Nothing Special   »   [go: up one dir, main page]

EP2932102A2 - Can for magnetically coupled pumps and production process - Google Patents

Can for magnetically coupled pumps and production process

Info

Publication number
EP2932102A2
EP2932102A2 EP13820745.1A EP13820745A EP2932102A2 EP 2932102 A2 EP2932102 A2 EP 2932102A2 EP 13820745 A EP13820745 A EP 13820745A EP 2932102 A2 EP2932102 A2 EP 2932102A2
Authority
EP
European Patent Office
Prior art keywords
weight percent
percent
nickel
side wall
containment shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP13820745.1A
Other languages
German (de)
French (fr)
Other versions
EP2932102B1 (en
Inventor
Thomas Eschner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Klaus Union GmbH and Co KG
Original Assignee
Klaus Union GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=50777749&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2932102(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Klaus Union GmbH and Co KG filed Critical Klaus Union GmbH and Co KG
Publication of EP2932102A2 publication Critical patent/EP2932102A2/en
Application granted granted Critical
Publication of EP2932102B1 publication Critical patent/EP2932102B1/en
Revoked legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/021Units comprising pumps and their driving means containing a coupling
    • F04D13/024Units comprising pumps and their driving means containing a coupling a magnetic coupling
    • F04D13/025Details of the can separating the pump and drive area
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0606Canned motor pumps
    • F04D13/0626Details of the can
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/026Selection of particular materials especially adapted for liquid pumps

Definitions

  • the invention relates to a containment shell for arrangement in a gap between a driver and a rotor of a magnetically coupled pump, and to a method for producing the containment shell.
  • Magnetically coupled pumps can be statically sealed by placing a stationary containment shell between a drive side driver and a magnetically driven output side rotor and surrounding the rotor.
  • the containment shell is arranged in the magnetic field between the driver and the rotor, and the magnetic forces are transmitted through the containment shell.
  • a pump impeller can be coupled.
  • Drivers and rotors are provided with permanent magnets and arranged as close to each other as possible in order to provide an efficient drive.
  • the wall thickness of the side wall of the containment shell specifies how large the gap or gap between driver and runner must be at least.
  • a narrow gap or a very brief interpretation of the wall thickness of the split pot with respect to a minimum width the gap provides advantages in efficiency, in particular with regard to minimizing drive losses, but at the same time reduces a safety factor and possibly also the service life of the can, depending on which fluids are to be conveyed.
  • the corrosion resistance is just in terms of the lowest possible wall thickness of the side wall of importance.
  • the containment shell is also to be reworked, in particular cold-formed, in order to be able to adjust the geometry of the side wall by forming processes.
  • Nickel-based alloys have proven to be suitable material for containment pots.
  • the object is to provide a containment shell in which, in addition to good structural material properties, a high corrosion resistance can be ensured. It is also an object to design the containment shell so that it can be easily brought into a desired geometry. Last but not least, it is the task to design a containment shell in such a way that it can easily be given a high material hardness. At least one of these objects is achieved by a containment shell according to claim 1 and by a method according to claim 9. Advantageous developments of the invention are the subject of the dependent claims.
  • An inventive containment shell e.g. can be used for arrangement in a gap between a driver and a rotor of a magnetically coupled pump or in a canned motor pump, has:
  • a flange part e.g. for connecting the containment shell to the pump or the motor;
  • the material is a nickel-chromium alloy which has at least 50 percent by weight nickel and 17 to 21 percent by weight chromium.
  • a particularly resistant containment can be provided.
  • the side wall of the material is made uniformly from the material, in particular when the side wall is designed with a view to a minimum material thickness.
  • the entire containment shell made of the material although in particular for the flange and deviating, especially less expensive materials can be selected.
  • the material has cobalt (Co), and the cobalt content is at most 1 percent by weight. More preferably, the material boron (B), and the boron content is at most 0.006 weight percent.
  • a bottom of the split pot is preferably a section to understand, which closes the gap pot pot-shaped at one end and thereby merges into the side wall.
  • a flange part of the containment shell is preferably a section which is designed to arrange and to fix the containment pot in a defined position and orientation in the pump.
  • the material is a nickel-chromium-iron alloy, in particular a nickel alloy called Alloy 718 (Nicofer 5219 Nb), wherein the nickel content is at most 55 weight percent and the iron content is between 10 and 25 weight percent.
  • the invention relates to the use of a suitable nickel-chromium-iron alloy for a split pot, which is designed for arrangement in a gap between a driver and a rotor of a magnetically coupled pump.
  • Such a material may be a nickel-chromium-iron alloy, which has high strength and is therefore particularly useful for splitters used in pumps operating at high pressures. At the same time it is well deformable in certain conditions, especially in one solution annealed condition, and therefore can be easily reworked, for example by spin forming. It is also advantageous that hydrogen embrittlement does not occur in this material, so that hydrogen-containing media can also be delivered by means of a pump with such a containment shell.
  • Such a material also provides the advantage that it is curable without deformations occur. In this way, a high-strength containment can be provided in a simple manner, which has a high dimensional accuracy, so that an air gap in the pump can be made very narrow.
  • the hardening can take place in that a heat treatment takes place over a predefined period of time and at a predefined temperature at at least one predefined temperature level.
  • a preliminary solution annealing is useful. The solution annealing can preferably take place with the following parameters:
  • produce in a furnace a temperature in the range of 960 ° C, especially 960 ° C + 15 ° C, preferably exactly 960 ° C;
  • a hardness measurement is preferably carried out before and after the heat treatment.
  • the containment shell be kept free of grease, oils, lubricants or other contaminants before it is heat treated.
  • the adjustment of the hardness of the material can preferably take place with the following parameters:
  • the material has a greater hardness compared to titanium. Furthermore, the material provides the advantage of high temperature resistance, in particular up to 600 ° C.
  • the split pot according to the invention preferably obtains its desired geometry by spin forming the side wall as a special type of cold deformation.
  • the cup part can be provided with a relatively thin side wall, for example in the range of 1 mm, wherein the wall thickness of the side wall can also lie in a narrow tolerance range, in particular with deviations smaller 1/10.
  • the thin wall thickness, but also the narrow tolerance range offer the advantage of high drive efficiency in a magnetically coupled pump, because driver and rotor of the pump can be arranged very close together.
  • the manufacturing costs can be kept low because rework on the side wall of the split pot are not required.
  • the sidewall can be made with such high accuracy and tolerance that a face turning or grinding or any other molding process is no longer required.
  • the term "spinning rolls" preferably refers to a cold forming process in which the side wall of the split pot is brought to a defined thickness and receives a defined orientation, in particular a cylindrical geometry with a high dimensional stability, ie a small deviation from the cylindrical shape in the radial direction (accuracy better 1/10). In this case, the pressure-rolling can lead to an extension of the cylindrical side wall in the axial direction, without changing the diameter of the gap pot.
  • a desired geometry is to be understood as a geometry which the containment shell is to assume at the end of the production process, in particular in the region of the side wall and the bottom.
  • the desired geometry is preferably defined by the respective wall thickness of the side wall and the bottom, an outer diameter and tolerance ranges for the respective dimensions.
  • the mechanical properties of the hot- or cold-formed material of the split can of the invention at room temperature in solution annealed condition and after curing can be determined by the tensile strength (Rm) in N / mm 2 , the yield strength (Rp0.2) in N / mm 2 , the elongation at break (A5) and constriction (Z) in percent, the Brinell hardness in HB and the particle size in ⁇ define:
  • Grain size in ⁇ preferably ⁇ 127.
  • the modulus of elasticity may be, for example, in the range of 205 kN per mm 2 for room temperature and, for example, in the range of 199 kN per mm 2 for 100 ° C.
  • the material of the can of the invention can (by suitable heat treatment) have an elongation at break of> 14% and a notch impact of> 20 joules, preferably> 27 joules.
  • the can according to the invention meets the requirements of the Pressure Equipment Directive (Directive 97/23 / EC on pressure equipment). This makes the containment shell suitable for use in pumps that operate with an internal overpressure of more than 0.5 bar.
  • the alloy contains a substantial content of niobium and molybdenum and a low content of aluminum and titanium.
  • the percentages by weight are preferably in the following ranges, with the values given in parentheses referring to a variant of the alloy that can be used in corrosive media, especially media having H 2 S, C0 2 or Cl ,
  • the change in composition relates in particular to the alloying constituents carbon and niobium, but also to aluminum and titanium, with higher carbon and niobium fractions providing advantages in high-temperature applications and lower carbon and niobium levels for corrosive media applications are:
  • Chromium between 17 and 21 percent
  • Niobium between 4.75 and 5.5 percent (niobium and tantalum together between 4.87 and 5.2 percent);
  • Aluminum between 0.2 and 0.8 percent (0.4 and 0.6 percent); Titanium between 0.65 and 1, 15 percent (0.8 and 1, 1 5 percent);
  • the remainder of iron is preferably in a range from 1 1 to 24.6 weight percent (12 to 24.13 weight percent).
  • the alloy may have other trace elements, in particular up to 0.08 percent (0.045 percent) C, and / or up to 0.35 percent Mn, and / or up to 0.35 percent Si, and / or up to 0.3 Percent (0.23 percent) Cu, and / or up to 1.0 percent Co, and / or up to 0.05 percent Ta, and / or up to 0.006 percent B, and / or up to 0.015 percent (0, 01 percent) P, and / or up to 0.0015 percent (0.01 percent) S, and / or up to 5 ppm (10 ppm) Pb, and / or up to 3 ppm (5 ppm) S, and / or up to 0.3 ppm (0.5 ppm) Bi.
  • trace elements in particular up to 0.08 percent (0.045 percent) C, and / or up to 0.35 percent Mn, and / or up to 0.35 percent Si, and / or up to 0.3 Percent (0.23 percent) Cu, and / or up to 1.0 percent Co, and
  • the carbon content is exactly 0.08 wt% (0.045 wt%) or in a range of 75-100% of 0.08 wt% (0.045 wt%), ie between 0.06 and 0.08 weight percent (0.03375 and 0.045 weight percent).
  • the niobium content is exactly 5.5 weight percent (5.2 weight percent niobium and tantalum together) or in a range of 5.25 to 5.5 weight percent (5.1 to 5.2 weight percent niobium and tantalum together).
  • the carbon content is 0.00 wt% (0.00 wt%) or in the range 0-25% of 0.08 wt% (0.045 wt%), ie between 0.00 and 0.02 wt% (0 , 00 and 0.01 1 weight percent).
  • the niobium content is exactly 4.75 weight percent (4.87 weight percent) or in the range of 4.75 to 5.0 weight percent (4.87 to 4.98 weight percent niobium and tantalum together).
  • Such an alloy provides the advantage of high temperature resistance up to 700 ° C with good strength even in the high temperature range. Furthermore, these alloys have a high fatigue strength, a good creep strength up to 700 ° C and a good oxidation resistance up to 1000 ° C. They also provide good low temperature mechanical properties, good corrosion resistance at high and low temperatures, and good resistance to stress corrosion cracking and pitting. The corrosion resistance, especially against stress cracks, can be ensured in particular by the chromium content. The alloy can therefore also be used in media that are used in petroleum production and oil processing, in H 2 S-containing sour gas environments or in the field of marine technology.
  • the density of the alloy is for example in the range of 8 g / cm 3 , in particular it is 8.2 g / cm 3 .
  • the structure of the alloy is austenitic with several phases, in particular the phases carbides, laves ([Fe, Cr] 2Nb), ⁇ (Ni3Nb) orthorhombic, ⁇ "(Ni3Nb, Al, Ti) centered tetragonal, and / or ⁇ '( ⁇ 3 ⁇
  • the phase ⁇ "(Ni 3 Nb, Al, Ti) is preferably tetragonally centered in space, which can be adjusted by precipitation hardening.
  • the phase ⁇ "(Ni 3 Nb, Al, Ti) tetragonal body centered provides good resistance to aging deformation cracking
  • the alloy can be made by melting in a vacuum induction furnace followed by electroslag remelting. The remelting can also be done by a vacuum arc process.
  • the material has molybdenum, wherein the molybdenum content is between 2.8 and 3.3 percent by weight. In this way, a good corrosion resistance can be achieved, in particular independently of the temperature range in which the containment shell is used.
  • the material comprises niobium, wherein the niobium content is 4.75 to 5.5 percent by weight, or the material comprises niobium and tantalum, the proportion of niobium and tantalum together being 4.87 to 5.2 percent by weight.
  • a good temperature resistance can be set.
  • the niobium content thereby ensures the formation of at least one of the following phases of an austenitic microstructure, whereby the advantageous strength values of the material can be adjusted: phase ⁇ (Ni 3 Nb) orthorhombic, phase ⁇ "(Ni 3 Nb, Al, Ti) tetragonal body-centered, and / or phase ⁇ '(Ni3AI, Nb) face centered cubic.
  • the material comprises aluminum and titanium, wherein the aluminum content is between 0.2 and 0.8, preferably 0.4 and 0.6 weight percent and / or the titanium content between 0.65 and 1, 15, preferably 0 , 8 and 1, 15 weight percent.
  • aluminum and titanium can ensure the formation of at least one of the following phases of an austenitic structure: phase ⁇ "(Ni 3 Nb, Al, Ti) tetragonal body-centered, and / or phase ⁇ '(Ni 3 Al, Nb ) Cubic area-centered.
  • the material is a nickel-chromium-molybdenum alloy, in particular the nickel alloy Hastelloy C-22HS or one of the variants of this alloy, wherein the chromium content is 21 percent by weight and the nickel content is at least 56 percent by weight, especially 56.6 percent by weight, and Molybdenum content is 17 percent by weight.
  • the invention relates to the use of a suitable nickel-chromium-molybdenum alloy for a split pot, for example for arrangement in a gap between a driver and a Rotor of a magnetically coupled or for a canned motor pump.
  • a material is a nickel-chromium-molybdenum alloy, which has a high corrosion resistance and a high ductility with high rigidity and thus also dimensional stability in relation to a generated desired geometry.
  • the alloying ingredients are preferably in the following percentages by weight:
  • Nickel as the main constituent in a percentage depending on the percentages of the other constituents, but at least 56.6 percent;
  • Co Cobalt (Co): maximum 1 percent
  • Such a material can be cured in a simple manner after a preliminary forming. It is highly hardening by age hardening after cold working, especially without intermediate solution heat treatment.
  • the achievable hardness is a function of the degree of deformation.
  • This provides the advantage that, for example, a spin forming of the side wall of the split pot can be done to set a defined wall thickness, and that after the spin forming hardening of the side wall takes place.
  • Cold forming, in particular spin forming preferably takes place after solution heat treatment.
  • the material is also of high acid resistance, which makes its use for pumps in the chemical industry (chemical pumps) particularly interesting.
  • the material has tungsten, which distinguishes it from the nickel-chromium-iron alloy described above.
  • the strength of the material can be adjusted by a heat treatment in which Ni 2 (Mo, Cr) particles are formed, and the heat treatment is preferably carried out in a temperature range of 605 to 705 ° C.
  • the good corrosion resistance of the alloy can also already be achieved by annealing alone.
  • the heat treatment is performed to set a higher hardness under the following parameters:
  • the density is preferably in the range of 8.6 g / cm 3 in the solution-annealed condition or 8.64 g / cm 3 in the cured state.
  • the modulus of elasticity is for example in the range of 223 GPa (or kN / mm 2 ) for room temperature and for example in the range of 218 GPa (or kN / mm 2 ) for 100 ° C.
  • the mechanical properties of the formed material at room temperature in solution annealed condition can be determined by the tensile strength (Rm) in N / mm 2 , the yield strength (Rp0.2) in N / mm 2 , the elongation at break (A5) and constriction (Z) in percent , which define Brinell hardness in HB and the grain size in ⁇ , the first values being cold-formed Refer to components and the second values in brackets to thermoformed components:
  • the achievable hardnesses are in the following ranges, depending on the duration of a solution annealing before hardening, the hardness values were determined according to Rockwell, either by scale B (hardness values in the unit Rb) or C (hardness values in the unit Rc) ,
  • the following hardness values of the side wall can be set by aging-hardening:
  • the achievable hardness depends on the degree of deformation. The higher the degree of deformation, the higher the achievable hardness.
  • the material comprises iron, wherein the iron content is at most 2 percent by weight.
  • the side wall is a side wall brought into a desired geometry by a forming step, which has a degree of deformation of more than 10 percent, preferably between 20 and 50 percent, more preferably between 30 and 40 percent, in particular 35 percent.
  • a forming step which has a degree of deformation of more than 10 percent, preferably between 20 and 50 percent, more preferably between 30 and 40 percent, in particular 35 percent.
  • the invention also relates to a method for producing a split pot for arrangement in a gap between a driver and a rotor of a magnetically coupled pump, comprising the steps of:
  • a side wall which can be arranged in the gap in the assembled state of the can, at least partially made of a material having a nickel component, wherein the side wall is brought into a desired geometry by a forming step, in particular by spin forming.
  • the material selected is a nickel-chromium alloy in a solution-annealed state, which has at least 50 percent nickel by weight and 17 to 21 percent chromium by weight, hardening being effected by heat treatment after forming.
  • the curing can be done either directly or after an intermediate solution annealing.
  • the curing is preferably carried out by a heat treatment in the temperature range of 605 to 728 ° C, in particular over a period of 18 to 48 hours, wherein the heat treatment is in any case two-stage with respect to the selected temperature and a respective stage is maintained for at least 8 hours.
  • the forming is a cold forming, wherein after the cold forming a paging hardening takes place, in particular in a temperature range of 605 to 728 ° C and without intermediate solution annealing after the cold forming.
  • the cold forming is preferably a spin forming.
  • Paging hardening can be done either directly after cold forming or after an intermediate step for solution annealing.
  • aging is preferably carried out without solution annealing intermediate step.
  • increasing hardness can be achieved with increasing hardening times, wherein the hardening times are e.g. be selected in the range of 1, 4, 10, 24 or 32 hours, preferably 32 hours at 605 ° C, since the longer duration, the hardness Rc to Rockwell scale C can be increased by over 10 percent.
  • FIG. 1 is a diagram of typical
  • FIG. 2 is a diagram of typical
  • FIG. 3 in a schematic representation of a
  • FIG. 1 shows typical short-term properties of a nickel-chromium-iron alloy in a solution-annealed and cured state as a function of temperature in ° C.
  • FIG. It can be seen from the diagram that quite constant mechanical properties are present in a temperature range from room temperature to 600 ° C., which applies in particular to the breaking elongation (A5) and the constriction (Z), which provides advantages with regard to good dimensional accuracy of the containment shell.
  • FIG. 2 shows typical creep ruptures of the nickel-chromium-iron alloy in a solution-annealed and cured state as a function of time in hours, with time plotted on a logarithmic scale, and with creep ruptures indicated on the y-axis in N / mm 2 are. It can be seen from the diagram that even over a period of 10 5 hours corresponding to just over 1 1 years at temperatures below 500 ° C., a loss of mechanical strengths is hardly noticeable. 3, a split pot 1 is shown, which is formed symmetrically with respect to a symmetry axis S and a bottom 2, a side wall 3 and a flange 4 has.
  • the containment shell 1 has a nickel-chromium alloy, so it is partially or completely made of a material which can be formed from nickel and chromium and other alloying constituents.
  • a partial embodiment of the split pot in the material may, for example, relate only to the side wall 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Heat Treatment Of Articles (AREA)
  • Pressure Vessels And Lids Thereof (AREA)

Abstract

Magnetically coupled pumps use cans which have a side wall arranged in a gap between a driver and a rotor of the pump. With a view to good efficiency of the pump, the gap should be as narrow as possible, which can only be achieved with a side wall of a thin wall thickness. In this case, the can must be of a sufficiently great strength, in particular to withstand the differences in pressure in the pump. At the same time, it must be possible for the can to be shaped into a desired geometry in a simple way and to have a high degree of dimensional stability, even under high pump pressures. It is proposed to make a can (1) with a side wall (3) that consists at least partially of a material with a nickel component, wherein the material is a nickel-chromium alloy comprising at least 50 percent by weight of nickel and 17 to 21 percent by weight of chromium, and to harden the side wall (3) by a heat treatment. This allows a can (1) that is very resistant to corrosion and/or high temperatures to be provided in a simple way.

Description

Spalttopf für maanetaekuppelte Pumpen sowie Herstellungsverfahren Die Erfindung betrifft einen Spalttopf zur Anordnung in einem Spalt zwischen einem Treiber und einem Läufer einer magnetgekuppelten Pumpe, sowie ein Verfahren zum Herstellen des Spalttopfes.  The invention relates to a containment shell for arrangement in a gap between a driver and a rotor of a magnetically coupled pump, and to a method for producing the containment shell.
Bei der Förderung von Fluiden, insbesondere im Chemiebereich, müssen meist hohe Anforderungen an die Dichtigkeit von Förderleitungen und Pumpen gestellt werden. Gleichzeitig muss ein guter Wirkungsgrad der Pumpen sichergestellt sein. Pumpen mit ausschließlich statischen Dichtungen, also ohne Wellendichtungen, können besonders fluiddicht ausgeführt sein. Magnetgekuppelte Pumpen können statisch abgedichtet werden, indem ein feststehender Spalttopf zwischen einem antriebsseitigen Treiber und einem magnetisch angetriebenen, abtriebsseitigen Läufer angeordnet ist und den Läufer umgibt. Der Spalttopf ist im Magnetfeld zwischen Treiber und Läufer angeordnet, und die magnetischen Kräfte werden durch den Spalttopf hindurch übertragen. An den Läufer kann ein Pumpenlaufrad gekoppelt sein. Treiber und Läufer sind mit Permanentmagneten versehen und möglichst nahe aneinander angeordnet, um einen effizienten Antrieb bereitstellen zu können. Die Wandstärke der Seitenwandung des Spalttopfs gibt dabei vor, wie groß der Abstand bzw. Spalt zwischen Treiber und Läufer mindestens sein muss. In the promotion of fluids, especially in the chemical sector, usually high demands on the tightness of delivery lines and pumps must be made. At the same time a good efficiency of the pumps must be ensured. Pumps with only static seals, ie without shaft seals, can be made particularly fluid-tight. Magnetically coupled pumps can be statically sealed by placing a stationary containment shell between a drive side driver and a magnetically driven output side rotor and surrounding the rotor. The containment shell is arranged in the magnetic field between the driver and the rotor, and the magnetic forces are transmitted through the containment shell. To the rotor, a pump impeller can be coupled. Drivers and rotors are provided with permanent magnets and arranged as close to each other as possible in order to provide an efficient drive. The wall thickness of the side wall of the containment shell specifies how large the gap or gap between driver and runner must be at least.
Häufig beträgt der Abstand und damit die Breite des zwischen Treiber und Läufer gebildeten Luftspalts z.B. nur etwa 4 mm, und der Spalttopf hat dann eine Wandstärke von z.B. 2 mm. Ein enger Spalt bzw. eine sehr knappe Auslegung der Wandstärke des Spalttopfes im Hinblick auf eine minimale Breite des Spalts liefert Vorteile beim Wirkungsgrad, insbesondere hinsichtlich einer Minimierung von Antriebsverlusten, reduziert aber gleichzeitig einen Sicherheitsfaktor und möglicherweise auch die Lebensdauer des Spalttopfes, je nachdem welche Fluide zu fördern sind. Um dennoch einen möglichst engen Spalt realisieren zu können, ist es von Interesse, den Spalttopf aus einem qualitativ besonders hochwertigen Werkstoff herzustellen, welcher neben einer hohen Festigkeit, insbesondere einer hohen Härte, auch eine gute Korrosionsbeständigkeit aufweist. Die Korrosionsbeständigkeit ist dabei gerade im Hinblick auf eine möglichst geringe Wandstärke der Seitenwandung von Bedeutung. Gleichzeitig soll der Spalttopf aber auch nachbearbeitet, insbesondere kaltumgeformt, werden können, um durch Umformverfahren die Geometrie der Seitenwandung einstellen zu können. Nickelbasislegierungen haben sich bisher als taugliches Material für Spalttöpfe erwiesen. Often, the distance and thus the width of the air gap formed between the driver and rotor, for example, only about 4 mm, and the containment shell then has a wall thickness of eg 2 mm. A narrow gap or a very brief interpretation of the wall thickness of the split pot with respect to a minimum width the gap provides advantages in efficiency, in particular with regard to minimizing drive losses, but at the same time reduces a safety factor and possibly also the service life of the can, depending on which fluids are to be conveyed. In order nevertheless to be able to realize the narrowest possible gap, it is of interest to produce the containment shell from a material of particularly high quality which, in addition to high strength, in particular high hardness, also has good corrosion resistance. The corrosion resistance is just in terms of the lowest possible wall thickness of the side wall of importance. At the same time, the containment shell is also to be reworked, in particular cold-formed, in order to be able to adjust the geometry of the side wall by forming processes. Nickel-based alloys have proven to be suitable material for containment pots.
Aufgabe ist, einen Spalttopf bereitzustellen, bei welchem neben guten strukturellen Werkstoffeigenschaften auch eine hohe Korrosionsbeständigkeit sichergestellt werden kann. Auch eine Aufgabe ist, den Spalttopf so auszuführen, dass er auf einfache Weise in eine Sollgeometrie gebracht werden kann. Nicht zuletzt ist es Aufgabe, einen Spalttopf so auszuführen, dass ihm auf einfache Weise eine hohe Werkstoffhärte verliehen werden kann. Zumindest eine dieser Aufgaben wird durch einen Spalttopf gemäß Anspruch 1 sowie durch ein Verfahren gemäß Anspruch 9 gelöst. Vorteilhafte Weiterbildungen der Erfindung sind Gegenstand der Unteransprüche. The object is to provide a containment shell in which, in addition to good structural material properties, a high corrosion resistance can be ensured. It is also an object to design the containment shell so that it can be easily brought into a desired geometry. Last but not least, it is the task to design a containment shell in such a way that it can easily be given a high material hardness. At least one of these objects is achieved by a containment shell according to claim 1 and by a method according to claim 9. Advantageous developments of the invention are the subject of the dependent claims.
Ein erfindungsgemäßer Spalttopf, der z.B. zur Anordnung in einem Spalt zwischen einem Treiber und einem Läufer einer magnetgekuppelten Pumpe oder auch in einer Spaltrohrmotorpumpe verwendet werden kann, weist auf: An inventive containment shell, e.g. can be used for arrangement in a gap between a driver and a rotor of a magnetically coupled pump or in a canned motor pump, has:
ein Flanschteil, z.B. zum Verbinden des Spalttopfes mit der Pumpe oder dem Motor;  a flange part, e.g. for connecting the containment shell to the pump or the motor;
einen Boden;  a floor;
eine in montiertem Zustand des Spalttopfes in dem Spalt anordenbare Seitenwandung, die zumindest teilweise aus einem Werkstoff mit einem Nickelbestandteil besteht. Erfindungsgemäß wird vorgeschlagen, dass der Werkstoff eine Nickel-Chrom- Legierung ist, welche mindestens 50 Gewichtsprozent Nickel und 17 bis 21 Gewichtsprozent Chrom aufweist. Hierdurch kann ein besonders beständiger Spalttopf bereitgestellt werden. Bevorzugt besteht nicht nur ein Teil der Seitenwandung aus dem Werkstoff, sondern die Seitenwandung einheitlich aus dem Werkstoff, insbesondere dann wenn die Seitenwandung im Hinblick auf eine minimale Materialstärke ausgelegt ist. Wahlweise kann der gesamte Spalttopf aus dem Werkstoff bestehen, obgleich insbesondere für das Flanschteil auch abweichende, insbesondere kostengünstigere Werkstoffe gewählt werden können. a arranged in the assembled state of the split pot in the gap side wall, which consists at least partially of a material with a nickel component. According to the invention, it is proposed that the material is a nickel-chromium alloy which has at least 50 percent by weight nickel and 17 to 21 percent by weight chromium. In this way, a particularly resistant containment can be provided. Preferably, not only a part of the side wall of the material, but the side wall is made uniformly from the material, in particular when the side wall is designed with a view to a minimum material thickness. Optionally, the entire containment shell made of the material, although in particular for the flange and deviating, especially less expensive materials can be selected.
Bevorzugt weist der Werkstoff Kobalt (Co) auf, und der Kobalt-Anteil ist maximal 1 Gewichtsprozent. Weiter bevorzugt weist der Werkstoff Bor (B) auf, und der Bor-Anteil ist maximal 0,006 Gewichtsprozent. Preferably, the material has cobalt (Co), and the cobalt content is at most 1 percent by weight. More preferably, the material boron (B), and the boron content is at most 0.006 weight percent.
Als ein Boden des Spalttopfes ist dabei bevorzugt ein Abschnitt zu verstehen, welcher den Spalttopf an einem Ende topfförmig abschließt und dabei in die Seitenwandung übergeht. As a bottom of the split pot is preferably a section to understand, which closes the gap pot pot-shaped at one end and thereby merges into the side wall.
Als ein Flanschteil des Spalttopfes ist dabei bevorzugt ein Abschnitt zu verstehen, welcher dazu ausgebildet ist, den Spalttopf in einer definierten Lage und Ausrichtung in der Pumpe anzuordnen und zu fixieren. Gemäß einem Ausführungsbeispiel ist der Werkstoff eine Nickel-Chrom- Eisenlegierung, insbesondere eine Nickellegierung mit der Bezeichnung Alloy 718 (Nicofer 5219 Nb), wobei der Nickelanteil maximal 55 Gewichtsprozent ist und der Eisenanteil zwischen 10 und 25 Gewichtsprozent beträgt. Mit anderen Worten betrifft die Erfindung die Verwendung einer geeigneten Nickel-Chrom- Eisenlegierung für einen Spalttopf, der zur Anordnung in einem Spalt zwischen einem Treiber und einem Läufer einer magnetgekuppelten Pumpe ausgebildet ist. Ein solcher Werkstoff kann eine Nickel-Chrom-Eisenlegierung sein, die eine hohe Festigkeit aufweist und daher besonders für Spalttöpfe zweckdienlich ist, die in bei hohen Drücken arbeitenden Pumpen eingesetzt werden. Gleichzeitig ist er in bestimmten Zuständen gut umformbar, insbesondere in einem lösungsgeglühten Zustand, und kann daher auf einfache Weise nachbearbeitet werden, beispielsweise durch Drückwalzen. Vorteilhaft ist ferner, dass eine Wasserstoffversprödung bei diesem Werkstoff nicht auftritt, so dass mit einer Pumpe mit einem derartigen Spalttopf auch wasserstoffhaltige Medien gefördert werden können. A flange part of the containment shell is preferably a section which is designed to arrange and to fix the containment pot in a defined position and orientation in the pump. According to one embodiment, the material is a nickel-chromium-iron alloy, in particular a nickel alloy called Alloy 718 (Nicofer 5219 Nb), wherein the nickel content is at most 55 weight percent and the iron content is between 10 and 25 weight percent. In other words, the invention relates to the use of a suitable nickel-chromium-iron alloy for a split pot, which is designed for arrangement in a gap between a driver and a rotor of a magnetically coupled pump. Such a material may be a nickel-chromium-iron alloy, which has high strength and is therefore particularly useful for splitters used in pumps operating at high pressures. At the same time it is well deformable in certain conditions, especially in one solution annealed condition, and therefore can be easily reworked, for example by spin forming. It is also advantageous that hydrogen embrittlement does not occur in this material, so that hydrogen-containing media can also be delivered by means of a pump with such a containment shell.
Ein solcher Werkstoff liefert ferner den Vorteil, dass er härtbar ist, ohne dass Verformungen auftreten. Hierdurch kann auf einfache Weise ein hochfester Spalttopf bereitgestellt werden, welcher eine hohe Maßgenauigkeit aufweist, so dass ein Luftspalt in der Pumpe besonders eng ausgeführt werden kann. Das Härten kann dadurch erfolgen, dass eine Wärmebehandlung über einen vordefinierten Zeitraum und bei einer vordefinierten Temperatur auf zumindest einem vordefinierten Temperaturniveau erfolgt. Zur Vermeidung von Spannungsrissen ist ein vorausgehendes Lösungsglühen zweckdienlich. Das Lösungsglühen kann bevorzugt bei den folgenden Parametern erfolgen: Such a material also provides the advantage that it is curable without deformations occur. In this way, a high-strength containment can be provided in a simple manner, which has a high dimensional accuracy, so that an air gap in the pump can be made very narrow. The hardening can take place in that a heat treatment takes place over a predefined period of time and at a predefined temperature at at least one predefined temperature level. To avoid stress cracks, a preliminary solution annealing is useful. The solution annealing can preferably take place with the following parameters:
■ in einem Ofen eine Temperatur im Bereich von 960 °C, insbesondere 960 °C + 15 °C, bevorzugt genau 960 °C erzeugen;  ■ produce in a furnace a temperature in the range of 960 ° C, especially 960 ° C + 15 ° C, preferably exactly 960 ° C;
den Spalttopf in dem Ofen mindestens 60 Minuten lösungsglühen, wobei in Abhängigkeit von der Wandstärke der Spalttopf die Haltezeit mindestens 3 Minuten pro Millimeter Wandstärke beträgt;  solution-anneal the containment pot in the oven for at least 60 minutes, the holding time being at least 3 minutes per millimeter wall thickness, depending on the wall thickness of the containment shell;
■ nach dem Lösungsglühen Abschrecken, insbesondere im ■ quenching after solution annealing, especially in
Wasserbad. Water bath.
Zwar sind mit dem Werkstoff auch eine Reihe anderer Lösungsglühvorgange möglich, insbesondere in einem Temperaturbereich von 940 bis 1080 °C, und das Abschrecken kann auch in Luft erfolgen, jedoch hat sich gezeigt, dass insbesondere für die Seitenwandung der zuvor beschriebene Lösungsglühvorgang zu bevorzugen ist. Although a number of other Lösungsglühvorgange possible with the material, especially in a temperature range of 940 to 1080 ° C, and the quenching can also be done in air, but it has been shown that especially for the side wall of the solution solution described above is preferable.
Eine Härtemessung erfolgt dabei bevorzugt vor und nach der Wärmebehandlung. A hardness measurement is preferably carried out before and after the heat treatment.
Es ist zu empfehlen, den Spalttopf frei von Fetten, Ölen Schmierstoffen oder anderen Verunreinigungen zu halten, bevor er wärmebehandelt wird. Das Einstellen der Härte des Werkstoffs kann bevorzugt bei den folgenden Parametern erfolgen: It is recommended that the containment shell be kept free of grease, oils, lubricants or other contaminants before it is heat treated. The adjustment of the hardness of the material can preferably take place with the following parameters:
in einem Ofen eine Temperatur im Bereich von 720 °C, insbesondere 720 °C + 8 °C, bevorzugt genau 720 °C erzeugen, wobei der Schritt ein Kühlen des Ofens von der Temperatur fürs Lösungsglühen auf die Härtetemperatur umfassen kann;  producing in an oven a temperature in the range of 720 ° C, especially 720 ° C + 8 ° C, preferably exactly 720 ° C, the step comprising cooling the oven from the solutionizing temperature to the hardening temperature;
den Spalttopf in dem Ofen für eine erste Haltezeit von etwa 8 Stunden, bevorzugt genau 8 Stunden bei der Temperatur wärmebehandeln;  heat the split pot in the oven for a first hold time of about 8 hours, preferably exactly 8 hours at the temperature;
die Temperatur in dem Ofen auf etwa 620 °C, insbesondere 620 °C + 8 °C, bevorzugt genau 620 °C absenken, insbesondere innerhalb einer Zeit von 2 Stunden und in geschlossenem Zustand des Ofens, wobei der Spalttopf in dem Ofen verbleibt;  lower the temperature in the oven to about 620 ° C, in particular 620 ° C + 8 ° C, preferably exactly 620 ° C, in particular within a period of 2 hours and in the closed state of the furnace, wherein the containment shell remains in the furnace;
den Spalttopf in dem Ofen für eine zweite Haltezeit von etwa 8 Stunden, bevorzugt genau 8 Stunden bei der niedrigeren Temperatur wärmebehandeln, wobei die zweite Haltezeit wahlweise ausgedehnt werden kann auf bis zu 12 Stunden, insbesondere aus prozesstechnischen Gründen; und  heat the split pot in the oven for a second hold time of about 8 hours, preferably exactly 8 hours at the lower temperature, the second hold time optionally extending to up to 12 hours, especially for process engineering reasons; and
Abkühlen an ruhender Luft.  Cooling in still air.
Dabei kann es von Bedeutung sein, den Ofen für das Lösungsglühen bereits auf die Solltemperatur zu bringen, bevor das Werkstück in den Ofen verbracht wird. It may be important to bring the solution heat oven already to the target temperature before the workpiece is placed in the oven.
Gegenüber bisher häufig bei hohen Drücken eingesetzten Titanlegierungen, die der Wasserstoffversprödung unterliegen, ergibt sich somit ein breiteres Einsatzgebiet. Abgesehen davon weist der Werkstoff eine gegenüber Titan größere Härte auf. Ferner liefert der Werkstoff den Vorteil einer hohen Temperaturbeständigkeit, insbesondere bis 600 °C. Compared to previously often used at high pressures titanium alloys that are subject to hydrogen embrittlement, thus resulting in a broader field of application. Apart from that, the material has a greater hardness compared to titanium. Furthermore, the material provides the advantage of high temperature resistance, in particular up to 600 ° C.
Eine solche Legierung liefert eine hohe Festigkeit bei guter Restdehnung, also auch eine ausreichende Duktilität, um eine Nachbearbeitung zu ermöglichen. Dabei kann eine sehr gute Verformbarkeit sichergestellt werden. Der erfindungsgemäße Spalttopf erhält bevorzugt seine Sollgeometrie durch Drückwalzen der Seitenwandung als spezielle Art der Kaltverformung. Durch das Drückwalzen kann das Topfteil mit einer verhältnismäßig dünnen Seitenwandung bereitgestellt werden, z.B. im Bereich von 1 mm, wobei die Wandstärke der Seitenwandung auch in einem engen Toleranzbereich liegen kann, insbesondere mit Abweichungen kleiner 1 /10. Die dünne Wandstärke, aber auch der enge Toleranzbereich, bieten den Vorteil einer hohen Antriebseffizienz bei einer magnetgekuppelten Pumpe, denn Treiber und Läufer der Pumpe können besonders nahe beieinander angeordnet werden. Gleichzeitig können die Herstellungskosten niedrig gehalten werden, da Nacharbeiten an der Seitenwandung des Spalttopfes nicht erforderlich sind. Die Seitenwandung kann mit einer derart hohen Genauigkeit und einem derart engen Toleranzbereich hergestellt werden, dass ein Plandrehen oder Schleifen oder irgendein weiteres Formgebungsverfahren nicht mehr erforderlich ist. Unter Drückwalzen ist dabei bevorzugt ein Kaltverformungsverfahren zu verstehen, bei welchem die Seitenwandung des Spalttopfes auf eine definierte Stärke gebracht wird und eine definierte Ausrichtung erhält, insbesondere eine zylindrische Geometrie mit einer hohen Maßhaltigkeit, d.h. einer geringen Abweichung von der zylindrischen Form in radialer Richtung (Genauigkeit besser 1/10). Dabei kann das Drückwalzen zu einer Verlängerung der zylindrischen Seitenwandung in axialer Richtung führen, ohne dass sich der Durchmesser des Spalttopfes ändert. Als eine Sollgeometrie ist dabei eine Geometrie zu verstehen, welche der Spalttopf am Ende des Herstellungsverfahrens annehmen soll, insbesondere im Bereich der Seitenwandung und des Bodens. Die Sollgeometrie ist bevorzugt durch die jeweilige Wandstärke der Seitenwandung und des Bodens, einen Außendurchmesser und Toleranzbereiche für die jeweiligen Maße definiert. Ein besonderer Vorteil bei der beschriebenen Art der Herstellung ist, dass der Spalttopf in den drucktragenden Bereichen vollständig ohne Schweißnähte auskommt oder, anders ausgedrückt, keine drucktragenden Schweißnähte aufweist. Such an alloy provides high strength with good residual strain, so also sufficient ductility to allow post-processing. In this case, a very good deformability can be ensured. The split pot according to the invention preferably obtains its desired geometry by spin forming the side wall as a special type of cold deformation. By spin forming, the cup part can be provided with a relatively thin side wall, for example in the range of 1 mm, wherein the wall thickness of the side wall can also lie in a narrow tolerance range, in particular with deviations smaller 1/10. The thin wall thickness, but also the narrow tolerance range, offer the advantage of high drive efficiency in a magnetically coupled pump, because driver and rotor of the pump can be arranged very close together. At the same time, the manufacturing costs can be kept low because rework on the side wall of the split pot are not required. The sidewall can be made with such high accuracy and tolerance that a face turning or grinding or any other molding process is no longer required. In this context, the term "spinning rolls" preferably refers to a cold forming process in which the side wall of the split pot is brought to a defined thickness and receives a defined orientation, in particular a cylindrical geometry with a high dimensional stability, ie a small deviation from the cylindrical shape in the radial direction (accuracy better 1/10). In this case, the pressure-rolling can lead to an extension of the cylindrical side wall in the axial direction, without changing the diameter of the gap pot. In this case, a desired geometry is to be understood as a geometry which the containment shell is to assume at the end of the production process, in particular in the region of the side wall and the bottom. The desired geometry is preferably defined by the respective wall thickness of the side wall and the bottom, an outer diameter and tolerance ranges for the respective dimensions. A particular advantage of the described type of production is that the containment shell in the pressure-bearing areas completely eliminates welds or, in other words, has no pressure-bearing welds.
Die mechanischen Eigenschaften des warm- oder kaltgeformten Werkstoffs des erfindungsgemäßen Spalttopfes bei Raumtemperatur in lösungsgeglühtem Zustand und nach dem Aushärten lassen sich über die Zugfestigkeit (Rm) in N/mm2, die Dehngrenze (Rp0.2) in N/mm2, die Bruchdehnung (A5) und Einschnürung (Z) in Prozent, die Brinellhärte in HB und die Korngröße in μιη definieren: The mechanical properties of the hot- or cold-formed material of the split can of the invention at room temperature in solution annealed condition and after curing can be determined by the tensile strength (Rm) in N / mm 2 , the yield strength (Rp0.2) in N / mm 2 , the elongation at break (A5) and constriction (Z) in percent, the Brinell hardness in HB and the particle size in μιη define:
Zugfestigkeit in N/mm2: 1240 bis 1275; ■ Dehngrenze in N/mm2: etwa 1035, bevorzugt genau 1035; Tensile strength in N / mm 2 : 1240 to 1275; ■ Yield strength in N / mm 2 : about 1035, preferably exactly 1035;
Bruchdehnung in Prozent: 6, 10, 12 oder > 14; Elongation at break in percent: 6, 10, 12 or> 14;
Brinellhärte in HB: > 331 , insbesondere > 341 ; Brinell hardness in HB:> 331, in particular> 341;
Korngröße in μιη: bevorzugt < 127. Grain size in μιη: preferably <127.
Das Elastizitätsmodul kann dabei für Raumtemperatur z.B. im Bereich von 205 kN pro mm2 und für 100 °C z.B. im Bereich von 199 kN pro mm2 liegen. The modulus of elasticity may be, for example, in the range of 205 kN per mm 2 for room temperature and, for example, in the range of 199 kN per mm 2 for 100 ° C.
Besonders vorteilhaft kann der Werkstoff des erfindungsgemäßen Spalttopfes (durch geeignete Wärmebehandlung) eine Bruchdehnung von > 14% und eine Kerbschlagarbeit von > 20 Joule, vorzugsweise > 27 Joule aufweisen. Damit erfüllt der erfindungsgemäße Spalttopf die Vorgaben der Druckgeräterichtlinie (Richtlinie 97/23/EG über Druckgeräte). Dies macht den Spalttopf geeignet für den Einsatz in Pumpen, die mit einem inneren Überdruck von mehr als 0,5 bar arbeiten. Particularly advantageously, the material of the can of the invention can (by suitable heat treatment) have an elongation at break of> 14% and a notch impact of> 20 joules, preferably> 27 joules. Thus, the can according to the invention meets the requirements of the Pressure Equipment Directive (Directive 97/23 / EC on pressure equipment). This makes the containment shell suitable for use in pumps that operate with an internal overpressure of more than 0.5 bar.
Bevorzugt enthält die Legierung einen wesentlichen Gehalt an Niob und Molybdän sowie einen niedrigen Gehalt an Aluminium und Titan. Die prozentualen Anteile in Bezug auf das Gewicht liegen bevorzugt in den folgenden Bereichen, wobei die in Klammern angegebenen Werte sich auf eine Variante der Legierung beziehen, die in korrosiven Medien eingesetzt werden kann, insbesondere Medien, welche H2S, C02 oder Cl aufweisen. Die Änderung der Zusammensetzung betrifft dabei insbesondere die Legierungsbestandteile Kohlenstoff und Niob, aber auch Aluminium und Titan, wobei höhere Kohlenstoff- und Niobanteile Vorteile bei Hochtemperaturanwendungen liefern und niedrigere Kohlenstoff- und Niobanteile bei Anwendungen in korrosiven Medien zu bevorzugen sind: Preferably, the alloy contains a substantial content of niobium and molybdenum and a low content of aluminum and titanium. The percentages by weight are preferably in the following ranges, with the values given in parentheses referring to a variant of the alloy that can be used in corrosive media, especially media having H 2 S, C0 2 or Cl , The change in composition relates in particular to the alloying constituents carbon and niobium, but also to aluminum and titanium, with higher carbon and niobium fractions providing advantages in high-temperature applications and lower carbon and niobium levels for corrosive media applications are:
Nickel zwischen 50 und 55 Prozent;  Nickel between 50 and 55 percent;
Chrom zwischen 17 und 21 Prozent;  Chromium between 17 and 21 percent;
■ Molybdän zwischen 2,8 und 3,3 Prozent;  ■ Molybdenum between 2.8 and 3.3 percent;
Niob zwischen 4,75 und 5,5 Prozent (Niob und Tantal zusammen zwischen 4,87 und 5,2 Prozent);  Niobium between 4.75 and 5.5 percent (niobium and tantalum together between 4.87 and 5.2 percent);
Aluminium zwischen 0,2 und 0,8 Prozent (0,4 und 0,6 Prozent); Titan zwischen 0,65 und 1 ,15 Prozent (0,8 und 1 ,1 5 Prozent);  Aluminum between 0.2 and 0.8 percent (0.4 and 0.6 percent); Titanium between 0.65 and 1, 15 percent (0.8 and 1, 1 5 percent);
■ einen Rest Eisen.  ■ a rest of iron.
Der Rest Eisen liegt dabei bevorzugt in einem Bereich von 1 1 bis 24,6 Gewichtsprozent (12 bis 24,13 Gewichtsprozent). The remainder of iron is preferably in a range from 1 1 to 24.6 weight percent (12 to 24.13 weight percent).
Die Legierung kann weitere Spurenelemente aufweisen, insbesondere bis zu 0,08 Prozent (0,045 Prozent) C, und/oder bis zu 0,35 Prozent Mn, und/oder bis zu 0,35 Prozent Si, und/oder bis zu 0,3 Prozent (0,23 Prozent) Cu, und/oder bis zu 1 ,0 Prozent Co, und/oder bis zu 0,05 Prozent Ta, und/oder bis zu 0,006 Prozent B, und/oder bis zu 0,015 Prozent (0,01 Prozent) P, und/oder bis zu 0,0015 Prozent (0,01 Prozent) S, und/oder bis zu 5 ppm (10 ppm) Pb, und/oder bis zu 3 ppm (5 ppm) Se, und/oder bis zu 0,3 ppm (0,5 ppm) Bi. Bevorzugt liegt der Kohlenstoff-Anteil genau bei 0,08 Gewichtsprozent (0,045 Gewichtsprozent) oder in einem Bereich von 75-100 % von 0,08 Gewichtsprozent (0,045 Gewichtsprozent), also zwischen 0,06 und 0,08 Gewichtsprozent (0,03375 und 0,045 Gewichtsprozent). Hierdurch kann eine gute Temperaturbeständigkeit erzielt werden. Wahlweise liegt alternativ oder zusätzlich der Niob-Anteil genau bei 5,5 Gewichtsprozent (5,2 Gewichtsprozent Niob und Tantal zusammen) oder in einem Bereich von 5,25 bis 5,5 Gewichtsprozent (5,1 bis 5,2 Gewichtsprozent Niob und Tantal zusammen). Gemäß einer Variante liegt der Kohlenstoff-Anteil bei 0,00 Gewichtsprozent (0,00 Gewichtsprozent) oder in einem Bereich von 0-25 % von 0,08 Gewichtsprozent (0,045 Gewichtsprozent), also zwischen 0,00 und 0,02 Gewichtsprozent (0,00 und 0,01 1 Gewichtsprozent). Hierdurch kann eine gute Korrosionsbeständigkeit erzielt werden. Wahlweise liegt alternativ oder zusätzlich der Niob-Anteil genau bei 4,75 Gewichtsprozent (4,87 Gewichtsprozent) oder in einem Bereich von 4,75 bis 5,0 Gewichtsprozent (4,87 bis 4,98 Gewichtsprozent Niob und Tantal zusammen). The alloy may have other trace elements, in particular up to 0.08 percent (0.045 percent) C, and / or up to 0.35 percent Mn, and / or up to 0.35 percent Si, and / or up to 0.3 Percent (0.23 percent) Cu, and / or up to 1.0 percent Co, and / or up to 0.05 percent Ta, and / or up to 0.006 percent B, and / or up to 0.015 percent (0, 01 percent) P, and / or up to 0.0015 percent (0.01 percent) S, and / or up to 5 ppm (10 ppm) Pb, and / or up to 3 ppm (5 ppm) S, and / or up to 0.3 ppm (0.5 ppm) Bi. Preferably, the carbon content is exactly 0.08 wt% (0.045 wt%) or in a range of 75-100% of 0.08 wt% (0.045 wt%), ie between 0.06 and 0.08 weight percent (0.03375 and 0.045 weight percent). As a result, a good temperature resistance can be achieved. Alternatively, alternatively or additionally, the niobium content is exactly 5.5 weight percent (5.2 weight percent niobium and tantalum together) or in a range of 5.25 to 5.5 weight percent (5.1 to 5.2 weight percent niobium and tantalum together). According to one variant, the carbon content is 0.00 wt% (0.00 wt%) or in the range 0-25% of 0.08 wt% (0.045 wt%), ie between 0.00 and 0.02 wt% (0 , 00 and 0.01 1 weight percent). As a result, a good corrosion resistance can be achieved. Alternatively, alternatively or additionally, the niobium content is exactly 4.75 weight percent (4.87 weight percent) or in the range of 4.75 to 5.0 weight percent (4.87 to 4.98 weight percent niobium and tantalum together).
Eine solche Legierung liefert den Vorteil einer hohen Temperaturbeständigkeit bis 700 °C bei guter Festigkeit auch im hohen Temperaturbereich. Ferner weisen diese Legierungen eine hohe Ermüdungsfestigkeit, eine gute Zeitstandfestigkeit bis 700 °C und eine gute Oxidationsbeständigkeit bis 1000 °C auf. Auch liefern sie gute mechanische Eigenschaften bei tiefen Temperaturen und eine gute Korrosionsbeständigkeit bei hohen und tiefen Temperaturen sowie eine gute Beständigkeit gegenüber Spannungsrisskorrosion und Lochfraß auf. Die Korrosionsbeständigkeit, speziell gegenüber Spannungsrissen, kann insbesondere durch den Chrom-Anteil sichergestellt werden. Die Legierung kann daher auch in Medien eingesetzt werden, die in der Erdölförderung und Erdölverarbeitung, in H2S-haltigen Sauergasumgebungen oder im Bereich der Meerestechnik vorliegen. Such an alloy provides the advantage of high temperature resistance up to 700 ° C with good strength even in the high temperature range. Furthermore, these alloys have a high fatigue strength, a good creep strength up to 700 ° C and a good oxidation resistance up to 1000 ° C. They also provide good low temperature mechanical properties, good corrosion resistance at high and low temperatures, and good resistance to stress corrosion cracking and pitting. The corrosion resistance, especially against stress cracks, can be ensured in particular by the chromium content. The alloy can therefore also be used in media that are used in petroleum production and oil processing, in H 2 S-containing sour gas environments or in the field of marine technology.
Dabei liegt die Dichte der Legierung z.B. im Bereich von 8 g/cm3, insbesondere beträgt sie 8,2 g/cm3. The density of the alloy is for example in the range of 8 g / cm 3 , in particular it is 8.2 g / cm 3 .
Das Gefüge der Legierung ist austenitisch mit mehreren Phasen, insbesondere den Phasen Karbiden, Laves ([Fe, Cr]2Nb), δ (Ni3Nb) orthorhombisch, γ" (Ni3Nb, AI, Ti) tetragonal raumzentriert, und/oder γ' (ΝΪ3ΑΙ, Nb) kubisch- flächenzentriert. Bevorzugt liegt jedenfalls die Phase γ" (Ni3Nb, AI, Ti) tetragonal raumzentriert vor, die durch Ausscheidungshärten eingestellt werden kann. Die Phase γ" (Ni3Nb, AI, Ti) tetragonal raumzentriert liefert eine gute Beständigkeit gegenüber Alterungsdeformationsrissbildung. Die Herstellung der Legierung kann durch Erschmelzen im Vakuuminduktionsofen und darauffolgendes Elektroschlacke-Umschmelzen erfolgen. Das Umschmelzen kann auch durch ein Vakuum-Lichtbogen-Verfahren erfolgen. The structure of the alloy is austenitic with several phases, in particular the phases carbides, laves ([Fe, Cr] 2Nb), δ (Ni3Nb) orthorhombic, γ "(Ni3Nb, Al, Ti) centered tetragonal, and / or γ '(ΝΪ3ΑΙ In any case, the phase γ "(Ni 3 Nb, Al, Ti) is preferably tetragonally centered in space, which can be adjusted by precipitation hardening. The phase γ "(Ni 3 Nb, Al, Ti) tetragonal body centered provides good resistance to aging deformation cracking The alloy can be made by melting in a vacuum induction furnace followed by electroslag remelting. The remelting can also be done by a vacuum arc process.
Gemäß einem Ausführungsbeispiel weist der Werkstoff Molybdän auf, wobei der Molybdänanteil zwischen 2,8 und 3,3 Gewichtsprozent beträgt. Hierdurch kann eine gute Korrosionsbeständigkeit erzielt werden, insbesondere unabhängig von dem Temperaturbereich, in welchem der Spalttopf eingesetzt wird. According to one embodiment, the material has molybdenum, wherein the molybdenum content is between 2.8 and 3.3 percent by weight. In this way, a good corrosion resistance can be achieved, in particular independently of the temperature range in which the containment shell is used.
Gemäß einem weiteren Ausführungsbeispiel weist der Werkstoff Niob auf, wobei der Niobanteil 4,75 bis 5,5 Gewichtsprozent beträgt, oder der Werkstoff weist Niob und Tantal auf, wobei der Anteil von Niob und Tantal zusammen 4,87 bis 5,2 Gewichtsprozent beträgt. Hierdurch kann eine gute Temperaturbeständigkeit eingestellt werden. Der Niobanteil stellt dabei das Ausbilden zumindest einer der folgenden Phasen eines austenitischen Gefüges sicher, wodurch die vorteilhaften Festigkeitswerte des Werkstoffs eingestellt werden können: Phase δ (Ni3Nb) orthorhombisch, Phase γ" (Ni3Nb, AI, Ti) tetragonal raumzentriert, und/oder Phase γ' (Ni3AI, Nb) kubisch-flächenzentriert. According to a further embodiment, the material comprises niobium, wherein the niobium content is 4.75 to 5.5 percent by weight, or the material comprises niobium and tantalum, the proportion of niobium and tantalum together being 4.87 to 5.2 percent by weight. As a result, a good temperature resistance can be set. The niobium content thereby ensures the formation of at least one of the following phases of an austenitic microstructure, whereby the advantageous strength values of the material can be adjusted: phase δ (Ni 3 Nb) orthorhombic, phase γ "(Ni 3 Nb, Al, Ti) tetragonal body-centered, and / or phase γ '(Ni3AI, Nb) face centered cubic.
Gemäß einem weiteren Ausführungsbeispiel weist der Werkstoff Aluminium und Titan auf, wobei der Aluminiumanteil zwischen 0,2 und 0,8, bevorzugt 0,4 und 0,6 Gewichtsprozent beträgt und/oder der Titananteil zwischen 0,65 und 1 ,15, bevorzugt 0,8 und 1 ,15 Gewichtsprozent beträgt. Hierdurch können besonders gute mechanische Eigenschaften erzielt werden, insbesondere weil Aluminium und Titan das Ausbilden zumindest einer der folgenden Phasen eines austenitischen Gefüges sicherstellen können: Phase γ" (Ni3Nb, AI, Ti) tetragonal raumzentriert, und/oder Phase γ' (Ni3AI, Nb) kubisch-flächenzentriert. According to a further embodiment, the material comprises aluminum and titanium, wherein the aluminum content is between 0.2 and 0.8, preferably 0.4 and 0.6 weight percent and / or the titanium content between 0.65 and 1, 15, preferably 0 , 8 and 1, 15 weight percent. As a result, particularly good mechanical properties can be achieved, in particular because aluminum and titanium can ensure the formation of at least one of the following phases of an austenitic structure: phase γ "(Ni 3 Nb, Al, Ti) tetragonal body-centered, and / or phase γ '(Ni 3 Al, Nb ) Cubic area-centered.
Gemäß einem weiteren Ausführungsbeispiel ist der Werkstoff eine Nickel- Chrom-Molybdänlegierung, insbesondere die Nickellegierung Hastelloy C-22HS oder eine der Varianten dieser Legierung, wobei der Chromanteil 21 Gewichtsprozent beträgt und der Nickelanteil mindestens 56 Gewichtsprozent, insbesondere 56,6 Gewichtsprozent, ist und der Molybdänanteil 17 Gewichtsprozent beträgt. Mit anderen Worten betrifft die Erfindung die Verwendung einer geeigneten Nickel-Chrom-Molybdänlegierung für einen Spalttopf, z.B. zur Anordnung in einem Spalt zwischen einem Treiber und einem Läufer einer magnetgekuppelten oder für eine Spaltrohrmotorpumpe. Ein solcher Werkstoff ist eine Nickel-Chrom-Molybdänlegierung, die eine hohe Korrosionsbeständigkeit und eine hohe Duktilität bei gleichzeitig hoher Steifigkeit und damit auch Formstabilität bzw. Maßhaltigkeit in Bezug auf eine erzeugte Sollgeometrie aufweist. According to a further embodiment, the material is a nickel-chromium-molybdenum alloy, in particular the nickel alloy Hastelloy C-22HS or one of the variants of this alloy, wherein the chromium content is 21 percent by weight and the nickel content is at least 56 percent by weight, especially 56.6 percent by weight, and Molybdenum content is 17 percent by weight. In other words, the invention relates to the use of a suitable nickel-chromium-molybdenum alloy for a split pot, for example for arrangement in a gap between a driver and a Rotor of a magnetically coupled or for a canned motor pump. Such a material is a nickel-chromium-molybdenum alloy, which has a high corrosion resistance and a high ductility with high rigidity and thus also dimensional stability in relation to a generated desired geometry.
Die Legierungsbestandteile liegen bevorzugt bei den folgenden Werten in Gewichtsprozent: The alloying ingredients are preferably in the following percentages by weight:
Nickel als Hauptbestandteil in einem Prozentanteil abhängig von den Prozentanteilen der weiteren Bestandteile, mindestens jedoch 56,6 Prozent;  Nickel as the main constituent in a percentage depending on the percentages of the other constituents, but at least 56.6 percent;
Chrom (Cr): 21 Prozent;  Chrome (Cr): 21 percent;
Molybdän (Mo): 17 Prozent;  Molybdenum (Mo): 17 percent;
Eisen (Fe): maximal 2 Prozent;  Iron (Fe): maximum 2 percent;
Kobalt (Co): maximal 1 Prozent;  Cobalt (Co): maximum 1 percent;
Wolfram (W): maximal 1 Prozent;  Tungsten (W): maximum 1 percent;
Mangan (Mn): maximal 0,8 Prozent;  Manganese (Mn): maximum 0.8 percent;
Aluminium (AI): maximal 0,5 Prozent;  Aluminum (AI): maximum 0.5 percent;
Silizium (Si): maximal 0,08 Prozent;  Silicon (Si): 0.08 percent maximum;
Kohlenstoff (C): maximal 0,01 Prozent;  Carbon (C): maximum 0.01 percent;
Bor (B): maximal 0,006 Prozent.  Boron (B): maximum 0.006 percent.
Ein solcher Werkstoff kann auf einfache Weise nach einer vorausgehenden Umformung gehärtet werden. Er ist hochverfestigend durch Auslagerungshärtung nach Kaltumformung, insbesondere ohne zwischenzeitliches Lösungsglühen. Die erreichbare Härte ist eine Funktion des Umformungsgrades. Dies liefert den Vorteil, dass z.B. ein Drückwalzen der Seitenwandung des Spalttopfes erfolgen kann, um eine definierte Wandstärke einzustellen, und dass nach dem Drückwalzen ein Härten der Seitenwandung erfolgt. Ein Kaltumformen, insbesondere Drückwalzen erfolgt dabei bevorzugt nach einem Lösungsglühen. Dabei können die Vorteile einer hohen Maßgenauigkeit mit den Vorteilen einer hohen Festigkeit auf einfache Weise miteinander kombiniert werden. Der Werkstoff ist ferner von hoher Säurebeständigkeit, was dessen Verwendung für Pumpen in der chemischen Industrie (Chemiepumpen) besonders interessant macht. Bevorzugt weist der Werkstoff Wolfram auf, was ihn von der zuvor beschriebenen Nickel-Chrom-Eisenlegierung unterscheidet. Such a material can be cured in a simple manner after a preliminary forming. It is highly hardening by age hardening after cold working, especially without intermediate solution heat treatment. The achievable hardness is a function of the degree of deformation. This provides the advantage that, for example, a spin forming of the side wall of the split pot can be done to set a defined wall thickness, and that after the spin forming hardening of the side wall takes place. Cold forming, in particular spin forming, preferably takes place after solution heat treatment. Thereby, the advantages of a high Dimensional accuracy can be easily combined with the advantages of high strength. The material is also of high acid resistance, which makes its use for pumps in the chemical industry (chemical pumps) particularly interesting. Preferably, the material has tungsten, which distinguishes it from the nickel-chromium-iron alloy described above.
Die Festigkeit des Werkstoffs kann durch eine Wärmebehandlung eingestellt werden, bei welcher Ni2(Mo, Cr)-Partikel gebildet werden, wobei die Wärmebehandlung bevorzugt in einem Temperaturbereich von 605 bis 705 °C vorgenommen wird. Die gute Korrosionsbeständig der Legierung kann jedoch auch bereits allein durch ein Lösungsglühen (annealing) erzielt werden. The strength of the material can be adjusted by a heat treatment in which Ni 2 (Mo, Cr) particles are formed, and the heat treatment is preferably carried out in a temperature range of 605 to 705 ° C. However, the good corrosion resistance of the alloy can also already be achieved by annealing alone.
Bevorzugt wird das Wärmebehandeln zum Einstellen einer höheren Härte bei den folgenden Parametern durchgeführt: Preferably, the heat treatment is performed to set a higher hardness under the following parameters:
Wärmebehandeln in einem Ofen bei 705 °C, insbesondere über eine Dauer von 16 Stunden;  Heat treating in an oven at 705 ° C, especially over a period of 16 hours;
Abkühlen des Ofens auf 605 °C;  Cooling the oven to 605 ° C;
Wärmebehandeln in dem Ofen bei 605 °C, insbesondere über eine Dauer von 32 Stunden; und  Heat treating in the oven at 605 ° C, especially over a period of 32 hours; and
Abkühlen an Luft. Die Dichte liegt bevorzugt im Bereich von 8,6 g/cm3 im lösungsgeglühten Zustand oder 8,64 g/cm3 im gehärteten Zustand. Cool in air. The density is preferably in the range of 8.6 g / cm 3 in the solution-annealed condition or 8.64 g / cm 3 in the cured state.
Das Elastizitätsmodul liegt dabei für Raumtemperatur z.B. im Bereich von 223 GPa (bzw. kN/mm2) und für 100 °C z.B. im Bereich von 218 GPa (bzw. kN/mm2). Die mechanischen Eigenschaften des umgeformten Werkstoffs bei Raumtemperatur in lösungsgeglühtem Zustand lassen sich über die Zugfestigkeit (Rm) in N/mm2, die Dehngrenze (Rp0.2) in N/mm2, die Bruchdehnung (A5) und Einschnürung (Z) in Prozent, die Brinellhärte in HB und die Korngröße in μιη definieren, wobei die ersten Werte sich auf kaltgeformte Bauteile beziehen und die zweiten Werte in Klammern auf warmgeformte Bauteile: The modulus of elasticity is for example in the range of 223 GPa (or kN / mm 2 ) for room temperature and for example in the range of 218 GPa (or kN / mm 2 ) for 100 ° C. The mechanical properties of the formed material at room temperature in solution annealed condition can be determined by the tensile strength (Rm) in N / mm 2 , the yield strength (Rp0.2) in N / mm 2 , the elongation at break (A5) and constriction (Z) in percent , which define Brinell hardness in HB and the grain size in μιη, the first values being cold-formed Refer to components and the second values in brackets to thermoformed components:
Zugfestigkeit in Mpa bzw. N/mm2: etwa 837 (806); Tensile strength in Mpa or N / mm 2 : about 837 (806);
Dehngrenze in Mpa bzw. N/mm2: etwa 439 (376);. Durch das Aushärten können die Werte wie folgt eingestellt werden: Yield strength in Mpa or N / mm 2 : about 439 (376); By curing, the values can be set as follows:
Zugfestigkeit in Mpa bzw. N/mm2: etwa 1230 (1202); Tensile strength in Mpa or N / mm 2 : about 1230 (1202);
Dehngrenze in Mpa bzw. N/mm2: etwa 759 (690); Yield strength in Mpa or N / mm 2 : about 759 (690);
Die erzielbaren Härten liegen dabei in den folgenden Bereichen, in Abhängigkeit der Dauer von einem vor dem Härten durchgeführten Lösungsglühen, wobei die Härtewerte nach Rockwell bestimmt wurden, entweder nach Skala B (Härtewerte in der Einheit Rb) oder C (Härtewerte in der Einheit Rc). The achievable hardnesses are in the following ranges, depending on the duration of a solution annealing before hardening, the hardness values were determined according to Rockwell, either by scale B (hardness values in the unit Rb) or C (hardness values in the unit Rc) ,
Für Raumtemperatur bei einer kaltumgeformten Seitenwandung des Spalttopfes in Abhängigkeit vom Umformgrad (in Prozent) können durch ein Auslagerungshärten folgende Härtewerte der Seitenwandung eingestellt werden: For room temperature with a cold-formed side wall of the can, depending on the degree of deformation (in percent), the following hardness values of the side wall can be set by aging-hardening:
Härte [Rc] nach Umformgrad [%] Hardness [Rc] by degree of deformation [%]
Dauer des  time of
0% 10% 20% 30% 40% 50%  0% 10% 20% 30% 40% 50%
Aushärtens [h]  Curing [h]
0 < 20 29 35 37 40 45  0 <20 29 35 37 40 45
1 < 20 27 33 38 41 47  1 <20 27 33 38 41 47
4 < 20 26 33 39 41 48  4 <20 26 33 39 41 48
10 < 20 35 40 41 45 51 24 < 20 40 43 44 48 52 10 <20 35 40 41 45 51 24 <20 40 43 44 48 52
Wie aus der obenstehenden Tabelle hervorgeht, hängt die erreichbare Härte von dem Umformungsgrad ab. Je höher der Umformungsgrad ist, desto höher ist die erreichbare Härte. As can be seen from the table above, the achievable hardness depends on the degree of deformation. The higher the degree of deformation, the higher the achievable hardness.
Gemäß einem weiteren Ausführungsbeispiel weist der Werkstoff Eisen auf, wobei der Eisenanteil maximal 2 Gewichtsprozent beträgt. According to a further embodiment, the material comprises iron, wherein the iron content is at most 2 percent by weight.
Gemäß einem weiteren Ausführungsbeispiel ist die Seitenwandung eine durch einen Umformschritt in eine Sollgeometrie gebrachte Seitenwandung, die einen Umformungsgrad über 10 Prozent aufweist, bevorzugt zwischen 20 und 50 Prozent, weiter bevorzugt zwischen 30 und 40 Prozent, insbesondere 35 Prozent. Durch das Umformen kann durch ein darauffolgendes Härten eine besonders hohe Härte erzielt werden. According to a further embodiment, the side wall is a side wall brought into a desired geometry by a forming step, which has a degree of deformation of more than 10 percent, preferably between 20 and 50 percent, more preferably between 30 and 40 percent, in particular 35 percent. By forming a particularly high hardness can be achieved by a subsequent hardening.
Die Erfindung betrifft auch ein Verfahren zum Herstellen eines Spalttopfes zur Anordnung in einem Spalt zwischen einem Treiber und einem Läufer einer magnetgekuppelten Pumpe, mit den Schritten: The invention also relates to a method for producing a split pot for arrangement in a gap between a driver and a rotor of a magnetically coupled pump, comprising the steps of:
- Ausbilden eines Flanschteils der Spalttopf zum Verbinden des Spalttopfes mit der Pumpe;  - Forming a flange of the split pot for connecting the split pot with the pump;
Ausbilden eines Bodens des Spalttopfes;  Forming a bottom of the split pot;
Ausbilden einer in montiertem Zustand des Spalttopfes in dem Spalt anordenbaren Seitenwandung zumindest teilweise aus einem Werkstoff mit einem Nickelbestandteil, wobei die Seitenwandung durch einen Umformschritt, insbesondere durch Drückwalzen, in eine Sollgeometrie gebracht wird.  Forming a side wall which can be arranged in the gap in the assembled state of the can, at least partially made of a material having a nickel component, wherein the side wall is brought into a desired geometry by a forming step, in particular by spin forming.
Dabei wird erfindungsgemäß als Werkstoff eine Nickel-Chrom-Legierung in einem lösungsgeglühten Zustand gewählt, welche mindestens 50 Gewichtsprozent Nickel und 17 bis 21 Gewichtsprozent Chrom aufweist, wobei nach dem Umformen ein Härten durch eine Wärmebehandlung erfolgt. Das Härten kann dabei wahlweise direkt oder nach einem zwischenzeitlichen Lösungsglühen erfolgen. Das Härten erfolgt bevorzugt durch eine Wärmebehandlung im Temperaturbereich von 605 bis 728 °C, insbesondere über eine Dauer von 18 bis 48 Stunden, wobei die Wärmebehandlung jedenfalls zweistufig in Bezug auf die gewählte Temperatur ist und eine jeweilige Stufe für mindestens 8 Stunden eingehalten wird. According to the invention, the material selected is a nickel-chromium alloy in a solution-annealed state, which has at least 50 percent nickel by weight and 17 to 21 percent chromium by weight, hardening being effected by heat treatment after forming. The curing can be done either directly or after an intermediate solution annealing. The curing is preferably carried out by a heat treatment in the temperature range of 605 to 728 ° C, in particular over a period of 18 to 48 hours, wherein the heat treatment is in any case two-stage with respect to the selected temperature and a respective stage is maintained for at least 8 hours.
Gemäß einem Ausführungsbeispiel ist das Umformen ein Kaltumformen, wobei nach dem Kaltumformen ein Auslagerungshärten erfolgt, insbesondere in einem Temperaturbereich von 605 bis 728 °C und ohne zwischenzeitliches Lösungsglühen nach der Kaltumformung. Das Kaltumformen ist bevorzugt ein Drückwalzen. Das Auslagerungshärten kann wahlweise direkt nach dem Kaltumformen oder nach einem Zwischenschritt zum Lösungsglühen erfolgen. Für die beschriebene Nickel-Chrom-Molybdänlegierung erfolgt das Auslagerungshärten bevorzugt ohne Lösungsglüh-Zwischenschritt. Dabei kann bei steigenden Härtezeiten ein steigende Härte erzielt werden, wobei die Härtezeiten z.B. im Bereich von 1 , 4, 10, 24 oder 32 Stunden gewählt werden, bevorzugt 32 Stunden bei 605 °C, da durch die längere Dauer die Härte Rc nach Rockwell-Skala C um über 10 Prozent gesteigert werden kann. According to one embodiment, the forming is a cold forming, wherein after the cold forming a paging hardening takes place, in particular in a temperature range of 605 to 728 ° C and without intermediate solution annealing after the cold forming. The cold forming is preferably a spin forming. Paging hardening can be done either directly after cold forming or after an intermediate step for solution annealing. For the nickel-chromium-molybdenum alloy described, aging is preferably carried out without solution annealing intermediate step. In this case, increasing hardness can be achieved with increasing hardening times, wherein the hardening times are e.g. be selected in the range of 1, 4, 10, 24 or 32 hours, preferably 32 hours at 605 ° C, since the longer duration, the hardness Rc to Rockwell scale C can be increased by over 10 percent.
Ausführungsbeispiele der Erfindung werden im Folgenden anhand der Zeichnungen beschrieben. Es zeigen: Embodiments of the invention will be described below with reference to the drawings. Show it:
Figur 1 ein Diagramm zu typischen Figure 1 is a diagram of typical
Kurzzeiteigenschaften einer Legierung gemäß einem ersten Ausführungsbeispiel der Erfindung;  Short-term properties of an alloy according to a first embodiment of the invention;
Figur 2 ein Diagramm zu typischen Figure 2 is a diagram of typical
Zeitstandfestigkeiten der Legierung gemäß dem ersten Ausführungsbeispiel der Erfindung; und  Creep strengths of the alloy according to the first embodiment of the invention; and
Figur 3 in einer schematischen Darstellung einen Figure 3 in a schematic representation of a
Spalttopf mit einem Werkstoff gemäß dem ersten oder zweiten Ausführungsbeispiel der Erfindung. In der Fig. 1 sind typische Kurzzeiteigenschaften einer Nickel-Chrom- Eisenlegierung in einem lösungsgeglühten und ausgehärteten Zustand als Funktion der Temperatur in °C gezeigt. Dem Diagramm kann entnommen werden, dass in einem Temperaturbereich von Raumtemperatur bis 600 °C recht konstante mechanische Eigenschaften vorliegen, was insbesondere für die Bruchdehnung (A5) und die Einschnürung (Z) gilt, was Vorteile im Hinblick auf eine gute Maßgenauigkeit der Spalttopf liefert. Slit pot with a material according to the first or second embodiment of the invention. FIG. 1 shows typical short-term properties of a nickel-chromium-iron alloy in a solution-annealed and cured state as a function of temperature in ° C. FIG. It can be seen from the diagram that quite constant mechanical properties are present in a temperature range from room temperature to 600 ° C., which applies in particular to the breaking elongation (A5) and the constriction (Z), which provides advantages with regard to good dimensional accuracy of the containment shell.
In der Fig. 2 sind typische Zeitstandfestigkeiten der Nickel-Chrom- Eisenlegierung in einem lösungsgeglühten und ausgehärteten Zustand als Funktion der Zeit in Stunden gezeigt, wobei die Zeit logarithmisch aufgetragen ist, und wobei die Zeitstandfestigkeiten auf der y-Achse in N/mm2 angegeben sind. Dem Diagramm kann entnommen werden, dass selbst über eine Zeit von 105 Stunden entsprechend gut 1 1 Jahren bei Temperaturen unter 500 °C ein Verlust mechanischer Festigkeiten kaum spürbar ist. In der Fig. 3 ist eine Spalttopf 1 gezeigt, der symmetrisch in Bezug auf eine Symmetrieachse S ausgebildet ist und einen Boden 2, eine Seitenwandung 3 sowie ein Flanschteil 4 aufweist. Die Spalttopf 1 weist eine Nickel-Chrom- Legierung auf, ist also teilweise oder vollständig aus einem Werkstoff ausgeführt, welcher aus Nickel und Chrom und weiteren Legierungs- bestandteilen gebildet werden kann. Eine teilweise Ausführung des Spalttopfes in dem Werkstoff kann z.B. nur die Seitenwandung 3 betreffen. Bevorzugt ist zumindest die Seitenwandung 3 vollständig aus dem Werkstoff gebildet. FIG. 2 shows typical creep ruptures of the nickel-chromium-iron alloy in a solution-annealed and cured state as a function of time in hours, with time plotted on a logarithmic scale, and with creep ruptures indicated on the y-axis in N / mm 2 are. It can be seen from the diagram that even over a period of 10 5 hours corresponding to just over 1 1 years at temperatures below 500 ° C., a loss of mechanical strengths is hardly noticeable. 3, a split pot 1 is shown, which is formed symmetrically with respect to a symmetry axis S and a bottom 2, a side wall 3 and a flange 4 has. The containment shell 1 has a nickel-chromium alloy, so it is partially or completely made of a material which can be formed from nickel and chromium and other alloying constituents. A partial embodiment of the split pot in the material may, for example, relate only to the side wall 3. Preferably, at least the side wall 3 is formed entirely of the material.
BezuaszeichenlisteBezuaszeichenliste
1 Spalttopf1 containment shell
2 Boden 2 floor
3 Seitenwandung 4 Flanschteil  3 side wall 4 flange part
S Symmetrieachse S symmetry axis

Claims

Patentansprüche claims
1 . Spalttopf (1 ) mit: 1 . Slit pot (1) with:
einem Flanschteil (4);  a flange part (4);
einem Boden (2);  a floor (2);
- einer in montiertem Zustand des Spalttopfes in einem Spalt anordenbaren Seitenwandung (3), die zumindest teilweise aus einem Werkstoff mit einem Nickelbestandteil besteht,  a side wall (3) which can be arranged in a gap in the assembled state of the containment shell and which at least partially consists of a material with a nickel component,
d a d u r c h g e k e n n z e i c h n e t, dass der Werkstoff eine Nickel-Chrom-Legierung ist, welche mindestens 50 Gewichtsprozent Nickel und 17 bis 21 Gewichtsprozent Chrom aufweist. That is, the material is a nickel-chromium alloy having at least 50 weight percent nickel and 17 to 21 weight percent chromium.
2. Spalttopf nach Anspruch 1 , dadurch gekennzeichnet, dass der Werkstoff eine Nickel-Chrom-Eisenlegierung ist, wobei der Nickelanteil maximal 55 Gewichtsprozent ist und der Eisenanteil zwischen 10 und 25 Gewichtsprozent beträgt. Second containment shell according to claim 1, characterized in that the material is a nickel-chromium-iron alloy, wherein the nickel content is at most 55 weight percent and the iron content is between 10 and 25 weight percent.
3. Spalttopf nach Anspruch 2, dadurch gekennzeichnet, dass der3. containment shell according to claim 2, characterized in that the
Werkstoff Molybdän aufweist, wobei der Molybdänanteil zwischen 2,8 und 3,3 Gewichtsprozent beträgt. Material molybdenum, wherein the molybdenum content is between 2.8 and 3.3 weight percent.
4. Spalttopf nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Werkstoff Niob aufweist, wobei der Niobanteil 0,5 bis 10, vorzugsweise 3 bis 7, besonders bevorzugt 4,75 bis 5,5 Gewichtsprozent beträgt, oder dass der Werkstoff Niob und Tantal aufweist, wobei der Anteil von Niob und Tantal zusammen 0,5 bis 10, vorzugsweise 3 bis 7, besonders bevorzugt 4,87 bis 5,2 Gewichtsprozent beträgt. 4. containment shell according to one of claims 1 to 3, characterized in that the material comprises niobium, wherein the niobium content is 0.5 to 10, preferably 3 to 7, particularly preferably 4.75 to 5.5 weight percent, or that the material Niobium and tantalum, wherein the proportion of niobium and tantalum together is 0.5 to 10, preferably 3 to 7, particularly preferably 4.87 to 5.2 weight percent.
5. Spalttopf nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Werkstoff Aluminium und Titan aufweist, wobei der Aluminiumanteil zwischen 0,2 und 0,8, bevorzugt 0,4 und 0,6 Gewichtsprozent beträgt und/oder der Titananteil zwischen 0,65 und 1 ,15, bevorzugt 0,8 und 1 ,15 Gewichtsprozent beträgt. 5. containment shell according to one of claims 1 to 4, characterized in that the material comprises aluminum and titanium, wherein the aluminum content between 0.2 and 0.8, preferably 0.4 and 0.6 weight percent and / or the titanium content between 0.65 and 1, 15, preferably 0.8 and 1, 15 weight percent.
6. Spalttopf nach einem der Ansprüche 1 , dadurch gekennzeichnet, dass der Werkstoff eine Nickel-Chrom-Molybdänlegierung ist, wobei der Chromanteil 21 Gewichtsprozent beträgt und der Nickelanteil mindestens 56 Gewichtsprozent, insbesondere 56,6 Gewichtsprozent, ist und der Molybdänanteil 17 Gewichtsprozent beträgt. 6. containment shell according to one of claims 1, characterized in that the material is a nickel-chromium-molybdenum alloy, wherein the chromium content is 21 weight percent and the nickel content is at least 56 weight percent, in particular 56.6 weight percent, and the molybdenum content is 17 weight percent.
7. Spalttopf nach Anspruch 6, dadurch gekennzeichnet, dass der Werkstoff Eisen aufweist, wobei der Eisenanteil maximal 2 Gewichtsprozent beträgt. 7. containment shell according to claim 6, characterized in that the material comprises iron, wherein the iron content is at most 2 weight percent.
8. Spalttopf nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass die Seitenwandung (3) eine durch einen Umformschritt in eine Sollgeometrie gebrachte Seitenwandung (3) ist, die einen Umformungsgrad über 10 Prozent aufweist, bevorzugt zwischen 20 und 50 Prozent, weiter bevorzugt zwischen 30 und 40 Prozent, insbesondere 35 Prozent. 8. containment shell according to claim 6 or 7, characterized in that the side wall (3) is brought by a forming step in a desired geometry side wall (3) having a degree of deformation over 10 percent, preferably between 20 and 50 percent, more preferably between 30 and 40 percent, especially 35 percent.
9. Spalttopf nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass er keine drucktragenden Schweißnähte aufweist. 9. containment shell according to one of claims 1 to 8, characterized in that it has no pressure-bearing welds.
10. Verfahren zum Herstellen eines Spalttopfes (1 ), mit den Schritten: 10. A method for producing a split pot (1), comprising the steps of:
Ausbilden eines Flanschteils (4) des Spalttopfes (1 );  Forming a flange part (4) of the split pot (1);
Ausbilden eines Bodens (2) des Spalttopfes;  Forming a bottom (2) of the split pot;
Ausbilden einer in montiertem Zustand des Spalttopfes in einem Spalt anordenbaren Seitenwandung (3) zumindest teilweise aus einem Werkstoff mit einem Nickelbestandteil, wobei die Seitenwandung (3) durch einen Umformschritt in eine Sollgeometrie gebracht wird,  Forming a side wall (3) which can be arranged in a gap in the assembled state of the containment shell, at least partially made of a material having a nickel component, the side wall (3) being brought into a desired geometry by a forming step,
d a d u r c h g e k e n n z e i c h n e t, dass für den Werkstoff eine Nickel-Chrom-Legierung in einem lösungsgeglühten Zustand gewählt wird, welche mindestens 50 Gewichtsprozent Nickel und 17 bis 21 Gewichtsprozent Chrom aufweist, und dass nach dem Umformen ein Härten durch eine Wärmebehandlung erfolgt. characterized in that for the material, a nickel-chromium alloy in a solution-annealed Condition is selected, which has at least 50 weight percent nickel and 17 to 21 weight percent chromium, and that takes place after forming a curing by a heat treatment.
1 1 . Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass das Umformen ein Kaltumformen ist und nach dem Kaltumformen ein Auslagerungshärten erfolgt, insbesondere in einem Temperaturbereich von 605 bis 728 °C, und zwar ohne zwischenzeitliches Lösungsglühen nach der Kaltumformung. 1 1. A method according to claim 10, characterized in that the forming is a cold forming and after the cold forming a paging hardening, in particular in a temperature range of 605 to 728 ° C, and without intermediate solution annealing after cold forming.
EP13820745.1A 2012-12-11 2013-12-11 Can for magnetically coupled pumps and production process Revoked EP2932102B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012024130.5A DE102012024130B4 (en) 2012-12-11 2012-12-11 Slit pot for magnetically coupled pumps and manufacturing process
PCT/EP2013/076195 WO2014090863A2 (en) 2012-12-11 2013-12-11 Can for magnetically coupled pumps and production process

Publications (2)

Publication Number Publication Date
EP2932102A2 true EP2932102A2 (en) 2015-10-21
EP2932102B1 EP2932102B1 (en) 2017-03-01

Family

ID=50777749

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13820745.1A Revoked EP2932102B1 (en) 2012-12-11 2013-12-11 Can for magnetically coupled pumps and production process

Country Status (10)

Country Link
US (2) US10167870B2 (en)
EP (1) EP2932102B1 (en)
JP (3) JP2016509125A (en)
KR (1) KR102125592B1 (en)
CN (1) CN104937277B (en)
DE (2) DE102012024130B4 (en)
ES (1) ES2627097T3 (en)
PL (1) PL2932102T3 (en)
RU (1) RU2640306C2 (en)
WO (1) WO2014090863A2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012024130B4 (en) 2012-12-11 2014-09-11 Klaus Union Gmbh & Co. Kg Slit pot for magnetically coupled pumps and manufacturing process
DE102013018159A1 (en) * 2013-12-05 2015-06-11 Klaus Union Gmbh & Co. Kg Slit pot and method for producing the same
US9771938B2 (en) * 2014-03-11 2017-09-26 Peopleflo Manufacturing, Inc. Rotary device having a radial magnetic coupling
EP3239534A4 (en) * 2015-01-27 2018-01-10 Mitsubishi Heavy Industries Compressor Corporation Centrifugal compressor casing and centrifugal compressor
US9920764B2 (en) 2015-09-30 2018-03-20 Peopleflo Manufacturing, Inc. Pump devices
CN105526190B (en) * 2016-01-21 2018-09-28 盐城海纳汽车零部件有限公司 A kind of automobile engine cooling water pump structural alloy steel die forging wheel hub
DE102018130946B4 (en) * 2017-12-14 2024-06-20 Vdm Metals International Gmbh METHOD FOR THE PRODUCTION OF SEMI-FINISHED PRODUCTS FROM A NICKEL-BASED ALLOY
WO2020004286A1 (en) * 2018-06-28 2020-01-02 株式会社東亜鍛工所 Method for manufacturing hollow engine valve
GB2581339A (en) * 2019-02-08 2020-08-19 Hmd Seal/Less Pumps Ltd Containment shell for a magnetic pump
EP4024675B1 (en) 2020-12-28 2024-07-10 Tomas Pink Single-use rotor with short circuit cage
RU2764491C1 (en) * 2021-03-16 2022-01-17 Александр Анатольевич Изюков Magnetic coupling separation cup

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3473922A (en) * 1967-07-21 1969-10-21 Carondelet Foundry Co Corrosion-resistant alloys
CA1146207A (en) * 1981-02-06 1983-05-10 Nova Scotia Research Foundation Corporation Slotted air-cooled magnetic isolation coupling
DE3413930A1 (en) * 1984-04-13 1985-10-31 Friedrichsfeld Gmbh, Steinzeug- Und Kunststoffwerke, 6800 Mannheim Centrifugal pump
JPS6352990U (en) 1986-09-25 1988-04-09
GB2236113A (en) * 1989-09-05 1991-03-27 Teledyne Ind Well equipment alloys
JPH03134144A (en) * 1989-10-19 1991-06-07 Toshiba Corp Nickel-base alloy member and its manufacture
DE9100515U1 (en) * 1991-01-17 1991-04-04 Friatec-Rheinhütte GmbH & Co, 65203 Wiesbaden Magnetically coupled centrifugal pump
EP0769076B1 (en) * 1994-06-24 2002-05-15 Teledyne Industries, Inc Nickel-based alloy and method
DE29716109U1 (en) * 1997-09-08 1999-01-14 Speck Pumpenfabrik Walter Spec Containment pump
FR2798169B1 (en) * 1999-09-06 2001-11-16 Siebec Sa MAGNETIC DRIVE PUMP
US6997994B2 (en) * 2001-09-18 2006-02-14 Honda Giken Kogyo Kabushiki Kaisha Ni based alloy, method for producing the same, and forging die
DE50202923D1 (en) * 2002-09-06 2005-06-02 Grundfos As Wet running centrifugal pump unit
TW200514914A (en) * 2003-09-19 2005-05-01 Chrysalis Tech Inc Threaded sealing flange for use in an external combustion engine and method of sealing a pressure vessel
US7101158B2 (en) * 2003-12-30 2006-09-05 Wanner Engineering, Inc. Hydraulic balancing magnetically driven centrifugal pump
DE202004013080U1 (en) 2004-08-20 2006-01-05 Speck-Pumpen Walter Speck Gmbh & Co. Kg Magnetic coupling pump for conveying fluids comprises a pump shaft which is rotated by a single friction bearing acting as a radial and axial bearing between a running wheel and inner magnets
RU2290540C1 (en) * 2005-05-13 2006-12-27 Федеральное государственное унитарное предприятие "Научно-производственное объединение прикладной механики им. акад. М.Ф. Решетнева" Electryc pumping unit
US20070103017A1 (en) * 2005-11-10 2007-05-10 United Technologies Corporation One Financial Plaza Superconducting generator rotor electromagnetic shield
CA2588626A1 (en) * 2007-05-15 2008-11-15 Benoit Julien A process for producing static components for a gas turbine engine
CN101372730B (en) * 2007-08-22 2011-01-26 中国科学院金属研究所 Gamma strengthened high performance casting nickel-based high-temperature alloy
US7789288B1 (en) * 2009-07-31 2010-09-07 General Electric Company Brazing process and material for repairing a component
DE202009017996U1 (en) * 2009-10-12 2010-10-28 Deutsche Vortex Gmbh & Co. Kg Partition for an electric motor and pump with electric motor
JP2011157566A (en) * 2010-01-29 2011-08-18 Global Nuclear Fuel-Japan Co Ltd Method for manufacturing ni-based superalloy, and method for producing nuclear fuel assembly
CN102463273A (en) * 2010-11-08 2012-05-23 北京有色金属研究总院 Preparation method of large-caliber nickel-based alloy thin-walled tube
CN201934335U (en) * 2010-12-29 2011-08-17 四川红华实业有限公司 Stepless frequency conversion gas booster
DE202012006480U1 (en) * 2012-07-06 2012-08-06 Ruhrpumpen Gmbh Double-walled containment shell of a magnetic coupling, in particular a magnetic coupling pump
DE102012024130B4 (en) 2012-12-11 2014-09-11 Klaus Union Gmbh & Co. Kg Slit pot for magnetically coupled pumps and manufacturing process
JP6857428B1 (en) * 2020-02-12 2021-04-14 株式会社アースクリエイト Laminates and food containers and packaging

Also Published As

Publication number Publication date
US10253776B2 (en) 2019-04-09
CN104937277B (en) 2018-07-13
JP2021191896A (en) 2021-12-16
EP2932102B1 (en) 2017-03-01
WO2014090863A2 (en) 2014-06-19
WO2014090863A3 (en) 2015-02-26
KR20150094754A (en) 2015-08-19
ES2627097T3 (en) 2017-07-26
US20150337844A1 (en) 2015-11-26
RU2640306C2 (en) 2017-12-27
KR102125592B1 (en) 2020-07-08
US10167870B2 (en) 2019-01-01
DE202013012787U1 (en) 2019-08-26
DE102012024130B4 (en) 2014-09-11
CN104937277A (en) 2015-09-23
RU2015128080A (en) 2017-01-18
JP2019116686A (en) 2019-07-18
JP7185551B2 (en) 2022-12-07
JP2016509125A (en) 2016-03-24
PL2932102T3 (en) 2017-09-29
US20180313353A1 (en) 2018-11-01
DE102012024130A1 (en) 2014-06-12

Similar Documents

Publication Publication Date Title
EP2932102B1 (en) Can for magnetically coupled pumps and production process
EP2956562B1 (en) Nickel-cobalt alloy
EP3728675B1 (en) Method for additive manufacturing of an article from a maraging steel powder
DE69529829T2 (en) Ferritic heat-resistant steels
AT412727B (en) CORROSION RESISTANT, AUSTENITIC STEEL ALLOY
DE69405375T2 (en) Stainless carburized case-hardened steel alloy for high temperature application
EP4177367A1 (en) High strength titanium alloys
EP0866145A2 (en) Completely martensitic steel alloy
EP1420077B1 (en) Inert material with high hardness for elements used at high temperature
DE102017215222A1 (en) Case hardenable stainless steel alloy
EP2221393A1 (en) Welding Filler Material and steel containing 0.05-0.14 %C; 8-13 %Cr; 1-2.6 %Ni; 0.5-1.9 %Mo; 0.5-1.5 %Mn; 0.15-00.5 %Si; 0.2-0.4 %V; 0-0.04 %B, 2.1-4 %Re; 0-0.07 %Ta, 0-60 ppm Pd
EP3458623B1 (en) Method for producing a steel material, and steel material
EP2806047A1 (en) Precipitation hardened FE-NI alloy
EP1215366B1 (en) Turbine blade
EP0410979B1 (en) Hardenable nickel alloy
WO2015144661A2 (en) Components made of a steel alloy and method for producing high-strength components
EP3728674A1 (en) Method for producing an article from a maraging steel
DE2420072C2 (en) Wear-resistant stainless steel alloy, methods of heat treating the same, and uses thereof
DE102011010316B4 (en) Austenitic steel with high resistance to hydrogen-induced embrittlement
DE102020132910A1 (en) Hardenable nickel alloy
DE102022108012A1 (en) Process for producing a strain wave gear component, strain wave gear component and strain wave gear
DE102020202266A1 (en) Ferritic material for a drive system
CH263074A (en) Alloy.
DE102016223089A1 (en) Method for producing a rolling bearing component made of a nickel-titanium alloy

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150826

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502013006563

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F04D0013020000

Ipc: C22F0001100000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F04D 13/02 20060101ALI20160824BHEP

Ipc: F04D 29/02 20060101ALI20160824BHEP

Ipc: C22F 1/10 20060101AFI20160824BHEP

Ipc: C22C 19/05 20060101ALI20160824BHEP

INTG Intention to grant announced

Effective date: 20160908

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 871440

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170315

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013006563

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502013006563

Country of ref document: DE

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2627097

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20170726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170602

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170601

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170601

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

26 Opposition filed

Opponent name: KSB AKTIENGESELLSCHAFT

Effective date: 20170726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170701

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170703

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171211

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20131211

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20191219

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20191129

Year of fee payment: 7

Ref country code: BE

Payment date: 20191219

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20191220

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20210101

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 871440

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201211

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201211

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20211209

Year of fee payment: 9

Ref country code: GB

Payment date: 20211222

Year of fee payment: 9

Ref country code: FR

Payment date: 20211224

Year of fee payment: 9

Ref country code: DE

Payment date: 20211210

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20211221

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20211224

Year of fee payment: 9

Ref country code: ES

Payment date: 20220222

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

REG Reference to a national code

Ref country code: DE

Ref legal event code: R103

Ref document number: 502013006563

Country of ref document: DE

Ref country code: DE

Ref legal event code: R064

Ref document number: 502013006563

Country of ref document: DE

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201211

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

27W Patent revoked

Effective date: 20221125

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20221125

REG Reference to a national code

Ref country code: AT

Ref legal event code: MA03

Ref document number: 871440

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221125