EP3274483A1 - Parts with a bainitic structure having high strength properties and manufacturing process - Google Patents
Parts with a bainitic structure having high strength properties and manufacturing processInfo
- Publication number
- EP3274483A1 EP3274483A1 EP16718723.6A EP16718723A EP3274483A1 EP 3274483 A1 EP3274483 A1 EP 3274483A1 EP 16718723 A EP16718723 A EP 16718723A EP 3274483 A1 EP3274483 A1 EP 3274483A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- content
- expressed
- weight
- percentage
- part according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 14
- 239000000203 mixture Substances 0.000 claims abstract description 24
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 13
- 229910001566 austenite Inorganic materials 0.000 claims abstract description 11
- 229910001563 bainite Inorganic materials 0.000 claims abstract description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910052742 iron Inorganic materials 0.000 claims abstract description 5
- 239000012535 impurity Substances 0.000 claims abstract description 4
- 229910000831 Steel Inorganic materials 0.000 claims description 30
- 239000010959 steel Substances 0.000 claims description 30
- 238000001816 cooling Methods 0.000 claims description 25
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 12
- 239000010936 titanium Substances 0.000 claims description 11
- 239000010955 niobium Substances 0.000 claims description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 8
- 229910052799 carbon Inorganic materials 0.000 claims description 8
- 239000011651 chromium Substances 0.000 claims description 8
- 239000011572 manganese Substances 0.000 claims description 8
- 229910052710 silicon Inorganic materials 0.000 claims description 8
- 239000010703 silicon Substances 0.000 claims description 8
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 7
- 229910052719 titanium Inorganic materials 0.000 claims description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 6
- 229910052758 niobium Inorganic materials 0.000 claims description 6
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- 239000000047 product Substances 0.000 claims description 6
- 239000011265 semifinished product Substances 0.000 claims description 5
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 239000011733 molybdenum Substances 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 238000003303 reheating Methods 0.000 claims description 4
- 229910052717 sulfur Inorganic materials 0.000 claims description 4
- 239000011593 sulfur Substances 0.000 claims description 4
- 229910052720 vanadium Inorganic materials 0.000 claims description 4
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 238000003754 machining Methods 0.000 claims description 2
- 238000002360 preparation method Methods 0.000 claims description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 16
- 230000008569 process Effects 0.000 abstract description 8
- 238000003723 Smelting Methods 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 10
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 229910052796 boron Inorganic materials 0.000 description 7
- 238000005496 tempering Methods 0.000 description 7
- 230000009466 transformation Effects 0.000 description 7
- 239000000126 substance Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 238000010791 quenching Methods 0.000 description 4
- 230000000171 quenching effect Effects 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000005242 forging Methods 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 238000005204 segregation Methods 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 238000007493 shaping process Methods 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 229910001567 cementite Inorganic materials 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 235000019589 hardness Nutrition 0.000 description 2
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 2
- 229910000734 martensite Inorganic materials 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 229910052711 selenium Inorganic materials 0.000 description 2
- 239000011669 selenium Substances 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 229910052714 tellurium Inorganic materials 0.000 description 2
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 230000006355 external stress Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000009415 formwork Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 229910001562 pearlite Inorganic materials 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000004848 polyfunctional curative Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
- C21D9/525—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/06—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
- C21D8/065—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/20—Ferrous alloys, e.g. steel alloys containing chromium with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
Definitions
- the present invention covers a parts manufacturing high strength properties while being machineable, obtained from steels simultaneously having good hot ductility for performing hot forming operations and such that n hardenability It is not useful to perform tempering and tempering operations to obtain the advertised properties.
- the invention relates more precisely to parts having, whatever the shape and complexity of the part, a mechanical strength greater than or equal to 1100 MPa, having a yield strength greater than or equal to 700 MPa, an elongation at break A greater than or equal to 12 and a necking with Z-breaking greater than 30%,
- each part, bar, any form, wire or complex piece obtained by hot forming process is defined as, for example, rolling, or forging with or without subsequent partial or total reheating operations. , thermal or thermochemical treatment and / or shaping with or without removal of material, or even with addition of material as for welding.
- hot forming of a steel is meant any process that modifies the primary form of a product by an operation which is carried out at a temperature of the material such that the crystalline structure of the steel is predominantly austenitic.
- EP0787812 describes a process for the manufacture of forged parts whose chemical composition comprises, by weight: 0.1% ⁇ C ⁇ 0.4%; 1% ⁇ Mn ⁇ 1, 8%; 1, 2% ⁇ Si ⁇ 1, 7%; 0% ⁇ Ni ⁇ 1%; 0% ⁇ Cr ⁇ 1, 2%; 0% ⁇ Mo ⁇ 0.3%; 0% ⁇ V ⁇ 0.3%; Cu ⁇ 0.35% optionally from 0.005% to 0.06% aluminum, optionally boron in contents of between 0.0005% and 0.01%, optionally between 0.005% and 0.03% titanium, optionally between 0.005 % and 0.06% of niobium, optionally from 0.005% to 0.1% of sulfur, optionally up to 0.006% of calcium, optionally up to 0.03% of tellurium, optionally up to 0.05% of selenium, optionally up to 0.05% bismuth, optionally up to 0.1% lead, the balance being iron and impurities resulting from the preparation.
- This method involves subjecting the workpiece to a heat treatment having a cooling from a temperature at which the steel is fully austenitic to a temperature Tm of between Ms + 100 D ° C and Ms-20 ° C at a temperature of cooling rate Vr greater than 0.5 ° C / s, followed by holding the workpiece between Tm and Tf, with Tf> Tm-100 ° C, and preferably Tf> Tm-60 ° C, for at least 2 minutes to obtain a structure comprising at least 15%, and preferably at least 30% of bainite formed between Tm and Tf.
- This technique requires many process steps that are detrimental to productivity.
- the object of the present invention is to solve the problems mentioned above. It aims to provide a steel for hot formed parts with high strength properties, simultaneously having a mechanical strength and a deformation capacity to perform hot forming operations.
- the invention more specifically relates to steels having a mechanical strength greater than or equal to 1100 MPa (ie a hardness greater than or equal to 300 Hv), having a yield strength greater than or equal to 700 MPa, and a higher breaking elongation or equal to 12%, with a failure greater than 30%.
- the invention also aims to provide a steel with an ability to be produced in a robust manner that is to say without large variations in properties depending on the manufacturing parameters and machinable with commercially available tools without loss of strength. productivity during implementation.
- the subject of the invention is a part according to claims 1 to 12 and a part manufacturing method according to claim 13.
- the chemical composition in percentage by weight, must be the following:
- the carbon content is between 0.10 and 0.30%. If the carbon content is below 0.10% by weight, there is a risk of forming pro-eutectoid ferrite and insufficient mechanical strength. Beyond 0.30%, the weldability becomes more and more reduced because it is possible to form low-tenacity microstructures in the heat-affected zone (ZAT) or in the melted zone. Within this range, the weldability is satisfactory, and the mechanical properties are stable and consistent with the targets of the invention. According to a preferred embodiment, the carbon content is between 0.15 and 0.27% and preferably between 0.17 and 0.25%.
- the manganese is between 1, 6 and 2.1% and preferably between 1.7% and 2.0%. It is a hardening element with solid solution of substitution, it stabilizes the austenite and lowers the transformation temperature Ac3. Manganese therefore contributes to an increase in mechanical strength. A minimum content of 1.6% by weight is necessary to obtain the desired mechanical properties. However, beyond 2.1%, its gammagenic character leads to a significant slowing down of the bainitic transformation kinetics occurring during final cooling and the bainite fraction would be insufficient to achieve a yield strength greater than or equal to 700 MPa. . This combines a satisfactory mechanical strength without increasing the risk of decreasing the bainite fraction and thus reducing the yield strength, nor increasing the quenchability in welded alloys, which would adversely affect the weldability of steel according to the invention.
- the chromium content should be between 0.5% and 1.7% and preferably between 1.0 and 1.5%.
- This element makes it possible to control the formation of ferrite on cooling from a completely austenitic structure, because this ferrite, in a large quantity, reduces the mechanical strength required for the steel according to the invention.
- This element also makes it possible to harden and refine the bainitic microstructure, which is why a minimum content of 0.5% is necessary.
- this element considerably slows down the kinetics of the bainitic transformation, so, for contents greater than 1.7%, the bainite fraction may be insufficient to reach a yield strength greater than or equal to 700 MPa.
- a range of chromium content of between 1.0% and 1.5% is chosen to refine the bainitic microstructure.
- the silicon must be between 0.5 and 1.0%. In this range, the residual austenite stabilization is made possible by the addition of silicon which considerably slows the precipitation of carbides during bainitic transformation. This has been corroborated by the inventors who have noted that the bainite of the invention is virtually free of carbides. This is because the solubility of silicon in cementite is very low and this element increases carbon activity in austenite. Any formation of cementite will therefore be preceded by a step of rejection of Si at the interface. The enrichment of the austenite carbon, therefore leads to its stabilization at room temperature on the steel according to this first embodiment.
- the application of an external stress at a temperature below 200 ° C may lead to the transformation of part of this austenite in martensite. This transformation will result in increasing the yield point.
- the minimum silicon content should be set at 0.5% by weight to achieve the stabilizing effect on the austenite and retard carbide formation.
- the yield strength does not reach the required minimum of 700 MPa.
- an addition of silicon in an amount greater than 1.0% will induce an excess of residual austenite which will reduce the yield strength.
- the silicon content will be between 0.75 and 0.9% in order to optimize the aforementioned effects.
- the niobium should be between 0.065% and 0.15%. It is a micro-alloy element that has. the particularity of forming hardeners precipitating with carbon and / or nitrogen. II. also makes it possible to delay the bainitic transformation, in synergy with the micro-alloy elements such as boron and molybdenum present in the invention.
- the niobium content must nevertheless be limited to 0.15% to avoid the formation of large precipitates which may be crack initiation sites and to avoid the problems of loss of hot ductility associated with a possible intergranular precipitation of nitrides.
- the niobium content must be greater than or equal to 0.065% which, combined with titanium, makes it possible to have a stabilizing effect on the final mechanical properties, ie a lower sensitivity to the speed of cooling. Indeed, it can form mixed carbonitrides with titanium and remain stable at relatively high temperatures, which makes it possible to avoid the abnormal magnification of the grains at high temperature, or even allowing sufficiently high refinement of the austenitic grain.
- the maximum content of Nb is in the range 0.065% and 0, 0% to optimize the aforementioned effects.
- the titanium content should be such that 0.010 ⁇ Ti ⁇ 0.1%.
- a content maximum of 0.1% is tolerated, above titanium will have the effect of increasing the price and generate harmful precipitates for fatigue resistance and machinability.
- a minimum of 0.010% is required to control the austenitic grain size and to protect the boron from nitrogen.
- a titanium content range of between 0% and 0.20% and 0.03% is chosen.
- the boron content should be between 10 ppm (0.0010%) and 50 ppm (0.0050%).
- This element makes it possible to control the formation of ferrite on cooling from a completely austenitic structure, because this ferrite, in a large quantity, would reduce the mechanical strength and the elastic limit targeted by the invention. This is a soaking element.
- a minimum content of 10 ppm is necessary to avoid the formation of ferrite during natural cooling, so generally below 2 ° C / s for the types of parts covered by the invention.
- above 50 ppm boron will have the effect of forming iron borides that may be harmful to ductility.
- a range of boron content of between 20 ppm and 30 ppm is chosen to optimize the above-mentioned effects.
- the nitrogen content should be between 10 ppm (0.0010%) and 130 ppm (0.0130%).
- a minimum content of 10 ppm is required to form the abovementioned carbonitrides.
- the nitrogen may cause the bainitic ferrite to become too hard to harden, with possible reduction in the resilience of the finished part.
- a range of nitrogen content between 50 ppm and 120 ppm is chosen to optimize the aforementioned effects.
- the aluminum content must be less than or equal to 0.050% and preferably less than or equal to 0.040%, or even less than or equal to 0.020%.
- the Al content is such that 0.003% ⁇ Al 0,0 0.015%. This is a residual element whose content we wish to limit.
- High levels of aluminum are considered to increase erosion of refractories and the risk of clogging of the nozzles during steel casting.
- aluminum segregates negatively and, it can lead to macro-segregations. In excessive amounts, aluminum can reduce hot ductility and increase the risk of defects in continuous casting. Without a strong control of the casting conditions, the defects of the micro and macro segregation type ultimately give rise to segregation on the forged part.
- This band structure consists of alternating bainitic strips with different hardnesses which can adversely affect the formability of the material.
- the molybdenum content must be less than or equal to 1.0%, preferably less than or equal to 0.5%. Preferably, a range of molybdenum content of between 0.03 and 0.15% is chosen. Its presence is favorable for the formation of bainite by synergistic effect with boron and niobium. It thus makes it possible to guarantee the absence of pro-eutectoid ferrite at the grain boundaries. Beyond a content of 1.0%, it promotes the appearance of martensite which is not sought.
- the nickel content must be less than or equal to 1.0%. A maximum content of 1.0% is tolerated, above the nickel will have the effect of increasing the price of the proposed solution, which may reduce its viability from an economic point of view.
- a range of nickel content between 0 and 0.55% is chosen.
- the vanadium content must be less than or equal to 0.3%. A maximum content of 0.3% is tolerated, above vanadium will have the effect of increasing the price of the solution and affect the resilience.
- a vanadium content range of between 0 and 0.2% is selected.
- Sulfur can be at different levels depending on the desired machinability. There will always be a small quantity because it is a residual element whose value can not be reduced to an absolute zero, but it can also be added voluntarily. A lower S content will be aimed if the desired fatigue properties are very high. In general, we will target between 0.015 and 0.04%, knowing that it is possible to add up to 0.1% to improve machinability. Alternatively, it is also possible to add in combination with sulfur one or more elements selected from tellurium, selenium, lead and bismuth in amounts of less than or equal to 0.1% for each element.
- the phosphorus must be less than or equal to 0.050% and preferably less than or equal to 0.025%. It is an element that hardens in solid solution but significantly reduces weldability and hot ductility, especially due to its ability to segregate at grain boundaries or its tendency to co-segregate with manganese. . For these reasons, its content should be limited to 0.025% in order to obtain good weldability.
- the copper content must be less than or equal to 0.5% A maximum content of 0.5% is tolerated because above the copper will have the effect of reducing the fitness of the product.
- the remainder of the composition consists of iron and unavoidable impurities resulting from processing, such as for example arsenic or tin.
- compositions according to the invention may furthermore fulfill the following conditions, taken alone or in combination:
- Vr400 represents the cooling rate in the temperature range between 420 and 380 ° C.
- Vr600 represents the cooling rate in the temperature range between 620 and 580 ° C.
- the criterion S1 is correlated with the robustness of the mechanical properties compared to the variations of cooling conditions in general and in the face of Vr600 variations in particular.
- the respect of the value ranges of this criterion thus makes it possible to guarantee a very low sensitivity of the grade to the manufacturing conditions.
- 0.200 ⁇ S1 ⁇ 0.4 0.200 ⁇ S1 ⁇ 0.4, which further improves the robustness.
- the criteria S2 to S4 are correlated with obtaining a predominantly bainitic structure with more than 70% for the grades according to the invention, thus making it possible to guarantee the attainment of the intended mechanical properties.
- the microstructure of the steel may contain, in surface proportion after the final cooling:
- bainite in a content between 70 and 100%.
- bainite means a bainite comprising less than 5% carbide surface and whose inter-slab phase is austenite.
- the steel according to the invention will have a lower mechanical strength than the 1100 MPa referred to.
- the steel according to the invention may be manufactured by the method described below:
- a steel of composition according to the invention is supplied in the form of a bloom, a billet of rectangular or round square section, or in the form of an ingot, then
- This steel is rolled as a semi-finished product, in the form of a bar or wire and
- one carries the semi-finished product to a reheating temperature (T rec h) of between 00 ° C and 1300 ° C to obtain a semi-finished product heated, then the heated half-product is shaped while hot, the hot-forming end temperature being greater than or equal to 850 ° C. in order to obtain a hot-formed part;
- T rec h reheating temperature
- said hot formed part is cooled to a temperature of between 620 and 580 ° C. at a cooling rate Vr600 of between 0.10 ° C./s and 10 ° C./s.
- said part is cooled down to a temperature between 420 and 380 ° C. at a cooling rate Vr 400 of less than 4 ° C./s, and then the part is cooled between 380 ° C. and 300 ° C. at a lower speed. or equal to 0.3 ° C / s, then
- the part is cooled to ambient temperature at a speed of less than or equal to 4 ° C./s, then
- the heat-formed part which is cooled down to ambient temperature is optionally subjected to heat treatment at a temperature of between 300 ° C. and 450 ° C. for a period of between 30 minutes and 120 minutes; then
- the heat treatment of income is carried out to ensure the obtaining of very good properties of the parts after cooling.
- the chemical compositions of the steels used in the tests were collated in Table 1.
- the reheating temperature of these grades was 1250 ° C.
- the end temperature of hot shaping was 1220 ° C.
- Cooling rates Vr600 and Vr400 are shown in Table 2.
- FIG. 1 shows the variation of the mechanical resistance to rupture Rm as a function of the cooling rate Vr600 for the grades A and B.
- FIG. 2 shows the variation of the elastic limit Re as a function of the cooling speed Vr600 for the shades A and B.
- the grade according to the invention has a high stability of its mechanical properties when the cooling conditions vary.
- the grade is therefore much more robust to variations in process conditions than grades according to the prior art.
- FIG. 3 shows the delta of the mechanical strength at break Rm as a function of the criterion S1 for the grades A, B and C.
- FIG. 4 shows the delta of the elastic limit Re as a function of the criterion S1. for grades A, B and C.
- the invention will notably be used with advantage for the manufacture of hot formed parts and in particular, hot forged, for applications in land motor vehicles. It also finds applications in the manufacture of parts for boats or in the field of construction, in particular for the manufacture of screw bars for formwork.
- the invention can be implemented for the manufacture of all types of parts requiring to achieve the properties referred to
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL16718723T PL3274483T3 (en) | 2015-03-23 | 2016-03-23 | Parts with a bainitic structure having high strength properties and manufacturing process |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/IB2015/000384 WO2016151345A1 (en) | 2015-03-23 | 2015-03-23 | Parts with a bainitic structure having high strength properties and manufacturing process |
PCT/IB2016/000343 WO2016151390A1 (en) | 2015-03-23 | 2016-03-23 | Parts with a bainitic structure having high strength properties and manufacturing process |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3274483A1 true EP3274483A1 (en) | 2018-01-31 |
EP3274483B1 EP3274483B1 (en) | 2019-07-24 |
Family
ID=52829241
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16718723.6A Active EP3274483B1 (en) | 2015-03-23 | 2016-03-23 | Parts with a bainitic structure having high strength properties and manufacturing process |
Country Status (15)
Country | Link |
---|---|
US (1) | US12129527B2 (en) |
EP (1) | EP3274483B1 (en) |
JP (1) | JP6625657B2 (en) |
KR (1) | KR101887844B1 (en) |
CN (1) | CN107371369B (en) |
AU (1) | AU2016238510B2 (en) |
BR (1) | BR112017020282B1 (en) |
CA (1) | CA2980878C (en) |
EA (1) | EA201792077A1 (en) |
ES (1) | ES2748436T3 (en) |
HU (1) | HUE045789T2 (en) |
MX (1) | MX2017012242A (en) |
PL (1) | PL3274483T3 (en) |
UA (1) | UA118920C2 (en) |
WO (2) | WO2016151345A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018215813A1 (en) * | 2017-05-22 | 2018-11-29 | Arcelormittal | Method for producing a steel part and corresponding steel part |
WO2019180492A1 (en) * | 2018-03-23 | 2019-09-26 | Arcelormittal | Forged part of bainitic steel and a method of manufacturing thereof |
FR3123659A1 (en) | 2021-06-02 | 2022-12-09 | Ascometal France Holding Sas | Hot-formed steel part and method of manufacture |
CN115679089B (en) * | 2022-10-27 | 2024-09-06 | 北京科技大学 | Forging and cooling control process for regulating and controlling microstructure of low-carbon bainite non-quenched and tempered steel for front axle |
CN117925963A (en) * | 2023-12-14 | 2024-04-26 | 华北理工大学 | Ultra-high-strength plastic ultra-fine bainite finish rolling deformed steel bar and preparation method thereof |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2888135B2 (en) * | 1994-05-26 | 1999-05-10 | 住友金属工業株式会社 | High durability high strength non-heat treated steel and its manufacturing method |
FR2744733B1 (en) | 1996-02-08 | 1998-04-24 | Ascometal Sa | STEEL FOR MANUFACTURING FORGED PART AND METHOD FOR MANUFACTURING FORGED PART |
US6558484B1 (en) * | 2001-04-23 | 2003-05-06 | Hiroshi Onoe | High strength screw |
JP2002115024A (en) | 2000-10-06 | 2002-04-19 | Nkk Corp | Wear resistant steel having excellent toughness and delayed-fracture resistance and its production method |
JP3888865B2 (en) | 2000-10-25 | 2007-03-07 | 株式会社ゴーシュー | Forging method |
KR20070119096A (en) * | 2001-06-15 | 2007-12-18 | 신닛뽄세이테쯔 카부시키카이샤 | High-strength alloyed aluminum-system palted steel sheet |
FR2847592B1 (en) * | 2002-11-27 | 2007-05-25 | Ispat Unimetal | STEEL FOR COLD OR HOT DEFORMATION, MECHANICAL PIECE READY FOR USE WITH THIS STEEL AND METHOD FOR MANUFACTURING THE SAME |
KR100723186B1 (en) * | 2005-12-26 | 2007-05-29 | 주식회사 포스코 | High-strength steel bolt having excellent resistance for delayed fracture and method for producing the same |
EP1832667A1 (en) * | 2006-03-07 | 2007-09-12 | ARCELOR France | Method of producing steel sheets having high strength, ductility and toughness and thus produced sheets. |
FR2931166B1 (en) * | 2008-05-15 | 2010-12-31 | Arcelormittal Gandrange | STEEL FOR HOT FORGE WITH HIGH MECHANICAL CHARACTERISTICS OF PRODUCTS |
JP5245997B2 (en) * | 2009-04-06 | 2013-07-24 | 新日鐵住金株式会社 | High strength hot forged non-tempered steel with excellent toughness and method for producing the same |
JP2011006781A (en) * | 2009-05-25 | 2011-01-13 | Nippon Steel Corp | Automobile undercarriage component having excellent low cycle fatigue property and method for producing the same |
JP5327106B2 (en) * | 2010-03-09 | 2013-10-30 | Jfeスチール株式会社 | Press member and manufacturing method thereof |
US9809874B2 (en) | 2012-04-10 | 2017-11-07 | Nippon Steel & Sumitomo Metal Corporation | Steel sheet suitable for impact absorbing member and method for its manufacture |
EP2690183B1 (en) * | 2012-07-27 | 2017-06-28 | ThyssenKrupp Steel Europe AG | Hot-rolled steel flat product and method for its production |
CN102747272B (en) * | 2012-08-01 | 2014-08-27 | 攀枝花贝氏体耐磨管道有限公司 | B-P-T steel tube and preparation method thereof |
KR20140121229A (en) * | 2013-04-05 | 2014-10-15 | 태양금속공업주식회사 | A manufacturing method of steel bolt having high tensile strength |
DE102013009232A1 (en) * | 2013-05-28 | 2014-12-04 | Salzgitter Flachstahl Gmbh | Process for producing a component by hot forming a precursor of steel |
CN103966520B (en) * | 2014-05-08 | 2016-07-06 | 攀钢集团攀枝花钢铁研究院有限公司 | A kind of bainite rail containing trace carbon compound and production method thereof |
-
2015
- 2015-03-23 WO PCT/IB2015/000384 patent/WO2016151345A1/en active Application Filing
-
2016
- 2016-03-23 EP EP16718723.6A patent/EP3274483B1/en active Active
- 2016-03-23 PL PL16718723T patent/PL3274483T3/en unknown
- 2016-03-23 MX MX2017012242A patent/MX2017012242A/en active IP Right Grant
- 2016-03-23 ES ES16718723T patent/ES2748436T3/en active Active
- 2016-03-23 HU HUE16718723A patent/HUE045789T2/en unknown
- 2016-03-23 CA CA2980878A patent/CA2980878C/en active Active
- 2016-03-23 UA UAA201710001A patent/UA118920C2/en unknown
- 2016-03-23 WO PCT/IB2016/000343 patent/WO2016151390A1/en active Application Filing
- 2016-03-23 KR KR1020177026897A patent/KR101887844B1/en active IP Right Grant
- 2016-03-23 BR BR112017020282-4A patent/BR112017020282B1/en active IP Right Grant
- 2016-03-23 EA EA201792077A patent/EA201792077A1/en unknown
- 2016-03-23 AU AU2016238510A patent/AU2016238510B2/en active Active
- 2016-03-23 CN CN201680017905.7A patent/CN107371369B/en active Active
- 2016-03-23 US US15/560,468 patent/US12129527B2/en active Active
- 2016-03-23 JP JP2017549687A patent/JP6625657B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
AU2016238510B2 (en) | 2019-09-19 |
KR101887844B1 (en) | 2018-08-10 |
CN107371369B (en) | 2019-06-21 |
JP2018512509A (en) | 2018-05-17 |
CN107371369A (en) | 2017-11-21 |
PL3274483T3 (en) | 2020-01-31 |
AU2016238510A1 (en) | 2017-10-12 |
US20180057909A1 (en) | 2018-03-01 |
ES2748436T3 (en) | 2020-03-16 |
BR112017020282B1 (en) | 2021-08-17 |
MX2017012242A (en) | 2017-12-15 |
CA2980878A1 (en) | 2016-09-29 |
US12129527B2 (en) | 2024-10-29 |
KR20170118916A (en) | 2017-10-25 |
BR112017020282A2 (en) | 2018-06-05 |
WO2016151345A1 (en) | 2016-09-29 |
JP6625657B2 (en) | 2019-12-25 |
EP3274483B1 (en) | 2019-07-24 |
EA201792077A1 (en) | 2018-01-31 |
CA2980878C (en) | 2020-01-14 |
UA118920C2 (en) | 2019-03-25 |
WO2016151390A1 (en) | 2016-09-29 |
HUE045789T2 (en) | 2020-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2847809C (en) | Rolled steel that hardens by means of precipitation after hot-forming and/or quenching with a tool having very high strength and ductility, and method for manufacturing same | |
EP1913169B1 (en) | Manufacture of steel sheets having high resistance and excellent ductility, products thereof | |
CA2533023C (en) | Method of producing austenitic iron/carbon/manganese steel sheets having a high strength and excellent toughness and being suitable for cold forming, and sheets thus produced | |
EP3274483B1 (en) | Parts with a bainitic structure having high strength properties and manufacturing process | |
CA2835533C (en) | Method for the production of very-high-strength martensitic steel and sheet or part thus obtained | |
CA2949855C (en) | Double-annealed steel sheet having high mechanical strength and ductility characteristics, method of manufacture and use of such sheets | |
EP1979583B1 (en) | Method for making a combustion engine valve, and valve thus obtained | |
CA2834967C (en) | Method for the production of martensitic steel having a very high yield point and sheet or part thus obtained | |
JP5607956B2 (en) | Steel for machine structure and friction welding parts suitable for friction welding | |
WO2007101921A1 (en) | Process for manufacturing steel sheet having very high strength, ductility and toughness characteristics, and sheet thus produced | |
FR2958943A1 (en) | HEAT TREATED THERMALLY HIGH CARBON-HIGH-STRENGTH STEEL RAIL AND MANUFACTURING METHOD THEREOF | |
WO2011037210A1 (en) | High-strength high-toughness cast steel material and manufacturing method therefor | |
FR2931166A1 (en) | HOT FORGED STEEL WITH HIGH MECHANICAL CHARACTERISTICS OF THE PARTS PRODUCED | |
WO2011104443A1 (en) | Method for making a part from a metal sheet coated with aluminium or an aluminium alloy | |
CA2714218C (en) | Process for manufacturing austenitic stainless steel plate having high mechanical properties, and plate thus obtained | |
EP4347903A1 (en) | Hot-formed steel part and manufacturing method | |
EA040769B1 (en) | BLANKS WITH A BAINITE STRUCTURE HAVING HIGH STRENGTH AND A METHOD OF MANUFACTURING |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20171023 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190213 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602016017309 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1158284 Country of ref document: AT Kind code of ref document: T Effective date: 20190815 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: RO Ref legal event code: EPE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: T3 Ref document number: E 32388 Country of ref document: SK |
|
REG | Reference to a national code |
Ref country code: HU Ref legal event code: AG4A Ref document number: E045789 Country of ref document: HU |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191024 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190724 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191024 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190724 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190724 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190724 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190724 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191025 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191124 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2748436 Country of ref document: ES Kind code of ref document: T3 Effective date: 20200316 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190724 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190724 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190724 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200224 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602016017309 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG2D | Information on lapse in contracting state deleted |
Ref country code: IS |
|
26N | No opposition filed |
Effective date: 20200603 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190724 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190724 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200323 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: UEP Ref document number: 1158284 Country of ref document: AT Kind code of ref document: T Effective date: 20190724 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200323 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190724 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190724 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190724 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230427 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240220 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20240222 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: RO Payment date: 20240304 Year of fee payment: 9 Ref country code: HU Payment date: 20240311 Year of fee payment: 9 Ref country code: FI Payment date: 20240223 Year of fee payment: 9 Ref country code: DE Payment date: 20240220 Year of fee payment: 9 Ref country code: CZ Payment date: 20240226 Year of fee payment: 9 Ref country code: GB Payment date: 20240220 Year of fee payment: 9 Ref country code: SK Payment date: 20240228 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20240226 Year of fee payment: 9 Ref country code: SE Payment date: 20240220 Year of fee payment: 9 Ref country code: PL Payment date: 20240223 Year of fee payment: 9 Ref country code: IT Payment date: 20240220 Year of fee payment: 9 Ref country code: FR Payment date: 20240220 Year of fee payment: 9 Ref country code: BE Payment date: 20240220 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240402 Year of fee payment: 9 |