Nothing Special   »   [go: up one dir, main page]

EP3280916B1 - Vacuum-pump rotor - Google Patents

Vacuum-pump rotor Download PDF

Info

Publication number
EP3280916B1
EP3280916B1 EP16725126.3A EP16725126A EP3280916B1 EP 3280916 B1 EP3280916 B1 EP 3280916B1 EP 16725126 A EP16725126 A EP 16725126A EP 3280916 B1 EP3280916 B1 EP 3280916B1
Authority
EP
European Patent Office
Prior art keywords
blade
hub
vacuum
pump rotor
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16725126.3A
Other languages
German (de)
French (fr)
Other versions
EP3280916A1 (en
Inventor
Rainer Hölzer
Kai Uhlig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leybold GmbH
Original Assignee
Leybold GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE202015004001.2U external-priority patent/DE202015004001U1/en
Priority claimed from DE202015004160.4U external-priority patent/DE202015004160U1/en
Application filed by Leybold GmbH filed Critical Leybold GmbH
Publication of EP3280916A1 publication Critical patent/EP3280916A1/en
Application granted granted Critical
Publication of EP3280916B1 publication Critical patent/EP3280916B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/023Selection of particular materials especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/321Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
    • F04D29/322Blade mountings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/321Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
    • F04D29/324Blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/603Composites; e.g. fibre-reinforced
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/70Treatment or modification of materials
    • F05D2300/702Reinforcement

Definitions

  • the invention relates to a vacuum pump rotor, in particular a rotor for a turbo-molecular vacuum pump.
  • Vacuum pumps such as turbo-molecular vacuum pumps, have a rotor on a rotor shaft.
  • the rotor shaft is driven by an electric motor.
  • the blades of the rotor interact with stator disks, which are usually fixed in a pump housing.
  • stator disks which are usually fixed in a pump housing.
  • high-speed rotors such as those used in particular in turbo molecular pumps
  • the rotors must be operated at high rotational speeds.
  • a limit when using rotors made of steel, aluminum or the like is the tip speed of the rotor blades, ie the tangential speed occurring at the blade tips.
  • a tip speed of 400 m / s can be achieved.
  • the conveyance of light gases, such as helium or hydrogen, is also problematic here, since these have a high thermal speed and high rotational speeds of the rotors, ie in particular a high tip speed, are required for conveying.
  • WO 2005/001294 A1 discloses in Fig. 5 a vacuum pump rotor according to the preamble of claim 1.
  • the object of the invention is to create a vacuum pump rotor with which a high tip speed can be achieved.
  • the vacuum pump rotor according to the invention has a hub element which can be connected to the shaft of the vacuum pump or which forms the shaft. Rotor blades that are set at an angle are connected to the hub element.
  • the rotor elements and / or the hub element have several layers of material. This makes it possible to provide different materials during operation in heavily used areas by arranging material layers made of different materials. It is particularly preferred here that at least one of the material layers comprises fiber-reinforced material. In particular, by providing at least one material layer with fiber-reinforced material, it is possible to operate vacuum pump rotors at higher speeds. In particular, it is possible in this way to achieve a tip speed of more than 400 m / s, in particular more than 500 m / s and particularly preferably more than 600 m / s.
  • the vacuum pump rotor has a hub element for connection to a rotor shaft, wherein the rotor shaft can also be formed by a plurality of hub elements.
  • a plurality of rotor blades surrounding the rotor element are connected to the rotor element.
  • the rotor blades each have a wing root connected to the hub element and a wing head connected to the latter.
  • the hub element has at least one retaining element comprising fiber-reinforced material.
  • a base element is connected to the retaining element of the hub element, the base element forming the wing root and the wing head.
  • connection between the holding element and the base element takes place in such a way that these two elements partially overlap, so that in this way at least two material layers are formed.
  • at least one of the two elements has fiber-reinforced material, it being preferred that both elements have fiber-reinforced material.
  • vacuum pump rotors that can withstand high loads.
  • high-speed vacuum pump rotors can be manufactured.
  • the hub element preferably has two opposing holding elements, a hub part of the base element being arranged between the two holding elements. To this extent, a three-layer structure is implemented in this area, it again being preferred that both hub elements and / or the hub part are made of fiber-reinforced material.
  • the entire base element is preferably made of fiber-reinforced material.
  • a stiffening element which preferably comprises fiber-reinforced material.
  • the at least one stiffening element is flatly connected to the retaining element of the hub element, the stiffening element simultaneously also protruding into the wing root of the respective rotor blade.
  • the stiffening element thus forms a further layer of material.
  • two stiffening elements are provided which are connected to the base element, in particular the hub part of the base element, on opposite sides. That In a particularly preferred embodiment, the base element represents a middle layer of material, with a stiffening element which protrudes into the wing root and is flatly connected to the base element is arranged opposite one another at least in the area of the hub part.
  • two further material layers are provided by the two holding elements, which in turn are arranged on the outside of the stiffening elements and form an essential part of the hub element.
  • the two holding elements are arranged opposite one another and are preferably connected directly or indirectly to the respective upper conductors of the stiffening elements over a large area.
  • further intermediate layers in particular made of different materials and / or with different orientations of fibers.
  • the at least one, in particular both, stiffening elements can have a fixing element on an inner side.
  • the fixing element is preferably designed as an axially extending shoulder. This preferably engages behind the respective holding element in the radial direction.
  • At least one additional wing element is formed which also has fiber-reinforced material.
  • the at least one additional wing element is directly or indirectly connected to the holding element.
  • the additional wing element is preferably connected directly or indirectly to the wing root and / or the hub part of the base element.
  • the additional wing element can also be connected to the wing head, in particular over a large area. It is preferred here that the additional wing element is designed to be flat as a further material layer.
  • the additional wing element also has a fixing element on an inner side, which in turn can partially extend axially in accordance with a shoulder and / or engage behind the holding element, in particular radially.
  • the additional wing element is designed as an inner additional wing element and at least one further outer additional wing element is provided. This is preferably connected flatly to the inner additional wing element, it being particularly preferred that the outer dimensions of the two additional wing elements are identical. If necessary, however, the outer additional wing element can also cover only part of the inner additional wing element. It is also possible for the outer dimensions of the inner additional wing element to be smaller than those of the outer additional wing element. For example, the outer additional wing element can extend into the wing head and possibly even completely cover it, the inner additional wing element being arranged only in the area of the wing root and / or possibly only covering parts of the wing head.
  • the base element and at least one, preferably all, additional wing elements have essentially the same outer contour, in particular a wing outer contour.
  • the at least one stiffening element rests flat against the base element and one of the additional wing elements in the area of the wing root and the stiffening element is firmly connected to these. Furthermore, it is preferred that the inner additional wing element in the area of the wing root or the wing head lies directly flat on the outer additional wing element and is preferably connected to it.
  • the structure of the individual rotor blades and also of the hub element is preferably multilayered in such a way that the structure is symmetrical to the base element.
  • a usually ring-shaped hub element preferably has a plurality of, in particular, pitched rotor blades on the circumference.
  • the hub element and / or the rotor blades have fiber-reinforced material.
  • the fibers are preferably arranged to a large extent in accordance with the load.
  • the vacuum pump rotors according to the invention can be operated at higher speeds. In particular, it is possible in this way to achieve a tip speed of more than 400 m / s, in particular more than 500 m / s and particularly preferably more than 600 m / s.
  • the material used is preferably a long fiber-reinforced material with fiber lengths of 1 to 50 mm or continuous fibers with lengths over 50 mm.
  • the arrangement of the fibers in accordance with the load is preferably carried out by a suitable alignment of the fibers so that they can absorb the forces and moments that occur at such high speeds.
  • An arrangement that is suitable for the load is also achieved by additionally varying the direction, the density, the strength and / or the thickness of the fibers used, depending on the type of load. This is particularly dependent on the area of stress on the hub element and / or on the rotor blades. Furthermore, it is particularly preferred that for an arrangement that is suitable for the demands also for Particularly suitable fibers are used for the corresponding stress.
  • metal, plastic or carbon fibers are used.
  • metal fibers in the area of the hub element or the part of the rotor blades facing the hub element, since they have a different breaking behavior.
  • Solid metal or plastic parts can also be incorporated into the laminate in the hub area to stabilize the position of fibers or to create volume. It is also preferred that, for example, plastic, carbon and / or metal fibers are impregnated or pre-impregnated. Impregnation with epoxy resin, phenolic resin, bismaimides and / or thermoplastics, but also with polyurethane, is preferred here. Furthermore, it is preferred to arrange the fibers as a woven fabric, as a spread tow, as a tape layer, as a TFP (tailored fiber placement), wound, braided and / or as a spiral fabric. Furthermore, in particular, mixed forms of different fiber arrangements appropriate to the load are possible and also preferred.
  • the fibers provided in or on the hub element and / or in or on the rotor blades are arranged in accordance with the load, ie in particular in the main stress direction.
  • the fibers preferably run in a radial direction in order to absorb the forces.
  • parts of the fibers are preferably placed purely in the circumferential direction, but other areas have different directions in order to enable tension to be shifted.
  • the fiber volume fraction based on the total volume of the hub element and / or the rotor blades is preferably greater than 50%, in particular greater than 60%.
  • the fibers arranged in or on the hub element are preferably arranged essentially in the circumferential direction, i.e. in the direction of rotation of the hub element.
  • the fibers are preferably arranged in such a way that the fibers can absorb the forces in the circumferential direction.
  • a deviation in an angular range of ⁇ 10 ° to ⁇ 20 ° is defined in such a way that this is still a question of fibers which run essentially in the circumferential direction.
  • the fibers preferably run essentially radially in or on the rotor blades. In the area of the wings, the fibers must be arranged in such a way that the fibers absorb the forces in the radial direction. A deviation in the range of ⁇ 10 ° to ⁇ 20 ° further defines a fiber that runs essentially radially.
  • the fibers In particular in the adjusted area of the wing parts of the rotor blades, it is preferred to additionally use crossing fibers in order to arrange the fibers in accordance with the load, for example against twisting of the blades.
  • the fibers preferably run in an angular range of ⁇ 30 ° to ⁇ 45 ° with respect to the longitudinal axis of the wing and ⁇ 70 ° to ⁇ 90 ° to one another.
  • Corresponding fiber layers such as patches or spread tows, are suitable here.
  • fibers pass from the hub element into the rotor blades, so that the connection area between the hub element and the rotor blades is designed as load-bearing as possible.
  • the hub element and the rotor blades are formed in one piece.
  • the rotor blades it is also possible for the rotor blades to be connected to the hub by hanging them, inserting them into corresponding grooves and the like. Combinations of these are also possible, so that they are initially suspended or connected to the hub element in some other way Wing elements are then connected to the hub element via a fiber layer in this area.
  • the fibers can be connected by subsequent casting, resinification or the like. First, however, the fibers can also be glued to one another in order to define an exact position of the fibers. The fibers can also be fixed or connected to one another in the required direction by embroidery, knitting or the like.
  • the rotor blades can have an angle of attack of 8 ° -50 °.
  • the vacuum pump rotors described above it is possible in particular to achieve a high tip speed of more than 400 m / s, in particular more than 500 m / s and particularly preferably more than 600 m / s.
  • This has the advantage, which is essential to the invention, that the rotors are also suitable for conveying light gases, such as, in particular, helium and hydrogen. This also makes it possible to implement pump rotors with smaller diameters at high delivery rates.
  • one of the additional wing elements in particular both the inner and the outer additional wing elements, have a radial layer made of a fiber-reinforced material, in particular fiber-reinforced plastic. Furthermore, it is preferred that one of the additional wing elements, in particular the two outer additional wing elements, have a spreadtow fabric layer.
  • the at least one stiffening element preferably also has fiber material, in particular plastic fiber material. Some of the fibers here preferably run in the circumferential direction. As a result, a tangential layer is formed. It is preferred that the at least one holding element also has fibers that run in the circumferential direction, see above that further tangential layers are formed.
  • the additional inner wing elements in particular, have fibers running radially as the main fiber direction in a preferred embodiment, so that radial layers are formed as a result. In the case of the two outer additional wing elements which are preferably provided, the fibers are arranged crossed with respect to one another and, in particular, a spreadtow fabric is provided.
  • the multi-layer design of the vacuum pump rotor from preferably different material layers with particularly preferred different orientations of the material fibers makes it possible to manufacture vacuum pump rotors that withstand extremely high loads so that very high tip speeds can be achieved.
  • vacuum pump rotors described above is also possible for other rapidly rotating rotors, such as those used in the field of blowers, ventilators, gas conveying, but this is not part of the invention.
  • the figure shows a section of a vacuum pump rotor in the assembled state and partially as an exploded view, the representation being made in a schematically simplified manner.
  • a part of a multi-layer vacuum pump rotor with interconnected layers of material is initially shown schematically.
  • Part of a hub element 10 is shown here.
  • the hub element 10 surrounds, for example, a rotor shaft to which it is firmly connected.
  • several such annular hub elements are arranged one behind the other in the axial direction, so that several vacuum pump stages are formed and form, for example, a rotor for a turbo molecular pump.
  • the individual hub elements can be connected to a rotor shaft or form the rotor shaft themselves by being connected to one another accordingly.
  • rotor blades 12 which run radially in the circumferential direction and are set at an angle are connected, with only a single rotor blade 12 being shown for the purpose of illustration.
  • a base element 14 is shown as the middle layer.
  • the construction of the entire vacuum pump rotor in the illustrated preferred embodiment is constructed symmetrically to the base element 14.
  • a stiffening element 16 is arranged on the base element 14, a further stiffening element being arranged symmetrically to the base element 14 on the opposite side, symmetrically to the stiffening element 16 shown.
  • the same also applies to the next layer, which is formed by an inner additional wing element 18, the second additional wing element 18 again being provided on the opposite side symmetrically to the base element 14.
  • two outer additional wing elements 20 are also provided and again arranged symmetrically to the base element 14.
  • two holding elements 22 are provided, which in turn are arranged symmetrically to the base element 14.
  • the holding elements 22 represent the essential elements of the hub element 10.
  • the base element 14 which forms the plane of symmetry, has an outer contour which corresponds to the outer contour of the wing 12.
  • the base element 14 here has a hub part 24 which protrudes into the hub element 10 or is arranged between the two holding elements 22 of the hub element 10. It must be taken into account here that the two holding elements 22 are in particular ring-shaped are formed, wherein a plurality of hub parts corresponding to the number of rotor blades 12 are arranged between these two annular holding elements 22.
  • a wing foot 26 is connected to the hub part 24 and, in particular, is formed in one piece.
  • the wing foot 26 represents the connecting element between the hub part and a wing head 28.
  • the wing head 28 is the essential component of the rotor blade 12.
  • the base element 14 is preferably formed in one piece and, in a preferred embodiment, has a carbon fiber fleece.
  • the next layer is formed by the two mutually opposite stiffening elements 16.
  • the outer contour of the stiffening elements 16 corresponds to the outer contour of the hub part 24 and the wing root 26. If necessary, the stiffening element 16 protrudes only into part of the wing root 26.
  • the stiffening element has a fixing element 30 on an inner side. This protrudes axially outward and engages behind the two holding elements 22.
  • the stiffening element 16 is preferably designed as a tangential layer and in this respect has a large number of fibers that are suitable in the circumferential direction for absorbing tangential forces.
  • the thickness gradient on the inside of the hub is high here.
  • the next layer of material is formed by the two inner additional wing elements 18.
  • the outer contour of the inner additional wing elements corresponds to the outer contour of the base element.
  • the inner additional wing elements 18 also have a fixing element 32 which engages behind the holding elements 22 radially in accordance with the fixing element 32.
  • the material fibers of the inner additional wing elements 18 are preferably aligned radially so that these layers can be viewed as radial layers.
  • the next layers of material are formed by the outer additional wing elements 20.
  • the outer contour of the outer additional wing elements 20 in turn corresponds to the outer contour of the base element 14 the outer additional wing elements 20 also have a fixing element 34, which in turn engages behind the two holding elements 22 radially. It is preferred that the outer additional wing elements 20 are made from a spreadtow fabric.
  • the outer material layer is formed by the two holding elements 22, these not extending into the rotor blade 12, but essentially forming the hub element.
  • the holding elements 22 also preferably have material fibers, in particular plastic fibers or carbon fibers.
  • the multi-layer structure of the vacuum pump rotor is essential for the invention.
  • the design and the choice of material for the individual layers are preferably selected in such a way that a material selection that is as appropriate to the demands as possible and a fiber orientation that is appropriate to the demands are realized.
  • vacuum pump rotors can be produced which can withstand extremely high loads and in particular can achieve a tip speed of more than 400 m / s, in particular more than 500 m / s and in particular more than 600 m / s.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Positive Displacement Air Blowers (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

Die Erfindung betrifft einen Vakuumpumpen-Rotor, insbesondere einen Rotor für eine Turbomolekularvakuumpumpe.The invention relates to a vacuum pump rotor, in particular a rotor for a turbo-molecular vacuum pump.

Vakuumpumpen, wie Turbomolekularvakuumpumpen, weisen auf einer Rotorwelle einen Rotor auf. Die Rotorwelle ist über einen Elektromotor angetrieben. Die Flügel des Rotors wirken mit Statorscheiben, die üblicherweise in einem Pumpengehäuse fixiert sind, zusammen. Bei schnelldrehenden Rotoren, wie sie insbesondere in Turbomolekularpumpen eingesetzt werden, ist es bekannt, Rotoren aus Aluminium, Stahl oder entsprechenden Legierungen herzustellen. Zur Erzielung von hohem Vakuum von insbesondere weniger als 10-4 mbar müssen die Rotoren mit hohen Drehgeschwindigkeiten betrieben werden. Eine Grenze beim Einsatz von Rotoren aus Stahl, Aluminium oder dergleichen stellt die Tipspeed der Rotorflügel, d.h. die an den Flügelspitzen auftretende Tangentialgeschwindigkeit dar. Mit bekannten Rotoren kann eine Tipspeed von 400 m/s erzielt werden. Problematisch ist hierbei auch das Fördern von leichten Gasen, wie Helium oder Wasserstoff, da diese eine hohe thermische Geschwindigkeit aufweisen und zur Förderung hohe Drehzahlen der Rotoren, d.h. insbesondere eine hohe Tipspeed erforderlich ist.Vacuum pumps, such as turbo-molecular vacuum pumps, have a rotor on a rotor shaft. The rotor shaft is driven by an electric motor. The blades of the rotor interact with stator disks, which are usually fixed in a pump housing. In the case of high-speed rotors, such as those used in particular in turbo molecular pumps, it is known to manufacture rotors from aluminum, steel or corresponding alloys. To achieve a high vacuum of, in particular, less than 10 -4 mbar, the rotors must be operated at high rotational speeds. A limit when using rotors made of steel, aluminum or the like is the tip speed of the rotor blades, ie the tangential speed occurring at the blade tips. With known rotors, a tip speed of 400 m / s can be achieved. The conveyance of light gases, such as helium or hydrogen, is also problematic here, since these have a high thermal speed and high rotational speeds of the rotors, ie in particular a high tip speed, are required for conveying.

Das Dokument WO 2005/001294 A1 offenbart in Abb. 5 einen Vakuumpumpen-Rotor nach dem Oberbegriff von Anspruch 1. Aufgabe der Erfindung ist es, einen Vakuumpumpen-Rotor zu schaffen, mit dem eine hohe Tipspeed erzielt werden kann.The document WO 2005/001294 A1 discloses in Fig. 5 a vacuum pump rotor according to the preamble of claim 1. The object of the invention is to create a vacuum pump rotor with which a high tip speed can be achieved.

Die Lösung der Aufgabe erfolgt erfindungsgemäß durch die Merkmale des Anspruchs 1.The object is achieved according to the invention by the features of claim 1.

Der erfindungsgemäße Vakuumpumpenrotor weist ein Nabenelement auf, das mit der Welle der Vakuumpumpe verbindbar ist oder die Welle ausbildet. Mit dem Nabenelement sind insbesondere in einem Winkel angestellte Rotorflügel verbunden.The vacuum pump rotor according to the invention has a hub element which can be connected to the shaft of the vacuum pump or which forms the shaft. Rotor blades that are set at an angle are connected to the hub element.

Zur erfindungsgemäßen Erhöhung der Tipspeed weisen die Rotorelemente und/oder das Nabenelement mehrere Materiallagen auf. Es ist hierdurch möglich, während des Betriebs in stark beanspruchten Bereichen unterschiedliche Materialien vorzusehen, indem Materiallagen aus unterschiedlichem Material angeordnet werden. Besonders bevorzugt ist es hierbei, dass zumindest eine der Materiallagen faserverstärktes Material aufweist. Insbesondere durch Vorsehen von mindestens einer Materiallage mit faserverstärktem Material ist es möglich, Vakuumpumpen-Rotoren mit höheren Drehzahlen zu betreiben. Insbesondere ist es möglich, hierdurch eine Tipspeed von mehr als 400 m/s, insbesondere mehr als 500 m/s und besonders bevorzugt mehr als 600 m/s zu erzielen.To increase the tip speed according to the invention, the rotor elements and / or the hub element have several layers of material. This makes it possible to provide different materials during operation in heavily used areas by arranging material layers made of different materials. It is particularly preferred here that at least one of the material layers comprises fiber-reinforced material. In particular, by providing at least one material layer with fiber-reinforced material, it is possible to operate vacuum pump rotors at higher speeds. In particular, it is possible in this way to achieve a tip speed of more than 400 m / s, in particular more than 500 m / s and particularly preferably more than 600 m / s.

Der Vakuumpumpen-Rotor weist ein Nabenelement zur Verbindung mit einer Rotorwelle auf, wobei die Rotorwelle ebenso durch mehrere Nabenelemente ausgebildet werden kann. Mit dem Rotorelement sind mehrere das Rotorelement umgebende Rotorflügel verbunden. Erfindungsgemäß weisen die Rotorflügel jeweils einen mit dem Nabenelement verbundenen Flügelfuß und einen mit diesem verbundenen Flügelkopf auf. Erfindungsgemäß weist das Nabenelement mindestens ein faserverstärktes Material aufweisendes Halteelement auf. Mit dem Halteelement des Nabenelements ist ein Basiselement verbunden, wobei das Basiselement den Flügelfuß sowie den Flügelkopf ausbildet. Insbesondere erfolgt die Verbindung zwischen dem Halteelement und dem Basiselement derart, dass sich diese beiden Elemente teilweise überdecken, sodass hierdurch zumindest zwei Materiallagen ausgebildet sind. Hierbei weist zumindest eines der beiden Elemente faserverstärktes Material auf, wobei es bevorzugt ist, dass beide Elemente faserverstärktes Material aufweisen. Durch einen derartigen Aufbau sind hohe Beanspruchungen des Vakuumpumpen-Rotors und insbesondere eine hohe Tipspeed erzielbar.The vacuum pump rotor has a hub element for connection to a rotor shaft, wherein the rotor shaft can also be formed by a plurality of hub elements. A plurality of rotor blades surrounding the rotor element are connected to the rotor element. According to the invention, the rotor blades each have a wing root connected to the hub element and a wing head connected to the latter. According to the invention, the hub element has at least one retaining element comprising fiber-reinforced material. A base element is connected to the retaining element of the hub element, the base element forming the wing root and the wing head. In particular, the connection between the holding element and the base element takes place in such a way that these two elements partially overlap, so that in this way at least two material layers are formed. In this case, at least one of the two elements has fiber-reinforced material, it being preferred that both elements have fiber-reinforced material. With such a structure, high loads on the vacuum pump rotor and, in particular, a high tip speed can be achieved.

Insbesondere durch die nachfolgend beschriebenen bevorzugten Weiterbildungen der Erfindung ist es möglich, Vakuumpumpen-Rotoren herzustellen, die großen Beanspruchungen standhalten. Dies hat zu Folge, dass schnelldrehende Vakuumpumpen-Rotoren hergestellt werden können. Hierbei ist es möglich, den Durchmesser der Vakuumpumpen-Rotoren zu verringern, da auf Grund der möglichen Erhöhung der Drehzahl die erforderliche Tipspeed von insbesondere mehr als 400 m/s erzielt werden kann.In particular, through the preferred developments of the invention described below, it is possible to manufacture vacuum pump rotors that can withstand high loads. As a result, high-speed vacuum pump rotors can be manufactured. Here it is possible to reduce the diameter of the vacuum pump rotors, since the required tip speed of in particular more than 400 m / s can be achieved due to the possible increase in the speed.

Vorzugsweise weist das Nabenelement zwei gegenüberliegende Halteelemente auf, wobei zwischen den beiden Halteelementen ein Nabenteil des Basiselements angeordnet ist. Insofern ist in diesem Bereich eine dreilagige Struktur realisiert, wobei es wiederum bevorzugt ist, dass beide Nabenelemente und/oder das Nabenteil aus faserverstärktem Material hergestellt sind. Vorzugsweise ist das gesamte Basiselement aus faserverstärktem Material hergestellt.The hub element preferably has two opposing holding elements, a hub part of the base element being arranged between the two holding elements. To this extent, a three-layer structure is implemented in this area, it again being preferred that both hub elements and / or the hub part are made of fiber-reinforced material. The entire base element is preferably made of fiber-reinforced material.

Erfindungsgemäß ist ein Versteifungselement vorgesehen, das vorzugsweise faserverstärktes Material aufweist. Das mindestens eine Versteifungselement ist flächig mit dem Haltelement des Nabenelements verbunden, wobei das Versteifungselement gleichzeitig auch in den Flügelfuß des jeweiligen Rotorflügels ragt. Das Versteifungselement bildet somit eine weitere Materiallage. Besonders bevorzugt ist es, dass zwei Versteifungselemente vorgesehen sind, die auf einander gegenüberliegenden Seiten mit dem Basiselement, insbesondere dem Nabenteil des Basiselements, verbunden sind. Das Basiselement stellt hierbei in besonders bevorzugter Ausführungsform eine mittlere Materiallage dar, wobei zumindest im Bereich des Nabenteils einander gegenüberliegend jeweils ein Versteifungselement angeordnet ist, das in den Flügelfuß ragt und flächig mit dem Basiselement verbunden ist. Zwei weitere Materiallagen sind in besonderer Ausführungsform durch die beiden Halteelemente gegeben, die wiederum an der Außenseite der Versteifungselemente angeordnet sind und einen wesentlichen Bestandteil des Nabenelements ausbilden. Die beiden Halteelemente sind einander gegenüberliegend angeordnet und vorzugsweise flächig mit den jeweiligen Oberleitern der Versteifungselemente mittelbar oder unmittelbar verbunden. Es ist zur weiteren Verbesserung der Beanspruchbarkeit des Rotorflügels möglich, weitere Zwischenlagen, insbesondere aus unterschiedlichem Material und/oder mit unterschiedlicher Ausrichtung von Fasern, vorzusehen.According to the invention, a stiffening element is provided, which preferably comprises fiber-reinforced material. The at least one stiffening element is flatly connected to the retaining element of the hub element, the stiffening element simultaneously also protruding into the wing root of the respective rotor blade. The stiffening element thus forms a further layer of material. It is particularly preferred that two stiffening elements are provided which are connected to the base element, in particular the hub part of the base element, on opposite sides. That In a particularly preferred embodiment, the base element represents a middle layer of material, with a stiffening element which protrudes into the wing root and is flatly connected to the base element is arranged opposite one another at least in the area of the hub part. In a special embodiment, two further material layers are provided by the two holding elements, which in turn are arranged on the outside of the stiffening elements and form an essential part of the hub element. The two holding elements are arranged opposite one another and are preferably connected directly or indirectly to the respective upper conductors of the stiffening elements over a large area. To further improve the load-bearing capacity of the rotor blade, it is possible to provide further intermediate layers, in particular made of different materials and / or with different orientations of fibers.

Zusätzlich kann das mindestens eine, insbesondere beide Versteifungselemente an einer Innenseite ein Fixierelement aufweisen. Das Fixierelement ist vorzugsweise als ein sich axial erstreckender Ansatz ausgebildet. Dieser hintergreift in radialer Richtung vorzugsweise das jeweilige Haltelement.In addition, the at least one, in particular both, stiffening elements can have a fixing element on an inner side. The fixing element is preferably designed as an axially extending shoulder. This preferably engages behind the respective holding element in the radial direction.

Erfindungsgemäß ist mindestens ein Zusatz-Flügelelement ausgebildet, das ebenfalls faserverstärktes Material aufweist. Das mindestens eine Zusatz-Flügelelement ist mittelbar oder unmittelbar mit dem Halteelement verbunden. Ferner ist das Zusatz-Flügelelement vorzugsweise mittelbar oder unmittelbar mit dem Flügelfuß und/oder dem Nabenteil des Basiselements verbunden. Das Zusatz-Flügelelement kann ferner auch mit dem Flügelkopf insbesondere flächig verbunden sein. Hierbei ist es bevorzugt, dass das Zusatz-Flügelelement als weitere Materiallage flächig ausgebildet ist.According to the invention, at least one additional wing element is formed which also has fiber-reinforced material. The at least one additional wing element is directly or indirectly connected to the holding element. Furthermore, the additional wing element is preferably connected directly or indirectly to the wing root and / or the hub part of the base element. The additional wing element can also be connected to the wing head, in particular over a large area. It is preferred here that the additional wing element is designed to be flat as a further material layer.

Das Zusatz-Flügelelement hat ferner an einer Innenseite ein Fixierelement, das sich wiederum teilweise axial entsprechend eines Ansatzes erstrecken kann und/oder das Halteelement insbesondere radial hintergreift.The additional wing element also has a fixing element on an inner side, which in turn can partially extend axially in accordance with a shoulder and / or engage behind the holding element, in particular radially.

Bevorzugt ist es wiederum, auch in dieser Ausführungsform zwei Zusatz-Flügelelemente vorzusehen, die an unterschiedlichen Seiten des Basiselements angeordnet sind, wobei insbesondere ein symmetrischer Aufbau bevorzugt ist, bei dem das Basiselement die Mittelebene bildet.Again, it is preferred to provide two additional wing elements in this embodiment as well, which are arranged on different sides of the base element, a symmetrical structure in particular being preferred in which the base element forms the center plane.

In einer weiteren bevorzugten Ausführungsform des Vakuumpumpen-Rotors ist eine weitere Materiallage vorgesehen. Hierbei ist das Zusatz-Flügelelement als inneres Zusatz-Flügelelement ausgebildet und es ist mindestens ein weiteres äußeres Zusatz-Flügelelement vorgesehen. Dieses ist vorzugsweise flächig mit dem inneren Zusatz-Flügelelement verbunden, wobei es besonders bevorzugt ist, dass die Außenabmessungen der beiden Zusatz-Flügelelemente identisch sind. Gegebenenfalls kann das äußere Zusatz-Flügelelement aber auch nur einen Teil des inneren Zusatz-Flügelelements abdecken. Auch ist es möglich, dass die Außenabmessungen des inneren Zusatz-Flügelelements kleiner sind als diejenigen des äußeren Zusatz-Flügelelements. Beispielsweise kann sich das äußere Zusatz-Flügelelement bis in den Flügelkopf hinein erstrecken und gegebenenfalls diesen sogar vollständig abdecken, wobei das innere Zusatz-Flügelelement nur im Bereich des Flügelfußes angeordnet ist und/oder gegebenenfalls nur Teile des Flügelkopfs abdeckt.In a further preferred embodiment of the vacuum pump rotor, a further layer of material is provided. Here, the additional wing element is designed as an inner additional wing element and at least one further outer additional wing element is provided. This is preferably connected flatly to the inner additional wing element, it being particularly preferred that the outer dimensions of the two additional wing elements are identical. If necessary, however, the outer additional wing element can also cover only part of the inner additional wing element. It is also possible for the outer dimensions of the inner additional wing element to be smaller than those of the outer additional wing element. For example, the outer additional wing element can extend into the wing head and possibly even completely cover it, the inner additional wing element being arranged only in the area of the wing root and / or possibly only covering parts of the wing head.

Vorzugsweise weisen das Basiselement und mindestens eines, vorzugsweise alle Zusatz-Flügelelemente im Wesentlichen dieselbe Außenkontur, insbesondere eine Flügel-Außenkontur, auf.Preferably, the base element and at least one, preferably all, additional wing elements have essentially the same outer contour, in particular a wing outer contour.

Erfindungsgemäß liegt das mindestens eine Versteifungselement im Bereich des Flügelfußes unmittelbar flächig an dem Basiselement und an einem der Zusatz-Flügelelemente an und ist das Versteifungselement mit diesen fest verbunden. Des Weiteren ist es bevorzugt, dass das innere Zusatz-Flügelelement im Bereich des Flügelfußes oder des Flügelkopfes unmittelbar flächig an dem äußeren Zusatz-Flügelelement anliegt und vorzugsweise mit diesem verbunden ist. Der Aufbau der einzelnen Rotorflügel und auch des Nabenelements ist vorzugsweise derart mehrschichtig, dass der Aufbau symmetrisch zu dem Basiselement ist.According to the invention, the at least one stiffening element rests flat against the base element and one of the additional wing elements in the area of the wing root and the stiffening element is firmly connected to these. Furthermore, it is preferred that the inner additional wing element in the area of the wing root or the wing head lies directly flat on the outer additional wing element and is preferably connected to it. The structure of the individual rotor blades and also of the hub element is preferably multilayered in such a way that the structure is symmetrical to the base element.

Ein üblicherweise ringförmig ausgebildetes Nabenelement weist am Umfang vorzugsweise eine Mehrzahl von insbesondere angestellten Rotorflügeln auf. Zur erfindungsgemäßen Erhöhung der Tipspeed weist das Nabenelement und/ oder die Rotorflügel faserverstärktes Material auf. Hierbei sind die Fasern vorzugsweise zu einem Großteil beanspruchungsgerecht angeordnet. Dies hat zur Folge, dass die erfindungsgemäßen Vakuumpumpenrotoren mit höheren Drehzahlen betrieben werden können. Insbesondere ist es möglich, hierdurch eine Tipspeed von mehr als 400 m/s, insbesondere mehr als 500 m/s und besonders bevorzugt mehr als 600 m/s zu erzielen.A usually ring-shaped hub element preferably has a plurality of, in particular, pitched rotor blades on the circumference. To increase the tip speed according to the invention, the hub element and / or the rotor blades have fiber-reinforced material. In this case, the fibers are preferably arranged to a large extent in accordance with the load. As a result, the vacuum pump rotors according to the invention can be operated at higher speeds. In particular, it is possible in this way to achieve a tip speed of more than 400 m / s, in particular more than 500 m / s and particularly preferably more than 600 m / s.

Vorzugsweise handelt es sich bei dem verwendeten Material um ein langfaserverstärktes Material mit Faserlängen von 1 bis 50mm oder um Endlosfasern mit Längen über 50 mm.The material used is preferably a long fiber-reinforced material with fiber lengths of 1 to 50 mm or continuous fibers with lengths over 50 mm.

Die beanspruchungsgerechte Anordnung der Fasern erfolgt vorzugsweise durch eine geeignete Ausrichtung der Fasern, so dass diese die bei derart hohen Geschwindigkeiten auftretenden Kräfte und Momente aufnehmen können. Eine beanspruchungsgerechte Anordnung wird auch dadurch erzielt, dass ggf. zusätzlich je nach Art der Beanspruchung die Richtung, die Dichte, die Festigkeit und/oder die Dicke der verwendeten Fasern variiert werden. Dies ist insbesondere vom Bereich der Beanspruchung an dem Nabenelement und/oder an den Rotorflügeln abhängig. Des Weiteren ist es besonders bevorzugt, dass zur beanspruchungsgerechten Anordnung zusätzlich auch für die entsprechende Beanspruchung besonders geeignete Fasern verwendet werden.The arrangement of the fibers in accordance with the load is preferably carried out by a suitable alignment of the fibers so that they can absorb the forces and moments that occur at such high speeds. An arrangement that is suitable for the load is also achieved by additionally varying the direction, the density, the strength and / or the thickness of the fibers used, depending on the type of load. This is particularly dependent on the area of stress on the hub element and / or on the rotor blades. Furthermore, it is particularly preferred that for an arrangement that is suitable for the demands also for Particularly suitable fibers are used for the corresponding stress.

Bevorzugt ist es hierbei, dass Metall-, Kunststoff- oder Kohlefasern verwendet werden. Hierbei ist es wiederum bevorzugt, im Bereich des Nabenelements oder dem dem Nabenelement zugewandten Teil der Rotorflügel ggf. Metallfasern einzusetzen, da sie ein anderes Bruchverhalten aufweisen.It is preferred here that metal, plastic or carbon fibers are used. Here it is again preferred to use metal fibers in the area of the hub element or the part of the rotor blades facing the hub element, since they have a different breaking behavior.

Es können im Nabenbereich zur Stabilisierung der Lage von Fasern oder zur Schaffung von Volumen auch massive Metall- oder Kunststoffteile in das Laminat mit eingearbeitet sein. Bevorzugt ist es ferner, dass beispielsweise Kunststoff-, Kohle- und/oder Metallfasern imprägniert oder vorimprägniert werden. Hierbei ist die Imprägnierung mit Epoxidharz, Phenolharz, Bismaimiden und/ oder thermoplastischen Kunststoffen, aber auch Polyurethan bevorzugt. Des Weiteren ist es bevorzugt, die Fasern als Gewebe, als Spread Tow, als Tape-Lagen, als TFP (Tailored-Fiber-Placement) gewickelt, geflochten und/oder als Spiralgewebe anzuordnen. Ferner sind insbesondere belastungsgerechte Mischformen unterschiedlicher Faseranordnungen möglich und auch bevorzugt.Solid metal or plastic parts can also be incorporated into the laminate in the hub area to stabilize the position of fibers or to create volume. It is also preferred that, for example, plastic, carbon and / or metal fibers are impregnated or pre-impregnated. Impregnation with epoxy resin, phenolic resin, bismaimides and / or thermoplastics, but also with polyurethane, is preferred here. Furthermore, it is preferred to arrange the fibers as a woven fabric, as a spread tow, as a tape layer, as a TFP (tailored fiber placement), wound, braided and / or as a spiral fabric. Furthermore, in particular, mixed forms of different fiber arrangements appropriate to the load are possible and also preferred.

Zur Erzielung besonders hoher Tipspeeds ist es bevorzugt, dass mindestens 20%, vorzugsweise mindestens 30% der im bzw. am Nabenelement und/oder im bzw. an den Rotorflügeln vorgesehenen Fasern beanspruchungsgerecht, d.h. insbesondere in Hauptspannungsrichtung angeordnet sind. Im Flügelbereich verlaufen die Fasern vorzugsweise in radialer Richtung, um die Kräfte aufzunehmen. Im Nabenbereich sind Teile der Fasern vorzugsweise rein in Umfangsrichtung gelegt, andere Bereiche weisen aber abweichende Richtungen auf, um eine Spannungverlagerung zu ermöglichen. Der Faservolumenanteil bezogen auf das Gesamtvolumen des Nabenelements und/oder der Rotorflügel ist hierbei vorzugsweise größer als 50%, insbesondere größer als 60%.To achieve particularly high tip speeds, it is preferred that at least 20%, preferably at least 30% of the fibers provided in or on the hub element and / or in or on the rotor blades are arranged in accordance with the load, ie in particular in the main stress direction. In the wing area, the fibers preferably run in a radial direction in order to absorb the forces. In the hub area, parts of the fibers are preferably placed purely in the circumferential direction, but other areas have different directions in order to enable tension to be shifted. The fiber volume fraction based on the total volume of the hub element and / or the rotor blades is preferably greater than 50%, in particular greater than 60%.

Die im oder am Nabenelement angeordneten Fasern sind vorzugsweise im Wesentlichen in Umfangsrichtung, d.h. in Rotationsrichtung des Nabenelements angeordnet. Hierbei sind die Fasern vorzugsweise so angeordnet, dass die Fasern die Kräfte in Umfangs-Richtung aufnehmen können. Hierbei ist, bezogen auf die Umfangsrichtung, eine Abweichung in einem Winkelbereich von ± 10° bis ± 20° derart definiert, dass es sich hierbei immer noch um Fasern handelt, die im Wesentlichen in Umfangsrichtung verlaufen.The fibers arranged in or on the hub element are preferably arranged essentially in the circumferential direction, i.e. in the direction of rotation of the hub element. Here, the fibers are preferably arranged in such a way that the fibers can absorb the forces in the circumferential direction. Here, based on the circumferential direction, a deviation in an angular range of ± 10 ° to ± 20 ° is defined in such a way that this is still a question of fibers which run essentially in the circumferential direction.

In oder an den Rotorflügeln verlaufen die Fasern vorzugsweise im Wesentlichen radial. Im Bereich der Flügel müssen die Fasern so angeordnet sein, dass die Fasern die Kräfte in radialer Richtung aufnehmen. Eine Abweichung im Bereich von ± 10° bis ± 20° definiert hierbei weiterhin eine im Wesentlichen radial verlaufende Faser.The fibers preferably run essentially radially in or on the rotor blades. In the area of the wings, the fibers must be arranged in such a way that the fibers absorb the forces in the radial direction. A deviation in the range of ± 10 ° to ± 20 ° further defines a fiber that runs essentially radially.

Insbesondere im angestellten Bereich der Flügelteile der Rotorflügel ist es bevorzugt, zusätzlich sich kreuzende Fasern zu verwenden, um eine beanspruchungsgerechte Anordnung der Fasern, z.B. gegen Verdrehen der Flügel, vorzunehmen. Die Fasern verlaufen hierbei vorzugsweise in einem Winkelbereich von ± 30° bis ± 45° gegenüber der Flügellängsachse und ± 70° bis ± 90° zueinander. Geeignet sind hierbei entsprechende Faserlagen, wie Patches oder Spread Tows. In einem Übergangsbereich zwischen den Nabenelementen und den Rotorflügeln ist es besonders bevorzugt, dass Fasern von dem Nabenelement in die Rotorflügel übergehen, so dass der Verbindungsbereich zwischen dem Nabenelement und den Rotorflügeln möglichst belastungsgerecht ausgebildet ist. Insbesondere bei einer derartigen Konstruktion ist es bevorzugt, dass das Nabenelement und die Rotorflügel einstückig ausgebildet sind. Es ist jedoch auch möglich, dass die Rotorflügel durch Einhängen, Einstecken in entsprechende Nuten und dergleichen mit der Nabe verbunden sind. Auch Kombinationen hiervon sind möglich, so dass zunächst eingehängte oder auf andere Art mit dem Nabenelement verbundene Flügelelemente anschließend über eine Faserlage in diesem Bereich mit dem Nabenelement verbunden werden.In particular in the adjusted area of the wing parts of the rotor blades, it is preferred to additionally use crossing fibers in order to arrange the fibers in accordance with the load, for example against twisting of the blades. The fibers preferably run in an angular range of ± 30 ° to ± 45 ° with respect to the longitudinal axis of the wing and ± 70 ° to ± 90 ° to one another. Corresponding fiber layers, such as patches or spread tows, are suitable here. In a transition area between the hub elements and the rotor blades, it is particularly preferred that fibers pass from the hub element into the rotor blades, so that the connection area between the hub element and the rotor blades is designed as load-bearing as possible. In particular with such a construction, it is preferred that the hub element and the rotor blades are formed in one piece. However, it is also possible for the rotor blades to be connected to the hub by hanging them, inserting them into corresponding grooves and the like. Combinations of these are also possible, so that they are initially suspended or connected to the hub element in some other way Wing elements are then connected to the hub element via a fiber layer in this area.

Ein Verbinden der Fasern kann durch anschließendes Vergießen, Verharzen oder dergleichen erfolgen. Zunächst kann aber auch, um eine exakte Position der Fasern zu definieren, ein Verkleben der Fasern miteinander erfolgen. Die Fasern können auch durch Sticken, Stricken oder dergleichen in der erforderlichen Richtung fixiert oder miteinander verbunden werden.The fibers can be connected by subsequent casting, resinification or the like. First, however, the fibers can also be glued to one another in order to define an exact position of the fibers. The fibers can also be fixed or connected to one another in the required direction by embroidery, knitting or the like.

Des Weiteren ist es bevorzugt, dass die Rotorflügel einen Anstellwinkel von 8° - 50° aufweisen können.Furthermore, it is preferred that the rotor blades can have an angle of attack of 8 ° -50 °.

Mit Hilfe der vorstehend beschriebenen Vakuumpumpen-Rotoren ist es insbesondere möglich, eine hohe Tipspeed von mehr als 400 m/s, insbesondere mehr als 500 m/s und besonders bevorzugt mehr als 600 m/s zu erreichen. Dies hat den erfindungswesentlichen Vorteil, dass die Rotoren auch zum Fördern leichter Gase, wie insbesondere Helium und Wasserstoff, geeignet sind. Auch ist es hierdurch möglich, bei hohen Förderleistungen Pumpenrotoren mit geringeren Durchmessern zu realisieren.With the aid of the vacuum pump rotors described above, it is possible in particular to achieve a high tip speed of more than 400 m / s, in particular more than 500 m / s and particularly preferably more than 600 m / s. This has the advantage, which is essential to the invention, that the rotors are also suitable for conveying light gases, such as, in particular, helium and hydrogen. This also makes it possible to implement pump rotors with smaller diameters at high delivery rates.

Besonders bevorzugt ist es, dass eines der Zusatz-Flügelelemente, insbesondere sowohl die inneren als auch die äußeren Zusatz-Flügelelemente eine Radialschicht aus einem faserverstärkten Material, insbesondere faserverstärkten Kunststoff aufweisen. Des Weiteren ist es bevorzugt, dass eines der Zusatz-Flügelelemente, insbesondere die beiden äußeren Zusatz-Flügelelemente, eine Spreadtow-Gewebeschicht aufweisen.It is particularly preferred that one of the additional wing elements, in particular both the inner and the outer additional wing elements, have a radial layer made of a fiber-reinforced material, in particular fiber-reinforced plastic. Furthermore, it is preferred that one of the additional wing elements, in particular the two outer additional wing elements, have a spreadtow fabric layer.

Das mindestens eine Versteifungselement weist vorzugsweise ebenfalls Fasermaterial, insbesondere Kunststoff-Fasermaterial auf. Ein Teil der Fasern verläuft hierbei vorzugsweise in Umfangsrichtung. Hierdurch ist eine Tangentialschicht ausgebildet. Es ist bevorzugt, dass das mindestens eine Halteelement ebenfalls Fasern aufweist, die in Umfangsrichtung verlaufen, so dass weitere Tangentialschichten ausgebildet sind. Die insbesondere inneren Zusatz-Flügelelemente weisen als Hauptfaserrichtung in bevorzugter Ausführungsform radial verlaufende Fasern auf, so dass hierdurch Radialschichten ausgebildet sind. Bei den vorzugsweise vorgesehenen zwei äußeren Zusatz-Flügelelementen sind die Fasern gekreuzt zueinander angeordnet und insbesondere ein Spreadtow-Gewebe vorgesehen. Insbesondere durch die mehrschichtige Ausgestaltung des Vakuumpumpen-Rotors aus vorzugsweise unterschiedlichen Materiallagen mit besonders bevorzugten unterschiedlichen Ausrichtungen der Materialfasern ist es möglich, Vakuumpumpen-Rotoren herzustellen die extrem hohen Belastungen standhalten, sodass sehr hohe Tipspeeds erzielt werden können.The at least one stiffening element preferably also has fiber material, in particular plastic fiber material. Some of the fibers here preferably run in the circumferential direction. As a result, a tangential layer is formed. It is preferred that the at least one holding element also has fibers that run in the circumferential direction, see above that further tangential layers are formed. The additional inner wing elements, in particular, have fibers running radially as the main fiber direction in a preferred embodiment, so that radial layers are formed as a result. In the case of the two outer additional wing elements which are preferably provided, the fibers are arranged crossed with respect to one another and, in particular, a spreadtow fabric is provided. In particular, the multi-layer design of the vacuum pump rotor from preferably different material layers with particularly preferred different orientations of the material fibers makes it possible to manufacture vacuum pump rotors that withstand extremely high loads so that very high tip speeds can be achieved.

Der vorstehend beschriebene Aufbau von Vakuumpumpen-Rotoren ist auch für andere schnelldrehende Rotoren, wie sie beispielsweise im Bereich Gebläse, Ventilatoren, Gasförderung verwendet werden, möglich, wobei dies jedoch nicht zur Erfindung gehört.The construction of vacuum pump rotors described above is also possible for other rapidly rotating rotors, such as those used in the field of blowers, ventilators, gas conveying, but this is not part of the invention.

Nachfolgend wird die Erfindung anhand einer bevorzugten Ausführungsform unter Bezugnahme auf die anliegende Zeichnung näher erläutert.The invention is explained in more detail below on the basis of a preferred embodiment with reference to the accompanying drawing.

Die Figur zeigt einen Ausschnitt eines Vakuumpumpen-Rotors in zusammengefügtem Zustand sowie teilweise als Explosionsdarstellung, wobei die Darstellung schematisch vereinfacht erfolgt.The figure shows a section of a vacuum pump rotor in the assembled state and partially as an exploded view, the representation being made in a schematically simplified manner.

In der Figur ist zunächst schematisch ein Teil eines mehrlagigen Vakuumpumpen-Rotors mit miteinander verbundenen Materiallagen dargestellt. Hierbei ist ein Teil eines Nabenelements 10 dargestellt. Hierbei ist nur ein Kreisringsegment des kreisringförmigen Nabenelements 10 dargestellt. Das Nabenelement 10 umgibt beispielsweise eine Rotorwelle, mit der es fest verbunden ist. Üblicherweise sind mehrere derartige ringförmige Nabenelemente in axialer Richtung hintereinander angeordnet, sodass mehrere Vakuumpumpen-Stufen ausgebildet sind und beispielsweise einen Rotor für eine Turbomolekularpumpe ausbilden. Hierdurch können die einzelnen Nabenelemente mit einer Rotorwelle verbunden sein oder selbst die Rotorwelle ausbilden, indem sie entsprechend miteinander verbunden werden. Mit dem Nabenelement 10 sind in Umfangsrichtung jeweils radial verlaufende in einem Winkel angestellte Rotorflügel 12 verbunden, wobei zur Veranschaulichung nur ein einziger Rotorflügel 12 dargestellt ist.In the figure, a part of a multi-layer vacuum pump rotor with interconnected layers of material is initially shown schematically. Part of a hub element 10 is shown here. Here, only one circular ring segment of the circular ring-shaped hub element 10 is shown. The hub element 10 surrounds, for example, a rotor shaft to which it is firmly connected. Usually, several such annular hub elements are arranged one behind the other in the axial direction, so that several vacuum pump stages are formed and form, for example, a rotor for a turbo molecular pump. As a result, the individual hub elements can be connected to a rotor shaft or form the rotor shaft themselves by being connected to one another accordingly. With the hub element 10, rotor blades 12 which run radially in the circumferential direction and are set at an angle are connected, with only a single rotor blade 12 being shown for the purpose of illustration.

Zur Verdeutlichung des mehrschichtigen Aufbaus weist die Zeichnung ferner eine Explosionsdarstellung der einzelnen Schichten auf. Hierbei ist als mittlere Schicht ein Basiselement 14 dargestellt. Der Aufbau des gesamten Vakuumpumpen-Rotors in der dargestellten bevorzugten Ausführungsform ist symmetrisch zu dem Basiselement 14 aufgebaut. Auf dem Basiselement 14 ist ein Versteifungselement 16 angeordnet, wobei symmetrisch zum Basiselement 14 auf der gegenüberliegenden Seite ein weiteres Versteifungselement symmetrisch zum dem dargestellten Versteifungselement 16 angeordnet ist. Entsprechendes gilt auch für die nächste Schicht, die durch ein inneres Zusatz-Flügelelement 18 ausgebildet ist, wobei das zweite Zusatz-Flügelelement 18 wiederum auf der gegenüberliegenden Seite symmetrisch zu dem Basiselement 14 vorgesehen ist. Entsprechend sind auch zwei äußere Zusatz-Flügelelemente 20 vorgesehen und wiederum symmetrisch zu dem Basiselement 14 angeordnet. Als weiteres Element sind zwei Halteelemente 22 vorgesehen, die wiederum symmetrisch zum Basiselement 14 angeordnet sind. Die Halteelemente 22 stellen hierbei die wesentlichen Elemente des Nabenelements 10 dar.To illustrate the multilayer structure, the drawing also shows an exploded view of the individual layers. Here, a base element 14 is shown as the middle layer. The construction of the entire vacuum pump rotor in the illustrated preferred embodiment is constructed symmetrically to the base element 14. A stiffening element 16 is arranged on the base element 14, a further stiffening element being arranged symmetrically to the base element 14 on the opposite side, symmetrically to the stiffening element 16 shown. The same also applies to the next layer, which is formed by an inner additional wing element 18, the second additional wing element 18 again being provided on the opposite side symmetrically to the base element 14. Correspondingly, two outer additional wing elements 20 are also provided and again arranged symmetrically to the base element 14. As a further element, two holding elements 22 are provided, which in turn are arranged symmetrically to the base element 14. The holding elements 22 represent the essential elements of the hub element 10.

Das Basiselement 14, welches die Symmetrieebene ausbildet, weist in der dargestellten bevorzugten Ausführungsform eine Außenkontur auf, die der Außenkontur des Flügels 12 entspricht. Das Basiselement 14 weist hierbei ein Nabenteil 24 auf, das in das Nabenelement 10 ragt bzw. zwischen den beiden Halteelementen 22 des Nabenelements 10 angeordnet ist. Hierbei ist zu berücksichtigen, dass die beiden Halteelemente 22 insbesondere ringförmig ausgebildet sind, wobei zwischen diesen beiden ringförmigen Halteelementen 22 mehrere Nabenteile entsprechend der Anzahl der Rotorflügel 12 angeordnet sind. Mit dem Nabenteil 24 ist ein Flügelfuß 26 verbunden und insbesondere einstückig ausgebildet. Der Flügelfuß 26 stellt das Verbindungselement zwischen dem Nabenteil und einem Flügelkopf 28 dar. Der Flügelkopf 28 ist hierbei der wesentliche Bestandteil des Rotorflügels 12. Das Basiselement 14 ist vorzugsweise einstückig ausgebildet und weist in bevorzugter Ausführungsform ein Kohlefaservlies auf.In the preferred embodiment shown, the base element 14, which forms the plane of symmetry, has an outer contour which corresponds to the outer contour of the wing 12. The base element 14 here has a hub part 24 which protrudes into the hub element 10 or is arranged between the two holding elements 22 of the hub element 10. It must be taken into account here that the two holding elements 22 are in particular ring-shaped are formed, wherein a plurality of hub parts corresponding to the number of rotor blades 12 are arranged between these two annular holding elements 22. A wing foot 26 is connected to the hub part 24 and, in particular, is formed in one piece. The wing foot 26 represents the connecting element between the hub part and a wing head 28. The wing head 28 is the essential component of the rotor blade 12. The base element 14 is preferably formed in one piece and, in a preferred embodiment, has a carbon fiber fleece.

Die nächste Schicht ist durch die beiden einander gegenüberliegenden Versteifungselemente 16 ausgebildet. Die Außenkontur der Versteifungselemente 16 entspricht im dargestellten Ausführungsbeispiel der Außenkontur des Nabenteils 24 und des Flügelfußes 26. Gegebenenfalls ragt das Versteifungselement 16 nur in einen Teil des Flügelfußes 26. Das Versteifungselement weist an einer Innenseite ein Fixierelement 30 auf. Dieses ragt axial nach Außen und hintergreift jeweils die beiden Halteelemente 22. Das Versteifungselement 16 ist vorzugsweise als Tangentialschicht ausgebildet und weist insofern eine Vielzahl in Umfangsrichtung zur Aufnahme von Tangentialkräften geeignete Fasern auf. Hierbei ist der Dickengradient am Nabeninnenbereich hoch.The next layer is formed by the two mutually opposite stiffening elements 16. In the exemplary embodiment shown, the outer contour of the stiffening elements 16 corresponds to the outer contour of the hub part 24 and the wing root 26. If necessary, the stiffening element 16 protrudes only into part of the wing root 26. The stiffening element has a fixing element 30 on an inner side. This protrudes axially outward and engages behind the two holding elements 22. The stiffening element 16 is preferably designed as a tangential layer and in this respect has a large number of fibers that are suitable in the circumferential direction for absorbing tangential forces. The thickness gradient on the inside of the hub is high here.

Die nächste Materiallage ist durch die beiden inneren Zusatz-Flügelelemente 18 ausgebildet. Die Außenkontur der inneren Zusatz-Flügelelemente entspricht der Außenkontur des Basiselements. Die inneren Zusatz-Flügelelemente 18 weisen ebenfalls ein Fixierelement 32 auf, das die Halteelemente 22 entsprechend dem Fixierelement 32 radial hintergreift. Vorzugsweise sind die Materialfasern der inneren Zusatz-Flügelelemente 18 radial ausgerichtet, sodass diese Schichten als Radialschichten angesehen werden können.The next layer of material is formed by the two inner additional wing elements 18. The outer contour of the inner additional wing elements corresponds to the outer contour of the base element. The inner additional wing elements 18 also have a fixing element 32 which engages behind the holding elements 22 radially in accordance with the fixing element 32. The material fibers of the inner additional wing elements 18 are preferably aligned radially so that these layers can be viewed as radial layers.

Die nächsten Materiallagen werden durch die äußeren Zusatz-Flügelelemente 20 ausgebildet. Die Außenkontur der äußeren Zusatz-Flügelelemente 20 entspricht wiederum der Außenkontur des Basiselements 14. Des Weiteren weisen auch die äußeren Zusatz-Flügelelemente 20 ein Fixierelement 34 auf, das wiederum die beiden Halteelemente 22 radial hintergreift. Bevorzugt ist es, dass die äußeren Zusatz-Flügelelemente 20 aus einem Spreadtow-Gewebe hergestellt sind.The next layers of material are formed by the outer additional wing elements 20. The outer contour of the outer additional wing elements 20 in turn corresponds to the outer contour of the base element 14 the outer additional wing elements 20 also have a fixing element 34, which in turn engages behind the two holding elements 22 radially. It is preferred that the outer additional wing elements 20 are made from a spreadtow fabric.

Die äußere Materiallage wird durch die beiden Halteelemente 22 ausgebildet, wobei sich diese nicht in den Rotorflügel 12 hinein strecken, sondern im Wesentlichen das Nabenelement ausbilden. Auch die Halteelemente 22 weisen vorzugsweise Materialfasern, insbesondere Kunststofffasern oder Kohlenstofffasern auf.The outer material layer is formed by the two holding elements 22, these not extending into the rotor blade 12, but essentially forming the hub element. The holding elements 22 also preferably have material fibers, in particular plastic fibers or carbon fibers.

Wesentlich für die Erfindung ist der mehrlagige Aufbau des Vakuumpumpen-Rotors. Die Ausgestaltung und die Materialwahl der einzelnen Lagen sind hierbei vorzugsweise derart gewählt, dass eine möglichst beanspruchungsgerechte Materialauswahl und ein beanspruchungsgerechter Faserverlauf realisiert sind. Hierdurch können Vakuumpumpen-Rotoren hergestellt werden, die äußerst hohen Beanspruchungen standhalten und insbesondere eine Tipspeed von mehr als 400 m/s, insbesondere mehr als 500 m/s und insbesondere mehr als 600 m/s realisieren können.The multi-layer structure of the vacuum pump rotor is essential for the invention. The design and the choice of material for the individual layers are preferably selected in such a way that a material selection that is as appropriate to the demands as possible and a fiber orientation that is appropriate to the demands are realized. In this way, vacuum pump rotors can be produced which can withstand extremely high loads and in particular can achieve a tip speed of more than 400 m / s, in particular more than 500 m / s and in particular more than 600 m / s.

Claims (12)

  1. A vacuum-pump rotor, in particular for turbomolecular pumps, comprising
    a hub element (10) for connecting to a rotor shaft and/or for forming a rotor shaft, and
    rotor blades (12) connected to the hub element (10),
    wherein the hub element (10) and/or the rotor blades (12) comprise a plurality of material layers,
    wherein a plurality of rotor blades (12) surrounding the hub element (10) are provided, each comprising a blade foot (26) connected to the hub element (10) and a blade head (28) connected thereto,
    wherein the hub element (10) comprises at least one holding element (22), wherein a base element (14) comprising fiber-reinforced material is provided as a material layer, said base element being directly or indirectly connected to the least one holding element (22),
    wherein the base element (14) comprises a hub member (24) arranged in the hub element (10) and forms the foot (26) and also the head (28) of a rotor blade,
    wherein at least one stiffening element (16) preferably comprising a fiber-reinforced material is provided as further material layer/s, said stiffening element being connected to the holding element (22) by face-to-face contact and protruding into the blade foot (26) of the roto blade (12),
    wherein the outer contour of the stiffening element (16) corresponds to the outer contour of the hub member (24) and of the blade foot (26),
    characterized in that
    at least one additional blade element (18, 20) comprising fiber-reinforced material is provided as further material layer/s, said additional blade element being connected to the holding element (22) and protruding into the blade foot (26) and into the blade head (28),
    the stiffening element (16), in the area of the blade foot (26), is in direct abutment on the base element (14) and on the additional blade element (18, 20) by face-to-face contact and is arranged between the base element and the additional blade element, and that
    the holding (22) comprises a fiber-reinforced material.
  2. The vacuum-pump rotor according to claim 1, characterized in that at least one of the material layers comprises fiber-reinforced material.
  3. The vacuum-pump rotor according to any one of claims 1 to 2, characterized in that the hub element (10) comprises two mutually opposite holding elements (22) having arranged between them a hub member (24) of the base element (14), and/or that the stiffening element (16) comprises, on an inner side, a fixing element (30) extending preferably at least partially axially and/or engaging behind the holding element (22).
  4. The vacuum-pump rotor according to any one of claims 1 to 3, characterized in that two mutually opposite stiffening elements (16) are arranged on different sides of the base element (14).
  5. The vacuum-pump rotor according to any one of claims 1 to 4, characterized in that the at least one additional blade element (18, 20) comprises, on an inner side, a fixing element (32) extending preferably at least partially axially and/or engaging behind the holding element (22).
  6. The vacuum-pump rotor according to any one of claims 1 to 5, characterized in that one of the additional blade elements (18) comprises a radial layer of fiber-reinforced material.
  7. The vacuum-pump rotor according to any one of claims 1 to 6, characterized in that one of the additional blade elements (20) comprises a spread tow fabric layer.
  8. The vacuum-pump rotor according to claim 6, characterized in that at least one of the additional blade elements is designed as an inner additional blade element (18) preferably connected to a blade head (28) of the base element (14) by face-to-face contact.
  9. The vacuum-pump rotor according to claim 7, characterized in that at least one of the additional blade elements is designed as an outer additional blade element (20) preferably connected to the inner additional blade element (18) by face-to-face contact.
  10. The vacuum-pump rotor according to any one of claims 1 to 9, characterized in that the base element (14) and at least one additional blade element, preferably all additional blade elements (18, 20), have substantially the same outer contour, preferably a blade-shaped outer contour.
  11. The vacuum-pump rotor according to one of claims 9 and 10, characterized in that, in the area of the blade foot (26) and/or the blade head (28), the inner additional blade element (18) is in direct abutment on the outer additional blade element (20) by face-to-face contact.
  12. The vacuum-pump rotor according to any one of claims 1 to 11, characterized in that the rotor relative to the base element (14) is of a symmetrical multilayered design.
EP16725126.3A 2015-06-08 2016-05-25 Vacuum-pump rotor Active EP3280916B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE202015004001.2U DE202015004001U1 (en) 2015-06-08 2015-06-08 vacuum pump rotor
DE202015004160.4U DE202015004160U1 (en) 2015-06-15 2015-06-15 Vacuum pump rotor
PCT/EP2016/061786 WO2016198260A1 (en) 2015-06-08 2016-05-25 Vacuum-pump rotor

Publications (2)

Publication Number Publication Date
EP3280916A1 EP3280916A1 (en) 2018-02-14
EP3280916B1 true EP3280916B1 (en) 2021-10-20

Family

ID=56081480

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16725126.3A Active EP3280916B1 (en) 2015-06-08 2016-05-25 Vacuum-pump rotor

Country Status (7)

Country Link
US (1) US10393124B2 (en)
EP (1) EP3280916B1 (en)
JP (1) JP6731421B2 (en)
KR (1) KR102521349B1 (en)
CN (1) CN107646076B (en)
SG (1) SG11201708740XA (en)
WO (1) WO2016198260A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2600506B (en) * 2018-02-12 2022-09-14 Edwards Ltd Reinforced vacuum system component
GB2570925B (en) * 2018-02-12 2021-07-07 Edwards Ltd Reinforced vacuum system component
GB2583938A (en) * 2019-05-14 2020-11-18 Edwards Ltd Vacuum rotor blade
US20240384726A1 (en) * 2023-05-18 2024-11-21 Shimadzu Corporation Method of manufacturing rotor blade of vacuum pump, rotor blade of vacuum pump, and vacuum pump

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1071275B (en) 1959-12-17
JPH09303288A (en) 1996-05-16 1997-11-25 Daikin Ind Ltd Turbo-molecular pump blade
GB2456637B (en) * 1997-06-03 2010-01-13 Rolls Royce Plc A fibre reinforced metal rotor
JP4324649B2 (en) * 2001-11-28 2009-09-02 福井県 Fiber reinforced thermoplastic resin sheet, structural material using the same, and method for producing fiber reinforced thermoplastic resin sheet
FR2845737B1 (en) * 2002-10-11 2005-01-14 Cit Alcatel TURBOMOLECULAR PUMP WITH COMPOSITE SKIRT
GB0229355D0 (en) * 2002-12-17 2003-01-22 Boc Group Plc Vacuum pumping arrangement
GB0314692D0 (en) * 2003-06-25 2003-07-30 Boc Group Plc Improvements in turbomolecular pumps
DE10354204B4 (en) * 2003-11-20 2016-03-10 Leybold Vakuum Gmbh molecular pump
JP2006090231A (en) * 2004-09-24 2006-04-06 Boc Edwards Kk Method for manufacturing fixed blade of turbo molecular pump and vacuum pump
DE102007006915A1 (en) 2007-02-13 2008-08-14 Oerlikon Leybold Vacuum Gmbh Turbo-molecular pump rotor element, has reinforcement element connecting parts of pinions with each other and providing improved distribution of loads during operation of rotor element
CN201050492Y (en) * 2007-06-29 2008-04-23 成都无极真空科技有限公司 Vertical turbine molecular pump
DE502007005014D1 (en) * 2007-09-21 2010-10-21 Grundfos Management As Canned tube of a drive motor for a pump set
CN101254578A (en) * 2008-04-09 2008-09-03 北京中科科仪技术发展有限责任公司 Manufacturing method of turbine rotor of large-sized turbine molecular pump
JP5676453B2 (en) * 2009-08-26 2015-02-25 株式会社島津製作所 Turbomolecular pump and rotor manufacturing method
ITTO20100070A1 (en) 2010-02-01 2011-08-02 Varian Spa VACUUM PUMP, IN PARTICULAR TURBOMOLECULAR VACUUM PUMP.
WO2011162070A1 (en) * 2010-06-24 2011-12-29 エドワーズ株式会社 Vacuum pump
GB2498816A (en) * 2012-01-27 2013-07-31 Edwards Ltd Vacuum pump
DE102012003680A1 (en) * 2012-02-23 2013-08-29 Pfeiffer Vacuum Gmbh vacuum pump
JP5982999B2 (en) 2012-05-01 2016-08-31 株式会社Ihi Rotor blade and fan
US9239062B2 (en) * 2012-09-10 2016-01-19 General Electric Company Low radius ratio fan for a gas turbine engine
US20140178204A1 (en) * 2012-12-21 2014-06-26 General Electric Company Wind turbine rotor blades with fiber reinforced portions and methods for making the same
DE202013002970U1 (en) 2013-03-27 2014-06-30 Oerlikon Leybold Vacuum Gmbh Tool for producing a multiple rotor blades having rotor disk and rotor disk
DE202015004160U1 (en) 2015-06-15 2016-09-19 Oerlikon Leybold Vacuum Gmbh Vacuum pump rotor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
SG11201708740XA (en) 2017-11-29
WO2016198260A1 (en) 2016-12-15
KR20180018488A (en) 2018-02-21
JP6731421B2 (en) 2020-08-05
CN107646076A (en) 2018-01-30
US10393124B2 (en) 2019-08-27
EP3280916A1 (en) 2018-02-14
CN107646076B (en) 2020-06-09
JP2018517090A (en) 2018-06-28
US20180100510A1 (en) 2018-04-12
KR102521349B1 (en) 2023-04-12

Similar Documents

Publication Publication Date Title
EP2209995B1 (en) Multi-stage pump rotor for turbo-molecular pump
EP3280916B1 (en) Vacuum-pump rotor
EP3042435B1 (en) Device with electric machine in lightweight construction
EP3018342B1 (en) Method for producing a rotor blade of a wind turbine
EP3058640B1 (en) Rotor cap for electric generators
DE10104170A1 (en) Fan wheel for conveyance or compression of process gases is constructed of identical preformed fiber segments joined to form a ring between annular fiber disc preforms
DE202015004160U1 (en) Vacuum pump rotor
EP1498612B1 (en) Turbo molecular pump
DE202015004001U1 (en) vacuum pump rotor
EP3564523B1 (en) Flange fitting for a wind energy assembly rotor blade, reinforcement layer for a flange fitting, flange inserter, wind energy assembly rotor blade, wind turbine and method for producing a flange fitting
DE102007006915A1 (en) Turbo-molecular pump rotor element, has reinforcement element connecting parts of pinions with each other and providing improved distribution of loads during operation of rotor element
DE102013209475B4 (en) Method and tool for producing a rotor disk having a plurality of rotor blades and rotor disk
DE112019007538T5 (en) ROTOR, ENGINE AND METHOD OF MAKING A ROTOR
DE2304043A1 (en) IMPELLER FOR A FLOW MACHINE
EP2848833A2 (en) Bearing ring and bearing with the bearing ring and method for mounting and removing a bearing ring
DE102006001909B4 (en) Impeller of a fan
WO2011141244A2 (en) Rotor with a winding head cap
DE102009010613A1 (en) A method for attaching or producing a closed shroud for a rotor blading a turbine stage and blading a turbine stage for a turbine
EP3480930B1 (en) Axial flow machine
EP3362679B1 (en) Wind turbine rotor blade and method for producing a wind turbine rotor blade
WO2005052375A1 (en) Turbomolecular pump rotor step
DE202013010937U1 (en) Rotor disc and rotor for a vacuum pump
EP4148171B1 (en) Reinforcement structure for component, component comprising the reinforcement structure, and method for producing the reinforcement structure and method for producing the component
DE10113609C1 (en) Turbine rotor for wind turbine has intermediate plate between each rotor blade and outer ring of rotor hub
EP4274062A1 (en) Rotor for an electric motor and method for producing the same

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171108

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190705

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210527

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016014016

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1440170

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211115

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20211020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220220

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220221

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220120

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220121

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016014016

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220525

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230423

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1440170

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240522

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240528

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240522

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240531

Year of fee payment: 9