Nothing Special   »   [go: up one dir, main page]

EP3132202B1 - Bypass heat shield element - Google Patents

Bypass heat shield element Download PDF

Info

Publication number
EP3132202B1
EP3132202B1 EP16713409.7A EP16713409A EP3132202B1 EP 3132202 B1 EP3132202 B1 EP 3132202B1 EP 16713409 A EP16713409 A EP 16713409A EP 3132202 B1 EP3132202 B1 EP 3132202B1
Authority
EP
European Patent Office
Prior art keywords
heat shield
combustion chamber
wall
edge
shield element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP16713409.7A
Other languages
German (de)
French (fr)
Other versions
EP3132202A1 (en
Inventor
Andreas Böttcher
Andre Kluge
Tobias Krieger
Kaspar Matthias MALECHA
Youssef MOUJANE
Kai-Uwe Schildmacher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP3132202A1 publication Critical patent/EP3132202A1/en
Application granted granted Critical
Publication of EP3132202B1 publication Critical patent/EP3132202B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/005Combined with pressure or heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/007Continuous combustion chambers using liquid or gaseous fuel constructed mainly of ceramic components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/06Arrangement of apertures along the flame tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • F23R3/50Combustion chambers comprising an annular flame tube within an annular casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • F23R3/60Support structures; Attaching or mounting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03041Effusion cooled combustion chamber walls or domes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03042Film cooled combustion chamber walls or domes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03043Convection cooled combustion chamber walls with means for guiding the cooling air flow

Definitions

  • the invention relates to a heat shield element, in particular for lining a combustion chamber.
  • the invention further relates to an annular combustion chamber and a gas turbine plant.
  • the gas turbine operator may be forced to shut down its gas turbine if it is unable to further reduce its gas turbine power without exceeding the carbon monoxide emission limit.
  • bypass air into the combustion chamber ie from compressor discharge air, which is diverted in front of the burner and guided into the combustion chamber behind the combustion zone, is remedied.
  • the walls of high temperature gas reactors such as pressurized gas turbine combustors, require suitable shielding of their support structure against attack by the hot gas. Due to their high temperature resistance, corrosion resistance and their low thermal conductivity compared to metallic materials, ceramic materials are particularly suitable for building up a heat shield shielding the support structure.
  • a heat shield is for example in EP 0 558 540 B1 and would have to be modified accordingly in the implementation of a bypass of the compressor discharge air.
  • the heat shield element has a wall with a hot side facing the combustion chamber and an opposite cold side.
  • a circumferential edge extends beyond the cold side on the back. It is provided that in the peripheral edge a plurality of bores are introduced, can flow through the cooling air into the combustion chamber.
  • a second partial wall is present, which extends between two opposite edge portions. However, a downstream edge portion of the peripheral edge extends only to the partial wall and not beyond.
  • a partition wall is arranged, which extends from the partial wall to the rear height of the two adjacent edge portions. This also makes it possible to guide a bypass air flow on the partial wall, which can then emerge downstream between the opposite edge portions.
  • An object of the invention is therefore to provide a heat shield element which allows the supply of bypass air, at the same time high life and as possible easy and inexpensive to manufacture and assemble.
  • Another object of the invention is to provide an annular combustion chamber with a corresponding heat shield.
  • the generic heat shield element is used in particular for use as a lining of a combustion chamber.
  • the heat shield element initially comprises a wall which has a hot side which can be acted upon by a hot medium and a cold side which is opposite to the hot side.
  • the heat shield element comprises an edge adjacent to the wall and surrounding the wall. In this case, the edge extends from the hot side pointing away raised above the cold side.
  • the edge can be divided into two opposing first edge portions.
  • At one end of the wall is a second edge portion, which connects the two first edge portions with each other and extends substantially transverse to the first edge portions.
  • a third edge portion Opposite to the second edge portion is a third edge portion, which also connects the two first edge portions with each other and extends substantially transverse to the first edge portions.
  • the wall has at least one opening gap, whereby the wall in a first wall portion on one side of the opening gap and a second wall portion the other side of the opening gap is divided. Furthermore, it is provided that adjoins the second wall portion adjacent to the opening gap from the hot side pioneering partition.
  • the second wall section on the cold side is surrounded by sections of the two first edge sections, the second edge section and the partition wall arranged opposite the second edge section.
  • the first wall section is surrounded by likewise the two first edge sections in sections, the third edge section and the opening gap arranged opposite the third edge section adjacent to the dividing wall.
  • first and second chambers are formed on the cold side of the wall, wherein the first chamber has an opening gap from the cold side to the hot side.
  • the interior of the heat shield element is divided into two parts.
  • the first chamber acts as an extension of the bypass channel.
  • the heat shield element fits homogeneously into the bypass. Characterized in that the opening gap directly adjacent to the partition wall in particular a small distance between a bypass channel and the ⁇ fftsspalt a homogeneous flow pattern is promoted with low pressure drop across the opening gap.
  • the opening gap extends along the entire partition between the two opposite first edge portions, so that a uniform bypass flow with sufficient mass flow can be achieved.
  • the shape or the course of the peripheral edge and the partition on the cold side is initially irrelevant.
  • the edge portions and the partition wall to each other and / or within the sections kinks or jumps and thus have a different height on the cold side.
  • the circulating Edge and the partition extends to a remote from the cold side free end.
  • the free end corresponds to a surface which is at a distance from the hot side or from the cold side (without kinks or jumps).
  • the free end is planar.
  • the planar shape of the heat shield element on the rear facing away from the hot side favors both the assembly and the production.
  • the partition wall is inclined towards the opening gap.
  • the partition wall when viewing the heat shield element from the hot side, the partition wall is located over the opening gap in sections.
  • a neutral discharge angle of the bypass flow can be realized when entering the combustion chamber, since the bypass air must otherwise flow against the combustion gas.
  • the gap would otherwise open to the flame and would provoke the entry of hot gas.
  • the partition wall has a plurality of bores whose axes are directed onto the surface of the cold side of the first wall section. If the second chamber is designed comparatively flat, there can be a conventional, large-scale impact cooling there.
  • the used cooling air causes in the absence of bypass current in addition to blocking the opening gap. For this purpose, the cooling air can flow from the second chamber through the holes in the partition into the first chamber.
  • a fastening device is arranged, which advantageously extends perpendicularly pointing away from the wall of the hot side.
  • the heat shield element is made of metal.
  • a heat shield element is realized as a cast component.
  • a generic annular combustion chamber comprising an outer shell and a number of heat shield elements, which are releasably secured to the interior of the outer shell facing the combustion chamber interior. Furthermore, the annular combustion chamber comprises a so-called Bypassplenum, extending over the circumference of the outer shell annular channel through which an air bypass flow is passed in the bypass mode.
  • the annular channel can be supplied via openings of the bypass air flow, wherein the annular channel has a combustion chamber interior facing annular gap through which the bypass air flow can be passed to the combustion chamber interior.
  • the annular channel and the annular gap can be performed circumferentially. If a fairly uniform distribution of the bypass air flow is ensured over the circumference, the annular channel and / or the annular gap can also be interrupted several times and thus consist of individual segment sections.
  • a novel annular combustion chamber is created by the use of a plurality of the above-described invention and / or heat shield elements advantageous for this purpose.
  • the heat shield elements are arranged such that the first chambers come to rest on the annular gap. In this respect are on one side of the annular gap, the partition and on the other side of the annular gap of the third edge portion. This allows a particularly advantageous flow of the bypass air flow from the annular gap through the first chamber and through the opening gap in the individual heat shield elements.
  • the outer shell has openings for the impact cooling of the heat shield elements.
  • openings for the impingement cooling of the first wall section are arranged in the first chamber in the annular channel of the outer shell and tubes in these openings are arranged, which extend to the hot side over the outer shell out into the first chambers.
  • cooling air can be directed to the first wall section of the first chamber.
  • this area is both convective, as well as cooled by impact cooling.
  • the heat shield element rests at least in sections with the free end on the outer shell. Due to the support, a transverse flow between the free end and the outer shell is largely prevented. Obviously, it is particularly advantageous if the support is provided on the peripheral edge and along the partition wall on the outer shell.
  • a sealing means between the free end of the heat shield element and the outer shell is provided.
  • the sealant is not present in sections, but circumferentially.
  • the sealing means is made of an elastic material, so that despite slight deviation in the shape of the free end and / or the outer shell as well as in vibrations a reliable tightness is achieved. For secure fixation of the sealant this is installed in the peripheral edge or in the partition and is beyond the free end.
  • first variant and the second variant is combined for sealing by sections an immediate support of the free end is provided on the outer shell and sections, especially in areas with higher pressure difference, a sealant between the free end and the Outer shell is present.
  • the object directed to a gas turbine plant is achieved by a gas turbine plant having an annular combustion chamber according to the invention.
  • FIGS. 1 to 4 show schematically and by way of example a metallic heat shield element 1 according to the invention, with a wall 3, which has a hot medium acted upon by a hot side 4 and a hot side 4 opposite cold side 5.
  • the FIGS. 1 to 3 show the cold side 5 and the FIG. 4 shows the hot side 4.
  • Adjacent to the wall 3 is an encircling edge 6 extending beyond the plane of the cold side 5 and having a free end 7 remote from the cold side 5.
  • the rim comprises Here, the two first opposite edge portion 56 and a transversely to the first edge portions 56 extending second edge portion 57 and a 57 opposite thereto third edge portion 58.
  • a partition 8 extends from the cold side 5 of the wall 3 to the height of the free end 7 between two opposite, formed by the edge 6 sides 9, so that on the cold side 5 of the wall 3 two separate first and second chambers 10, 11 are formed and the first chamber 10 has an opening gap 12 from the cold side 5 to the hot side 4, which is connects directly to the partition wall 8 and extends along the entire partition 8.
  • the wall 3 is divided into two sections, namely once into a first wall section 51 and a second wall section 52.
  • the partition 8 is inclined to the opening gap 12 and has a plurality of bores 13, whose axes 14 are directed to the surface of the cold side 5 in the first chamber 10.
  • a fastening device 15 is arranged, which extends substantially perpendicularly from the wall 3 away.
  • An assembly of the heat shield element 1 takes place, for example, via a plate spring assembly connected to the fastening device 15.
  • FIGS. 5 and 6 show a section through an annular combustion chamber 2 with a number of heat shield elements 1 according to the invention. Based on FIG. 5 the bypass concept should be explained.
  • the annular combustion chamber 2 of FIG. 5 comprises an outer shell 16, a number of heat shield elements 1 according to the invention, which are detachably secured to the inside of the outer shell 16, and a designated as Bypassplenum, extending over the circumference of the outer shell 16 annular channel 17 through which in the bypass mode, an air By-pass current is passed, with an annular gap 18 to the combustion chamber interior 19 out.
  • the heat shield elements 1 are now arranged such that their first chambers 10 are located on the annular gap 18 come.
  • the combustion chamber 2 upstream of the metallic heat shield elements 1 comprises a plurality of rows of ceramic heat shield elements 24, of which in the FIG. 5 only one is indicated, as well as downstream of the metallic heat shield elements 1 according to the invention, a number of further metallic heat shield elements 25, but without opening gaps 12th
  • FIG. 6 explains the cooling air management.
  • Bypass 26 passes from the annular channel 17 in the first chamber 10 of the heat shield elements 1 and passes through opening gaps 12 in the combustion chamber interior 19.
  • the outer shell 16 has first openings 20 for the impingement cooling 27 of the heat shield elements 1, in particular for the second chambers 11.
  • Natural die Bores 13 in the partition 8, the air used for baffle 27 of the second chamber 11 can continue to be used to block the opening gap 12 against hot gas from the combustion chamber interior 19 (see, sealing air 28).
  • second openings 21 for the impingement cooling 29 of the first chambers 10 are provided in the annular channel 17 of the outer shell 16.
  • tubes 22 are arranged, which extend into the first chambers 10. This arrangement serves for the impingement cooling 29 of the first chambers 10.
  • FIG. 7 shows a section of the annular combustion chamber 2 with heat shield elements 1 according to the invention, ceramic heat shield elements 24 and other metallic heat shield elements 25 in plan view.
  • FIG. 8 shows schematically and by way of example a gas turbine plant 23 according to the invention in a longitudinal section.
  • This comprises a compressor section 30, a combustion chamber section 31 and a turbine section 32.
  • a shaft 33 extends through all sections of the gas turbine installation 23.
  • the shaft 33 is provided with rings of compressor blades 34 and in the turbine section 32 Wreaths of turbine blades 35 equipped.
  • Wheels of compressor guide vanes 36 are located between the rotor blade rings in the compressor section 30 and wreaths of turbine guide vanes 37 in the turbine section 32.
  • the guide vanes extend from the housing 38 of the gas turbine installation 23 substantially in the radial direction to the shaft 33.
  • air 39 is drawn in through an air inlet 40 of the compressor section 30 and compressed by the compressor blades 34.
  • the compressed air is supplied to a combustion chamber 2 arranged in the combustion chamber 2, which is configured in the present embodiment as an annular combustion chamber 2.
  • a gaseous or liquid fuel is injected via at least one burner 42.
  • the resulting air-fuel mixture is ignited and burned in the combustion chamber 2.
  • the hot combustion exhaust gases flow from the combustor 2 into the turbine section 32, where they expand and cool, imparting momentum to the turbine blades 35.
  • the turbine guide vanes 37 serve as nozzles for optimizing the momentum transfer to the rotor blades 35.
  • the rotation of the shaft 33 caused by the momentum transfer is used to drive a load, for example an electric generator.
  • the expanded and cooled combustion gases are finally discharged through an outlet 44 from the gas turbine plant 23.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

Die Erfindung betrifft ein Hitzeschildelement, insbesondere zur Auskleidung einer Brennkammer. Die Erfindung betrifft ferner eine Ringbrennkammer sowie eine Gasturbinenanlage.The invention relates to a heat shield element, in particular for lining a combustion chamber. The invention further relates to an annular combustion chamber and a gas turbine plant.

Im Teillastbetrieb einer Gasturbine fällt die Verbrennungstemperatur in der Brennkammer ab. Gleichzeitig fällt ebenfalls die für die Kohlenmonoxid-Emissionen relevante Primär-Zonen Temperatur ab. Wenn diese einen Minimalwert unterschreitet werden verstärkt Kohlenmonoxid-Emissionen erzeugt und die Grenze des nutzbaren Kohlenmonoxid-emissionskonformen Teillastbereichs der Gasturbine ist erreicht.In part-load operation of a gas turbine, the combustion temperature drops in the combustion chamber. At the same time, the relevant for the carbon monoxide emissions primary zone temperature drops. When these fall below a minimum value, carbon monoxide emissions are increasingly generated and the limit of the usable carbon monoxide emission compliant partial load range of the gas turbine is reached.

Bei Vorliegen einer gesetzlichen Kohlenmonoxid-Emissionsgrenze kann der Betreiber der Gasturbine sich gezwungen sehen, seine Gasturbine abzuschalten, wenn es für ihn nicht möglich ist, die Leistung seiner Gasturbine weiter zu reduzieren, ohne gleichzeitig die Kohlenmonoxid-Emissionsgrenze zu überschreiten.In the presence of a legal carbon monoxide emission limit, the gas turbine operator may be forced to shut down its gas turbine if it is unable to further reduce its gas turbine power without exceeding the carbon monoxide emission limit.

Abhilfe schafft die Einspeisung von Bypass-Luft in die Brennkammer, also von Verdichterendluft, welche vor dem Brenner abgezweigt und hinter der Verbrennungszone in die Brennkammer geführt wird. Allerdings erfordern die Wände von Hochtemperaturgasreaktoren, beispielsweise von unter Druck betriebenen Gasturbinenbrennkammern, eine geeignete Abschirmung ihrer Tragstruktur gegen einen Angriff des heißen Gases. Keramische Materialien sind aufgrund ihrer hohen Temperaturbeständigkeit, Korrosionsbeständigkeit sowie ihrer niedrigen Wärmeleitfähigkeit im Vergleich zu metallischen Werkstoffen besonders geeignet, um einen die Tragstruktur abschirmenden Hitzeschild aufzubauen. Ein derartiger Hitzeschild ist beispielsweise in EP 0 558 540 B1 beschrieben und müsste bei der Implementierung einer Umführung (Bypass) der Verdichterendluft entsprechend modifiziert werden. Das einfache Einbringen von Öffnungen löst das Problem nicht, da der Heißgasstrom innerhalb der Brennkammer die Oberfläche der keramischen Hitzeschilde erhitzt, und die Bypass-Luft an deren Seitenflächen für eine starke Abkühlung sorgt. So entstehen innerhalb der Schilde hohe Temperaturgradienten und damit verbundene Spannungen, die im Betrieb für Risse und Brüche und zum Verlust der Hitzeschilde führen.The supply of bypass air into the combustion chamber, ie from compressor discharge air, which is diverted in front of the burner and guided into the combustion chamber behind the combustion zone, is remedied. However, the walls of high temperature gas reactors, such as pressurized gas turbine combustors, require suitable shielding of their support structure against attack by the hot gas. Due to their high temperature resistance, corrosion resistance and their low thermal conductivity compared to metallic materials, ceramic materials are particularly suitable for building up a heat shield shielding the support structure. Such a heat shield is for example in EP 0 558 540 B1 and would have to be modified accordingly in the implementation of a bypass of the compressor discharge air. The simple introduction of Openings do not solve the problem because the flow of hot gas within the combustion chamber heats the surface of the ceramic heat shields and the bypass air on their side faces provides for strong cooling. This creates high temperature gradients and associated stresses within the shields, which in operation cause cracks and fractures and the loss of heat shields.

Eine Zuführung eines Bypass-Luftstrom soll mit einem Hitzeschildelement gemäß der WO 2013/135702 A2 , die den Oberbegriff des Anspruchs 1 offenbart, ermöglicht werden. Hierzu weist das Hitzeschildelement eine Wand mit einer zum Brennkammerinnen weisenden Heißseite und eine gegenüberliegende Kaltseite auf. Ein umlaufender Rand erstreckt sich rückseitig über die Kaltseite hinaus. Hierbei ist vorgesehen, dass im umlaufenden Rand eine Mehrzahl Bohrungen eingebracht werden, über die Kühlluft in die Brennkammer strömen kann. Weiterhin ist vorgesehen, dass beabstandet zur Wand eine zweite Teilwand vorhanden ist, die sich zwischen zwei gegenüberliegenden Randabschnitten erstreckt. Ein stromab gelegener Randabschnitt des umlaufenden Randes erstreckt sich jedoch nur bis zur Teilwand und nicht darüber hinaus. Am stromauf gelegenen Ende der Teilwand ungefähr Mittig im Hitzeschildelement ist eine Trennwand angeordnet, welche sich von der Teilwand bis zur rückseitigen Höhe der beiden angrenzenden Randabschnitte erstreckt. Hierdurch wird es weiterhin ermöglicht, einen Bypass-Luftstrom auf die Teilwand zu führen, welcher dann stromab zwischen den gegenüberliegenden Randabschnitten austreten kann.A supply of a bypass air flow to a heat shield element according to the WO 2013/135702 A2 , which discloses the preamble of claim 1, be enabled. For this purpose, the heat shield element has a wall with a hot side facing the combustion chamber and an opposite cold side. A circumferential edge extends beyond the cold side on the back. It is provided that in the peripheral edge a plurality of bores are introduced, can flow through the cooling air into the combustion chamber. Furthermore, it is provided that at a distance from the wall, a second partial wall is present, which extends between two opposite edge portions. However, a downstream edge portion of the peripheral edge extends only to the partial wall and not beyond. At the upstream end of the partial wall approximately centrally in the heat shield element, a partition wall is arranged, which extends from the partial wall to the rear height of the two adjacent edge portions. This also makes it possible to guide a bypass air flow on the partial wall, which can then emerge downstream between the opposite edge portions.

Nachteilig bei vorheriger Lösung ist es jedoch, dass zur vorteilhaften Einströmung der Bypassluft ein Versatz in den Hitzeschildelementen notwendig ist oder ein höher Druckverlust durch eine Umlenkung in einem sich anschließenden Spalt in Kauf genommen werden muss.A disadvantage of the previous solution, however, is that for the advantageous inflow of the bypass air, an offset in the heat shield elements is necessary or a higher pressure loss must be accepted by a deflection in a subsequent gap in purchasing.

Eine Aufgabe der Erfindung ist es daher, ein Hitzeschildelement bereitzustellen, welches die Zufuhr von Bypassluft erlaubt, bei gleichzeitig hoher Lebensdauer und das möglichst einfach und kostengünstig herzustellen und zu montieren ist. Eine weitere Aufgabe der Erfindung ist die Angabe einer Ringbrennkammer mit einem entsprechenden Hitzeschild. Ferner ist es eine Aufgabe der Erfindung eine Gasturbinenanlage für den Teillastbetrieb bereitzustellen.An object of the invention is therefore to provide a heat shield element which allows the supply of bypass air, at the same time high life and as possible easy and inexpensive to manufacture and assemble. Another object of the invention is to provide an annular combustion chamber with a corresponding heat shield. Furthermore, it is an object of the invention to provide a gas turbine plant for the part-load operation.

Erfindungsgemäß werden diese Aufgaben gelöst durch das Hitzeschildelement gemäß Anspruch 1, die Ringbrennkammer gemäß Anspruch 8 und die Gasturbinenanlage gemäß Anspruch 13. Vorteilhafte Weiterbildungen der Erfindung sind in den jeweiligen abhängigen Ansprüchen definiert.According to the invention, these objects are achieved by the heat shield element according to claim 1, the annular combustion chamber according to claim 8 and the gas turbine plant according to claim 13. Advantageous developments of the invention are defined in the respective dependent claims.

Das gattungsgemäße Hitzeschildelement dient insbesondere zur Verwendung als Auskleidung einer Brennkammer. Hierbei umfasst das Hitzeschildelement zunächst einmal eine Wand, welche eine mit einem heißen Medium beaufschlagbare Heißseite und eine der Heißseite gegenüberliegende Kaltseite aufweist. Weiterhin umfasst das Hitzeschildelement einen an der Wand angrenzenden und die Wand umlaufend umgebenden Rand. Hierbei erstreckt sich der Rand von der Heißseite wegweisend erhaben über die Kaltseite hinaus. Unabhängig von der konkreten Formgebung der Wand betrachtet in einer Draufsicht auf die Heißseite lässt sich der Rand aufteilen in zwei einander gegenüberliegende erste Randabschnitte. An einem Ende der Wand befindet sich ein zweiter Randabschnitt, welcher die beiden ersten Randabschnitte miteinander verbindet und im Wesentlichen quer zu den ersten Randabschnitten verläuft. Gegenüberliegend zum zweiten Randabschnitt befindet sich ein dritter Randabschnitt, welcher ebenso die beiden ersten Randabschnitte miteinander verbindet und im Wesentlichen quer zu den ersten Randabschnitten verläuft.The generic heat shield element is used in particular for use as a lining of a combustion chamber. In this case, the heat shield element initially comprises a wall which has a hot side which can be acted upon by a hot medium and a cold side which is opposite to the hot side. Furthermore, the heat shield element comprises an edge adjacent to the wall and surrounding the wall. In this case, the edge extends from the hot side pointing away raised above the cold side. Regardless of the concrete shape of the wall viewed in a plan view of the hot side, the edge can be divided into two opposing first edge portions. At one end of the wall is a second edge portion, which connects the two first edge portions with each other and extends substantially transverse to the first edge portions. Opposite to the second edge portion is a third edge portion, which also connects the two first edge portions with each other and extends substantially transverse to the first edge portions.

Erfindungsgemäß ist nunmehr vorgesehen, dass innerhalb des Hitzeschildelements ein Durchbruch geschaffen wird, durch den die Zufuhr von Bypassluft in das Brennkammerinnere ermöglicht wird. Hierzu weist die Wand zumindest einen Öffnungsspalt auf, wodurch die Wand in einen ersten Wandabschnitt auf einer Seite des Öffnungsspaltes und einen zweiten Wandabschnitt auf der anderen Seite des Öffnungsspaltes aufgeteilt wird. Weiterhin ist vorgesehen, dass sich am zweiten Wandabschnitt angrenzend an den Öffnungsspalt eine von der Heißseite wegweisende Trennwand anschließt. Insofern wird der zweite Wandabschnitt auf der Kaltseite umgeben von abschnittsweise den beiden ersten Randabschnitten, dem zweiten Randabschnitt und der gegenüberliegend zum zweiten Randabschnitt angeordneten Trennwand. Der erste Wandabschnitt hingegen ist umgeben von ebenso abschnittsweise den beiden ersten Randabschnitten, dem dritten Randabschnitt und dem gegenüberliegend zum dritten Randabschnitt angrenzend an die Trennwand angeordneten Öffnungsspalt.According to the invention it is now provided that within the heat shield element a breakthrough is created, through which the supply of bypass air is made possible in the combustion chamber interior. For this purpose, the wall has at least one opening gap, whereby the wall in a first wall portion on one side of the opening gap and a second wall portion the other side of the opening gap is divided. Furthermore, it is provided that adjoins the second wall portion adjacent to the opening gap from the hot side pioneering partition. In this respect, the second wall section on the cold side is surrounded by sections of the two first edge sections, the second edge section and the partition wall arranged opposite the second edge section. By contrast, the first wall section is surrounded by likewise the two first edge sections in sections, the third edge section and the opening gap arranged opposite the third edge section adjacent to the dividing wall.

Hierdurch werden auf der Kaltseite der Wand zwei voneinander getrennte erste und zweite Kammern gebildet, wobei die erste Kammer einen Öffnungsspalt von der Kaltseite zur Heißseite aufweist. Durch ein solches Doppelkammerkonzept wird das Innere des Hitzeschildelementes zweigeteilt. Die erste Kammer fungiert als Erweiterung des Bypass-Kanals. Das Hitzeschildelement fügt sich homogen in den Bypass ein. Dadurch, dass der Öffnungsspalt direkt an der Trennwand angrenzt bei insbesondere einer geringen Distanz zwischen einem Bypass-Kanal und dem Öffungsspalt wird ein homogener Strömungsverlauf mit geringem Druckverlust über dem Öffnungsspalt begünstigt.As a result, two separate first and second chambers are formed on the cold side of the wall, wherein the first chamber has an opening gap from the cold side to the hot side. By such a double-chamber concept, the interior of the heat shield element is divided into two parts. The first chamber acts as an extension of the bypass channel. The heat shield element fits homogeneously into the bypass. Characterized in that the opening gap directly adjacent to the partition wall in particular a small distance between a bypass channel and the Öfftsspalt a homogeneous flow pattern is promoted with low pressure drop across the opening gap.

In einer weiteren vorteilhaften Ausführungsform der Erfindung erstreckt sich der Öffnungsspalt entlang der ganzen Trennwand zwischen den beiden gegenüberliegenden ersten Randabschnitten, so dass eine gleichmäßige Bypass-Strömung mit ausreichendem Massenstrom erzielt werden kann.In a further advantageous embodiment of the invention, the opening gap extends along the entire partition between the two opposite first edge portions, so that a uniform bypass flow with sufficient mass flow can be achieved.

Die Form bzw. der Verlauf des umlaufenden Randes sowie der Trennwand auf der Kaltseite ist zunächst unerheblich. Insofern können die Randabschnitte und die Trennwand zueinander und/oder innerhalb der Abschnitte Knicke oder Sprünge und folglich eine unterschiedliche Höhe über die Kaltseite aufweisen. Vorteilhaft ist es jedoch wenn sich der umlaufende Rand und die Trennwand bis zu einem von der Kaltseite entfernt gelegenen freien Ende erstreckt. Das freie Ende entspricht hierbei einer von der Heißseite bzw. von der Kaltseite beabstandeten Fläche (ohne Knicke oder Sprünge).The shape or the course of the peripheral edge and the partition on the cold side is initially irrelevant. In this respect, the edge portions and the partition wall to each other and / or within the sections kinks or jumps and thus have a different height on the cold side. However, it is advantageous if the circulating Edge and the partition extends to a remote from the cold side free end. In this case, the free end corresponds to a surface which is at a distance from the hot side or from the cold side (without kinks or jumps).

Besonders vorteilhaft ist es hierbei, wenn das freie Ende planar ausgeführt ist. Die ebene Gestalt des Hitzeschildelements auf der von der Heißseite wegweisenden Rückseite begünstigt sowohl die Montage als auch die Herstellung.It is particularly advantageous if the free end is planar. The planar shape of the heat shield element on the rear facing away from the hot side favors both the assembly and the production.

In noch einer weiteren vorteilhaften Ausführungsform ist die Trennwand zum Öffnungsspalt hin geneigt. Somit liegt die Trennwand bei Betrachtung des Hitzeschildelements von der Heißseite abschnittsweise über dem Öffnungsspalt. Somit lässt sich ein neutraler Ausströmwinkel des Bypass-Stroms beim Eintritt in die Brennkammer realisieren, da die Bypass-Luft ansonsten gegen das Verbrennungsgas anströmen muss. Außerdem wäre der Spalt sonst zur Flamme hin geöffnet und würde den Einzug von Heißgas provozieren.In yet another advantageous embodiment, the partition wall is inclined towards the opening gap. Thus, when viewing the heat shield element from the hot side, the partition wall is located over the opening gap in sections. Thus, a neutral discharge angle of the bypass flow can be realized when entering the combustion chamber, since the bypass air must otherwise flow against the combustion gas. In addition, the gap would otherwise open to the flame and would provoke the entry of hot gas.

Es ist vorteilhaft, wenn die Trennwand mehrere Bohrungen aufweist, deren Achsen auf die Oberfläche der Kaltseite des ersten Wandabschnitts gerichtet sind. Wenn die zweite Kammer vergleichsweise flach gestaltet ist, kann dort eine konventionelle, großflächige Prall-Kühlung erfolgen. Die dafür genutzte Kühlluft bewirkt bei fehlendem Bypass-Strom zusätzlich zur Sperrung des Öffnungsspalts. Hierzu kann die Kühlluft von der zweiten Kammer durch die Bohrungen in der Trennwand in die erste Kammer strömen.It is advantageous if the partition wall has a plurality of bores whose axes are directed onto the surface of the cold side of the first wall section. If the second chamber is designed comparatively flat, there can be a conventional, large-scale impact cooling there. The used cooling air causes in the absence of bypass current in addition to blocking the opening gap. For this purpose, the cooling air can flow from the second chamber through the holes in the partition into the first chamber.

Es ist zweckmäßig, wenn in der zweiten Kammer ausgehend vom zweiten Wandabschnitt eine Befestigungsvorrichtung angeordnet ist, welche sich vorteilhaft senkrecht von der Wand von der Heißseite wegweisend erstreckt.It is expedient if in the second chamber, starting from the second wall portion, a fastening device is arranged, which advantageously extends perpendicularly pointing away from the wall of the hot side.

Weiterhin ist es zweckmäßig, wenn das Hitzeschildelement aus Metall hergestellt ist. Typischerweise wird ein solches Hitzeschildelement als Gußbauteil realisiert.Furthermore, it is expedient if the heat shield element is made of metal. Typically, such a heat shield element is realized as a cast component.

Eine gattungsgemäße Ringbrennkammer umfassend eine Außenschale und eine Anzahl von Hitzeschildelementen, welche an der zum Brennkammerinneren weisenden Innenseite der Außenschale lösbar befestigt sind. Weiterhin umfasst die Ringbrennkammer einen auch als Bypassplenum bezeichneten, sich über den Umfang der Außenschale erstreckenden Ringkanal, durch den im Bypass-Betrieb ein Luft-Bypassstrom geleitet wird. Dem Ringkanal kann über Öffnungen der Bypass-Luftstrom zugeführt werden, wobei der Ringkanal einen zum Brennkammerinneren weisenden Ringspalt aufweist, durch den der Bypass-Luftstrom zum Brennkammerinneren geführt werden kann. Hierbei können der Ringkanal sowie der Ringspalt umlaufend ausgeführt sein. Sofern eine einigermaßen gleichmäßige Verteilung des Bypass-Luftstrom über den Umfang gewährleistet wird, kann der Ringkanal und/oder der Ringspalt auch mehrfach unterbrochen sein und insofern aus einzelnen Segmentabschnitten bestehen.A generic annular combustion chamber comprising an outer shell and a number of heat shield elements, which are releasably secured to the interior of the outer shell facing the combustion chamber interior. Furthermore, the annular combustion chamber comprises a so-called Bypassplenum, extending over the circumference of the outer shell annular channel through which an air bypass flow is passed in the bypass mode. The annular channel can be supplied via openings of the bypass air flow, wherein the annular channel has a combustion chamber interior facing annular gap through which the bypass air flow can be passed to the combustion chamber interior. Here, the annular channel and the annular gap can be performed circumferentially. If a fairly uniform distribution of the bypass air flow is ensured over the circumference, the annular channel and / or the annular gap can also be interrupted several times and thus consist of individual segment sections.

Eine neuartige Ringbrennkammer wird geschaffen durch die Verwendung einer Mehrzahl der zuvor beschriebenen erfindungsgemäßen und/oder hierzu vorteilhaften Hitzeschildelemente.A novel annular combustion chamber is created by the use of a plurality of the above-described invention and / or heat shield elements advantageous for this purpose.

Hierbei ist es besonders vorteilhaft, wenn die Hitzeschildelemente derartig angeordnet sind, dass die ersten Kammern am Ringspalt zu liegen kommen. Insofern befinden sich auf einer Seite des Ringspalts die Trennwand und auf der anderen Seite des Ringspalts der dritte Randabschnitt. Dieses ermöglicht eine besonders vorteilhafte Strömung des Bypass-Luftstroms aus dem Ringspalt durch die erste Kammer und durch den Öffnungsspalt in den einzelnen Hitzeschildelementen.It is particularly advantageous if the heat shield elements are arranged such that the first chambers come to rest on the annular gap. In this respect are on one side of the annular gap, the partition and on the other side of the annular gap of the third edge portion. This allows a particularly advantageous flow of the bypass air flow from the annular gap through the first chamber and through the opening gap in the individual heat shield elements.

In einer vorteilhaften Ausführungsform der Erfindung weist die Außenschale Öffnungen für die Prallkühlung der Hitzeschildelemente auf.In an advantageous embodiment of the invention, the outer shell has openings for the impact cooling of the heat shield elements.

Dabei ist es zweckmäßig, wenn Öffnungen für die Prallkühlung des ersten Wandabschnitts bei der erste Kammer im Ringkanal der Außenschale angeordnet sind und in diesen Öffnungen Röhrchen angeordnet sind, die sich zur Heißseite weisend über die Außenschale hinaus bis in die ersten Kammern erstrecken. Dadurch kann Kühlluft gezielt an den ersten Wandabschnitt der ersten Kammer geleitet werden. Somit wird dieses Areal sowohl konvektiv, als auch über Prall-Kühlung gekühlt.It is expedient if openings for the impingement cooling of the first wall section are arranged in the first chamber in the annular channel of the outer shell and tubes in these openings are arranged, which extend to the hot side over the outer shell out into the first chambers. As a result, cooling air can be directed to the first wall section of the first chamber. Thus, this area is both convective, as well as cooled by impact cooling.

Weiterhin ist es besonders vorteilhaft, wenn eine Querströmung vom Bypass-Luftstrom und/oder der Kühlluft vermieden wird. Hierzu ist in einer ersten Variante vorgesehen, dass das Hitzeschildelement zumindest abschnittsweise mit dem freien Ende auf der Außenschale aufliegt. Durch die Auflage wird eine Querströmung zwischen dem freien Ende und der Außenschale weitgehend verhindert. Naheliegend ist es besonders vorteilhaft, wenn die Auflage am umlaufenden Rand sowie entlang der Trennwand auf der Außenschale gegeben ist.Furthermore, it is particularly advantageous if a cross flow of the bypass air flow and / or the cooling air is avoided. For this purpose, it is provided in a first variant that the heat shield element rests at least in sections with the free end on the outer shell. Due to the support, a transverse flow between the free end and the outer shell is largely prevented. Obviously, it is particularly advantageous if the support is provided on the peripheral edge and along the partition wall on the outer shell.

In einer zweiten Variante wird ein Dichtmittel zwischen dem freien Ende des Hitzeschildelements und der Außenschale vorgesehen. Gleichfalls ist es vorteilhaft, wenn das Dichtmittel nicht zur abschnittsweise, sondern umlaufend vorhanden ist. Hierbei kann weiterhin vorteilhaft vorgesehen sein, dass das Dichtmittel aus einem elastischen Material hergestellt ist, so dass trotz geringfügiger Abweichung in der Formgebung des freien Endes und/oder der Außenschale sowie bei Vibrationen eine zuverlässige Dichtigkeit erzielt wird. Zur sicheren Fixierung des Dichtmittels ist dieses im umlaufenden Rand bzw. in der Trennwand eingebaut und steht über das freie Ende hinaus.In a second variant, a sealing means between the free end of the heat shield element and the outer shell is provided. Likewise, it is advantageous if the sealant is not present in sections, but circumferentially. In this case, it can furthermore be advantageously provided that the sealing means is made of an elastic material, so that despite slight deviation in the shape of the free end and / or the outer shell as well as in vibrations a reliable tightness is achieved. For secure fixation of the sealant this is installed in the peripheral edge or in the partition and is beyond the free end.

Darüber hinaus kann vorgesehen sein, dass die erste Variante und die zweite Variante zur Abdichtung kombiniert wird, indem abschnittsweise eine unmittelbare Auflage des freien Endes auf der Außenschale vorgesehen ist und abschnittsweise, insbesondere in Bereichen mit höherem Druckunterschied, ein Dichtmittel zwischen dem freien Ende und der Außenschale vorhanden ist.In addition, it can be provided that the first variant and the second variant is combined for sealing by sections an immediate support of the free end is provided on the outer shell and sections, especially in areas with higher pressure difference, a sealant between the free end and the Outer shell is present.

Die auf eine Gasturbinenanlage gerichtete Aufgabe wird gelöst durch eine Gasturbinenanlage mit einer erfindungsgemäßen Ringbrennkammer.The object directed to a gas turbine plant is achieved by a gas turbine plant having an annular combustion chamber according to the invention.

Die Erfindung wird beispielhaft anhand der Zeichnungen näher erläutert. Es zeigen schematisch und nicht maßstäblich:

  • Figur 1 die Kaltseite eines Hitzeschildelements nach der Erfindung mit einer zweiten Kammer im Vordergrund,
  • Figur 2 die Kaltseite eines Hitzeschildelements nach der Erfindung mit einer zweiten Kammer im Hintergrund,
  • Figur 3 ein Hitzeschildelement im Schnitt,
  • Figur 4 die Heißseite eines Hitzeschildelements nach der Erfindung,
  • Figur 5 das Bypass-Konzept,
  • Figur 6 das Kühlluftmanagement,
  • Figur 7 ein Ausschnitt aus der Ringbrennkammer mit Hitzeschildelementen nach der Erfindung und
  • Figur 8 eine Darstellung einer erfindungsgemäßen Gasturbine in einem Längsschnitt gemäß einem Ausführungsbeispiel.
The invention will be explained in more detail by way of example with reference to the drawings. Shown schematically and not to scale:
  • FIG. 1 the cold side of a heat shield element according to the invention with a second chamber in the foreground,
  • FIG. 2 the cold side of a heat shield element according to the invention with a second chamber in the background,
  • FIG. 3 a heat shield element in section,
  • FIG. 4 the hot side of a heat shield element according to the invention,
  • FIG. 5 the bypass concept,
  • FIG. 6 the cooling air management,
  • FIG. 7 a section of the annular combustion chamber with heat shield elements according to the invention and
  • FIG. 8 an illustration of a gas turbine according to the invention in a longitudinal section according to an embodiment.

Die Figuren 1 bis 4 zeigen schematisch und beispielhaft ein metallisches Hitzeschildelement 1 nach der Erfindung, mit einer Wand 3, welche eine mit einem heißen Medium beaufschlagbare Heißseite 4 und eine der Heißseite 4 gegenüberliegende Kaltseite 5 aufweist. Die Figuren 1 bis 3 zeigen die Kaltseite 5 und die Figur 4 zeigt die Heißseite 4.The FIGS. 1 to 4 show schematically and by way of example a metallic heat shield element 1 according to the invention, with a wall 3, which has a hot medium acted upon by a hot side 4 and a hot side 4 opposite cold side 5. The FIGS. 1 to 3 show the cold side 5 and the FIG. 4 shows the hot side 4.

An die Wand 3 grenzt ein umlaufender, sich über die Ebene der Kaltseite 5 hinaus erstreckender Rand 6 mit einem von der Kaltseite 5 entfernt gelegenen freien Ende 7. Der Rand umfasst hierbei die beiden ersten gegenüberliegenden Randabschnitt 56 sowie einen sich quer zu den ersten Randabschnitten 56 erstreckenden zweiten Randabschnitt 57 und einen hierzu 57 gegenüberliegenden dritten Randabschnitt 58. Eine Trennwand 8 erstreckt sich von der Kaltseite 5 der Wand 3 bis zur Höhe des freien Endes 7 zwischen zwei gegenüberliegenden, durch den Rand 6 gebildeten Seiten 9, so dass auf der Kaltseite 5 der Wand 3 zwei voneinander getrennte erste und zweite Kammern 10, 11 gebildet werden und die erste Kammer 10 einen Öffnungsspalt 12 von der Kaltseite 5 zur Heißseite 4 aufweist, der sich direkt an die Trennwand 8 anschließt und sich entlang der ganzen Trennwand 8 erstreckt. Hierdurch wird die Wand 3 in zwei Abschnitte und zwar einmal in einen ersten Wandabschnitt 51 und einen zweiten Wandabschnitt 52 unterteilt. Die Trennwand 8 ist zum Öffnungsspalt 12 hin geneigt und weist mehrere Bohrungen 13 auf, deren Achsen 14 auf die Oberfläche der Kaltseite 5 in der ersten Kammer 10 gerichtet sind.Adjacent to the wall 3 is an encircling edge 6 extending beyond the plane of the cold side 5 and having a free end 7 remote from the cold side 5. The rim comprises Here, the two first opposite edge portion 56 and a transversely to the first edge portions 56 extending second edge portion 57 and a 57 opposite thereto third edge portion 58. A partition 8 extends from the cold side 5 of the wall 3 to the height of the free end 7 between two opposite, formed by the edge 6 sides 9, so that on the cold side 5 of the wall 3 two separate first and second chambers 10, 11 are formed and the first chamber 10 has an opening gap 12 from the cold side 5 to the hot side 4, which is connects directly to the partition wall 8 and extends along the entire partition 8. As a result, the wall 3 is divided into two sections, namely once into a first wall section 51 and a second wall section 52. The partition 8 is inclined to the opening gap 12 and has a plurality of bores 13, whose axes 14 are directed to the surface of the cold side 5 in the first chamber 10.

In den Figuren 1 bis 3 ist ferner gezeigt, dass in der zweiten Kammer 11 eine Befestigungsvorrichtung 15 angeordnet ist, welche sich im Wesentlichen senkrecht von der Wand 3 weg erstreckt. Eine Montage des Hitzeschildelements 1 erfolgt beispielsweise über ein mit der Befestigungsvorrichtung 15 verbundenes Tellerfederpaket.In the FIGS. 1 to 3 it is further shown that in the second chamber 11, a fastening device 15 is arranged, which extends substantially perpendicularly from the wall 3 away. An assembly of the heat shield element 1 takes place, for example, via a plate spring assembly connected to the fastening device 15.

Die Figuren 5 und 6 zeigen einen Schnitt durch eine Ringbrennkammer 2 mit einer Anzahl von Hitzeschildelementen 1 gemäß der Erfindung. Anhand von Figur 5 soll das Bypass-Konzept erläutert werden. Die Ringbrennkammer 2 der Figur 5 umfasst eine Außenschale 16, eine Anzahl von Hitzeschildelementen 1 gemäß der Erfindung, welche an der Innenseite der Außenschale 16 lösbar befestigt sind, und einen als Bypassplenum bezeichneten, sich über den Umfang der Außenschale 16 erstreckenden Ringkanal 17, durch den im Bypass-Betrieb ein Luft-Bypass-strom geleitet wird, mit einem Ringspalt 18 zum Brennkammerinneren 19 hin. Die Hitzeschildelemente 1 sind nun derart angeordnet, dass ihre ersten Kammern 10 am Ringspalt 18 zu liegen kommen. Neben den metallischen Hitzeschildelementen 1 nach der Erfindung umfasst die Brennkammer 2 stromauf der metallischen Hitzeschildelemente 1 mehrere Reihen von keramischen Hitzeschildelementen 24, von denen in der Figur 5 nur eine angedeutet ist, sowie stromab der metallischen Hitzeschildelemente 1 gemäß der Erfindung eine Reihe von weiteren metallischen Hitzeschildelementen 25, aber ohne Öffnungsspalte 12.The FIGS. 5 and 6 show a section through an annular combustion chamber 2 with a number of heat shield elements 1 according to the invention. Based on FIG. 5 the bypass concept should be explained. The annular combustion chamber 2 of FIG. 5 comprises an outer shell 16, a number of heat shield elements 1 according to the invention, which are detachably secured to the inside of the outer shell 16, and a designated as Bypassplenum, extending over the circumference of the outer shell 16 annular channel 17 through which in the bypass mode, an air By-pass current is passed, with an annular gap 18 to the combustion chamber interior 19 out. The heat shield elements 1 are now arranged such that their first chambers 10 are located on the annular gap 18 come. In addition to the metallic heat shield elements 1 according to the invention, the combustion chamber 2 upstream of the metallic heat shield elements 1 comprises a plurality of rows of ceramic heat shield elements 24, of which in the FIG. 5 only one is indicated, as well as downstream of the metallic heat shield elements 1 according to the invention, a number of further metallic heat shield elements 25, but without opening gaps 12th

Figur 6 erklärt das Kühlluftmanagement. Bypassluft 26 tritt vom Ringkanal 17 in die erste Kammer 10 der Hitzeschildelemente 1 ein und gelangt über Öffnungsspalte 12 in das Brennkammerinnere 19. Die Außenschale 16 weist erste Öffnungen 20 für die Prallkühlung 27 der Hitzeschildelemente 1 auf, insbesondere für deren zweite Kammern 11. Durch die Bohrungen 13 in der Trennwand 8 kann die zur Prallkühlung 27 der zweiten Kammer 11 genutzte Luft weiterhin dazu verwendet werden, den Öffnungsspalt 12 gegen Heißgaseinzug aus dem Brennkammerinneren 19 zu sperren (s. Sperrluft 28). FIG. 6 explains the cooling air management. Bypass 26 passes from the annular channel 17 in the first chamber 10 of the heat shield elements 1 and passes through opening gaps 12 in the combustion chamber interior 19. The outer shell 16 has first openings 20 for the impingement cooling 27 of the heat shield elements 1, in particular for the second chambers 11. Durch die Bores 13 in the partition 8, the air used for baffle 27 of the second chamber 11 can continue to be used to block the opening gap 12 against hot gas from the combustion chamber interior 19 (see, sealing air 28).

Ferner sind zweite Öffnungen 21 für die Prallkühlung 29 der ersten Kammern 10 im Ringkanal 17 der Außenschale 16 vorgesehen. In diesen zweiten Öffnungen 21 sind Röhrchen 22 angeordnet, die sich bis in die ersten Kammern 10 erstrecken. Diese Anordnung dient der Prallkühlung 29 der ersten Kammern 10.Furthermore, second openings 21 for the impingement cooling 29 of the first chambers 10 are provided in the annular channel 17 of the outer shell 16. In these second openings 21, tubes 22 are arranged, which extend into the first chambers 10. This arrangement serves for the impingement cooling 29 of the first chambers 10.

Figur 7 zeigt einen Ausschnitt aus der Ringbrennkammer 2 mit Hitzeschildelementen 1 nach der Erfindung, keramischen Hitzeschildelementen 24 und weiteren metallischen Hitzeschildelementen 25 in der Draufsicht. FIG. 7 shows a section of the annular combustion chamber 2 with heat shield elements 1 according to the invention, ceramic heat shield elements 24 and other metallic heat shield elements 25 in plan view.

Die Figur 8 zeigt schematisch und beispielhaft eine erfindungsgemäße Gasturbinenanlage 23 in einem Längsschnitt. Diese umfasst einen Verdichterabschnitt 30, einen Brennkammerabschnitt 31 und einen Turbinenabschnitt 32. Eine Welle 33 erstreckt sich durch alle Abschnitte der Gasturbinenanlage 23. Im Verdichterabschnitt 30 ist die Welle 33 mit Kränzen von Verdichterlaufschaufeln 34 und im Turbinenabschnitt 32 mit Kränzen von Turbinenlaufschaufeln 35 ausgestattet. Zwischen den Laufschaufelkränzen befinden sich im Verdichterabschnitt 30 Kränze von Verdichterleitschaufeln 36 und im Turbinenabschnitt 32 Kränze von Turbinenleitschaufeln 37. Die Leitschaufeln erstrecken sich vom Gehäuse 38 der Gasturbinenanlage 23 im Wesentlichen in Radialrichtung zur Welle 33.The FIG. 8 shows schematically and by way of example a gas turbine plant 23 according to the invention in a longitudinal section. This comprises a compressor section 30, a combustion chamber section 31 and a turbine section 32. A shaft 33 extends through all sections of the gas turbine installation 23. In the compressor section 30, the shaft 33 is provided with rings of compressor blades 34 and in the turbine section 32 Wreaths of turbine blades 35 equipped. Wheels of compressor guide vanes 36 are located between the rotor blade rings in the compressor section 30 and wreaths of turbine guide vanes 37 in the turbine section 32. The guide vanes extend from the housing 38 of the gas turbine installation 23 substantially in the radial direction to the shaft 33.

Im Betrieb der Gasturbinenanlage 23 wird Luft 39 durch einen Lufteinlass 40 des Verdichterabschnittes 30 eingesaugt und von den Verdichterlaufschaufeln 34 komprimiert. Die komprimierte Luft wird einer im Brennkammerabschnitt 31 angeordneten Brennkammer 2 zugeleitet, die im vorliegenden Ausführungsbeispiel als eine Ringbrennkammer 2 ausgestaltet ist. Eine Anzahl von Hitzeschildelementen 1, 24, 25, welche an der Innenseite der Außenschale 16 lösbar befestigt sind, bildet einen Hitzeschild 41. In die Ringbrennkammer 2 wird auch ein gasförmiger oder flüssiger Brennstoff über wenigstens einen Brenner 42 eingedüst. Das dadurch entstehende Luft-Brennstoff-Gemisch wird gezündet und in der Brennkammer 2 verbrannt. Entlang des Strömungspfades 43 strömen die heißen Verbrennungsabgase von der Brennkammer 2 in den Turbinenabschnitt 32, wo sie expandieren und abkühlen und dabei Impuls auf die Turbinenlaufschaufeln 35 übertragen. Die Turbinenleitschaufeln 37 dienen dabei als Düsen zum Optimieren des Impulsübertrages auf die Laufschaufeln 35. Die durch den Impulsübertrag herbeigeführte Rotation der Welle 33 wird dazu genutzt, einen Verbraucher, beispielsweise einen elektrischen Generator, anzutreiben. Die entspannten und abgekühlten Verbrennungsgase werden schließlich durch einen Auslass 44 aus der Gasturbinenanlage 23 abgeleitet.In operation of the gas turbine plant 23, air 39 is drawn in through an air inlet 40 of the compressor section 30 and compressed by the compressor blades 34. The compressed air is supplied to a combustion chamber 2 arranged in the combustion chamber 2, which is configured in the present embodiment as an annular combustion chamber 2. A number of heat shield elements 1, 24, 25, which are releasably secured to the inside of the outer shell 16, forms a heat shield 41. In the annular combustion chamber 2, a gaseous or liquid fuel is injected via at least one burner 42. The resulting air-fuel mixture is ignited and burned in the combustion chamber 2. Along the flowpath 43, the hot combustion exhaust gases flow from the combustor 2 into the turbine section 32, where they expand and cool, imparting momentum to the turbine blades 35. The turbine guide vanes 37 serve as nozzles for optimizing the momentum transfer to the rotor blades 35. The rotation of the shaft 33 caused by the momentum transfer is used to drive a load, for example an electric generator. The expanded and cooled combustion gases are finally discharged through an outlet 44 from the gas turbine plant 23.

Claims (13)

  1. Heat shield element (1), in particular for lining a combustion chamber (2), having a single-part or multi-part wall (3), which wall (3) has a hot side (4), which can be impinged on by a hot medium, and a cold side (5) situated opposite the hot side (4), and having an encircling edge (6) which adjoins the wall (3) and which extends so as to point away from the hot side (4), which encircling edge (6) comprises at least two opposite first edge sections (56), a second end section (57) running transversely with respect to the first edge sections, and a third edge section (58) arranged opposite the second edge section (57),
    characterized by
    an opening gap (12) which extends through the wall (3) and which divides the wall (3) into a first wall section (51) and a second wall section (52), and by a partition (8) which is arranged adjacent to the opening gap (12), which partition (8) adjoins the second wall section (52) and extends, so as to point away from the hot side, between the two first edge sections (56).
  2. Heat shield element (1) according to Claim 1, characterized
    in that the opening gap (12) extends to both sides as far as the first edge sections (56).
  3. Heat shield element (1) according to Claim 1 or 2, characterized
    in that the encircling edge (6) and the partition (8) extend as far as a free end (7).
  4. Heat shield element (1) according to one of Claims 1 to 3,
    characterized
    in that the partition (8) is inclined at least in the region of the opening gap (12).
  5. Heat shield element (1) according to Claim 4, characterized
    in that the partition (8) has multiple bores (13), the axes (14) of which bores (13) are directed towards the first wall section (52).
  6. Heat shield element (1) according to one of Claims 1 to 5,
    characterized
    in that, on the second wall section (52), there is arranged at least one fastening device (15) which extends preceding from the cold side.
  7. Heat shield element (1) according to one of Claims 1 to 6,
    characterized
    in that the heat shield element (1) is produced from metal.
  8. Annular combustion chamber (2) comprising an outer shell (16), a number of heat shield elements (1), which heat shield elements (1) are detachably fastened to the inner side of the outer shell (16), and an annular channel (17) which extends over the circumference of the outer shell (16), to which annular channel (17) an air bypass flow can be supplied and which annular channel (17) has an annular gap (18) which is open to the combustion chamber interior (19), wherein the heat shield elements (1) are arranged adjacent to the annular gap (18),
    characterized by heat shield elements (1) according to one of the preceding claims.
  9. Annular combustion chamber according to Claim 8, characterized
    in that the annular gap (18) is arranged between the partition (8) and the third edge section (57).
  10. Annular combustion chamber (2) according to Claim 8 or 9, characterized
    in that the outer shell (16) has first openings (20) for the impingement cooling of the heat shield elements (1).
  11. Annular combustion chamber (2) according to Claim 10, characterized
    in that second openings (21) for the impingement cooling of the first wall section (52) are arranged in the outer shell (16), and tubes (22) are arranged in said openings (21), which tubes (22) protrude beyond the outer shell (16) so as to point towards the hot side.
  12. Annular combustion chamber (2) according to one of Claims 8 to 11,
    characterized in that the heat shield element (1) lies at least in sections, in particular in encircling fashion, with the free end (7) on the outer shell (16); and/or
    in that, at least in sections, in particular in encircling fashion, a sealing means which is elastic and/or installed on the edge (6) is arranged between the free end of the heat shield element and the outer shell (16).
  13. Gas turbine installation (23) having an annular combustion chamber (2) according to one of Claims 8 to 12.
EP16713409.7A 2015-04-02 2016-03-30 Bypass heat shield element Not-in-force EP3132202B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015205975.8A DE102015205975A1 (en) 2015-04-02 2015-04-02 Umführungs heat shield element
PCT/EP2016/056881 WO2016156370A1 (en) 2015-04-02 2016-03-30 Bypass heat shield element

Publications (2)

Publication Number Publication Date
EP3132202A1 EP3132202A1 (en) 2017-02-22
EP3132202B1 true EP3132202B1 (en) 2018-09-19

Family

ID=55646578

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16713409.7A Not-in-force EP3132202B1 (en) 2015-04-02 2016-03-30 Bypass heat shield element

Country Status (4)

Country Link
EP (1) EP3132202B1 (en)
CN (1) CN107076418A (en)
DE (1) DE102015205975A1 (en)
WO (1) WO2016156370A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11719438B2 (en) 2021-03-15 2023-08-08 General Electric Company Combustion liner

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012204103A1 (en) * 2012-03-15 2013-09-19 Siemens Aktiengesellschaft Heat shield element for a compressor air bypass around the combustion chamber
US10935236B2 (en) * 2016-11-10 2021-03-02 Raytheon Technologies Corporation Non-planar combustor liner panel for a gas turbine engine combustor
US10830433B2 (en) 2016-11-10 2020-11-10 Raytheon Technologies Corporation Axial non-linear interface for combustor liner panels in a gas turbine combustor
US10655853B2 (en) 2016-11-10 2020-05-19 United Technologies Corporation Combustor liner panel with non-linear circumferential edge for a gas turbine engine combustor
US10935235B2 (en) 2016-11-10 2021-03-02 Raytheon Technologies Corporation Non-planar combustor liner panel for a gas turbine engine combustor

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2928607B2 (en) * 1989-12-22 1999-08-03 株式会社日立製作所 Combustion apparatus and combustion method thereof
UA27772C2 (en) 1990-11-29 2000-10-16 Сіменс Аг HEAT PROTECTIVE SCREEN ON SUPPORTING STRUCTURE
US6250082B1 (en) * 1999-12-03 2001-06-26 General Electric Company Combustor rear facing step hot side contour method and apparatus
EP1284390A1 (en) * 2001-06-27 2003-02-19 Siemens Aktiengesellschaft Thermal shield for a component carrying hot gases, especially for structural components of gas turbines
EP1507116A1 (en) * 2003-08-13 2005-02-16 Siemens Aktiengesellschaft Heat shield arrangement for a high temperature gas conveying component, in particular for a gas turbine combustion chamber
US20100107645A1 (en) * 2008-10-31 2010-05-06 General Electric Company Combustor liner cooling flow disseminator and related method
US8359867B2 (en) * 2010-04-08 2013-01-29 General Electric Company Combustor having a flow sleeve
DE102012204103A1 (en) * 2012-03-15 2013-09-19 Siemens Aktiengesellschaft Heat shield element for a compressor air bypass around the combustion chamber
DE102012204162A1 (en) * 2012-03-16 2013-09-19 Siemens Aktiengesellschaft Ring combustor bypass
AU2013219140B2 (en) * 2012-08-24 2015-10-08 Ansaldo Energia Switzerland AG Method for mixing a dilution air in a sequential combustion system of a gas turbine
US9080447B2 (en) * 2013-03-21 2015-07-14 General Electric Company Transition duct with divided upstream and downstream portions

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11719438B2 (en) 2021-03-15 2023-08-08 General Electric Company Combustion liner

Also Published As

Publication number Publication date
EP3132202A1 (en) 2017-02-22
CN107076418A (en) 2017-08-18
WO2016156370A1 (en) 2016-10-06
DE102015205975A1 (en) 2016-10-06

Similar Documents

Publication Publication Date Title
EP3132202B1 (en) Bypass heat shield element
EP2809994B1 (en) Heat-shield element for a compressor-air bypass around the combustion chamber
DE102005025823B4 (en) Method and device for cooling a combustion chamber lining and a transition part of a gas turbine
EP2340397B1 (en) Burner insert for a gas turbine combustion chamber and gas turbine
EP2738470B1 (en) Shingle attachment assembly of a gas turbine combustion chamber
DE102014103005B4 (en) Method and device for improving heat transfer in turbine sections of gas turbines
DE102015121649A1 (en) System and method for using cooling air in a burner
CH701454B1 (en) Burner with a flow conditioner.
EP2812636B1 (en) Annular-combustion-chamber bypass
EP1904717B1 (en) Hot gas-conducting housing element, protective shaft jacket, and gas turbine system
EP2808611B1 (en) Injector for introducing a fuel-air mixture into a combustion chamber
CH706777A2 (en) System with at least one turbine blade and method of placing a porous insert in a recess of a turbine blade.
DE102015119749A1 (en) Vormischbrennstoffdüsenanordnung
EP2230458A1 (en) Burner assembly for fluid fuels and method for producing a burner assembly
EP2416070A1 (en) Gas turbine combustion chamber
DE102015113009A1 (en) Combustor cap assembly
DE112017002151B4 (en) COMPRESSOR DIFFUSER AND GAS TURBINE
DE102022210198A1 (en) Transition piece, combustor and gas turbine engine
DE112013005238T5 (en) Baffle for the turbine nozzle of a gas turbine engine
EP1662202A1 (en) Burner for a gas turbine and method to operate such a burner
EP1422479B1 (en) Chamber for the combustion of a fluid combustible mixture
EP2808612A1 (en) Gas turbine combustion chamber with tangential late lean injection
DE102011054712A1 (en) System and method for cooling a nozzle
EP1529181A1 (en) Gas turbine combustion chamber
EP1557607B1 (en) Burner with cooled component, gas turbine and method for cooling the component

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20161116

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MALECHA, KASPAR MATTHIAS

Inventor name: MOUJANE, YOUSSEF

Inventor name: SCHILDMACHER, KAI-UWE

Inventor name: BOETTCHER, ANDREAS

Inventor name: KRIEGER, TOBIAS

Inventor name: KLUGE, ANDRE

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MOUJANE, YOUSSEF

Inventor name: SCHILDMACHER, KAI-UWE

Inventor name: KLUGE, ANDRE

Inventor name: BOETTCHER, ANDREAS

Inventor name: KRIEGER, TOBIAS

Inventor name: MALECHA, KASPAR MATTHIAS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180516

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1043666

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016002026

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181219

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181219

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181220

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190119

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190119

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016002026

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

26N No opposition filed

Effective date: 20190620

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502016002026

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190330

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191001

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160330

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1043666

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210330