entweder ohne Nebenemissionen mit A0 auf die (korrekten) Sensorsignale BR in den n Strahlungskanälen abgebildet, oder alternativ über die Messung mit Nebenemissionen (R) sowie deren nachfolgender Korrektur über die Korrekturmatrix B. Dabei ist B definiert als B = A 0 A +, wobei A + die Pseudoinverse von A ist. Für den Fall n = m ist A + = A -1 die Inverse der Matrix A.
-
- Mit den Sensoren 21, 22 werden die Sensorsignale R = Ar und W = Aω erhalten. Ohne erfindungsgemäße Korrektur würde man R/W berechnen. Mit Korrektur jedoch wird BR/BW berechnet. Im Fall m = n ergibt dies
- In einer Weiterbildung dieser Methode kann vorgesehen sein, bei der Erstellung von A0 nicht nur die Nebenemissionen der LEDs zu entfernen, sondern zusätzlich deren gaußähnliche oder gar unsymmetrische Verteilungen durch diskrete Dirac-Funktionen bei den Einträgen für den jeweiligen Wellenlängenbereich zu ersetzen. Hierdurch wird der Vorteil erzielt, dass die Kanten der Remissionskurven steiler und damit genauer werden.
- Insgesamt erlaubt die beschriebene Korrekturmethode eine zuverlässige Elimination oder zumindest Reduktion von Remissions- bzw. Transmissionsspitzen aufgrund von Nebenemissionen der Lichtquellen, so dass diese - gerade in Sensor- und/oder Auswertungseinrichtungen mit ausreichend hoher Rechenleistung - in vorteilhafter Weise eingesetzt werden kann. Dabei erfolgt eine spektrale Korrektur unter einer Veränderung der Form des Remissionsspektrums. Diese Korrektur ist dynamisch, d.h. der Korrekturparameter hängt nicht nur von den systematischen (statischen) wechselweisen Störungen der Strahlungsquellenkanäle untereinander, sondern auch von den aktuellen Messwerten der beteiligten Strahlungsquellenkanäle ab.
- Bei einer bevorzugten Variante dieser Methode kann eine zuverlässige Korrektur der Sensorsignale auch bei geringeren Rechenkapazitäten in Echtzeit vorgenommen werden. Hierbei werden zur Bestrahlung der Banknote solche LEDs verwendet, die jeweils höchstens eine Nebenemission aufweisen, welche vorzugsweise nahe bei einer Wellenlänge liegt, bei der eine oder mehrere der jeweils anderen LEDs zur Verfügung steht bzw. stehen, die ihrerseits vorzungsweise keine Nebenemission hat bzw. haben.
- In einem bevorzugten Fall ist die Wellenlänge der Hauptemission der anderen LED um weniger als 120nm von der Wellenlänge der Nebenemission der ersten LED verschoben, stärker bevorzugt um weniger als 50nm, noch stärker bevorzugt um weniger als 10nm, abhängig von der angestrebten spektralen Auflösung der Transmissions- oder Remissionskurven und der Anzahl der Lichtquellen.
- Betrachtet man zunächst den Idealfall, dass die Beleuchtungsverteilung näherungsweise eine schmale Gaußkurve um die Wellenlänge λk ohne Nebenemissionen ist. Dann erhält man näherungsweise
- In
Figur 4 ist exemplarisch die Intensität I der Emission zweier Lichtquellen 24, 24'dargestellt. Zur Korrektur der ersten Lichtquelle 24 mit einer ersten Hauptemission mit einer Wellenlänge λ1 und einer ersten Nebenemission mit einer Wellenlänge λ2 ist die zweite Lichtquelle 24' erforderlich, die eine Hauptemission mit einer Wellenlänge aufweist, die gleich oder ähnlich zur Wellenlänge λ2 der zu korrigierenden Nebenemission der ersten Lichtquelle 24 ist. Für LEDs mit einer Hauptemission bei 570 nm hat es sich beispielsweise gezeigt, dass oft eine Nebenemission bei 850 - 870 nm vorhanden ist. Zur Korrektur wird deshalb eine zweite LED verwendet, die eine Hauptemission bei ca. 850 nm aufweist. -
-
-
- Aus der mittels Sensoren erhaltenen Remission R, dem unverfälschten, d.h. tatsächlichen, Wert r 2/ w2 und dem Korrekturparameter a kann man also den korrigierten, d.h. tatsächlichen, Wert r1 /ω1 der normierten Remission berechnen.
- Der Korrekturparameter a=a2 /a1 wird dabei vorzugsweise anhand von zwei Methoden bestimmt.
- Bei der ersten Methode werden die ai direkt über das Produkt aus der gemessenen spektralen Verteilungen der Lichtemission der Lichtquelle 24 mit der gemessenen Empfindlichkeit des Detektors bzw. der Detektoren bei der Wellenlänge λi bestimmt. In diesem Fall müssen die Intensitäten der Haupt- und Nebenemission der ersten Lichtquelle 24 mit der Nebenemission sowie die Detektorempfindlichkeiten bei den Wellenlängen λ1 und λ2 gemessen werden. Die Intensität der weiteren Lichtquelle 24' die mit ihrer Hauptemission im Bereich von λ2 emittiert muss dabei nicht zwingend vermessen werden.
- Bei der zweiten, messtechnisch einfacheren und genaueren Methode sind keine direkten Messungen der Intensitäten der Lichtquellen oder Detektorempfindlichkeiten nötig. Hierbei wird der Korrekturparameter a aus den bekannten Größen R (Sensorsignale, ggf. normiert) und der tatsächlichen Remission r 1, r 2 einer vorab charakterisierten Testprobe berechnet:
- Die tatsächliche Remission der Testprobe kann durch Verwendung von Standard-Farbtafeln bekannt sein, oder durch direkte Messung mit einem Spektrometer an der Testprobe bestimmt werden. Dabei weist die Testprobe bevorzugt hinreichend hohe Remissionswerte >0,2, besonders bevorzugt >0,5 auf, so dass ausreichend hohe Signalintensitäten und damit eine hinreichende Genauigkeit bei der Bestimmung von a erreicht wird.
- Im allgemeinen Fall mehrerer Lichtquellen mit mehreren Nebenemissionen kann ebenfalls die erste Methode zur Bestimmung der Korrekturmatrix B angewendet werden: Dabei werden über Messungen der Lichtemissionen der k-ten Lichtquelle der Reihe nach die Ski für jede Wellenlänge λ1 bestimmt und mit der zugehörigen Detektorempfindlichkeit Di die Matrixeinträge A-ki=Ski Di Δλ berechnet. Anschließend wird die zugehörige bereinigte Matrix A0 definiert und die Korrekturmatrix B=A0A+ berechnet.
- Alternativ oder zusätzlich zu den vorstehend beschriebenen Methoden umfasst die Erfindung auch die nachfolgend dargelegten Varianten und Ausführungen.
- So können die spektralen Beleuchtungsbeiträge nicht nur von den Haupt- und Nebenemissionen individueller Lichtquellen stammen, sondern auch durch gleichzeitige Beleuchtung des Wertdokuments mit mindestens zwei Lichtquellen mit unterschiedlicher spektraler Verteilung herrühren. Auch in diesem Fall wird durch die erfindungsgemäße Korrektur der Sensorsignale über den erfindungsgemäßen Algorithmus eine korrekte Extraktion der Remissions- bzw. Transmissionskurven ermöglicht.
- Bei einer Variante wird eine Banknote zunächst mit zwei verschiedenen LEDs (LED A und LED B) gleichzeitig und anschließend nur mit einer der beiden LEDs, z.B. LED B, beleuchtet, so dass durch anschließende Differenzbildung A = (A + B) - B auf das Signal geschlossen werden kann, das bei einer Beleuchtung mit LED A alleine erhalten worden wäre.
- In einen bevorzugten Spezialfall dieser Variante emittiert LED A Licht im UV-Bereich, LED B im sichtbaren (VIS-) oder IR-Bereich. Dann kann das UV-Signal ermittelt werden, ohne dass eine alleinige Bestrahlung der Banknote durch die UV-LED erforderlich ist.
- Bei einer weiteren Variante wird die Sensoreinrichtung 20 so gestaltet, dass die Banknote immer gleichzeitig mit LEDs verschiedener Wellenlängenbereiche bestrahlt wird. Beispielsweise kann man die Banknote gleichzeitig mit den verschiedenen Überlagerungen aus LEDs A + B + C, aus LEDs A + B, und aus LEDs A + C nacheinander beleuchten.
- Zur Korrektur der Sensorsignale kann dann der erfindungsgemäße Algorithmus wie oben beschrieben angewendet werden, wenn die Spektren der einzelnen LED-Lichtemissionen durch die Spektren der k-ten kombinierten LED-Überlagerungen verwendet werden. Dabei werden wiederum der Reihe nach die Ski für jede Wellenlänge λi bestimmt und mit der zugehörigen Detektorempfindlichkeit Di die Matrixeinträge Aki=Ski Di Δλ zu berechnet. Anschließend wird die zugehörige bereinigte Matrix A0 definiert und die Korrekturmatrix B=A0A+ berechnet.
Claims (16)
- Vorrichtung zur Prüfung von Wertdokumenten (3), insbesondere Banknoten, mit- mindestens zwei Strahlungsquellen (24, 25) zur Abgabe von elektromagnetischer Strahlung, mit welcher ein Wertdokument (3) bestrahlt wird,- mindestens einem Sensor (21 - 23) zur Erfassung der vom Wertdokument (3) reflektierten und/oder transmittierten elektromagnetischen Strahlung und Erzeugung von entsprechenden Sensorsignalen (R), mit den Strahlungsquellen (24, 25) zugeordneten Komponenten (Rk ), wobei die Sensorsignale entsprechende Reflexions- und/oder Transmissionssignale sind, und- einer Auswertungseinrichtung (51), welche dazu ausgebildet ist, die Wertdokumente basierend auf korrigierten Sensorsignalen zu prüfen und diese korrigierten Sensorsignale (BR; r 1) aus den Sensorsignalen unter Berücksichtigung mindestens einer spektralen Eigenschaft (S k(λ), Ski ; ak , a) der elektromagnetischen Strahlung der mindestens zwei Strahlungsquellen (24, 25) abzuleiten, wobei bei der Ableitung der korrigierten Sensorsignale (BR; r1) mindestens eine Linearkombination aus den unterschiedlichen Strahlungsquellen (24, 25) zugeordneten Komponenten (Rk ) der Sensorsignale (BR; r1 ) gebildet wird,wobei die mindestens eine spektrale Eigenschaft (ak, a) der elektromagnetischen Strahlung der Strahlungsquelle (24, 25) durch mindestens einen Parameter (ak , a) gegeben ist, welcher einen oder mehrere spektrale Anteile der elektromagnetischen Strahlung der Strahlungsquelle (24, 25) charakterisiert., undwobei mindestens ein erster Parameter (a1) den spektralen Anteil einer Hauptemission der elektromagnetischen Strahlung der Strahlungsquellen (24, 25) und mindestens ein zweiter Parameter (a2) den spektralen Anteil einer Nebenemission der elektromagnetischen Strahlung der Strahlungsquellen (24, 25) charakterisiert.
- Vorrichtung nach Anspruch 1, wobei die mindestens eine spektrale Eigenschaft (Sk (λ), Ski ) der elektromagnetischen Strahlung der mindestens zwei Strahlungsquellen (24, 25) durch mindestens eine spektrale Verteilung (Sk (λ), Ski ) der elektromagnetischen Strahlung von mindestens einer Strahlungsquelle (24, 25) gegeben ist.
- Vorrichtung nach Anspruch 2, wobei die mindestens eine spektrale Verteilung (Sk (λ), Ski ) der elektromagnetischen Strahlung von mindestens einer der mindestens zwei Strahlungsquellen (24, 25) durch eine erste spektrale Verteilung (Sk (λ), Ski ) der von mindestens einer der mindestens zwei Strahlungsquellen (24, 25) abgegebenen elektromagnetischen Strahlung und eine von der ersten spektralen Verteilung (Sk (λ), Ski ) verschiedene zweite spektrale Verteilung der elektromagnetischen Strahlung gegeben ist.
- Vorrichtung nach Anspruch 3, wobei die erste spektrale Verteilung (Sk (λ), Ski ) einer spektralen Verteilung der von mindestens einer der der mindestens zwei Strahlungsquellen (24, 25) abgegebenen elektromagnetischen Strahlung mit einer Hauptemission und mindestens einer Nebenemission entspricht und die zweite spektrale Verteilung der ersten spektralen Verteilung (S'k (λ), S'ki ) ohne die mindestens eine Nebenemission entspricht.
- Vorrichtung nach Anspruch 4, wobei die Wellenlänge der Hauptemission einer zweiten Strahlungsquelle (24, 25) um weniger als 120nm, bevorzugt von weniger als 50nm, noch bevorzugter von weniger als 10nm von der Wellenlänge der Nebenemission einer ersten Strahlungsquelle verschoben ist.
- Vorrichtung nach einem der Ansprüche 2 bis 5, wobei die Auswertungseinrichtung (51) dazu ausgebildet ist, die korrigierten Sensorsignale (BR) durch eine Multiplikation der Sensorsignale (R) mit einer Korrekturmatrix (B) zu ermitteln, welche aus der mindestens einen spektralen Verteilung (Ski , k = 1 ... n, i = 1 ... m) der elektromagnetischen Strahlung einer ersten Anzahl (n) von Strahlungsquellen (24, 25) bei einer zweiten Anzahl (m) von diskreten Wellenlängen (λi ) und mindestens einem spektralen Verlauf (Di ) der Empfindlichkeit des mindestens einen Sensors (21-23) für elektromagnetische Strahlung abgeleitet wird, und wobei die Korrekturmatrix (B) mindestens ein von 0 verschiedenes Nichtdiagonalelement aufweist.
- Vorrichtung nach Anspruch 6, wobei die spektralen Verteilungen (Ski , i = 1 ... m) der elektromagnetischen Strahlung der individuellen Strahlungsquellen (k = 1...n) nicht alle identisch sind oder alle verschieden sind.
- Vorrichtung nach Anspruch 6 oder 7, wobei die Korrekturmatrix (B) dem Produkt aus einer zweiten Matrix (A 0) und einer Pseudoinversen (A +) einer ersten Matrix (A) entspricht (B = A 0 A+), wobei die Matrixelemente (Aki, k = 1 ... n, i = 1 ... m) der ersten Matrix (A) dem Produkt aus der ersten spektralen Verteilung (Ski , k = 1 ... n, i = 1 ... m) der von der ersten Anzahl (n) von Strahlungsquellen (24, 25) bei einer zweiten Anzahl (m) von diskreten Wellenlängen (λ i) abgegebenen elektromagnetischen Strahlung mit dem spektralen Verlauf (Di) der Empfindlichkeit des mindestens einen Sensors (21 - 23) und einem Wellenlängenabstandswert (Δλ) zwischen jeweils zwei diskreten Wellenlängen (λi ) entsprechen (Aki = Ski Di Δλ).
- Vorrichtung nach Anspruch 8, wobei die Matrixelemente der zweiten Matrix (A0 ) dem Produkt aus der zweiten spektralen Verteilung (S' ki ) der elektromagnetischen Strahlung mit dem spektralen Verlauf (Di ) der Empfindlichkeit des mindestens einen Sensors (21 - 23) und einem Wellenlängenabstandswert (Δλ) zwischen jeweils zwei diskreten Wellenlängen (λi , i = 1 ... m) entsprechen (Aki = S' ki Di Δλ).
- Vorrichtung nach Anspruch 1, wobei die Auswertungseinrichtung (51) dazu ausgebildet ist, die korrigierten Sensorsignale (r1) aus den Sensorsignalen (R) unter Berücksichtigung des ersten und eines zweiten Parameters (a1, a2 ) oder eines aus dem ersten und zweiten Parameter (a1 , a2 ) abgeleiteten Parameters (a), welcher insbesondere dem Quotienten (a1 /a2 ) aus dem ersten und zweiten Parameter (a1, a2) entspricht, abzuleiten.
- Vorrichtung nach Anspruch 10, wobei die Auswertungseinrichtung (51) dazu ausgebildet ist, bei der Ableitung der korrigierten Sensorsignale (r 1) aus den Sensorsignalen (R) ferner einen Wert (R 2) zu berücksichtigen, welcher ein Maß für die vom Wertdokument (3) ausgehende, insbesondere vom Wertdokument (3) reflektierte und/oder transmittierte, elektromagnetischen Strahlung im Bereich der Nebenemission der elektromagnetischen Strahlung der Strahlungsquelle (24, 25) darstellt.
- Vorrichtung nach einem der vorangehenden Ansprüche, wobei die Auswertungseinrichtung (51) dazu ausgebildet ist, die korrigierten Sensorsignale (BR; r 1) anhand von korrigierten Referenzsignalen (BW; ω 1) zu normieren (BR/BW; r1 /ω1 ), wobei die korrigierten Referenzsignale (BW; ω1 ) aus Referenzsignalen (W), die von dem mindestens einen Sensor (21 - 23) bei der Erfassung der von einem Referenzdokument ausgehenden elektromagnetischen Strahlung erzeugt werden, unter Berücksichtigung der mindestens einen spektralen Eigenschaft (Sk (λ), Ski ; a1 , a2 ) der elektromagnetischen Strahlung der mindestens zwei Strahlungsquellen (24, 25) abgeleitet werden.
- Vorrichtung nach Anspruch 12, wobei die Auswertungseinrichtung (51) dazu ausgebildet ist, bei der Ableitung der korrigierten Referenzsignale (BW) aus den Referenzsignalen (W) die Empfindlichkeit des mindestens einen Sensors (21 - 23) für elektromagnetische Strahlung, insbesondere in Form eines spektralen Verlaufs (D(λ), Di ) der Empfindlichkeit des mindestens eines Sensors (21 - 23), zu berücksichtigen.
- Vorrichtung nach einem der vorangehenden Ansprüche, wobei die Auswerteeinrichtung (51) eine Speicherfunktion zur Vorhaltung vorab berechneter Korrekturparameter (B, a k, a) beinhaltet.
- Wertdokumentbearbeitungssystem (1) mit mindestens einer Vorrichtung (2, 8, 10 - 13, 30, 31, 50) zum Bearbeiten, insbesondere zum Befördern und/oder Zählen und/oder Sortieren, von Wertdokumenten (3), insbesondere Banknoten, und einer Vorrichtung (21 - 23, 51) zur Prüfung von Wertdokumenten (3) nach einem der vorangehenden Ansprüche.
- Verfahren zur Prüfung von Wertdokumenten (3), insbesondere Banknoten mittels einer Vorrichtung nach einem der Ansprüche 1 bis 14 mit folgenden Schritten:- Bestrahlung eines Wertdokuments (3) mit elektromagnetischer Strahlung mindestens zweier Strahlungsquellen (24, 25),- Erfassung der vom Wertdokument (3) reflektierten und/oder transmittierten elektromagnetischen Strahlung und Erzeugung von entsprechenden Sensorsignalen, mit den Strahlungsquellen zugeordneten Komponenten, wobei die Sensorsignale entsprechende Reflexions- und/ oder Transmissionssignale sind, und- Ableitung von korrigierten Sensorsignalen aus den Sensorsignalen unter Berücksichtigung mindestens einer spektralen Eigenschaft (Sk (λ), Ski ; ak , a) der elektromagnetischen Strahlung der mindestens zwei Strahlungsquellen (24, 25), wobei bei der Ableitung der korrigierten Sensorsignale mindestens eine Linearkombination aus den unterschiedlichen Strahlungsquellen zugeordneten Komponenten der Sensorsignale gebildet wird,wobei die mindestens eine spektrale Eigenschaft (ak , a) der elektromagnetischen Strahlung der Strahlungsquelle (24, 25) durch mindestens einen Parameter (ak , a) gegeben ist, welcher einen oder mehrere spektrale Anteile der elektromagnetischen Strahlung der Strahlungsquelle (24, 25) charakterisiert., undwobei mindestens ein erster Parameter (a1) den spektralen Anteil einer Hauptemission der elektromagnetischen Strahlung der Strahlungsquellen (24, 25) und mindestens ein zweiter Parameter (a 2) den spektralen Anteil einer Nebenemission der elektromagnetischen Strahlung der Strahlungsquellen (24, 25) charakterisiert und- prüfen der Wertdokumente basierend auf den korrigierten Sensorsignalen.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102014015746.6A DE102014015746A1 (de) | 2014-10-24 | 2014-10-24 | Vorrichtung und Verfahren zur Prüfung von Wertdokumenten, insbesondere Banknoten, sowie Wertdokumentbearbeitungssystem |
PCT/EP2015/002120 WO2016062409A1 (de) | 2014-10-24 | 2015-10-23 | Vorrichtung und verfahren zur prüfung von wertdokumenten, insbesondere banknoten, sowie wertdokumentbearbeitungssystem |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3210195A1 EP3210195A1 (de) | 2017-08-30 |
EP3210195B1 true EP3210195B1 (de) | 2023-09-20 |
Family
ID=54477993
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15791248.6A Active EP3210195B1 (de) | 2014-10-24 | 2015-10-23 | Vorrichtung und verfahren zur prüfung von wertdokumenten, insbesondere banknoten, sowie wertdokumentbearbeitungssystem |
Country Status (4)
Country | Link |
---|---|
US (1) | US10109133B2 (de) |
EP (1) | EP3210195B1 (de) |
DE (1) | DE102014015746A1 (de) |
WO (1) | WO2016062409A1 (de) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102016002897A1 (de) * | 2015-04-28 | 2016-11-03 | Giesecke & Devrient Gmbh | Wertdokumentbearbeitungsvorrichtung mit einem Datenkommunikationssystem und Verfahren zur Verteilung von Sensordaten in einer Wertdokumentbearbeitungsvorrichtung |
CN107481391B (zh) * | 2017-07-03 | 2019-11-19 | 广州广电运通金融电子股份有限公司 | 纸币涂鸦的检测方法及装置 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7113615B2 (en) * | 1993-11-18 | 2006-09-26 | Digimarc Corporation | Watermark embedder and reader |
GB0025096D0 (en) | 2000-10-13 | 2000-11-29 | Bank Of England | Detection of printing and coating media |
EP1403333A1 (de) * | 2002-09-24 | 2004-03-31 | Sicpa Holding S.A. | Verfahren und Tintensatz zur Markierung und Beurkundung von Artikeln |
DE10314071B3 (de) * | 2003-03-28 | 2004-09-30 | Koenig & Bauer Ag | Verfahren zur qualitativen Beurteilung eines Materials mit mindestens einem Erkennungsmerkmal |
JP5002421B2 (ja) * | 2007-11-14 | 2012-08-15 | 富士フイルム株式会社 | 撮像装置及び撮像方法 |
US8593476B2 (en) * | 2008-02-13 | 2013-11-26 | Gary Demos | System for accurately and precisely representing image color information |
CN102138165B (zh) | 2008-07-29 | 2014-04-30 | 梅伊有限公司 | 基于通货项的谱响应来分类和区分通货项 |
DE102008064389A1 (de) * | 2008-12-22 | 2010-06-24 | Giesecke & Devrient Gmbh | Verfahren und Vorrichtung zur Erfassung optischer Eigenschaften eines Wertdokuments |
US8358318B2 (en) * | 2009-07-31 | 2013-01-22 | Eastman Kodak Company | Method for reproducing an image on an imaging device |
DE102011016509A1 (de) * | 2011-04-08 | 2012-10-11 | Giesecke & Devrient Gmbh | Verfahren zur Prüfung von Wertdokumenten |
JP5834584B2 (ja) * | 2011-07-25 | 2015-12-24 | ソニー株式会社 | 情報処理装置、情報処理方法、プログラム及び蛍光スペクトルの強度補正方法 |
-
2014
- 2014-10-24 DE DE102014015746.6A patent/DE102014015746A1/de active Pending
-
2015
- 2015-10-23 WO PCT/EP2015/002120 patent/WO2016062409A1/de active Application Filing
- 2015-10-23 US US15/521,376 patent/US10109133B2/en active Active
- 2015-10-23 EP EP15791248.6A patent/EP3210195B1/de active Active
Also Published As
Publication number | Publication date |
---|---|
US10109133B2 (en) | 2018-10-23 |
US20170309106A1 (en) | 2017-10-26 |
WO2016062409A1 (de) | 2016-04-28 |
EP3210195A1 (de) | 2017-08-30 |
DE102014015746A1 (de) | 2016-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2824849C2 (de) | Verfahren und Vorrichtung zur Feststellung des Zustandes und/oder der Echtheit von Blattgut | |
EP2625673B1 (de) | Verfahren zum prüfen eines optischen sicherheitsmerkmals eines wertdokuments | |
DE2320731A1 (de) | Faelschungsgesichertes wertpapier und einrichtung zur echtheitspruefung derartiger wertpapiere | |
EP2761604B1 (de) | Verfahren zum prüfen der herstellungsqualität eines optischen sicherheitsmerkmals eines wertdokuments | |
WO2001061654A2 (de) | Verfahren und vorrichtungen zur echtheitsprüfung von bedruckten objekten | |
EP1456819B1 (de) | Verfahren und vorrichtungen für die überprüfung der echtheit von blattgut | |
EP2936455B1 (de) | Sensor und verfahren zur prüfung von wertdokumenten | |
EP3108461B1 (de) | Verfahren zum untersuchen eines wertdokuments und mittel zur durchführung des verfahrens | |
EP2997553B1 (de) | Vorrichtung und verfahren zur prüfung von wertdokumenten, insbesondere banknoten, sowie wertdokumentbearbeitungssystem | |
EP3210195B1 (de) | Vorrichtung und verfahren zur prüfung von wertdokumenten, insbesondere banknoten, sowie wertdokumentbearbeitungssystem | |
EP3400584A1 (de) | Vollständigkeitsprüfung eines wertdokuments | |
EP3443542B1 (de) | Vorrichtung und verfahren zur prüfung von wertdokumenten, insbesondere banknoten, sowie wertdokumentbearbeitungssystem | |
EP2695146B1 (de) | Verfahren zur prüfung von wertdokumenten | |
EP1567991B1 (de) | Verfahren und vorrichtung zur prüfung von wertdokumenten | |
EP4186041B1 (de) | Sensor und verfahren zur prüfung von wertdokumenten, insbesondere banknoten, sowie wertdokumentbearbeitungsvorrichtung | |
EP4295333B1 (de) | Sensor zur prüfung der lumineszenz von wertdokumenten | |
EP4295332B1 (de) | Sensor zur prüfung von wertdokumenten | |
EP2920769A1 (de) | Vorrichtung und verfahren zur prüfung von wertdokumenten | |
EP3516634B1 (de) | Verfahren und vorrichtung zur erkennung von farbabnutzungen an einer banknote, sowie wertdokumentbearbeitungssystem |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20170524 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20210525 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
RAP3 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: GIESECKE+DEVRIENT CURRENCY TECHNOLOGY GMBH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 502015016602 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: G07D0007120000 Ipc: G07D0007200000 Ref country code: DE Ref legal event code: R079 Free format text: PREVIOUS MAIN CLASS: G07D0007120000 Ipc: G07D0007200000 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: G07D 7/00 20160101ALI20230428BHEP Ipc: G07D 7/06 20060101ALI20230428BHEP Ipc: G07D 7/1205 20160101ALI20230428BHEP Ipc: G07D 7/187 20160101ALI20230428BHEP Ipc: G07D 7/20 20160101AFI20230428BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230519 |
|
INTG | Intention to grant announced |
Effective date: 20230609 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502015016602 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231221 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20230920 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230920 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230920 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231220 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230920 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230920 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230920 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231221 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230920 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20231031 Year of fee payment: 9 Ref country code: CH Payment date: 20231102 Year of fee payment: 9 Ref country code: AT Payment date: 20231024 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230920 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230920 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230920 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230920 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240120 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230920 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230920 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230920 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230920 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240122 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230920 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230920 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20231031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231023 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502015016602 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231023 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230920 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230920 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230920 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230920 |
|
26N | No opposition filed |
Effective date: 20240621 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20231220 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231023 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231220 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230920 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230920 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231023 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231220 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231120 |