Nothing Special   »   [go: up one dir, main page]

EP3150688B1 - Method of preparing an urea grease - Google Patents

Method of preparing an urea grease Download PDF

Info

Publication number
EP3150688B1
EP3150688B1 EP15800377.2A EP15800377A EP3150688B1 EP 3150688 B1 EP3150688 B1 EP 3150688B1 EP 15800377 A EP15800377 A EP 15800377A EP 3150688 B1 EP3150688 B1 EP 3150688B1
Authority
EP
European Patent Office
Prior art keywords
grease
shear rate
base oil
degrees
amine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15800377.2A
Other languages
German (de)
French (fr)
Other versions
EP3150688A4 (en
EP3150688A1 (en
Inventor
Yoshiyuki Suetsugu
Kouji Takane
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Publication of EP3150688A1 publication Critical patent/EP3150688A1/en
Publication of EP3150688A4 publication Critical patent/EP3150688A4/en
Application granted granted Critical
Publication of EP3150688B1 publication Critical patent/EP3150688B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M115/00Lubricating compositions characterised by the thickener being a non-macromolecular organic compound other than a carboxylic acid or salt thereof
    • C10M115/08Lubricating compositions characterised by the thickener being a non-macromolecular organic compound other than a carboxylic acid or salt thereof containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M177/00Special methods of preparation of lubricating compositions; Chemical modification by after-treatment of components or of the whole of a lubricating composition, not covered by other classes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/1006Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • C10M2203/1025Aliphatic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/028Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
    • C10M2205/0285Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/026Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings with tertiary alkyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
    • C10M2215/10Amides of carbonic or haloformic acids
    • C10M2215/102Ureas; Semicarbazides; Allophanates
    • C10M2215/1026Ureas; Semicarbazides; Allophanates used as thickening material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/041Triaryl phosphates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/069Linear chain compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/76Reduction of noise, shudder, or vibrations
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/02Bearings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/10Form in which the lubricant is applied to the material being lubricated semi-solid; greasy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2070/00Specific manufacturing methods for lubricant compositions

Definitions

  • the present invention relates to a method of preparing a urea grease.
  • urea grease is sometimes inferior in acoustic characteristics depending on amine(s) to be used. Accordingly, different greases have been typically used depending on the usage. However, in some applications (e.g. ball bearings installed in a small-sized motor for a household electrical appliance), both of the acoustic characteristics and heat resistance have been required to be satisfied.
  • a diurea grease containing a first amine component including an amine with a cyclohexyl group and a cyclohexyl derivative group having 7 to 12 carbon atoms, and a second amine with an alkyl group having 6 to 22 carbon atoms, the first amine and the second amine being used at a predetermined ratio has been proposed (see Patent Literature 1).
  • US-A-6136762 discloses methods for preparing urea grease in which at least one of the reactants (amines, isocyanate) forming the thickener is provided in the form of droplets in order to achieve uniform dispersion of the thickener in the grease.
  • Patent Literature 1 JP-A-2008-143979
  • Patent Literature 1 The urea grease disclosed in Patent Literature 1 is made through a batch process and is excellent in appearance, heat resistance and acoustic characteristics. However, lumps can be found in the manufactured grease when the grease is checked using an optical electron microscope.
  • an object of the invention is to provide a method of preparing a fine urea grease that is capable of maintaining excellent heat resistance and acoustic characteristics and producing no lump visible using an optical electron microscope.
  • the invention provides the method as disclosed in attached claim 1.
  • a urea grease is prepared by shearing a mixture solution of an amine mixture comprising an alicyclic monoamine and a chain aliphatic monoamine and a diisocyanate compound at a shear rate of 10 2 s -1 or more to cause a reaction, in which the urea grease has a Peak High32-64s of 1.5 or less and a Level High32-64s of 10 or less according to an FAG method.
  • a finer urea grease that is capable of maintaining excellent heat resistance and acoustic characteristics and producing no lump visible using an optical electron microscope can be provided.
  • a urea grease prepared in an exemplary embodiment of the invention uses a thickener obtained by reacting an amine mixture including alicyclic monoamine and chain aliphatic monoamine compound, and a diisocyanate compound in a solution.
  • the thickener is provided by applying a shear rate of 10 3 s -1 or more to the solution during the reaction.
  • the urea grease has Peak High32-64s of 1.5 or less and Level High32-64s of 7 or less according to an FAG method.
  • the base oil used in the present grease is not particularly limited, but may be any mineral base oil and synthetic base oil typically usable for manufacturing a typical grease.
  • One of the mineral base oil and synthetic base oil may be used alone or a mixture thereof may be used.
  • Usable mineral oils are obtained by purification in an appropriate combination of vacuum distillation, solvent deasphalting, solvent extraction, hydrocracking, solvent dewaxing, sulfate cleaning, clay purification, hydrorefining and the like.
  • the synthetic base oil include polyalphaolefin (PAO) base oil, other hydrocarbon base oil, ester base oil, alkyldiphenylether base oil, polyalkylene glycol base oil (PAG), and alkylbenzene base oil.
  • the thickener used in the present grease is obtained by a reaction in a mixture solution of the amine mixture including the alicyclic monoamine and chain aliphatic monoamine, and the diisocyanate compound.
  • a shear rate of 10 3 s -1 or more is applied to the above mixture solution in the reaction.
  • Examples of the above-described alicyclic monoamine include cyclohexylamine and alkylcyclohexylamine.
  • One of the alicyclic monoamines may be used alone or a plurality of the alicyclic monoamines may be mixed in use.
  • cyclohexylamine is preferable in terms of heat resistance.
  • chain aliphatic monoamine examples include hexyl amine, octyl amine, dodecyl amine, hexadecyl amine, stearyl amine and eicosyl amine.
  • One of the chain aliphatic monoamines may be used alone or a plurality of the chain aliphatic monoamines may be mixed in use.
  • stearyl amine is preferable in terms of acoustic characteristics.
  • a molar ratio of the alicyclic monoamine to the chain aliphatic monoamine is preferably in a range from 5:1 to 1:4, more preferably in a range from 4:1 to 2:3, especially preferably in a range from 4:1 to 2:1 in order to enhance both of the acoustic characteristics and lubrication lifetime.
  • diisocyanate compound examples include diphenylmethane-4,4'-diisocyanate (MDI), tolylene diisocyanate, and naphthylene-1,5-diisocyanate.
  • MDI diphenylmethane-4,4'-diisocyanate
  • tolylene diisocyanate examples include naphthylene-1,5-diisocyanate.
  • naphthylene-1,5-diisocyanate examples include diphenylmethane-4,4'-diisocyanate (MDI), tolylene diisocyanate, and naphthylene-1,5-diisocyanate.
  • One of the diisocyanates may be used alone or a plurality of diisocyanates may be mixed in use.
  • the present grease is required to have Peak High32-64s of 1.5 or less and Level High32-64s of 10 or less according to the FAG method.
  • a required level of each of the Peak High32-64s and the Level High32-64s depends on usage. However, the Peak High32-64s exceeding 1.5 is insufficient since the acoustic characteristics are in the same level as those of a conventional art.
  • the Peak High32-64s is preferably 0.7 or less.
  • Level High32-64s exceeding 10 is insufficient since the acoustic characteristics are in the same level as those of a conventional art.
  • the Level High32-64s is preferably 7 or less.
  • the Peak High32-64s and Level High32-64s according to the FAG method can be measured using an acoustic measurement device dedicated for a grease ("Grease Test Rig Be Quiet+" manufactured by SKF). Specifically, a bearing dedicated for an acoustic measurement, in which a grease is not filled, is set in the acoustic measurement device. While the bearing is being rotated at a predetermined speed, acoustic data is obtained after the elapse from 32 seconds to 64 seconds since the bearing starts rotating. The above operations are repeated for six times in total without exchanging the bearing.
  • a predetermined amount of sample (grease) is filled in the bearing, and, while the bearing is being rotated at a predetermined speed, acoustic data is obtained after the elapse from 32 seconds to 64 seconds since the bearing starts rotating.
  • the above operations are repeated for six times in total without exchanging the bearing.
  • the acoustic data is analyzed using a program installed in the acoustic measurement device to obtain an average of the six measurements of the Peak High and Level High.
  • the acoustic characteristics are evaluated based on acoustic data after the elapse from 32 seconds to 64 seconds from the start of the first rotation in the FAG method.
  • An acoustic peak is sometimes observed due to rupture of air bubbles supposed to be contained in the grease after the elapse from 32 seconds to 64 seconds from the start of the first rotation.
  • the evaluation on the acoustic characteristics is unduly downgraded when the acoustic peak supposed to be derived from the rupture of air bubbles is observed in a grease that has inherently excellent acoustic characteristics. Highly reproducible results of the acoustic characteristics often cannot be obtained even after 3 to 5 repetitions of the measurements.
  • a method for providing the Peak High32-64s and Level High32-64s obtainable by the FAG method in the above-described range is exemplified by a later-described manufacturing method of the present grease under a uniform high shear.
  • additives may be further added to the present grease.
  • examples of the additives include an antioxidant, extreme pressure agent, and rust inhibitor.
  • antioxidants examples include: an amine antioxidant such as alkylated diphenylamine, phenyl- ⁇ -naphthylamine and alkylated- ⁇ -naphthylamine; and a phenol antioxidant such as 2,6-di-t-butyl-4-methylphenol and 4,4-methylenebis(2,6-di-t-butylphenol).
  • a content of the antioxidant is preferably in a range from approximately 0.05 mass% to 5 mass% based on a total amount of the grease.
  • the extreme pressure agent examples include thiocarbamates such as zinc dialkyldithiophosphate, molybdenum dialkyldithiophosphate, ashless dithiocarbamate, zinc dithiocarbamate and molybdenum dithiocarbamate, sulfur compound (e.g. sulfurized fat and oil, sulfurized olefin, polysulfide, sulfurized mineral oil, thiophosphates, thioterpenes and dialkylthiodipropionates), phosphates and phosphites (e.g. tricresyl phosphate and triphenyl phosphite).
  • a content of the extreme pressure agent is preferably in a range from approximately 0.1 mass% to 5 mass% based on the total amount of the grease.
  • rust inhibitor examples include benzotriazole, zinc stearate, succinate, succinic acid derivative, thiadiazole, benzotriazole, benzotriazole derivative, sodium nitrite, petroleum sulphonate, sorbitan monooleate, fatty acid soap and amine compound.
  • a content of the rust inhibitor is preferably in a range from approximately 0.01 mass% to 10 mass% based on the total amount of the grease.
  • One of the above various additives may be blended alone, or alternatively, a plurality of those may be blended in combination.
  • the grease is manufactured by the method according to claim 1 (hereinafter, also referred to as "the present manufacturing method").
  • a first base oil containing the amine mixture and a second base oil containing the diisocyanate compound are mixed to prepare a mixture solution and a shear rate of 10 3 s -1 or more is applied to the mixture solution.
  • a shear rate of 10 3 s -1 or more is applied to the mixture solution.
  • high shear is applied to the mixture solution.
  • the amine mixture and the diisocyanate compound are mixed and dispersed to react with each other, thereby preparing a thickener.
  • the present manufacturing method will be described below in detail.
  • the first base oil and the second base oil usable in the present manufacturing method are not particularly limited, but may be any base oils usable in the present grease.
  • a kinematic viscosity at 40 degrees C of each of the first base oil and the second base oil is preferably in a range from 10 mm 2 /s to 600 mm 2 /s.
  • the first base oil and the second base oil preferably have similar polar characteristics and similar viscosity characteristics. Accordingly, the first base oil and the second base oil are most preferably the same base oil in use.
  • the thickener is formed from the amine mixture and the diisocyanate compound.
  • the examples of those usable in the present grease are usable.
  • the diisocyanate compound and the amine mixture are continuously introduced at a molar ratio of 1:2 into a reactor (a grease manufacturing device) and are immediately subjected to a high shear as described later to be mixed and reacted with each other, so that a diurea grease having less large lumps can be manufactured.
  • the above-described mixture of the diisocyanate compound and the monoamine compound is continuously introduced at equivalent amounts of an isocyanate group and an amino group into a reactor (a grease manufacturing device) and are similarly subjected to a high shear to be mixed and reacted with each other, so that a urea grease having less large lumps can be manufactured.
  • the first base oil containing the amine mixture and the second base oil containing the diisocyanate compound are mixed to prepare the mixture solution and a minimum shear rate of 10 2 s -1 or more is applied to the mixture.
  • a minimum shear rate of 10 2 s -1 or more is applied to the mixture.
  • a time elapsed before applying the above shear rate after putting the first base oil and the second base oil in the reactor is preferably within 15 minutes, more preferably within 5 minutes, further preferably within 10 seconds. Since a reaction starts after the diisocyanate compound and the amine mixture are well mixed and dispersed, when the elapsed time is shorter, molecules of the thickener are less likely to form a thick bundle and a large lump.
  • the minimum shear rate applied to the above mixture solution is 10 2 s -1 or more as described above, preferably 10 3 s -1 or more, more preferably 10 4 s -1 or more.
  • a higher shear rate provides a more improved dispersion condition of the diisocyanate compound and the monoamine compound and the formed thickener, thereby providing a more uniform grease structure.
  • the molecules of the thickener do not form a thick bundle and a large lump.
  • the minimum shear rate applied to the above mixture solution is preferably 10 7 s -1 or less.
  • the above shear rate can be applied to the mixture solution, for instance, by introducing the mixture into a reactor configured to cause shear by relative movement of facing wall surfaces.
  • a grease manufacturing device (the reactor) capable of generating such a high shear rate is exemplified by a manufacturing device structured as shown in Fig. 1 .
  • Fig. 2 schematically shows a lateral side and a top side of the manufacturing device in Fig. 1 .
  • the manufacturing device shown in Fig. 1 is configured to mix two types of base oils and uniformly apply high shear to the obtained mixture within an extremely short time.
  • the high shear is applied to the mixture solution by a gap (a, b) between a high-speed rotating portion and an inner wall of the reactor.
  • the gap may be adjusted by changing the diameter of the high-speed rotating portion in the direction of the rotation axis, or alternatively, by providing the high-speed rotating portion in a form of a truncated cone and vertically moving the high-speed rotating portion with respect to an inner wall of a tapered reactor.
  • the portions having a large gap may be provided by a screw or a spiral having continuous inclination, whereby extrusion capability may be provided to the high-speed rotating portion.
  • Fig. 3 shows a reactor (a manufacturing device of a grease) having a structure different from that of the reactor in Fig. 1 , the portions having different gaps are disposed in a rotation direction.
  • the portions having a large gap may be inclined relative to a rotation axis, whereby extrusion capability as provided by a screw may be provided to the high-speed rotating portion.
  • a ratio (Max/Min) of a maximum shear rate (Max) to a minimum shear rate (Min) in the shear applied to the mixture solution is preferably 100 or less, more preferably 70 or less, further preferably 50 or less, particularly preferably 10 or less.
  • the maximum shear rate (Max) refers to a maximum shear rate applied to the mixture solution and the minimum shear rate (Min) refers to a minimum shear rate applied to the mixture solution.
  • the maximum shear rate (Max) and the minimum shear rate (Min) are defined as follows, for instance, in the reactor shown in Fig 1 .
  • Max a linear velocity of a surface of the high-speed rotating portion at the minimum gap between the surface of the high-speed rotating portion and an inner wall surface of the reactor / the gap
  • Min a linear velocity of a surface of the high-speed rotating portion at the maximum gap between the surface of the high-speed rotating portion and the inner wall surface of the reactor / the gap
  • the gap used for calculating Max is a and the gap used for calculating Min is b.
  • the high-speed rotating portion is most preferably a cylinder vertically having a uniform diameter.
  • the manufacturing device When the manufacturing device manufactures a urea grease, the manufacturing device may have a structure as shown in Fig. 3 .
  • the present manufacturing method is applicable to all grease manufacturing methods including mixing a solution of the first base oil and the amine mixture with a solution of the second base oil and the diisocyanate compound.
  • a temperature condition for manufacturing the thickener differs depending on the precursors to be used, the temperature in a range from approximately 50 degrees C to 200 degrees C is preferable when manufacturing urea as the thickener.
  • isocyanate is likely to be dissolved in the base oil.
  • the temperature is equal to or less than 200 degrees C, deterioration of the base oil can be sufficiently inhibited.
  • a temperature of a solution of the base oil and amine before being introduced into the reactor is preferably in a range from approximately 50 degrees C to 100 degrees C.
  • the grease obtained by the above manufacturing method may be further kneaded.
  • a roll mill generally used for manufacturing a grease is usable.
  • the above grease may be subjected to the roll mill twice or more.
  • the grease obtained by the above manufacturing method may be further heated to the temperature in a range from 70 degrees C to 250 degrees C.
  • the heating temperature exceeds 250 degrees C, the grease may be deteriorated.
  • a heating time at this time is preferably in a range from thirty minutes to two hours. Further, for uniform heating, the grease may be kneaded and stirred. A furnace or the like may be used for heating.
  • a grease was manufactured using a urea grease manufacturing device as shown in Fig. 3 .
  • a grease manufacturing method was specifically performed as follows.
  • a PAO base oil (poly- ⁇ -olefin (a kinematic viscosity at 40 degrees C of 63 mm 2 /s, a kinematic viscosity at 100 degrees C of 9.8 mm 2 /s) containing cyclohexylamine of 3.4 mass% and stearyl amine 13.7 mass%) heated at 70 degrees C and a PAO base oil (poly- ⁇ -olefin (a kinematic viscosity at 40 degrees C of 63 mm 2 /s, a kinematic viscosity at 100 degrees C of 9.8 mm 2 /s) containing MDI of 6.0 mass%) also heated at 70 degrees C were continuously introduced at respective flow rates of 508 mL/min and 890 mL/min into a manufacturing device.
  • a maximum shear rate of 216,000s -1 was applied to the obtained mixture solution by a high-speed rotating portion when the mixture passed a gap.
  • a ratio (Max/Min) of the maximum shear rate (Max) to the minimum shear rate (Min) when the mixture passed the gap was 5.4.
  • a time elapsed before applying the maximum shear rate to the mixture solution after mixing the above two base oils was about three seconds.
  • An amount of the thickener in the manufactured grease was 10 mass% based on the total amount of the grease.
  • the obtained grease was evaluated according to the standards mentioned below and a lump formation state of the obtained grease was observed with an optical microscope. The same applies to later-described greases in Examples and Comparatives.
  • Grease was manufactured in the same manner as in Example 1 except that the flow rate of the amine solution was changed to 178 mL/min, and the flow rate of the MDI solution was changed to 331 mL/min.
  • Grease was manufactured in the same manner as in Example 1 except that the flow rate of the amine solution was changed to 253 mL/min, and the flow rate of the MDI solution was changed to 444 mL/min.
  • Grease was manufactured in the same manner as in Example 1 except that the flow rate of the amine solution was changed to 573 mL/min, and the flow rate of the MDI solution was changed to 1000 mL/min.
  • a urea grease was manufactured by a typical method. Specifically, a PAO base oil (poly- ⁇ -olefin (a kinematic viscosity at 40 degrees C of 63 mm 2 /s, a kinematic viscosity at 100 degrees C of 9.8 mm 2 /s) containing cyclohexylamine of 2.6 mass% and stearyl amine 10.5 mass%) kept at 60 degrees C was dropped into a PAO base oil (poly- ⁇ -olefin (a kinematic viscosity at 40 degrees C of 63 mm 2 /s, a kinematic viscosity at 100 degrees C of 9.8 mm 2 /s) containing MDI of 7.25 mass%) kept at 60 degrees C while being stirred by an impeller.
  • a PAO base oil poly- ⁇ -olefin (a kinematic viscosity at 40 degrees C of 63 mm 2 /s, a kinematic viscosity at 100 degrees
  • the mixture was heated to 160 degrees C and maintained for an hour while being kept stirred. Subsequently, the mixture was left to be cooled while being stirred and was subjected to two roll mill processes.
  • An amount of the thickener in the manufactured grease was 10 mass% based on the total amount of the grease.
  • the maximum shear rate during the manufacturing of each of the greases was about 100s -1 .
  • the grease was evaluated by the following method in terms of worked penetration, Peak High32-64s, Level High32-64s, fineness of the lumps, and centrifugal oil separation degree. The obtained results are shown in Table 1.
  • the molar ratio (Cy:C18) of the cyclohexylamine (Cy) and stearyl amine (C18) in the amine mixture in each of the greases as well as the maximum shear rate, the minimum shear rate, the ratio (Max/Min) of the maximum shear rate (Max) to the minimum shear rate (Min) and the flow rate of the solution during manufacturing of each of the greases are also shown in Table 1. Further, Figs. 4 to 8 show optical micrographs of the greases.
  • a worked penetration was measured by a method in accordance with the description of JIS K2220.
  • Peak High32-64s and Level High32-64s are measurable using a grease-dedicated acoustic measurement device (Grease Test Rig Be Quiet+) manufactured by SKF.
  • a bearing dedicated for an acoustic measurement in which a grease is not put, is set in the acoustic measurement device. While the bearing is being rotated at a predetermined speed, acoustic data is obtained after the elapse from 32 seconds to 64 seconds since the bearing starts rotating. The above operations are repeated for six times in total without exchanging the bearing.
  • a predetermined amount of sample (grease) is sealed in the bearing, and, while the bearing is being rotated at a predetermined speed, acoustic data is obtained after the elapse from 32 seconds to 64 seconds since the bearing starts rotating. The above operations are repeated for six times in total without exchanging the bearing. The acoustic data is analyzed using a program installed in the acoustic measurement device to obtain the values of the Peak High and Level High.
  • Each of the two sets of the values of the Peak High and Level High for the two bearings is averaged to obtain an average thereof.
  • capacitor scale of the optical microscope was set at 0.1 to narrow a diaphragm opening and the numerical aperture of the objective lens was reduced to one third to enlarge the focal depth. Clear images of the lumps were obtained through the above process.
  • three photographs of each of the greases were randomly taken at a total magnification of 5X. The fineness of the lumps was visually checked using one of the three photographs other than the ones of the three photographs with the largest and smallest number of lumps. A scale is shown in the photograph.
  • a sample of 20 g of grease was put into a centrifugal separation tube of a centrifugal separator and a centrifugal oil separation degree when 16,000 G of acceleration was applied to the sample for three hours at 20 degrees C was calculated according to the following formula.
  • Centrifugal oil separation degree wt % weight of separated oil / weight of loaded grease ⁇ 100 Table 1 Molar Ratio in Amine Mixture Maximum Shear Rate Minimum Shear Rate Ratio of Maximum Shear Rate to Minimum Shear Rate Flow Rate of Solution Worked Penetration Centrifugal Oil Separation Degree Peak High Level High Fineness of Lump 32-64s 32-64s (Max/Min) (Cy:C18) (s -1 ) (s -1 ) (-) (mL/min) (mass%)
  • Example 1 4:6 216,000 40,000 5.4 1398 217 0.7 0.41 6.61 Pass
  • Example 2 4:6 10,500 5,000 2.1 509 221 0.6 0.40 6.22 Pass
  • Example 3 4:6 10,500 5,000 2.1 697 219 0.3 0.54 6.36 Pass
  • the urea grease manufactured in Comparative 1 by a typical method exhibits insufficient acoustic characteristics and the lumps are observed through the observation using an optical microscope, which proves inferior smoothness and fineness.
  • a grease was manufactured using a urea grease manufacturing device as shown in Fig. 1 .
  • a grease manufacturing method was specifically performed as follows.
  • a 500N mineral oil (having a kinematic viscosity at 40 degrees C of 90 mm 2 /s and containing MDI of 11.0 mass%) heated at 70 degrees C and a 500N mineral oil (having a kinematic viscosity at 40 degrees C of 90 mm 2 /s and containing octyl amine of 11.1 mass% and cyclohexylamine of 2.13 mass%) heated at 70 degrees C were continuously introduced at respective flow rates of 258 mL/min and 214 mL/min into a manufacturing device. Immediately after the introduction, a maximum shear rate of 10,500s -1 was applied to the obtained mixture solution by a high-speed rotating portion when the mixture solution passed a gap.
  • the minimum shear rate (Min) when the mixture passed the gap was 10,200s -1 .
  • the ratio (Max/Min) of the maximum shear rate (Max) to the minimum shear rate (Min) when the mixture passed the gap was 1.03.
  • a time elapsed before applying the maximum shear rate to the mixture solution after mixing the above two base oils was about three seconds.
  • the grease discharged from the manufacturing device was put into a container preheated at 60 degrees C. While being stirred at 250rpm, the grease was immediately heated up to 120 degrees C, maintained for 30 minutes and further heated up to 160 degrees C to be maintained for an hour. Subsequently, the grease was left to be cooled while being kept stirred, and subjected to a roll mill twice to obtain a grease. An amount of the thickener in the obtained grease was 12 mass% based on the total amount of the grease.
  • a grease was obtained in the same manner as in Example 5 except that a PAO base oil (having a kinematic viscosity at 40 degrees C of 63 mm 2 /s and containing MDI of 6.09 mass%) heated at 70 degrees C and a PAO base oil (having a kinematic viscosity at 40 degrees C of 63 mm 2 /s and containing cyclohexylamine of 7.03 mass% and stearyl amine of 4.78 mass%) also heated at 70 degrees C were continuously introduced at respective flow rates of 880 mL/min and 474 mL/min into a manufacturing device. An amount of the thickener in the obtained grease was 8 mass% based on the total amount of the grease.
  • the maximum shear rate (Max) when the mixture passed the gap was 10,500s -1 and minimum shear rate (Min) when the mixture passed the gap was 10,200s -1 .
  • the ratio (Max/Min) of the maximum shear rate (Max) to the minimum shear rate (Min) when the mixture passed the gap was 1.03.
  • the grease was evaluated by the above method in terms of a worked penetration, centrifugal oil separation degree, Peak High32-64s, and Level High32-64s. The obtained results are shown in Table 2.
  • the amine composition and amount of the thickener in the amine mixture in each of the greases as well as the maximum shear rate, the minimum shear rate, and the ratio (Max/Min) of the maximum shear rate (Max) to the minimum shear rate (Min) during manufacturing of each of the greases are also shown in Table 2.
  • a grease was obtained in the same manner as in Example 5 except that a 500N mineral oil (having a kinematic viscosity at 40 degrees C of 90 mm 2 /s and containing MDI of 5.87 mass%) heated at 70 degrees C and a 500N mineral oil (having a kinematic viscosity at 40 degrees C of 90 mm 2 /s and containing cyclohexylamine of 3.35 mass% and stearyl amine of 13.7 mass%) also heated at 70 degrees C were continuously introduced at respective flow rates of 300 mL/min and 180 mL/min into a manufacturing device. An amount of the thickener in the obtained grease was 10 mass% based on the total amount of the grease.
  • the maximum shear rate (Max) when the mixture passed the gap was 21,000s -1 and minimum shear rate (Min) when the mixture passed the gap was 20,400s -1 .
  • the ratio (Max/Min) of the maximum shear rate (Max) to the minimum shear rate (Min) when the mixture passed the gap was 1.03.
  • a urea grease was manufactured by a typical method. Specifically, a 500N base oil (a kinematic viscosity at 40 degrees C of 90 mm 2 /s containing cyclohexyl amine of 2.59 mass% and stearyl amine 10.54 mass%) kept at 60 degrees C was dropped into a 500N mineral oil (a kinematic viscosity at 40 degrees C of 90 mm 2 /s containing MDI of 7.25 mass%) kept at 60 degrees C while being stirred by an impeller. After the amine solution was dropped therein, the mixture was heated to 160 degrees C and maintained for an hour while being kept stirred. Subsequently, the grease was left to be cooled while being kept stirred, and subjected to a roll mill twice to obtain a grease. An amount of the thickener in the obtained grease was 12 mass% based on the total amount of the grease.
  • the maximum shear rate (Max) and minimum shear rate (Min) during manufacturing of each of the greases were respectively 100s -1 and 1.23s -1 .
  • the ratio (Max/Min) of the maximum shear rate (Max) to the minimum shear rate (Min) when the mixture passed the gap was 81.
  • a grease was obtained in the same manner as in Example 5 except that an ester synthetic oil (having a kinematic viscosity at 40 degrees C of 33 mm 2 /s and containing MDI of 5.87 mass%) heated at 70 degrees C and an ester synthetic oil (having a kinematic viscosity at 40 degrees C of 33 mm 2 /s and containing cyclohexylamine of 3.35 mass% and stearyl amine 13.7 mass%) also heated at 70 degrees C were continuously introduced at respective flow rates of 300 mL/min and 180 mL/min into a manufacturing device. An amount of the thickener in the obtained grease was 10 mass% based on the total amount of the grease.
  • the maximum shear rate (Max) when the mixture passed the gap was 21,000s -1 and minimum shear rate (Min) when the mixture passed the gap was 20,400s -1 .
  • the ratio (Max/Min) of the maximum shear rate (Max) to the minimum shear rate (Min) when the mixture passed the gap was 1.03.
  • a grease was obtained in the same manner as in Comparative 2 except that an ester synthetic oil (a kinematic viscosity at 40 degrees C of 33 mm 2 /s containing cyclohexyl amine of 2.59 mass% and stearyl amine 10.54 mass%) kept at 60 degrees C was dropped into an ester synthetic oil (a kinematic viscosity at 40 degrees C of 33 mm 2 /s containing MDI of 7.25 mass%) kept at 60 degrees C.
  • An amount of the thickener in the obtained grease was 10 mass% based on the total amount of the grease.
  • the maximum shear rate (Max) and minimum shear rate (Min) during manufacturing of each of the greases were respectively 100s -1 and 1.23s -1 .
  • the ratio (Max/Min) of the maximum shear rate (Max) to the minimum shear rate (Min) when the mixture passed the gap was 81.
  • the grease was evaluated by the above method in terms of worked penetration, centrifugal oil separation degree, Peak High32-64s, Level High32-64s and fineness of the lumps. The obtained results are shown in Table 3.
  • the amine composition and amount of the thickener in the amine mixture in each of the greases as well as the maximum shear rate, the minimum shear rate, and the ratio (Max/Min) of the maximum shear rate (Max) to the minimum shear rate (Min) during manufacturing of each of the greases are also shown in Table 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Description

    TECHNICAL FIELD
  • The present invention relates to a method of preparing a urea grease.
  • BACKGROUND ART
  • Though having excellent heat resistance, urea grease is sometimes inferior in acoustic characteristics depending on amine(s) to be used. Accordingly, different greases have been typically used depending on the usage. However, in some applications (e.g. ball bearings installed in a small-sized motor for a household electrical appliance), both of the acoustic characteristics and heat resistance have been required to be satisfied.
  • In view of the above demand, a diurea grease containing a first amine component including an amine with a cyclohexyl group and a cyclohexyl derivative group having 7 to 12 carbon atoms, and a second amine with an alkyl group having 6 to 22 carbon atoms, the first amine and the second amine being used at a predetermined ratio, has been proposed (see Patent Literature 1). US-A-6136762 discloses methods for preparing urea grease in which at least one of the reactants (amines, isocyanate) forming the thickener is provided in the form of droplets in order to achieve uniform dispersion of the thickener in the grease.
  • CITATION LIST PATENT LITERATURE(S)
  • Patent Literature 1: JP-A-2008-143979
  • SUMMARY OF THE INVENTION PROBLEMS TO BE SOLVED BY THE INVENTION
  • The urea grease disclosed in Patent Literature 1 is made through a batch process and is excellent in appearance, heat resistance and acoustic characteristics. However, lumps can be found in the manufactured grease when the grease is checked using an optical electron microscope.
  • In view of the above, an object of the invention is to provide a method of preparing a fine urea grease that is capable of maintaining excellent heat resistance and acoustic characteristics and producing no lump visible using an optical electron microscope.
  • MEANS FOR SOLVING THE PROBLEMS
  • In order to solve the above problem, the invention provides the method as disclosed in attached claim 1.
  • A urea grease is prepared by shearing a mixture solution of an amine mixture comprising an alicyclic monoamine and a chain aliphatic monoamine and a diisocyanate compound at a shear rate of 102s-1 or more to cause a reaction, in which the urea grease has a Peak High32-64s of 1.5 or less and a Level High32-64s of 10 or less according to an FAG method.
  • According to the above aspect of the invention, as compared to typical urea greases, a finer urea grease that is capable of maintaining excellent heat resistance and acoustic characteristics and producing no lump visible using an optical electron microscope can be provided.
  • BRIEF DESCRIPTION OF DRAWINGS
    • Fig. 1 is a schematic cross-sectional view showing an example of a manufacturing device of a urea grease in an exemplary embodiment of the invention.
    • Fig. 2 schematically shows a lateral side and a top side of the manufacturing device in Fig. 1.
    • Fig. 3 schematically shows a lateral side and a top side of a manufacturing device of a urea grease in another exemplary embodiment of the invention.
    • Fig. 4 is an optical micrograph of a urea grease manufactured in Example 1 of the invention.
    • Fig. 5 is an optical micrograph of a urea grease manufactured in Example 2 of the invention.
    • Fig. 6 is an optical micrograph of a urea grease manufactured in Example 3 of the invention.
    • Fig. 7 is an optical micrograph of a urea grease manufactured in Example 4 of the invention.
    • Fig. 8 is an optical micrograph of a urea grease manufactured in Comparative 1 of the invention.
    DESCRIPTION OF EMBODIMENT(S)
  • A urea grease prepared in an exemplary embodiment of the invention (hereinafter, also referred to as "the present grease") uses a thickener obtained by reacting an amine mixture including alicyclic monoamine and chain aliphatic monoamine compound, and a diisocyanate compound in a solution. The thickener is provided by applying a shear rate of 103s-1 or more to the solution during the reaction. The urea grease has Peak High32-64s of 1.5 or less and Level High32-64s of 7 or less according to an FAG method. The exemplary embodiment of the invention will be described below in detail.
  • Constitution of Urea Grease
  • The base oil used in the present grease is not particularly limited, but may be any mineral base oil and synthetic base oil typically usable for manufacturing a typical grease. One of the mineral base oil and synthetic base oil may be used alone or a mixture thereof may be used.
  • Usable mineral oils are obtained by purification in an appropriate combination of vacuum distillation, solvent deasphalting, solvent extraction, hydrocracking, solvent dewaxing, sulfate cleaning, clay purification, hydrorefining and the like. Examples of the synthetic base oil include polyalphaolefin (PAO) base oil, other hydrocarbon base oil, ester base oil, alkyldiphenylether base oil, polyalkylene glycol base oil (PAG), and alkylbenzene base oil.
  • The thickener used in the present grease is obtained by a reaction in a mixture solution of the amine mixture including the alicyclic monoamine and chain aliphatic monoamine, and the diisocyanate compound. In order to enhance both of the acoustic characteristics and lubrication lifetime, it is necessary in the exemplary embodiment that a shear rate of 103s-1 or more is applied to the above mixture solution in the reaction.
  • Examples of the above-described alicyclic monoamine include cyclohexylamine and alkylcyclohexylamine. One of the alicyclic monoamines may be used alone or a plurality of the alicyclic monoamines may be mixed in use. Among the above, cyclohexylamine is preferable in terms of heat resistance.
  • Examples of the above-described chain aliphatic monoamine include hexyl amine, octyl amine, dodecyl amine, hexadecyl amine, stearyl amine and eicosyl amine. One of the chain aliphatic monoamines may be used alone or a plurality of the chain aliphatic monoamines may be mixed in use. Among the above, stearyl amine is preferable in terms of acoustic characteristics.
  • A molar ratio of the alicyclic monoamine to the chain aliphatic monoamine is preferably in a range from 5:1 to 1:4, more preferably in a range from 4:1 to 2:3, especially preferably in a range from 4:1 to 2:1 in order to enhance both of the acoustic characteristics and lubrication lifetime.
  • Examples of the diisocyanate compound include diphenylmethane-4,4'-diisocyanate (MDI), tolylene diisocyanate, and naphthylene-1,5-diisocyanate. One of the diisocyanates may be used alone or a plurality of diisocyanates may be mixed in use.
  • The present grease is required to have Peak High32-64s of 1.5 or less and Level High32-64s of 10 or less according to the FAG method.
  • A required level of each of the Peak High32-64s and the Level High32-64s depends on usage. However, the Peak High32-64s exceeding 1.5 is insufficient since the acoustic characteristics are in the same level as those of a conventional art. The Peak High32-64s is preferably 0.7 or less.
  • Moreover, the Level High32-64s exceeding 10 is insufficient since the acoustic characteristics are in the same level as those of a conventional art. The Level High32-64s is preferably 7 or less.
  • Herein, the Peak High32-64s and Level High32-64s according to the FAG method can be measured using an acoustic measurement device dedicated for a grease ("Grease Test Rig Be Quiet+" manufactured by SKF). Specifically, a bearing dedicated for an acoustic measurement, in which a grease is not filled, is set in the acoustic measurement device. While the bearing is being rotated at a predetermined speed, acoustic data is obtained after the elapse from 32 seconds to 64 seconds since the bearing starts rotating. The above operations are repeated for six times in total without exchanging the bearing. Specifically, a predetermined amount of sample (grease) is filled in the bearing, and, while the bearing is being rotated at a predetermined speed, acoustic data is obtained after the elapse from 32 seconds to 64 seconds since the bearing starts rotating. The above operations are repeated for six times in total without exchanging the bearing. The acoustic data is analyzed using a program installed in the acoustic measurement device to obtain an average of the six measurements of the Peak High and Level High.
  • The same operations (six operations without filling the grease and six operations after filling the grease) are performed on another dedicated bearing and the results are similarly analyzed using the program to obtain an average. The averages measured for the two bearings are averaged to obtain the values of the Peak High and the Level High according to the FAG method.
  • Usually, after a grease is filled in a bearing, the acoustic characteristics are evaluated based on acoustic data after the elapse from 32 seconds to 64 seconds from the start of the first rotation in the FAG method. An acoustic peak is sometimes observed due to rupture of air bubbles supposed to be contained in the grease after the elapse from 32 seconds to 64 seconds from the start of the first rotation. However, the evaluation on the acoustic characteristics is unduly downgraded when the acoustic peak supposed to be derived from the rupture of air bubbles is observed in a grease that has inherently excellent acoustic characteristics. Highly reproducible results of the acoustic characteristics often cannot be obtained even after 3 to 5 repetitions of the measurements. Accordingly, in order to overcome the above deficiencies, six measurements are performed for one dedicated bearing in the exemplary embodiment. The peak supposed to be derived from the rupture of air bubbles decreases after the second rotation and thus highly reproducible data can be obtained with the use of the average of the six measurements.
  • A method for providing the Peak High32-64s and Level High32-64s obtainable by the FAG method in the above-described range is exemplified by a later-described manufacturing method of the present grease under a uniform high shear.
  • Various additives may be further added to the present grease. Examples of the additives include an antioxidant, extreme pressure agent, and rust inhibitor.
  • Examples of the antioxidant include: an amine antioxidant such as alkylated diphenylamine, phenyl-α-naphthylamine and alkylated-α-naphthylamine; and a phenol antioxidant such as 2,6-di-t-butyl-4-methylphenol and 4,4-methylenebis(2,6-di-t-butylphenol). A content of the antioxidant is preferably in a range from approximately 0.05 mass% to 5 mass% based on a total amount of the grease.
  • Examples of the extreme pressure agent include thiocarbamates such as zinc dialkyldithiophosphate, molybdenum dialkyldithiophosphate, ashless dithiocarbamate, zinc dithiocarbamate and molybdenum dithiocarbamate, sulfur compound (e.g. sulfurized fat and oil, sulfurized olefin, polysulfide, sulfurized mineral oil, thiophosphates, thioterpenes and dialkylthiodipropionates), phosphates and phosphites (e.g. tricresyl phosphate and triphenyl phosphite). A content of the extreme pressure agent is preferably in a range from approximately 0.1 mass% to 5 mass% based on the total amount of the grease.
  • Examples of the rust inhibitor include benzotriazole, zinc stearate, succinate, succinic acid derivative, thiadiazole, benzotriazole, benzotriazole derivative, sodium nitrite, petroleum sulphonate, sorbitan monooleate, fatty acid soap and amine compound. A content of the rust inhibitor is preferably in a range from approximately 0.01 mass% to 10 mass% based on the total amount of the grease.
  • One of the above various additives may be blended alone, or alternatively, a plurality of those may be blended in combination.
  • Manufacturing Method of Urea Grease
  • The grease is manufactured by the method according to claim 1 (hereinafter, also referred to as "the present manufacturing method"). In the present manufacturing method, a first base oil containing the amine mixture and a second base oil containing the diisocyanate compound are mixed to prepare a mixture solution and a shear rate of 103s-1 or more is applied to the mixture solution. In other words, within a short time after the first base oil and the second base oil are mixed, high shear is applied to the mixture solution. Subsequently, the amine mixture and the diisocyanate compound are mixed and dispersed to react with each other, thereby preparing a thickener. The present manufacturing method will be described below in detail.
  • Base Oil
  • The first base oil and the second base oil usable in the present manufacturing method are not particularly limited, but may be any base oils usable in the present grease.
  • A kinematic viscosity at 40 degrees C of each of the first base oil and the second base oil is preferably in a range from 10 mm2/s to 600 mm2/s.
  • Considering compatibility of the first base oil and the second base oil, the first base oil and the second base oil preferably have similar polar characteristics and similar viscosity characteristics. Accordingly, the first base oil and the second base oil are most preferably the same base oil in use.
  • Thickener
  • In the present manufacturing method, the thickener is formed from the amine mixture and the diisocyanate compound.
  • As the amine mixture and the diisocyanate compound, the examples of those usable in the present grease are usable.
  • The diisocyanate compound and the amine mixture are continuously introduced at a molar ratio of 1:2 into a reactor (a grease manufacturing device) and are immediately subjected to a high shear as described later to be mixed and reacted with each other, so that a diurea grease having less large lumps can be manufactured. Moreover, the above-described mixture of the diisocyanate compound and the monoamine compound is continuously introduced at equivalent amounts of an isocyanate group and an amino group into a reactor (a grease manufacturing device) and are similarly subjected to a high shear to be mixed and reacted with each other, so that a urea grease having less large lumps can be manufactured.
  • Manufacturing Method of Grease
  • In the present manufacturing method, the first base oil containing the amine mixture and the second base oil containing the diisocyanate compound are mixed to prepare the mixture solution and a minimum shear rate of 102s-1 or more is applied to the mixture. In other words, in order to inhibit formation or growth of the lumps, it is crucial to apply a high shear to the mixture solution within the shortest time as possible after the first base oil and the second base oil are put into the reactor.
  • Specifically, a time elapsed before applying the above shear rate after putting the first base oil and the second base oil in the reactor is preferably within 15 minutes, more preferably within 5 minutes, further preferably within 10 seconds. Since a reaction starts after the diisocyanate compound and the amine mixture are well mixed and dispersed, when the elapsed time is shorter, molecules of the thickener are less likely to form a thick bundle and a large lump.
  • The minimum shear rate applied to the above mixture solution is 102s-1 or more as described above, preferably 103s-1 or more, more preferably 104s-1 or more. A higher shear rate provides a more improved dispersion condition of the diisocyanate compound and the monoamine compound and the formed thickener, thereby providing a more uniform grease structure. In other words, the molecules of the thickener do not form a thick bundle and a large lump.
  • Considering safety of the device and heat generated by shear and the like and removal of the heat, the minimum shear rate applied to the above mixture solution is preferably 107s-1 or less.
  • The above shear rate can be applied to the mixture solution, for instance, by introducing the mixture into a reactor configured to cause shear by relative movement of facing wall surfaces.
  • A grease manufacturing device (the reactor) capable of generating such a high shear rate is exemplified by a manufacturing device structured as shown in Fig. 1. Fig. 2 schematically shows a lateral side and a top side of the manufacturing device in Fig. 1.
  • The manufacturing device shown in Fig. 1 is configured to mix two types of base oils and uniformly apply high shear to the obtained mixture within an extremely short time. The high shear is applied to the mixture solution by a gap (a, b) between a high-speed rotating portion and an inner wall of the reactor. A diameter of the high-speed rotating portion may be constant (a=b) in a direction of a rotation axis, or alternatively, the gap may be different. The gap may be adjusted by changing the diameter of the high-speed rotating portion in the direction of the rotation axis, or alternatively, by providing the high-speed rotating portion in a form of a truncated cone and vertically moving the high-speed rotating portion with respect to an inner wall of a tapered reactor.
  • Further, the portions having a large gap may be provided by a screw or a spiral having continuous inclination, whereby extrusion capability may be provided to the high-speed rotating portion.
  • Fig. 3 shows a reactor (a manufacturing device of a grease) having a structure different from that of the reactor in Fig. 1, the portions having different gaps are disposed in a rotation direction. In this manufacturing device, the portions having a large gap may be inclined relative to a rotation axis, whereby extrusion capability as provided by a screw may be provided to the high-speed rotating portion.
  • In the above reactor, a ratio (Max/Min) of a maximum shear rate (Max) to a minimum shear rate (Min) in the shear applied to the mixture solution is preferably 100 or less, more preferably 70 or less, further preferably 50 or less, particularly preferably 10 or less. When the shear rate applied to the mixture solution is as uniform as possible, a grease having a uniform structure without having grown lumps is provided.
  • Herein, the maximum shear rate (Max) refers to a maximum shear rate applied to the mixture solution and the minimum shear rate (Min) refers to a minimum shear rate applied to the mixture solution. The maximum shear rate (Max) and the minimum shear rate (Min) are defined as follows, for instance, in the reactor shown in Fig 1. Max = a linear velocity of a surface of the high-speed rotating portion at the minimum gap between the surface of the high-speed rotating portion and an inner wall surface of the reactor / the gap
    Figure imgb0001
    Min = a linear velocity of a surface of the high-speed rotating portion at the maximum gap between the surface of the high-speed rotating portion and the inner wall surface of the reactor / the gap
    Figure imgb0002
  • In Fig. 1, the gap used for calculating Max is a and the gap used for calculating Min is b.
  • Since a smaller Max/Min is preferable as described above, ideally a=b. In other words, in case of the reactor as shown in Fig. 1, the high-speed rotating portion is most preferably a cylinder vertically having a uniform diameter.
  • When the manufacturing device manufactures a urea grease, the manufacturing device may have a structure as shown in Fig. 3.
  • The present manufacturing method is applicable to all grease manufacturing methods including mixing a solution of the first base oil and the amine mixture with a solution of the second base oil and the diisocyanate compound. Although a temperature condition for manufacturing the thickener differs depending on the precursors to be used, the temperature in a range from approximately 50 degrees C to 200 degrees C is preferable when manufacturing urea as the thickener. When the temperature is equal to or more than 50 degrees C, isocyanate is likely to be dissolved in the base oil. When the temperature is equal to or less than 200 degrees C, deterioration of the base oil can be sufficiently inhibited. A temperature of a solution of the base oil and amine before being introduced into the reactor is preferably in a range from approximately 50 degrees C to 100 degrees C.
  • In the present manufacturing method, the grease obtained by the above manufacturing method may be further kneaded. For this kneading, a roll mill generally used for manufacturing a grease is usable. The above grease may be subjected to the roll mill twice or more.
  • In the present manufacturing method, the grease obtained by the above manufacturing method may be further heated to the temperature in a range from 70 degrees C to 250 degrees C. When the heating temperature exceeds 250 degrees C, the grease may be deteriorated. A heating time at this time is preferably in a range from thirty minutes to two hours. Further, for uniform heating, the grease may be kneaded and stirred. A furnace or the like may be used for heating.
  • Examples
  • The invention will be described in further detail with reference to Examples and Comparatives, but the description is mere illustrative and not exhaustive of the invention. Specifically, a urea grease was manufactured under the following various conditions and properties of the obtained grease were evaluated.
  • Example 1
  • A grease was manufactured using a urea grease manufacturing device as shown in Fig. 3. A grease manufacturing method was specifically performed as follows.
  • A PAO base oil (poly-α-olefin (a kinematic viscosity at 40 degrees C of 63 mm2/s, a kinematic viscosity at 100 degrees C of 9.8 mm2/s) containing cyclohexylamine of 3.4 mass% and stearyl amine 13.7 mass%) heated at 70 degrees C and a PAO base oil (poly-α-olefin (a kinematic viscosity at 40 degrees C of 63 mm2/s, a kinematic viscosity at 100 degrees C of 9.8 mm2/s) containing MDI of 6.0 mass%) also heated at 70 degrees C were continuously introduced at respective flow rates of 508 mL/min and 890 mL/min into a manufacturing device. Immediately after the introduction, a maximum shear rate of 216,000s-1 was applied to the obtained mixture solution by a high-speed rotating portion when the mixture passed a gap. A ratio (Max/Min) of the maximum shear rate (Max) to the minimum shear rate (Min) when the mixture passed the gap was 5.4. A time elapsed before applying the maximum shear rate to the mixture solution after mixing the above two base oils was about three seconds. An amount of the thickener in the manufactured grease was 10 mass% based on the total amount of the grease. The obtained grease was heated for an hour at 160 degrees C while stirring, and was subjected to two roll mill processes after being cooled. As the roll mill, a three-roll mill, model 50 (roll diameter=50 mm) manufactured by EXAKT Technologies, Inc., was used.
  • The obtained grease was evaluated according to the standards mentioned below and a lump formation state of the obtained grease was observed with an optical microscope. The same applies to later-described greases in Examples and Comparatives.
  • Example 2
  • Grease was manufactured in the same manner as in Example 1 except that the flow rate of the amine solution was changed to 178 mL/min, and the flow rate of the MDI solution was changed to 331 mL/min.
  • Example 3
  • Grease was manufactured in the same manner as in Example 1 except that the flow rate of the amine solution was changed to 253 mL/min, and the flow rate of the MDI solution was changed to 444 mL/min.
  • Example 4
  • Grease was manufactured in the same manner as in Example 1 except that the flow rate of the amine solution was changed to 573 mL/min, and the flow rate of the MDI solution was changed to 1000 mL/min.
  • Comparative 1
  • A urea grease was manufactured by a typical method. Specifically, a PAO base oil (poly-α-olefin (a kinematic viscosity at 40 degrees C of 63 mm2/s, a kinematic viscosity at 100 degrees C of 9.8 mm2/s) containing cyclohexylamine of 2.6 mass% and stearyl amine 10.5 mass%) kept at 60 degrees C was dropped into a PAO base oil (poly-α-olefin (a kinematic viscosity at 40 degrees C of 63 mm2/s, a kinematic viscosity at 100 degrees C of 9.8 mm2/s) containing MDI of 7.25 mass%) kept at 60 degrees C while being stirred by an impeller. After the amine solution was dropped therein, the mixture was heated to 160 degrees C and maintained for an hour while being kept stirred. Subsequently, the mixture was left to be cooled while being stirred and was subjected to two roll mill processes. An amount of the thickener in the manufactured grease was 10 mass% based on the total amount of the grease. The maximum shear rate during the manufacturing of each of the greases was about 100s-1.
  • Evaluation of Grease
  • The grease was evaluated by the following method in terms of worked penetration, Peak High32-64s, Level High32-64s, fineness of the lumps, and centrifugal oil separation degree. The obtained results are shown in Table 1. The molar ratio (Cy:C18) of the cyclohexylamine (Cy) and stearyl amine (C18) in the amine mixture in each of the greases as well as the maximum shear rate, the minimum shear rate, the ratio (Max/Min) of the maximum shear rate (Max) to the minimum shear rate (Min) and the flow rate of the solution during manufacturing of each of the greases are also shown in Table 1. Further, Figs. 4 to 8 show optical micrographs of the greases.
  • (1) Worked Penetration
  • A worked penetration was measured by a method in accordance with the description of JIS K2220.
  • (2) Peak High32-64s and Level High32-64s
  • Peak High32-64s and Level High32-64s are measurable using a grease-dedicated acoustic measurement device (Grease Test Rig Be Quiet+) manufactured by SKF. Specifically, a bearing dedicated for an acoustic measurement, in which a grease is not put, is set in the acoustic measurement device. While the bearing is being rotated at a predetermined speed, acoustic data is obtained after the elapse from 32 seconds to 64 seconds since the bearing starts rotating. The above operations are repeated for six times in total without exchanging the bearing. Additionally, a predetermined amount of sample (grease) is sealed in the bearing, and, while the bearing is being rotated at a predetermined speed, acoustic data is obtained after the elapse from 32 seconds to 64 seconds since the bearing starts rotating. The above operations are repeated for six times in total without exchanging the bearing. The acoustic data is analyzed using a program installed in the acoustic measurement device to obtain the values of the Peak High and Level High.
  • The same operations (six operations without filling the grease and six operations after filling the grease) are performed on another dedicated bearing and the results are similarly analyzed using the program to obtain values of the Peak High and Level High.
  • Each of the two sets of the values of the Peak High and Level High for the two bearings is averaged to obtain an average thereof.
  • (3) Fineness of Lump
  • An extremely small amount of the grease was laid on a glass slide, covered with Saran Wrap (registered trademark) (thickness: 11 µm) as a spacer, covered with a cover glass, and further covered with another glass slide. A vertical load of about 20 N was evenly applied on the thus covered mixture to crush the grease into a film. The upper glass slide was removed and the grease in a form of film was observed through a transmitted light brightfield method (without polarization) using an optical microscope (Olympus BX51) with a camera (Olympus DP73) being attached thereon. The objective lens used was Olympus MPLFLN10XBD (numerical aperture (NA) of 0.30). Small lumps of approximately 15 µm or less were often difficult to be observed, and thus a focal depth was increased to facilitate the observation. In the exemplary embodiment, capacitor scale of the optical microscope was set at 0.1 to narrow a diaphragm opening and the numerical aperture of the objective lens was reduced to one third to enlarge the focal depth. Clear images of the lumps were obtained through the above process. In order to avoid intentional selection of areas with small or large number of lumps, three photographs of each of the greases were randomly taken at a total magnification of 5X. The fineness of the lumps was visually checked using one of the three photographs other than the ones of the three photographs with the largest and smallest number of lumps. A scale is shown in the photograph.
  • The optical micrograph of each of the greases was visually checked and the fineness of the lumps was evaluated according to the following standards.
    • Pass: little or no lump(s) was observed in the optical micrograph.
    • Failure: lump was observed in the optical micrograph.
    (4) Centrifugal Oil Separation Degree
  • A sample of 20 g of grease was put into a centrifugal separation tube of a centrifugal separator and a centrifugal oil separation degree when 16,000 G of acceleration was applied to the sample for three hours at 20 degrees C was calculated according to the following formula. Centrifugal oil separation degree wt % = weight of separated oil / weight of loaded grease × 100
    Figure imgb0003
    Table 1
    Molar Ratio in Amine Mixture Maximum Shear Rate Minimum Shear Rate Ratio of Maximum Shear Rate to Minimum Shear Rate Flow Rate of Solution Worked Penetration Centrifugal Oil Separation Degree Peak High Level High Fineness of Lump
    32-64s 32-64s
    (Max/Min)
    (Cy:C18) (s-1) (s-1) (-) (mL/min) (mass%)
    Example 1 4:6 216,000 40,000 5.4 1398 217 0.7 0.41 6.61 Pass
    Example 2 4:6 10,500 5,000 2.1 509 221 0.6 0.40 6.22 Pass
    Example 3 4:6 10,500 5,000 2.1 697 219 0.3 0.54 6.36 Pass
    Example 4 4:6 10,500 5,000 2.1 1573 221 0.5 0.46 6.21 Pass
    Comparative 1 4:6 Approx. 100 1.23 81 - 238 1.5 1.98 10.40 Failure
  • It has been confirmed from the results shown in Table 1 that all of the urea greases (Examples 1 to 4) of the invention exhibit excellent acoustic characteristics and have fineness enough for the lumps not to be observed.
  • In contrast, the urea grease manufactured in Comparative 1 by a typical method exhibits insufficient acoustic characteristics and the lumps are observed through the observation using an optical microscope, which proves inferior smoothness and fineness.
  • Example 5
  • A grease was manufactured using a urea grease manufacturing device as shown in Fig. 1. A grease manufacturing method was specifically performed as follows.
  • A 500N mineral oil (having a kinematic viscosity at 40 degrees C of 90 mm2/s and containing MDI of 11.0 mass%) heated at 70 degrees C and a 500N mineral oil (having a kinematic viscosity at 40 degrees C of 90 mm2/s and containing octyl amine of 11.1 mass% and cyclohexylamine of 2.13 mass%) heated at 70 degrees C were continuously introduced at respective flow rates of 258 mL/min and 214 mL/min into a manufacturing device. Immediately after the introduction, a maximum shear rate of 10,500s-1 was applied to the obtained mixture solution by a high-speed rotating portion when the mixture solution passed a gap. The minimum shear rate (Min) when the mixture passed the gap was 10,200s-1. The ratio (Max/Min) of the maximum shear rate (Max) to the minimum shear rate (Min) when the mixture passed the gap was 1.03. A time elapsed before applying the maximum shear rate to the mixture solution after mixing the above two base oils was about three seconds. The grease discharged from the manufacturing device was put into a container preheated at 60 degrees C. While being stirred at 250rpm, the grease was immediately heated up to 120 degrees C, maintained for 30 minutes and further heated up to 160 degrees C to be maintained for an hour. Subsequently, the grease was left to be cooled while being kept stirred, and subjected to a roll mill twice to obtain a grease. An amount of the thickener in the obtained grease was 12 mass% based on the total amount of the grease.
  • Example 6
  • A grease was obtained in the same manner as in Example 5 except that a PAO base oil (having a kinematic viscosity at 40 degrees C of 63 mm2/s and containing MDI of 6.09 mass%) heated at 70 degrees C and a PAO base oil (having a kinematic viscosity at 40 degrees C of 63 mm2/s and containing cyclohexylamine of 7.03 mass% and stearyl amine of 4.78 mass%) also heated at 70 degrees C were continuously introduced at respective flow rates of 880 mL/min and 474 mL/min into a manufacturing device. An amount of the thickener in the obtained grease was 8 mass% based on the total amount of the grease.
  • The maximum shear rate (Max) when the mixture passed the gap was 10,500s-1 and minimum shear rate (Min) when the mixture passed the gap was 10,200s-1. The ratio (Max/Min) of the maximum shear rate (Max) to the minimum shear rate (Min) when the mixture passed the gap was 1.03.
  • Evaluation of Grease
  • The grease was evaluated by the above method in terms of a worked penetration, centrifugal oil separation degree, Peak High32-64s, and Level High32-64s. The obtained results are shown in Table 2. The amine composition and amount of the thickener in the amine mixture in each of the greases as well as the maximum shear rate, the minimum shear rate, and the ratio (Max/Min) of the maximum shear rate (Max) to the minimum shear rate (Min) during manufacturing of each of the greases are also shown in Table 2. Table 2
    Molar Ratio in Amine Mixture Maximum Shear Rate Minimum Shear Rate Ratio of Maximum Shear Rate to Minimum Shear Rate Worked Penetration Centrifugal Oil Separation Degree Peak High Level High
    32-64s 32-64s
    (Max/Min)
    (Cy:C18) (s-1) (s-1) (-) (mass%)
    Example 5 Cy:C18 = 1:4 10,500 10,200 1.03 264 4.3 0.81 8.05
    Example 6 Cy:C18 = 4:1 10,500 10,200 1.03 233 1.6 0.58 6.22
  • According to the results shown in Table 2, a urea grease having excellent acoustic characteristics was obtained in Examples 5 and 6.
  • Example 7
  • A grease was obtained in the same manner as in Example 5 except that a 500N mineral oil (having a kinematic viscosity at 40 degrees C of 90 mm2/s and containing MDI of 5.87 mass%) heated at 70 degrees C and a 500N mineral oil (having a kinematic viscosity at 40 degrees C of 90 mm2/s and containing cyclohexylamine of 3.35 mass% and stearyl amine of 13.7 mass%) also heated at 70 degrees C were continuously introduced at respective flow rates of 300 mL/min and 180 mL/min into a manufacturing device. An amount of the thickener in the obtained grease was 10 mass% based on the total amount of the grease.
  • The maximum shear rate (Max) when the mixture passed the gap was 21,000s-1 and minimum shear rate (Min) when the mixture passed the gap was 20,400s-1. The ratio (Max/Min) of the maximum shear rate (Max) to the minimum shear rate (Min) when the mixture passed the gap was 1.03.
  • Comparative 2
  • A urea grease was manufactured by a typical method. Specifically, a 500N base oil (a kinematic viscosity at 40 degrees C of 90 mm2/s containing cyclohexyl amine of 2.59 mass% and stearyl amine 10.54 mass%) kept at 60 degrees C was dropped into a 500N mineral oil (a kinematic viscosity at 40 degrees C of 90 mm2/s containing MDI of 7.25 mass%) kept at 60 degrees C while being stirred by an impeller. After the amine solution was dropped therein, the mixture was heated to 160 degrees C and maintained for an hour while being kept stirred. Subsequently, the grease was left to be cooled while being kept stirred, and subjected to a roll mill twice to obtain a grease. An amount of the thickener in the obtained grease was 12 mass% based on the total amount of the grease.
  • The maximum shear rate (Max) and minimum shear rate (Min) during manufacturing of each of the greases were respectively 100s-1 and 1.23s-1. The ratio (Max/Min) of the maximum shear rate (Max) to the minimum shear rate (Min) when the mixture passed the gap was 81.
  • Example 8
  • A grease was obtained in the same manner as in Example 5 except that an ester synthetic oil (having a kinematic viscosity at 40 degrees C of 33 mm2/s and containing MDI of 5.87 mass%) heated at 70 degrees C and an ester synthetic oil (having a kinematic viscosity at 40 degrees C of 33 mm2/s and containing cyclohexylamine of 3.35 mass% and stearyl amine 13.7 mass%) also heated at 70 degrees C were continuously introduced at respective flow rates of 300 mL/min and 180 mL/min into a manufacturing device. An amount of the thickener in the obtained grease was 10 mass% based on the total amount of the grease.
  • The maximum shear rate (Max) when the mixture passed the gap was 21,000s-1 and minimum shear rate (Min) when the mixture passed the gap was 20,400s-1. The ratio (Max/Min) of the maximum shear rate (Max) to the minimum shear rate (Min) when the mixture passed the gap was 1.03.
  • Comparative 3
  • A grease was obtained in the same manner as in Comparative 2 except that an ester synthetic oil (a kinematic viscosity at 40 degrees C of 33 mm2/s containing cyclohexyl amine of 2.59 mass% and stearyl amine 10.54 mass%) kept at 60 degrees C was dropped into an ester synthetic oil (a kinematic viscosity at 40 degrees C of 33 mm2/s containing MDI of 7.25 mass%) kept at 60 degrees C. An amount of the thickener in the obtained grease was 10 mass% based on the total amount of the grease.
  • The maximum shear rate (Max) and minimum shear rate (Min) during manufacturing of each of the greases were respectively 100s-1 and 1.23s-1. The ratio (Max/Min) of the maximum shear rate (Max) to the minimum shear rate (Min) when the mixture passed the gap was 81.
  • Evaluation of Grease
  • The grease was evaluated by the above method in terms of worked penetration, centrifugal oil separation degree, Peak High32-64s, Level High32-64s and fineness of the lumps. The obtained results are shown in Table 3. The amine composition and amount of the thickener in the amine mixture in each of the greases as well as the maximum shear rate, the minimum shear rate, and the ratio (Max/Min) of the maximum shear rate (Max) to the minimum shear rate (Min) during manufacturing of each of the greases are also shown in Table 3. Table 3
    Molar Ratio in Amine Mixture Maximum Shear Rate Minimum Shear Rate Ratio of Maximum Shear Rate to Minimum Shear Rate Worked Penetration Centrifugal Oil Separation Degree Peak High Level High Fineness of Lump
    32-64s 32-64s
    (Max/Min)
    (Cy:C18) (s-1) (s-1) (-) (mass%)
    Example 7 Cy:C18 = 4:6 21000 20400 1.03 217 0.7 0.42 6.71 Pass
    Comparative 2 Cy:C18 = 4:6 100 1.23 81 186 0.7 3.00 11.81 Failure
    Example 8 Cy:C18 = 4:6 21000 20400 1.03 244 3.4 1.04 7.55 Pass
    Comparative 3 Cy:C18 = 4:6 100 1.23 81 250 5.2 3.59 9.51 Failure
  • According to the results shown in Table 3, a urea grease having an excellent acoustic characteristics was obtained in Examples 7 and 8.

Claims (9)

  1. A method of preparing a urea grease, said method comprising:
    (I) separately and continuously introducing, into a reactor equipped with a rotating portion, an inner wall, a first inlet, and a second inlet, a first base oil via the first inlet and a second base oil via the second inlet, to obtain a mixture solution in the reactor,
    wherein the first base oil comprises an amine mixture comprising an alicyclic monoamine and a chain aliphatic monoamine and the second base oil comprises a diisocyanate compound, and
    (II) applying a shear rate of 103 s-1 or more to the mixture solution in the reactor by a gap between the rotating portion and the inner wall of the reactor, to obtain a urea grease.
  2. The method according to claim 1, wherein
    the temperature in the reactor is 50 to 200 degrees C.
  3. The method according to claim 1 or 2, wherein
    the alicyclic monoamine is cyclohexylamine.
  4. The method according to any one of claims 1 to 3, wherein
    the chain aliphatic monoamine is stearyl amine.
  5. The method according to any one of claims 1 to 4, wherein
    a molar ratio of the alicyclic monoamine to the chain aliphatic monoamine in the amine mixture is in a range from 5:1 to 1:3.
  6. The method according to any one of claims 1 to 5, wherein
    the mixture solution is sheared at the shear rate within 15 minutes after mixing the first base oil and the second base oil.
  7. The method according to any one of claims 1 to 6, wherein
    the urea grease obtained is heated for 30 minutes or more at a temperature ranging from 70 to 250 degrees C.
  8. The method according to any one of claims 1 to 7, wherein
    the shear rate is 107s-1 or less.
  9. The method according to any one of claims 1 to 8, wherein
    a ratio (Max/Min) of a maximum shear rate (Max) applied to the mixture solution, to a minimum shear rate (Min) applied to the mixture solution is 70 or less, wherein the maximum shear rate and the minimum shear rate are defined as follows: Max = a linear velocity of a surface of the rotating portion at the minimum gap between the surface of the rotating portion and an inner wall surface of the reactor / the gap
    Figure imgb0004
    Min = a linear velocity of a surface of the rotating portion at the maximum gap between the surface of the rotating portion and the inner wall surface of the reactor / the gap .
    Figure imgb0005
EP15800377.2A 2014-05-27 2015-03-31 Method of preparing an urea grease Active EP3150688B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014108851 2014-05-27
PCT/JP2015/060256 WO2015182242A1 (en) 2014-05-27 2015-03-31 Urea grease

Publications (3)

Publication Number Publication Date
EP3150688A1 EP3150688A1 (en) 2017-04-05
EP3150688A4 EP3150688A4 (en) 2017-12-20
EP3150688B1 true EP3150688B1 (en) 2021-06-16

Family

ID=54698584

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15800377.2A Active EP3150688B1 (en) 2014-05-27 2015-03-31 Method of preparing an urea grease

Country Status (5)

Country Link
US (1) US10150929B2 (en)
EP (1) EP3150688B1 (en)
JP (1) JP6618017B2 (en)
CN (1) CN106459803B (en)
WO (1) WO2015182242A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102023004246A1 (en) 2023-03-30 2024-10-02 Fuchs SE Production of polyurea-thickened lubricating greases with improved lubrication properties and aging stability
DE102023108177A1 (en) 2023-03-30 2024-10-02 Fuchs SE Production of polyurea-thickened lubricating greases with improved lubrication properties and aging stability

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10704010B2 (en) * 2015-02-05 2020-07-07 Idemitsu Kosan Co., Ltd. Grease and method for manufacturing grease
JPWO2019044624A1 (en) * 2017-08-31 2020-08-13 出光興産株式会社 Grease composition
CN111065717B (en) * 2017-12-25 2024-02-20 日本精工株式会社 Lubricant composition and rolling bearing in which the lubricant composition is enclosed
CN111065718B (en) * 2017-12-25 2022-05-03 日本精工株式会社 Lubricant composition
CN112218936B (en) * 2018-06-28 2022-04-26 陶氏环球技术有限责任公司 Method for preparing grease thickener and thickener prepared by method
US20210324290A1 (en) * 2018-09-14 2021-10-21 Idemitsu Kosan Co.,Ltd. Grease composition for constant velocity joint
CN111171893A (en) * 2018-11-13 2020-05-19 中国石油天然气股份有限公司 Preparation method of polyurea lubricating grease
EP3919592B1 (en) * 2019-01-31 2025-04-30 Idemitsu Kosan Co., Ltd. Method for lubrication with a grease composition
US11555160B2 (en) * 2019-03-06 2023-01-17 Idemitsu Kosan Co., Ltd. Grease composition
DE112020004507T5 (en) * 2019-09-24 2022-07-07 Eneos Corporation GREASE COMPOSITION AND ROLLING BEARINGS
CN116482098A (en) * 2023-04-23 2023-07-25 中国科学院上海高等研究院 Characterization method and application of microstructure of lubricating grease

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU3852372A (en) * 1971-02-01 1973-08-02 Chevron Research Company Process for shear hardening greases
CN85200099U (en) * 1985-04-01 1985-09-10 石油化工科学研究院 Variable speed and pressure regulating circulating shear
JPH024895A (en) * 1988-06-23 1990-01-09 Kyodo Yushi Kk Production of urea grease improving acoustic characteristic
JP2892066B2 (en) * 1989-12-20 1999-05-17 協同油脂株式会社 Manufacturing method of grease with excellent acoustic characteristics
JP3988897B2 (en) * 1996-06-07 2007-10-10 協同油脂株式会社 Grease composition for constant velocity joints
JP3903140B2 (en) * 1997-07-02 2007-04-11 新日本石油精製株式会社 Urea grease manufacturing method
JP4327929B2 (en) * 1999-03-03 2009-09-09 協同油脂株式会社 Manufacturing method of urea grease with excellent noise reduction
EP1322732B1 (en) * 2000-07-11 2014-06-25 ExxonMobil Research and Engineering Company Preparation of a Lubricating Grease Composition
JP2003253286A (en) * 2002-03-01 2003-09-10 Nsk Ltd Grease manufacturing equipment
US7923421B2 (en) * 2006-01-24 2011-04-12 Exxonmobil Research And Engineering Company Process for preparing fine powder polyurea and greases therefrom
JP2008143979A (en) 2006-12-07 2008-06-26 Nsk Ltd Grease composition and rolling bearing
JP5743537B2 (en) * 2010-12-27 2015-07-01 出光興産株式会社 Grease for bearing
CN102585970B (en) * 2011-12-20 2014-01-15 长沙众城石油化工有限责任公司 Polyurea-based lubricating grease with high mechanical stability and preparation method thereof
JPWO2013125510A1 (en) * 2012-02-24 2015-07-30 出光興産株式会社 Grease and grease softening method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102023004246A1 (en) 2023-03-30 2024-10-02 Fuchs SE Production of polyurea-thickened lubricating greases with improved lubrication properties and aging stability
DE102023108177A1 (en) 2023-03-30 2024-10-02 Fuchs SE Production of polyurea-thickened lubricating greases with improved lubrication properties and aging stability
WO2024200526A1 (en) 2023-03-30 2024-10-03 Fuchs SE Producing polyurea-thickened lubricating greases having improved lubrication properties and aging stability

Also Published As

Publication number Publication date
JPWO2015182242A1 (en) 2017-04-20
CN106459803A (en) 2017-02-22
US20170253826A1 (en) 2017-09-07
US10150929B2 (en) 2018-12-11
EP3150688A4 (en) 2017-12-20
CN106459803B (en) 2021-05-04
WO2015182242A1 (en) 2015-12-03
JP6618017B2 (en) 2019-12-11
EP3150688A1 (en) 2017-04-05

Similar Documents

Publication Publication Date Title
EP3150688B1 (en) Method of preparing an urea grease
US10704010B2 (en) Grease and method for manufacturing grease
EP3031888B1 (en) Method for manufacturing grease
EP3018192B1 (en) Biodegradable grease composition for aerogenerator
EP3550003B1 (en) Mixed grease
EP3851506B1 (en) Grease composition for constant velocity joint
JP6675145B2 (en) Grease
KR20140127241A (en) Grease and method for softening grease
EP4047075B1 (en) Grease composition for speed reducer part of on-vehicle electric component
JP6826651B2 (en) Grease composition
JP6609243B2 (en) Urea grease manufacturing method
JP2016222813A (en) Grease composition, method for producing the same, and rolling bearing sealed with the grease composition
JP6505451B2 (en) Urea grease
JP6612031B2 (en) Grease manufacturing method
JP6887758B2 (en) Grease composition
JP2015224269A (en) Grease composition and rolling bearing

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20161124

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20171122

RIC1 Information provided on ipc code assigned before grant

Ipc: C10N 30/00 20060101ALI20171114BHEP

Ipc: C10N 50/10 20060101ALI20171114BHEP

Ipc: C10N 70/00 20060101ALI20171114BHEP

Ipc: C10M 177/00 20060101ALI20171114BHEP

Ipc: C10N 40/02 20060101ALI20171114BHEP

Ipc: C10N 20/00 20060101ALI20171114BHEP

Ipc: C10N 30/04 20060101ALI20171114BHEP

Ipc: C10M 115/08 20060101AFI20171114BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C10M 115/08 20060101AFI20210129BHEP

Ipc: C10N 50/10 20060101ALI20210129BHEP

Ipc: C10M 177/00 20060101ALI20210129BHEP

Ipc: C10N 20/00 20060101ALI20210129BHEP

Ipc: C10N 40/02 20060101ALI20210129BHEP

Ipc: C10N 20/02 20060101ALI20210129BHEP

Ipc: C10N 70/00 20060101ALI20210129BHEP

Ipc: C10N 30/00 20060101ALI20210129BHEP

INTG Intention to grant announced

Effective date: 20210217

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015070477

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1402362

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210916

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1402362

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210616

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210917

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211018

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015070477

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

26N No opposition filed

Effective date: 20220317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20250204

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20250210

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20250206

Year of fee payment: 11