EP3298181A1 - Method for applying an overgrowth layer onto a seed layer - Google Patents
Method for applying an overgrowth layer onto a seed layerInfo
- Publication number
- EP3298181A1 EP3298181A1 EP15724285.0A EP15724285A EP3298181A1 EP 3298181 A1 EP3298181 A1 EP 3298181A1 EP 15724285 A EP15724285 A EP 15724285A EP 3298181 A1 EP3298181 A1 EP 3298181A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- layer
- mask
- seed layer
- overgrowth
- seed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 238000000034 method Methods 0.000 title claims abstract description 94
- 208000012868 Overgrowth Diseases 0.000 title claims abstract description 42
- 239000004065 semiconductor Substances 0.000 claims abstract description 12
- 238000004519 manufacturing process Methods 0.000 claims abstract description 10
- 230000000873 masking effect Effects 0.000 claims abstract description 6
- 239000000463 material Substances 0.000 claims description 97
- 238000000576 coating method Methods 0.000 claims description 45
- 239000011248 coating agent Substances 0.000 claims description 44
- 239000010702 perfluoropolyether Substances 0.000 claims description 5
- -1 Polydimethylsiloxane Polymers 0.000 claims description 4
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims description 4
- 238000005234 chemical deposition Methods 0.000 claims description 4
- 238000000926 separation method Methods 0.000 claims description 3
- 239000012467 final product Substances 0.000 claims description 2
- 238000001127 nanoimprint lithography Methods 0.000 claims description 2
- 125000000962 organic group Chemical group 0.000 claims description 2
- 229920001296 polysiloxane Polymers 0.000 claims description 2
- 238000005507 spraying Methods 0.000 claims description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 claims 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims 2
- 239000006228 supernatant Substances 0.000 claims 1
- 239000000758 substrate Substances 0.000 description 38
- 238000004049 embossing Methods 0.000 description 22
- 238000001723 curing Methods 0.000 description 14
- 238000005530 etching Methods 0.000 description 10
- 239000013078 crystal Substances 0.000 description 9
- 230000007547 defect Effects 0.000 description 9
- 238000010943 off-gassing Methods 0.000 description 9
- 210000001654 germ layer Anatomy 0.000 description 8
- 239000007789 gas Substances 0.000 description 7
- 239000002070 nanowire Substances 0.000 description 7
- 239000007795 chemical reaction product Substances 0.000 description 5
- 238000000151 deposition Methods 0.000 description 5
- 230000005670 electromagnetic radiation Effects 0.000 description 5
- 239000003999 initiator Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 230000008021 deposition Effects 0.000 description 4
- 238000001459 lithography Methods 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- 230000006911 nucleation Effects 0.000 description 4
- 238000010899 nucleation Methods 0.000 description 4
- 239000005368 silicate glass Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000002086 nanomaterial Substances 0.000 description 3
- 229920002120 photoresistant polymer Polymers 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 235000012431 wafers Nutrition 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 239000005385 borate glass Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- 150000004760 silicates Chemical class 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000001029 thermal curing Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- 235000014277 Clidemia hirta Nutrition 0.000 description 1
- 238000002231 Czochralski process Methods 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 241000069219 Henriettea Species 0.000 description 1
- 229910000673 Indium arsenide Inorganic materials 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052910 alkali metal silicate Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000005354 aluminosilicate glass Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000005387 chalcogenide glass Substances 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 210000004602 germ cell Anatomy 0.000 description 1
- 239000005283 halide glass Substances 0.000 description 1
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 description 1
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000005286 inorganic non-metallic glass Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 239000005300 metallic glass Substances 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000005285 non-oxidic glass Substances 0.000 description 1
- 239000005281 nonmetallic glass Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000005280 organic non-metallic glass Substances 0.000 description 1
- 239000000075 oxide glass Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002096 quantum dot Substances 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000007779 soft material Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/0002—Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B23/00—Single-crystal growth by condensing evaporated or sublimed materials
- C30B23/02—Epitaxial-layer growth
- C30B23/04—Pattern deposit, e.g. by using masks
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/04—Pattern deposit, e.g. by using masks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02373—Group 14 semiconducting materials
- H01L21/02381—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/0242—Crystalline insulating materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/02433—Crystal orientation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02636—Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
- H01L21/02639—Preparation of substrate for selective deposition
- H01L21/02642—Mask materials other than SiO2 or SiN
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02636—Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
- H01L21/02647—Lateral overgrowth
Definitions
- the invention relates to a method for applying a
- Semiconductor devices are fabricated directly on single crystal substrates that are extremely high in purity and relatively low in size
- Such semiconductor substrates are processed by special processes, in particular the Czochralski process,
- Such methods usually produce a very large single crystal, which is sawn or cut in further process steps to the individual substrates.
- Masks are mostly produced by photolithographic processes with several process steps. In a first process step, a photoresist must be applied. Thereafter, the photoresist is exposed, developed and etched. In many cases, no simple, based on polymer-based, photoresists can be used because the masks must consist of a hard material layer. Accordingly,
- the object of the present invention is therefore to specify a more efficient method for applying a UV growth layer to a seed layer.
- baskspruchbar any combination can be baskspruchbar.
- the invention is based on the idea of a method for
- the invention relates to a, in particular independent, aspect of a method for producing masks, in particular
- Hard masks using an imprint technique.
- the masks are used to make lateral growth structures.
- Nanodots and / or nanowires and / or other nanostructures are disclosed.
- a core of the invention consists in particular in the application of an imprint technique and the use of suitable embossing materials as mask material, which are structured with the aid of imprint technology and which are further processed, in particular by a process step
- Heat treatment can be converted into an oxide.
- the embossing composition (mask material) is applied to the germ layer, in particular in liquid form, and then by a Imprintrea structured and converted in a further process step in particular in a hard material layer.
- the invention describes a method with which a mask for producing a semiconductor component can be produced by means of imprint lithography.
- the mask thus serves to produce a lateral growth structure.
- the overgrowth structure is preferably a monocrystalline and / or epitaxial layer of a
- Coating material which grows on a seed layer surface and continues it monocrystalline and / or epitaxially.
- a monocrystalline layer is understood as meaning, in particular, a layer in which the upper has no grain boundaries.
- an epitaxial layer is understood as meaning, in particular, a layer which has at least one crystal orientation which coincides with the crystal orientation of the surface on which it grows up (seed layer).
- monocrystalline and / or epitaxial layer begins to grow is referred to as a seed layer or seed layer surface.
- the substrates are preferably wafers.
- the wafers are standardized substrates with well-defined, standardized diameters.
- the substrates may generally have any shape.
- the diameters of the substrates can generally be any however, they may preferably be of any of the standard diameters of 1 in., 2 in., 3 in., 4 in., 5 in., 6 in., 8 in., 12 in. and 18 in., and 125, 150, 200, 300 or 470 mm ,
- Embodiments however, predominantly on wafers.
- Embossing stamps are used.
- the stamp can be a hard stamp, a soft stamp or a foil stamp.
- a hard punch is understood to mean a punch which has been produced from a material with a high modulus of elasticity (modulus of elasticity).
- modulus of elasticity of the Hartstempeis lies in particular between 1 GPa and
- 1000 GPa preferably between 10 GPa and 1000 GPa, more preferably between 25 GPa and 1000 GPa, most preferably between 50 GPa and 1000 GPa, most preferably between 100 GPa and
- the modulus of elasticity of some steel grades is around 200 GPa.
- Preferred materials for hard punches are:
- o pure metals in particular Ni, Cu, Co, Fe, Al and / or W,
- Ceramics especially glasses, preferably
- Non-metallic glasses in particular ⁇ Organic non-metallic glasses or
- Halide glasses or chalcogenide glasses or
- Oxide glasses in particular phosphatic glasses or silicate glasses, in particular aluminosilicate glasses or lead silicate glasses or alkali silicate glasses, preferably alkali earth alkaline silicate glasses, or borosilicate glasses or borate glasses, preferably alkali borate glasses, or
- a soft material is a stamp made of a material with a low modulus of elasticity.
- the modulus of elasticity is in particular between 1 GPa and 1000 GPa, preferably between 1 GPa and 500 GPa, more preferably between 1 GPa and 100 GPa, most preferably between 1 GPa and 10 GPa, most preferably between 1 GPa and 5 GPa ,
- the modulus of elasticity of polyamides is between 3 GPa and 6 GPa.
- Preferred materials for soft stamps are:
- a film stamp is understood to mean a stamp which consists of a film which is pressed into the embossing composition (mask material) by a further application device, in particular a roller.
- a film stamp is in the document WO2014 / 037044A1 discloses what is referred to.
- the film stamp can also be regarded as a soft stamp. Due to its lower bending resistance, in particular due to a small thickness of the film, the film stamp can be considered as a separate Stkov or as an advantageous embodiment of a Weichstempcls.
- the seed layer is either a layer applied to a substrate or the substrate represents the seed layer itself.
- the seed layer is preferably monocrystalline and / or epitaxial.
- the Kcim harshobcrflambac has in particular a very small
- Roughness is reported as either average roughness, square roughness or average roughness. The values determined for the average roughness, the square roughness and the average roughness depth differ in particular for the same measuring section or measuring curses, but are preferably the same
- the following roughness numerical value ranges are to be understood as either average roughness, squared roughness, or average roughness. Since the seed layer surfaces are preferably around
- the classic notion of roughness may not apply here.
- the specified roughness values is in particular the height difference between the lowest, at least at one point exposed and the uppermost crystallographic level of
- the roughness of the seed layer surface is in particular less than 1 ⁇ m, preferably less than 100 nm, more preferably less than 10 nm, most preferably less than 1 nm, most preferably less than 0.1 nm.
- the preferred crystallographic orientations of the seed layer are ⁇ 100 ⁇ and ⁇ I 1 1 ⁇ orientation.
- Other conceivable and preferred crystallographic orientations are ⁇ 1 10 ⁇ , ⁇ 21 1 ⁇ , ⁇ 221 ⁇ , and ⁇ 31 1 ⁇ orientations.
- Preferred seed layer materials are:
- Particularly preferred seed layer materials according to the invention are: Si, sapphire.
- embossing material / mask material for the formation of the mask can basically serve any kind of material that • can be deposited on a surface, especially wet-chemical, and / or
- nanoimprint lithography is structurable, in particular, permits a correspondingly high resolution of the structures, in particular micro and / or nanostructures, and / or is etchable in the case of an existing residual layer and / or
- the coating temperatures of the coating material endure without decomposing and / or deforming and / or overreacting with the coating material, and / or
- silsesquioxanes SSQ
- PES polyhedral oligomeric silsesquioxanes
- the invention is further based on, in particular independent, idea to produce a Regemasse from a special mixture.
- the mixture consists of at least one main component and
- the main component is preferably a silsesquioxane.
- the following materials would also be conceivable according to the invention:
- TEOS Tetraethyl orthosilicate
- PFPE Perfluoropolyether
- the minor components may consist of any organic and / or inorganic compound.
- These secondary components can an arbitrarily complicated "organic with preference to have structure. Accordingly, links may be composed of a combination of the elements of the following list.
- all of the chemical compounds in the list can exist as a monomer or polymer.
- At least one of the secondary components is preferably an organic, in particular one of the following compounds: at
- the minor component can belong to the same functional group as the organic, functional groups of the main component.
- the secondary component may already have been bonded to the main component by a chemical reaction, in particular by an addition and / or condensation and / or substitution reaction.
- Solvents are always used to dissolve the main component, the initiators and the organic component according to the invention, with the aid of which the adjustment and / or influencing of the hydrophilicity or hydrophobicity takes place.
- the solvents are preferably removed from the embossing composition according to the invention or escape by themselves. Preference is given to using one of the following solvents:
- the main components and the minor components are combined with initiators which initiate the chain reaction in one
- the main component By mixing the main component with the minor component and the initiator, activation of the initiator leads to polymerization, especially or at least predominantly between organic parts of the main components. It may be that the minor components partially participate in the polymerization. In particular, only the main components polymerize with each other. In the polymerization arise long-chain molecules and / or entire 2D and / or 3D networks, preferably with a specially adjustable number of monomers. The number of monomers is greater than 1, more preferably greater than 10, more preferably greater than 100, most preferably greater than 1000, most preferably polymerizing the monomers into a complete 2D and / or 3D network.
- PrSmaterial and mask material are used as synonyms.
- Coating material also upper layer material
- the coating material is in particular to
- the coating material is preferably identical to the seed layer material, so that the seed layer passes through the process according to the invention, preferably seamlessly, by overgrowth of the mask openings into the overgrowth layer to be produced.
- seed layer material and coating material can also be different.
- Suitable coating materials and / or seed layer materials are, in particular, the following materials:
- Materials preferred according to the invention are: Si, GaAs, GaN, InP, InxGa (j -X) N, InSb, InAs.
- the Kcim harshober Design may either be the surface of a deposited on the substrate seed layer or, in particular consisting of the substrate material, substrate surface itself serves as Kcim harshober Design.
- the seed layer surface serves in the application of the
- Overgrowth layer in particular as nucleation point for the to be produced, in particular monocrystalline and / or epitaxial,
- the seed layer consists of the same materal valley as the coating material from which the overgrowth layer is produced.
- the invention also conceivable is the
- the seed layer ensures the nucleation of the overgrowth layer and according to the invention provides access to the seed layer surface, in particular in areas to which the overgrowth layer is intended to grow.
- the seed layer can thus be applied only at defined locations on a substrate surface, that is to say it is not over the entire surface.
- the deposition of the mask material onto the cement layer surface takes place.
- the application can be made by the following methods: Physical precipitation methods, in particular PVD, and / or
- Chemical deposition processes in particular CVD, preferably PE-CVD, and / or
- the positioning of a prism stamp over the deposited mask material takes place.
- alignment of the embossing stamp relative to the substrate and / or the seed layer surface is performed.
- the structuring of the mask material takes place.
- the structuring is carried out according to the invention preferably by a
- Imprint lithography method most preferably by a
- Nanoimprintlithographiemethode The aim of the Imprintlithogaphiemethode is the structuring of the mask material.
- the mask material should be structured so that in a minimum number of
- Structuring steps a layer with a defined number of mask passages / mask openings per unit area, arises.
- the number of structuring steps c is in particular less than 10, preferably less than 5, more preferably less than 3, on
- Mask passages / mask openings is in particular greater than 1 per m 2 , preferably greater than 10 3 per m 2 , more preferably greater than 10 7 per m 2 , most preferably greater than 10 "per m 2 , on
- the raised ones displace
- Structures of the embossing stamp the mask material up to the stop of the structures on the germ layer surface. This prevents the formation of a residual layer and directly marks the desired mask structure.
- a subsequent etching step for exposing the areas of the seed layer surface to be coated with the over-growth layer material can then be dispensed with.
- the mask material When cured, the mask material is thermally cured.
- the thermal curing is carried out by heat.
- the temperature at the mask material is more than 50 ° C, preferably more than 100 ° C, more preferably more than 250 ° C, even more preferably more than 500 ° C, even more preferably more than 750 ° C.
- a preferred temperature is between 500 ° C to 600 ° C.
- An even more preferred temperature in this case is between 50 ° C and 200 ° C.
- the heat can be introduced via the substrate and / or the stamp. If the heat is introduced via the stamp, the stamp should have the highest possible thermal
- the curing takes place by electromagnetic radiation.
- the substrate and / or the stamp are at least partially, preferably predominantly, transparent for the respective wavelength range.
- the stamp has the above transparency, so that any substrates can be used.
- the curing is carried out by ultraviolet light (UV light, preferably)
- the electromagnetic radiation has in particular a wavelength in the range zwi1e0nnm and 2000nm, preferably between l 0nm and 1500nm, more preferably zwisch1e0nnm and 1000nm, most preferably between 10nm and 500nm, most of all between 10nm and 400nm.
- Curing is usually associated with the production of gases. These gases are preferably expelled before a top wax of the mask to avoid blistering.
- the curing of the mask takes place in the coating chamber, in particular simultaneously with the coating. This will make it possible to get an extra
- the coating chamber is preferably carried out when
- the temperature which allows a complete outgassing of the mask is and / or
- the mask will be in a separate separate layer before coating
- Heat treatment step cured.
- the following parameter sets apply to the embossing punch, regardless of the type of curing.
- the thermal conductivity of the embossing die should be as high as possible to ensure the fastest possible heat transfer.
- the thermal conductivity lies in particular between 0. 1 W / (m * K) and 5000 W / (m * K), preferably between 1 W / (m * K) and 5000 W / (m * K), more preferably between 100 W / (m * K) and 5000 W / (m), on
- the kapiztician the stamping die is as small as possible to prevent storage of heat.
- the heat capacity at constant volume differs only marginally from that at moderate temperatures and pressures
- Patent specification is therefore not distinguished between the two heat capacities. Furthermore, specific heat capacities are specified.
- the specific heat capacity of the embossing stamp is in particular less than, preferably less than 10
- the thermal expansion coefficient of the stamp should be as small as possible in order to minimize distortion of the stamp by the high temperature differences.
- Expansion coefficient is in particular smaller than
- the demolding of the stamping die is preferably carried out without a
- the etching of the residual layer takes place, if such a residual layer is present.
- this residual layer is formed as thin as possible. The thinner the residual layer, the faster the etching process can be carried out.
- the residual layer thickness is in particular less than 1 ⁇ m, preferably less than 100 nm, more preferably less than 10 nm, most preferably less than 1 nm
- one or more of the etching chemicals are suitable
- Inorganic acids in particular HF, HCl, H 2 SO 4 , HNO 3 and / or H 3 PO 4 ,
- Process step takes place the coating of the accessible areas of the seed layer surface.
- the coating is carried out in particular by Deposition of components (overgrowth layer material), in particular atoms, on the seed layer surfaces accessible through the mask openings.
- components are deposited on the mask surface. Therefore, components with extremely high mobility are chosen. These diffuse from the mask surface into the mask openings and are then preferably deposited on the seed layer surface, so that a continuous filling of the mask openings at the in the
- Mask openings into and preferably upwardly growing seed layer takes place while the mask surfaces largely, preferably completely, remain free of the coating material.
- the coating process preferably takes place at high temperatures.
- the coating temperature is greater than 50 ° C, preferably greater than 200 ° C, more preferably greater than 500 ° C, even more preferably greater than 1000 ° C, even more preferably greater than 1500 ° C.
- the growth of the overgrowth layer takes place in particular in
- the growth processes preferably take place according to one of the layer growth types listed below:
- Seed layer surface of the seed layer which is the first nucleus plane represents.
- outgassing of the mask material due to the extremely high coating temperatures, in particular parallel to the layer growth, outgassing of the mask material.
- the outgassing should be completed before layer growth, otherwise the quality of the layer suffers.
- the outgassing is particularly due to the escape of inorganic and / or organic components, especially in SSQ materials. Due to the outgassing and combustion of the organic components, in particular in the SSQ material, this is continuously converted into a hard material, in particular a pure silicon dioxide material. This
- Embodiment however, take place coating and outgassing simultaneously, since the coating takes place anyway at high temperatures and the merger accelerates the process and less energy is consumed.
- the upper growth layer grows within the mask opening in the direction of the mask surface.
- this growth is such that a decrease in the defect density, in particular the
- Seed layer surface is detectable.
- the dislocation density is, in particular, less than 10 17 cm -2 , preferably less than 1 0 1 S cm -2 , more preferably less than 1 0 13 cm -2 , even more preferably less than 10 "cm " 2 , more preferably less than 1 0 9 cm -2 , most preferably less than 10 7 cm "2
- the outgassing or combustion of the organic components of the mask material proceeds
- Outgassing or combustion is preferably before the growth of the Overgrowth layer to the mask surface completed to minimize entrapment of gases in the upper stalk layer or prevent as completely as possible.
- the seed layer reaches the mask surface and begins with the lateral expansion and the formation of the remaining
- Overgrowth layer that extends beyond the mask surface, and in particular a closed, unmasked area of the
- the defect density in particular the dislocation density, reaches a minimum from this point in time.
- the offset density is in particular less than 10 "cm '3 ,
- the overgrowth layer is allowed to grow to the desired height (by further application of
- Overgrowth layer material to produce the desired end product according to the invention with a defined thickness or a
- End product is composed at least of a mask
- the newly created surface of the overgrowth layer in particular after a successful processing, be bonded to an (optionally further) carrier substrate.
- the first carrier substrate can be removed.
- the back ie the side of the seed layer
- the complete removal of the mask occurs only when the structures grown between them are not used as a nanodot and / or nanowire structure. In this particular case, one would have one, especially lacking in
- Layer transfer process have transferred to the surface of a second substrate.
- FIG. 1a is a not to scale, schematic
- FIG. 1b shows a schematic, not to scale
- FIG. 1 c shows a schematic, not to scale
- FIG. 1 d Cross-sectional view of a third process step of the embodiment according to FIG. FIG. 1 d is a schematic, not to scale, FIG.
- FIG. 1 e shows a not to scale, schematic
- FIG. 1f shows a schematic, not to scale
- FIG. 1 g shows a not to scale, schematic
- FIG. 1 h shows a schematic, not to scale
- FIG. 11 shows a schematic, not to scale
- FIG. 2 shows a not to scale, schematic
- FIG. 1 a shows a cross-sectional illustration of a substrate 1 with a substrate surface 10 on which the seed layer 2 is / was deposited in a first process step with a seed layer surface 2o.
- Substrate 1 itself be the seed layer 2.
- the germ layer 2 is
- the deposition process can influence the crystal orientation of the seed layer 2.
- Preference is given to a (100) and / or a (1 1 1) crystal orientation.
- a (hkl) orientation is to be understood as a crystal orientation in which the hkl planes parallel to the surface 10 of the
- Substrate 1 lie.
- the hkl indices are the Miller indices.
- FIG. 1b shows a second process step, in which a
- Mask material 3 is deposited on the surface of the seed layer 2.
- the deposition can be carried out by any known deposition method respectively. Since the mask material 3 is preferably deposited liquid, in particular as a sol-gel, the mask material 3 is the
- Oer embossing punch 4 can be oriented and aligned in particular relative to the substrate 1 and / or relative to the seed layer 2. Alignment is preferably by means of alignment marks (not shown), if they are present. For unstructured substrates, however, it is preferable to use a purely mechanical one
- Mask material 3 is structured by the embossing punch 4 such that
- Mask passages 1 1, preferably to the seed layer 2 reaching mask openings are formed.
- Mask passages 1 1 is in particular less than 10 mm, preferably less than 1 mm, more preferably less than 100 ⁇ , on
- the depth t of the mask passages 11 is in particular less than 100 ⁇ , preferably less than 1 ⁇ , more preferably less than 1 ⁇ , most preferably less than 100 nm, most preferably less than 10 nm
- the ratio between the diameter d and the depth t is greater than 1, preferably greater than 10, more preferably greater than 100, most preferably greater than 200, most preferably greater than 300.
- the mask opening therefore preferably has a diameter d which is greater than or equal to the depth t.
- FIG. 1 e a hardening of the mask material 3 is shown.
- the curing can be thermally and / or chemically and / or
- Curing preferably takes place electromagnetically, more preferably by means of UV light.
- the advantage of curing by means of electromagnetic radiation is the vanishingly small or practically negligible extent of the mask material 3, while a thermal
- Curing can cause a non-negligible thermal expansion, which damage the structures and / or
- FIG. 1 f represents a demolding step. After demolding, the mask 6 remains on the seed layer 2. Should the
- Embossing stamp 4 does not reach the germ layer 2, so one
- Residue 12 be present, an additional etching step (see Figure l g) is performed. As a result of this etching step, the residual layer 12 is removed, in particular in the region of the mask passages 11, in order to expose the seed layer 2 in the region of the mask passages 11.
- the generation of the residual layer 12 is avoided in the embossing step by the embossing punch 4 to the seed layer 4th
- the coating gets a coating material! 8m, that
- the coating material 8m crystallizes out on the seed layer surface 2o.
- Coating temperatures are not sufficient to expel the gases 13 from the mask material 3. In such a case, that will
- Mask material 3 thermally treated before the overgrowth according to the invention until all the gases 13 are expelled from the mask material 3.
- FIG. 11 shows a magnification of a not to scale
- Area A ( Figure l h) one of the mask passages 1 1 at a first time t l.
- the mask passage 1 1 has the feature size d. In the case of a radially symmetrical mask passage 1 1 d would be the
- the coating material 8m is limited by the structure size d in terms of its nucleation on a part of the Kcim Anlagenobcr design 2o.
- the material deposition of the coating material 8m is preferably carried out epitaxially. That means that
- Coating material 8m maintains the crystallographic orientation (hkl) of the seed material surface 2o during its growth. At this time, the growth of the coating material 8m starts in a nucleus plane K1 which coincides with the nucleus surface 2o of the seed layer 2.
- Figure lj shows a non-scale enlargement of the area A of a mask passage 1 1 at a second time t2. At this time, the coating material 8m has already grown to a height h1. A new (higher) germ layer K.2 has emerged at a distance from the original germ surface 2o.
- a characteristic feature is that the error density, in particular the
- Dislocation density of dislocations 10 decreases with increasing distance to the original germ surface 2o.
- the upward-growing, in particular monocrystalline and / or epitaxial, layer becomes increasingly perfect as the distance from the original seed surface 2o increases.
- FIG. 1 k shows the state of an overgrowth of the overgrowth layer 14 via the mask 6 at a third point in time t 3 at which a
- Node level K3 is above the mask surface 6o.
- Coating material 8m has distributed over all mask openings 1 1, in particular evenly.
- the defect density, in particular the dislocation density of the dislocations 10, reaches a minimum and is preferably negligibly small.
- the process according to the invention thus produced a full-area, monocrystalline, in particular epitaxial and defect-free, layer 14.
- FIG. 11 shows an end product 15 according to the invention, consisting of a substrate 1 and a new, in particular monocrystalline and / or epitaxial, preferably on an upper side 14o defect-free over-growth layer 14.
- the end product I S can be used as a starting point for further processing.
- Upper growth layer 14 can be distinguished from one another in particular by the defect density or dislocation density.
- the overgrowth layer 14 has the mask 6 preferably fully, preferably completely enclosed. With the process according to the invention, it is possible not only to produce a predominantly defect-free, monocrystalline and / or epitaxial layer that extends beyond the mask 6, but also a layer with enclosed structures, in particular dots. If the order of magnitude of these structures is in the nanometer range, this is called nanodots.
- Nanostructures are necessary to produce semiconductor devices with very specific, in particular based on quantum mechanical effects, properties.
- the nanodots are therefore the dots of the monocrystalline and / or epitaxial layer surrounded by the mask embossed according to the invention.
- Nanowires are a special case. Under appropriate conditions, these can be formed by a further growth of the monocrystalline and / or epitaxial layer from the aperture into the air. Therefore, the monocrystalline and / or epitaxial layer does not laterally unite to form a layer upon reaching the mask surface, but continues its growth unhindered normal to the mask surface.
- the side with the less perfect seed layer 2 is preferably removed.
- a processing of the upper growth layer 14 is conceivable, followed by a subsequent bonding step of a second substrate 1 'on the upper growth layer surface 14o according to FIG. After the bonding step has taken place, it is conceivable to remove the first substrate 1, followed by an etching and / or polishing and / or regrinding process by means of a grinding device 16 at least of parts of the seed layer 2 and / or parts of the overgrowth layer 14. It can
- the complete mask 6 are removed.
- the removal of the substrate 1 is facilitated mainly by the
- Seed layer 2 has a low adhesion to the substrate 1.
- FIG. 2 shows a further side view, not to scale, of an embodiment of an end product according to the invention, consisting of several nanowires 1 7 growing out of the mask passages 11.
- the nanowires 17 do not unite laterally to form an upper growth layer, but instead grow, in particular exclusively, upwards.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Recrystallisation Techniques (AREA)
Abstract
Description
Claims
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/EP2015/061251 WO2016184523A1 (en) | 2015-05-21 | 2015-05-21 | Method for applying an overgrowth layer onto a seed layer |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3298181A1 true EP3298181A1 (en) | 2018-03-28 |
Family
ID=53264658
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15724285.0A Ceased EP3298181A1 (en) | 2015-05-21 | 2015-05-21 | Method for applying an overgrowth layer onto a seed layer |
Country Status (5)
Country | Link |
---|---|
US (1) | US10241398B2 (en) |
EP (1) | EP3298181A1 (en) |
JP (1) | JP6799007B2 (en) |
CN (1) | CN108368640A (en) |
WO (1) | WO2016184523A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023179868A1 (en) | 2022-03-25 | 2023-09-28 | Ev Group E. Thallner Gmbh | Process and substrate system for separating carrier substrates |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003100609A (en) * | 2001-09-26 | 2003-04-04 | Japan Science & Technology Corp | Nano in-print lithography used under room temperature using sog |
US20130082290A1 (en) * | 2011-09-29 | 2013-04-04 | Bridgelux, Inc. | Light emitting devices having light coupling layers with recessed electrodes |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1143363C (en) * | 1998-02-27 | 2004-03-24 | 北卡罗莱纳州立大学 | Methods of fabricating gallium nitride semiconductor layers by lateral overgrowth through masks, and gallium nitride semiconductor structures fabricated thereby |
JPH11352912A (en) * | 1998-06-09 | 1999-12-24 | Haru Corporation:Kk | Lighting display device |
JP2003007616A (en) * | 2001-03-23 | 2003-01-10 | Matsushita Electric Ind Co Ltd | Method of manufacturing semiconductor film |
JP2002284600A (en) * | 2001-03-26 | 2002-10-03 | Hitachi Cable Ltd | Method for manufacturing gallium nitride crystal substrate and the same |
JP3705142B2 (en) * | 2001-03-27 | 2005-10-12 | ソニー株式会社 | Nitride semiconductor device and manufacturing method thereof |
CN1294650C (en) * | 2004-08-19 | 2007-01-10 | 中国科学院物理研究所 | Method for preparing high quality GaN base material on specific saphire pattern substrate |
CN100580889C (en) * | 2005-07-29 | 2010-01-13 | 中国科学院上海微系统与信息技术研究所 | Application of alumina as mask for growing gallium nitride film by hydride vapour-phase epitaxial |
DE102005041643A1 (en) * | 2005-08-29 | 2007-03-01 | Forschungsverbund Berlin E.V. | Semiconductor method for producing an isolated semiconductor substrate uses a masking layer with holes and an output layer |
JP2010521810A (en) * | 2007-03-16 | 2010-06-24 | セバスチャン ローデュドス、 | Semiconductor heterostructure and its manufacture |
CN101469446A (en) * | 2007-12-27 | 2009-07-01 | 深圳市方大国科光电技术有限公司 | Method for lateral epitaxial overgrowth of gallium nitride on silicon substrate |
JP5132524B2 (en) * | 2008-11-04 | 2013-01-30 | キヤノン株式会社 | Method of transferring gallium nitride compound semiconductor layer and substrate bonded with gallium nitride compound semiconductor layer |
CN103030107B (en) * | 2011-10-06 | 2014-12-10 | 清华大学 | Method of manufacturing three-dimensional nanometer-structured array |
CN102591142B (en) | 2012-02-29 | 2013-03-27 | 青岛理工大学 | Nano-imprinting device and method for patterning sapphire substrate |
JP2013197310A (en) * | 2012-03-19 | 2013-09-30 | Toshiba Corp | Light-emitting device |
KR101233062B1 (en) * | 2012-04-18 | 2013-02-19 | (주)휴넷플러스 | Method for fabricating nano patterned substrate for high efficiency nitride based light emitting diode |
KR101233063B1 (en) * | 2012-04-19 | 2013-02-19 | (주)휴넷플러스 | Method for fabricating nano patterned substrate for high efficiency nitride based light emitting diode |
GB2502818A (en) * | 2012-06-08 | 2013-12-11 | Nanogan Ltd | Epitaxial growth of semiconductor material such as Gallium Nitride on oblique angled nano or micro-structures |
KR20150028960A (en) | 2012-09-06 | 2015-03-17 | 에베 그룹 에. 탈너 게엠베하 | Structure stamp, device and method for embossing |
JP2014075565A (en) * | 2012-10-04 | 2014-04-24 | Mtec:Kk | Method of manufacturing compound semiconductor device |
JP2015041750A (en) * | 2013-08-23 | 2015-03-02 | 住友電気工業株式会社 | Group iii nitride semiconductor device and manufacturing method of the same |
GB201319117D0 (en) * | 2013-10-30 | 2013-12-11 | Element Six Technologies Us Corp | Semiconductor device structures comprising polycrystalline CVD Diamond with improved near-substrate thermal conductivity |
WO2015064310A1 (en) * | 2013-10-30 | 2015-05-07 | 日産化学工業株式会社 | Imprint material containing modified silicone compound and silsesquioxane compound |
-
2015
- 2015-05-21 EP EP15724285.0A patent/EP3298181A1/en not_active Ceased
- 2015-05-21 WO PCT/EP2015/061251 patent/WO2016184523A1/en active Application Filing
- 2015-05-21 CN CN201580079657.4A patent/CN108368640A/en active Pending
- 2015-05-21 JP JP2017556206A patent/JP6799007B2/en active Active
- 2015-05-21 US US15/565,437 patent/US10241398B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003100609A (en) * | 2001-09-26 | 2003-04-04 | Japan Science & Technology Corp | Nano in-print lithography used under room temperature using sog |
US20130082290A1 (en) * | 2011-09-29 | 2013-04-04 | Bridgelux, Inc. | Light emitting devices having light coupling layers with recessed electrodes |
Non-Patent Citations (2)
Title |
---|
"Lithography", 1 February 2010, INTECH, CR, ISBN: 978-953-307-064-3, article THOMAS GLINSNER ET AL: "Chapter 24 : Nanoimprint Lithography", pages: 495 - 516, XP055360372, DOI: 10.5772/8190 * |
See also references of WO2016184523A1 * |
Also Published As
Publication number | Publication date |
---|---|
US20180120695A1 (en) | 2018-05-03 |
CN108368640A (en) | 2018-08-03 |
JP6799007B2 (en) | 2020-12-09 |
JP2018523287A (en) | 2018-08-16 |
WO2016184523A1 (en) | 2016-11-24 |
US10241398B2 (en) | 2019-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016090394A1 (en) | Embossing lacquer and method for embossing, and substrate surface coated with the embossing lacquer | |
EP1648597A1 (en) | Filter element and method for the production thereof | |
EP3074819B1 (en) | Mould with a mould pattern, and method for producing same | |
EP2329319B1 (en) | Improved nanoimprint method | |
EP3011390B1 (en) | Combination of a stamp and an imprinting material for imprinting lithography | |
DE102015115004A1 (en) | Process for producing structured surfaces | |
WO2005115711A1 (en) | Product comprising a cover layer and a moulding layer | |
WO2016184523A1 (en) | Method for applying an overgrowth layer onto a seed layer | |
EP3197840B1 (en) | Method for producing an optical glass element | |
DE102013113241B4 (en) | Method for embossing structures | |
EP3401731B1 (en) | Stamp with a stamp structure and method for the production of same | |
DE60307516T2 (en) | LITHOGRAPHIC PROCESSING BY PRESSING A SUBSTRATE IN A NANOIMPRINT PROCESS | |
WO2016206746A1 (en) | Method for producing structures on a substrate surface | |
DE102009023355A1 (en) | Method for producing an optoelectronic semiconductor component | |
WO2003071354A1 (en) | Method for the production of a porous material with a periodic pore arrangement | |
EP3078055B1 (en) | Method for producing large-area solid-body layers | |
Park et al. | Fabrication of zinc oxide nanostructures using solvent-assisted capillary lithography | |
EP4070160A1 (en) | Method and apparatus for removal of a stamp | |
WO2016070915A1 (en) | Method and device for coating a product substrate | |
EP4176311B1 (en) | Method for producing micro- and/or nano-structures | |
DE102013203056A1 (en) | Method of making a microsieve | |
EP4182739B1 (en) | Method for applying a protective coating material | |
DE102020211360A1 (en) | Method for providing a layered element in a layered arrangement | |
WO2020035421A1 (en) | Method for producing a semiconductor component, and workpiece | |
DE102018214113A1 (en) | Method of manufacturing a MEMS sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20171205 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: KREINDL, GERALD Inventor name: ZAGLMAYR, HARALD Inventor name: EIBELHUBER, MARTIN |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20200409 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R003 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED |
|
18R | Application refused |
Effective date: 20221119 |