EP2926829A1 - Sugar chain-attached linker, compound containing sugar chain-attached linker and physiologically active substance or salt thereof, and method for producing same - Google Patents
Sugar chain-attached linker, compound containing sugar chain-attached linker and physiologically active substance or salt thereof, and method for producing same Download PDFInfo
- Publication number
- EP2926829A1 EP2926829A1 EP13859242.3A EP13859242A EP2926829A1 EP 2926829 A1 EP2926829 A1 EP 2926829A1 EP 13859242 A EP13859242 A EP 13859242A EP 2926829 A1 EP2926829 A1 EP 2926829A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- glycosylated
- substituted
- unsubstituted
- linker
- sugar chain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 235000000346 sugar Nutrition 0.000 title claims abstract description 320
- 239000013543 active substance Substances 0.000 title claims abstract description 183
- 150000001875 compounds Chemical class 0.000 title claims description 141
- 150000003839 salts Chemical class 0.000 title claims description 71
- 238000004519 manufacturing process Methods 0.000 title claims description 35
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 47
- 125000005647 linker group Chemical group 0.000 claims description 271
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 165
- 150000001413 amino acids Chemical class 0.000 claims description 154
- 239000011347 resin Substances 0.000 claims description 122
- 229920005989 resin Polymers 0.000 claims description 122
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 92
- 229920001184 polypeptide Polymers 0.000 claims description 91
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 46
- 229910052717 sulfur Inorganic materials 0.000 claims description 45
- 125000004434 sulfur atom Chemical group 0.000 claims description 45
- 239000000203 mixture Substances 0.000 claims description 42
- 238000000034 method Methods 0.000 claims description 41
- 125000003118 aryl group Chemical group 0.000 claims description 39
- 125000006527 (C1-C5) alkyl group Chemical group 0.000 claims description 35
- 125000001072 heteroaryl group Chemical group 0.000 claims description 35
- 102000004169 proteins and genes Human genes 0.000 claims description 32
- 108090000623 proteins and genes Proteins 0.000 claims description 32
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 30
- 125000006729 (C2-C5) alkenyl group Chemical group 0.000 claims description 25
- 238000010532 solid phase synthesis reaction Methods 0.000 claims description 25
- 125000006730 (C2-C5) alkynyl group Chemical group 0.000 claims description 24
- 238000009739 binding Methods 0.000 claims description 24
- 239000008194 pharmaceutical composition Substances 0.000 claims description 24
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 22
- 108020004707 nucleic acids Proteins 0.000 claims description 22
- 102000039446 nucleic acids Human genes 0.000 claims description 22
- 150000007523 nucleic acids Chemical class 0.000 claims description 22
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 17
- 230000008030 elimination Effects 0.000 claims description 14
- 238000003379 elimination reaction Methods 0.000 claims description 14
- 229920001222 biopolymer Polymers 0.000 claims description 12
- 238000006482 condensation reaction Methods 0.000 claims description 12
- 230000000694 effects Effects 0.000 claims description 8
- 102000040430 polynucleotide Human genes 0.000 claims description 7
- 108091033319 polynucleotide Proteins 0.000 claims description 7
- 239000002157 polynucleotide Substances 0.000 claims description 7
- 108091093037 Peptide nucleic acid Proteins 0.000 claims description 6
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 claims description 6
- 125000000304 alkynyl group Chemical group 0.000 claims description 5
- 230000001419 dependent effect Effects 0.000 claims description 4
- 238000002255 vaccination Methods 0.000 claims description 2
- 238000003776 cleavage reaction Methods 0.000 abstract description 24
- 230000007017 scission Effects 0.000 abstract description 24
- 230000002255 enzymatic effect Effects 0.000 abstract description 5
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 169
- 229940024606 amino acid Drugs 0.000 description 145
- 235000001014 amino acid Nutrition 0.000 description 145
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical group SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 82
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 66
- 238000006460 hydrolysis reaction Methods 0.000 description 56
- 239000000243 solution Substances 0.000 description 56
- 230000007062 hydrolysis Effects 0.000 description 46
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 42
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 41
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 39
- 125000006239 protecting group Chemical group 0.000 description 35
- 238000006243 chemical reaction Methods 0.000 description 31
- 229940125904 compound 1 Drugs 0.000 description 31
- -1 cyclic imide Chemical class 0.000 description 31
- 235000018102 proteins Nutrition 0.000 description 31
- 150000008163 sugars Chemical class 0.000 description 28
- 229940079593 drug Drugs 0.000 description 27
- 239000003814 drug Substances 0.000 description 27
- 239000000126 substance Substances 0.000 description 26
- 101001012157 Homo sapiens Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 description 24
- 102100030086 Receptor tyrosine-protein kinase erbB-2 Human genes 0.000 description 24
- 239000007864 aqueous solution Substances 0.000 description 24
- 239000002202 Polyethylene glycol Substances 0.000 description 22
- 229920001223 polyethylene glycol Polymers 0.000 description 22
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 21
- ITOFPJRDSCGOSA-KZLRUDJFSA-N (2s)-2-[[(4r)-4-[(3r,5r,8r,9s,10s,13r,14s,17r)-3-hydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1h-cyclopenta[a]phenanthren-17-yl]pentanoyl]amino]-3-(1h-indol-3-yl)propanoic acid Chemical compound C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H](CC[C@]13C)[C@@H]2[C@@H]3CC[C@@H]1[C@H](C)CCC(=O)N[C@H](C(O)=O)CC1=CNC2=CC=CC=C12 ITOFPJRDSCGOSA-KZLRUDJFSA-N 0.000 description 20
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 20
- 229940125810 compound 20 Drugs 0.000 description 20
- 239000003480 eluent Substances 0.000 description 20
- 238000001727 in vivo Methods 0.000 description 20
- 239000002953 phosphate buffered saline Substances 0.000 description 20
- OPFJDXRVMFKJJO-ZHHKINOHSA-N N-{[3-(2-benzamido-4-methyl-1,3-thiazol-5-yl)-pyrazol-5-yl]carbonyl}-G-dR-G-dD-dD-dD-NH2 Chemical compound S1C(C=2NN=C(C=2)C(=O)NCC(=O)N[C@H](CCCN=C(N)N)C(=O)NCC(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CC(O)=O)C(N)=O)=C(C)N=C1NC(=O)C1=CC=CC=C1 OPFJDXRVMFKJJO-ZHHKINOHSA-N 0.000 description 18
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 18
- 229940126086 compound 21 Drugs 0.000 description 18
- 125000003088 (fluoren-9-ylmethoxy)carbonyl group Chemical group 0.000 description 17
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 16
- 230000015572 biosynthetic process Effects 0.000 description 16
- 238000003786 synthesis reaction Methods 0.000 description 16
- SQVRNKJHWKZAKO-UHFFFAOYSA-N beta-N-Acetyl-D-neuraminic acid Natural products CC(=O)NC1C(O)CC(O)(C(O)=O)OC1C(O)C(O)CO SQVRNKJHWKZAKO-UHFFFAOYSA-N 0.000 description 15
- 239000007853 buffer solution Substances 0.000 description 15
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 15
- 125000003396 thiol group Chemical group [H]S* 0.000 description 15
- 229960005486 vaccine Drugs 0.000 description 15
- SHZGCJCMOBCMKK-UHFFFAOYSA-N D-mannomethylose Natural products CC1OC(O)C(O)C(O)C1O SHZGCJCMOBCMKK-UHFFFAOYSA-N 0.000 description 14
- PNNNRSAQSRJVSB-SLPGGIOYSA-N Fucose Natural products C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)C=O PNNNRSAQSRJVSB-SLPGGIOYSA-N 0.000 description 14
- 239000008351 acetate buffer Substances 0.000 description 14
- 239000002253 acid Substances 0.000 description 14
- 239000000427 antigen Substances 0.000 description 14
- 108091007433 antigens Proteins 0.000 description 14
- 102000036639 antigens Human genes 0.000 description 14
- SQVRNKJHWKZAKO-OQPLDHBCSA-N sialic acid Chemical compound CC(=O)N[C@@H]1[C@@H](O)C[C@@](O)(C(O)=O)OC1[C@H](O)[C@H](O)CO SQVRNKJHWKZAKO-OQPLDHBCSA-N 0.000 description 14
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 13
- SHZGCJCMOBCMKK-DHVFOXMCSA-N L-fucopyranose Chemical compound C[C@@H]1OC(O)[C@@H](O)[C@H](O)[C@@H]1O SHZGCJCMOBCMKK-DHVFOXMCSA-N 0.000 description 13
- 235000009582 asparagine Nutrition 0.000 description 13
- 229960001230 asparagine Drugs 0.000 description 13
- 239000007858 starting material Substances 0.000 description 13
- 238000005406 washing Methods 0.000 description 13
- LJOOWESTVASNOG-UFJKPHDISA-N [(1s,3r,4ar,7s,8s,8as)-3-hydroxy-8-[2-[(4r)-4-hydroxy-6-oxooxan-2-yl]ethyl]-7-methyl-1,2,3,4,4a,7,8,8a-octahydronaphthalen-1-yl] (2s)-2-methylbutanoate Chemical compound C([C@H]1[C@@H](C)C=C[C@H]2C[C@@H](O)C[C@@H]([C@H]12)OC(=O)[C@@H](C)CC)CC1C[C@@H](O)CC(=O)O1 LJOOWESTVASNOG-UFJKPHDISA-N 0.000 description 12
- 125000003277 amino group Chemical group 0.000 description 12
- 229940125773 compound 10 Drugs 0.000 description 12
- 229940127204 compound 29 Drugs 0.000 description 12
- ZLVXBBHTMQJRSX-VMGNSXQWSA-N jdtic Chemical compound C1([C@]2(C)CCN(C[C@@H]2C)C[C@H](C(C)C)NC(=O)[C@@H]2NCC3=CC(O)=CC=C3C2)=CC=CC(O)=C1 ZLVXBBHTMQJRSX-VMGNSXQWSA-N 0.000 description 12
- 239000011259 mixed solution Substances 0.000 description 12
- 230000006399 behavior Effects 0.000 description 11
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 11
- 239000002904 solvent Substances 0.000 description 11
- 125000001424 substituent group Chemical group 0.000 description 11
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 10
- 210000000692 cap cell Anatomy 0.000 description 10
- 239000003795 chemical substances by application Substances 0.000 description 10
- 201000010099 disease Diseases 0.000 description 10
- 238000002330 electrospray ionisation mass spectrometry Methods 0.000 description 10
- 239000000839 emulsion Substances 0.000 description 10
- SJRJJKPEHAURKC-UHFFFAOYSA-N N-Methylmorpholine Chemical compound CN1CCOCC1 SJRJJKPEHAURKC-UHFFFAOYSA-N 0.000 description 9
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 9
- 239000000470 constituent Substances 0.000 description 9
- 238000010828 elution Methods 0.000 description 9
- 239000008055 phosphate buffer solution Substances 0.000 description 9
- 238000001556 precipitation Methods 0.000 description 9
- BWZVCCNYKMEVEX-UHFFFAOYSA-N 2,4,6-Trimethylpyridine Chemical compound CC1=CC(C)=NC(C)=C1 BWZVCCNYKMEVEX-UHFFFAOYSA-N 0.000 description 8
- QLVGSBXIQFERFK-NBBYSTNSSA-N C([C@@H](C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CO)C(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=CC=C1 Chemical class C([C@@H](C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CO)C(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=CC=C1 QLVGSBXIQFERFK-NBBYSTNSSA-N 0.000 description 8
- 238000009833 condensation Methods 0.000 description 8
- 230000005494 condensation Effects 0.000 description 8
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 8
- 235000018417 cysteine Nutrition 0.000 description 8
- 238000011534 incubation Methods 0.000 description 8
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 7
- 0 CCCC(*C)C(*)=C(*)[C@@]1OC2[C@](C)OC(CC)[C@@](*)C2*1 Chemical compound CCCC(*C)C(*)=C(*)[C@@]1OC2[C@](C)OC(CC)[C@@](*)C2*1 0.000 description 7
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 7
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 7
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 7
- 229910052794 bromium Inorganic materials 0.000 description 7
- 239000000460 chlorine Substances 0.000 description 7
- 229910052801 chlorine Inorganic materials 0.000 description 7
- 229910052731 fluorine Inorganic materials 0.000 description 7
- 239000011737 fluorine Substances 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 239000007790 solid phase Substances 0.000 description 7
- SFYDWLYPIXHPML-UHFFFAOYSA-N 3-nitro-1-(2,4,6-trimethylphenyl)sulfonyl-1,2,4-triazole Chemical compound CC1=CC(C)=CC(C)=C1S(=O)(=O)N1N=C([N+]([O-])=O)N=C1 SFYDWLYPIXHPML-UHFFFAOYSA-N 0.000 description 6
- 102000003886 Glycoproteins Human genes 0.000 description 6
- 108090000288 Glycoproteins Proteins 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 206010028980 Neoplasm Diseases 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 6
- 125000000217 alkyl group Chemical group 0.000 description 6
- 230000013595 glycosylation Effects 0.000 description 6
- 238000006206 glycosylation reaction Methods 0.000 description 6
- 125000005843 halogen group Chemical group 0.000 description 6
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 6
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 5
- DVBUCBXGDWWXNY-SFHVURJKSA-N (2s)-5-(diaminomethylideneamino)-2-(9h-fluoren-9-ylmethoxycarbonylamino)pentanoic acid Chemical compound C1=CC=C2C(COC(=O)N[C@@H](CCCN=C(N)N)C(O)=O)C3=CC=CC=C3C2=C1 DVBUCBXGDWWXNY-SFHVURJKSA-N 0.000 description 5
- DHBXNPKRAUYBTH-UHFFFAOYSA-N 1,1-ethanedithiol Chemical compound CC(S)S DHBXNPKRAUYBTH-UHFFFAOYSA-N 0.000 description 5
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 5
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 5
- 108020004414 DNA Proteins 0.000 description 5
- 102000002068 Glycopeptides Human genes 0.000 description 5
- 108010015899 Glycopeptides Proteins 0.000 description 5
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 5
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 5
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 5
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 5
- MKYBYDHXWVHEJW-UHFFFAOYSA-N N-[1-oxo-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propan-2-yl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(C(C)NC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 MKYBYDHXWVHEJW-UHFFFAOYSA-N 0.000 description 5
- OVRNDRQMDRJTHS-UHFFFAOYSA-N N-acelyl-D-glucosamine Natural products CC(=O)NC1C(O)OC(CO)C(O)C1O OVRNDRQMDRJTHS-UHFFFAOYSA-N 0.000 description 5
- OVRNDRQMDRJTHS-FMDGEEDCSA-N N-acetyl-beta-D-glucosamine Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O OVRNDRQMDRJTHS-FMDGEEDCSA-N 0.000 description 5
- 125000000539 amino acid group Chemical group 0.000 description 5
- 238000013459 approach Methods 0.000 description 5
- 125000004106 butoxy group Chemical group [*]OC([H])([H])C([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 229940126214 compound 3 Drugs 0.000 description 5
- 238000012217 deletion Methods 0.000 description 5
- 230000037430 deletion Effects 0.000 description 5
- 208000035475 disorder Diseases 0.000 description 5
- 239000003118 drug derivative Substances 0.000 description 5
- 239000000706 filtrate Substances 0.000 description 5
- 239000012634 fragment Substances 0.000 description 5
- 230000028993 immune response Effects 0.000 description 5
- 239000011630 iodine Substances 0.000 description 5
- 229910052740 iodine Inorganic materials 0.000 description 5
- 125000004170 methylsulfonyl group Chemical group [H]C([H])([H])S(*)(=O)=O 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 229950006780 n-acetylglucosamine Drugs 0.000 description 5
- 238000010647 peptide synthesis reaction Methods 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- ZGYICYBLPGRURT-UHFFFAOYSA-N tri(propan-2-yl)silicon Chemical compound CC(C)[Si](C(C)C)C(C)C ZGYICYBLPGRURT-UHFFFAOYSA-N 0.000 description 5
- DQJCDTNMLBYVAY-ZXXIYAEKSA-N (2S,5R,10R,13R)-16-{[(2R,3S,4R,5R)-3-{[(2S,3R,4R,5S,6R)-3-acetamido-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5-(ethylamino)-6-hydroxy-2-(hydroxymethyl)oxan-4-yl]oxy}-5-(4-aminobutyl)-10-carbamoyl-2,13-dimethyl-4,7,12,15-tetraoxo-3,6,11,14-tetraazaheptadecan-1-oic acid Chemical compound NCCCC[C@H](C(=O)N[C@@H](C)C(O)=O)NC(=O)CC[C@H](C(N)=O)NC(=O)[C@@H](C)NC(=O)C(C)O[C@@H]1[C@@H](NCC)C(O)O[C@H](CO)[C@H]1O[C@H]1[C@H](NC(C)=O)[C@@H](O)[C@H](O)[C@@H](CO)O1 DQJCDTNMLBYVAY-ZXXIYAEKSA-N 0.000 description 4
- 125000000229 (C1-C4)alkoxy group Chemical group 0.000 description 4
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 4
- ASOKPJOREAFHNY-UHFFFAOYSA-N 1-Hydroxybenzotriazole Chemical compound C1=CC=C2N(O)N=NC2=C1 ASOKPJOREAFHNY-UHFFFAOYSA-N 0.000 description 4
- RWQUWTMOHXGTNN-UHFFFAOYSA-N 9-n,10-n-bis(4-butylphenyl)-9-n,10-n-bis(4-methylphenyl)phenanthrene-9,10-diamine Chemical compound C1=CC(CCCC)=CC=C1N(C=1C2=CC=CC=C2C2=CC=CC=C2C=1N(C=1C=CC(C)=CC=1)C=1C=CC(CCCC)=CC=1)C1=CC=C(C)C=C1 RWQUWTMOHXGTNN-UHFFFAOYSA-N 0.000 description 4
- ISMDILRWKSYCOD-GNKBHMEESA-N C(C1=CC=CC=C1)[C@@H]1NC(OCCCCCCCCCCCNC([C@@H](NC(C[C@@H]1O)=O)C(C)C)=O)=O Chemical compound C(C1=CC=CC=C1)[C@@H]1NC(OCCCCCCCCCCCNC([C@@H](NC(C[C@@H]1O)=O)C(C)C)=O)=O ISMDILRWKSYCOD-GNKBHMEESA-N 0.000 description 4
- 229940126639 Compound 33 Drugs 0.000 description 4
- CKLJMWTZIZZHCS-UWTATZPHSA-N D-aspartic acid Chemical compound OC(=O)[C@H](N)CC(O)=O CKLJMWTZIZZHCS-UWTATZPHSA-N 0.000 description 4
- WHUUTDBJXJRKMK-GSVOUGTGSA-N D-glutamic acid Chemical compound OC(=O)[C@H](N)CCC(O)=O WHUUTDBJXJRKMK-GSVOUGTGSA-N 0.000 description 4
- 102000004190 Enzymes Human genes 0.000 description 4
- 108090000790 Enzymes Proteins 0.000 description 4
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 4
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 4
- 239000004472 Lysine Substances 0.000 description 4
- MBLBDJOUHNCFQT-LXGUWJNJSA-N N-acetylglucosamine Natural products CC(=O)N[C@@H](C=O)[C@@H](O)[C@H](O)[C@H](O)CO MBLBDJOUHNCFQT-LXGUWJNJSA-N 0.000 description 4
- VJMAITQRABEEKP-UHFFFAOYSA-N [6-(phenylmethoxymethyl)-1,4-dioxan-2-yl]methyl acetate Chemical compound O1C(COC(=O)C)COCC1COCC1=CC=CC=C1 VJMAITQRABEEKP-UHFFFAOYSA-N 0.000 description 4
- 125000003342 alkenyl group Chemical group 0.000 description 4
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 4
- 239000008280 blood Substances 0.000 description 4
- NEHMKBQYUWJMIP-UHFFFAOYSA-N chloromethane Chemical group ClC NEHMKBQYUWJMIP-UHFFFAOYSA-N 0.000 description 4
- 229940125782 compound 2 Drugs 0.000 description 4
- 230000018044 dehydration Effects 0.000 description 4
- 238000006297 dehydration reaction Methods 0.000 description 4
- 229940088598 enzyme Drugs 0.000 description 4
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 4
- 235000004554 glutamine Nutrition 0.000 description 4
- 229960000789 guanidine hydrochloride Drugs 0.000 description 4
- PJJJBBJSCAKJQF-UHFFFAOYSA-N guanidinium chloride Chemical compound [Cl-].NC(N)=[NH2+] PJJJBBJSCAKJQF-UHFFFAOYSA-N 0.000 description 4
- 238000004128 high performance liquid chromatography Methods 0.000 description 4
- 230000002163 immunogen Effects 0.000 description 4
- 238000002955 isolation Methods 0.000 description 4
- 235000018977 lysine Nutrition 0.000 description 4
- 125000000311 mannosyl group Chemical group C1([C@@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 4
- PSHKMPUSSFXUIA-UHFFFAOYSA-N n,n-dimethylpyridin-2-amine Chemical compound CN(C)C1=CC=CC=N1 PSHKMPUSSFXUIA-UHFFFAOYSA-N 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 125000002088 tosyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1C([H])([H])[H])S(*)(=O)=O 0.000 description 4
- AOSZTAHDEDLTLQ-AZKQZHLXSA-N (1S,2S,4R,8S,9S,11S,12R,13S,19S)-6-[(3-chlorophenyl)methyl]-12,19-difluoro-11-hydroxy-8-(2-hydroxyacetyl)-9,13-dimethyl-6-azapentacyclo[10.8.0.02,9.04,8.013,18]icosa-14,17-dien-16-one Chemical compound C([C@@H]1C[C@H]2[C@H]3[C@]([C@]4(C=CC(=O)C=C4[C@@H](F)C3)C)(F)[C@@H](O)C[C@@]2([C@@]1(C1)C(=O)CO)C)N1CC1=CC=CC(Cl)=C1 AOSZTAHDEDLTLQ-AZKQZHLXSA-N 0.000 description 3
- KLBPUVPNPAJWHZ-UMSFTDKQSA-N (2r)-2-(9h-fluoren-9-ylmethoxycarbonylamino)-3-tritylsulfanylpropanoic acid Chemical compound C([C@@H](C(=O)O)NC(=O)OCC1C2=CC=CC=C2C2=CC=CC=C21)SC(C=1C=CC=CC=1)(C=1C=CC=CC=1)C1=CC=CC=C1 KLBPUVPNPAJWHZ-UMSFTDKQSA-N 0.000 description 3
- CBPJQFCAFFNICX-IBGZPJMESA-N (2s)-2-(9h-fluoren-9-ylmethoxycarbonylamino)-4-methylpentanoic acid Chemical compound C1=CC=C2C(COC(=O)N[C@@H](CC(C)C)C(O)=O)C3=CC=CC=C3C2=C1 CBPJQFCAFFNICX-IBGZPJMESA-N 0.000 description 3
- 102100025573 1-alkyl-2-acetylglycerophosphocholine esterase Human genes 0.000 description 3
- MCTWTZJPVLRJOU-UHFFFAOYSA-N 1-methyl-1H-imidazole Chemical compound CN1C=CN=C1 MCTWTZJPVLRJOU-UHFFFAOYSA-N 0.000 description 3
- 239000004475 Arginine Substances 0.000 description 3
- 108010024976 Asparaginase Proteins 0.000 description 3
- 125000001433 C-terminal amino-acid group Chemical group 0.000 description 3
- 229940126657 Compound 17 Drugs 0.000 description 3
- 150000008574 D-amino acids Chemical class 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 108010019236 Fucosyltransferases Proteins 0.000 description 3
- 102000006471 Fucosyltransferases Human genes 0.000 description 3
- IAJILQKETJEXLJ-UHFFFAOYSA-N Galacturonsaeure Natural products O=CC(O)C(O)C(O)C(O)C(O)=O IAJILQKETJEXLJ-UHFFFAOYSA-N 0.000 description 3
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 3
- 108700023372 Glycosyltransferases Proteins 0.000 description 3
- 102000051366 Glycosyltransferases Human genes 0.000 description 3
- 101000851181 Homo sapiens Epidermal growth factor receptor Proteins 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 3
- 241000124008 Mammalia Species 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical group OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 3
- 108010029485 Protein Isoforms Proteins 0.000 description 3
- 102000001708 Protein Isoforms Human genes 0.000 description 3
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 3
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 3
- 239000004473 Threonine Substances 0.000 description 3
- 108090000373 Tissue Plasminogen Activator Proteins 0.000 description 3
- 102000003978 Tissue Plasminogen Activator Human genes 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- LNUFLCYMSVYYNW-ZPJMAFJPSA-N [(2r,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6r)-6-[(2r,3r,4s,5r,6r)-6-[(2r,3r,4s,5r,6r)-6-[[(3s,5s,8r,9s,10s,13r,14s,17r)-10,13-dimethyl-17-[(2r)-6-methylheptan-2-yl]-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1h-cyclopenta[a]phenanthren-3-yl]oxy]-4,5-disulfo Chemical compound O([C@@H]1[C@@H](COS(O)(=O)=O)O[C@@H]([C@@H]([C@H]1OS(O)(=O)=O)OS(O)(=O)=O)O[C@@H]1[C@@H](COS(O)(=O)=O)O[C@@H]([C@@H]([C@H]1OS(O)(=O)=O)OS(O)(=O)=O)O[C@@H]1[C@@H](COS(O)(=O)=O)O[C@H]([C@@H]([C@H]1OS(O)(=O)=O)OS(O)(=O)=O)O[C@@H]1C[C@@H]2CC[C@H]3[C@@H]4CC[C@@H]([C@]4(CC[C@@H]3[C@@]2(C)CC1)C)[C@H](C)CCCC(C)C)[C@H]1O[C@H](COS(O)(=O)=O)[C@@H](OS(O)(=O)=O)[C@H](OS(O)(=O)=O)[C@H]1OS(O)(=O)=O LNUFLCYMSVYYNW-ZPJMAFJPSA-N 0.000 description 3
- 238000002835 absorbance Methods 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 235000016127 added sugars Nutrition 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 3
- 235000009697 arginine Nutrition 0.000 description 3
- 235000003704 aspartic acid Nutrition 0.000 description 3
- 125000004429 atom Chemical group 0.000 description 3
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 3
- 201000011510 cancer Diseases 0.000 description 3
- 239000004202 carbamide Substances 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 210000004027 cell Anatomy 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 238000010511 deprotection reaction Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- 235000013922 glutamic acid Nutrition 0.000 description 3
- 239000004220 glutamic acid Substances 0.000 description 3
- 150000004676 glycans Chemical class 0.000 description 3
- NPZTUJOABDZTLV-UHFFFAOYSA-N hydroxybenzotriazole Substances O=C1C=CC=C2NNN=C12 NPZTUJOABDZTLV-UHFFFAOYSA-N 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 150000002772 monosaccharides Chemical class 0.000 description 3
- 125000003729 nucleotide group Chemical group 0.000 description 3
- 230000036961 partial effect Effects 0.000 description 3
- 230000000144 pharmacologic effect Effects 0.000 description 3
- 229920001282 polysaccharide Polymers 0.000 description 3
- 239000005017 polysaccharide Substances 0.000 description 3
- 235000004400 serine Nutrition 0.000 description 3
- 235000008521 threonine Nutrition 0.000 description 3
- 230000002110 toxicologic effect Effects 0.000 description 3
- 231100000027 toxicology Toxicity 0.000 description 3
- 125000002221 trityl group Chemical group [H]C1=C([H])C([H])=C([H])C([H])=C1C([*])(C1=C(C(=C(C(=C1[H])[H])[H])[H])[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 3
- GLGNXYJARSMNGJ-VKTIVEEGSA-N (1s,2s,3r,4r)-3-[[5-chloro-2-[(1-ethyl-6-methoxy-2-oxo-4,5-dihydro-3h-1-benzazepin-7-yl)amino]pyrimidin-4-yl]amino]bicyclo[2.2.1]hept-5-ene-2-carboxamide Chemical compound CCN1C(=O)CCCC2=C(OC)C(NC=3N=C(C(=CN=3)Cl)N[C@H]3[C@H]([C@@]4([H])C[C@@]3(C=C4)[H])C(N)=O)=CC=C21 GLGNXYJARSMNGJ-VKTIVEEGSA-N 0.000 description 2
- SZUVGFMDDVSKSI-WIFOCOSTSA-N (1s,2s,3s,5r)-1-(carboxymethyl)-3,5-bis[(4-phenoxyphenyl)methyl-propylcarbamoyl]cyclopentane-1,2-dicarboxylic acid Chemical compound O=C([C@@H]1[C@@H]([C@](CC(O)=O)([C@H](C(=O)N(CCC)CC=2C=CC(OC=3C=CC=CC=3)=CC=2)C1)C(O)=O)C(O)=O)N(CCC)CC(C=C1)=CC=C1OC1=CC=CC=C1 SZUVGFMDDVSKSI-WIFOCOSTSA-N 0.000 description 2
- SWZCTMTWRHEBIN-QFIPXVFZSA-N (2s)-2-(9h-fluoren-9-ylmethoxycarbonylamino)-3-(4-hydroxyphenyl)propanoic acid Chemical compound C([C@@H](C(=O)O)NC(=O)OCC1C2=CC=CC=C2C2=CC=CC=C21)C1=CC=C(O)C=C1 SWZCTMTWRHEBIN-QFIPXVFZSA-N 0.000 description 2
- REITVGIIZHFVGU-IBGZPJMESA-N (2s)-2-(9h-fluoren-9-ylmethoxycarbonylamino)-3-[(2-methylpropan-2-yl)oxy]propanoic acid Chemical compound C1=CC=C2C(COC(=O)N[C@@H](COC(C)(C)C)C(O)=O)C3=CC=CC=C3C2=C1 REITVGIIZHFVGU-IBGZPJMESA-N 0.000 description 2
- QFLWZFQWSBQYPS-AWRAUJHKSA-N (3S)-3-[[(2S)-2-[[(2S)-2-[5-[(3aS,6aR)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]pentanoylamino]-3-methylbutanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-4-[1-bis(4-chlorophenoxy)phosphorylbutylamino]-4-oxobutanoic acid Chemical group CCCC(NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](Cc1ccc(O)cc1)NC(=O)[C@@H](NC(=O)CCCCC1SC[C@@H]2NC(=O)N[C@H]12)C(C)C)P(=O)(Oc1ccc(Cl)cc1)Oc1ccc(Cl)cc1 QFLWZFQWSBQYPS-AWRAUJHKSA-N 0.000 description 2
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 2
- BDNKZNFMNDZQMI-UHFFFAOYSA-N 1,3-diisopropylcarbodiimide Chemical compound CC(C)N=C=NC(C)C BDNKZNFMNDZQMI-UHFFFAOYSA-N 0.000 description 2
- KQZLRWGGWXJPOS-NLFPWZOASA-N 1-[(1R)-1-(2,4-dichlorophenyl)ethyl]-6-[(4S,5R)-4-[(2S)-2-(hydroxymethyl)pyrrolidin-1-yl]-5-methylcyclohexen-1-yl]pyrazolo[3,4-b]pyrazine-3-carbonitrile Chemical compound ClC1=C(C=CC(=C1)Cl)[C@@H](C)N1N=C(C=2C1=NC(=CN=2)C1=CC[C@@H]([C@@H](C1)C)N1[C@@H](CCC1)CO)C#N KQZLRWGGWXJPOS-NLFPWZOASA-N 0.000 description 2
- JFLSOKIMYBSASW-UHFFFAOYSA-N 1-chloro-2-[chloro(diphenyl)methyl]benzene Chemical compound ClC1=CC=CC=C1C(Cl)(C=1C=CC=CC=1)C1=CC=CC=C1 JFLSOKIMYBSASW-UHFFFAOYSA-N 0.000 description 2
- FPIRBHDGWMWJEP-UHFFFAOYSA-N 1-hydroxy-7-azabenzotriazole Chemical compound C1=CN=C2N(O)N=NC2=C1 FPIRBHDGWMWJEP-UHFFFAOYSA-N 0.000 description 2
- XXMFJKNOJSDQBM-UHFFFAOYSA-N 2,2,2-trifluoroacetic acid;hydrate Chemical compound [OH3+].[O-]C(=O)C(F)(F)F XXMFJKNOJSDQBM-UHFFFAOYSA-N 0.000 description 2
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 2
- VUCNQOPCYRJCGQ-UHFFFAOYSA-N 2-[4-(hydroxymethyl)phenoxy]acetic acid Chemical compound OCC1=CC=C(OCC(O)=O)C=C1 VUCNQOPCYRJCGQ-UHFFFAOYSA-N 0.000 description 2
- WZFUQSJFWNHZHM-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC(=O)N1CC2=C(CC1)NN=N2 WZFUQSJFWNHZHM-UHFFFAOYSA-N 0.000 description 2
- GOJUJUVQIVIZAV-UHFFFAOYSA-N 2-amino-4,6-dichloropyrimidine-5-carbaldehyde Chemical group NC1=NC(Cl)=C(C=O)C(Cl)=N1 GOJUJUVQIVIZAV-UHFFFAOYSA-N 0.000 description 2
- YSUIQYOGTINQIN-UZFYAQMZSA-N 2-amino-9-[(1S,6R,8R,9S,10R,15R,17R,18R)-8-(6-aminopurin-9-yl)-9,18-difluoro-3,12-dihydroxy-3,12-bis(sulfanylidene)-2,4,7,11,13,16-hexaoxa-3lambda5,12lambda5-diphosphatricyclo[13.2.1.06,10]octadecan-17-yl]-1H-purin-6-one Chemical compound NC1=NC2=C(N=CN2[C@@H]2O[C@@H]3COP(S)(=O)O[C@@H]4[C@@H](COP(S)(=O)O[C@@H]2[C@@H]3F)O[C@H]([C@H]4F)N2C=NC3=C2N=CN=C3N)C(=O)N1 YSUIQYOGTINQIN-UZFYAQMZSA-N 0.000 description 2
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 2
- FPQQSJJWHUJYPU-UHFFFAOYSA-N 3-(dimethylamino)propyliminomethylidene-ethylazanium;chloride Chemical compound Cl.CCN=C=NCCCN(C)C FPQQSJJWHUJYPU-UHFFFAOYSA-N 0.000 description 2
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 2
- HXOYWJCDYVODON-UHFFFAOYSA-N 4-[4-(hydroxymethyl)-3-methoxyphenoxy]butanoic acid Chemical compound COC1=CC(OCCCC(O)=O)=CC=C1CO HXOYWJCDYVODON-UHFFFAOYSA-N 0.000 description 2
- XXYNZSATHOXXBJ-UHFFFAOYSA-N 4-hydroxyisoindole-1,3-dione Chemical compound OC1=CC=CC2=C1C(=O)NC2=O XXYNZSATHOXXBJ-UHFFFAOYSA-N 0.000 description 2
- 239000000275 Adrenocorticotropic Hormone Substances 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OBMZMSLWNNWEJA-XNCRXQDQSA-N C1=CC=2C(C[C@@H]3NC(=O)[C@@H](NC(=O)[C@H](NC(=O)N(CC#CCN(CCCC[C@H](NC(=O)[C@@H](CC4=CC=CC=C4)NC3=O)C(=O)N)CC=C)NC(=O)[C@@H](N)C)CC3=CNC4=C3C=CC=C4)C)=CNC=2C=C1 Chemical compound C1=CC=2C(C[C@@H]3NC(=O)[C@@H](NC(=O)[C@H](NC(=O)N(CC#CCN(CCCC[C@H](NC(=O)[C@@H](CC4=CC=CC=C4)NC3=O)C(=O)N)CC=C)NC(=O)[C@@H](N)C)CC3=CNC4=C3C=CC=C4)C)=CNC=2C=C1 OBMZMSLWNNWEJA-XNCRXQDQSA-N 0.000 description 2
- KCBAMQOKOLXLOX-BSZYMOERSA-N CC1=C(SC=N1)C2=CC=C(C=C2)[C@H](C)NC(=O)[C@@H]3C[C@H](CN3C(=O)[C@H](C(C)(C)C)NC(=O)CCCCCCCCCCNCCCONC(=O)C4=C(C(=C(C=C4)F)F)NC5=C(C=C(C=C5)I)F)O Chemical compound CC1=C(SC=N1)C2=CC=C(C=C2)[C@H](C)NC(=O)[C@@H]3C[C@H](CN3C(=O)[C@H](C(C)(C)C)NC(=O)CCCCCCCCCCNCCCONC(=O)C4=C(C(=C(C=C4)F)F)NC5=C(C=C(C=C5)I)F)O KCBAMQOKOLXLOX-BSZYMOERSA-N 0.000 description 2
- 102400000113 Calcitonin Human genes 0.000 description 2
- 108060001064 Calcitonin Proteins 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 102400000739 Corticotropin Human genes 0.000 description 2
- 101800000414 Corticotropin Proteins 0.000 description 2
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 2
- 102000053602 DNA Human genes 0.000 description 2
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical compound C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 description 2
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 2
- ULGZDMOVFRHVEP-RWJQBGPGSA-N Erythromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 ULGZDMOVFRHVEP-RWJQBGPGSA-N 0.000 description 2
- 108090000371 Esterases Proteins 0.000 description 2
- 108010011459 Exenatide Proteins 0.000 description 2
- 102000018233 Fibroblast Growth Factor Human genes 0.000 description 2
- 108050007372 Fibroblast Growth Factor Proteins 0.000 description 2
- 102000003972 Fibroblast growth factor 7 Human genes 0.000 description 2
- 108090000385 Fibroblast growth factor 7 Proteins 0.000 description 2
- 101710198884 GATA-type zinc finger protein 1 Proteins 0.000 description 2
- UGJMXCAKCUNAIE-UHFFFAOYSA-N Gabapentin Chemical compound OC(=O)CC1(CN)CCCCC1 UGJMXCAKCUNAIE-UHFFFAOYSA-N 0.000 description 2
- DTHNMHAUYICORS-KTKZVXAJSA-N Glucagon-like peptide 1 Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CCC(N)=O)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC=1N=CNC=1)[C@@H](C)O)[C@@H](C)O)C(C)C)C1=CC=CC=C1 DTHNMHAUYICORS-KTKZVXAJSA-N 0.000 description 2
- 229930186217 Glycolipid Natural products 0.000 description 2
- 102000004269 Granulocyte Colony-Stimulating Factor Human genes 0.000 description 2
- 108010017080 Granulocyte Colony-Stimulating Factor Proteins 0.000 description 2
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 2
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 2
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 2
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 2
- 102000002812 Heat-Shock Proteins Human genes 0.000 description 2
- 108010004889 Heat-Shock Proteins Proteins 0.000 description 2
- RPTUSVTUFVMDQK-UHFFFAOYSA-N Hidralazin Chemical compound C1=CC=C2C(NN)=NN=CC2=C1 RPTUSVTUFVMDQK-UHFFFAOYSA-N 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 2
- 102100026018 Interleukin-1 receptor antagonist protein Human genes 0.000 description 2
- 101710144554 Interleukin-1 receptor antagonist protein Proteins 0.000 description 2
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 2
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 2
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 2
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 2
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 2
- OVRNDRQMDRJTHS-CBQIKETKSA-N N-Acetyl-D-Galactosamine Chemical compound CC(=O)N[C@H]1[C@@H](O)O[C@H](CO)[C@H](O)[C@@H]1O OVRNDRQMDRJTHS-CBQIKETKSA-N 0.000 description 2
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical compound ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 2
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 2
- MBLBDJOUHNCFQT-UHFFFAOYSA-N N-acetyl-D-galactosamine Natural products CC(=O)NC(C=O)C(O)C(O)C(O)CO MBLBDJOUHNCFQT-UHFFFAOYSA-N 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- 102000003982 Parathyroid hormone Human genes 0.000 description 2
- 108090000445 Parathyroid hormone Proteins 0.000 description 2
- ZRWPUFFVAOMMNM-UHFFFAOYSA-N Patulin Chemical compound OC1OCC=C2OC(=O)C=C12 ZRWPUFFVAOMMNM-UHFFFAOYSA-N 0.000 description 2
- 102000057297 Pepsin A Human genes 0.000 description 2
- 108090000284 Pepsin A Proteins 0.000 description 2
- 101710176384 Peptide 1 Proteins 0.000 description 2
- 108010038512 Platelet-Derived Growth Factor Proteins 0.000 description 2
- 102000010780 Platelet-Derived Growth Factor Human genes 0.000 description 2
- 102100040918 Pro-glucagon Human genes 0.000 description 2
- 239000004365 Protease Substances 0.000 description 2
- 102000016611 Proteoglycans Human genes 0.000 description 2
- 108010067787 Proteoglycans Proteins 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 102000019197 Superoxide Dismutase Human genes 0.000 description 2
- 108010012715 Superoxide dismutase Proteins 0.000 description 2
- 102000011923 Thyrotropin Human genes 0.000 description 2
- 108010061174 Thyrotropin Proteins 0.000 description 2
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 2
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 2
- 108060008683 Tumor Necrosis Factor Receptor Proteins 0.000 description 2
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 2
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 2
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 2
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 2
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 2
- SMNRFWMNPDABKZ-WVALLCKVSA-N [[(2R,3S,4R,5S)-5-(2,6-dioxo-3H-pyridin-3-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [[[(2R,3S,4S,5R,6R)-4-fluoro-3,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl] hydrogen phosphate Chemical compound OC[C@H]1O[C@H](OP(O)(=O)OP(O)(=O)OP(O)(=O)OP(O)(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)C2C=CC(=O)NC2=O)[C@H](O)[C@@H](F)[C@@H]1O SMNRFWMNPDABKZ-WVALLCKVSA-N 0.000 description 2
- 125000002252 acyl group Chemical group 0.000 description 2
- IAJILQKETJEXLJ-QTBDOELSSA-N aldehydo-D-glucuronic acid Chemical compound O=C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)C(O)=O IAJILQKETJEXLJ-QTBDOELSSA-N 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- 102000015395 alpha 1-Antitrypsin Human genes 0.000 description 2
- 108010050122 alpha 1-Antitrypsin Proteins 0.000 description 2
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 230000009435 amidation Effects 0.000 description 2
- 238000007112 amidation reaction Methods 0.000 description 2
- 125000003368 amide group Chemical group 0.000 description 2
- 239000004599 antimicrobial Substances 0.000 description 2
- 239000002246 antineoplastic agent Substances 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- BLFLLBZGZJTVJG-UHFFFAOYSA-N benzocaine Chemical compound CCOC(=O)C1=CC=C(N)C=C1 BLFLLBZGZJTVJG-UHFFFAOYSA-N 0.000 description 2
- UCMIRNVEIXFBKS-UHFFFAOYSA-N beta-alanine Chemical compound NCCC(O)=O UCMIRNVEIXFBKS-UHFFFAOYSA-N 0.000 description 2
- 229960004015 calcitonin Drugs 0.000 description 2
- BBBFJLBPOGFECG-VJVYQDLKSA-N calcitonin Chemical compound N([C@H](C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H]([C@@H](C)O)C(=O)N1[C@@H](CCC1)C(N)=O)C(C)C)C(=O)[C@@H]1CSSC[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1 BBBFJLBPOGFECG-VJVYQDLKSA-N 0.000 description 2
- 238000005251 capillar electrophoresis Methods 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 125000002837 carbocyclic group Chemical group 0.000 description 2
- PFKFTWBEEFSNDU-UHFFFAOYSA-N carbonyldiimidazole Chemical compound C1=CN=CN1C(=O)N1C=CN=C1 PFKFTWBEEFSNDU-UHFFFAOYSA-N 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- MYSWGUAQZAJSOK-UHFFFAOYSA-N ciprofloxacin Chemical compound C12=CC(N3CCNCC3)=C(F)C=C2C(=O)C(C(=O)O)=CN1C1CC1 MYSWGUAQZAJSOK-UHFFFAOYSA-N 0.000 description 2
- 229940126543 compound 14 Drugs 0.000 description 2
- 229940125758 compound 15 Drugs 0.000 description 2
- 229940125833 compound 23 Drugs 0.000 description 2
- 229940125877 compound 31 Drugs 0.000 description 2
- 229940125898 compound 5 Drugs 0.000 description 2
- IDLFZVILOHSSID-OVLDLUHVSA-N corticotropin Chemical compound C([C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(N)=O)C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)NC(=O)[C@@H](N)CO)C1=CC=C(O)C=C1 IDLFZVILOHSSID-OVLDLUHVSA-N 0.000 description 2
- 229960000258 corticotropin Drugs 0.000 description 2
- XVOYSCVBGLVSOL-UHFFFAOYSA-N cysteic acid Chemical compound OC(=O)C(N)CS(O)(=O)=O XVOYSCVBGLVSOL-UHFFFAOYSA-N 0.000 description 2
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 2
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 2
- WHBIGIKBNXZKFE-UHFFFAOYSA-N delavirdine Chemical compound CC(C)NC1=CC=CN=C1N1CCN(C(=O)C=2NC3=CC=C(NS(C)(=O)=O)C=C3C=2)CC1 WHBIGIKBNXZKFE-UHFFFAOYSA-N 0.000 description 2
- 229960001042 dexmethylphenidate Drugs 0.000 description 2
- DUGOZIWVEXMGBE-CHWSQXEVSA-N dexmethylphenidate Chemical compound C([C@@H]1[C@H](C(=O)OC)C=2C=CC=CC=2)CCCN1 DUGOZIWVEXMGBE-CHWSQXEVSA-N 0.000 description 2
- 206010012601 diabetes mellitus Diseases 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- AJDPNPAGZMZOMN-UHFFFAOYSA-N diethyl (4-oxo-1,2,3-benzotriazin-3-yl) phosphate Chemical compound C1=CC=C2C(=O)N(OP(=O)(OCC)OCC)N=NC2=C1 AJDPNPAGZMZOMN-UHFFFAOYSA-N 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 125000005982 diphenylmethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])(*)C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 2
- MKRTXPORKIRPDG-UHFFFAOYSA-N diphenylphosphoryl azide Chemical compound C=1C=CC=CC=1P(=O)(N=[N+]=[N-])C1=CC=CC=C1 MKRTXPORKIRPDG-UHFFFAOYSA-N 0.000 description 2
- KMJYGLJORYOCJF-OABTZWTBSA-L disodium;5-acetamido-2-[[6-[5-acetamido-6-[2-[[6-[5-acetamido-6-[5-acetamido-6-[[(3s)-4-[[(2s)-6-amino-1-[[(1s,2r)-1-carboxy-2-hydroxypropyl]amino]-1-oxohexan-2-yl]amino]-3-[[(2s)-2-[[(2s)-2-[[(2s)-2,6-diaminohexanoyl]amino]-3-methylbutanoyl]amino]propano Chemical compound [Na+].[Na+].OC1C(NC(C)=O)C(NC(=O)C[C@H](NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@@H](N)CCCCN)C(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)O)C(O)=O)OC(CO)C1OC1C(NC(C)=O)C(O)C(OC2C(C(OC3C(C(O)C(O)C(CO)O3)OC3C(C(O)C(OC4C(C(O)C(O)C(COC5(OC(C(NC(C)=O)C(O)C5)[C@H](O)[C@H](O)CO)C([O-])=O)O4)O)C(CO)O3)NC(C)=O)C(O)C(COC3C(C(O)C(O)C(CO)O3)OC3C(C(O)C(OC4C(C(O)C(O)C(COC5(OC(C(NC(C)=O)C(O)C5)[C@H](O)[C@H](O)CO)C([O-])=O)O4)O)C(CO)O3)NC(C)=O)O2)O)C(CO)O1 KMJYGLJORYOCJF-OABTZWTBSA-L 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- VYFYYTLLBUKUHU-UHFFFAOYSA-N dopamine Chemical compound NCCC1=CC=C(O)C(O)=C1 VYFYYTLLBUKUHU-UHFFFAOYSA-N 0.000 description 2
- 230000008472 epithelial growth Effects 0.000 description 2
- AEUTYOVWOVBAKS-UWVGGRQHSA-N ethambutol Chemical compound CC[C@@H](CO)NCCN[C@@H](CC)CO AEUTYOVWOVBAKS-UWVGGRQHSA-N 0.000 description 2
- 229960001519 exenatide Drugs 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 229940126864 fibroblast growth factor Drugs 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 229930182830 galactose Natural products 0.000 description 2
- BGHSOEHUOOAYMY-JTZMCQEISA-N ghrelin Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1N=CNC=1)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)CN)C1=CC=CC=C1 BGHSOEHUOOAYMY-JTZMCQEISA-N 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 229940097043 glucuronic acid Drugs 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 239000005090 green fluorescent protein Substances 0.000 description 2
- 108010085742 growth hormone-releasing peptide-2 Proteins 0.000 description 2
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 2
- 125000000623 heterocyclic group Chemical group 0.000 description 2
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 2
- 235000014304 histidine Nutrition 0.000 description 2
- 239000000413 hydrolysate Substances 0.000 description 2
- 230000003301 hydrolyzing effect Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 102000028416 insulin-like growth factor binding Human genes 0.000 description 2
- 108091022911 insulin-like growth factor binding Proteins 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 125000000040 m-tolyl group Chemical group [H]C1=C([H])C(*)=C([H])C(=C1[H])C([H])([H])[H] 0.000 description 2
- 238000004949 mass spectrometry Methods 0.000 description 2
- RHCSKNNOAZULRK-UHFFFAOYSA-N mescaline Chemical compound COC1=CC(CCN)=CC(OC)=C1OC RHCSKNNOAZULRK-UHFFFAOYSA-N 0.000 description 2
- 229940050176 methyl chloride Drugs 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- 125000003261 o-tolyl group Chemical group [H]C1=C([H])C(*)=C(C([H])=C1[H])C([H])([H])[H] 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 125000001037 p-tolyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)C([H])([H])[H] 0.000 description 2
- 239000000199 parathyroid hormone Substances 0.000 description 2
- 229940111202 pepsin Drugs 0.000 description 2
- 108010009779 peptide 32 Proteins 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 230000001766 physiological effect Effects 0.000 description 2
- 239000006187 pill Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 230000003449 preventive effect Effects 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- QZAYGJVTTNCVMB-UHFFFAOYSA-N serotonin Chemical compound C1=C(O)C=C2C(CCN)=CNC2=C1 QZAYGJVTTNCVMB-UHFFFAOYSA-N 0.000 description 2
- VGKDLMBJGBXTGI-SJCJKPOMSA-N sertraline Chemical compound C1([C@@H]2CC[C@@H](C3=CC=CC=C32)NC)=CC=C(Cl)C(Cl)=C1 VGKDLMBJGBXTGI-SJCJKPOMSA-N 0.000 description 2
- 229960002073 sertraline Drugs 0.000 description 2
- UNFWWIHTNXNPBV-WXKVUWSESA-N spectinomycin Chemical compound O([C@@H]1[C@@H](NC)[C@@H](O)[C@H]([C@@H]([C@H]1O1)O)NC)[C@]2(O)[C@H]1O[C@H](C)CC2=O UNFWWIHTNXNPBV-WXKVUWSESA-N 0.000 description 2
- 229960000268 spectinomycin Drugs 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 239000000829 suppository Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 239000003826 tablet Substances 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 125000004001 thioalkyl group Chemical group 0.000 description 2
- 125000005000 thioaryl group Chemical group 0.000 description 2
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 2
- 229960000187 tissue plasminogen activator Drugs 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 102000003390 tumor necrosis factor Human genes 0.000 description 2
- 102000003298 tumor necrosis factor receptor Human genes 0.000 description 2
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 2
- 235000002374 tyrosine Nutrition 0.000 description 2
- 125000005023 xylyl group Chemical group 0.000 description 2
- AHOUBRCZNHFOSL-YOEHRIQHSA-N (+)-Casbol Chemical compound C1=CC(F)=CC=C1[C@H]1[C@H](COC=2C=C3OCOC3=CC=2)CNCC1 AHOUBRCZNHFOSL-YOEHRIQHSA-N 0.000 description 1
- DBGIVFWFUFKIQN-UHFFFAOYSA-N (+-)-Fenfluramine Chemical compound CCNC(C)CC1=CC=CC(C(F)(F)F)=C1 DBGIVFWFUFKIQN-UHFFFAOYSA-N 0.000 description 1
- JWZZKOKVBUJMES-UHFFFAOYSA-N (+-)-Isoprenaline Chemical compound CC(C)NCC(O)C1=CC=C(O)C(O)=C1 JWZZKOKVBUJMES-UHFFFAOYSA-N 0.000 description 1
- HMJIYCCIJYRONP-UHFFFAOYSA-N (+-)-Isradipine Chemical compound COC(=O)C1=C(C)NC(C)=C(C(=O)OC(C)C)C1C1=CC=CC2=NON=C12 HMJIYCCIJYRONP-UHFFFAOYSA-N 0.000 description 1
- XWTYSIMOBUGWOL-UHFFFAOYSA-N (+-)-Terbutaline Chemical compound CC(C)(C)NCC(O)C1=CC(O)=CC(O)=C1 XWTYSIMOBUGWOL-UHFFFAOYSA-N 0.000 description 1
- XEEQGYMUWCZPDN-DOMZBBRYSA-N (-)-(11S,2'R)-erythro-mefloquine Chemical compound C([C@@H]1[C@@H](O)C=2C3=CC=CC(=C3N=C(C=2)C(F)(F)F)C(F)(F)F)CCCN1 XEEQGYMUWCZPDN-DOMZBBRYSA-N 0.000 description 1
- SFLSHLFXELFNJZ-QMMMGPOBSA-N (-)-norepinephrine Chemical compound NC[C@H](O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-QMMMGPOBSA-N 0.000 description 1
- GJJFMKBJSRMPLA-HIFRSBDPSA-N (1R,2S)-2-(aminomethyl)-N,N-diethyl-1-phenyl-1-cyclopropanecarboxamide Chemical compound C=1C=CC=CC=1[C@@]1(C(=O)N(CC)CC)C[C@@H]1CN GJJFMKBJSRMPLA-HIFRSBDPSA-N 0.000 description 1
- UAOUIVVJBYDFKD-XKCDOFEDSA-N (1R,9R,10S,11R,12R,15S,18S,21R)-10,11,21-trihydroxy-8,8-dimethyl-14-methylidene-4-(prop-2-enylamino)-20-oxa-5-thia-3-azahexacyclo[9.7.2.112,15.01,9.02,6.012,18]henicosa-2(6),3-dien-13-one Chemical compound C([C@@H]1[C@@H](O)[C@@]23C(C1=C)=O)C[C@H]2[C@]12C(N=C(NCC=C)S4)=C4CC(C)(C)[C@H]1[C@H](O)[C@]3(O)OC2 UAOUIVVJBYDFKD-XKCDOFEDSA-N 0.000 description 1
- IGLYMJRIWWIQQE-QUOODJBBSA-N (1S,2R)-2-phenylcyclopropan-1-amine (1R,2S)-2-phenylcyclopropan-1-amine Chemical compound N[C@H]1C[C@@H]1C1=CC=CC=C1.N[C@@H]1C[C@H]1C1=CC=CC=C1 IGLYMJRIWWIQQE-QUOODJBBSA-N 0.000 description 1
- WMSUFWLPZLCIHP-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 9h-fluoren-9-ylmethyl carbonate Chemical compound C12=CC=CC=C2C2=CC=CC=C2C1COC(=O)ON1C(=O)CCC1=O WMSUFWLPZLCIHP-UHFFFAOYSA-N 0.000 description 1
- XUFXOAAUWZOOIT-SXARVLRPSA-N (2R,3R,4R,5S,6R)-5-[[(2R,3R,4R,5S,6R)-5-[[(2R,3R,4S,5S,6R)-3,4-dihydroxy-6-methyl-5-[[(1S,4R,5S,6S)-4,5,6-trihydroxy-3-(hydroxymethyl)-1-cyclohex-2-enyl]amino]-2-oxanyl]oxy]-3,4-dihydroxy-6-(hydroxymethyl)-2-oxanyl]oxy]-6-(hydroxymethyl)oxane-2,3,4-triol Chemical compound O([C@H]1O[C@H](CO)[C@H]([C@@H]([C@H]1O)O)O[C@H]1O[C@@H]([C@H]([C@H](O)[C@H]1O)N[C@@H]1[C@@H]([C@@H](O)[C@H](O)C(CO)=C1)O)C)[C@@H]1[C@@H](CO)O[C@@H](O)[C@H](O)[C@H]1O XUFXOAAUWZOOIT-SXARVLRPSA-N 0.000 description 1
- GHYOCDFICYLMRF-UTIIJYGPSA-N (2S,3R)-N-[(2S)-3-(cyclopenten-1-yl)-1-[(2R)-2-methyloxiran-2-yl]-1-oxopropan-2-yl]-3-hydroxy-3-(4-methoxyphenyl)-2-[[(2S)-2-[(2-morpholin-4-ylacetyl)amino]propanoyl]amino]propanamide Chemical compound C1(=CCCC1)C[C@@H](C(=O)[C@@]1(OC1)C)NC([C@H]([C@@H](C1=CC=C(C=C1)OC)O)NC([C@H](C)NC(CN1CCOCC1)=O)=O)=O GHYOCDFICYLMRF-UTIIJYGPSA-N 0.000 description 1
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 1
- YWPHCCPCQOJSGZ-LLVKDONJSA-N (2r)-2-[(2-ethoxyphenoxy)methyl]morpholine Chemical compound CCOC1=CC=CC=C1OC[C@@H]1OCCNC1 YWPHCCPCQOJSGZ-LLVKDONJSA-N 0.000 description 1
- ATVFTGTXIUDKIZ-YFKPBYRVSA-N (2r)-2-[(2-methylpropan-2-yl)oxycarbonylamino]-3-sulfanylpropanoic acid Chemical compound CC(C)(C)OC(=O)N[C@@H](CS)C(O)=O ATVFTGTXIUDKIZ-YFKPBYRVSA-N 0.000 description 1
- BUJAGSGYPOAWEI-SECBINFHSA-N (2r)-2-amino-n-(2,6-dimethylphenyl)propanamide Chemical compound C[C@@H](N)C(=O)NC1=C(C)C=CC=C1C BUJAGSGYPOAWEI-SECBINFHSA-N 0.000 description 1
- CSMYOORPUGPKAP-IBGZPJMESA-N (2r)-3-(acetamidomethylsulfanyl)-2-(9h-fluoren-9-ylmethoxycarbonylamino)propanoic acid Chemical compound C1=CC=C2C(COC(=O)N[C@@H](CSCNC(=O)C)C(O)=O)C3=CC=CC=C3C2=C1 CSMYOORPUGPKAP-IBGZPJMESA-N 0.000 description 1
- ZDUMTHLUTJOUML-IBGZPJMESA-N (2r)-3-(tert-butyldisulfanyl)-2-(9h-fluoren-9-ylmethoxycarbonylamino)propanoic acid Chemical compound C1=CC=C2C(COC(=O)N[C@@H](CSSC(C)(C)C)C(O)=O)C3=CC=CC=C3C2=C1 ZDUMTHLUTJOUML-IBGZPJMESA-N 0.000 description 1
- IFVORPLRHYROAA-LBPRGKRZSA-N (2r)-3-benzylsulfanyl-2-[(2-methylpropan-2-yl)oxycarbonylamino]propanoic acid Chemical compound CC(C)(C)OC(=O)N[C@H](C(O)=O)CSCC1=CC=CC=C1 IFVORPLRHYROAA-LBPRGKRZSA-N 0.000 description 1
- IXAYZHCPEYTWHW-IBGZPJMESA-N (2r)-3-tert-butylsulfanyl-2-(9h-fluoren-9-ylmethoxycarbonylamino)propanoic acid Chemical compound C1=CC=C2C(COC(=O)N[C@@H](CSC(C)(C)C)C(O)=O)C3=CC=CC=C3C2=C1 IXAYZHCPEYTWHW-IBGZPJMESA-N 0.000 description 1
- ZPGDWQNBZYOZTI-SFHVURJKSA-N (2s)-1-(9h-fluoren-9-ylmethoxycarbonyl)pyrrolidine-2-carboxylic acid Chemical compound OC(=O)[C@@H]1CCCN1C(=O)OCC1C2=CC=CC=C2C2=CC=CC=C21 ZPGDWQNBZYOZTI-SFHVURJKSA-N 0.000 description 1
- ZQEBQGAAWMOMAI-ZETCQYMHSA-N (2s)-1-[(2-methylpropan-2-yl)oxycarbonyl]pyrrolidine-2-carboxylic acid Chemical compound CC(C)(C)OC(=O)N1CCC[C@H]1C(O)=O ZQEBQGAAWMOMAI-ZETCQYMHSA-N 0.000 description 1
- XXMYDXUIZKNHDT-QNGWXLTQSA-N (2s)-2-(9h-fluoren-9-ylmethoxycarbonylamino)-3-(1-tritylimidazol-4-yl)propanoic acid Chemical compound C([C@@H](C(=O)O)NC(=O)OCC1C2=CC=CC=C2C2=CC=CC=C21)C(N=C1)=CN1C(C=1C=CC=CC=1)(C=1C=CC=CC=1)C1=CC=CC=C1 XXMYDXUIZKNHDT-QNGWXLTQSA-N 0.000 description 1
- SIRPVCUJLVXZPW-IBGZPJMESA-N (2s)-2-(9h-fluoren-9-ylmethoxycarbonylamino)-3-(1h-imidazol-5-yl)propanoic acid Chemical compound C([C@@H](C(=O)O)NC(=O)OCC1C2=CC=CC=C2C2=CC=CC=C21)C1=CNC=N1 SIRPVCUJLVXZPW-IBGZPJMESA-N 0.000 description 1
- MGHMWKZOLAAOTD-DEOSSOPVSA-N (2s)-2-(9h-fluoren-9-ylmethoxycarbonylamino)-3-(1h-indol-3-yl)propanoic acid Chemical compound C12=CC=CC=C2C2=CC=CC=C2C1COC(=O)N[C@H](C(=O)O)CC1=CNC2=CC=CC=C12 MGHMWKZOLAAOTD-DEOSSOPVSA-N 0.000 description 1
- ADOHASQZJSJZBT-SANMLTNESA-N (2s)-2-(9h-fluoren-9-ylmethoxycarbonylamino)-3-[1-[(2-methylpropan-2-yl)oxycarbonyl]indol-3-yl]propanoic acid Chemical compound C12=CC=CC=C2N(C(=O)OC(C)(C)C)C=C1C[C@@H](C(O)=O)NC(=O)OCC1C2=CC=CC=C2C2=CC=CC=C21 ADOHASQZJSJZBT-SANMLTNESA-N 0.000 description 1
- JAUKCFULLJFBFN-VWLOTQADSA-N (2s)-2-(9h-fluoren-9-ylmethoxycarbonylamino)-3-[4-[(2-methylpropan-2-yl)oxy]phenyl]propanoic acid Chemical compound C1=CC(OC(C)(C)C)=CC=C1C[C@@H](C(O)=O)NC(=O)OCC1C2=CC=CC=C2C2=CC=CC=C21 JAUKCFULLJFBFN-VWLOTQADSA-N 0.000 description 1
- JZTKZVJMSCONAK-INIZCTEOSA-N (2s)-2-(9h-fluoren-9-ylmethoxycarbonylamino)-3-hydroxypropanoic acid Chemical compound C1=CC=C2C(COC(=O)N[C@@H](CO)C(O)=O)C3=CC=CC=C3C2=C1 JZTKZVJMSCONAK-INIZCTEOSA-N 0.000 description 1
- UGNIYGNGCNXHTR-SFHVURJKSA-N (2s)-2-(9h-fluoren-9-ylmethoxycarbonylamino)-3-methylbutanoic acid Chemical compound C1=CC=C2C(COC(=O)N[C@@H](C(C)C)C(O)=O)C3=CC=CC=C3C2=C1 UGNIYGNGCNXHTR-SFHVURJKSA-N 0.000 description 1
- SJVFAHZPLIXNDH-QFIPXVFZSA-N (2s)-2-(9h-fluoren-9-ylmethoxycarbonylamino)-3-phenylpropanoic acid Chemical compound C([C@@H](C(=O)O)NC(=O)OCC1C2=CC=CC=C2C2=CC=CC=C21)C1=CC=CC=C1 SJVFAHZPLIXNDH-QFIPXVFZSA-N 0.000 description 1
- FODJWPHPWBKDON-IBGZPJMESA-N (2s)-2-(9h-fluoren-9-ylmethoxycarbonylamino)-4-[(2-methylpropan-2-yl)oxy]-4-oxobutanoic acid Chemical compound C1=CC=C2C(COC(=O)N[C@@H](CC(=O)OC(C)(C)C)C(O)=O)C3=CC=CC=C3C2=C1 FODJWPHPWBKDON-IBGZPJMESA-N 0.000 description 1
- BUBGAUHBELNDEW-SFHVURJKSA-N (2s)-2-(9h-fluoren-9-ylmethoxycarbonylamino)-4-methylsulfanylbutanoic acid Chemical compound C1=CC=C2C(COC(=O)N[C@@H](CCSC)C(O)=O)C3=CC=CC=C3C2=C1 BUBGAUHBELNDEW-SFHVURJKSA-N 0.000 description 1
- KJYAFJQCGPUXJY-UMSFTDKQSA-N (2s)-2-(9h-fluoren-9-ylmethoxycarbonylamino)-4-oxo-4-(tritylamino)butanoic acid Chemical compound C([C@@H](C(=O)O)NC(=O)OCC1C2=CC=CC=C2C2=CC=CC=C21)C(=O)NC(C=1C=CC=CC=1)(C=1C=CC=CC=1)C1=CC=CC=C1 KJYAFJQCGPUXJY-UMSFTDKQSA-N 0.000 description 1
- OQGAELAJEGGNKG-QHCPKHFHSA-N (2s)-2-(9h-fluoren-9-ylmethoxycarbonylamino)-4-oxo-4-phenylmethoxybutanoic acid Chemical compound C([C@@H](C(=O)O)NC(=O)OCC1C2=CC=CC=C2C2=CC=CC=C21)C(=O)OCC1=CC=CC=C1 OQGAELAJEGGNKG-QHCPKHFHSA-N 0.000 description 1
- OTKXCALUHMPIGM-FQEVSTJZSA-N (2s)-2-(9h-fluoren-9-ylmethoxycarbonylamino)-5-[(2-methylpropan-2-yl)oxy]-5-oxopentanoic acid Chemical compound C1=CC=C2C(COC(=O)N[C@@H](CCC(=O)OC(C)(C)C)C(O)=O)C3=CC=CC=C3C2=C1 OTKXCALUHMPIGM-FQEVSTJZSA-N 0.000 description 1
- WDGICUODAOGOMO-DHUJRADRSA-N (2s)-2-(9h-fluoren-9-ylmethoxycarbonylamino)-5-oxo-5-(tritylamino)pentanoic acid Chemical compound C([C@@H](C(=O)O)NC(=O)OCC1C2=CC=CC=C2C2=CC=CC=C21)CC(=O)NC(C=1C=CC=CC=1)(C=1C=CC=CC=1)C1=CC=CC=C1 WDGICUODAOGOMO-DHUJRADRSA-N 0.000 description 1
- UMRUUWFGLGNQLI-QFIPXVFZSA-N (2s)-2-(9h-fluoren-9-ylmethoxycarbonylamino)-6-[(2-methylpropan-2-yl)oxycarbonylamino]hexanoic acid Chemical compound C1=CC=C2C(COC(=O)N[C@@H](CCCCNC(=O)OC(C)(C)C)C(O)=O)C3=CC=CC=C3C2=C1 UMRUUWFGLGNQLI-QFIPXVFZSA-N 0.000 description 1
- KSDTXRUIZMTBNV-INIZCTEOSA-N (2s)-2-(9h-fluoren-9-ylmethoxycarbonylamino)butanedioic acid Chemical compound C1=CC=C2C(COC(=O)N[C@@H](CC(=O)O)C(O)=O)C3=CC=CC=C3C2=C1 KSDTXRUIZMTBNV-INIZCTEOSA-N 0.000 description 1
- QEPWHIXHJNNGLU-KRWDZBQOSA-N (2s)-2-(9h-fluoren-9-ylmethoxycarbonylamino)pentanedioic acid Chemical compound C1=CC=C2C(COC(=O)N[C@@H](CCC(=O)O)C(O)=O)C3=CC=CC=C3C2=C1 QEPWHIXHJNNGLU-KRWDZBQOSA-N 0.000 description 1
- QWXZOFZKSQXPDC-NSHDSACASA-N (2s)-2-(9h-fluoren-9-ylmethoxycarbonylamino)propanoic acid Chemical compound C1=CC=C2C(COC(=O)N[C@@H](C)C(O)=O)C3=CC=CC=C3C2=C1 QWXZOFZKSQXPDC-NSHDSACASA-N 0.000 description 1
- ZAVSPTOJKOFMTA-SFHVURJKSA-N (2s)-2-[(2-methylpropan-2-yl)oxycarbonylamino]-3-(4-phenylmethoxyphenyl)propanoic acid Chemical compound C1=CC(C[C@H](NC(=O)OC(C)(C)C)C(O)=O)=CC=C1OCC1=CC=CC=C1 ZAVSPTOJKOFMTA-SFHVURJKSA-N 0.000 description 1
- DMBKPDOAQVGTST-LBPRGKRZSA-N (2s)-2-[(2-methylpropan-2-yl)oxycarbonylamino]-3-phenylmethoxypropanoic acid Chemical compound CC(C)(C)OC(=O)N[C@H](C(O)=O)COCC1=CC=CC=C1 DMBKPDOAQVGTST-LBPRGKRZSA-N 0.000 description 1
- ZYJPUMXJBDHSIF-NSHDSACASA-N (2s)-2-[(2-methylpropan-2-yl)oxycarbonylamino]-3-phenylpropanoic acid Chemical compound CC(C)(C)OC(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 ZYJPUMXJBDHSIF-NSHDSACASA-N 0.000 description 1
- IMUSLIHRIYOHEV-ZETCQYMHSA-N (2s)-2-[(2-methylpropan-2-yl)oxycarbonylamino]-4-methylsulfanylbutanoic acid Chemical compound CSCC[C@@H](C(O)=O)NC(=O)OC(C)(C)C IMUSLIHRIYOHEV-ZETCQYMHSA-N 0.000 description 1
- FVWNVCDDYWITMG-NRFANRHFSA-N (2s)-2-[(2-methylpropan-2-yl)oxycarbonylamino]-5-[phenylmethoxycarbonyl-(n'-phenylmethoxycarbonylcarbamimidoyl)amino]pentanoic acid Chemical compound C=1C=CC=CC=1COC(=O)N(CCC[C@H](NC(=O)OC(C)(C)C)C(O)=O)\C(N)=N\C(=O)OCC1=CC=CC=C1 FVWNVCDDYWITMG-NRFANRHFSA-N 0.000 description 1
- AJDUMMXHVCMISJ-ZDUSSCGKSA-N (2s)-2-[(2-methylpropan-2-yl)oxycarbonylamino]-5-oxo-5-phenylmethoxypentanoic acid Chemical compound CC(C)(C)OC(=O)N[C@H](C(O)=O)CCC(=O)OCC1=CC=CC=C1 AJDUMMXHVCMISJ-ZDUSSCGKSA-N 0.000 description 1
- AQTUACKQXJNHFQ-LURJTMIESA-N (2s)-2-[(2-methylpropan-2-yl)oxycarbonylamino]pentanedioic acid Chemical compound CC(C)(C)OC(=O)N[C@H](C(O)=O)CCC(O)=O AQTUACKQXJNHFQ-LURJTMIESA-N 0.000 description 1
- QVHJQCGUWFKTSE-YFKPBYRVSA-N (2s)-2-[(2-methylpropan-2-yl)oxycarbonylamino]propanoic acid Chemical compound OC(=O)[C@H](C)NC(=O)OC(C)(C)C QVHJQCGUWFKTSE-YFKPBYRVSA-N 0.000 description 1
- WWTBZEKOSBFBEM-SPWPXUSOSA-N (2s)-2-[[2-benzyl-3-[hydroxy-[(1r)-2-phenyl-1-(phenylmethoxycarbonylamino)ethyl]phosphoryl]propanoyl]amino]-3-(1h-indol-3-yl)propanoic acid Chemical compound N([C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)O)C(=O)C(CP(O)(=O)[C@H](CC=1C=CC=CC=1)NC(=O)OCC=1C=CC=CC=1)CC1=CC=CC=C1 WWTBZEKOSBFBEM-SPWPXUSOSA-N 0.000 description 1
- YKFCISHFRZHKHY-NGQGLHOPSA-N (2s)-2-amino-3-(3,4-dihydroxyphenyl)-2-methylpropanoic acid;trihydrate Chemical compound O.O.O.OC(=O)[C@](N)(C)CC1=CC=C(O)C(O)=C1.OC(=O)[C@](N)(C)CC1=CC=C(O)C(O)=C1 YKFCISHFRZHKHY-NGQGLHOPSA-N 0.000 description 1
- KQMBIBBJWXGSEI-ROLXFIACSA-N (2s)-2-amino-3-hydroxy-3-(1h-imidazol-5-yl)propanoic acid Chemical compound OC(=O)[C@@H](N)C(O)C1=CNC=N1 KQMBIBBJWXGSEI-ROLXFIACSA-N 0.000 description 1
- AJFGLTPLWPTALJ-SSDOTTSWSA-N (2s)-2-azaniumyl-2-(fluoromethyl)-3-(1h-imidazol-5-yl)propanoate Chemical compound FC[C@@](N)(C(O)=O)CC1=CN=CN1 AJFGLTPLWPTALJ-SSDOTTSWSA-N 0.000 description 1
- MSECZMWQBBVGEN-LURJTMIESA-N (2s)-2-azaniumyl-4-(1h-imidazol-5-yl)butanoate Chemical compound OC(=O)[C@@H](N)CCC1=CN=CN1 MSECZMWQBBVGEN-LURJTMIESA-N 0.000 description 1
- IHXHBYFWSOYYTR-ZDUSSCGKSA-N (2s)-3-(1-formylindol-3-yl)-2-[(2-methylpropan-2-yl)oxycarbonylamino]propanoic acid Chemical compound C1=CC=C2C(C[C@H](NC(=O)OC(C)(C)C)C(O)=O)=CN(C=O)C2=C1 IHXHBYFWSOYYTR-ZDUSSCGKSA-N 0.000 description 1
- AYMLQYFMYHISQO-QMMMGPOBSA-N (2s)-3-(1h-imidazol-3-ium-5-yl)-2-[(2-methylpropan-2-yl)oxycarbonylamino]propanoate Chemical compound CC(C)(C)OC(=O)N[C@H](C(O)=O)CC1=CN=CN1 AYMLQYFMYHISQO-QMMMGPOBSA-N 0.000 description 1
- UYEGXSNFZXWSDV-BYPYZUCNSA-N (2s)-3-(2-amino-1h-imidazol-5-yl)-2-azaniumylpropanoate Chemical compound OC(=O)[C@@H](N)CC1=CNC(N)=N1 UYEGXSNFZXWSDV-BYPYZUCNSA-N 0.000 description 1
- CNBUSIJNWNXLQQ-NSHDSACASA-N (2s)-3-(4-hydroxyphenyl)-2-[(2-methylpropan-2-yl)oxycarbonylamino]propanoic acid Chemical compound CC(C)(C)OC(=O)N[C@H](C(O)=O)CC1=CC=C(O)C=C1 CNBUSIJNWNXLQQ-NSHDSACASA-N 0.000 description 1
- FHOAKXBXYSJBGX-YFKPBYRVSA-N (2s)-3-hydroxy-2-[(2-methylpropan-2-yl)oxycarbonylamino]propanoic acid Chemical compound CC(C)(C)OC(=O)N[C@@H](CO)C(O)=O FHOAKXBXYSJBGX-YFKPBYRVSA-N 0.000 description 1
- SZXBQTSZISFIAO-ZETCQYMHSA-N (2s)-3-methyl-2-[(2-methylpropan-2-yl)oxycarbonylamino]butanoic acid Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)OC(C)(C)C SZXBQTSZISFIAO-ZETCQYMHSA-N 0.000 description 1
- YUGBZNJSGOBFOV-INIZCTEOSA-N (2s)-4-amino-2-(9h-fluoren-9-ylmethoxycarbonylamino)-4-oxobutanoic acid Chemical compound C1=CC=C2C(COC(=O)N[C@@H](CC(=O)N)C(O)=O)C3=CC=CC=C3C2=C1 YUGBZNJSGOBFOV-INIZCTEOSA-N 0.000 description 1
- HSQIYOPBCOPMSS-ZETCQYMHSA-N (2s)-5-(diaminomethylideneamino)-2-[(2-methylpropan-2-yl)oxycarbonylamino]pentanoic acid Chemical compound CC(C)(C)OC(=O)N[C@H](C(O)=O)CCCN=C(N)N HSQIYOPBCOPMSS-ZETCQYMHSA-N 0.000 description 1
- HNICLNKVURBTKV-NDEPHWFRSA-N (2s)-5-[[amino-[(2,2,4,6,7-pentamethyl-3h-1-benzofuran-5-yl)sulfonylamino]methylidene]amino]-2-(9h-fluoren-9-ylmethoxycarbonylamino)pentanoic acid Chemical compound C12=CC=CC=C2C2=CC=CC=C2C1COC(=O)N[C@H](C(O)=O)CCCN=C(N)NS(=O)(=O)C1=C(C)C(C)=C2OC(C)(C)CC2=C1C HNICLNKVURBTKV-NDEPHWFRSA-N 0.000 description 1
- IZKGGDFLLNVXNZ-KRWDZBQOSA-N (2s)-5-amino-2-(9h-fluoren-9-ylmethoxycarbonylamino)-5-oxopentanoic acid Chemical compound C1=CC=C2C(COC(=O)N[C@@H](CCC(=O)N)C(O)=O)C3=CC=CC=C3C2=C1 IZKGGDFLLNVXNZ-KRWDZBQOSA-N 0.000 description 1
- VVNYDCGZZSTUBC-LURJTMIESA-N (2s)-5-amino-2-[(2-methylpropan-2-yl)oxycarbonylamino]-5-oxopentanoic acid Chemical compound CC(C)(C)OC(=O)N[C@H](C(O)=O)CCC(N)=O VVNYDCGZZSTUBC-LURJTMIESA-N 0.000 description 1
- ATUMDPHEFWGCJF-HNNXBMFYSA-N (2s)-6-[(2-chlorophenyl)methoxycarbonylamino]-2-[(2-methylpropan-2-yl)oxycarbonylamino]hexanoic acid Chemical compound CC(C)(C)OC(=O)N[C@H](C(O)=O)CCCCNC(=O)OCC1=CC=CC=C1Cl ATUMDPHEFWGCJF-HNNXBMFYSA-N 0.000 description 1
- DQUHYEDEGRNAFO-QMMMGPOBSA-N (2s)-6-amino-2-[(2-methylpropan-2-yl)oxycarbonylamino]hexanoic acid Chemical compound CC(C)(C)OC(=O)N[C@H](C(O)=O)CCCCN DQUHYEDEGRNAFO-QMMMGPOBSA-N 0.000 description 1
- LZOLWEQBVPVDPR-VLIAUNLRSA-N (2s,3r)-2-(9h-fluoren-9-ylmethoxycarbonylamino)-3-[(2-methylpropan-2-yl)oxy]butanoic acid Chemical compound C1=CC=C2C(COC(=O)N[C@@H]([C@H](OC(C)(C)C)C)C(O)=O)C3=CC=CC=C3C2=C1 LZOLWEQBVPVDPR-VLIAUNLRSA-N 0.000 description 1
- OYULCCKKLJPNPU-DIFFPNOSSA-N (2s,3r)-2-(9h-fluoren-9-ylmethoxycarbonylamino)-3-hydroxybutanoic acid Chemical compound C1=CC=C2C(COC(=O)N[C@@H]([C@H](O)C)C(O)=O)C3=CC=CC=C3C2=C1 OYULCCKKLJPNPU-DIFFPNOSSA-N 0.000 description 1
- CTXPLTPDOISPTE-YPMHNXCESA-N (2s,3r)-2-[(2-methylpropan-2-yl)oxycarbonylamino]-3-phenylmethoxybutanoic acid Chemical compound CC(C)(C)OC(=O)N[C@H](C(O)=O)[C@@H](C)OCC1=CC=CC=C1 CTXPLTPDOISPTE-YPMHNXCESA-N 0.000 description 1
- LLHOYOCAAURYRL-RITPCOANSA-N (2s,3r)-3-hydroxy-2-[(2-methylpropan-2-yl)oxycarbonylamino]butanoic acid Chemical compound C[C@@H](O)[C@@H](C(O)=O)NC(=O)OC(C)(C)C LLHOYOCAAURYRL-RITPCOANSA-N 0.000 description 1
- PNIWLNAGKUGXDO-LNCRCTFVSA-N (2s,3r,4s,5r,6r)-2-[(2r,3s,4r,5r)-5-amino-4,6-dihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol Chemical group O[C@@H]1[C@@H](N)C(O)O[C@H](CO)[C@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 PNIWLNAGKUGXDO-LNCRCTFVSA-N 0.000 description 1
- QXVFEIPAZSXRGM-DJJJIMSYSA-N (2s,3s)-2-(9h-fluoren-9-ylmethoxycarbonylamino)-3-methylpentanoic acid Chemical compound C1=CC=C2C(COC(=O)N[C@@H]([C@@H](C)CC)C(O)=O)C3=CC=CC=C3C2=C1 QXVFEIPAZSXRGM-DJJJIMSYSA-N 0.000 description 1
- QJCNLJWUIOIMMF-YUMQZZPRSA-N (2s,3s)-3-methyl-2-[(2-methylpropan-2-yl)oxycarbonylamino]pentanoic acid Chemical compound CC[C@H](C)[C@@H](C(O)=O)NC(=O)OC(C)(C)C QJCNLJWUIOIMMF-YUMQZZPRSA-N 0.000 description 1
- OOBHFESNSZDWIU-GXSJLCMTSA-N (2s,3s)-3-methyl-2-phenylmorpholine Chemical compound C[C@@H]1NCCO[C@H]1C1=CC=CC=C1 OOBHFESNSZDWIU-GXSJLCMTSA-N 0.000 description 1
- DEQANNDTNATYII-OULOTJBUSA-N (4r,7s,10s,13r,16s,19r)-10-(4-aminobutyl)-19-[[(2r)-2-amino-3-phenylpropanoyl]amino]-16-benzyl-n-[(2r,3r)-1,3-dihydroxybutan-2-yl]-7-[(1r)-1-hydroxyethyl]-13-(1h-indol-3-ylmethyl)-6,9,12,15,18-pentaoxo-1,2-dithia-5,8,11,14,17-pentazacycloicosane-4-carboxa Chemical compound C([C@@H](N)C(=O)N[C@H]1CSSC[C@H](NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](CC=2C3=CC=CC=C3NC=2)NC(=O)[C@H](CC=2C=CC=CC=2)NC1=O)C(=O)N[C@H](CO)[C@H](O)C)C1=CC=CC=C1 DEQANNDTNATYII-OULOTJBUSA-N 0.000 description 1
- VQHRZZISQVWPLK-UIRGBLDSSA-N (7s,9s)-7-[(2r,4s,5s,6s)-5-[(2s,4s,5s,6s)-4-amino-5-hydroxy-6-methyloxan-2-yl]oxy-4-hydroxy-6-methyloxan-2-yl]oxy-6,9,11-trihydroxy-9-(2-hydroxyacetyl)-8,10-dihydro-7h-tetracene-5,12-dione Chemical compound C1[C@H](N)[C@H](O)[C@H](C)O[C@H]1O[C@H]1[C@@H](O)C[C@H](O[C@@H]2C3=C(O)C=4C(=O)C5=CC=CC=C5C(=O)C=4C(O)=C3C[C@](O)(C2)C(=O)CO)O[C@H]1C VQHRZZISQVWPLK-UIRGBLDSSA-N 0.000 description 1
- UCTWMZQNUQWSLP-VIFPVBQESA-N (R)-adrenaline Chemical compound CNC[C@H](O)C1=CC=C(O)C(O)=C1 UCTWMZQNUQWSLP-VIFPVBQESA-N 0.000 description 1
- 229930182837 (R)-adrenaline Natural products 0.000 description 1
- METKIMKYRPQLGS-GFCCVEGCSA-N (R)-atenolol Chemical compound CC(C)NC[C@@H](O)COC1=CC=C(CC(N)=O)C=C1 METKIMKYRPQLGS-GFCCVEGCSA-N 0.000 description 1
- RTHCYVBBDHJXIQ-MRXNPFEDSA-N (R)-fluoxetine Chemical compound O([C@H](CCNC)C=1C=CC=CC=1)C1=CC=C(C(F)(F)F)C=C1 RTHCYVBBDHJXIQ-MRXNPFEDSA-N 0.000 description 1
- KWTSXDURSIMDCE-QMMMGPOBSA-N (S)-amphetamine Chemical compound C[C@H](N)CC1=CC=CC=C1 KWTSXDURSIMDCE-QMMMGPOBSA-N 0.000 description 1
- ZEUITGRIYCTCEM-KRWDZBQOSA-N (S)-duloxetine Chemical compound C1([C@@H](OC=2C3=CC=CC=C3C=CC=2)CCNC)=CC=CS1 ZEUITGRIYCTCEM-KRWDZBQOSA-N 0.000 description 1
- XUBOMFCQGDBHNK-JTQLQIEISA-N (S)-gatifloxacin Chemical compound FC1=CC(C(C(C(O)=O)=CN2C3CC3)=O)=C2C(OC)=C1N1CCN[C@@H](C)C1 XUBOMFCQGDBHNK-JTQLQIEISA-N 0.000 description 1
- TWBNMYSKRDRHAT-RCWTXCDDSA-N (S)-timolol hemihydrate Chemical compound O.CC(C)(C)NC[C@H](O)COC1=NSN=C1N1CCOCC1.CC(C)(C)NC[C@H](O)COC1=NSN=C1N1CCOCC1 TWBNMYSKRDRHAT-RCWTXCDDSA-N 0.000 description 1
- AUHZEENZYGFFBQ-UHFFFAOYSA-N 1,3,5-Me3C6H3 Natural products CC1=CC(C)=CC(C)=C1 AUHZEENZYGFFBQ-UHFFFAOYSA-N 0.000 description 1
- OHVLMTFVQDZYHP-UHFFFAOYSA-N 1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-2-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]ethanone Chemical compound N1N=NC=2CN(CCC=21)C(CN1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)=O OHVLMTFVQDZYHP-UHFFFAOYSA-N 0.000 description 1
- LMDZBCPBFSXMTL-UHFFFAOYSA-N 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide Substances CCN=C=NCCCN(C)C LMDZBCPBFSXMTL-UHFFFAOYSA-N 0.000 description 1
- WZZBNLYBHUDSHF-DHLKQENFSA-N 1-[(3s,4s)-4-[8-(2-chloro-4-pyrimidin-2-yloxyphenyl)-7-fluoro-2-methylimidazo[4,5-c]quinolin-1-yl]-3-fluoropiperidin-1-yl]-2-hydroxyethanone Chemical group CC1=NC2=CN=C3C=C(F)C(C=4C(=CC(OC=5N=CC=CN=5)=CC=4)Cl)=CC3=C2N1[C@H]1CCN(C(=O)CO)C[C@@H]1F WZZBNLYBHUDSHF-DHLKQENFSA-N 0.000 description 1
- ONBQEOIKXPHGMB-VBSBHUPXSA-N 1-[2-[(2s,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy-4,6-dihydroxyphenyl]-3-(4-hydroxyphenyl)propan-1-one Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1OC1=CC(O)=CC(O)=C1C(=O)CCC1=CC=C(O)C=C1 ONBQEOIKXPHGMB-VBSBHUPXSA-N 0.000 description 1
- HMUNWXXNJPVALC-UHFFFAOYSA-N 1-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C(CN1CC2=C(CC1)NN=N2)=O HMUNWXXNJPVALC-UHFFFAOYSA-N 0.000 description 1
- UNILWMWFPHPYOR-KXEYIPSPSA-M 1-[6-[2-[3-[3-[3-[2-[2-[3-[[2-[2-[[(2r)-1-[[2-[[(2r)-1-[3-[2-[2-[3-[[2-(2-amino-2-oxoethoxy)acetyl]amino]propoxy]ethoxy]ethoxy]propylamino]-3-hydroxy-1-oxopropan-2-yl]amino]-2-oxoethyl]amino]-3-[(2r)-2,3-di(hexadecanoyloxy)propyl]sulfanyl-1-oxopropan-2-yl Chemical group O=C1C(SCCC(=O)NCCCOCCOCCOCCCNC(=O)COCC(=O)N[C@@H](CSC[C@@H](COC(=O)CCCCCCCCCCCCCCC)OC(=O)CCCCCCCCCCCCCCC)C(=O)NCC(=O)N[C@H](CO)C(=O)NCCCOCCOCCOCCCNC(=O)COCC(N)=O)CC(=O)N1CCNC(=O)CCCCCN\1C2=CC=C(S([O-])(=O)=O)C=C2CC/1=C/C=C/C=C/C1=[N+](CC)C2=CC=C(S([O-])(=O)=O)C=C2C1 UNILWMWFPHPYOR-KXEYIPSPSA-M 0.000 description 1
- YQTCQNIPQMJNTI-UHFFFAOYSA-N 2,2-dimethylpropan-1-one Chemical group CC(C)(C)[C]=O YQTCQNIPQMJNTI-UHFFFAOYSA-N 0.000 description 1
- XBNGYFFABRKICK-UHFFFAOYSA-N 2,3,4,5,6-pentafluorophenol Chemical compound OC1=C(F)C(F)=C(F)C(F)=C1F XBNGYFFABRKICK-UHFFFAOYSA-N 0.000 description 1
- NFTOEHBFQROATQ-UHFFFAOYSA-N 2,3-dihydrofuran-5-carboxylic acid Chemical compound OC(=O)C1=CCCO1 NFTOEHBFQROATQ-UHFFFAOYSA-N 0.000 description 1
- LDXJRKWFNNFDSA-UHFFFAOYSA-N 2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]ethanone Chemical compound C1CN(CC2=NNN=C21)CC(=O)N3CCN(CC3)C4=CN=C(N=C4)NCC5=CC(=CC=C5)OC(F)(F)F LDXJRKWFNNFDSA-UHFFFAOYSA-N 0.000 description 1
- PIINGYXNCHTJTF-UHFFFAOYSA-N 2-(2-azaniumylethylamino)acetate Chemical group NCCNCC(O)=O PIINGYXNCHTJTF-UHFFFAOYSA-N 0.000 description 1
- ORXSLDYRYTVAPC-UHFFFAOYSA-N 2-(4-sulfanylphenyl)acetic acid Chemical compound OC(=O)CC1=CC=C(S)C=C1 ORXSLDYRYTVAPC-UHFFFAOYSA-N 0.000 description 1
- NDKDFTQNXLHCGO-UHFFFAOYSA-N 2-(9h-fluoren-9-ylmethoxycarbonylamino)acetic acid Chemical compound C1=CC=C2C(COC(=O)NCC(=O)O)C3=CC=CC=C3C2=C1 NDKDFTQNXLHCGO-UHFFFAOYSA-N 0.000 description 1
- FUOOLUPWFVMBKG-UHFFFAOYSA-N 2-Aminoisobutyric acid Chemical compound CC(C)(N)C(O)=O FUOOLUPWFVMBKG-UHFFFAOYSA-N 0.000 description 1
- VRPJIFMKZZEXLR-UHFFFAOYSA-N 2-[(2-methylpropan-2-yl)oxycarbonylamino]acetic acid Chemical compound CC(C)(C)OC(=O)NCC(O)=O VRPJIFMKZZEXLR-UHFFFAOYSA-N 0.000 description 1
- ACTOXUHEUCPTEW-BWHGAVFKSA-N 2-[(4r,5s,6s,7r,9r,10r,11e,13e,16r)-6-[(2s,3r,4r,5s,6r)-5-[(2s,4r,5s,6s)-4,5-dihydroxy-4,6-dimethyloxan-2-yl]oxy-4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl]oxy-10-[(2s,5s,6r)-5-(dimethylamino)-6-methyloxan-2-yl]oxy-4-hydroxy-5-methoxy-9,16-dimethyl-2-o Chemical compound O([C@H]1/C=C/C=C/C[C@@H](C)OC(=O)C[C@@H](O)[C@@H]([C@H]([C@@H](CC=O)C[C@H]1C)O[C@H]1[C@@H]([C@H]([C@H](O[C@@H]2O[C@@H](C)[C@H](O)[C@](C)(O)C2)[C@@H](C)O1)N(C)C)O)OC)[C@@H]1CC[C@H](N(C)C)[C@@H](C)O1 ACTOXUHEUCPTEW-BWHGAVFKSA-N 0.000 description 1
- LXAVCFDWHMZCJH-UHFFFAOYSA-N 2-[4-(hydroxymethyl)-3-methoxyphenoxy]butanoic acid Chemical compound CCC(C(O)=O)OC1=CC=C(CO)C(OC)=C1 LXAVCFDWHMZCJH-UHFFFAOYSA-N 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- TVTJUIAKQFIXCE-HUKYDQBMSA-N 2-amino-9-[(2R,3S,4S,5R)-4-fluoro-3-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-7-prop-2-ynyl-1H-purine-6,8-dione Chemical compound NC=1NC(C=2N(C(N(C=2N=1)[C@@H]1O[C@@H]([C@H]([C@H]1O)F)CO)=O)CC#C)=O TVTJUIAKQFIXCE-HUKYDQBMSA-N 0.000 description 1
- JUIKUQOUMZUFQT-UHFFFAOYSA-N 2-bromoacetamide Chemical compound NC(=O)CBr JUIKUQOUMZUFQT-UHFFFAOYSA-N 0.000 description 1
- ASJSAQIRZKANQN-CRCLSJGQSA-N 2-deoxy-D-ribose Chemical compound OC[C@@H](O)[C@@H](O)CC=O ASJSAQIRZKANQN-CRCLSJGQSA-N 0.000 description 1
- SGUAFYQXFOLMHL-UHFFFAOYSA-N 2-hydroxy-5-{1-hydroxy-2-[(4-phenylbutan-2-yl)amino]ethyl}benzamide Chemical compound C=1C=C(O)C(C(N)=O)=CC=1C(O)CNC(C)CCC1=CC=CC=C1 SGUAFYQXFOLMHL-UHFFFAOYSA-N 0.000 description 1
- SHXWCVYOXRDMCX-UHFFFAOYSA-N 3,4-methylenedioxymethamphetamine Chemical compound CNC(C)CC1=CC=C2OCOC2=C1 SHXWCVYOXRDMCX-UHFFFAOYSA-N 0.000 description 1
- FERWCFYKULABCE-UHFFFAOYSA-N 3-(2-aminoethoxymethyl)-2,5,9-trimethylfuro[3,2-g]chromen-7-one Chemical compound O1C(=O)C=C(C)C2=C1C(C)=C1OC(C)=C(COCCN)C1=C2 FERWCFYKULABCE-UHFFFAOYSA-N 0.000 description 1
- QBWKPGNFQQJGFY-QLFBSQMISA-N 3-[(1r)-1-[(2r,6s)-2,6-dimethylmorpholin-4-yl]ethyl]-n-[6-methyl-3-(1h-pyrazol-4-yl)imidazo[1,2-a]pyrazin-8-yl]-1,2-thiazol-5-amine Chemical compound N1([C@H](C)C2=NSC(NC=3C4=NC=C(N4C=C(C)N=3)C3=CNN=C3)=C2)C[C@H](C)O[C@H](C)C1 QBWKPGNFQQJGFY-QLFBSQMISA-N 0.000 description 1
- HVCOBJNICQPDBP-UHFFFAOYSA-N 3-[3-[3,5-dihydroxy-6-methyl-4-(3,4,5-trihydroxy-6-methyloxan-2-yl)oxyoxan-2-yl]oxydecanoyloxy]decanoic acid;hydrate Chemical compound O.OC1C(OC(CC(=O)OC(CCCCCCC)CC(O)=O)CCCCCCC)OC(C)C(O)C1OC1C(O)C(O)C(O)C(C)O1 HVCOBJNICQPDBP-UHFFFAOYSA-N 0.000 description 1
- KENXEMKVFFJZFQ-UHFFFAOYSA-N 3-hydroxypyrido[3,2-d]triazin-4-one Chemical compound C1=CN=C2C(=O)N(O)N=NC2=C1 KENXEMKVFFJZFQ-UHFFFAOYSA-N 0.000 description 1
- AOJJSUZBOXZQNB-VTZDEGQISA-N 4'-epidoxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-VTZDEGQISA-N 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- 102100035274 4-galactosyl-N-acetylglucosaminide 3-alpha-L-fucosyltransferase FUT5 Human genes 0.000 description 1
- 101710169336 5'-deoxyadenosine deaminase Proteins 0.000 description 1
- LSLYOANBFKQKPT-DIFFPNOSSA-N 5-[(1r)-1-hydroxy-2-[[(2r)-1-(4-hydroxyphenyl)propan-2-yl]amino]ethyl]benzene-1,3-diol Chemical compound C([C@@H](C)NC[C@H](O)C=1C=C(O)C=C(O)C=1)C1=CC=C(O)C=C1 LSLYOANBFKQKPT-DIFFPNOSSA-N 0.000 description 1
- WIRXLUOGFMRKEE-UHFFFAOYSA-N 6-[4-(hydroxymethyl)-3-methoxyphenoxy]hexanoic acid Chemical compound COC1=CC(OCCCCCC(O)=O)=CC=C1CO WIRXLUOGFMRKEE-UHFFFAOYSA-N 0.000 description 1
- AWFDCTXCTHGORH-HGHGUNKESA-N 6-[4-[(6ar,9r,10ar)-5-bromo-7-methyl-6,6a,8,9,10,10a-hexahydro-4h-indolo[4,3-fg]quinoline-9-carbonyl]piperazin-1-yl]-1-methylpyridin-2-one Chemical compound O=C([C@H]1CN([C@H]2[C@@H](C=3C=CC=C4NC(Br)=C(C=34)C2)C1)C)N(CC1)CCN1C1=CC=CC(=O)N1C AWFDCTXCTHGORH-HGHGUNKESA-N 0.000 description 1
- WUWFMDMBOJLQIV-UHFFFAOYSA-N 7-(3-aminopyrrolidin-1-yl)-1-(2,4-difluorophenyl)-6-fluoro-4-oxo-1,4-dihydro-1,8-naphthyridine-3-carboxylic acid Chemical compound C1C(N)CCN1C(C(=C1)F)=NC2=C1C(=O)C(C(O)=O)=CN2C1=CC=C(F)C=C1F WUWFMDMBOJLQIV-UHFFFAOYSA-N 0.000 description 1
- STQGQHZAVUOBTE-UHFFFAOYSA-N 7-Cyan-hept-2t-en-4,6-diinsaeure Natural products C1=2C(O)=C3C(=O)C=4C(OC)=CC=CC=4C(=O)C3=C(O)C=2CC(O)(C(C)=O)CC1OC1CC(N)C(O)C(C)O1 STQGQHZAVUOBTE-UHFFFAOYSA-N 0.000 description 1
- HFDKKNHCYWNNNQ-YOGANYHLSA-N 75976-10-2 Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(N)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](C)NC(=O)[C@H](CCSC)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@@H](NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](C)N)C(C)C)[C@@H](C)O)C1=CC=C(O)C=C1 HFDKKNHCYWNNNQ-YOGANYHLSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 229930024421 Adenine Natural products 0.000 description 1
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 1
- 102000055025 Adenosine deaminases Human genes 0.000 description 1
- OGSPWJRAVKPPFI-UHFFFAOYSA-N Alendronic Acid Chemical compound NCCCC(O)(P(O)(O)=O)P(O)(O)=O OGSPWJRAVKPPFI-UHFFFAOYSA-N 0.000 description 1
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 1
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 description 1
- APKFDSVGJQXUKY-KKGHZKTASA-N Amphotericin-B Natural products O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1C=CC=CC=CC=CC=CC=CC=C[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-KKGHZKTASA-N 0.000 description 1
- 239000004382 Amylase Substances 0.000 description 1
- 102000013142 Amylases Human genes 0.000 description 1
- 108010065511 Amylases Proteins 0.000 description 1
- 108010001779 Ancrod Proteins 0.000 description 1
- 108010058207 Anistreplase Proteins 0.000 description 1
- 108090000935 Antithrombin III Proteins 0.000 description 1
- 102000004411 Antithrombin III Human genes 0.000 description 1
- 101710081722 Antitrypsin Proteins 0.000 description 1
- 108010039627 Aprotinin Proteins 0.000 description 1
- 108091023037 Aptamer Proteins 0.000 description 1
- QTGIAADRBBLJGA-UHFFFAOYSA-N Articaine Chemical compound CCCNC(C)C(=O)NC=1C(C)=CSC=1C(=O)OC QTGIAADRBBLJGA-UHFFFAOYSA-N 0.000 description 1
- XFTWUNOVBCHBJR-UHFFFAOYSA-N Aspergillomarasmine A Chemical group OC(=O)C(N)CNC(C(O)=O)CNC(C(O)=O)CC(O)=O XFTWUNOVBCHBJR-UHFFFAOYSA-N 0.000 description 1
- 101800001288 Atrial natriuretic factor Proteins 0.000 description 1
- 241000972773 Aulopiformes Species 0.000 description 1
- 208000023275 Autoimmune disease Diseases 0.000 description 1
- LTKOVYBBGBGKTA-SFHVURJKSA-N Avizafone Chemical compound NCCCC[C@H](N)C(=O)NCC(=O)N(C)C1=CC=C(Cl)C=C1C(=O)C1=CC=CC=C1 LTKOVYBBGBGKTA-SFHVURJKSA-N 0.000 description 1
- 108010001478 Bacitracin Proteins 0.000 description 1
- KPYSYYIEGFHWSV-UHFFFAOYSA-N Baclofen Chemical compound OC(=O)CC(CN)C1=CC=C(Cl)C=C1 KPYSYYIEGFHWSV-UHFFFAOYSA-N 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 208000035143 Bacterial infection Diseases 0.000 description 1
- XPCFTKFZXHTYIP-PMACEKPBSA-N Benazepril Chemical compound C([C@@H](C(=O)OCC)N[C@@H]1C(N(CC(O)=O)C2=CC=CC=C2CC1)=O)CC1=CC=CC=C1 XPCFTKFZXHTYIP-PMACEKPBSA-N 0.000 description 1
- 102100026189 Beta-galactosidase Human genes 0.000 description 1
- 108010006654 Bleomycin Proteins 0.000 description 1
- 108010007726 Bone Morphogenetic Proteins Proteins 0.000 description 1
- 102000007350 Bone Morphogenetic Proteins Human genes 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- YNXLOPYTAAFMTN-SBUIBGKBSA-N C([C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CO)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(N)=O)C1=CC=C(O)C=C1 Chemical compound C([C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CO)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(N)=O)C1=CC=C(O)C=C1 YNXLOPYTAAFMTN-SBUIBGKBSA-N 0.000 description 1
- ABFNTRQPWNXUHA-VEVJRHMJSA-N C([C@H]1C(=O)N[C@@H](CC=2C3=CC=CC=C3NC=2)C(=O)N[C@H](CC=2C3=CC=CC=C3NC=2)C(=O)N[C@@H](CCCCN)C(=O)N[C@H](C(N[C@@H](CC=2C=CC=CC=2)C(=O)N(CC(N)=O)CCCC(=O)NCCCC(=O)N1)=O)[C@H](O)C)C1=CC=CC=C1 Chemical compound C([C@H]1C(=O)N[C@@H](CC=2C3=CC=CC=C3NC=2)C(=O)N[C@H](CC=2C3=CC=CC=C3NC=2)C(=O)N[C@@H](CCCCN)C(=O)N[C@H](C(N[C@@H](CC=2C=CC=CC=2)C(=O)N(CC(N)=O)CCCC(=O)NCCCC(=O)N1)=O)[C@H](O)C)C1=CC=CC=C1 ABFNTRQPWNXUHA-VEVJRHMJSA-N 0.000 description 1
- DTPWZYSUQQHRKD-VIUAGAKSSA-N CC(O)=O.CC[C@H](C)[C@H](NC(=O)[C@@H]1CCCN1C(=O)CNC(=O)[C@H](Cc1ccccc1)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H](Cc1c[nH]cn1)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](Cc1ccccc1)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@@H]1CSSC[C@H](NC(=O)[C@@H](N)CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1)[C@@H](C)O)C(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N1CCC[C@H]1C(=O)N1CCC[C@H]1C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](Cc1ccc(O)cc1)C(N)=O Chemical compound CC(O)=O.CC[C@H](C)[C@H](NC(=O)[C@@H]1CCCN1C(=O)CNC(=O)[C@H](Cc1ccccc1)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H](Cc1c[nH]cn1)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](Cc1ccccc1)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@@H]1CSSC[C@H](NC(=O)[C@@H](N)CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1)[C@@H](C)O)C(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N1CCC[C@H]1C(=O)N1CCC[C@H]1C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](Cc1ccc(O)cc1)C(N)=O DTPWZYSUQQHRKD-VIUAGAKSSA-N 0.000 description 1
- 102000000905 Cadherin Human genes 0.000 description 1
- 108050007957 Cadherin Proteins 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229930186147 Cephalosporin Natural products 0.000 description 1
- 102100031011 Chemerin-like receptor 1 Human genes 0.000 description 1
- 208000018380 Chemical injury Diseases 0.000 description 1
- JZUFKLXOESDKRF-UHFFFAOYSA-N Chlorothiazide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC2=C1NCNS2(=O)=O JZUFKLXOESDKRF-UHFFFAOYSA-N 0.000 description 1
- 102000011022 Chorionic Gonadotropin Human genes 0.000 description 1
- 108010062540 Chorionic Gonadotropin Proteins 0.000 description 1
- 102100022641 Coagulation factor IX Human genes 0.000 description 1
- 102100023804 Coagulation factor VII Human genes 0.000 description 1
- 108010078777 Colistin Proteins 0.000 description 1
- 102000029816 Collagenase Human genes 0.000 description 1
- 108060005980 Collagenase Proteins 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 241000938605 Crocodylia Species 0.000 description 1
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 1
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 1
- 229930182847 D-glutamic acid Natural products 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- MQJKPEGWNLWLTK-UHFFFAOYSA-N Dapsone Chemical compound C1=CC(N)=CC=C1S(=O)(=O)C1=CC=C(N)C=C1 MQJKPEGWNLWLTK-UHFFFAOYSA-N 0.000 description 1
- 108010053770 Deoxyribonucleases Proteins 0.000 description 1
- 102000016911 Deoxyribonucleases Human genes 0.000 description 1
- HCYAFALTSJYZDH-UHFFFAOYSA-N Desimpramine Chemical compound C1CC2=CC=CC=C2N(CCCNC)C2=CC=CC=C21 HCYAFALTSJYZDH-UHFFFAOYSA-N 0.000 description 1
- 108010016626 Dipeptides Proteins 0.000 description 1
- JRWZLRBJNMZMFE-UHFFFAOYSA-N Dobutamine Chemical compound C=1C=C(O)C(O)=CC=1CCNC(C)CCC1=CC=C(O)C=C1 JRWZLRBJNMZMFE-UHFFFAOYSA-N 0.000 description 1
- 102400000242 Dynorphin A(1-17) Human genes 0.000 description 1
- 108010065372 Dynorphins Proteins 0.000 description 1
- 101150029707 ERBB2 gene Proteins 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 108010061435 Enalapril Proteins 0.000 description 1
- 102000009025 Endorphins Human genes 0.000 description 1
- 108010049140 Endorphins Proteins 0.000 description 1
- XRHVZWWRFMCBAZ-UHFFFAOYSA-L Endothal-disodium Chemical compound [Na+].[Na+].C1CC2C(C([O-])=O)C(C(=O)[O-])C1O2 XRHVZWWRFMCBAZ-UHFFFAOYSA-L 0.000 description 1
- 108010032976 Enfuvirtide Proteins 0.000 description 1
- 108010092674 Enkephalins Proteins 0.000 description 1
- HTIJFSOGRVMCQR-UHFFFAOYSA-N Epirubicin Natural products COc1cccc2C(=O)c3c(O)c4CC(O)(CC(OC5CC(N)C(=O)C(C)O5)c4c(O)c3C(=O)c12)C(=O)CO HTIJFSOGRVMCQR-UHFFFAOYSA-N 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 102000003951 Erythropoietin Human genes 0.000 description 1
- 108090000394 Erythropoietin Proteins 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- HTQBXNHDCUEHJF-XWLPCZSASA-N Exenatide Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)NCC(=O)NCC(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CO)C(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCSC)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)[C@@H](C)O)C(C)C)C1=CC=CC=C1 HTQBXNHDCUEHJF-XWLPCZSASA-N 0.000 description 1
- 108010076282 Factor IX Proteins 0.000 description 1
- 108010023321 Factor VII Proteins 0.000 description 1
- 108010054218 Factor VIII Proteins 0.000 description 1
- 102000001690 Factor VIII Human genes 0.000 description 1
- 108010061932 Factor VIIIa Proteins 0.000 description 1
- 108010054265 Factor VIIa Proteins 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 108010088842 Fibrinolysin Proteins 0.000 description 1
- DJBNUMBKLMJRSA-UHFFFAOYSA-N Flecainide Chemical compound FC(F)(F)COC1=CC=C(OCC(F)(F)F)C(C(=O)NCC2NCCCC2)=C1 DJBNUMBKLMJRSA-UHFFFAOYSA-N 0.000 description 1
- 102000012673 Follicle Stimulating Hormone Human genes 0.000 description 1
- 108010079345 Follicle Stimulating Hormone Proteins 0.000 description 1
- 108010093031 Galactosidases Proteins 0.000 description 1
- 102000002464 Galactosidases Human genes 0.000 description 1
- 229930182566 Gentamicin Natural products 0.000 description 1
- CEAZRRDELHUEMR-URQXQFDESA-N Gentamicin Chemical compound O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N CEAZRRDELHUEMR-URQXQFDESA-N 0.000 description 1
- 101800001586 Ghrelin Proteins 0.000 description 1
- 102400000442 Ghrelin-28 Human genes 0.000 description 1
- 102400000321 Glucagon Human genes 0.000 description 1
- 108060003199 Glucagon Proteins 0.000 description 1
- 108010088406 Glucagon-Like Peptides Proteins 0.000 description 1
- 102400000326 Glucagon-like peptide 2 Human genes 0.000 description 1
- 101800000221 Glucagon-like peptide 2 Proteins 0.000 description 1
- 108010017544 Glucosylceramidase Proteins 0.000 description 1
- 102000004547 Glucosylceramidase Human genes 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 229920002683 Glycosaminoglycan Polymers 0.000 description 1
- 108010026389 Gramicidin Proteins 0.000 description 1
- AIJTTZAVMXIJGM-UHFFFAOYSA-N Grepafloxacin Chemical compound C1CNC(C)CN1C(C(=C1C)F)=CC2=C1C(=O)C(C(O)=O)=CN2C1CC1 AIJTTZAVMXIJGM-UHFFFAOYSA-N 0.000 description 1
- 102000009465 Growth Factor Receptors Human genes 0.000 description 1
- 108010009202 Growth Factor Receptors Proteins 0.000 description 1
- 102000018997 Growth Hormone Human genes 0.000 description 1
- 108010051696 Growth Hormone Proteins 0.000 description 1
- 108010013476 HLA-A24 Antigen Proteins 0.000 description 1
- 108010054147 Hemoglobins Proteins 0.000 description 1
- 102000001554 Hemoglobins Human genes 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- DKLKMKYDWHYZTD-UHFFFAOYSA-N Hexylcaine Chemical compound C=1C=CC=CC=1C(=O)OC(C)CNC1CCCCC1 DKLKMKYDWHYZTD-UHFFFAOYSA-N 0.000 description 1
- 108010007267 Hirudins Proteins 0.000 description 1
- 102000007625 Hirudins Human genes 0.000 description 1
- 101000919756 Homo sapiens Chemerin-like receptor 1 Proteins 0.000 description 1
- 102000002265 Human Growth Hormone Human genes 0.000 description 1
- 108010000521 Human Growth Hormone Proteins 0.000 description 1
- 239000000854 Human Growth Hormone Substances 0.000 description 1
- 108010003272 Hyaluronate lyase Proteins 0.000 description 1
- 102000001974 Hyaluronidases Human genes 0.000 description 1
- 102000004157 Hydrolases Human genes 0.000 description 1
- 108090000604 Hydrolases Proteins 0.000 description 1
- GRRNUXAQVGOGFE-UHFFFAOYSA-N Hygromycin-B Natural products OC1C(NC)CC(N)C(O)C1OC1C2OC3(C(C(O)C(O)C(C(N)CO)O3)O)OC2C(O)C(CO)O1 GRRNUXAQVGOGFE-UHFFFAOYSA-N 0.000 description 1
- XDXDZDZNSLXDNA-TZNDIEGXSA-N Idarubicin Chemical compound C1[C@H](N)[C@H](O)[C@H](C)O[C@H]1O[C@@H]1C2=C(O)C(C(=O)C3=CC=CC=C3C3=O)=C3C(O)=C2C[C@@](O)(C(C)=O)C1 XDXDZDZNSLXDNA-TZNDIEGXSA-N 0.000 description 1
- XDXDZDZNSLXDNA-UHFFFAOYSA-N Idarubicin Natural products C1C(N)C(O)C(C)OC1OC1C2=C(O)C(C(=O)C3=CC=CC=C3C3=O)=C3C(O)=C2CC(O)(C(C)=O)C1 XDXDZDZNSLXDNA-UHFFFAOYSA-N 0.000 description 1
- 102000004627 Iduronidase Human genes 0.000 description 1
- 108010003381 Iduronidase Proteins 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090000723 Insulin-Like Growth Factor I Proteins 0.000 description 1
- 102000014150 Interferons Human genes 0.000 description 1
- 108010050904 Interferons Proteins 0.000 description 1
- 102000015696 Interleukins Human genes 0.000 description 1
- 108010063738 Interleukins Proteins 0.000 description 1
- JUZNIMUFDBIJCM-ANEDZVCMSA-N Invanz Chemical compound O=C([C@H]1NC[C@H](C1)SC=1[C@H](C)[C@@H]2[C@H](C(N2C=1C(O)=O)=O)[C@H](O)C)NC1=CC=CC(C(O)=O)=C1 JUZNIMUFDBIJCM-ANEDZVCMSA-N 0.000 description 1
- 108010041872 Islet Amyloid Polypeptide Proteins 0.000 description 1
- 102000036770 Islet Amyloid Polypeptide Human genes 0.000 description 1
- YQEZLKZALYSWHR-UHFFFAOYSA-N Ketamine Chemical compound C=1C=CC=C(Cl)C=1C1(NC)CCCCC1=O YQEZLKZALYSWHR-UHFFFAOYSA-N 0.000 description 1
- WTDRDQBEARUVNC-LURJTMIESA-N L-DOPA Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C(O)=C1 WTDRDQBEARUVNC-LURJTMIESA-N 0.000 description 1
- WTDRDQBEARUVNC-UHFFFAOYSA-N L-Dopa Natural products OC(=O)C(N)CC1=CC=C(O)C(O)=C1 WTDRDQBEARUVNC-UHFFFAOYSA-N 0.000 description 1
- AHLPHDHHMVZTML-BYPYZUCNSA-N L-Ornithine Chemical compound NCCC[C@H](N)C(O)=O AHLPHDHHMVZTML-BYPYZUCNSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- 150000008575 L-amino acids Chemical class 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- LRQKBLKVPFOOQJ-YFKPBYRVSA-N L-norleucine Chemical compound CCCC[C@H]([NH3+])C([O-])=O LRQKBLKVPFOOQJ-YFKPBYRVSA-N 0.000 description 1
- XUIIKFGFIJCVMT-LBPRGKRZSA-N L-thyroxine Chemical compound IC1=CC(C[C@H]([NH3+])C([O-])=O)=CC(I)=C1OC1=CC(I)=C(O)C(I)=C1 XUIIKFGFIJCVMT-LBPRGKRZSA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- XAGMUUZPGZWTRP-ZETCQYMHSA-N LSM-5745 Chemical compound C([C@@H](N1C2=C(C(C(C(O)=O)=C1)=O)C=C1F)C)OC2=C1C1(N)CC1 XAGMUUZPGZWTRP-ZETCQYMHSA-N 0.000 description 1
- 108010059881 Lactase Proteins 0.000 description 1
- 229930182504 Lasalocid Natural products 0.000 description 1
- 108090001090 Lectins Proteins 0.000 description 1
- 102000004856 Lectins Human genes 0.000 description 1
- 108010092277 Leptin Proteins 0.000 description 1
- 102000016267 Leptin Human genes 0.000 description 1
- URLZCHNOLZSCCA-VABKMULXSA-N Leu-enkephalin Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(O)=O)NC(=O)CNC(=O)CNC(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=CC=C1 URLZCHNOLZSCCA-VABKMULXSA-N 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 108010000817 Leuprolide Proteins 0.000 description 1
- OJMMVQQUTAEWLP-UHFFFAOYSA-N Lincomycin Natural products CN1CC(CCC)CC1C(=O)NC(C(C)O)C1C(O)C(O)C(O)C(SC)O1 OJMMVQQUTAEWLP-UHFFFAOYSA-N 0.000 description 1
- 108010007859 Lisinopril Proteins 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 102000009151 Luteinizing Hormone Human genes 0.000 description 1
- 108010073521 Luteinizing Hormone Proteins 0.000 description 1
- 208000016604 Lyme disease Diseases 0.000 description 1
- 101710151321 Melanostatin Proteins 0.000 description 1
- 229930191564 Monensin Natural products 0.000 description 1
- GAOZTHIDHYLHMS-UHFFFAOYSA-N Monensin A Natural products O1C(CC)(C2C(CC(O2)C2C(CC(C)C(O)(CO)O2)C)C)CCC1C(O1)(C)CCC21CC(O)C(C)C(C(C)C(OC)C(C)C(O)=O)O2 GAOZTHIDHYLHMS-UHFFFAOYSA-N 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- FYYSQDHBALBGHX-YFKPBYRVSA-N N(alpha)-t-butoxycarbonyl-L-asparagine Chemical compound CC(C)(C)OC(=O)N[C@H](C(O)=O)CC(N)=O FYYSQDHBALBGHX-YFKPBYRVSA-N 0.000 description 1
- MDXGYYOJGPFFJL-QMMMGPOBSA-N N(alpha)-t-butoxycarbonyl-L-leucine Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)OC(C)(C)C MDXGYYOJGPFFJL-QMMMGPOBSA-N 0.000 description 1
- MVTQIFVKRXBCHS-SMMNFGSLSA-N N-[(3S,6S,12R,15S,16R,19S,22S)-3-benzyl-12-ethyl-4,16-dimethyl-2,5,11,14,18,21,24-heptaoxo-19-phenyl-17-oxa-1,4,10,13,20-pentazatricyclo[20.4.0.06,10]hexacosan-15-yl]-3-hydroxypyridine-2-carboxamide (10R,11R,12E,17E,19E,21S)-21-hydroxy-11,19-dimethyl-10-propan-2-yl-9,26-dioxa-3,15,28-triazatricyclo[23.2.1.03,7]octacosa-1(27),6,12,17,19,25(28)-hexaene-2,8,14,23-tetrone Chemical compound CC(C)[C@H]1OC(=O)C2=CCCN2C(=O)c2coc(CC(=O)C[C@H](O)\C=C(/C)\C=C\CNC(=O)\C=C\[C@H]1C)n2.CC[C@H]1NC(=O)[C@@H](NC(=O)c2ncccc2O)[C@@H](C)OC(=O)[C@@H](NC(=O)[C@@H]2CC(=O)CCN2C(=O)[C@H](Cc2ccccc2)N(C)C(=O)[C@@H]2CCCN2C1=O)c1ccccc1 MVTQIFVKRXBCHS-SMMNFGSLSA-N 0.000 description 1
- NFVNYBJCJGKVQK-ZDUSSCGKSA-N N-[(Tert-butoxy)carbonyl]-L-tryptophan Chemical compound C1=CC=C2C(C[C@H](NC(=O)OC(C)(C)C)C(O)=O)=CNC2=C1 NFVNYBJCJGKVQK-ZDUSSCGKSA-N 0.000 description 1
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 1
- MNLRQHMNZILYPY-MDMHTWEWSA-N N-acetyl-alpha-D-muramic acid Chemical compound OC(=O)[C@@H](C)O[C@H]1[C@H](O)[C@@H](CO)O[C@H](O)[C@@H]1NC(C)=O MNLRQHMNZILYPY-MDMHTWEWSA-N 0.000 description 1
- SQVRNKJHWKZAKO-PFQGKNLYSA-N N-acetyl-beta-neuraminic acid Chemical compound CC(=O)N[C@@H]1[C@@H](O)C[C@@](O)(C(O)=O)O[C@H]1[C@H](O)[C@H](O)CO SQVRNKJHWKZAKO-PFQGKNLYSA-N 0.000 description 1
- UBQYURCVBFRUQT-UHFFFAOYSA-N N-benzoyl-Ferrioxamine B Chemical compound CC(=O)N(O)CCCCCNC(=O)CCC(=O)N(O)CCCCCNC(=O)CCC(=O)N(O)CCCCCN UBQYURCVBFRUQT-UHFFFAOYSA-N 0.000 description 1
- KAJBMCZQVSQJDE-YFKPBYRVSA-N Nalpha-(tert-butoxycarbonyl)-l-aspartic acid Chemical compound CC(C)(C)OC(=O)N[C@H](C(O)=O)CC(O)=O KAJBMCZQVSQJDE-YFKPBYRVSA-N 0.000 description 1
- 108020001621 Natriuretic Peptide Proteins 0.000 description 1
- 102000004571 Natriuretic peptide Human genes 0.000 description 1
- 102400000064 Neuropeptide Y Human genes 0.000 description 1
- XQCFHQBGMWUEMY-ZPUQHVIOSA-N Nitrovin Chemical compound C=1C=C([N+]([O-])=O)OC=1\C=C\C(=NNC(=N)N)\C=C\C1=CC=C([N+]([O-])=O)O1 XQCFHQBGMWUEMY-ZPUQHVIOSA-N 0.000 description 1
- PHVGLTMQBUFIQQ-UHFFFAOYSA-N Nortryptiline Chemical compound C1CC2=CC=CC=C2C(=CCCNC)C2=CC=CC=C21 PHVGLTMQBUFIQQ-UHFFFAOYSA-N 0.000 description 1
- 108010016076 Octreotide Proteins 0.000 description 1
- 239000004104 Oleandomycin Substances 0.000 description 1
- RZPAKFUAFGMUPI-UHFFFAOYSA-N Oleandomycin Natural products O1C(C)C(O)C(OC)CC1OC1C(C)C(=O)OC(C)C(C)C(O)C(C)C(=O)C2(OC2)CC(C)C(OC2C(C(CC(C)O2)N(C)C)O)C1C RZPAKFUAFGMUPI-UHFFFAOYSA-N 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 102000015636 Oligopeptides Human genes 0.000 description 1
- 108010038807 Oligopeptides Proteins 0.000 description 1
- AHLPHDHHMVZTML-UHFFFAOYSA-N Orn-delta-NH2 Natural products NCCCC(N)C(O)=O AHLPHDHHMVZTML-UHFFFAOYSA-N 0.000 description 1
- UTJLXEIPEHZYQJ-UHFFFAOYSA-N Ornithine Natural products OC(=O)C(C)CCCN UTJLXEIPEHZYQJ-UHFFFAOYSA-N 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 102400000050 Oxytocin Human genes 0.000 description 1
- XNOPRXBHLZRZKH-UHFFFAOYSA-N Oxytocin Natural products N1C(=O)C(N)CSSCC(C(=O)N2C(CCC2)C(=O)NC(CC(C)C)C(=O)NCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(CCC(N)=O)NC(=O)C(C(C)CC)NC(=O)C1CC1=CC=C(O)C=C1 XNOPRXBHLZRZKH-UHFFFAOYSA-N 0.000 description 1
- 101800000989 Oxytocin Proteins 0.000 description 1
- 108010035766 P-Selectin Proteins 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 108700036316 PTR 3173 Proteins 0.000 description 1
- 102000018886 Pancreatic Polypeptide Human genes 0.000 description 1
- 101710126321 Pancreatic trypsin inhibitor Proteins 0.000 description 1
- 108010067035 Pancrelipase Proteins 0.000 description 1
- 108090000526 Papain Proteins 0.000 description 1
- AHOUBRCZNHFOSL-UHFFFAOYSA-N Paroxetine hydrochloride Natural products C1=CC(F)=CC=C1C1C(COC=2C=C3OCOC3=CC=2)CNCC1 AHOUBRCZNHFOSL-UHFFFAOYSA-N 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 102000007079 Peptide Fragments Human genes 0.000 description 1
- 108010033276 Peptide Fragments Proteins 0.000 description 1
- 108010088847 Peptide YY Proteins 0.000 description 1
- 102100029909 Peptide YY Human genes 0.000 description 1
- RMUCZJUITONUFY-UHFFFAOYSA-N Phenelzine Chemical compound NNCCC1=CC=CC=C1 RMUCZJUITONUFY-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 101710184309 Probable sucrose-6-phosphate hydrolase Proteins 0.000 description 1
- 108010057464 Prolactin Proteins 0.000 description 1
- 102000003946 Prolactin Human genes 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 101800004937 Protein C Proteins 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 101710170513 Retinoic acid receptor responder protein 2 Proteins 0.000 description 1
- 102100033914 Retinoic acid receptor responder protein 2 Human genes 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 239000004189 Salinomycin Substances 0.000 description 1
- KQXDHUJYNAXLNZ-XQSDOZFQSA-N Salinomycin Chemical compound O1[C@@H]([C@@H](CC)C(O)=O)CC[C@H](C)[C@@H]1[C@@H](C)[C@H](O)[C@H](C)C(=O)[C@H](CC)[C@@H]1[C@@H](C)C[C@@H](C)[C@@]2(C=C[C@@H](O)[C@@]3(O[C@@](C)(CC3)[C@@H]3O[C@@H](C)[C@@](O)(CC)CC3)O2)O1 KQXDHUJYNAXLNZ-XQSDOZFQSA-N 0.000 description 1
- 102400000827 Saposin-D Human genes 0.000 description 1
- 101800001700 Saposin-D Proteins 0.000 description 1
- 206010040047 Sepsis Diseases 0.000 description 1
- 229940122055 Serine protease inhibitor Drugs 0.000 description 1
- 101710102218 Serine protease inhibitor Proteins 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 108020004682 Single-Stranded DNA Proteins 0.000 description 1
- 108020004459 Small interfering RNA Proteins 0.000 description 1
- 102000013275 Somatomedins Human genes 0.000 description 1
- 102000005157 Somatostatin Human genes 0.000 description 1
- 108010056088 Somatostatin Proteins 0.000 description 1
- 239000004187 Spiramycin Substances 0.000 description 1
- 108010023197 Streptokinase Proteins 0.000 description 1
- 102400000472 Sucrase Human genes 0.000 description 1
- 101710112652 Sucrose-6-phosphate hydrolase Proteins 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 101000983124 Sus scrofa Pancreatic prohormone precursor Proteins 0.000 description 1
- 230000024932 T cell mediated immunity Effects 0.000 description 1
- 239000012317 TBTU Substances 0.000 description 1
- PZBFGYYEXUXCOF-UHFFFAOYSA-N TCEP Chemical compound OC(=O)CCP(CCC(O)=O)CCC(O)=O PZBFGYYEXUXCOF-UHFFFAOYSA-N 0.000 description 1
- DRHKJLXJIQTDTD-OAHLLOKOSA-N Tamsulosine Chemical compound CCOC1=CC=CC=C1OCCN[C@H](C)CC1=CC=C(OC)C(S(N)(=O)=O)=C1 DRHKJLXJIQTDTD-OAHLLOKOSA-N 0.000 description 1
- 108010010056 Terlipressin Proteins 0.000 description 1
- 108010055044 Tetanus Toxin Proteins 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- 108090000190 Thrombin Proteins 0.000 description 1
- 108010078233 Thymalfasin Proteins 0.000 description 1
- 108010046075 Thymosin Proteins 0.000 description 1
- 102000007501 Thymosin Human genes 0.000 description 1
- 102400000800 Thymosin alpha-1 Human genes 0.000 description 1
- AUYYCJSJGJYCDS-LBPRGKRZSA-N Thyrolar Chemical class IC1=CC(C[C@H](N)C(O)=O)=CC(I)=C1OC1=CC=C(O)C(I)=C1 AUYYCJSJGJYCDS-LBPRGKRZSA-N 0.000 description 1
- VXFJYXUZANRPDJ-WTNASJBWSA-N Trandopril Chemical compound C([C@@H](C(=O)OCC)N[C@@H](C)C(=O)N1[C@@H](C[C@H]2CCCC[C@@H]21)C(O)=O)CC1=CC=CC=C1 VXFJYXUZANRPDJ-WTNASJBWSA-N 0.000 description 1
- 108010009583 Transforming Growth Factors Proteins 0.000 description 1
- 102000009618 Transforming Growth Factors Human genes 0.000 description 1
- RHQDFWAXVIIEBN-UHFFFAOYSA-N Trifluoroethanol Chemical compound OCC(F)(F)F RHQDFWAXVIIEBN-UHFFFAOYSA-N 0.000 description 1
- 239000004182 Tylosin Substances 0.000 description 1
- 229930194936 Tylosin Natural products 0.000 description 1
- 206010067584 Type 1 diabetes mellitus Diseases 0.000 description 1
- 108010001957 Ularitide Proteins 0.000 description 1
- 108010092464 Urate Oxidase Proteins 0.000 description 1
- 102400001279 Urodilatin Human genes 0.000 description 1
- 108090000435 Urokinase-type plasminogen activator Proteins 0.000 description 1
- 102000003990 Urokinase-type plasminogen activator Human genes 0.000 description 1
- HDOVUKNUBWVHOX-QMMMGPOBSA-N Valacyclovir Chemical compound N1C(N)=NC(=O)C2=C1N(COCCOC(=O)[C@@H](N)C(C)C)C=N2 HDOVUKNUBWVHOX-QMMMGPOBSA-N 0.000 description 1
- WPVFJKSGQUFQAP-GKAPJAKFSA-N Valcyte Chemical compound N1C(N)=NC(=O)C2=C1N(COC(CO)COC(=O)[C@@H](N)C(C)C)C=N2 WPVFJKSGQUFQAP-GKAPJAKFSA-N 0.000 description 1
- 108010059993 Vancomycin Proteins 0.000 description 1
- 108010003205 Vasoactive Intestinal Peptide Proteins 0.000 description 1
- 102400000015 Vasoactive intestinal peptide Human genes 0.000 description 1
- GXBMIBRIOWHPDT-UHFFFAOYSA-N Vasopressin Natural products N1C(=O)C(CC=2C=C(O)C=CC=2)NC(=O)C(N)CSSCC(C(=O)N2C(CCC2)C(=O)NC(CCCN=C(N)N)C(=O)NCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(CCC(N)=O)NC(=O)C1CC1=CC=CC=C1 GXBMIBRIOWHPDT-UHFFFAOYSA-N 0.000 description 1
- 108010004977 Vasopressins Proteins 0.000 description 1
- 102000002852 Vasopressins Human genes 0.000 description 1
- 108010015940 Viomycin Proteins 0.000 description 1
- OZKXLOZHHUHGNV-UHFFFAOYSA-N Viomycin Natural products NCCCC(N)CC(=O)NC1CNC(=O)C(=CNC(=O)N)NC(=O)C(CO)NC(=O)C(CO)NC(=O)C(NC1=O)C2CC(O)NC(=N)N2 OZKXLOZHHUHGNV-UHFFFAOYSA-N 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- 239000004188 Virginiamycin Substances 0.000 description 1
- 108010080702 Virginiamycin Proteins 0.000 description 1
- 239000003875 Wang resin Substances 0.000 description 1
- WREGKURFCTUGRC-POYBYMJQSA-N Zalcitabine Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](CO)CC1 WREGKURFCTUGRC-POYBYMJQSA-N 0.000 description 1
- FZSPJBYOKQPKCD-VIFPVBQESA-N [1-(4-chlorophenyl)-2-methylpropan-2-yl] (2s)-2-aminopropanoate Chemical compound C[C@H](N)C(=O)OC(C)(C)CC1=CC=C(Cl)C=C1 FZSPJBYOKQPKCD-VIFPVBQESA-N 0.000 description 1
- ZEEBGORNQSEQBE-UHFFFAOYSA-N [2-(3-phenylphenoxy)-6-(trifluoromethyl)pyridin-4-yl]methanamine Chemical group C1(=CC(=CC=C1)OC1=NC(=CC(=C1)CN)C(F)(F)F)C1=CC=CC=C1 ZEEBGORNQSEQBE-UHFFFAOYSA-N 0.000 description 1
- NERFNHBZJXXFGY-UHFFFAOYSA-N [4-[(4-methylphenyl)methoxy]phenyl]methanol Chemical compound C1=CC(C)=CC=C1COC1=CC=C(CO)C=C1 NERFNHBZJXXFGY-UHFFFAOYSA-N 0.000 description 1
- CLZISMQKJZCZDN-UHFFFAOYSA-N [benzotriazol-1-yloxy(dimethylamino)methylidene]-dimethylazanium Chemical compound C1=CC=C2N(OC(N(C)C)=[N+](C)C)N=NC2=C1 CLZISMQKJZCZDN-UHFFFAOYSA-N 0.000 description 1
- WXIONIWNXBAHRU-UHFFFAOYSA-N [dimethylamino(triazolo[4,5-b]pyridin-3-yloxy)methylidene]-dimethylazanium Chemical compound C1=CN=C2N(OC(N(C)C)=[N+](C)C)N=NC2=C1 WXIONIWNXBAHRU-UHFFFAOYSA-N 0.000 description 1
- 229960002632 acarbose Drugs 0.000 description 1
- XUFXOAAUWZOOIT-UHFFFAOYSA-N acarviostatin I01 Natural products OC1C(O)C(NC2C(C(O)C(O)C(CO)=C2)O)C(C)OC1OC(C(C1O)O)C(CO)OC1OC1C(CO)OC(O)C(O)C1O XUFXOAAUWZOOIT-UHFFFAOYSA-N 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 230000010933 acylation Effects 0.000 description 1
- 238000005917 acylation reaction Methods 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000001270 agonistic effect Effects 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 229960003225 alaproclate Drugs 0.000 description 1
- NDAUXUAQIAJITI-UHFFFAOYSA-N albuterol Chemical compound CC(C)(C)NCC(O)C1=CC=C(O)C(CO)=C1 NDAUXUAQIAJITI-UHFFFAOYSA-N 0.000 description 1
- 229940062527 alendronate Drugs 0.000 description 1
- 125000002521 alkyl halide group Chemical group 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- 229940024142 alpha 1-antitrypsin Drugs 0.000 description 1
- AEMOLEFTQBMNLQ-WAXACMCWSA-N alpha-D-glucuronic acid Chemical compound O[C@H]1O[C@H](C(O)=O)[C@@H](O)[C@H](O)[C@H]1O AEMOLEFTQBMNLQ-WAXACMCWSA-N 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- HRRYYCWYCMJNGA-ZETCQYMHSA-N alpha-methyl-L-histidine Chemical compound OC(=O)[C@](N)(C)CC1=CN=CN1 HRRYYCWYCMJNGA-ZETCQYMHSA-N 0.000 description 1
- 229960003318 alteplase Drugs 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- DKNWSYNQZKUICI-UHFFFAOYSA-N amantadine Chemical compound C1C(C2)CC3CC2CC1(N)C3 DKNWSYNQZKUICI-UHFFFAOYSA-N 0.000 description 1
- 229960003805 amantadine Drugs 0.000 description 1
- 230000002862 amidating effect Effects 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 229960004821 amikacin Drugs 0.000 description 1
- LKCWBDHBTVXHDL-RMDFUYIESA-N amikacin Chemical compound O([C@@H]1[C@@H](N)C[C@H]([C@@H]([C@H]1O)O[C@@H]1[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O1)O)NC(=O)[C@@H](O)CCN)[C@H]1O[C@H](CN)[C@@H](O)[C@H](O)[C@H]1O LKCWBDHBTVXHDL-RMDFUYIESA-N 0.000 description 1
- 229960000959 amineptine Drugs 0.000 description 1
- VDPUXONTAVMIKZ-UHFFFAOYSA-N amineptine hydrochloride Chemical compound [Cl-].C1CC2=CC=CC=C2C([NH2+]CCCCCCC(=O)O)C2=CC=CC=C21 VDPUXONTAVMIKZ-UHFFFAOYSA-N 0.000 description 1
- 150000003862 amino acid derivatives Chemical class 0.000 description 1
- ROBVIMPUHSLWNV-UHFFFAOYSA-N aminoglutethimide Chemical compound C=1C=C(N)C=CC=1C1(CC)CCC(=O)NC1=O ROBVIMPUHSLWNV-UHFFFAOYSA-N 0.000 description 1
- 229960003437 aminoglutethimide Drugs 0.000 description 1
- NTJOBXMMWNYJFB-UHFFFAOYSA-N amisulpride Chemical compound CCN1CCCC1CNC(=O)C1=CC(S(=O)(=O)CC)=C(N)C=C1OC NTJOBXMMWNYJFB-UHFFFAOYSA-N 0.000 description 1
- 229960003036 amisulpride Drugs 0.000 description 1
- 229960000528 amlodipine Drugs 0.000 description 1
- HTIQEAQVCYTUBX-UHFFFAOYSA-N amlodipine Chemical compound CCOC(=O)C1=C(COCCN)NC(C)=C(C(=O)OC)C1C1=CC=CC=C1Cl HTIQEAQVCYTUBX-UHFFFAOYSA-N 0.000 description 1
- 235000012538 ammonium bicarbonate Nutrition 0.000 description 1
- 239000001099 ammonium carbonate Substances 0.000 description 1
- 229950004267 amotosalen Drugs 0.000 description 1
- 229960002519 amoxapine Drugs 0.000 description 1
- QWGDMFLQWFTERH-UHFFFAOYSA-N amoxapine Chemical compound C12=CC(Cl)=CC=C2OC2=CC=CC=C2N=C1N1CCNCC1 QWGDMFLQWFTERH-UHFFFAOYSA-N 0.000 description 1
- LSQZJLSUYDQPKJ-NJBDSQKTSA-N amoxicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=C(O)C=C1 LSQZJLSUYDQPKJ-NJBDSQKTSA-N 0.000 description 1
- 229960003022 amoxicillin Drugs 0.000 description 1
- 229940025084 amphetamine Drugs 0.000 description 1
- APKFDSVGJQXUKY-INPOYWNPSA-N amphotericin B Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-INPOYWNPSA-N 0.000 description 1
- 229960003942 amphotericin b Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- 229960001830 amprenavir Drugs 0.000 description 1
- YMARZQAQMVYCKC-OEMFJLHTSA-N amprenavir Chemical compound C([C@@H]([C@H](O)CN(CC(C)C)S(=O)(=O)C=1C=CC(N)=CC=1)NC(=O)O[C@@H]1COCC1)C1=CC=CC=C1 YMARZQAQMVYCKC-OEMFJLHTSA-N 0.000 description 1
- RNLQIBCLLYYYFJ-UHFFFAOYSA-N amrinone Chemical compound N1C(=O)C(N)=CC(C=2C=CN=CC=2)=C1 RNLQIBCLLYYYFJ-UHFFFAOYSA-N 0.000 description 1
- 229960002105 amrinone Drugs 0.000 description 1
- 235000019418 amylase Nutrition 0.000 description 1
- 239000002269 analeptic agent Substances 0.000 description 1
- 229940035676 analgesics Drugs 0.000 description 1
- LKYQLAWMNBFNJT-UHFFFAOYSA-N anileridine Chemical compound C1CC(C(=O)OCC)(C=2C=CC=CC=2)CCN1CCC1=CC=C(N)C=C1 LKYQLAWMNBFNJT-UHFFFAOYSA-N 0.000 description 1
- 229960002512 anileridine Drugs 0.000 description 1
- 229960000983 anistreplase Drugs 0.000 description 1
- 239000000730 antalgic agent Substances 0.000 description 1
- 125000005427 anthranyl group Chemical group 0.000 description 1
- 125000005428 anthryl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C3C(*)=C([H])C([H])=C([H])C3=C([H])C2=C1[H] 0.000 description 1
- 239000000883 anti-obesity agent Substances 0.000 description 1
- 230000001475 anti-trypsic effect Effects 0.000 description 1
- 239000000043 antiallergic agent Substances 0.000 description 1
- 239000003146 anticoagulant agent Substances 0.000 description 1
- 229940127219 anticoagulant drug Drugs 0.000 description 1
- 239000003472 antidiabetic agent Substances 0.000 description 1
- 229940125708 antidiabetic agent Drugs 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 230000030741 antigen processing and presentation Effects 0.000 description 1
- 229960005475 antiinfective agent Drugs 0.000 description 1
- 229940034982 antineoplastic agent Drugs 0.000 description 1
- 229940125710 antiobesity agent Drugs 0.000 description 1
- 229960005348 antithrombin iii Drugs 0.000 description 1
- 229960002610 apraclonidine Drugs 0.000 description 1
- IEJXVRYNEISIKR-UHFFFAOYSA-N apraclonidine Chemical compound ClC1=CC(N)=CC(Cl)=C1NC1=NCCN1 IEJXVRYNEISIKR-UHFFFAOYSA-N 0.000 description 1
- 229950006334 apramycin Drugs 0.000 description 1
- XZNUGFQTQHRASN-XQENGBIVSA-N apramycin Chemical compound O([C@H]1O[C@@H]2[C@H](O)[C@@H]([C@H](O[C@H]2C[C@H]1N)O[C@@H]1[C@@H]([C@@H](O)[C@H](N)[C@@H](CO)O1)O)NC)[C@@H]1[C@@H](N)C[C@@H](N)[C@H](O)[C@H]1O XZNUGFQTQHRASN-XQENGBIVSA-N 0.000 description 1
- 229960004405 aprotinin Drugs 0.000 description 1
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 1
- KBZOIRJILGZLEJ-LGYYRGKSSA-N argipressin Chemical compound C([C@H]1C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CSSC[C@@H](C(N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N1)=O)N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCN=C(N)N)C(=O)NCC(N)=O)C1=CC=CC=C1 KBZOIRJILGZLEJ-LGYYRGKSSA-N 0.000 description 1
- 229960003831 articaine Drugs 0.000 description 1
- 229960003272 asparaginase Drugs 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-M asparaginate Chemical compound [O-]C(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-M 0.000 description 1
- 150000001507 asparagine derivatives Chemical class 0.000 description 1
- XRWSZZJLZRKHHD-WVWIJVSJSA-N asunaprevir Chemical compound O=C([C@@H]1C[C@H](CN1C(=O)[C@@H](NC(=O)OC(C)(C)C)C(C)(C)C)OC1=NC=C(C2=CC=C(Cl)C=C21)OC)N[C@]1(C(=O)NS(=O)(=O)C2CC2)C[C@H]1C=C XRWSZZJLZRKHHD-WVWIJVSJSA-N 0.000 description 1
- 229960002274 atenolol Drugs 0.000 description 1
- 229960002430 atomoxetine Drugs 0.000 description 1
- VHGCDTVCOLNTBX-QGZVFWFLSA-N atomoxetine Chemical compound O([C@H](CCNC)C=1C=CC=CC=1)C1=CC=CC=C1C VHGCDTVCOLNTBX-QGZVFWFLSA-N 0.000 description 1
- 229960002403 atosiban Drugs 0.000 description 1
- 108700007535 atosiban Proteins 0.000 description 1
- VWXRQYYUEIYXCZ-OBIMUBPZSA-N atosiban Chemical compound C1=CC(OCC)=CC=C1C[C@@H]1C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@H](C(=O)N2[C@@H](CCC2)C(=O)N[C@@H](CCCN)C(=O)NCC(N)=O)CSSCCC(=O)N1 VWXRQYYUEIYXCZ-OBIMUBPZSA-N 0.000 description 1
- 229950009166 avizafone Drugs 0.000 description 1
- 229960003071 bacitracin Drugs 0.000 description 1
- 229930184125 bacitracin Natural products 0.000 description 1
- CLKOFPXJLQSYAH-ABRJDSQDSA-N bacitracin A Chemical compound C1SC([C@@H](N)[C@@H](C)CC)=N[C@@H]1C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]1C(=O)N[C@H](CCCN)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2N=CNC=2)C(=O)N[C@H](CC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)NCCCC1 CLKOFPXJLQSYAH-ABRJDSQDSA-N 0.000 description 1
- 229960000794 baclofen Drugs 0.000 description 1
- 208000022362 bacterial infectious disease Diseases 0.000 description 1
- 229960004530 benazepril Drugs 0.000 description 1
- BNQDCRGUHNALGH-UHFFFAOYSA-N benserazide Chemical compound OCC(N)C(=O)NNCC1=CC=C(O)C(O)=C1O BNQDCRGUHNALGH-UHFFFAOYSA-N 0.000 description 1
- 229960000911 benserazide Drugs 0.000 description 1
- 229960005274 benzocaine Drugs 0.000 description 1
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 1
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- 229940000635 beta-alanine Drugs 0.000 description 1
- 229960004324 betaxolol Drugs 0.000 description 1
- CHDPSNLJFOQTRK-UHFFFAOYSA-N betaxolol hydrochloride Chemical compound [Cl-].C1=CC(OCC(O)C[NH2+]C(C)C)=CC=C1CCOCC1CC1 CHDPSNLJFOQTRK-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000006065 biodegradation reaction Methods 0.000 description 1
- 108010033394 biphalin Proteins 0.000 description 1
- DESSEGDLRYOPTJ-VRANXALZSA-N biphalin Chemical compound C([C@H](N)C(=O)N[C@H](C)C(=O)NCC(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)NNC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)CNC(=O)[C@@H](C)NC(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 DESSEGDLRYOPTJ-VRANXALZSA-N 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 108010055460 bivalirudin Proteins 0.000 description 1
- OIRCOABEOLEUMC-GEJPAHFPSA-N bivalirudin Chemical compound C([C@@H](C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CC(C)C)C(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)CNC(=O)CNC(=O)CNC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 OIRCOABEOLEUMC-GEJPAHFPSA-N 0.000 description 1
- 229960001500 bivalirudin Drugs 0.000 description 1
- 229960001561 bleomycin Drugs 0.000 description 1
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 1
- KPGVUOQMOHGHEW-LBPRGKRZSA-N boc-his(dnp)-oh Chemical compound C1=NC(C[C@H](NC(=O)OC(C)(C)C)C(O)=O)=CN1C1=CC=C([N+]([O-])=O)C=C1[N+]([O-])=O KPGVUOQMOHGHEW-LBPRGKRZSA-N 0.000 description 1
- 238000006664 bond formation reaction Methods 0.000 description 1
- 229940112869 bone morphogenetic protein Drugs 0.000 description 1
- WZXHSWVDAYOFPE-UHFFFAOYSA-N brofaromine Chemical compound C=1C2=CC(OC)=CC(Br)=C2OC=1C1CCNCC1 WZXHSWVDAYOFPE-UHFFFAOYSA-N 0.000 description 1
- 229950004068 brofaromine Drugs 0.000 description 1
- ZBPLOVFIXSTCRZ-UHFFFAOYSA-N bromfenac Chemical compound NC1=C(CC(O)=O)C=CC=C1C(=O)C1=CC=C(Br)C=C1 ZBPLOVFIXSTCRZ-UHFFFAOYSA-N 0.000 description 1
- 229960003655 bromfenac Drugs 0.000 description 1
- 125000004369 butenyl group Chemical group C(=CCC)* 0.000 description 1
- 125000000480 butynyl group Chemical group [*]C#CC([H])([H])C([H])([H])[H] 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 238000009566 cancer vaccine Methods 0.000 description 1
- 229940022399 cancer vaccine Drugs 0.000 description 1
- 230000021523 carboxylation Effects 0.000 description 1
- 238000006473 carboxylation reaction Methods 0.000 description 1
- VDTNNGKXZGSZIP-UHFFFAOYSA-N carbutamide Chemical compound CCCCNC(=O)NS(=O)(=O)C1=CC=C(N)C=C1 VDTNNGKXZGSZIP-UHFFFAOYSA-N 0.000 description 1
- 229960003362 carbutamide Drugs 0.000 description 1
- 239000002327 cardiovascular agent Substances 0.000 description 1
- 229940125692 cardiovascular agent Drugs 0.000 description 1
- 229960004195 carvedilol Drugs 0.000 description 1
- NPAKNKYSJIDKMW-UHFFFAOYSA-N carvedilol Chemical compound COC1=CC=CC=C1OCCNCC(O)COC1=CC=CC2=NC3=CC=C[CH]C3=C12 NPAKNKYSJIDKMW-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 229960003609 cathine Drugs 0.000 description 1
- DLNKOYKMWOXYQA-IONNQARKSA-N cathine Chemical compound C[C@H](N)[C@@H](O)C1=CC=CC=C1 DLNKOYKMWOXYQA-IONNQARKSA-N 0.000 description 1
- PUAQLLVFLMYYJJ-ZETCQYMHSA-N cathinone Chemical compound C[C@H](N)C(=O)C1=CC=CC=C1 PUAQLLVFLMYYJJ-ZETCQYMHSA-N 0.000 description 1
- 229950002698 cathinone Drugs 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 229940083181 centrally acting adntiadrenergic agent methyldopa Drugs 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- ZAIPMKNFIOOWCQ-UEKVPHQBSA-N cephalexin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@@H]3N(C2=O)C(=C(CS3)C)C(O)=O)=CC=CC=C1 ZAIPMKNFIOOWCQ-UEKVPHQBSA-N 0.000 description 1
- 229940106164 cephalexin Drugs 0.000 description 1
- 229940124587 cephalosporin Drugs 0.000 description 1
- 150000001780 cephalosporins Chemical class 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- JUFFVKRROAPVBI-PVOYSMBESA-N chembl1210015 Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(=O)N[C@H]1[C@@H]([C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO[C@]3(O[C@@H](C[C@H](O)[C@H](O)CO)[C@H](NC(C)=O)[C@@H](O)C3)C(O)=O)O2)O)[C@@H](CO)O1)NC(C)=O)C(=O)NCC(=O)NCC(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CO)C(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCSC)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)[C@@H](C)O)C(C)C)C1=CC=CC=C1 JUFFVKRROAPVBI-PVOYSMBESA-N 0.000 description 1
- 125000003636 chemical group Chemical group 0.000 description 1
- 210000000991 chicken egg Anatomy 0.000 description 1
- 229960005091 chloramphenicol Drugs 0.000 description 1
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 1
- 229960001231 choline Drugs 0.000 description 1
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 1
- 229940015047 chorionic gonadotropin Drugs 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- QZHPTGXQGDFGEN-UHFFFAOYSA-N chromene Chemical compound C1=CC=C2C=C[CH]OC2=C1 QZHPTGXQGDFGEN-UHFFFAOYSA-N 0.000 description 1
- 229960003405 ciprofloxacin Drugs 0.000 description 1
- 239000007979 citrate buffer Substances 0.000 description 1
- QGPKADBNRMWEQR-UHFFFAOYSA-N clinafloxacin Chemical compound C1C(N)CCN1C1=C(F)C=C2C(=O)C(C(O)=O)=CN(C3CC3)C2=C1Cl QGPKADBNRMWEQR-UHFFFAOYSA-N 0.000 description 1
- 229950001320 clinafloxacin Drugs 0.000 description 1
- 229960003346 colistin Drugs 0.000 description 1
- 229960002424 collagenase Drugs 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 229940125797 compound 12 Drugs 0.000 description 1
- 229940126142 compound 16 Drugs 0.000 description 1
- 229940126208 compound 22 Drugs 0.000 description 1
- 229940125961 compound 24 Drugs 0.000 description 1
- 229940125846 compound 25 Drugs 0.000 description 1
- 229940125851 compound 27 Drugs 0.000 description 1
- 108700005721 conestat alfa Proteins 0.000 description 1
- 108050003126 conotoxin Proteins 0.000 description 1
- 229940124558 contraceptive agent Drugs 0.000 description 1
- 239000003433 contraceptive agent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 1
- 102000003675 cytokine receptors Human genes 0.000 description 1
- 108010057085 cytokine receptors Proteins 0.000 description 1
- 229940104302 cytosine Drugs 0.000 description 1
- KWGRBVOPPLSCSI-UHFFFAOYSA-N d-ephedrine Natural products CNC(C)C(O)C1=CC=CC=C1 KWGRBVOPPLSCSI-UHFFFAOYSA-N 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 229960000860 dapsone Drugs 0.000 description 1
- STQGQHZAVUOBTE-VGBVRHCVSA-N daunorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 STQGQHZAVUOBTE-VGBVRHCVSA-N 0.000 description 1
- 229960000975 daunorubicin Drugs 0.000 description 1
- 229960000958 deferoxamine Drugs 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 229960005319 delavirdine Drugs 0.000 description 1
- LINOMUASTDIRTM-QGRHZQQGSA-N deoxynivalenol Chemical compound C([C@@]12[C@@]3(C[C@@H](O)[C@H]1O[C@@H]1C=C(C([C@@H](O)[C@@]13CO)=O)C)C)O2 LINOMUASTDIRTM-QGRHZQQGSA-N 0.000 description 1
- 229930002954 deoxynivalenol Natural products 0.000 description 1
- 108010051768 des-n-octanoyl ghrelin Proteins 0.000 description 1
- 229960003914 desipramine Drugs 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229940039227 diagnostic agent Drugs 0.000 description 1
- 239000000032 diagnostic agent Substances 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- ZWWWLCMDTZFSOO-UHFFFAOYSA-N diethoxyphosphorylformonitrile Chemical compound CCOP(=O)(C#N)OCC ZWWWLCMDTZFSOO-UHFFFAOYSA-N 0.000 description 1
- BGRWYRAHAFMIBJ-UHFFFAOYSA-N diisopropylcarbodiimide Natural products CC(C)NC(=O)NC(C)C BGRWYRAHAFMIBJ-UHFFFAOYSA-N 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 239000007884 disintegrant Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- VHJLVAABSRFDPM-QWWZWVQMSA-N dithiothreitol Chemical compound SC[C@@H](O)[C@H](O)CS VHJLVAABSRFDPM-QWWZWVQMSA-N 0.000 description 1
- LBOJYSIDWZQNJS-CVEARBPZSA-N dizocilpine Chemical compound C12=CC=CC=C2[C@]2(C)C3=CC=CC=C3C[C@H]1N2 LBOJYSIDWZQNJS-CVEARBPZSA-N 0.000 description 1
- 229950004794 dizocilpine Drugs 0.000 description 1
- DLNKOYKMWOXYQA-UHFFFAOYSA-N dl-pseudophenylpropanolamine Natural products CC(N)C(O)C1=CC=CC=C1 DLNKOYKMWOXYQA-UHFFFAOYSA-N 0.000 description 1
- 229960001089 dobutamine Drugs 0.000 description 1
- 229960003638 dopamine Drugs 0.000 description 1
- 229960003933 dorzolamide Drugs 0.000 description 1
- IAVUPMFITXYVAF-XPUUQOCRSA-N dorzolamide Chemical compound CCN[C@H]1C[C@H](C)S(=O)(=O)C2=C1C=C(S(N)(=O)=O)S2 IAVUPMFITXYVAF-XPUUQOCRSA-N 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 229960004679 doxorubicin Drugs 0.000 description 1
- 238000007876 drug discovery Methods 0.000 description 1
- 238000002651 drug therapy Methods 0.000 description 1
- 229960002866 duloxetine Drugs 0.000 description 1
- JMNJYGMAUMANNW-FIXZTSJVSA-N dynorphin a Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(O)=O)NC(=O)CNC(=O)CNC(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=CC=C1 JMNJYGMAUMANNW-FIXZTSJVSA-N 0.000 description 1
- 230000000214 effect on organisms Effects 0.000 description 1
- VLCYCQAOQCDTCN-UHFFFAOYSA-N eflornithine Chemical compound NCCCC(N)(C(F)F)C(O)=O VLCYCQAOQCDTCN-UHFFFAOYSA-N 0.000 description 1
- 229960002759 eflornithine Drugs 0.000 description 1
- 230000009881 electrostatic interaction Effects 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- GBXSMTUPTTWBMN-XIRDDKMYSA-N enalapril Chemical compound C([C@@H](C(=O)OCC)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(O)=O)CC1=CC=CC=C1 GBXSMTUPTTWBMN-XIRDDKMYSA-N 0.000 description 1
- 229960000873 enalapril Drugs 0.000 description 1
- PEASPLKKXBYDKL-FXEVSJAOSA-N enfuvirtide Chemical compound C([C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(N)=O)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(C)=O)[C@@H](C)O)[C@@H](C)CC)C1=CN=CN1 PEASPLKKXBYDKL-FXEVSJAOSA-N 0.000 description 1
- 229960002062 enfuvirtide Drugs 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- IDYZIJYBMGIQMJ-UHFFFAOYSA-N enoxacin Chemical compound N1=C2N(CC)C=C(C(O)=O)C(=O)C2=CC(F)=C1N1CCNCC1 IDYZIJYBMGIQMJ-UHFFFAOYSA-N 0.000 description 1
- 229960002549 enoxacin Drugs 0.000 description 1
- 229960005139 epinephrine Drugs 0.000 description 1
- 229960001904 epirubicin Drugs 0.000 description 1
- 229960002770 ertapenem Drugs 0.000 description 1
- 229960003276 erythromycin Drugs 0.000 description 1
- 229940105423 erythropoietin Drugs 0.000 description 1
- 229960003745 esmolol Drugs 0.000 description 1
- AQNDDEOPVVGCPG-UHFFFAOYSA-N esmolol Chemical compound COC(=O)CCC1=CC=C(OCC(O)CNC(C)C)C=C1 AQNDDEOPVVGCPG-UHFFFAOYSA-N 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 229960000285 ethambutol Drugs 0.000 description 1
- 125000003754 ethoxycarbonyl group Chemical group C(=O)(OCC)* 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 108010015174 exendin 3 Proteins 0.000 description 1
- LMHMJYMCGJNXRS-IOPUOMRJSA-N exendin-3 Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)NCC(=O)NCC(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CO)C(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCSC)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC=1N=CNC=1)[C@H](C)O)[C@H](C)O)C(C)C)C1=CC=CC=C1 LMHMJYMCGJNXRS-IOPUOMRJSA-N 0.000 description 1
- 229960004222 factor ix Drugs 0.000 description 1
- 229940012413 factor vii Drugs 0.000 description 1
- 229940012414 factor viia Drugs 0.000 description 1
- 229960000301 factor viii Drugs 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 229960001582 fenfluramine Drugs 0.000 description 1
- TVURRHSHRRELCG-UHFFFAOYSA-N fenoldopam Chemical compound C1=CC(O)=CC=C1C1C2=CC(O)=C(O)C(Cl)=C2CCNC1 TVURRHSHRRELCG-UHFFFAOYSA-N 0.000 description 1
- 229960002724 fenoldopam Drugs 0.000 description 1
- 229960001022 fenoterol Drugs 0.000 description 1
- 229940001501 fibrinolysin Drugs 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 229960000556 fingolimod Drugs 0.000 description 1
- KKGQTZUTZRNORY-UHFFFAOYSA-N fingolimod Chemical compound CCCCCCCCC1=CC=C(CCC(N)(CO)CO)C=C1 KKGQTZUTZRNORY-UHFFFAOYSA-N 0.000 description 1
- 235000019688 fish Nutrition 0.000 description 1
- 229960000449 flecainide Drugs 0.000 description 1
- 238000002637 fluid replacement therapy Methods 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 229960002464 fluoxetine Drugs 0.000 description 1
- CJOFXWAVKWHTFT-XSFVSMFZSA-N fluvoxamine Chemical compound COCCCC\C(=N/OCCN)C1=CC=C(C(F)(F)F)C=C1 CJOFXWAVKWHTFT-XSFVSMFZSA-N 0.000 description 1
- 229960004038 fluvoxamine Drugs 0.000 description 1
- 229940028334 follicle stimulating hormone Drugs 0.000 description 1
- MLBVMOWEQCZNCC-OEMFJLHTSA-N fosamprenavir Chemical compound C([C@@H]([C@H](OP(O)(O)=O)CN(CC(C)C)S(=O)(=O)C=1C=CC(N)=CC=1)NC(=O)O[C@@H]1COCC1)C1=CC=CC=C1 MLBVMOWEQCZNCC-OEMFJLHTSA-N 0.000 description 1
- 229960003142 fosamprenavir Drugs 0.000 description 1
- 229960003704 framycetin Drugs 0.000 description 1
- PGBHMTALBVVCIT-VCIWKGPPSA-N framycetin Chemical compound N[C@@H]1[C@@H](O)[C@H](O)[C@H](CN)O[C@@H]1O[C@H]1[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](N)C[C@@H](N)[C@@H]2O)O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CN)O2)N)O[C@@H]1CO PGBHMTALBVVCIT-VCIWKGPPSA-N 0.000 description 1
- 229910052730 francium Inorganic materials 0.000 description 1
- KLMCZVJOEAUDNE-UHFFFAOYSA-N francium atom Chemical compound [Fr] KLMCZVJOEAUDNE-UHFFFAOYSA-N 0.000 description 1
- 229960002284 frovatriptan Drugs 0.000 description 1
- SIBNYOSJIXCDRI-SECBINFHSA-N frovatriptan Chemical compound C1=C(C(N)=O)[CH]C2=C(C[C@H](NC)CC3)C3=NC2=C1 SIBNYOSJIXCDRI-SECBINFHSA-N 0.000 description 1
- 108010090818 fucosyltransferase V Proteins 0.000 description 1
- 239000003008 fumonisin Substances 0.000 description 1
- 229960003883 furosemide Drugs 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- 229960002870 gabapentin Drugs 0.000 description 1
- 229960003923 gatifloxacin Drugs 0.000 description 1
- ZRCVYEYHRGVLOC-HYARGMPZSA-N gemifloxacin Chemical compound C1C(CN)C(=N/OC)/CN1C(C(=C1)F)=NC2=C1C(=O)C(C(O)=O)=CN2C1CC1 ZRCVYEYHRGVLOC-HYARGMPZSA-N 0.000 description 1
- 229960003170 gemifloxacin Drugs 0.000 description 1
- MASNOZXLGMXCHN-ZLPAWPGGSA-N glucagon Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O)C(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)[C@@H](C)O)C1=CC=CC=C1 MASNOZXLGMXCHN-ZLPAWPGGSA-N 0.000 description 1
- 229960004666 glucagon Drugs 0.000 description 1
- TWSALRJGPBVBQU-PKQQPRCHSA-N glucagon-like peptide 2 Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(O)=O)C(O)=O)[C@@H](C)CC)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCSC)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)[C@@H](C)CC)C1=CC=CC=C1 TWSALRJGPBVBQU-PKQQPRCHSA-N 0.000 description 1
- 229950006191 gluconic acid Drugs 0.000 description 1
- 235000012208 gluconic acid Nutrition 0.000 description 1
- 229930182470 glycoside Natural products 0.000 description 1
- 229960004905 gramicidin Drugs 0.000 description 1
- ZWCXYZRRTRDGQE-SORVKSEFSA-N gramicidina Chemical compound C1=CC=C2C(C[C@H](NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CC=3C4=CC=CC=C4NC=3)NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CC=3C4=CC=CC=C4NC=3)NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CC=3C4=CC=CC=C4NC=3)NC(=O)[C@H](C(C)C)NC(=O)[C@H](C(C)C)NC(=O)[C@@H](C(C)C)NC(=O)[C@H](C)NC(=O)[C@H](NC(=O)[C@H](C)NC(=O)CNC(=O)[C@@H](NC=O)C(C)C)CC(C)C)C(=O)NCCO)=CNC2=C1 ZWCXYZRRTRDGQE-SORVKSEFSA-N 0.000 description 1
- 229960000642 grepafloxacin Drugs 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 239000000122 growth hormone Substances 0.000 description 1
- 208000005252 hepatitis A Diseases 0.000 description 1
- 208000002672 hepatitis B Diseases 0.000 description 1
- 229960005388 hexylcaine Drugs 0.000 description 1
- 229940006607 hirudin Drugs 0.000 description 1
- WQPDUTSPKFMPDP-OUMQNGNKSA-N hirudin Chemical compound C([C@@H](C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC(OS(O)(=O)=O)=CC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCCN)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@H]1NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@@H]2CSSC[C@@H](C(=O)N[C@@H](CCC(O)=O)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@H](C(=O)N[C@H](C(NCC(=O)N[C@@H](CCC(N)=O)C(=O)NCC(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)N2)=O)CSSC1)C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]1NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)CNC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=2C=CC(O)=CC=2)NC(=O)[C@@H](NC(=O)[C@@H](N)C(C)C)C(C)C)[C@@H](C)O)CSSC1)C(C)C)[C@@H](C)O)[C@@H](C)O)C1=CC=CC=C1 WQPDUTSPKFMPDP-OUMQNGNKSA-N 0.000 description 1
- 230000028996 humoral immune response Effects 0.000 description 1
- 229920002674 hyaluronan Polymers 0.000 description 1
- 229960003160 hyaluronic acid Drugs 0.000 description 1
- 229960002773 hyaluronidase Drugs 0.000 description 1
- 229960002474 hydralazine Drugs 0.000 description 1
- 229960002003 hydrochlorothiazide Drugs 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000033444 hydroxylation Effects 0.000 description 1
- 238000005805 hydroxylation reaction Methods 0.000 description 1
- 229950003053 icofungipen Drugs 0.000 description 1
- 229960000908 idarubicin Drugs 0.000 description 1
- 229960002751 imiquimod Drugs 0.000 description 1
- DOUYETYNHWVLEO-UHFFFAOYSA-N imiquimod Chemical compound C1=CC=CC2=C3N(CC(C)C)C=NC3=C(N)N=C21 DOUYETYNHWVLEO-UHFFFAOYSA-N 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 208000026278 immune system disease Diseases 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 238000000099 in vitro assay Methods 0.000 description 1
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 1
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 1
- 208000027866 inflammatory disease Diseases 0.000 description 1
- 229960003971 influenza vaccine Drugs 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- ZPNFWUPYTFPOJU-LPYSRVMUSA-N iniprol Chemical compound C([C@H]1C(=O)NCC(=O)NCC(=O)N[C@H]2CSSC[C@H]3C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(N[C@H](C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC=4C=CC=CC=4)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC=4C=CC=CC=4)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC2=O)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC=2C=CC=CC=2)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H]2N(CCC2)C(=O)[C@@H](N)CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N2[C@@H](CCC2)C(=O)N2[C@@H](CCC2)C(=O)N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N2[C@@H](CCC2)C(=O)N3)C(=O)NCC(=O)NCC(=O)N[C@@H](C)C(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@H](C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@H](C(=O)N1)C(C)C)[C@@H](C)O)[C@@H](C)CC)=O)[C@@H](C)CC)C1=CC=C(O)C=C1 ZPNFWUPYTFPOJU-LPYSRVMUSA-N 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 229940079322 interferon Drugs 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 235000011073 invertase Nutrition 0.000 description 1
- VBUWHHLIZKOSMS-RIWXPGAOSA-N invicorp Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CCSC)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC=1NC=NC=1)C(C)C)[C@@H](C)O)[C@@H](C)O)C(C)C)C1=CC=C(O)C=C1 VBUWHHLIZKOSMS-RIWXPGAOSA-N 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- 238000006317 isomerization reaction Methods 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 229940039009 isoproterenol Drugs 0.000 description 1
- 229960004427 isradipine Drugs 0.000 description 1
- 229960000318 kanamycin Drugs 0.000 description 1
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 1
- 229930182823 kanamycin A Natural products 0.000 description 1
- PVTHJAPFENJVNC-MHRBZPPQSA-N kasugamycin Chemical compound N[C@H]1C[C@H](NC(=N)C(O)=O)[C@@H](C)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@H](O)[C@@H]1O PVTHJAPFENJVNC-MHRBZPPQSA-N 0.000 description 1
- 229960003299 ketamine Drugs 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 229960001632 labetalol Drugs 0.000 description 1
- 229940116108 lactase Drugs 0.000 description 1
- JTEGQNOMFQHVDC-NKWVEPMBSA-N lamivudine Chemical compound O=C1N=C(N)C=CN1[C@H]1O[C@@H](CO)SC1 JTEGQNOMFQHVDC-NKWVEPMBSA-N 0.000 description 1
- 229960001627 lamivudine Drugs 0.000 description 1
- BBMULGJBVDDDNI-OWKLGTHSSA-N lasalocid Chemical compound C([C@@H]1[C@@]2(CC)O[C@@H]([C@H](C2)C)[C@@H](CC)C(=O)[C@@H](C)[C@@H](O)[C@H](C)CCC=2C(=C(O)C(C)=CC=2)C(O)=O)C[C@](O)(CC)[C@H](C)O1 BBMULGJBVDDDNI-OWKLGTHSSA-N 0.000 description 1
- 229960000320 lasalocid Drugs 0.000 description 1
- 239000002523 lectin Substances 0.000 description 1
- 229940039781 leptin Drugs 0.000 description 1
- NRYBAZVQPHGZNS-ZSOCWYAHSA-N leptin Chemical compound O=C([C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](N)CC(C)C)CCSC)N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CS)C(O)=O NRYBAZVQPHGZNS-ZSOCWYAHSA-N 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- GFIJNRVAKGFPGQ-LIJARHBVSA-N leuprolide Chemical compound CCNC(=O)[C@@H]1CCCN1C(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H]1NC(=O)CC1)CC1=CC=C(O)C=C1 GFIJNRVAKGFPGQ-LIJARHBVSA-N 0.000 description 1
- 229960004338 leuprorelin Drugs 0.000 description 1
- 229960000831 levobunolol Drugs 0.000 description 1
- IXHBTMCLRNMKHZ-LBPRGKRZSA-N levobunolol Chemical compound O=C1CCCC2=C1C=CC=C2OC[C@@H](O)CNC(C)(C)C IXHBTMCLRNMKHZ-LBPRGKRZSA-N 0.000 description 1
- 229960004502 levodopa Drugs 0.000 description 1
- 229950008325 levothyroxine Drugs 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- OJMMVQQUTAEWLP-KIDUDLJLSA-N lincomycin Chemical compound CN1C[C@H](CCC)C[C@H]1C(=O)N[C@H]([C@@H](C)O)[C@@H]1[C@H](O)[C@H](O)[C@@H](O)[C@@H](SC)O1 OJMMVQQUTAEWLP-KIDUDLJLSA-N 0.000 description 1
- 229960005287 lincomycin Drugs 0.000 description 1
- 230000029226 lipidation Effects 0.000 description 1
- 229960002394 lisinopril Drugs 0.000 description 1
- RLAWWYSOJDYHDC-BZSNNMDCSA-N lisinopril Chemical compound C([C@H](N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(O)=O)C(O)=O)CC1=CC=CC=C1 RLAWWYSOJDYHDC-BZSNNMDCSA-N 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- ZEKZLJVOYLTDKK-UHFFFAOYSA-N lomefloxacin Chemical compound FC1=C2N(CC)C=C(C(O)=O)C(=O)C2=CC(F)=C1N1CCNC(C)C1 ZEKZLJVOYLTDKK-UHFFFAOYSA-N 0.000 description 1
- 229960002422 lomefloxacin Drugs 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229960001977 loracarbef Drugs 0.000 description 1
- JAPHQRWPEGVNBT-UTUOFQBUSA-N loracarbef Chemical compound C1([C@H](C(=O)N[C@@H]2C(N3C(=C(Cl)CC[C@@H]32)C([O-])=O)=O)[NH3+])=CC=CC=C1 JAPHQRWPEGVNBT-UTUOFQBUSA-N 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229940040129 luteinizing hormone Drugs 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229960004090 maprotiline Drugs 0.000 description 1
- QSLMDECMDJKHMQ-GSXCWMCISA-N maprotiline Chemical compound C12=CC=CC=C2[C@@]2(CCCNC)C3=CC=CC=C3[C@@H]1CC2 QSLMDECMDJKHMQ-GSXCWMCISA-N 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 229960001962 mefloquine Drugs 0.000 description 1
- SGDBTWWWUNNDEQ-LBPRGKRZSA-N melphalan Chemical compound OC(=O)[C@@H](N)CC1=CC=C(N(CCCl)CCCl)C=C1 SGDBTWWWUNNDEQ-LBPRGKRZSA-N 0.000 description 1
- 229960001924 melphalan Drugs 0.000 description 1
- 229960004640 memantine Drugs 0.000 description 1
- BUGYDGFZZOZRHP-UHFFFAOYSA-N memantine Chemical compound C1C(C2)CC3(C)CC1(C)CC2(N)C3 BUGYDGFZZOZRHP-UHFFFAOYSA-N 0.000 description 1
- 229960002260 meropenem Drugs 0.000 description 1
- DMJNNHOOLUXYBV-PQTSNVLCSA-N meropenem Chemical compound C=1([C@H](C)[C@@H]2[C@H](C(N2C=1C(O)=O)=O)[C@H](O)C)S[C@@H]1CN[C@H](C(=O)N(C)C)C1 DMJNNHOOLUXYBV-PQTSNVLCSA-N 0.000 description 1
- KBOPZPXVLCULAV-UHFFFAOYSA-N mesalamine Chemical compound NC1=CC=C(O)C(C(O)=O)=C1 KBOPZPXVLCULAV-UHFFFAOYSA-N 0.000 description 1
- 229960004963 mesalazine Drugs 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 125000001160 methoxycarbonyl group Chemical group [H]C([H])([H])OC(*)=O 0.000 description 1
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 1
- IUBSYMUCCVWXPE-UHFFFAOYSA-N metoprolol Chemical compound COCCC1=CC=C(OCC(O)CNC(C)C)C=C1 IUBSYMUCCVWXPE-UHFFFAOYSA-N 0.000 description 1
- 229960002237 metoprolol Drugs 0.000 description 1
- 108091070501 miRNA Proteins 0.000 description 1
- 239000002679 microRNA Substances 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 229960000600 milnacipran Drugs 0.000 description 1
- KKZJGLLVHKMTCM-UHFFFAOYSA-N mitoxantrone Chemical compound O=C1C2=C(O)C=CC(O)=C2C(=O)C2=C1C(NCCNCCO)=CC=C2NCCNCCO KKZJGLLVHKMTCM-UHFFFAOYSA-N 0.000 description 1
- 229960001156 mitoxantrone Drugs 0.000 description 1
- 229960005358 monensin Drugs 0.000 description 1
- GAOZTHIDHYLHMS-KEOBGNEYSA-N monensin A Chemical compound C([C@@](O1)(C)[C@H]2CC[C@@](O2)(CC)[C@H]2[C@H](C[C@@H](O2)[C@@H]2[C@H](C[C@@H](C)[C@](O)(CO)O2)C)C)C[C@@]21C[C@H](O)[C@@H](C)[C@@H]([C@@H](C)[C@@H](OC)[C@H](C)C(O)=O)O2 GAOZTHIDHYLHMS-KEOBGNEYSA-N 0.000 description 1
- 229960003702 moxifloxacin Drugs 0.000 description 1
- FABPRXSRWADJSP-MEDUHNTESA-N moxifloxacin Chemical compound COC1=C(N2C[C@H]3NCCC[C@H]3C2)C(F)=CC(C(C(C(O)=O)=C2)=O)=C1N2C1CC1 FABPRXSRWADJSP-MEDUHNTESA-N 0.000 description 1
- 201000006417 multiple sclerosis Diseases 0.000 description 1
- JORAUNFTUVJTNG-BSTBCYLQSA-N n-[(2s)-4-amino-1-[[(2s,3r)-1-[[(2s)-4-amino-1-oxo-1-[[(3s,6s,9s,12s,15r,18s,21s)-6,9,18-tris(2-aminoethyl)-3-[(1r)-1-hydroxyethyl]-12,15-bis(2-methylpropyl)-2,5,8,11,14,17,20-heptaoxo-1,4,7,10,13,16,19-heptazacyclotricos-21-yl]amino]butan-2-yl]amino]-3-h Chemical compound CC(C)CCCCC(=O)N[C@@H](CCN)C(=O)N[C@H]([C@@H](C)O)CN[C@@H](CCN)C(=O)N[C@H]1CCNC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCN)NC(=O)[C@H](CCN)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CCN)NC1=O.CCC(C)CCCCC(=O)N[C@@H](CCN)C(=O)N[C@H]([C@@H](C)O)CN[C@@H](CCN)C(=O)N[C@H]1CCNC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCN)NC(=O)[C@H](CCN)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CCN)NC1=O JORAUNFTUVJTNG-BSTBCYLQSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 239000000692 natriuretic peptide Substances 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 231100000989 no adverse effect Toxicity 0.000 description 1
- 229960002748 norepinephrine Drugs 0.000 description 1
- SFLSHLFXELFNJZ-UHFFFAOYSA-N norepinephrine Natural products NCC(O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-UHFFFAOYSA-N 0.000 description 1
- OGJPXUAPXNRGGI-UHFFFAOYSA-N norfloxacin Chemical compound C1=C2N(CC)C=C(C(O)=O)C(=O)C2=CC(F)=C1N1CCNCC1 OGJPXUAPXNRGGI-UHFFFAOYSA-N 0.000 description 1
- 229960001180 norfloxacin Drugs 0.000 description 1
- 229960001158 nortriptyline Drugs 0.000 description 1
- URPYMXQQVHTUDU-OFGSCBOVSA-N nucleopeptide y Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(N)=O)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 URPYMXQQVHTUDU-OFGSCBOVSA-N 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 229960000988 nystatin Drugs 0.000 description 1
- VQOXZBDYSJBXMA-NQTDYLQESA-N nystatin A1 Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/CC/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 VQOXZBDYSJBXMA-NQTDYLQESA-N 0.000 description 1
- 239000007764 o/w emulsion Substances 0.000 description 1
- 229930183344 ochratoxin Natural products 0.000 description 1
- 229960002700 octreotide Drugs 0.000 description 1
- QNDVLZJODHBUFM-WFXQOWMNSA-N okadaic acid Chemical compound C([C@H](O1)[C@H](C)/C=C/[C@H]2CC[C@@]3(CC[C@H]4O[C@@H](C([C@@H](O)[C@@H]4O3)=C)[C@@H](O)C[C@H](C)[C@@H]3[C@@H](CC[C@@]4(OCCCC4)O3)C)O2)C(C)=C[C@]21O[C@H](C[C@@](C)(O)C(O)=O)CC[C@H]2O QNDVLZJODHBUFM-WFXQOWMNSA-N 0.000 description 1
- VEFJHAYOIAAXEU-UHFFFAOYSA-N okadaic acid Natural products CC(CC(O)C1OC2CCC3(CCC(O3)C=CC(C)C4CC(=CC5(OC(CC(C)(O)C(=O)O)CCC5O)O4)C)OC2C(O)C1C)C6OC7(CCCCO7)CCC6C VEFJHAYOIAAXEU-UHFFFAOYSA-N 0.000 description 1
- 229960002351 oleandomycin Drugs 0.000 description 1
- 235000019367 oleandomycin Nutrition 0.000 description 1
- RZPAKFUAFGMUPI-KGIGTXTPSA-N oleandomycin Chemical compound O1[C@@H](C)[C@H](O)[C@@H](OC)C[C@@H]1O[C@@H]1[C@@H](C)C(=O)O[C@H](C)[C@H](C)[C@H](O)[C@@H](C)C(=O)[C@]2(OC2)C[C@H](C)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C RZPAKFUAFGMUPI-KGIGTXTPSA-N 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 229960003104 ornithine Drugs 0.000 description 1
- 229960003752 oseltamivir Drugs 0.000 description 1
- NENPYTRHICXVCS-YNEHKIRRSA-N oseltamivir acid Chemical compound CCC(CC)O[C@@H]1C=C(C(O)=O)C[C@H](N)[C@H]1NC(C)=O NENPYTRHICXVCS-YNEHKIRRSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229960000321 oxolinic acid Drugs 0.000 description 1
- XNOPRXBHLZRZKH-DSZYJQQASA-N oxytocin Chemical compound C([C@H]1C(=O)N[C@H](C(N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CSSC[C@H](N)C(=O)N1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(C)C)C(=O)NCC(N)=O)=O)[C@@H](C)CC)C1=CC=C(O)C=C1 XNOPRXBHLZRZKH-DSZYJQQASA-N 0.000 description 1
- 229960001723 oxytocin Drugs 0.000 description 1
- LSQZJLSUYDQPKJ-UHFFFAOYSA-N p-Hydroxyampicillin Natural products O=C1N2C(C(O)=O)C(C)(C)SC2C1NC(=O)C(N)C1=CC=C(O)C=C1 LSQZJLSUYDQPKJ-UHFFFAOYSA-N 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- WRUUGTRCQOWXEG-UHFFFAOYSA-N pamidronate Chemical compound NCCC(O)(P(O)(O)=O)P(O)(O)=O WRUUGTRCQOWXEG-UHFFFAOYSA-N 0.000 description 1
- 229960003978 pamidronic acid Drugs 0.000 description 1
- 229940045258 pancrelipase Drugs 0.000 description 1
- 229940055729 papain Drugs 0.000 description 1
- 235000019834 papain Nutrition 0.000 description 1
- 229960001319 parathyroid hormone Drugs 0.000 description 1
- 229960002296 paroxetine Drugs 0.000 description 1
- 229960002625 pazufloxacin Drugs 0.000 description 1
- RKOUGZGFAYMUIO-RITPCOANSA-N pdl 118 Chemical compound N[C@H]1CC(=C)C[C@H]1C(O)=O RKOUGZGFAYMUIO-RITPCOANSA-N 0.000 description 1
- 230000006320 pegylation Effects 0.000 description 1
- 229960005079 pemetrexed Drugs 0.000 description 1
- QOFFJEBXNKRSPX-ZDUSSCGKSA-N pemetrexed Chemical compound C1=N[C]2NC(N)=NC(=O)C2=C1CCC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 QOFFJEBXNKRSPX-ZDUSSCGKSA-N 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- IZUPBVBPLAPZRR-UHFFFAOYSA-N pentachloro-phenol Natural products OC1=C(Cl)C(Cl)=C(Cl)C(Cl)=C1Cl IZUPBVBPLAPZRR-UHFFFAOYSA-N 0.000 description 1
- 229940023041 peptide vaccine Drugs 0.000 description 1
- IPVQLZZIHOAWMC-QXKUPLGCSA-N perindopril Chemical compound C1CCC[C@H]2C[C@@H](C(O)=O)N(C(=O)[C@H](C)N[C@@H](CCC)C(=O)OCC)[C@H]21 IPVQLZZIHOAWMC-QXKUPLGCSA-N 0.000 description 1
- 229960002582 perindopril Drugs 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 125000005561 phenanthryl group Chemical group 0.000 description 1
- 229960000964 phenelzine Drugs 0.000 description 1
- 229960003209 phenmetrazine Drugs 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- RCIMBBZXSXFZBV-UHFFFAOYSA-N piromidic acid Chemical compound N1=C2N(CC)C=C(C(O)=O)C(=O)C2=CN=C1N1CCCC1 RCIMBBZXSXFZBV-UHFFFAOYSA-N 0.000 description 1
- 229960004444 piromidic acid Drugs 0.000 description 1
- XDJYMJULXQKGMM-UHFFFAOYSA-N polymyxin E1 Natural products CCC(C)CCCCC(=O)NC(CCN)C(=O)NC(C(C)O)C(=O)NC(CCN)C(=O)NC1CCNC(=O)C(C(C)O)NC(=O)C(CCN)NC(=O)C(CCN)NC(=O)C(CC(C)C)NC(=O)C(CC(C)C)NC(=O)C(CCN)NC1=O XDJYMJULXQKGMM-UHFFFAOYSA-N 0.000 description 1
- KNIWPHSUTGNZST-UHFFFAOYSA-N polymyxin E2 Natural products CC(C)CCCCC(=O)NC(CCN)C(=O)NC(C(C)O)C(=O)NC(CCN)C(=O)NC1CCNC(=O)C(C(C)O)NC(=O)C(CCN)NC(=O)C(CCN)NC(=O)C(CC(C)C)NC(=O)C(CC(C)C)NC(=O)C(CCN)NC1=O KNIWPHSUTGNZST-UHFFFAOYSA-N 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 108010029667 pramlintide Proteins 0.000 description 1
- 229960001233 pregabalin Drugs 0.000 description 1
- AYXYPKUFHZROOJ-ZETCQYMHSA-N pregabalin Chemical compound CC(C)C[C@H](CN)CC(O)=O AYXYPKUFHZROOJ-ZETCQYMHSA-N 0.000 description 1
- 108010055741 pro-diazepam Proteins 0.000 description 1
- 229960004919 procaine Drugs 0.000 description 1
- MFDFERRIHVXMIY-UHFFFAOYSA-N procaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1 MFDFERRIHVXMIY-UHFFFAOYSA-N 0.000 description 1
- 229940097325 prolactin Drugs 0.000 description 1
- 125000004368 propenyl group Chemical group C(=CC)* 0.000 description 1
- 125000002568 propynyl group Chemical group [*]C#CC([H])([H])[H] 0.000 description 1
- 235000019419 proteases Nutrition 0.000 description 1
- 229960000856 protein c Drugs 0.000 description 1
- 229960002601 protriptyline Drugs 0.000 description 1
- BWPIARFWQZKAIA-UHFFFAOYSA-N protriptyline Chemical compound C1=CC2=CC=CC=C2C(CCCNC)C2=CC=CC=C21 BWPIARFWQZKAIA-UHFFFAOYSA-N 0.000 description 1
- KWGRBVOPPLSCSI-WCBMZHEXSA-N pseudoephedrine Chemical compound CN[C@@H](C)[C@@H](O)C1=CC=CC=C1 KWGRBVOPPLSCSI-WCBMZHEXSA-N 0.000 description 1
- 229960003908 pseudoephedrine Drugs 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 230000006340 racemization Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 229960003770 reboxetine Drugs 0.000 description 1
- CBQGYUDMJHNJBX-RTBURBONSA-N reboxetine Chemical compound CCOC1=CC=CC=C1O[C@H](C=1C=CC=CC=1)[C@@H]1OCCNC1 CBQGYUDMJHNJBX-RTBURBONSA-N 0.000 description 1
- 210000000664 rectum Anatomy 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229960001634 ritodrine Drugs 0.000 description 1
- IOVGROKTTNBUGK-SJCJKPOMSA-N ritodrine Chemical compound N([C@@H](C)[C@H](O)C=1C=CC(O)=CC=1)CCC1=CC=C(O)C=C1 IOVGROKTTNBUGK-SJCJKPOMSA-N 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- 229950000615 sabarubicin Drugs 0.000 description 1
- 229960002052 salbutamol Drugs 0.000 description 1
- 229960001548 salinomycin Drugs 0.000 description 1
- 235000019378 salinomycin Nutrition 0.000 description 1
- 235000019515 salmon Nutrition 0.000 description 1
- RPQXVSUAYFXFJA-HGRQIUPRSA-N saxitoxin Chemical compound NC(=O)OC[C@@H]1N=C(N)N2CCC(O)(O)[C@@]22N=C(N)N[C@@H]12 RPQXVSUAYFXFJA-HGRQIUPRSA-N 0.000 description 1
- RPQXVSUAYFXFJA-UHFFFAOYSA-N saxitoxin hydrate Natural products NC(=O)OCC1N=C(N)N2CCC(O)(O)C22NC(N)=NC12 RPQXVSUAYFXFJA-UHFFFAOYSA-N 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000003001 serine protease inhibitor Substances 0.000 description 1
- WGWPRVFKDLAUQJ-MITYVQBRSA-N sermorelin Chemical compound C([C@H](N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(N)=O)C1=CC=C(O)C=C1 WGWPRVFKDLAUQJ-MITYVQBRSA-N 0.000 description 1
- 229960002758 sermorelin Drugs 0.000 description 1
- 229940076279 serotonin Drugs 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- MFFMDFFZMYYVKS-SECBINFHSA-N sitagliptin Chemical compound C([C@H](CC(=O)N1CC=2N(C(=NN=2)C(F)(F)F)CC1)N)C1=CC(F)=C(F)C=C1F MFFMDFFZMYYVKS-SECBINFHSA-N 0.000 description 1
- 229960004034 sitagliptin Drugs 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 229960000553 somatostatin Drugs 0.000 description 1
- NHXLMOGPVYXJNR-ATOGVRKGSA-N somatostatin Chemical compound C([C@H]1C(=O)N[C@H](C(N[C@@H](CO)C(=O)N[C@@H](CSSC[C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C3=CC=CC=C3NC=2)C(=O)N[C@@H](CCCCN)C(=O)N[C@H](C(=O)N1)[C@@H](C)O)NC(=O)CNC(=O)[C@H](C)N)C(O)=O)=O)[C@H](O)C)C1=CC=CC=C1 NHXLMOGPVYXJNR-ATOGVRKGSA-N 0.000 description 1
- 229960004532 somatropin Drugs 0.000 description 1
- ZBMZVLHSJCTVON-UHFFFAOYSA-N sotalol Chemical compound CC(C)NCC(O)C1=CC=C(NS(C)(=O)=O)C=C1 ZBMZVLHSJCTVON-UHFFFAOYSA-N 0.000 description 1
- 229960002370 sotalol Drugs 0.000 description 1
- 229960001294 spiramycin Drugs 0.000 description 1
- 235000019372 spiramycin Nutrition 0.000 description 1
- 229930191512 spiramycin Natural products 0.000 description 1
- 108010004034 stable plasma protein solution Proteins 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 229960005202 streptokinase Drugs 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 125000005017 substituted alkenyl group Chemical group 0.000 description 1
- 125000000547 substituted alkyl group Chemical group 0.000 description 1
- 125000004426 substituted alkynyl group Chemical group 0.000 description 1
- 125000003107 substituted aryl group Chemical group 0.000 description 1
- 229960004306 sulfadiazine Drugs 0.000 description 1
- SEEPANYCNGTZFQ-UHFFFAOYSA-N sulfadiazine Chemical compound C1=CC(N)=CC=C1S(=O)(=O)NC1=NC=CC=N1 SEEPANYCNGTZFQ-UHFFFAOYSA-N 0.000 description 1
- 229960000973 sulfadimethoxine Drugs 0.000 description 1
- ZZORFUFYDOWNEF-UHFFFAOYSA-N sulfadimethoxine Chemical compound COC1=NC(OC)=CC(NS(=O)(=O)C=2C=CC(N)=CC=2)=N1 ZZORFUFYDOWNEF-UHFFFAOYSA-N 0.000 description 1
- 229960000468 sulfalene Drugs 0.000 description 1
- 229960002597 sulfamerazine Drugs 0.000 description 1
- QPPBRPIAZZHUNT-UHFFFAOYSA-N sulfamerazine Chemical compound CC1=CC=NC(NS(=O)(=O)C=2C=CC(N)=CC=2)=N1 QPPBRPIAZZHUNT-UHFFFAOYSA-N 0.000 description 1
- KXRZBTAEDBELFD-UHFFFAOYSA-N sulfamethopyrazine Chemical compound COC1=NC=CN=C1NS(=O)(=O)C1=CC=C(N)C=C1 KXRZBTAEDBELFD-UHFFFAOYSA-N 0.000 description 1
- 229960005404 sulfamethoxazole Drugs 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid group Chemical group S(O)(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- JLKIGFTWXXRPMT-UHFFFAOYSA-N sulphamethoxazole Chemical compound O1C(C)=CC(NS(=O)(=O)C=2C=CC(N)=CC=2)=N1 JLKIGFTWXXRPMT-UHFFFAOYSA-N 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- GFYHSKONPJXCDE-UHFFFAOYSA-N sym-collidine Natural products CC1=CN=C(C)C(C)=C1 GFYHSKONPJXCDE-UHFFFAOYSA-N 0.000 description 1
- 229940099093 symlin Drugs 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 229960001685 tacrine Drugs 0.000 description 1
- YLJREFDVOIBQDA-UHFFFAOYSA-N tacrine Chemical compound C1=CC=C2C(N)=C(CCCC3)C3=NC2=C1 YLJREFDVOIBQDA-UHFFFAOYSA-N 0.000 description 1
- 229960002613 tamsulosin Drugs 0.000 description 1
- 229960000195 terbutaline Drugs 0.000 description 1
- BENFXAYNYRLAIU-QSVFAHTRSA-N terlipressin Chemical compound NCCCC[C@@H](C(=O)NCC(N)=O)NC(=O)[C@@H]1CCCN1C(=O)[C@H]1NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC=2C=CC=CC=2)NC(=O)[C@H](CC=2C=CC(O)=CC=2)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)CN)CSSC1 BENFXAYNYRLAIU-QSVFAHTRSA-N 0.000 description 1
- 229960003813 terlipressin Drugs 0.000 description 1
- IMCGHZIGRANKHV-AJNGGQMLSA-N tert-butyl (3s,5s)-2-oxo-5-[(2s,4s)-5-oxo-4-propan-2-yloxolan-2-yl]-3-propan-2-ylpyrrolidine-1-carboxylate Chemical compound O1C(=O)[C@H](C(C)C)C[C@H]1[C@H]1N(C(=O)OC(C)(C)C)C(=O)[C@H](C(C)C)C1 IMCGHZIGRANKHV-AJNGGQMLSA-N 0.000 description 1
- 125000001981 tert-butyldimethylsilyl group Chemical group [H]C([H])([H])[Si]([H])(C([H])([H])[H])[*]C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000000037 tert-butyldiphenylsilyl group Chemical group [H]C1=C([H])C([H])=C([H])C([H])=C1[Si]([H])([*]C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 125000005931 tert-butyloxycarbonyl group Chemical group [H]C([H])([H])C(OC(*)=O)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000001973 tert-pentyl group Chemical group [H]C([H])([H])C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 229940118376 tetanus toxin Drugs 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- CFMYXEVWODSLAX-QOZOJKKESA-N tetrodotoxin Chemical compound O([C@@]([C@H]1O)(O)O[C@H]2[C@@]3(O)CO)[C@H]3[C@@H](O)[C@]11[C@H]2[C@@H](O)N=C(N)N1 CFMYXEVWODSLAX-QOZOJKKESA-N 0.000 description 1
- CFMYXEVWODSLAX-UHFFFAOYSA-N tetrodotoxin Natural products C12C(O)NC(=N)NC2(C2O)C(O)C3C(CO)(O)C1OC2(O)O3 CFMYXEVWODSLAX-UHFFFAOYSA-N 0.000 description 1
- 229950010357 tetrodotoxin Drugs 0.000 description 1
- 150000007970 thio esters Chemical class 0.000 description 1
- 150000003568 thioethers Chemical group 0.000 description 1
- 229960004072 thrombin Drugs 0.000 description 1
- NZVYCXVTEHPMHE-ZSUJOUNUSA-N thymalfasin Chemical compound CC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(N)=O)C(O)=O NZVYCXVTEHPMHE-ZSUJOUNUSA-N 0.000 description 1
- 229960004231 thymalfasin Drugs 0.000 description 1
- 229940113082 thymine Drugs 0.000 description 1
- LCJVIYPJPCBWKS-NXPQJCNCSA-N thymosin Chemical compound SC[C@@H](N)C(=O)N[C@H](CO)C(=O)N[C@H](CC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](C)C(=O)N[C@H](C(C)C)C(=O)N[C@H](CC(O)=O)C(=O)N[C@H](C(C)C)C(=O)N[C@H](CO)C(=O)N[C@H](CO)C(=O)N[C@H](CCC(O)=O)C(=O)N[C@H]([C@@H](C)CC)C(=O)N[C@H]([C@H](C)O)C(=O)N[C@H](C(C)C)C(=O)N[C@H](CCCCN)C(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N[C@H](CCC(O)=O)C(=O)N[C@H](CCCCN)C(=O)N[C@H](CCCCN)C(=O)N[C@H](CCC(O)=O)C(=O)N[C@H](C(C)C)C(=O)N[C@H](C(C)C)C(=O)N[C@H](CCC(O)=O)C(=O)N[C@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@H](CCC(O)=O)C(O)=O LCJVIYPJPCBWKS-NXPQJCNCSA-N 0.000 description 1
- 239000005495 thyroid hormone Substances 0.000 description 1
- 229940036555 thyroid hormone Drugs 0.000 description 1
- 229960000874 thyrotropin Drugs 0.000 description 1
- 230000001748 thyrotropin Effects 0.000 description 1
- XUIIKFGFIJCVMT-UHFFFAOYSA-N thyroxine-binding globulin Natural products IC1=CC(CC([NH3+])C([O-])=O)=CC(I)=C1OC1=CC(I)=C(O)C(I)=C1 XUIIKFGFIJCVMT-UHFFFAOYSA-N 0.000 description 1
- 229960002203 tilactase Drugs 0.000 description 1
- 229960004605 timolol Drugs 0.000 description 1
- COKMIXFXJJXBQG-NRFANRHFSA-N tirofiban Chemical compound C1=CC(C[C@H](NS(=O)(=O)CCCC)C(O)=O)=CC=C1OCCCCC1CCNCC1 COKMIXFXJJXBQG-NRFANRHFSA-N 0.000 description 1
- 229960003425 tirofiban Drugs 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 229960000707 tobramycin Drugs 0.000 description 1
- NLVFBUXFDBBNBW-PBSUHMDJSA-S tobramycin(5+) Chemical compound [NH3+][C@@H]1C[C@H](O)[C@@H](C[NH3+])O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H]([NH3+])[C@H](O)[C@@H](CO)O2)O)[C@H]([NH3+])C[C@@H]1[NH3+] NLVFBUXFDBBNBW-PBSUHMDJSA-S 0.000 description 1
- 229960002872 tocainide Drugs 0.000 description 1
- 125000003944 tolyl group Chemical group 0.000 description 1
- 229950008187 tosufloxacin Drugs 0.000 description 1
- 229960002051 trandolapril Drugs 0.000 description 1
- GYDJEQRTZSCIOI-LJGSYFOKSA-N tranexamic acid Chemical compound NC[C@H]1CC[C@H](C(O)=O)CC1 GYDJEQRTZSCIOI-LJGSYFOKSA-N 0.000 description 1
- 229960000401 tranexamic acid Drugs 0.000 description 1
- MBMQEIFVQACCCH-UHFFFAOYSA-N trans-Zearalenon Natural products O=C1OC(C)CCCC(=O)CCCC=CC2=CC(O)=CC(O)=C21 MBMQEIFVQACCCH-UHFFFAOYSA-N 0.000 description 1
- 229960003741 tranylcypromine Drugs 0.000 description 1
- 229960001099 trimetrexate Drugs 0.000 description 1
- NOYPYLRCIDNJJB-UHFFFAOYSA-N trimetrexate Chemical compound COC1=C(OC)C(OC)=CC(NCC=2C(=C3C(N)=NC(N)=NC3=CC=2)C)=C1 NOYPYLRCIDNJJB-UHFFFAOYSA-N 0.000 description 1
- JBWKIWSBJXDJDT-UHFFFAOYSA-N triphenylmethyl chloride Chemical compound C=1C=CC=CC=1C(C=1C=CC=CC=1)(Cl)C1=CC=CC=C1 JBWKIWSBJXDJDT-UHFFFAOYSA-N 0.000 description 1
- 229960000497 trovafloxacin Drugs 0.000 description 1
- WVPSKSLAZQPAKQ-CDMJZVDBSA-N trovafloxacin Chemical compound C([C@H]1[C@@H]([C@H]1C1)N)N1C(C(=CC=1C(=O)C(C(O)=O)=C2)F)=NC=1N2C1=CC=C(F)C=C1F WVPSKSLAZQPAKQ-CDMJZVDBSA-N 0.000 description 1
- 239000002753 trypsin inhibitor Substances 0.000 description 1
- 125000000430 tryptophan group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C2=C([H])C([H])=C([H])C([H])=C12 0.000 description 1
- 229960004059 tylosin Drugs 0.000 description 1
- 235000019375 tylosin Nutrition 0.000 description 1
- WBPYTXDJUQJLPQ-VMXQISHHSA-N tylosin Chemical compound O([C@@H]1[C@@H](C)O[C@H]([C@@H]([C@H]1N(C)C)O)O[C@@H]1[C@@H](C)[C@H](O)CC(=O)O[C@@H]([C@H](/C=C(\C)/C=C/C(=O)[C@H](C)C[C@@H]1CC=O)CO[C@H]1[C@@H]([C@H](OC)[C@H](O)[C@@H](C)O1)OC)CC)[C@H]1C[C@@](C)(O)[C@@H](O)[C@H](C)O1 WBPYTXDJUQJLPQ-VMXQISHHSA-N 0.000 description 1
- 125000001493 tyrosinyl group Chemical group [H]OC1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- IUCCYQIEZNQWRS-DWWHXVEHSA-N ularitide Chemical compound C([C@H]1C(=O)NCC(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(NCC(=O)N[C@@H](C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CSSC[C@@H](C(=O)N1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](C)NC(=O)[C@@H](N)[C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(O)=O)=O)[C@@H](C)CC)C1=CC=CC=C1 IUCCYQIEZNQWRS-DWWHXVEHSA-N 0.000 description 1
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 1
- 229940035893 uracil Drugs 0.000 description 1
- 229940005267 urate oxidase Drugs 0.000 description 1
- 229960005356 urokinase Drugs 0.000 description 1
- 229940125575 vaccine candidate Drugs 0.000 description 1
- 229940093257 valacyclovir Drugs 0.000 description 1
- 229960002149 valganciclovir Drugs 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 229960003165 vancomycin Drugs 0.000 description 1
- MYPYJXKWCTUITO-LYRMYLQWSA-N vancomycin Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=C2C=C3C=C1OC1=CC=C(C=C1Cl)[C@@H](O)[C@H](C(N[C@@H](CC(N)=O)C(=O)N[C@H]3C(=O)N[C@H]1C(=O)N[C@H](C(N[C@@H](C3=CC(O)=CC(O)=C3C=3C(O)=CC=C1C=3)C(O)=O)=O)[C@H](O)C1=CC=C(C(=C1)Cl)O2)=O)NC(=O)[C@@H](CC(C)C)NC)[C@H]1C[C@](C)(N)[C@H](O)[C@H](C)O1 MYPYJXKWCTUITO-LYRMYLQWSA-N 0.000 description 1
- MYPYJXKWCTUITO-UHFFFAOYSA-N vancomycin Natural products O1C(C(=C2)Cl)=CC=C2C(O)C(C(NC(C2=CC(O)=CC(O)=C2C=2C(O)=CC=C3C=2)C(O)=O)=O)NC(=O)C3NC(=O)C2NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(CC(C)C)NC)C(O)C(C=C3Cl)=CC=C3OC3=CC2=CC1=C3OC1OC(CO)C(O)C(O)C1OC1CC(C)(N)C(O)C(C)O1 MYPYJXKWCTUITO-UHFFFAOYSA-N 0.000 description 1
- 239000005526 vasoconstrictor agent Substances 0.000 description 1
- 229940124549 vasodilator Drugs 0.000 description 1
- 239000003071 vasodilator agent Substances 0.000 description 1
- 229960003726 vasopressin Drugs 0.000 description 1
- 229960001255 viloxazine Drugs 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229950001272 viomycin Drugs 0.000 description 1
- GXFAIFRPOKBQRV-GHXCTMGLSA-N viomycin Chemical compound N1C(=O)\C(=C\NC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)C[C@@H](N)CCCN)CNC(=O)[C@@H]1[C@@H]1NC(=N)N[C@@H](O)C1 GXFAIFRPOKBQRV-GHXCTMGLSA-N 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 235000019373 virginiamycin Nutrition 0.000 description 1
- 229960003842 virginiamycin Drugs 0.000 description 1
- LINOMUASTDIRTM-UHFFFAOYSA-N vomitoxin hydrate Natural products OCC12C(O)C(=O)C(C)=CC1OC1C(O)CC2(C)C11CO1 LINOMUASTDIRTM-UHFFFAOYSA-N 0.000 description 1
- 239000007762 w/o emulsion Substances 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 229960000523 zalcitabine Drugs 0.000 description 1
- MBMQEIFVQACCCH-QBODLPLBSA-N zearalenone Chemical compound O=C1O[C@@H](C)CCCC(=O)CCC\C=C\C2=CC(O)=CC(O)=C21 MBMQEIFVQACCCH-QBODLPLBSA-N 0.000 description 1
- BPKIMPVREBSLAJ-QTBYCLKRSA-N ziconotide Chemical compound C([C@H]1C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H]2C(=O)N[C@@H]3C(=O)N[C@H](C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@H](C(N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CSSC2)C(N)=O)=O)CSSC[C@H](NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)CNC(=O)[C@H](CCCCN)NC(=O)CNC(=O)[C@H](CCCCN)NC(=O)[C@@H](N)CSSC3)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C(N1)=O)CCSC)[C@@H](C)O)C1=CC=C(O)C=C1 BPKIMPVREBSLAJ-QTBYCLKRSA-N 0.000 description 1
- 229960002811 ziconotide Drugs 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B37/00—Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
- C08B37/006—Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
- C08B37/0063—Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/04—Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
- A61K38/08—Peptides having 5 to 11 amino acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/54—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
- A61K47/549—Sugars, nucleosides, nucleotides or nucleic acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/56—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
- A61K47/61—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule the organic macromolecular compound being a polysaccharide or a derivative thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/62—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
- A61K47/64—Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/02—Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/06—Immunosuppressants, e.g. drugs for graft rejection
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/71—Receptors; Cell surface antigens; Cell surface determinants for growth factors; for growth regulators
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K7/00—Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
- C07K7/04—Linear peptides containing only normal peptide links
- C07K7/06—Linear peptides containing only normal peptide links having 5 to 11 amino acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K1/00—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
- C07K1/107—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides
- C07K1/1072—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides by covalent attachment of residues or functional groups
- C07K1/1077—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides by covalent attachment of residues or functional groups by covalent attachment of residues other than amino acids or peptide residues, e.g. sugars, polyols, fatty acids
Definitions
- the present invention relates to a glycosylated linker, a compound comprising a glycosylated linker and a physiologically active substance, or a salt thereof, and a method for producing the same.
- physiologically active substances In recent years, various vaccines have been developed using physiologically active substances. Some of these physiologically active substances, however, cannot be (sufficiently) filter-sterilized, for example, due to their low water solubility. Also, some physiologically active substances are difficult to dissolve in an aqueous solution or an emulsion prepared from the aqueous solution for administration to organisms such as humans.
- a carrier-drug conjugate (so-called drug derivative) is known in which a highly watersoluble carrier is artificially added directly to a drug.
- a hydrophilic amino acid sequence or polyethylene glycol (PEG), etc. is known as the carrier.
- Such a drug derivative differs in steric structure from the original drug.
- the resulting drug derivative exhibits different pharmacokinetic, immunogenic, toxicological, or pharmacological properties compared with the original drug molecule.
- the antigenicity of this drug derivative is well known to be usually lower than that of the original drug molecule.
- PEGylated drug A drug with PEG added as a carrier
- PEGylated drug when continuously administered into an organism, has the risk of accumulating in the organism to cause chemical injury to the organism; thus its biocompatibility is still less than sufficient (Patent Literature 1).
- PEG has a molecular weight distribution (polydisperse nature).
- the PEGylation of drugs forms many monomeric isoforms (many different monomeric isoforms: structurally different proteins having the same functions), because of the difference in the binding site or molecular weight of added PEG. These formed isoforms might compete with each other for binding to a drug acceptor molecule (Non Patent Literature 1).
- a carrier-linker-drug conjugate has also been developed in which a drug and a carrier are bonded via a linker moiety.
- This conjugate can be designed such that the bond between the carrier-linker moiety and the drug is cleaved upon acting on a target site (in blood, etc.) to release the drug itself.
- a target site in blood, etc.
- light or enzymatic cleavage has been used as a trigger for the cleavage of the bond between the carrier-linker moiety and the drug.
- the light irradiation to the target site is difficult, and damage to the organism is also a concern.
- the amount of an enzyme is known to largely differ not only among individuals but depending on administration sites. Thus, the problem of this approach is to cause variations in the effect of the drug therapy among patients.
- Patent Literature 2 a carrier-linker-drug conjugate has been reported in which a carrier-linker moiety is bonded via an amide group to a physiologically active substance moiety.
- the technique disclosed in Patent Literature 2 utilizes autohydrolysis based on an intramolecular catalytic effect in the carrier-linker moiety so as to control the cleavage of the bond between the carrier-linker moiety and the drug.
- the mechanism underlying the cleavage of the bond between the carrier-linker moiety and the physiologically active substance moiety is based on the cyclization-activation resulting from cyclic imide formation for cleavage of the amide bond.
- Non Patent Literature 1 Barry Byrne et al., Drug Discovery Today, (2007), Vol. 12, pp. 319-326
- an object of the present invention is to provide a carrier-linker that can improve the water solubility of a physiologically active substance and is capable of releasing the physiologically active substance more rapidly under particular conditions.
- Patent Literature 2 has merely confirmed that a large number of carrier-linker-drug conjugates having various structures each release the drug itself by the cleavage of the amide bond.
- Patent Literature 1 has not focused on the biodegradability of a carrier, because the literature shows a large number of Examples in which PEG is used as a carrier.
- Patent Literature 1 has not mentioned the solubility of a carrier-linker-drug conjugate or a carrier-linker itself, because the literature shows a large number of Examples in which poorly water-soluble higher fatty acid is used as a carrier.
- the present inventors have found a carrier-linker that improves the water solubility of a physiologically active substance and is capable of releasing the physiologically active substance under particular conditions independent of light or enzymatic cleavage.
- the present invention provides a glycosylated linker for bonding to a physiologically active substance having at least one carboxy group, wherein the glycosylated linker is represented by the following formula (A): X-R 1 -Y-R 2 (A) wherein
- the glycosylated linker is a glycosylated linker represented by the following formula (A): X-R 1 -Y-R 2 (A) wherein
- the glycosylated linker is a glycosylated linker represented by the following formula (A): X-R 1 -Y-R 2 (A) wherein
- the sugar chain in the "glycosylated amino acid or glycosylated polypeptide" represented by R 2 or R 6 in the glycosylated linker is bonded to Asn or Cys in the amino acid or the polypeptide.
- the sugar chain in the "sugar chain, glycosylated amino acid, or glycosylated polypeptide" represented by R 2 or R 6 in the glycosylated linker consists of 4 or more sugar residues.
- the sugar chain in the "sugar chain, glycosylated amino acid, or glycosylated polypeptide" represented by R 2 or R 6 in the glycosylated linker is a biantennary complex-type sugar chain, a triantennary complex-type sugar chain, or a tetraantennary complex-type sugar chain.
- the sugar chain in the glycosylated linker is a biantennary complex-type sugar chain selected from the group consisting of a disialo sugar chain, a monosialo sugar chain, an asialo sugar chain, a di-GlcNAc sugar chain, and a dimannose sugar chain.
- the sugar chain in the "sugar chain, glycosylated amino acid, or glycosylated polypeptide" represented by R 2 or R 6 in the glycosylated linker is a sugar chain represented by the following formula: wherein R 10 and R 11 are the same or different and each represent and Ac represents an acetyl group.
- the sugar chain in the "glycosylated amino acid or glycosylated polypeptide" in the glycosylated linker is bonded to the amino acid or the polypeptide without the mediation of a linker.
- the present invention provides a compound comprising a glycosylated linker moiety derived from a glycosylated linker and a physiologically active substance moiety, or a salt thereof, wherein the physiologically active substance has at least one carboxy group, and the glycosylated linker moiety is bonded to the physiologically active substance moiety through an ester bond or a thioester bond formed with the carboxy group of the physiologically active substance moiety by the elimination of the leaving group in the oxygen atom (O) or the sulfur atom (S).
- O oxygen atom
- S sulfur atom
- the physiologically active substance in the compound or the salt thereof is a low-molecular physiologically active substance or a biopolymer.
- the biopolymer in the compound or the salt thereof is selected from the group consisting of a protein, a polypeptide, a polynucleotide, and a peptide nucleic acid.
- the compound or the salt thereof has improved water solubility compared with an unmodified physiologically active substance.
- the improved water solubility of the compound or the salt thereof is 10 to 1,000,000 times the water solubility of the "unmodified physiologically active substance" in terms of molar concentration.
- the ester bond or the thioester bond formed between the oxygen atom (O) or the sulfur atom (S) in the glycosylated linker moiety and the carboxy group in the physiologically active substance moiety in the compound or the salt thereof is cleaved in a manner dependent on pH and/or temperature.
- the present invention provides a composition comprising the compound or the salt thereof, wherein sugar chains in the compound or the salt thereof are substantially homogeneous.
- the present invention provides a pharmaceutical composition comprising
- the physiologically active substance in the pharmaceutical composition exerts its activity after administration to a subject.
- the pharmaceutical composition is used in vaccination.
- the present invention provides a method for producing a compound comprising a glycosylated linker moiety and a physiologically active substance moiety, or a salt thereof, wherein the glycosylated linker is represented by the following formula (A): X-R 1 -Y-R 2 (A) wherein
- the step of carrying out condensation reaction in the production method is carried out in a state where the glycosylated linker is bonded to a resin for solid-phase synthesis (but only in the case where the glycosylated linker has a glycosylated amino acid or a glycosylated polypeptide).
- the production method further comprises, before the step (a), the step of (a') preparing the glycosylated linker represented by the following formula (A): X-R 1 -Y-R 2 (A) wherein
- the step (a') and/or the step (a) in the production method is carried out on a resin.
- the physiologically active substance has at least one carboxy group, the method comprising the following steps:
- the present invention provides a compound or a salt thereof obtainable by the aforementioned method for producing a compound comprising a glycosylated linker moiety and a physiologically active substance moiety, or a salt thereof.
- the glycosylated linker according to the present invention has a sugar chain structural moiety having many hydroxy groups and high polarity and can therefore improve the water solubility of a physiologically active substance by binding to the physiologically active substance.
- glycosylated linker according to the present invention can release the physiologically active substance bonded to the glycosylated linker under particular conditions (e.g., in vivo ) independent of light or enzymatic cleavage.
- the compound comprising a glycosylated linker moiety and a physiologically active substance moiety according to the present invention or the salt thereof has water solubility.
- the sugar chain in the glycosylated linker moiety according to the present invention is advantageous because of having biodegradable properties.
- the sugar chain in the glycosylated linker moiety according to the present invention is also advantageous to reduction in the antigenicity of a physiologically active substance.
- glycosylated linker refers to a linker that has a sugar chain as a carrier which can improve the water solubility of a physiologically active substance having at least one carboxy group by binding to the physiologically active substance.
- a feature of the glycosylated linker bonded to the physiologically active substance is to be hydrolyzed at a desired rate under particular conditions, for example, in vivo. This hydrolysis allows the glycosylated linker to be eliminated from the physiologically active substance so that the physiologically active substance is released. The released physiologically active substance returns to its state before the addition of the glycosylated linker.
- the glycosylated linker of the present invention is represented by the following formula (A). X-R 1 -Y-R 2 (A)
- X represents an oxygen atom (O) having a leaving group or a sulfur atom (S) having a leaving group.
- the "oxygen atom (O) having a leaving group or sulfur atom (S) having a leaving group” refers to an atom that is present at the position X in the glycosylated linker represented by the formula (A): X-R 1 -Y-R 2 and becomes capable of binding to the physiologically active substance by the elimination of the leaving group bonded to the atom.
- the bonding between the atom and the physiologically active substance is carried out via the carboxy group in the physiologically active substance.
- the leaving group is not limited as long as the leaving group is eliminated when the oxygen atom (O) having the leaving group or the sulfur atom (S) having the leaving group binds to the carboxy group of the physiologically active substance.
- examples thereof include a hydrogen atom and monovalent cations of lithium, sodium, potassium, rubidium, cesium, francium, and silver.
- the glycosylated linker of the present invention binds to the physiologically active substance by forming an ester bond when X in the formula (A) is an oxygen atom (O) having a leaving group.
- the glycosylated linker of the present invention binds to the physiologically active substance by forming thioester when X in the formula (A) is a sulfur atom (S) having a leaving group.
- R 1 is substituted or unsubstituted C 1 -C 5 alkyl, substituted or unsubstituted C 5 -C 16 aryl, substituted or unsubstituted C 5 -C 16 heteroaryl, substituted or unsubstituted C 2 -C 5 alkenyl, or substituted or unsubstituted C 2 -C 5 alkynyl, or R 1 represents -R 3 -R 4 -, -R 4 -R 5 -, or -R 3 -R 4 -R 5 -.
- R 3 and R 5 each represent substituted or unsubstituted C 1 -C 5 alkyl, substituted or unsubstituted C 2 -C 5 alkenyl, or substituted or unsubstituted C 2 -C 5 alkynyl.
- R 4 represents substituted or unsubstituted C 5 -C 16 aryl, substituted or unsubstituted C 5 -C 16 heteroaryl, or a sulfur atom (S).
- the "substituted or unsubstituted C 1 -C 5 alkyl,” includes linear or branched alkyl.
- Examples of the “C 1 -C 5 alkyl” can include, but are not limited to, methyl, ethyl, n-propyl, n-butyl, n-pentyl, isopropyl, isobutyl, sec-butyl, tert-butyl, isopentyl, neopentyl, and tert-pentyl.
- These "C 1 -C 5 alkyl” groups can be each independently substituted by one or more "substituents”.
- substituteduents can include a C 1 -C 4 alkoxy group (e.g., methoxy, ethoxy, propoxy, and butoxy), an amino group, a hydroxy group, a thiol group, a carboxy group, a nitro group, a mesyl group, a tosyl group, and a halogen atom (e.g., fluorine, chlorine, bromine, and iodine).
- a C 1 -C 4 alkoxy group e.g., methoxy, ethoxy, propoxy, and butoxy
- an amino group e.g., a hydroxy group, a thiol group, a carboxy group, a nitro group, a mesyl group, a tosyl group, and a halogen atom (e.g., fluorine, chlorine, bromine, and iodine).
- examples of the "substituted or unsubstituted C 5 -C 16 aryl” can include, but are not limited to, phenyl, biphenyl, naphthyl, anthranyl, phenanthryl, anthryl, o-tolyl, m-tolyl, p-tolyl, xylyl, ethylphenyl, and benzyl.
- substituted or unsubstituted C 5 -C 16 aryl is not limited to those listed above and includes “C 5 -C 16 aryl” in which one or more hydrogen atoms are each independently replaced by “substituents”.
- Examples of the "substituents” can include a C 1 -C 4 alkyl group, a C 1 -C 4 alkoxy group (e.g., methoxy, ethoxy, propoxy, and butoxy), an amino group, a hydroxy group, a thiol group, a carboxy group, a nitro group, a mesyl group, a tosyl group, a halogen atom (e.g., fluorine, chlorine, bromine, and iodine), a C 1 -C 4 alkyl halide group (e.g., a methyl chloride group), a phenyl group, an o-tolyl group, a m-tolyl group, a p-tolyl group, a xylyl group, an ethylphenyl group, and a benzyl group.
- a C 1 -C 4 alkyl group e.g., methoxy,
- examples of the "substituted or unsubstituted C 5 -C 16 heteroaryl,” can include, but are not limited to, a ring in which a ring structure-forming carbon atom is replaced by a nitrogen atom or an oxygen atom, and can more specifically include indole, quinoline, and chromene.
- substituted or unsubstituted C 5 -C 16 heteroaryl is not limited to those listed above and incudes "C 5 -C 16 heteroaryl” in which one or more hydrogen atoms bonded to ring structure-forming carbon atoms are each independently replaced by "substituents”.
- substituteduents can include an alkyl group, an alkoxy group (e.g., methoxy, ethoxy, propoxy, and butoxy), a hydroxy group, a carboxy group, a nitro group, a mesyl group, a halogen atom (e.g., fluorine, chlorine, bromine, and iodine), and an alkyl halide group (e.g., a methyl chloride group).
- an alkyl group an alkoxy group (e.g., methoxy, ethoxy, propoxy, and butoxy)
- a hydroxy group e.g., a carboxy group, a nitro group, a mesyl group, a halogen atom (e.g., fluorine, chlorine, bromine, and iodine)
- an alkyl halide group e.g., a methyl chloride group
- the "substituted or unsubstituted C 2 -C 5 alkenyl,” includes linear or branched alkenyl.
- Examples of the “substituted or unsubstituted C 2 -C 5 alkenyl” can include ethenyl, propenyl, and butenyl.
- the "substituted or unsubstituted C 2 -C 5 alkenyl,” is not limited to those listed above and also includes such "C 2 -C 5 alkenyl" groups each independently substituted by one or more "substituents”.
- substituteduents can include a C 1 -C 4 alkoxy group (e.g., methoxy, ethoxy, propoxy, and butoxy), an amino group, a hydroxy group, a thiol group, a carboxy group, a nitro group, a mesyl group, a tosyl group, and a halogen atom (e.g., fluorine, chlorine, bromine, and iodine).
- a C 1 -C 4 alkoxy group e.g., methoxy, ethoxy, propoxy, and butoxy
- an amino group e.g., a hydroxy group, a thiol group, a carboxy group, a nitro group, a mesyl group, a tosyl group, and a halogen atom (e.g., fluorine, chlorine, bromine, and iodine).
- the "substituted or unsubstituted C 2 -C 5 alkynyl” includes linear or branched alkynyl.
- Examples of the "substituted or unsubstituted C 2 -C 5 alkynyl,” can include ethynyl, propynyl, and butynyl.
- the "substituted or unsubstituted C 2 -C 5 alkynyl” is not limited to those listed above and includes such "C 2 -C 5 alkynyl” groups each independently substituted by one or more "substituents”.
- substituteduents can include a C 1 -C 4 alkoxy group (e.g., methoxy, ethoxy, propoxy, and butoxy), an amino group, a hydroxy group, a thiol group, a carboxy group, a nitro group, a mesyl group, a tosyl group, and a halogen atom (e.g., fluorine, chlorine, bromine, and iodine).
- a C 1 -C 4 alkoxy group e.g., methoxy, ethoxy, propoxy, and butoxy
- an amino group e.g., a hydroxy group, a thiol group, a carboxy group, a nitro group, a mesyl group, a tosyl group, and a halogen atom (e.g., fluorine, chlorine, bromine, and iodine).
- Y may be present or absent in the formula (A).
- Y represents -CO- or -CONH- (provided that C is bonded to R 1 in the formula (A) and N is bonded to R 2 in the formula (A)).
- R 2 is a sugar chain, a glycosylated amino acid, or a glycosylated polypeptide, or R 2 represents -R 6 -R 7 .
- R 6 represents a sugar chain, a glycosylated amino acid, or a glycosylated polypeptide.
- R 7 represents a hydrogen atom (H), -NH 2 , substituted or unsubstituted C 1 -C 5 alkyl, substituted or unsubstituted C 5 -C 16 aryl, substituted or unsubstituted C 5 -C 16 heteroaryl, a nucleic acid, or PEG.
- the "sugar chain” is a compound composed of one or more unit sugars (monosaccharides and/or derivatives thereof) linked. When two or more unit sugars are linked, the unit sugars are bonded to each other by dehydration condensation through a glycoside bond.
- sugar chain examples include, but are not limited to, a wide range of sugar chains such as monosaccharides and polysaccharides (glucose, galactose, mannose, fucose, xylose, N-acetylglucosamine, N-acetylgalactosamine, sialic acid, and complexes and derivatives thereof) contained in vivo as well as degraded polysaccharides and sugar chains degraded or induced from complex biomolecules including glycoproteins, proteoglycans, glycosaminoglycans, and glycolipids.
- the sugar chain may be linear or may be branched.
- the "sugar chain” also includes derivatives of the sugar chain.
- the sugar chain derivatives include, but are not limited to, sugar chains constituted by sugars which are sugars having a carboxy group (e.g., aldonic acid which is carboxylic acid derived from oxidation at the C-1 position (e.g., D-gluconic acid oxidized from D-glucose) and uronic acid which is carboxylic acid derived from a terminal C atom (D-glucuronic acid oxidized from D-glucose)), sugars having an amino group or an amino group derivative (e.g., an acetylated amino group) (e.g., N-acetyl-D-glucosamine and N-acetyl-D-galactosamine), sugars having both an amino group and a carboxy group (e.g., N-acetylneuraminic acid (sialic acid) and N-acetylmuramic acid), deoxid
- the sugar chain is preferably a sugar chain that improves the water solubility of a physiologically active substance when added as a glycosylated linker to the physiologically active substance.
- the sugar chain is preferably a sugar chain that reduces the antigenicity of a physiologically active substance when added as a glycosylated linker to the physiologically active substance.
- Such a sugar chain in the glycosylated linker of the present invention is not particularly limited and may be a sugar chain that is present as a glycoconjugate (glycopeptide (or glycoprotein), proteoglycan, or glycolipid, etc.) in vivo or may be a sugar chain that is not present as a glycoconjugate in vivo .
- a glycoconjugate glycopeptide (or glycoprotein), proteoglycan, or glycolipid, etc.
- the sugar chain that is present as a glycoconjugate in vivo is preferred from the viewpoint of administering the glycosylated linker of the present invention to an organism.
- a sugar chain include N-linked sugar chains and O-linked sugar chains, which are sugar chains bonded to peptides (or proteins) to form glycopeptides (or glycoproteins) in vivo.
- a N-linked sugar chain is used.
- the N-linked sugar chain can include high-mannose-type, complex-type, and hybrid-type. A complex-type sugar chain is particularly preferred.
- Preferred examples of the complex-type sugar chain used in the present invention include sugar chains represented by the following formula: wherein R 10 and R 11 are the same or different and each represent and Ac represents an acetyl group.
- the sugar chain in the glycosylated linker of the present invention is a complex-type sugar chain.
- a feature of the complex-type sugar chain is to comprise two or more types of monosaccharides and to have a basic structure shown below and a lactosamine structure represented by Gal ⁇ 1-4GlcNAc.
- the complex-type sugar chain also includes a biantennary complex-type sugar chain.
- the biantennary complex-type sugar chain refers to a sugar chain in which one sugar chain composed of 0 to 3 sugars is bonded to each of two mannose residues at the ends of the basic structure.
- the biantennary complex-type sugar chain is preferably, for example, a disialo sugar chain shown below: a monosialo sugar chain: an asialo sugar chain: a di-GlcNAc sugar chain: or a dimannose sugar chain:
- the biantennary complex-type sugar chain is more preferably a disialo sugar chain or an asialo sugar chain, most preferably a disialo sugar chain.
- the complex-type sugar chain of the present invention also includes, in addition to the biantennary complex-type sugar chain (complex-type sugar chain having two branches), triantennary complex-type sugar chains (complex-type sugar chains having three branches) and tetraantennary complex-type sugar chains (complex-type sugar chains having four branches).
- triantennary and tetraantennary complex-type sugar chains can include trisialo sugar chains represented by the following structural formulas: and tetrasialo sugar chains represented by the following structural formula: Further examples of the triantennary and tetraantennary complex-type sugar chains can include sugar chains derived from these trisialo sugar chains or tetrasialo sugar chains by the deletion of one or more sugar residues from the non-reducing end.
- the complex-type sugar chain of the present invention further includes fucose-attached complex-type sugar chains.
- the fucose-attached complex-type sugar chains can include fucose-containing complex-type sugar chains represented by the following structural formulas: Further examples thereof can include sugar chains derived from these fucose-containing complex-type sugar chains by the deletion of one or more sugars from the non-reducing end.
- the "biantennary complex-type sugar chain”, the “disialo sugar chain”, the “monosialo sugar chain”, the “asialo sugar chain”, the “di-GlcNAc sugar chain”, the “dimannose sugar chain”, the “triantennary complex-type sugar chain”, the “tetraantennary complex-type sugar chain”, and the “fucose-containing complex-type sugar chain” include, in addition to those shown in the above chemical formulas, sugar chains differing in binding pattern from the examples represented by the chemical formulas.
- Such a sugar chain is also preferably used as the sugar chain of the present invention. Examples of such a sugar chain include disialo sugar chains and monosialo sugar chains in which sialic acid and galactose are bonded through a ( ⁇ 2 ⁇ 3) bond.
- the complex-type sugar chain of the present invention also includes sugar chains having a polylactosamine structure or a sialylpolylactosamine structure represented by the following formula: wherein n represents an integer of 2 to 3 wherein n represents an integer of 2 to 3.
- the high-mannose-type sugar chain used in the present invention is a sugar chain in which two or more mannose residues are further bonded to the basic structure of the complex-type sugar chain mentioned above. Since the high-mannose-type sugar chain is bulky, a peptide bonded to the high-mannose-type sugar chain may have higher stability in blood.
- the high-mannose-type sugar chain is preferably a sugar chain containing 5 to 9 mannose residues as found in mammals and may be a sugar chain containing a larger number of mannose residues as found in yeasts. Examples of the high-mannose-type sugar chain preferably used in the present invention can include high-mannose-5 (M-5): and high-mannose-9 (M-9) :
- sugar chain can also include sugar chains structurally identical (sugar chains identical in the types of constituent sugars and binding patterns thereof) to sugar chains that are bonded to proteins to form glycoproteins in human bodies (e.g., sugar chains described in " FEBS LETTERS Vol. 50, No. 3, Feb. 1975 "), and sugar chains derived from these sugar chains by the deletion of one or more sugars from the non-reducing end. Specific examples thereof can include sugar chains listed below.
- the sugar chain of the present invention is preferably a sugar chain having a linear structure.
- examples of such a sugar chain include oligohyaluronic acid.
- the oligohyaluronic acid refers to a sugar chain in which 2 to 32 sugars, preferably 2 to 16 sugars, more preferably 4 to 8 sugars, alternating between N-acetylglucosamine and glucuronic acid are bonded in a linear form.
- oligohyaluronic acid used in the present invention include sugar chains of 2 units (4 sugars) or more and 8 units (16 sugars) or less when a unit consisting of N-acetylglucosamine and glucuronic acid is defined as 1 unit.
- a sugar chain of 2 units (4 sugars) to 4 units (8 sugars) is further preferred, and a sugar chain of 2 units (4 sugars) is most preferred.
- hyaluronic acid examples include oligohyaluronic acid of 4 sugars: and oligohyaluronic acid of 8 sugars:
- a hydroxy group and/or a carboxy group in each sugar residue constituting each sugar chain may be protected with a protective group.
- the protective group is, for example, a protective group generally known to those skilled in the art which is introduced for the purpose of protecting the hydroxy group and/or the carboxy group in the sugar residue through chemical reaction.
- More specific examples thereof can include, but are not limited to, an alkyl group (methyl group, ethyl group, etc.), a benzyl group, an acyl group (acetyl group, benzoyl group, pivaloyl group, etc.), a tertbutyldimethylsilyl group, a tert-butyldiphenylsilyl group, a phenacyl group, and an allyl group.
- the "glycosylated amino acid” is an amino acid bonded to a sugar chain.
- the “amino acid” is used in the broadest sense and includes natural amino acids, for example, serine (Ser), asparagine (Asn), valine (Val), leucine (Leu), isoleucine (Ile), alanine (Ala), tyrosine
- amino acid used in the present specification include: L-amino acids; D-amino acids; chemically modified amino acids such as amino acid variants and amino acid derivatives; amino acids that do not serve as protein constituents in vivo , such as norleucine, ⁇ -alanine, and ornithine; and chemically synthesized compounds having the properties of amino acids generally known to those skilled in the art.
- nonnatural amino acids examples include ⁇ -methylamino acids ( ⁇ -methylalanine, etc.), D-amino acids (D-aspartic acid, D-glutamic acid, etc.), histidine-like amino acids (2-amino-histidine, ⁇ -hydroxy-histidine, homohistidine, ⁇ -fluoromethyl-histidine, ⁇ -methyl-histidine, etc.), amino acids having extra methylene in their side chains (“homo"amino acids), and amino acids in which a carboxylic acid functional group amino acid in a side chain is replaced by a sulfonic acid group (cysteic acid, etc.).
- ⁇ -methylamino acids ⁇ -methylalanine, etc.
- D-amino acids D-aspartic acid, D-glutamic acid, etc.
- histidine-like amino acids (2-amino-histidine, ⁇ -hydroxy-histidine, homohistidine, ⁇ -fluoromethyl-h
- the binding site between the sugar chain and the amino acid in the "glycosylated amino acid” is not particularly limited and is preferably the reducing end of the sugar chain to which the amino acid is bonded.
- the amino acid to be bonded to the sugar chain is not particularly limited by its type, and any of natural amino acids, nonnatural amino acids, and D-amino acids can also be used.
- the glycosylated amino acid is preferably glycosylated Asn as in a N-linked sugar chain, or glycosylated Ser or glycosylated Thr as in an O-linked sugar chain, from the viewpoint that the glycosylated amino acid is structurally identical or similar to an in vivo glycopeptide (glycoprotein).
- the sugar chain and the amino acid may be bonded to each other without the mediation of a linker or may be bonded to each other via a linker.
- the amino acid in the glycosylated amino acid is preferably an amino acid having two or more carboxy groups in the molecule, such as aspartic acid or glutamic acid; an amino acid having two or more amino groups in the molecule, such as lysine, arginine, asparagine, histidine, or tryptophan; an amino acid having a hydroxy group in the molecule, such as serine, threonine, or tyrosine; an amino acid having a thiol group in the molecule, such as cysteine; or an amino acid having an amide group in the molecule, such as asparagine or glutamine, from the viewpoint of easy bonding to the linker.
- the amino acid in the glycosylated amino acid is preferably aspartic acid, glutamic acid, lysine, arginine, serine, threonine, cysteine, asparagine, or glutamine, more preferably cysteine or asparagine, from the viewpoint of reactivity.
- any linker used in the art can be widely used.
- the linker can include: -NH-(CH 2 ) a -(CO)-CH 2 - wherein a represents an integer and is preferably an integer of 0 to 4, though there is no limitation unless it inhibits the linker functions of interest; C1-10 polymethylene; -CH 2 -R- wherein R represents a group formed by the elimination of one hydrogen atom from a group selected from the group consisting of alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, a carbocyclic group, a substituted carbocyclic group, a heterocyclic group, and a substituted heterocyclic group; and -(CO)-(CH 2 ) a -(CO)- wherein a represents an integer and is preferably an integer of 0
- a hydrogen atom on the side chain amino group of asparagine may be replaced by the reducing end of the sugar chain.
- a leaving group present in the reducing end of the sugar chain is not limited and may be, for example, chlorine, bromine, or fluorine.
- a linker in the glycosylated amino acid when the sugar chain and the amino acid are bonded via a linker in the glycosylated amino acid according to the present invention, for example, a hydrogen atom on the side chain thiol group of cysteine is bonded to the reducing end of the sugar chain via the linker (e.g., in the case of a linker -CH 2 -CONH-, the reducing end of the sugar chain is bonded to the nitrogen atom in the linker).
- a leaving group in the linker bonded to the reducing end of the sugar chain is not limited and may be, for example, chlorine, bromine, or fluorine.
- glycosylated polypeptide is not particularly limited as long as the glycosylated polypeptide is a compound in which at least one sugar chain is added to a protein (or polypeptide or peptide).
- the glycosylated polypeptide may be used interchangeably with a "glycoprotein” or a "glycopeptide”.
- the glycosylated polypeptide may be a polypeptide containing the glycosylated amino acid mentioned above.
- the binding manner between the sugar chain and the amino acid in the glycosylated polypeptide, and the types of amino acids constituting the polypeptide, etc., may be defined similarly to those in the glycosylated amino acid according to the present invention.
- the amino acid (residue) at which the polypeptide is bonded to the sugar chain is not limited to the N or C terminus of the polypeptide and may be any appropriate amino acid (residue) constituting the polypeptide.
- the amino acid residues in the glycosylated polypeptide according to the present invention may be preferably 2 to 100 amino acid residues, more preferably 2 to 10 amino acid residues.
- the amino acids other than the amino acid at which the polypeptide is bonded to the sugar chain can be relatively arbitrarily selected.
- the amino acid at which the polypeptide is bonded to the sugar chain is, for example, asparagine, cysteine, lysine, or glutamine, while the amino acids other than the amino acid at which the polypeptide is bonded to the sugar chain (e.g., an amino acid to be bonded to the (glycosylated) linker moiety) are not particularly limited.
- the amino acid constituting the glycosylated amino acid or the glycosylated polypeptide according to the present invention is preferably an amino acid present in vivo , from the viewpoint of administering the compound of the present invention or the salt thereof into an organism.
- the glycosylated linker of the present invention can be a thioalkyl-type glycosylated linker.
- the thioalkyl-type glycosylated linker refers to a glycosylated linker that is capable of binding to the physiologically active substance via a thioester bond and has an alkyl structure in its structure.
- the thioalkyl-type glycosylated linker also includes a glycosylated linker that is capable of binding to the physiologically active substance via a thioester bond and has an alkynyl or alkenyl structure in its structure.
- the thioalkyl-type glycosylated linker is a glycosylated linker represented by the formula (A) wherein X represents a sulfur atom (S) having a leaving group; R 1 is substituted or unsubstituted C 1 -C 5 alkyl, substituted or unsubstituted C 2 -C 5 alkenyl, or substituted or unsubstituted C 2 -C 5 alkynyl, or R 1 represents -R 3 -R 4 -, -R 4 -R 5 -, or -R 3 -R 4 -R 5 -, wherein R 3 and R 5 each represent substituted or unsubstituted C 1 -C 5 alkyl, substituted or unsubstituted C 2 -C 5 alkenyl, or substituted or unsubstituted C 1 -C 5 alkynyl, and R 4 represents substituted or unsubstituted C 5 -C 16 aryl, substituted or
- the glycosylated linker of the present invention can be a thioaryl-type glycosylated linker.
- the thioaryl-types glycosylated linker refers to a glycosylated linker that is capable of binding to the physiologically active substance via a thioester bond and has an aryl structure in its structure.
- the thioalkyl-type glycosylated linker is a glycosylated linker represented by the formula (A) wherein X represents a sulfur atom (S) having a leaving group; R 1 represents substituted or unsubstituted C 1 -C 5 aryl or substituted or unsubstituted C 5 -C 16 heteroaryl; Y may be present or absent in the formula (A), and when Y is present in the formula (A), Y represents -CO- or -CONH- (provided that C is bonded to R 1 in the formula (A) and N is bonded to R 2 in the formula (A)); and R 2 is a sugar chain, a glycosylated amino acid, or a glycosylated polypeptide, or R 2 represents -R 6 -R 7 , wherein R 6 represents a sugar chain, a glycosylated amino acid, or a glycosylated polypeptide, and R 7 represents a hydrogen atom (H),
- sugar chains in the compound comprising a glycosylated linker moiety and a physiologically active substance moiety according to the present invention or the salt thereof are preferably homogeneous.
- “sugar chains are homogeneous” means that the glycosylation site, the type of each sugar constituting the sugar chain, binding order, and binding pattern between sugars are identical among glycosylated linker moieties when sugar chains are compared among the glycosylated linker moieties.
- sugar chains are homogeneous also means that the type of each sugar constituting the sugar chain, binding order, and binding pattern between sugars are identical when the structures of the added plurality of sugar chains are compared within the glycosylated linker moiety.
- “sugar chains are homogeneous” means that at least 90% or more, preferably 95% or more, more preferably 99% or more sugar chains are structurally uniform when sugar chains are compared among the glycosylated linker moieties or within the glycosylated linker moiety.
- the ratio of homogeneous sugar chains or the ratio of homogeneously glycosylated linkers can be measured by a method using, for example, HPLC, capillary electrophoresis, NMR, or mass spectrometry.
- glycosylated amino acid or the glycosylated polypeptide in which amino acid sequence and/or sugar chains are substantially homogeneous used in the present invention, can be produced by a glycosylation step in combination with a peptide production method generally known to those skilled in the art, such as solid-phase synthesis, liquid-phase synthesize, cell-based synthesis, separation and extraction of a natural product.
- a glycosylation step in combination with a peptide production method generally known to those skilled in the art, such as solid-phase synthesis, liquid-phase synthesize, cell-based synthesis, separation and extraction of a natural product.
- a method for producing the glycosylated polypeptide see, for example, International Publication Nos. WO 2010/021126 and WO 2004/005330 .
- the glycosylated polypeptide used in the present invention may include, but is not limited to, for example: glycosylated amino acids or glycosylated polypeptides in which a sugar chain unbound with an amino acid is bonded directly or via a linker to an amino acid or an amino acid on a polypeptide; glycosylated polypeptides derived from these glycosylated amino acids or glycosylated polypeptides as a result of elongating the already added sugar chain by the further addition of a sugar or a sugar chain to the added sugar chain; glycosylated polypeptides in which one or more (e.g., 2 to 30, preferably 2 to 10) amino acids are bonded to, for example, an amino group and/or a carboxy group, in a glycosylated amino acid and an amino acid or a polypeptide is further linked thereto; and glycosylated polypeptides in which a sugar chain bound with an amino acid is bonded to an amino acid on
- the glycosylated amino acid or the glycosylated polypeptide having the desired sugar chain structure may be efficiently obtained by the transfer of various sugars (e.g., fucose) to the glycosylated amino acid or the glycosylated polypeptide according to the present invention using glycosyltransferase.
- various sugars e.g., fucose
- the glycosylated amino acid or the glycosylated polypeptide having the desired sugar chain structure containing fucose can be obtained by the transfer of fucose using glycosyltransferase (fucosyltransferase).
- the glycosylated amino acid or the glycosylated polypeptide having the desired sugar chain structure with a distinctive binding pattern can be obtained depending on the glycosyltransferase used.
- fucose Generally commercially available fucose or chemically synthesized fucose can be used as the fucose.
- fucosyltransferase used can be appropriately selected according to the type of the fucose to be transferred. Specific examples thereof can include fucosyltransferase V (human, recombinant, plasma-derived, serum-derived, milk-derived, or liver-derived), which is an enzyme transferring fucose to N-acetylglucosamine at the non-reducing end of sugar chain asparagine. Alternatively, fucose may be transferred by shifting the equilibrium by pH adjustment or the like using fucose hydrolase.
- fucosyltransferase V human, recombinant, plasma-derived, serum-derived, milk-derived, or liver-derived
- fucose may be transferred by shifting the equilibrium by pH adjustment or the like using fucose hydrolase.
- nucleic acid refers to DNA or RNA in which nucleotides each composed of a base (adenine, guanine, thymine, cytosine, or uracil), a sugar residue, and phosphate are bonded through a phosphoester bond, and has 2 to 2000 nucleotide residues.
- the "PEG” is a polymer of ethylene glycol and can be represented by, for example, "(-CH2-CH2-O-)n” (wherein n represents an integer of 2 to 10000).
- the glycosylated linker of the present invention is preferably a glycosylated linker represented by the formula (A): X-R 1 -Y-R 2 , wherein X represents an oxygen atom (O) having a leaving group or a sulfur atom (S) having a leaving group; R 1 is aryl such as benzyl or tolyl, or R 1 represents -R 3 -R 4 -R 5 -, wherein R 3 represents -CH 2 CH 2 -, R 4 represents a sulfur atom (S), and R 5 represents -CH 2 - (i.e., R 1 is thioether represented by -CH 2 CH 2 SCH 2 -); Y represents -CO-; and R 2 represents NH-sugar chain, glycosylated Asn, glycosylated Cys, or glycosylated Asn or glycosylated Cys with one or more (e.g., 2, 3, 4, or 5) amino acids added to the C termin
- the glycosylated linker of the present invention can be produced by solid-phase synthesis, liquid-phase synthesis, or the like.
- one compound of X-R 1 -Y having a leaving group at the end of Y can be condensed with R 2 on the resin so that the leaving groups of R 2 and Y are eliminated to prepare the glycosylated linker represented by the formula (A): X-R 1 -Y-R 2 on the resin.
- the compound corresponding to two or more consecutive constituents is not limited to X-R 1 -Y and also includes other combinations of two or more selected from the 4 constituents X, R 1 , Y, and R 2 .
- the production method by the solid-phase synthesis method comprises the steps of:
- the glycosylated linker can be prepared by a production method comprising the steps of:
- the glycosylated linker formed on the resin can be further linked to an amino acid (more specifically, the oxygen atom having a leaving group or the sulfur atom having a leaving group, represented by X can be further linked to an amino acid) without being cleaved from the resin.
- an amino acid more specifically, the oxygen atom having a leaving group or the sulfur atom having a leaving group, represented by X can be further linked to an amino acid
- the resin for use in solid-phase synthesis can be any resin usually used in solid-phase synthesis.
- chlorine-functionalized 2-chlorotrityl chloride resin manufactured by Merck KGaA
- amino group-functionalized Amino-PEGA resin manufactured by Merck KGaA
- NovaSyn TGT alcohol resin having a hydroxy group manufactured by Merck KGaA
- Wang resin manufactured by Merck KGaA
- HMPA-PEGA resin manufactured by Merck KGaA
- Link Amide resin manufactured by Merck KGaA
- a linker may be located between the Amino-PEGA resin and the amino acid.
- a linker can include 4-hydroxymethylphenoxyacetic acid (HMPA) and 4-(4-hydroxymethyl-3-methoxyphenoxy)-butylacetic acid (HMPB).
- HMPA 4-hydroxymethylphenoxyacetic acid
- HMPB 4-(4-hydroxymethyl-3-methoxyphenoxy)-butylacetic acid
- H-Cys(Trt)-Trityl NovaPEG resin manufactured by Merck KGaA, which is a resin bonded in advance at a C-terminal amino acid, may be used.
- amino group-functionalized Rink-Amide-PEGA resin manufactured by Merck KGaA
- the C-terminal amino acid of the amino acid or the peptide in the glycosylated linker can be amidated by the cleavage between this resin and the peptide with an acid.
- the 2-chlorotrityl chloride resin is preferred because the racemization of terminal Cys can be prevented when a peptide chain is elongated in solid-phase synthesis.
- the step of bonding a compound corresponding to the R 2 moiety (sugar chain, glycosylated amino acid, glycosylated polypeptide, etc.) onto the resin involves bonding a glycosylated amino acid onto the resin, a glycosylated amino acid with an amino acid protected with a lipid-soluble protective group is bonded thereto.
- a glycopolypeptide onto the resin desired amino acids and glycosylated amino acids can be sequentially bonded onto the resin to synthesize the glycosylated polypeptide on the resin.
- the lipid-soluble protective group can include carbonate or amide protective groups such as a 9-fluorenylmethoxycarbonyl (Fmoc) group, a t-butyloxycarbonyl (Boc) group, a benzyl group, an allyl group, an allyloxycarbonyl group, and an acetyl group.
- Fmoc 9-fluorenylmethoxycarbonyl
- Boc t-butyloxycarbonyl
- a benzyl group an allyl group, an allyloxycarbonyl group, and an acetyl group.
- an Fmoc group 9-fluorenylmethyl-N-succinimidyl carbonate and sodium bicarbonate can be added and reacted to introduce the Fmoc group.
- the reaction is preferably carried out at 0 to 50°C, preferably at room temperature, for approximately 1 to 5 hours.
- a commercially available product also can be used as the amino acid protected with the limpid-soluble protective group.
- Examples thereof can include Fmoc-Ser-OH, Fmoc-Asn-OH, Fmoc-Val-OH, Fmoc-Leu-OH, Fmoc-Ile-OH, Fmoc-Ala-OH, Fmoc-Tyr-OH, Fmoc-Gly-OH, Fmoc-Lys-OH, Fmoc-Arg-OH, Fmoc-His-OH, Fmoc-Asp-OH, Fmoc-Glu-OH, Fmoc-Gln-OH, Fmoc-Thr-OH, Fmoc-Cys-OH, Fmoc-Met-OH, Fmoc-Phe-OH, Fmoc-Trp-OH, Fmoc-Pro-OH, Boc-Ser-OH, Boc-Asn-OH, Boc-Val-OH, Boc-
- Examples of the amino acid protected with the lipid-soluble protective group in which the protective group is introduced in the side chain can include Fmoc-Arg(Pbf)-OH, Fmoc-Asn(Trt)-OH, Fmoc-Asp(OtBu)-OH, Fmoc-Cys(Acm)-OH, Fmoc-Cys(StBu)-OH, Fmoc-Cys(tBu)-OH, Fmoc-Cys(Trt)-OH, Fmoc-Glu (OtBu)-OH, Fmoc-Gln(Trt)-OH, Fmoc-His(Trt)-OH, Fmoc-Lys(Boc)-OH, Fmoc-Ser(tBu)-OH, Fmoc-Thr(tBu)-OH, Fmoc-Trp(Boc)-OH, Fmoc-Tyr(tBu)-OH
- glycosylated amino acid with an amino acid protected with a lipid-soluble protective group can include Fmoc-glycosylated Asn and Boc-glycosylated Asn.
- sugar chains mentioned above having identical sugar chain structures are used as these glycosylated amino acids.
- Such sugar chains can be obtained by any method known in the art. For example, the chemical synthesis of sugar chains (see, e.g., J. Seifert et al. Angew Chem Int. Ed. 2000, 39, pp. 531-534 ), separation from a natural or artificial sugar chain source, or a commercially available product can be used as a specific approach, though there is no limitation.
- glycosylated amino acids having identical structures in the approach are not limited, and, for example, the separation of sugar chains having identical structures from a natural or artificial sugar chain source can be carried out by a method described in, for example, WO 2004/058789 . Specifically, a mixture containing sugar chain asparagine (sialylglycopeptide
- SGP SGP
- a natural sugar chain source such as a chicken egg by a method described in, for example, Seko et al., Biochim Biophys Acta. 1997; 1335 (1-2): 23-32 .
- a lipid-soluble protective group e.g., Fmoc
- Fmoc Fmoc
- This mixture can be subjected to chromatography so that sugar chains having various structures contained in the mixture are separated according to their structures.
- sugar chain asparagine having a particular structure with or without various protective groups is available from, for example, GlyTech, Inc.
- the reaction for bonding the amino acid or the glycosylated amino acid to the resin is preferably carried out, for example, by placing a resin in a solid-phase column, washing this resin with a solvent, and then adding an amino acid solution thereto.
- the solvent for washing can include dimethylformamide (DMF), 2-propanol, and dichloromethane.
- Examples of the solvent for dissolving the amino acid can include dimethyl sulfoxide (DMSO), DMF, and dichloromethane.
- the binding reaction between the resin and the amino acid or the glycosylated amino acid can be carried out at 0 to 50°C, preferably at room temperature, for approximately 10 minutes to 30 hours, preferably approximately 15 minutes to 24 hours.
- a condensing agent such as dicyclohexylcarbodiimide (DCC), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (WSC/HCl), diphenylphosphorylazide (DPPA), carbonyldiimidazole (CDI), diethyl cyanophosphonate (DEPC), 1,3-diisopropylcarbodiimide (DIC), benzotriazol-1-yloxy-trispyrrolidinophosphonium hexafluorophosphate (PyBOP), 3-diethoxyphosphoryloxy-1,2,3-benzotriazin-4(3H)-one (DEPBT), 1-hydroxybenzotriazole (HOBt), hydroxysuccinimide (HOSu), dimethylaminopyridine (DMAP), 1-hydroxy-7-azabenzotriazole (HOAt), 3-hydroxy-4-oxo-3,4-di
- DCC dicyclo
- the ratio between the amino acid or the glycosylated amino acid and the dehydration condensation agent used is usually 1 to 10 parts by weight, preferably 2 to 5 parts by weight, of the dehydration condensation agent with respect to 1 part by weight of the amino acid or the glycosylated amino acid.
- the sialic acid may be dissociated by acid treatment in a cleavage step from the resin. Accordingly, for introducing the sugar chain having sialic acid to the linker moiety prior to the cleavage step using an acid, it is preferred to use a sugar chain in which the carboxy group of the sialic acid on the sugar chain to be introduced is protected with a protective group.
- Examples of the protective group for the carboxyl group of the sialic acid include an aryl group including a benzyl (Bn) group or the like, an alkyl group including an ethyl group (Et) and a methyl group (Me) or the like, a diphenylmethyl group, a phenacyl group, an alkoxy group, and a phenacyl group in which a hydrogen atom bonded to ring structure-forming carbon is substituted by a nitro group or the like.
- a protective group that protects the carboxy group of the sialic acid as shown in, for example, -COOBn, -COOEt, -COOMe, -COOCH(Ph) 2 , -COOCH 2 COPh, - COOCH 2 PhOMe, -COOCH 2 Ph(OMe) 2 , -COOCH 2 PhNO 2 , or - COOCH 2 Ph(NO 2 ) 2 is preferred.
- Such protection of the carboxy group of the sialic acid with a benzyl group or the like can prevent the elimination of the acid-labile sialic acid.
- the protection reaction of the carboxy group of the sialic acid on the sugar chain can be carried out by a method well known to those skilled in the art.
- the protective group in the carboxy group of the sialic acid protected with, for example, a benzyl group, a diphenylmethyl group, or a phenacyl group can also be deprotected by a method well known to those skilled in the art.
- the deprotection reaction can be carried out by hydrolysis under basic conditions, though there is no limitation.
- the deprotection reaction is preferably carried out at usually 0 to 50°C, preferably 0 to 40°C, more preferably 0 to 30°C. Usually, the reaction time is preferably approximately 5 minutes to 5 hours.
- the reaction product is preferably neutralized with a weak acid such as phosphoric acid or acetic acid and then appropriately purified by a method known in the art (e.g., high-performance liquid column chromatography (HPLC)).
- HPLC high-performance liquid column chromatography
- R 2 is a nucleic acid or PEG
- the corresponding compound can also be appropriately bonded to the resin by a method well known to those skilled in the art.
- R 2 is a sugar chain
- a non-glycosylated linker structure is synthesized on a resin, and a sugar chain can be added to the end of the linker after cleavage and isolation from the resin to produce the glycosylated linker.
- the linker to be glycosylated is designed so as to have, for example, a thiol group at the end.
- the thiol group present at the end of the linker after the isolation from the resin can be bonded to a haloacetylated complex-type sugar chain derivative (or a haloacetamidated complex-type sugar chain derivative) to introduce the sugar chain to the end of the linker.
- R 2 is a nucleic acid or PEG
- a non-nucleic acid- or non-PEG-added linker structure is synthesized on a resin, and a nucleic acid or PEG can be added to the end of the linker after cleavage and isolation from the resin to produce the nucleic acid- or PEG-added linker.
- the linker to which a nucleic acid or PEG is to be added is designed so as to have, for example, a thiol group at the end.
- the thiol group present at the end of the linker after the isolation from the resin can be bonded to a nucleic acid or PEG in a haloacetylated form (or a haloacetamidated form) or the like to introduce the nucleic acid or PEG.
- R 2 is a glycosylated amino acid or a glycosylated polypeptide
- a sugar chain can then be bonded to the R 2 moiety.
- the reaction for bonding the sugar chain to R 2 may be carried out on the resin subsequently to the solid-phase synthesis or may be carried out after separation from the resin.
- the glycosylation step may be carried out after synthesis of the physiologically active substance moiety or may be carried out before synthesis of the physiologically active substance moiety.
- a haloacetylated complex-type sugar chain derivative (or a haloacetamidated complex-type sugar chain derivative) can be reacted with the linker (containing unprotected Cys) or the compound (containing unprotected Cys) having a linker moiety and a physiologically active substance moiety, as mentioned above, so that the sugar chain is reacted with the thiol group of the unprotected Cys for bonding to the peptide.
- This reaction is preferably carried out at usually 0 to 80°C, preferably 10 to 60°C, more preferably 15 to 35°C, in a phosphate buffer solution, a tris-HCl buffer solution, a citrate buffer solution, acetonitrile, DMSO, or a mixed solution thereof.
- the reaction time is usually approximately 10 minutes to 24 hours, preferably, usually approximately 30 minutes to 5 hours.
- the reaction product is appropriately purified by a method known in the art (e.g., HPLC).
- the haloacetylated complex-type sugar chain derivative (or the haloacetamidated complex-type sugar chain derivative) is a compound in which a hydroxy group bonded to carbon at the position 1 of the reducing end of, for example, a complex-type asparagine-linked sugar chain is substituted by -NH-(CH 2 ) a -(CO)-CH 2 X (wherein X represents a halogen atom, and a represents an integer and is preferably an integer of 0 to 4, though there is no limitation unless it inhibits the linker functions of interest).
- the reaction between the haloacetylated complex-type sugar chain derivative and the Cys-containing peptide can be carried out at room temperature in a phosphate buffer solution. After the completion of the reaction, a glycosylated polypeptide substituted by glycosylated Cys can be obtained by HPLC purification.
- the reaction may be carried out in a mixed solution of an organic solvent such as DMSO, DMF, methanol, or acetonitrile with the buffer solution mentioned above.
- the organic solvent can be added at a ratio ranging from 0 to 99% (v/v) to the buffer solution.
- the addition of such an organic solvent is preferred because the solubility in the reaction solution can be improved.
- reaction may be carried out in an organic solvent such as DMSO, DMF, methanol, or acetonitrile, or a mixed solution thereof.
- organic solvent such as DMSO, DMF, methanol, or acetonitrile
- the reaction is preferably carried out in the presence of a base.
- the base can include DIPEA, triethylamine, pyridine, and 2,4,6-collidine.
- reaction may be carried out in a mixed solution of a buffer solution supplemented with guanidine hydrochloride or urea.
- the guanidine hydrochloride or the urea can be added at a final concentration of 1 M to 8 M to the buffer solution.
- the addition of this guanidine hydrochloride or urea is also preferred because the solubility of the peptide low soluble in the buffer solution can be improved.
- reaction between the nucleic acid or PEG in a haloacetylated form (or a haloacetamidated form) or the like and the Cys-containing peptide can also be appropriately carried out by a method generally known to those skilled in the art.
- step of bonding a compound corresponding to the Y moiety to R 2 on the resin the step of bonding a compound corresponding to the R 1 moiety to Y-R 2 on the resin, and the step of bonding a compound corresponding to the X moiety to R 1 -Y-R 2 on the resin
- those skilled in the art can appropriately design and select the compound corresponding to each constituent and condense the compound with R 2 on the resin.
- a moiety corresponding to X (an oxygen atom having a leaving group or a sulfur atom having a leaving group) in the glycosylated linker may require a protective group for synthesis.
- the protective group for the oxygen atom can include a trityl group, a methoxytrityl group, a t-butyl group, and a benzyl group.
- the protective group for the sulfur atom can include a trityl group, a methoxytrityl group, a t-butyl group, a t-butylthio group, and an Acm group.
- the protective group can be introduced thereto by a well known conventional method.
- the step of separating the glycosylated linker (represented by the formula (A): X-R 1 -Y-R 2 ) synthesized on the resin from the resin is preferably carried out by treatment with an acid.
- the acid can include a mixed solution of trifluoroacetic acid (TFA), triisopropylsilane, ethanedithiol, and water (90:5:2.5:2.5), a mixed solution of acetic acid and trifluoroethanol (50:50), and HCl.
- the step of separating the compound from the resin is also preferably carried out by treatment with an acid.
- the acid used and the reaction conditions can be set to the same as the conditions for separating the glycosylated linker from the resin.
- the glycosylated linker thus produced binds, at the oxygen atom having a leaving group or the sulfur atom having a leaving group, to a physiologically active substance.
- the glycosylated linker can enhance the water solubility of a physiologically active substance by binding to the physiologically active substance as described above.
- the glycosylated linker can preferably reduce the antigenicity of the physiologically active substance.
- the glycosylated linker bonded to the physiologically active substance can release the physiologically active substance within a given time under particular temperature and pH conditions depending on its structure. This released physiologically active substance maintains its original functions. The physiologically active substance released from the glycosylated linker exerts its original functions, for example, in vivo.
- the hydrolysis rate can be accelerated. Also, a glycosylated linker having a thioaryl structure among the thioester bonds is hydrolyzed more rapidly than a glycosylated linker having a thioalkyl structure.
- glycosylated linker having a desired release time of the physiologically active substance by appropriately changing the structure of the glycosylated linker moiety.
- the physiologically active substance can bind to the glycosylated linker moiety as a result of partial alteration (modification) of the structure of the physiologically active substance.
- the physiologically active substance is released.
- the released physiologically active substance is structurally the same as the compound before the bonding to the glycosylated linker moiety (before the modification).
- the physiologically active substance unbound with the glycosylated linker is referred to as an "unmodified physiologically active substance".
- the unmodified physiologically active substance has the original pharmacokinetic, immunogenic, toxicological, or pharmacological properties of the physiologically active substance itself.
- the properties may be altered or modified, for example.
- the "compound comprising a glycosylated linker moiety and a physiologically active substance moiety, or the salt thereof" according to the present invention releases the unmodified physiologically active substance through the cleavage of the glycosylated linker moiety under predetermined conditions.
- the glycosylated linker of the present invention has no adverse effect on the pharmacokinetic, immunogenic, toxicological, or pharmacological properties, etc., of its binding partner physiologically active substance.
- the "physiologically active substance” is not limited and means a substance that has a certain effect or influence either directly or indirectly on the physiological activity of an organism.
- the physiologically active substance may be intended to be used in vitro and in vivo .
- the physiologically active substance may exert no function in itself in vivo.
- the physiologically active substance may be used interchangeably with a drug.
- the physiologically active substance may include substances useful as vaccines or medicines as well as substances that have no direct effect or influence on the physiological activity of an organism, for example, diagnostic agents.
- the physiologically active substance may include naturally occurring substances as well as partial deletion, modification, or substitution products (also referred to as derivatives) thereof.
- the physiologically active substance may further include artificially synthesized substances (e.g., substances produced by a biological approach such as recombinant DNA technology or by a chemical synthetic approach such as a solid-phase peptide synthesis method) and fusion products of a portion of a naturally occurring substance and a portion of an artificially synthesized substance.
- artificially synthesized substances e.g., substances produced by a biological approach such as recombinant DNA technology or by a chemical synthetic approach such as a solid-phase peptide synthesis method
- fusion products of a portion of a naturally occurring substance and a portion of an artificially synthesized substance e.g., substances produced by a biological approach such as recombinant DNA technology or by a chemical synthetic approach such as a solid-phase peptide synthesis method
- the physiologically active substance according to the present invention also includes substances fused with, for example, a reporter protein such as GFP (green fluorescent protein) or a fluorescent dye such as fluorescein.
- the physiologically active substance according to the present invention has at least one carboxy group.
- the physiologically active substance according to the present invention binds at the at least one carboxy group carried by the physiologically active substance to the glycosylated linker.
- the physiologically active substance according to the present invention is preferably a low-molecular physiologically active substance or a biopolymer having at least one carboxy group.
- the "biopolymer” may mean a macromolecular organic compound among the physiologically active substances.
- the “low-molecular physiologically active substance” may mean a low-molecular organic compound among the physiologically active substances.
- the biopolymer may be, for example, a polymer compound such as a protein, a nucleic acid, or a polysaccharide, or a portion thereof, or may be artificially synthesized.
- the low-molecular physiologically active substance may be, for example, a substance that can interact with the biopolymer in vivo , or may be artificially synthesized. In the present specification, however, the biopolymer and the low-molecular physiologically active substance may be the same as each other in some cases.
- the biopolymer according to the present invention is a protein, a polypeptide, a polynucleotide, or a peptide nucleic acid having at least one carboxy group, or contains the "protein, polypeptide, polynucleotide, or peptide nucleic acid" in a portion of its structure.
- the portion derived from the protein or the polypeptide is also referred to as a "peptide moiety".
- the "protein” is not particularly limited as long as the protein is composed of a plurality of amino acids joined through amide bonds.
- the protein includes known proteins, novel proteins, or their variants.
- the "variant” is a naturally or artificially partially altered compound of the protein. Examples of such alteration include alkylation, acylation (e.g., acetylation), amidation (e.g., C-terminal amidation of the protein), carboxylation, esterification, disulfide bond formation, glycosylation, lipidation, phosphorylation, hydroxylation, dehydration condensation, or labeling component bonding of one or more amino acid residues in the protein.
- examples of the variant include partial deletion, substitution, or fusion products of the structures of known proteins or novel proteins.
- the biopolymer as the physiologically active substance is a protein
- the protein may be synthesized by use of, but not limited to, a method generally known to those skilled in the art, for example, solid-phase synthesis, liquid-phase synthesis, cell-based synthesis, or separation and extraction of a naturally occurring protein.
- polypeptide and the "peptide” are used interchangeably with the protein, as a rule.
- the polypeptide and the peptide may be used to represent a portion of the structure of the protein or to represent a relatively short amino acid chain without assuming a higher order structure (a fragment of the protein).
- the polypeptide or the peptide according to the present invention may also include, for example, dipeptide composed of 2 amino acids joined, tripeptide composed of 3 amino acids joined, tetrapeptide composed of 4 amino acids joined, and oligopeptide typically composed of 10 or less amino acids joined.
- the "polynucleotide” includes, but is not limited to: single- or double-stranded DNA or RNA having 2 to 2000 nucleotide residues; single- or double-stranded siRNA, miRNA, or nucleic acid (DNA or RNA) aptamers; and chemically modified compounds thereof. Examples of such modification include, but are not limited to, modification with other chemical groups that further impart electric charge, polarizability, hydrogen bond, electrostatic interaction, or fluxionality to the whole or a portion of the polynucleotide.
- the polynucleotide may be an oligonucleotide having 20 base pairs or a smaller size.
- the "peptide nucleic acid” is not limited and means a modified nucleic acid having a N-(2-aminoethyl)glycine backbone converted from the sugar phosphate backbone of a nucleic acid (DNA or RNA).
- the peptide nucleic acid may be further modified by a method generally known to those skilled in the art.
- the biopolymer according to the present invention includes, but is not limited to, for example, adrenocorticotropic hormone (ACTH), oxytocin, adenosine deaminase, agalsidase, ⁇ 1 antitrypsin, ⁇ 1 protease inhibitor, alteplase, amylin, Symlin, anistreplase, ancrod serine protease, antithrombin III, antitrypsin, aprotinin, asparaginase, atosiban, biphalin, bivalirudin, bone morphogenetic protein, pancreatic trypsin inhibitor, cadherin fragment, calcitonin (e.g., salmon-derived), collagenase, complement C1 esterase inhibitor, conotoxin, cytokine receptor fragment, DNase, dynorphin A, endorphin, enfuvirtide, enkephalin, erythropoie
- ACTH
- examples of the low-molecular physiologically active substance according to the present invention include central nervous system stimulants, anti-infective agents, anti-allergic agents, immune-regulating agents, anti-obesity agents, anticoagulants, antidiabetic agents, anticancer agents, antineoplastic agents, antimicrobial agents, antimycotic agents, analgesics, contraceptives, anti-inflamnatory agents, steroids, vasodilators, vasoconstrictors, and cardiovascular agents having at least one carboxy group.
- the low-molecular physiologically active substance according to the present invention includes, but is not limited to, for example, acarbose, alaproclate, alendronate, amantadine, amikacin, amineptine, aminoglutethimide, amisulpride, amlodipine, amotosalen, amoxapine, amoxicillin, amphetamine, amphotericin B, ampicillin, amprenavir, amrinone, anileridine, apraclonidine, apramycin, articaine, atenolol, atomoxetine, avizafone, baclofen, benazepril, benserazide, benzocaine, betaxolol, bleomycin, bromfenac, brofaromine, carvedilol, cathine, cathinone, carbutamide, cephalexin, clinafloxacin, ciprofloxacin,
- the compound of the present invention in which a glycosylated linker and a physiologically active substance are bonded to each other can be produced by bonding the physiologically active substance to the glycosylated linker synthesized and isolated by the method mentioned above.
- the bonding between the glycosylated linker and the physiologically active substance is achieved via an ester bond or a thioester bond through the condensation reaction of the oxygen atom (O) having a leaving group or the sulfur atom (S) having a leaving group in the glycosylated linker with at least one carboxy group of the physiologically active substance.
- the conditions for this condensation reaction can be appropriately set by those skilled in the art.
- a condensing agent such as PyBOP, DMAP, or HCTU can be used in the condensation reaction.
- a solvent such as DMF, DMSO, or dichloromethane can also be used in the condensation reaction.
- the condensation reaction can be carried out, for example, by dissolving a peptide with protected amino acid side chains and a glycosylated linker having a thiol group in DMF and adding PyBOP and DIPEA to the solution.
- this reaction is preferably carried out at a low temperature (-15°C to -30°C) because the isomerization of the C-terminal amino acid of the peptide can be suppressed.
- each side chain of the peptide is preferably protected with a protective group.
- the protective group with which the side chain of the peptide is protected can be deprotected after the bonding between the glycosylated linker and the peptide.
- a protective group well known to those skilled in the art can be used for protecting the side chain of the peptide, and, for example, the protective group for the amino acid used in the solid-phase synthesis mentioned above can be used.
- Those skilled in the art can appropriately carry out the introduction of the protective group to the peptide and its deprotection.
- the physiologically active substance is a polypeptide or the like, amino acids, etc., constituting the physiologically active substance can be sequentially bonded directly to the glycosylated linker bonded on the resin during the solid-phase synthesis to produce the compound comprising a glycosylated linker moiety and a physiologically active substance moiety.
- the reaction conditions for synthesizing the physiologically active substance moiety by the solid-phase synthesis method on the resin can be appropriately set by those skilled in the art.
- the present invention preferably provides a compound or a salt thereof obtainable by any of the production methods mentioned above.
- the obtainable compound or salt thereof is not limited to those produced by any of the production methods mentioned above and also includes those produced by other production methods.
- the present invention preferably provides a compound or a salt thereof obtained by any of the production methods mentioned above.
- a physiologically active substance can be readily dissolved, as the "compound comprising a glycosylated linker moiety and a physiologically active substance moiety, or the salt thereof", in an aqueous solution or an emulsion prepared from the aqueous solution, regardless of whether or not the physiologically active substance is poorly soluble.
- the glycosylated linker moiety can be cleaved to release the unmodified physiologically active substance.
- the glycosylated linker moiety according to the present invention is cleaved through hydrolysis reaction from the "compound comprising a glycosylated linker moiety and a physiologically active substance moiety, or the salt thereof".
- the glycosylated linker moiety may be cleaved by autohydrolysis from the "compound comprising a glycosylated linker moiety and a physiologically active substance moiety, or the salt thereof" through its intramolecular catalysis.
- the cleavage is not intended to exclude, for example, biological cleavage such as cleavage by an enzyme present in vivo (e.g., examples of the enzyme include esterase that cleaves an ester bond).
- a feature of the compound of the present invention or the salt thereof is that after the dissolution in an aqueous solution or an emulsion, the cleavage of the glycosylated linker moiety is accelerated in a manner dependent on pH and/or temperature (pH- and/or temperature-dependent cleavage).
- the compound of the present invention or the salt thereof and the glycosylated linker of the present invention may be preserved, for example, at a low temperature (e.g., - 80°C to 4°C) and/or a low pH (e.g., pH 1 to pH 4).
- the step of preparing the "compound comprising a glycosylated linker moiety and a physiologically active substance moiety, or the salt thereof" by bonding the physiologically active substance to the glycosylated linker moiety may be carried out, for example, at a low temperature (e.g., 0°C to 25°C) and/or a low pH (e.g., pH 1 to pH 7).
- a low temperature e.g., 0°C to 25°C
- a low pH e.g., pH 1 to pH 7
- the "compound comprising a glycosylated linker moiety and a physiologically active substance moiety, or the salt thereof" and the glycosylated linker may be stabilized by the protection of the N-terminal amino group of the glycosylated amino acid with a protective group such as a C 1 -C 16 acyl group, an Fmoc group, or an Alloc group.
- the compound of the present invention or the salt thereof may be used at a temperature and a pH close to physiological conditions (e.g., the in vivo physiological environment of a mammal or a similar environment, for example, 35°C to 43°C and pH 6.8 to 7.8).
- physiological conditions e.g., the in vivo physiological environment of a mammal or a similar environment, for example, 35°C to 43°C and pH 6.8 to 7.8.
- the physiologically active substance can be efficiently dissolved in an aqueous solution or an emulsion prepared from the aqueous solution.
- a low water-soluble (poorly soluble) physiologically active substance can be filter-sterilized.
- a low water-soluble physiologically active substance can be administered to an organism.
- the present invention by use of the compound of the present invention or the salt thereof, even a highly water-soluble physiologically active substance can be dissolved with higher efficiency in an aqueous solution or an emulsion prepared from the aqueous solution.
- the present invention reduces "losses" that may be caused by the insolubility, etc., of a substance in the course of preparing a preparation containing an expensive physiologically active substance or administering such a preparation.
- the glycosylated linker of the present invention having a known half-life in a solvent can be appropriately selected, thereby controlling the release duration and timing of the unmodified physiologically active substance to be released into an in vitro environment or an in vivo environment.
- the glycosylated linker of the present invention is also advantageous to the delivery of, for example, a physiologically active substance desired to exert its effects immediately at the desired site after administration to an organism.
- the "compound comprising a glycosylated linker moiety and a physiologically active substance moiety, or the salt thereof" according to the present invention can provide improved water solubility compared with an unmodified physiologically active substance.
- the improved water solubility is preferably 2 times to 1,000,000 times, more preferably 10 times to 1,000,000 times, further preferably 100 times to 1,000,000 times, still further preferably 500 times to 1,000,000 or more times the water solubility of the unmodified physiologically active substance in terms of molar concentration.
- the molar absorption coefficient (specific absorbance) necessary for determining the solubility of the "compound comprising a glycosylated linker moiety and a physiologically active substance moiety, or the salt thereof" according to the present invention, or the unmodified physiologically active substance may be determined by ultraviolet-visible spectroscopy (e.g., a wavelength in the ultraviolet-visible region, such as 280 nm) using, as a sample, a solution having a known protein concentration measured by a method generally known to those skilled in the art, for example, an amino acid composition analysis method or a nitrogen quantification method.
- ultraviolet-visible spectroscopy e.g., a wavelength in the ultraviolet-visible region, such as 280 nm
- the present invention also provides a composition comprising the compound comprising a glycosylated linker moiety and a physiologically active substance moiety, or the salt thereof.
- composition of the present invention comprises one or more compounds of the present invention or salts thereof and optionally contains one or more additional components (active and/or inert ingredient(s)).
- the composition of the present invention is not particularly limited by its use and may be used in, for example, an assay system (e.g., an in vitro assay system).
- the sugar chain structure of the glycosylated linker moiety can be homogeneous, as described above.
- the glycosylated linker moiety contained in the composition comprising the compound comprising this glycosylated linker moiety and a physiologically active substance moiety, or the salt thereof is not only homogeneous in sugar chain structure but also in its whole structure.
- the structure of the glycosylated linker moiety are homogeneous means that the glycosylation site in the glycosylated linker moiety, the type of each sugar constituting the sugar chain, the binding order of the sugar chain, the binding pattern between sugars, and the structure constituting the linker moiety are identical among glycosylated linker moieties contained in the composition(s) when sugar chains and linker moieties are compared among these glycosylated linker moieties.
- the structure of the glycosylated linker moiety are homogeneous means that at least 90% or more, preferably 95% or more, more preferably 99% or more sugar chain structures and linker moieties are uniform among the glycosylated linker moieties contained in the composition(s).
- composition or the like comprising the glycosylated linker moiety in which sugar chains are homogeneous has constant quality and is particularly preferred in the field of the production of medicines, assays, etc.
- the ratio of homogeneous sugar chains or the ratio of homogeneously glycosylated linkers can be measured by a method using, for example, HPLC, capillary electrophoresis, NMR, or mass spectrometry.
- the "pharmaceutical composition” of the present invention is a composition suitable for medical uses and is formulated in the form of an ordinary pharmaceutical composition using diluents or excipients usually used, such as a filler, an expander, a binder, a wetting agent, a disintegrant, a surfactant, and a lubricant.
- diluents or excipients usually used, such as a filler, an expander, a binder, a wetting agent, a disintegrant, a surfactant, and a lubricant.
- examples of such a pharmaceutical composition include, but are not limited to, tablets, pills, powders, solutions, suspensions, emulsions, granules, capsules, suppositories, and injections.
- the medical uses of the pharmaceutical composition may target diseases or disorders involving a physiologically active substance contained as the physiologically active substance moiety in the composition. When the physiologically active substance is, for example, GLP-1 or its derivative
- the "pharmacologically acceptable carrier” is not particularly limited.
- the addition of the pharmacologically acceptable carrier may influence the absorbability or concentration in blood of the "compound comprising a glycosylated linker moiety and a physiologically active substance moiety, or the salt thereof" according to the present and cause change in its disposition.
- the compound of the present invention or the salt thereof and the pharmaceutical composition of the present invention comprising the same may be used as a vaccine.
- a poorly soluble antigen can be dissolved, as the compound of the present invention or the salt thereof, in an aqueous solution or an emulsion.
- the unmodified antigen can be released after cleavage of the glycosylated linker moiety in vivo.
- the compound of the present invention or the salt thereof and the glycosylated linker of the present invention can be used in the development of various vaccines such as peptide vaccines.
- the "vaccine” means a substance capable of causing immune response when inoculated into an animal.
- the vaccine may contain an antigen or may express the antigen, thereby inducing immune response against the antigen.
- the pharmaceutical composition of the present invention used as a vaccine can be used not only in the prevention or treatment of viral infections, bacterial infections (sepsis, etc.), and communicable diseases but in the treatment, etc., of any disease that may be related to immune response, for example, cancers and autoimmune diseases (e.g., type I diabetes mellitus, multiple sclerosis, and articular rheumatism).
- the "antigen" is a molecule containing one or more epitopes and can be any molecule capable of inducing antigen-specific immune response by stimulating the immune system of a host.
- the immune response may be humoral immune response and/or cellular immune response.
- approximately 3 to several (e.g., 5 or 6) amino acids may serve as one epitope, one epitope in a protein typically contains 7 to 15 amino acids, for example, 8, 9, 10, 12, or 14 amino acids.
- the antigen is preferably a peptide or an epitope. When the antigen is used in the treatment of cancers, such a peptide is also called cancer peptide.
- the pharmaceutical composition of the present invention may be administered to an organism.
- the pharmaceutical composition of the present invention is not particularly limited by its administration method and is administered by a method suitable for various dosage forms, the age, sex, and disease severity of a patient, and other conditions. Examples of methods for administering tablets, pills, solutions, suspensions, emulsions, granules, and capsules include oral administration.
- an injection can be administered either alone or as a mixture with an ordinary fluid replacement such as glucose or an amino acid through an intravenous, intramuscular, intracutaneous, subcutaneous, or intraperitoneal route.
- a suppository is administered into the rectum.
- the pharmaceutical composition of the present invention used as a vaccine may be administered through subcutaneous injection, intramuscular injection, an oral route, a stump form, intracutaneous injection, or the like.
- the dose of the pharmaceutical composition of the present invention can be appropriately selected according to the usage, the age, sex, and disease severity of a patient, and other conditions.
- the frequency of administration can be appropriately selected according to the usage, the age, sex, and disease severity of a patient, and other conditions. For example, 3 times/day, twice/day, once/day, or less frequent administration (e.g., once/week or once/month) according to the stability thereof in blood may be selected.
- the pharmaceutical composition of the present invention may confer sustained release properties to the physiologically active substance by gradual cleavage of the sugar chain linker moiety. Alternatively, the pharmaceutical composition of the present invention may confer fast acting properties to the physiologically active substance by rapid cleavage of the sugar chain linker moiety.
- the present invention also relates to use of the glycosylated linker or the "compound comprising a glycosylated linker moiety and a physiologically active substance moiety, or the salt thereof" for the production of a therapeutic or preventive drug for diseases or disorders targeted by a physiologically active substance.
- the present invention also relates to use of the glycosylated linker or the "compound comprising a glycosylated linker moiety and a physiologically active substance moiety, or the salt thereof" for the treatment or prevention, etc., of diseases or disorders targeted by a physiologically active substance.
- the physiologically active substance is, for example, HER2 or its derivative
- the targeted disease may be cancer or the like (e.g., breast cancer).
- the glycosylated linker of the present invention configured to contain an added sugar chain having biodegradable nature has a reduced adverse effect on organisms compared with a linker configured to contain added PEG. As a result, long-term administration as a pharmaceutical composition to organisms is expected.
- the aqueous solution may be any liquid of a substance (e.g., acetate) dissolved in water as a solvent and includes every aqueous solution generally known to those skilled in the art and every novel aqueous solution.
- a substance e.g., acetate
- the emulsion is not limited and may be any preparation from the aqueous solution.
- the emulsion may be an oil-in-water (O/W) emulsion or a water-in-oil (W/O) emulsion, though there is no limitation.
- O/W oil-in-water
- W/O water-in-oil
- the "subject" to which the compound of the present invention or the salt thereof, or the pharmaceutical composition of the present invention is administered (applied) includes, but is not limited to, animals (humans, nonhuman mammals (e.g., mice, rats, dogs, cats, rabbits, cattle, horses, sheep, goats, and pigs), and non-mammalian animals (e.g., fish, reptiles, amphibians, and bird)), plants, insects, bacteria, and cells derived therefrom(including cultured cells), tissues, and organs, etc.
- the "subject” may be an artificial environment (e.g., an in vitro reaction system).
- the "subject” according to the present invention is a human.
- first or second are used for expressing various factors. However, these factors are understood to be not limited by these terms. These terms are used merely for differentiating one factor from the other factors. For example, the first factor may be described as the second factor, and vice versa, without departing from the scope of the present invention.
- a conjugate in which a glycosylated linker and a physiologically active substance are bonded to each other is referred to as a conjugate.
- a conjugate in which a glycosylated linker having an asialo sugar chain at cysteine in the linker is bonded to a portion of a physiologically active substance HER2 (portion containing the 8th to 16th amino acids in the amino acid sequence of HER) is referred to as a glycosylated (Cys (asialo)-type) linker-HER2 (8-16) conjugate.
- HER2(8-16) is a peptide corresponding to the 8th to 16th amino acid residues in the amino acid sequence of the HER2/neu protein, which is a member of the HER (human epidermal growth factor receptor) family.
- This HER2(8-16) has the ability to bind to HLA-A24, one of HLA (human leukocyte antigen) molecules, and exhibits the ability to induce cytotoxic T lymphocyte (CTL) by HLA-mediated antigen presentation, and this peptide fragment has been identified as a tumor vaccine candidate peptide ( Tanaka, H., et al., Brit. J. Cancer, 84 (1), 94-99, 2001 ).
- Rink-Amide-PEGA resin (100 ⁇ mol) was placed in a column for solid-phase synthesis and washed with dichloromethane and DMF. After the washing, a DMF (2,5 mL) solution containing Fmoc-Cys(Trt)-OH (234 mg, 0.399 mmol), HCTU (157 mg, 0.380 mmol), and 2,4,6-trimethylpyridine (79.6 ⁇ L, 0.600 mmol) was added thereto, and the mixture was shaken at room temperature for 10 minutes. After 10 minutes, the resin was washed with DMF, and this condensation operation was then repeated once again. After the completion of the second condensation operation, the resin was washed with DMF and dichloromethane.
- the Fmoc protective group was removed by treatment with 20% piperidine in DMF to obtain resin 2 bonded to Cys(Trt).
- the resin 2 was washed with DMF.
- a DMF (2.5 mL) solution of 4-hydroxymethyl-benzoic acid (61.1 mg, 0.402 mmol), HCTU (157.8 mg, 0.381 mmol), and DIPEA (104.5 ⁇ L, 0.600 mmol) was added thereto, and the mixture was shaken at room temperature. After 1 hour, the resin was washed with DMF and dichloromethane to obtain compound 3 bonded to HMBA-Cys(Trt) on the resin.
- compound 5 Fmoc-Arg (Pbf)-Trp (Boc)-Gly-Leu-Leu-Leu-Ala-Leu-Leu-HMBA-Cys (Trt) (SEQ ID NO: 1) was synthesized on the resin by a solid-phase peptide synthesis method according to the Fmoc method using a Prelude (trademark) peptide synthesizer.
- the condensation reaction in the solid-phase synthesis method was carried out in DMF using HCTU as a condensing agent and N-methylmorpholine as a base.
- the Fmoc protective group on the compound 5 was removed by treatment with 20% piperidine in DMF.
- the resin was washed with DMF and dichloromethane.
- cooled ether was added to obtain crude peptide 6: Arg-Trp-Gly-Leu-Leu-Leu-Ala-Leu-Leu-HMBA-Cys (SEQ ID NO: 2) as precipitates.
- the obtained crude peptide 6 (15.5 mg) was dissolved in a DMSO-0.1 M phosphate buffer solution (pH 7.4) mixed solution (9/1, v/v, 240 ⁇ L) containing 50 mM DTT. To the solution, a DMSO-0.1 M phosphate buffer solution (pH 7.4) mixed solution (9/1, v/v, 946 ⁇ L) containing 30 mM asialo-BrAc 7 dissolved therein was added thereto, and the mixture was shaken at room temperature for 2 hours.
- R represents the following chemical formula:
- Example 1-1 The crude peptide 6 (15.5 mg) obtained in Example 1-1 was dissolved in a DMSO-0.1 M phosphate buffer solution (pH 7.4) mixed solution (9/1, v/v, 240 ⁇ L) containing 50 mM DTT. To this mixed solution, a DMSO-0.1 M phosphate buffer solution (pH 7.4) mixed solution (9/1, v/v, 3.8 mL) containing 7.5 mM disialo-BrAc 9 was added, and the mixture was shaken at room temperature for 5 hours.
- a DMSO-0.1 M phosphate buffer solution (pH 7.4) mixed solution 9/1, v/v, 3.8 mL
- 7.5 mM disialo-BrAc 9 was added, and the mixture was shaken at room temperature for 5 hours.
- the test subject glycosylated (Cys (asialo)-type) linker-HER2(8-16) conjugate (compound 1), glycosylated (Cys (disialo)-type) linker-HER2 (8-16) conjugate (compound 8), or unmodified HER2 (8-16) peptide (compound 10) was collected in an amount of approximately 4.5 mg into a microtube, and 30 ⁇ L of water was added thereto. The microtube was shaken at 25°C for 15 minutes and then centrifuged at 16100 ⁇ g at 25°C for 10 minutes. After the centrifugation, the absorbance of the supernatant portion at 280 nm was measured in the microtube.
- the concentration was calculated to determine solubility.
- the molar absorption coefficients of the glycosylated (Cys (asialo)-type) linker-HER2 (8-16) conjugate (compound 1) and the glycosylated (Cys (disialo)-type) linker-HER2 (8-16) conjugate (compound 8) at 280 nm were determined by dividing the absorbance of the peptide chain moiety in the glycosylated (Cys (asialo)-type) linker-HER2 (8-16) conjugate (compound 1) or the glycosylated (Cys (disialo)-type) linker-HER2 (8-16) conjugate (compound 8) at 280 nm by a concentration determined by amino acid analysis.
- the HER2(8-16) peptide unbound with the glycosylated linker had a solubility of 0.22 mg/mL (2.1 ⁇ 10 2 ⁇ M)) in water.
- the precipitation of the HER2(8-16) peptide was able to be visually confirmed in the microtube.
- the glycosylated (Cys (asialo)-type) linker-HER2(8-16) conjugate was confirmed to have a solubility of 144 mg/mL or higher in water.
- the precipitation of the glycosylated (Cys (asialo)-type) linker-HER2(8-16) conjugate (compound 1) was unable to be confirmed even at a concentration of 144 mg/mL.
- the glycosylated (Cys (disialo)-type) linker-HER2(8-16) conjugate (compound 8) was confirmed to have a solubility of 121 mg/mL or higher in water.
- the precipitation of the glycosylated (Cys (asialo)-type) linker-HER2(8-16) conjugate (compound 8) was unable to be confirmed even at a concentration of 121 mg/mL.
- Table 1A Solubility of glycosylated linker-HER2(8-16) conjugate in water Sample Solubility ( ⁇ M) Solubility (mg/mL) Unmodified HER2(8-16) (compound 10) 2.1 ⁇ 10 2 0.22 Glycosylated (Cys (asialo)-type) linker-HER2(8-16) conjugate (compound 1) > 4.1 ⁇ 10 4 >144 Glycosylated (Cys (disialo)-type) linker-HER2(8-16) conjugate (compound 8) > 4.7 ⁇ 10 4 >121
- Solubility in a 0.1% aqueous acetic acid (AcOH) solution was further measured for the glycosylated (Cys (asialo)-type) linker-HER2(8-16) conjugate (compound 1), the glycosylated (Cys (disialo)-type) linker-HER2(8-16) conjugate (compound 8), and the unmodified HER2(8-16) peptide (compound 3) having no glycosylated linker in the same way as in the preceding measurement of solubility in the aqueous solution.
- AcOH aqueous acetic acid
- the HER2(8-16) peptide unbound with the glycosylated linker had a solubility of 0.52 mg/mL (4.9 ⁇ 10 2 ⁇ M)) in the aqueous acetic acid solution.
- the precipitation of the HER2(8-16) peptide was able to be visually confirmed in the microtube.
- the glycosylated (Cys (asialo)-type) linker-HER2(8-16) conjugate (compound 1) was confirmed to have a solubility of 110 mg/mL or higher in the aqueous acetic acid solution.
- the precipitation of the glycosylated (Cys(asialo)-type) linker-HER2(8-16) conjugate (compound 1) was unable to be confirmed even at a concentration of 110 mg/mL.
- the glycosylated (Cys (disialo)-type) linker-HER2 (8-16) conjugate (compound 8) was confirmed to have a solubility of 104 mg/mL or higher in the aqueous acetic acid solution.
- the precipitation of the glycosylated (Cys (asialo)-type) linker-HER2 (8-16) conjugate (compound 8) was unable to be confirmed even at a concentration of 104 mg/mL.
- Table 1B Solubility of glycosylated linker-HER2(8-16) conjugate in aqueous acetic acid solution (0.1% AcOH) Sample Solubility ( ⁇ M) Solubility (mg/mL) Unmodified HER2(8-16) (compound 10) 4.9 ⁇ 10 2 0.52 Glycosylated (Cys (asialo)-type) linker-HER2(8-16) conjugate (compound 1) >3.7 ⁇ 10 4 >110 Glycosylated (Cys (disialo)-type) linker-HER2(8-16) conjugate (compound 8) >3.4 ⁇ 10 4 >104
- Hydrolysis reaction was started by the addition of a buffer solution (acetate buffer solution (pH 4.0) or PBS (pH 7.4)) preset to a reaction temperature (25°C or 37°C) to each of the freeze-dried glycosylated (Cys (asialo)-type) linker-HER2(8-16) conjugate (compound 1) and glycosylated (Cys (disialo)-type) linker-HER2 (8-16) conjugate (compound 8).
- the temperature during the reaction was kept at a constant temperature (25°C or 37°C) using a block incubator. A given amount of each solution was injected to HPLC at appropriate time intervals to trace the hydrolysis reaction.
- the relative starting material concentration was determined from an HPLC peak area corresponding to the starting material.
- the relative concentration of the starting material was plotted against incubation time. As a result, a linear plot was obtained, indicating that the hydrolysis reaction was primary reaction.
- t 1/2 ln(2) / k (wherein k represents the slope of the linear plot).
- the half-lives of the glycosylated (Cys (asialo)-type) linker-HER2(8-16) conjugate (compound 1) and the glycosylated (Cys (disialo)-type) linker-HER2(8-16) conjugate (compound 8) under each condition are shown in Tables 2 and 3.
- the glycosylated (Cys (asialo)-type) linker-HER2(8-16) conjugate (compound 1) and the glycosylated (Cys (disialo)-type) linker-HER2(8-16) conjugate (compound 8) were both confirmed to be gradually hydrolyzed to produce the unmodified HER2(8-16) peptide (compound 10).
- Tables 2 and 3 the hydrolysis rate was confirmed to be faster at a higher pH (comparison between Entries 1 and 3 (25°C) and comparison between Entries 2 and 4 (37°C)). Also, the hydrolysis rate was confirmed to be faster at a higher temperature under the condition of pH 7.4 (comparison between Entries 3 and 4).
- Both the compound 1 and the compound 8 where very stable under the conditions of pH 4.0 and 37°C, and the formed hydrolysate 10 was only 1% or less of the starting material after the 48-hour tracing, showing that these compounds are hardly hydrolyzed under these conditions.
- the peptide having the disialo sugar chain-attached linker exhibited a faster hydrolysis rate than that of the peptide having the asialo sugar chain-attached linker under the conditions of pH 7.4 and 25°C.
- the peptide having the disialo sugar chain-attached linker exhibited a slower hydrolysis rate than that of the peptide having the asialo sugar chain-attached linker under the conditions of pH 7.4 and 37°C.
- a preferred hydrolysis rate under particular conditions can also be adjusted by selecting the type of the sugar chain to be added.
- Rink-Amide-PEGA resin (100 ⁇ mol) was placed in a column for solid-phase synthesis and washed with dichloromethane and DMF. After the washing, a DMF (2.5 mL) solution containing Fmoc-Cys (tButhio)-OH (173.4 mg, 0.402 mmol), HCTU (157 mg, 0.380 mmol), and 2,4,6-trimethylpyridine (79.6 ⁇ L, 0.600 mmol) was added thereto, and the mixture was shaken at room temperature for 10 minutes. After 10 minutes, the resin was washed with DMf.
- the Fmoc protective group was removed by treatment with 20% piperidine in DMF to obtain compound 11 bonded to Cys(StBu(tButhio)) on the resin.
- the compound 11 on the resin was washed with DMF.
- a DMF (2.5 mL) solution containing 4-hydroxymethyl-benzoic acid (60.8 mg, 0.400 mmol), HCTU (157 mg, 0.380 mmol), and DIPEA (104.5 ⁇ L, 0.600 mmol) was added thereto, and the mixture was shaken at room temperature. After 10 minutes, the resin was washed with DMF and dichloromethane to obtain compound 1-2 bonded to HMBA-Cys(StBu) on the resin.
- compound 14 Fmoc-Arg(Pbf)-Trp(Boc)-Gly-Leu-Leu-Leu-Ala-Leu-Leu-HMBA-Cys(StBu) (SEQ ID NO: 6) with protected amino acid side chains was synthesized on the resin bonded to the protected peptide by a solid-phase peptide synthesis method according to the Fmoc method using a Prelude (trademark) peptide synthesizer. The condensation reaction was carried out in DMF using HCTU as a condensing agent and N-methylmorpholine as a base.
- the resin was washed with DMF, and the Fmoc protective group was then removed by treatment with 20% piperidine in DMF.
- the resin was washed with DMF and dichloromethane.
- cooled ether was added to obtain crude peptide 1 as precipitates.
- the asialo-BrAc 7 (131.7 mg, 75 ⁇ mol) dissolved in a phosphate buffer solution (0.1 M, pH 6.72, 4.0 mL) was gradually added dropwise to ethanedithiol (63 ⁇ L, 750 ⁇ mol, 10 eq) dissolved in a phosphate buffer solution (0.1 M, pH 6.72, 4.0 mL), and reacted at room temperature for 40 minutes.
- R represents the following chemical formula:
- the peptide with protected amino acid side chains synthesized on the resin using a Prelude (trademark) peptide synthesizer was excised from the resin by treatment with an AcOH-TFE (1/1, v/v) solution. The filtrate was concentrated to dryness under reduced pressure to obtain a peptide (compound 18): Boc-Arg (Pbf)-Trp (Boc)-Gly-Leu-Leu-Leu-Ala--Leu-Leu (SEQ ID NO: 9) with protected amino acid side chains.
- the obtained peptide (compound 18) (63.5 mg, 41.8 ⁇ mol), the glycosylated linker (compound 17) (41.5 mg, 23.4 ⁇ mol) having a thiol group, and PyBOP (121.8 mg, 234 ⁇ mol) were dissolved in DMF (1 mL) and cooled to -15°C in a nitrogen atmosphere. To this solution, DIPEA (40.0 ⁇ L, 40.7 ⁇ mol) was added, and the mixture was stirred at - 15°C. After 3 hours, TFA (100 ⁇ L) was added thereto, and the mixture was concentrated to dryness under reduced pressure.
- R represents the following chemical formula:
- Trityl chloride (2.0 g, 7.1 mmol) was allowed to act on 4-mercaptophenylacetic acid (compound 22) (1.0 g, 6.1 mmol) in dichloromethane to obtain compound 23 (2.8 g).
- a glycopeptide Asn(asialo)-Gly
- the compound 26 (8.6 mg, 4.4 ⁇ mol) as a glycosylated linker, the peptide (compound 18) (35.0 mg, 23.0 ⁇ mol) with protected amino acid side chains, and PyBOP (22.8 mg, 43.8 ⁇ mol) were dissolved in DMF, (0.4 mL) and cooled to - 15°C in a nitrogen atmosphere.
- DIPEA 7.5 ⁇ L, 76.4 ⁇ mol
- TFA 50 ⁇ L was added thereto, and the mixture was concentrated to dryness under reduced pressure.
- a TFA-H 2 O (95/5, v/v) solution (1 mL) was added, and the mixture was stirred for 3 hours.
- ether was added to obtain a crude peptide as precipitates.
- the solubility of the thioalkyl-type glycosylated linker-HER2(8-16) conjugate (compound 20) and the thioaryl-type glycosylated linker-HER2(8-16) conjugate (compound 21) in water was measured in the same way as in Example 1-3 except that the thioalkyl-type glycosylated linker-HER2(8-16) conjugate (compound 20) and the thioaryl-type glycosylated linker-HER2(8-16) conjugate (compound 21) were used instead of the glycosylated (Cys (asialo)-type) linker-HER2(8-16) conjugate (compound 1) and the glycosylated (Cys (disialo)-type) linker-HER2(8-16) conjugate (compound 7).
- the solubility of the unmodified HER2(8-16) peptide was measured.
- the HER2(8-16) peptide unbound with the glycosylated linker had a solubility of 0.22 mg/mL (2.1 ⁇ 10 2 ⁇ M)) in water.
- the precipitation of the HER2(8-16) peptide was able to be visually confirmed in the microtube.
- the thioalkyl-type glycosylated linker-HER2(8-16) conjugate (compound 20) was confirmed to have a solubility of 77.4 mg/mL or higher in water.
- the precipitation of the thioalkyl-type glycosylated linker-HER2(8-16) conjugate was unable to be confirmed even at a concentration of 77.4 mg/mL.
- the thioaryl-type glycosylated linker-HER2(8-16) conjugate was confirmed to have a solubility of 76.7 mg/mL or higher in water.
- the precipitation of the thioaryl-type glycosylated linker-HER2(8-16) conjugate (compound 8) was unable to be confirmed even at a concentration of 76.7 mg/mL.
- the hydrolysis behaviors were traced in the same way as in Example 1-4 except that the freeze-dried thioalkyl-type glycosylated linker-HER2(8-16) conjugate (compound 20) and thioaryl-type glycosylated linker-HER2 (8-16) conjugate (compound 21) were used instead of the freeze-dried glycosylated (Cys (asialo)-type) linker-HER2(8-16) conjugate (compound 1) and glycosylated (Cys (disialo)-type) linker-HER2(8-16) conjugate (compound 8), and the reaction temperature was set to 4°C, 25°C, or 37°C.
- the relative concentration of the starting material was plotted against incubation time as to the thioalkyl-type glycosylated linker-HER2(8-16) conjugate (compound 20) in the same way as in Example 1-4.
- the obtained graph is shown in Figures 1A and 1B .
- the half-life of the thioalkyl-type glycosylated linker-HER2(8-16) conjugate (compound 20) under each condition is shown in Table 5.
- the thioalkyl-type glycosylated linker-HER2(8-16) conjugate (compound 21) having a thioester bond was confirmed to exhibit a faster hydrolysis rate at a higher temperature and/or pH.
- the relative concentration of the starting material was also plotted against incubation time as to the thioaryl-type glycosylated linker-HER2(8-16) conjugate (compound 21).
- the obtained graph is shown in Figures 2A and 2B .
- the half-life of the thioaryl-type glycosylated linker-HER2(8-16) conjugate (compound 21) under each condition is shown in Table 6.
- glycosylated linker-HER2(8-16) conjugate having a thioester bond was confirmed to exhibit a faster hydrolysis rate at a higher temperature and/or pH.
- hydrolysis rates of the asialo sugar chain-attached linker-HER2 (8-16) conjugates, compounds 20, 21, and 1, in PBS (pH 7.4) at 37°C were ranked in the order of the thioaryl-type glycosylated linker-HER2(8-16) conjugate (compound 21) having a thioester bond (4.0 hours) > the thioalkyl-type glycosylated linker-HER2(8-16) conjugate (compound 20) having a thioester bond (32 hours) > the glycosylated linker-HER2(8-16) conjugate (compound 1) having an ester bond (78 hours) ( Figure 3 ).
- This chemerin 9 has agonistic activity against a G protein coupled receptor ChemR23 and therefore has the potential as a therapeutic and/or preventive agent for immunological diseases, inflammatory diseases, and diabetes mellitus.
- Chemerin 9 is known to undergo degradation by protease in vivo and be therefore very unstable (patent literature Japanese Patent Laid-Open No. 2010-229093 ).
- the glycosylated linker of the present invention according to one embodiment was introduced to this chemerin 9, and the produced conjugate was evaluated for its hydrolysis half-life.
- Rink-Amide-PEGA resin (100 ⁇ mol) was placed in a column for solid-phase synthesis and washed with dichloromethane and DMF. After the washing, a DMF (2.5 mL) solution containing Fmoc-Cys(Trt)-OH (234 mg, 0.399 mmol), HCTU (157 mg, 0.380 mmol), and 2,4,6-trimethylpyridine (79.6 ⁇ L, 0.600 mmol) was added thereto, and the mixture was shaken at room temperature for 10 minutes. After 10 minutes, the resin was washed with DMF, and this condensation operation was then repeated once again. After the completion of the second condensation operation, the resin was washed with DMF and dichloromethane.
- the Fmoc protective group was removed by treatment with 20% piperidine in DMF to obtain compound 2 bonded to Cys (Trt) on the resin.
- the compound 2 on the resin was washed with DMF.
- a DMF (2.5 mL) solution of 4-hydroxymethyl-benzoic acid (61.1 mg, 0.402 mmol), HCTU (157.8 mg, 0.381 mmol), and DIPEA (104.5 ⁇ L, 0.600 mmol) was added thereto, and the mixture was shaken at room temperature. After 1 hour, the resin was washed with DMF and dichloromethane to obtain compound 3 bonded to HMBA-Cys (Trt) on the resin.
- compound 31 Fmoc-Tyr(tBu)-Phe-Pro-Gly-Gln(Trt)-Phe-Ala-Phe-Ser(tBu)-HMBA-Cys(Trt) (SEQ ID NO: 13) bonded to the peptide with protected amino acid side chains was synthesized on the resin by a solid-phase peptide synthesis method according to the Fmoc method using a Prelude (trademark) peptide synthesizer. The condensation reaction in the solid-phase synthesis method was carried out in DMF using HCTU as a condensing agent and N-methylmorpholine as a base.
- the Fmoc protective group on the compound 31 was removed by treatment with 20% piperidine in DMF.
- the resin was washed with DMF and dichloromethane.
- cooled ether was added to obtain crude peptide 32: Tyr-Phe-Pro-Gly-Gln-Phe-Ala-Phe-Ser-HMBA-Cys (SEQ ID NO: 14) as precipitates.
- the hydrolysis behavior of the glycosylated (Cys (disialo)-type) linker-chemerin 9 conjugate (compound 29) obtained in Example 4-1 was traced. Specifically, the hydrolysis behavior was traced in the same way as in Example 1-4 except that the freeze-dried glycosylated (Cys (disialo)-type) linker-chemerin 9 conjugate (compound 29) was used instead of the freeze-dried glycosylated (Cys (asialo)-type) linker-HER2(8-16) conjugate (compound 1) and glycosylated (Cys (disialo)-type) linker-HER2(8-16) conjugate (compound 8), and an acetate buffer solution (pH 4.0), PBS (pH 7.4), and a borate buffer solution (pH 9.0) were used as buffer solutions.
- acetate buffer solution pH 4.0
- PBS pH 7.4
- borate buffer solution pH 9.0
- the relative concentration of the starting material was plotted against incubation time as to the glycosylated (Cys (disialo)-type) linker-chemerin 9 conjugate (compound 29) in the same way as in Example 1-4.
- the obtained graph is shown in Figure 4 .
- the half-life of the glycosylated (Cys (disialo)-type) linker-chemerin 9 conjugate (compound 29) under each condition is shown in Table 7.
- the formed hydrolysate (compound 33) under the condition of 37°C in the acetate buffer solution (0.1 M, pH 4.0) was only 1% or less of the starting material (compound 29) after the 49-hour tracing, showing that the compound is hardly hydrolyzed (note that the elimination of sialic acid present at the non-reducing end in the sugar chain structure was observed; and the content of the desialylated form was increased from 4.7% to 8.7% before and after the start of the hydrolysis behavior test).
- the hydrolysis reaction proceeded in PBS (pH 7.4) and the borate buffer solution (pH 9.0) to obtain the unmodified peptide (compound 33) having the amino acid sequence of chemerin 9.
- the half-life determined from the obtained curve was 45.0 hours (1.9 days) at 37°C in PBS.
- the half-life was 0.83 hours (50 minutes).
- the conjugate with the bonded glycosylated linker of the present invention can be prepared in a solution having a low pH at room temperature before administration without causing the hydrolysis of the compound and can be hydrolyzed under in vivo conditions after administration to exert the original activity of the peptide.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Molecular Biology (AREA)
- Immunology (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Epidemiology (AREA)
- Biochemistry (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Gastroenterology & Hepatology (AREA)
- Diabetes (AREA)
- Cell Biology (AREA)
- Toxicology (AREA)
- Zoology (AREA)
- Oncology (AREA)
- Rheumatology (AREA)
- Communicable Diseases (AREA)
- Materials Engineering (AREA)
- Polymers & Plastics (AREA)
- Physical Education & Sports Medicine (AREA)
- Virology (AREA)
- Hematology (AREA)
- Endocrinology (AREA)
- Emergency Medicine (AREA)
- Biomedical Technology (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
Abstract
Description
- The present invention relates to a glycosylated linker, a compound comprising a glycosylated linker and a physiologically active substance, or a salt thereof, and a method for producing the same.
- In recent years, various vaccines have been developed using physiologically active substances. Some of these physiologically active substances, however, cannot be (sufficiently) filter-sterilized, for example, due to their low water solubility. Also, some physiologically active substances are difficult to dissolve in an aqueous solution or an emulsion prepared from the aqueous solution for administration to organisms such as humans.
- Various methods have been attempted to improve the water solubility of drugs such as physiologically active substances. For example, a carrier-drug conjugate (so-called drug derivative) is known in which a highly watersoluble carrier is artificially added directly to a drug. A hydrophilic amino acid sequence or polyethylene glycol (PEG), etc., is known as the carrier.
- Such a drug derivative, however, in which a carrier is bonded directly to a drug, differs in steric structure from the original drug. The resulting drug derivative exhibits different pharmacokinetic, immunogenic, toxicological, or pharmacological properties compared with the original drug molecule. Particularly, when the drug derivative is used as, for example, a vaccine, the antigenicity of this drug derivative is well known to be usually lower than that of the original drug molecule.
- A drug with PEG added as a carrier (PEGylated drug) is resistant to biodegradation. Thus, the PEGylated drug, when continuously administered into an organism, has the risk of accumulating in the organism to cause chemical injury to the organism; thus its biocompatibility is still less than sufficient (Patent Literature 1). Furthermore, PEG has a molecular weight distribution (polydisperse nature). The PEGylation of drugs forms many monomeric isoforms (many different monomeric isoforms: structurally different proteins having the same functions), because of the difference in the binding site or molecular weight of added PEG. These formed isoforms might compete with each other for binding to a drug acceptor molecule (Non Patent Literature 1).
- A carrier-linker-drug conjugate has also been developed in which a drug and a carrier are bonded via a linker moiety. This conjugate can be designed such that the bond between the carrier-linker moiety and the drug is cleaved upon acting on a target site (in blood, etc.) to release the drug itself. In the case of using such a carrier-linker-drug conjugate, light or enzymatic cleavage has been used as a trigger for the cleavage of the bond between the carrier-linker moiety and the drug. Unfortunately, for the use of the light, the light irradiation to the target site is difficult, and damage to the organism is also a concern. Alternatively, in the case of the enzymatic cleavage, the amount of an enzyme is known to largely differ not only among individuals but depending on administration sites. Thus, the problem of this approach is to cause variations in the effect of the drug therapy among patients.
- In response to these problems, a carrier-linker-drug conjugate has been reported in which a carrier-linker moiety is bonded via an amide group to a physiologically active substance moiety (Patent Literature 2). The technique disclosed in
Patent Literature 2 utilizes autohydrolysis based on an intramolecular catalytic effect in the carrier-linker moiety so as to control the cleavage of the bond between the carrier-linker moiety and the drug. The mechanism underlying the cleavage of the bond between the carrier-linker moiety and the physiologically active substance moiety is based on the cyclization-activation resulting from cyclic imide formation for cleavage of the amide bond. -
- [Patent Literature 1] National Publication of International Patent Application No.
2007-530569 - [Patent Literature 2] International Publication No.
WO 2009/095479 - [Non Patent Literature 1] Barry Byrne et al., Drug Discovery Today, (2007), Vol. 12, pp. 319-326
- In light of the problems as described above, an object of the present invention is to provide a carrier-linker that can improve the water solubility of a physiologically active substance and is capable of releasing the physiologically active substance more rapidly under particular conditions.
-
Patent Literature 2 has merely confirmed that a large number of carrier-linker-drug conjugates having various structures each release the drug itself by the cleavage of the amide bond.Patent Literature 1 has not focused on the biodegradability of a carrier, because the literature shows a large number of Examples in which PEG is used as a carrier. In addition,Patent Literature 1 has not mentioned the solubility of a carrier-linker-drug conjugate or a carrier-linker itself, because the literature shows a large number of Examples in which poorly water-soluble higher fatty acid is used as a carrier. - As a result of conducting diligent studies, the present inventors have found a carrier-linker that improves the water solubility of a physiologically active substance and is capable of releasing the physiologically active substance under particular conditions independent of light or enzymatic cleavage.
- Specifically, in one aspect, the present invention provides a glycosylated linker for bonding to a physiologically active substance having at least one carboxy group, wherein
the glycosylated linker is represented by the following formula (A):
X-R1-Y-R2 (A)
wherein - X represents an oxygen atom (O) having a leaving group or a sulfur atom (S) having a leaving group;
- R1 is substituted or unsubstitued C1-C5 alkyl, substituted or unsubstituted C5-C16 aryl, substituted or unsubstituted C5-C16 heteroaryl, substituted or unsubstituted C2-C5 alkenyl, or substituted or unsubstituted C2-C5 alkynyl, or R1 represents -R3-R4-, -R4-R5-, or -R3-R4-R5-, wherein R3 and R5 each represent substituted or unsubstituted C1-C5 alkyl, substituted or unsubstituted C2-C5 alkenyl, or substituted or unsubstituted C2-C5 alkynyl, and R4 represents substituted or unsubstituted C5-C16 aryl, substituted or unsubstituted C5-C16 heteroaryl, or a sulfur atom (S);
- Y may be present or absent, and when Y is present, Y represents -CO- or -CONH- (provided that C is bonded to R1 and N is bonded to R2) ; and
- R2 is a sugar chain, a glycosylated amino acid, or a glycosylated polypeptide, or R2 represents -R6-R7, wherein R6 represents a sugar chain, a glycosylated amino acid, or a glycosylated polypeptides, and R7 represents a hydrogen atom (H), -NH2, substituted or unsubstituted C1-C5 alkyl, substituted or unsubstituted C5-C16 aryl, substituted or unsubstituted C5-C16 heteroaryl, a nucleic acid, or PEG, and
- the glycosylated linker becomes capable of binding to the carboxy group of the physiologically active substance by the elimination of the leaving group in the oxygen atom (O) or the sulfur atom (S).
- According to one embodiment of the glycosylated linker of the present invention, the glycosylated linker is a glycosylated linker represented by the following formula (A):
X-R1-Y-R2 (A)
wherein - X represents a sulfur atom (S) having a leaving group;
- R1 represents -R3-R4-, -R4-R5-, or -R3-R4-R5-, wherein R3 and R5 each represent substituted or unsubstituted. C1-C5 alkyl, substituted or unsubstituted C2-C5 alkenyl, or substituted or unsubstituted C2-C5 alkynyl, and R4 represents substituted or unsubstituted C5-C16 aryl, substituted or unsubstituted C5-C16 heteroaryl, or a sulfur atom (S);
- Y may be present or absent, and when Y is present, Y represents -CO- or -CONH- (provided that C is bonded to R1 and N is bonded to R2); and
- R2 represents a sugar chain, a glycosylated amino acid, or a glycosylated polypeptide.
- According to one embodiment of the glycosylated linker of the present invention, the glycosylated linker is a glycosylated linker represented by the following formula (A):
X-R1-Y-R2 (A)
wherein - X represents an oxygen atom (O) having a leaving group or a sulfur atom (S) having a leaving group;
- R1 represents -R3-R9- or -R4-R5-, wherein R3 and R5 each represent substituted or unsubstituted C1-C5 alkyl, substituted or unsubstituted C2-C5 alkenyl, or substituted or unsubstituted C2-C5 alkynyl, and R4 represents substituted or unsubstituted C5-C16 aryl or substituted or unsubstituted C5-C16 heteroaryl;
- Y may be present or absent, and when Y is present, Y represents -CO- or -CONH- (provided that C is bonded to R1 and N is bonded to R2); and
- R2 represents a sugar chain, a glycosylated amino acid, or a glycosylated polypeptide.
- According to one embodiment of the glycosylated linker of the present invention, the sugar chain in the "glycosylated amino acid or glycosylated polypeptide" represented by R2 or R6 in the glycosylated linker is bonded to Asn or Cys in the amino acid or the polypeptide.
- According to one embodiment of the glycosylated linker of the present invention, the sugar chain in the "sugar chain, glycosylated amino acid, or glycosylated polypeptide" represented by R2 or R6 in the glycosylated linker consists of 4 or more sugar residues.
- According to one embodiment of the glycosylated linker of the present invention, the sugar chain in the "sugar chain, glycosylated amino acid, or glycosylated polypeptide" represented by R2 or R6 in the glycosylated linker is a biantennary complex-type sugar chain, a triantennary complex-type sugar chain, or a tetraantennary complex-type sugar chain.
- According to one embodiment of the glycosylated linker of the present invention, the sugar chain in the glycosylated linker is a biantennary complex-type sugar chain selected from the group consisting of a disialo sugar chain, a monosialo sugar chain, an asialo sugar chain, a di-GlcNAc sugar chain, and a dimannose sugar chain.
- According to one embodiment of the glycosylated linker of the present invention, the sugar chain in the "sugar chain, glycosylated amino acid, or glycosylated polypeptide" represented by R2 or R6 in the glycosylated linker is a sugar chain represented by the following formula:
- According to one embodiment of the glycosylated linker of the present invention, the sugar chain in the "glycosylated amino acid or glycosylated polypeptide" in the glycosylated linker is bonded to the amino acid or the polypeptide without the mediation of a linker.
- One or any combination of two or more of the features of the present invention mentioned above is also included in the scope of the glycosylated linker of the present invention, as a matter of course.
- In another aspect, the present invention provides a compound comprising a glycosylated linker moiety derived from a glycosylated linker and a physiologically active substance moiety, or a salt thereof, wherein
the physiologically active substance has at least one carboxy group, and
the glycosylated linker moiety is bonded to the physiologically active substance moiety through an ester bond or a thioester bond formed with the carboxy group of the physiologically active substance moiety by the elimination of the leaving group in the oxygen atom (O) or the sulfur atom (S). - According to one embodiment of the compound of the present invention or the salt thereof, the physiologically active substance in the compound or the salt thereof is a low-molecular physiologically active substance or a biopolymer.
- According to one embodiment of the compound of the present invention or the salt thereof, the biopolymer in the compound or the salt thereof is selected from the group consisting of a protein, a polypeptide, a polynucleotide, and a peptide nucleic acid.
- According to one embodiment of the compound of the present invention or the salt thereof, the compound or the salt thereof has improved water solubility compared with an unmodified physiologically active substance.
- According to one embodiment of the compound of the present invention or the salt thereof, the improved water solubility of the compound or the salt thereof is 10 to 1,000,000 times the water solubility of the "unmodified physiologically active substance" in terms of molar concentration.
- According to one embodiment of the compound of the present invention or the salt thereof, the ester bond or the thioester bond formed between the oxygen atom (O) or the sulfur atom (S) in the glycosylated linker moiety and the carboxy group in the physiologically active substance moiety in the compound or the salt thereof is cleaved in a manner dependent on pH and/or temperature.
- One or any combination of two or more of the features of the present invention mentioned above is also included in the scope of the compound comprising a glycosylated linker moiety and a physiologically active substance moiety according to the present invention, or the salt thereof, as a matter of course.
- In an alternative aspect, the present invention provides a composition comprising the compound or the salt thereof, wherein sugar chains in the compound or the salt thereof are substantially homogeneous.
- In an alternative aspect, the present invention provides a pharmaceutical composition comprising
- (I) the compound according to claim 10 or the salt thereof, and
- (II) a pharmacologically acceptable carrier.
- According to one embodiment of the pharmaceutical composition of the present invention, the physiologically active substance in the pharmaceutical composition exerts its activity after administration to a subject.
- According to one embodiment of the pharmaceutical composition of the present invention, the pharmaceutical composition is used in vaccination.
- One or any combination of two or more of the features of the present invention mentioned above is also included in the scope of the pharmaceutical composition of the present invention, as a matter of course.
- In an alternative aspect, the present invention provides a method for producing a compound comprising a glycosylated linker moiety and a physiologically active substance moiety, or a salt thereof, wherein
the glycosylated linker is represented by the following formula (A):
X-R1-Y-R2 (A)
wherein - X represents an oxygen atom (O) having a leaving group or a sulfur atom (S) having a leaving group;
- R1 is substituted or unsubstituted C1-C5 alkyl, substituted or unsubstituted C5-C16 aryl, substituted or unsubstituted C5-C16 heteroaryl, substituted or unsubstituted C2-C5 alkenyl, or substituted or unsubstituted C2-C5 alkynyl, or R1 represents -R3-R4-, -R4-R5-, or -R3-R4-R5-, wherein R3 and R5 each represent substituted or unsubstituted C1-C5 alkyl, substituted or unsubstituted C2-C5 alkenyl, or substituted or unsubstituted C2-C5 alkynyl, and R4 represents substituted or unsubstituted C5-C16 aryl, substituted or unsubstituted C5-C16 heteroaryl, or a sulfur atom (S);
- Y may be present or absent, and when Y is present, Y represents -CO- or -CONH- (provided that C is bonded to R1 and N is bonded to R2); and
- R2 is a sugar chain, a glycosylated amino acid, or a glycosylated polypeptide, or R2 represents -R6-R7, wherein R6 represents a sugar chain, a glycosylated amino acid, or a glycosylated polypeptide, and R7 represents a hydrogen atom (H), substituted or unsubstituted C1-C5 alkyl, substituted or unsubstituted C5-C16 aryl, substituted or unsubstituted C5-C16 heteroaryl, a nucleic acid, or PEG, and
- the physiologically active substance has at least one carboxy group,
- (a) carrying out condensation reaction so as to form an ester bond or a thioester bond between the oxygen atom (O) or the sulfur atom (S) having a leaving group in the glycosylated linker and the carboxy group of the physiologically active substance.
- According to one embodiment of the method for producing a compound comprising a glycosylated linker moiety and a physiologically active substance moiety, or a salt thereof according to the present invention, the step of carrying out condensation reaction in the production method is carried out in a state where the glycosylated linker is bonded to a resin for solid-phase synthesis (but only in the case where the glycosylated linker has a glycosylated amino acid or a glycosylated polypeptide).
- According to one embodiment of the method for producing a compound comprising a glycosylated linker moiety and a physiologically active substance moiety, or a salt thereof according to the present invention, the production method further comprises, before the step (a), the step of (a') preparing the glycosylated linker represented by the following formula (A):
X-R1-Y-R2 (A)
wherein - X represents an oxygen atom (O) having a leaving group or a sulfur atom (S) having a leaving group;
- R1 is substituted or unsubstituted C1-C5 alkyl, substituted or unsubstituted C5-C16 aryl, substituted or unsubstituted C5-C16 heteroaryl, substituted or unsubstituted C2-C5 alkenyl, or substituted or unsubstituted C2-C5 alkynyl, or R1 represents -R3-R4-, -R4-R5-, or -R3-R4-R5-, wherein R3 and R5 each represent substituted or unsubstituted C1-C5 alkyl, substituted or unsubstituted C2-C5 alkenyl, or substituted or unsubstituted C2-C5 alkynyl, and R4 represents substituted or unsubstituted C5-C16 aryl, substituted or unsubstituted C5-C16 heteroaryl, or a sulfur atom (S);
- Y may be present or absent, and when Y is present, Y represents -CO- or -CONH- (provided that C is bonded to R1 and N is bonded to R2); and
- R2 is a sugar chain, a glycosylated amino acid, or a glycosylated polypeptide, or R2 represents -R6-R7, wherein R6 represents a sugar chain, a glycosylated amino acid, or a glycosylated polypeptide, and R7 represents a hydrogen atom (H), substituted or unsubstituted C1-C5 alkyl, substituted or unsubstituted C5-C16 aryl, substituted or unsubstituted C5-C16 heteroaryl, a nucleic acid, or PEG.
- According to one embodiment of the method for producing a compound comprising a glycosylated linker moiety and a physiologically active substance moiety, or a salt thereof according to the present invention, the step (a') and/or the step (a) in the production method is carried out on a resin.
- According to one embodiment of the method for producing a compound comprising a glycosylated linker moiety and a physiologically active substance moiety, or a salt thereof according to the present invention, in the production method,
the physiologically active substance has at least one carboxy group,
the method comprising the following steps: - (a) bonding a linker represented by the following formula (B) to a resin,
the linker being represented by the following formula (B):
X-R1-Y-R2 (B)
wherein- X represents an oxygen atom (O) having a leaving group or a sulfur atom (S) having a leaving group;
- R1 is substituted or unsubstituted C1-C5 alkyl, substituted or unsubstituted C5-C16 aryl, substituted or unsubstituted C5-C16 heteroaryl, substituted or unsubstituted C2-C5 alkenyl, or substituted or unsubstituted C2-C5 alkynyl, or R1 represents -R3-R4-, -R4-R5-, or -R3-R4-R5-, wherein R3 and R5 each represent substituted or unsubstituted C1-C5 alkyl, substituted or unsubstituted C2 alkenyl, or substituted or unsubstituted C2-C5 alkynyl, and R4 represents substituted or unsubstituted C5-C16 aryl, substituted or unsubstituted C5-C16 heteroaryl, or a sulfur atom (S);
- Y may be present or absent, and when Y is present, Y represents -CO- or -CONH- (provided that C is bonded to R1 and N is bonded to R2); and
- R2 is an amino acid or a polypeptide, or R2 represents -R6-R7 wherein R6 represents an amino acid or a polypeptide, and R7 represents a hydrogen atom (H), - NH2, substituted or unsubstituted C1-C5 alkyl, substituted or unsubstituted C5-C16 aryl, substituted or unsubstituted C5-C16 heteroaryl, a nucleic acid, or PEG, wherein
- in this step, the carboxy group of the amino acid or the polypeptide represented by R2 in the linker binds to the resin;
- (b) bonding the linker bonded to the resin to the physiologically active substance, wherein the linker binds to the physiologically active substance through an ester bond or a thioester bond formed with the carboxy group of the physiologically active substance by the elimination of the leaving group in the oxygen atom (O) or the sulfur atom (S); and
- (c) adding a sugar chain to a side chain of the amino acid or the polypeptide represented by R2 in the linker.
- In an alternative aspect, the present invention provides a compound or a salt thereof obtainable by the aforementioned method for producing a compound comprising a glycosylated linker moiety and a physiologically active substance moiety, or a salt thereof.
- One or any combination of two or more of the features of the present invention mentioned above is also included in the scope of the method for producing the compound of the present invention or the salt thereof, as a matter of course.
- The glycosylated linker according to the present invention has a sugar chain structural moiety having many hydroxy groups and high polarity and can therefore improve the water solubility of a physiologically active substance by binding to the physiologically active substance.
- Moreover, the glycosylated linker according to the present invention can release the physiologically active substance bonded to the glycosylated linker under particular conditions (e.g., in vivo) independent of light or enzymatic cleavage.
- The compound comprising a glycosylated linker moiety and a physiologically active substance moiety according to the present invention or the salt thereof has water solubility.
- The sugar chain in the glycosylated linker moiety according to the present invention is advantageous because of having biodegradable properties.
- The sugar chain in the glycosylated linker moiety according to the present invention is also advantageous to reduction in the antigenicity of a physiologically active substance.
-
- [
Figure 1 ] Each ofFigures 1A and 1B is a graph showing results of a hydrolysis test on a thioalkyl-type glycosylated linker-HER2(8-16) conjugate (compound 1) according to one embodiment of the present invention. This graph is the plot of the relative concentration of a starting material vs. incubation time. - [
Figure 2 ] Each ofFigures 2A and2B is a graph showing results of a hydrolysis test on a thioaryl-type glycosylated linker-HER2(8-16) conjugate (compound 2) according to one embodiment of the present invention. This graph is the plot of the relative concentration of a starting material vs. incubation time. - [
Figure 3] Figure 3 is a graph showing results of a hydrolysis test on a thioalkyl-type glycosylated linker-HER2(8-16) conjugate (compound 1) having a thioester bond, a thioaryl-type glycosylated linker-HER2(8-16) conjugate (compound 2) having a thioester bond, and a glycosylated linker-HER2(8-16) conjugate (compound 6) having an ester bond. This graph is the plot of the relative concentration of a starting material vs. incubation time. - [
Figure 4] Figure 4 is a graph showing results of a hydrolysis test on a glycosylated (Cys (disialo)-type) linker-chemerin 9 conjugate (compound 8). This graph is the plot of the relative concentration of a starting material vs. incubation time. - In the present specification, the "glycosylated linker" refers to a linker that has a sugar chain as a carrier which can improve the water solubility of a physiologically active substance having at least one carboxy group by binding to the physiologically active substance. A feature of the glycosylated linker bonded to the physiologically active substance is to be hydrolyzed at a desired rate under particular conditions, for example, in vivo. This hydrolysis allows the glycosylated linker to be eliminated from the physiologically active substance so that the physiologically active substance is released. The released physiologically active substance returns to its state before the addition of the glycosylated linker.
- According to one embodiment, the glycosylated linker of the present invention is represented by the following formula (A).
X-R1-Y-R2 (A)
- In the above formula (A), X represents an oxygen atom (O) having a leaving group or a sulfur atom (S) having a leaving group.
- In the present specification, the "oxygen atom (O) having a leaving group or sulfur atom (S) having a leaving group" refers to an atom that is present at the position X in the glycosylated linker represented by the formula (A): X-R1-Y-R2 and becomes capable of binding to the physiologically active substance by the elimination of the leaving group bonded to the atom. The bonding between the atom and the physiologically active substance is carried out via the carboxy group in the physiologically active substance.
- In this context, the leaving group is not limited as long as the leaving group is eliminated when the oxygen atom (O) having the leaving group or the sulfur atom (S) having the leaving group binds to the carboxy group of the physiologically active substance. Examples thereof include a hydrogen atom and monovalent cations of lithium, sodium, potassium, rubidium, cesium, francium, and silver.
- The glycosylated linker of the present invention binds to the physiologically active substance by forming an ester bond when X in the formula (A) is an oxygen atom (O) having a leaving group. Alternatively, the glycosylated linker of the present invention binds to the physiologically active substance by forming thioester when X in the formula (A) is a sulfur atom (S) having a leaving group.
- In the formula (A), R1 is substituted or unsubstituted C1-C5 alkyl, substituted or unsubstituted C5-C16 aryl, substituted or unsubstituted C5-C16 heteroaryl, substituted or unsubstituted C2-C5 alkenyl, or substituted or unsubstituted C2-C5 alkynyl, or R1 represents -R3-R4-, -R4-R5-, or -R3-R4-R5-. In this context, R3 and R5 each represent substituted or unsubstituted C1-C5 alkyl, substituted or unsubstituted C2-C5 alkenyl, or substituted or unsubstituted C2-C5 alkynyl. R4 represents substituted or unsubstituted C5-C16 aryl, substituted or unsubstituted C5-C16 heteroaryl, or a sulfur atom (S).
- In the present specification, the "substituted or unsubstituted C1-C5 alkyl," includes linear or branched alkyl. Examples of the "C1-C5 alkyl" can include, but are not limited to, methyl, ethyl, n-propyl, n-butyl, n-pentyl, isopropyl, isobutyl, sec-butyl, tert-butyl, isopentyl, neopentyl, and tert-pentyl. These "C1-C5 alkyl" groups can be each independently substituted by one or more "substituents". Examples of the "substituents" can include a C1-C4 alkoxy group (e.g., methoxy, ethoxy, propoxy, and butoxy), an amino group, a hydroxy group, a thiol group, a carboxy group, a nitro group, a mesyl group, a tosyl group, and a halogen atom (e.g., fluorine, chlorine, bromine, and iodine).
- In the present invention, examples of the "substituted or unsubstituted C5-C16 aryl" can include, but are not limited to, phenyl, biphenyl, naphthyl, anthranyl, phenanthryl, anthryl, o-tolyl, m-tolyl, p-tolyl, xylyl, ethylphenyl, and benzyl.
- The "substituted or unsubstituted C5-C16 aryl" is not limited to those listed above and includes "C5-C16 aryl" in which one or more hydrogen atoms are each independently replaced by "substituents". Examples of the "substituents" can include a C1-C4 alkyl group, a C1-C4 alkoxy group (e.g., methoxy, ethoxy, propoxy, and butoxy), an amino group, a hydroxy group, a thiol group, a carboxy group, a nitro group, a mesyl group, a tosyl group, a halogen atom (e.g., fluorine, chlorine, bromine, and iodine), a C1-C4 alkyl halide group (e.g., a methyl chloride group), a phenyl group, an o-tolyl group, a m-tolyl group, a p-tolyl group, a xylyl group, an ethylphenyl group, and a benzyl group.
- In the present invention, examples of the "substituted or unsubstituted C5-C16 heteroaryl," can include, but are not limited to, a ring in which a ring structure-forming carbon atom is replaced by a nitrogen atom or an oxygen atom, and can more specifically include indole, quinoline, and chromene.
- The "substituted or unsubstituted C5-C16 heteroaryl" is not limited to those listed above and incudes "C5-C16 heteroaryl" in which one or more hydrogen atoms bonded to ring structure-forming carbon atoms are each independently replaced by "substituents". Examples of the "substituents" can include an alkyl group, an alkoxy group (e.g., methoxy, ethoxy, propoxy, and butoxy), a hydroxy group, a carboxy group, a nitro group, a mesyl group, a halogen atom (e.g., fluorine, chlorine, bromine, and iodine), and an alkyl halide group (e.g., a methyl chloride group).
- In the present specification, the "substituted or unsubstituted C2-C5 alkenyl," includes linear or branched alkenyl. Examples of the "substituted or unsubstituted C2-C5 alkenyl" can include ethenyl, propenyl, and butenyl. The "substituted or unsubstituted C2-C5 alkenyl," is not limited to those listed above and also includes such "C2-C5 alkenyl" groups each independently substituted by one or more "substituents". Examples of the "substituents" can include a C1-C4 alkoxy group (e.g., methoxy, ethoxy, propoxy, and butoxy), an amino group, a hydroxy group, a thiol group, a carboxy group, a nitro group, a mesyl group, a tosyl group, and a halogen atom (e.g., fluorine, chlorine, bromine, and iodine).
- In the present specification, the "substituted or unsubstituted C2-C5 alkynyl" includes linear or branched alkynyl. Examples of the "substituted or unsubstituted C2-C5 alkynyl," can include ethynyl, propynyl, and butynyl. The "substituted or unsubstituted C2-C5 alkynyl" is not limited to those listed above and includes such "C2-C5 alkynyl" groups each independently substituted by one or more "substituents". Examples of the "substituents" can include a C1-C4 alkoxy group (e.g., methoxy, ethoxy, propoxy, and butoxy), an amino group, a hydroxy group, a thiol group, a carboxy group, a nitro group, a mesyl group, a tosyl group, and a halogen atom (e.g., fluorine, chlorine, bromine, and iodine).
- In the formula (A), Y may be present or absent in the formula (A). When Y is present in the formula (A), Y represents -CO- or -CONH- (provided that C is bonded to R1 in the formula (A) and N is bonded to R2 in the formula (A)).
- In the formula (A), R2 is a sugar chain, a glycosylated amino acid, or a glycosylated polypeptide, or R2 represents -R6-R7. In this context, R6 represents a sugar chain, a glycosylated amino acid, or a glycosylated polypeptide. R7 represents a hydrogen atom (H), -NH2, substituted or unsubstituted C1-C5 alkyl, substituted or unsubstituted C5-C16 aryl, substituted or unsubstituted C5-C16 heteroaryl, a nucleic acid, or PEG.
- In the present specification, the "sugar chain" is a compound composed of one or more unit sugars (monosaccharides and/or derivatives thereof) linked. When two or more unit sugars are linked, the unit sugars are bonded to each other by dehydration condensation through a glycoside bond. Examples of such a sugar chain include, but are not limited to, a wide range of sugar chains such as monosaccharides and polysaccharides (glucose, galactose, mannose, fucose, xylose, N-acetylglucosamine, N-acetylgalactosamine, sialic acid, and complexes and derivatives thereof) contained in vivo as well as degraded polysaccharides and sugar chains degraded or induced from complex biomolecules including glycoproteins, proteoglycans, glycosaminoglycans, and glycolipids. The sugar chain may be linear or may be branched.
- In the present specification, the "sugar chain" also includes derivatives of the sugar chain. Examples of the sugar chain derivatives include, but are not limited to, sugar chains constituted by sugars which are sugars having a carboxy group (e.g., aldonic acid which is carboxylic acid derived from oxidation at the C-1 position (e.g., D-gluconic acid oxidized from D-glucose) and uronic acid which is carboxylic acid derived from a terminal C atom (D-glucuronic acid oxidized from D-glucose)), sugars having an amino group or an amino group derivative (e.g., an acetylated amino group) (e.g., N-acetyl-D-glucosamine and N-acetyl-D-galactosamine), sugars having both an amino group and a carboxy group (e.g., N-acetylneuraminic acid (sialic acid) and N-acetylmuramic acid), deoxidized sugars (e.g., 2-deoxy-D-ribose), sulfated sugars containing a sulfuric acid group, and phosphorylated sugars containing a phosphoric acid group.
- In the present invention, the sugar chain is preferably a sugar chain that improves the water solubility of a physiologically active substance when added as a glycosylated linker to the physiologically active substance.
- In the present invention, the sugar chain is preferably a sugar chain that reduces the antigenicity of a physiologically active substance when added as a glycosylated linker to the physiologically active substance.
- Such a sugar chain in the glycosylated linker of the present invention is not particularly limited and may be a sugar chain that is present as a glycoconjugate (glycopeptide (or glycoprotein), proteoglycan, or glycolipid, etc.) in vivo or may be a sugar chain that is not present as a glycoconjugate in vivo.
- The sugar chain that is present as a glycoconjugate in vivo is preferred from the viewpoint of administering the glycosylated linker of the present invention to an organism. Examples of such a sugar chain include N-linked sugar chains and O-linked sugar chains, which are sugar chains bonded to peptides (or proteins) to form glycopeptides (or glycoproteins) in vivo. Preferably, a N-linked sugar chain is used. Examples of the N-linked sugar chain can include high-mannose-type, complex-type, and hybrid-type. A complex-type sugar chain is particularly preferred.
-
- According to a preferred embodiment of the present invention, the sugar chain in the glycosylated linker of the present invention is a complex-type sugar chain. A feature of the complex-type sugar chain is to comprise two or more types of monosaccharides and to have a basic structure shown below and a lactosamine structure represented by Galβ1-4GlcNAc.
- In the present invention, the complex-type sugar chain also includes a biantennary complex-type sugar chain. The biantennary complex-type sugar chain refers to a sugar chain in which one sugar chain composed of 0 to 3 sugars is bonded to each of two mannose residues at the ends of the basic structure. The biantennary complex-type sugar chain is preferably, for example, a disialo sugar chain shown below:
- The complex-type sugar chain of the present invention also includes, in addition to the biantennary complex-type sugar chain (complex-type sugar chain having two branches), triantennary complex-type sugar chains (complex-type sugar chains having three branches) and tetraantennary complex-type sugar chains (complex-type sugar chains having four branches). Examples of the triantennary and tetraantennary complex-type sugar chains can include trisialo sugar chains represented by the following structural formulas:
- The complex-type sugar chain of the present invention further includes fucose-attached complex-type sugar chains. Examples of the fucose-attached complex-type sugar chains can include fucose-containing complex-type sugar chains represented by the following structural formulas:
- In the present specification, the "biantennary complex-type sugar chain", the "disialo sugar chain", the "monosialo sugar chain", the "asialo sugar chain", the "di-GlcNAc sugar chain", the "dimannose sugar chain", the "triantennary complex-type sugar chain", the "tetraantennary complex-type sugar chain", and the "fucose-containing complex-type sugar chain" include, in addition to those shown in the above chemical formulas, sugar chains differing in binding pattern from the examples represented by the chemical formulas. Such a sugar chain is also preferably used as the sugar chain of the present invention. Examples of such a sugar chain include disialo sugar chains and monosialo sugar chains in which sialic acid and galactose are bonded through a (α2→3) bond.
-
- The high-mannose-type sugar chain used in the present invention is a sugar chain in which two or more mannose residues are further bonded to the basic structure of the complex-type sugar chain mentioned above. Since the high-mannose-type sugar chain is bulky, a peptide bonded to the high-mannose-type sugar chain may have higher stability in blood. The high-mannose-type sugar chain is preferably a sugar chain containing 5 to 9 mannose residues as found in mammals and may be a sugar chain containing a larger number of mannose residues as found in yeasts. Examples of the high-mannose-type sugar chain preferably used in the present invention can include
high-mannose-5 (M-5): - In the present invention, preferred examples of the sugar chain can also include sugar chains structurally identical (sugar chains identical in the types of constituent sugars and binding patterns thereof) to sugar chains that are bonded to proteins to form glycoproteins in human bodies (e.g., sugar chains described in "FEBS LETTERS Vol. 50, No. 3, Feb. 1975"), and sugar chains derived from these sugar chains by the deletion of one or more sugars from the non-reducing end. Specific examples thereof can include sugar chains listed below.
- According to one embodiment, the sugar chain of the present invention is preferably a sugar chain having a linear structure. Examples of such a sugar chain include oligohyaluronic acid. In the present specification, the oligohyaluronic acid refers to a sugar chain in which 2 to 32 sugars, preferably 2 to 16 sugars, more preferably 4 to 8 sugars, alternating between N-acetylglucosamine and glucuronic acid are bonded in a linear form.
- Particularly preferred examples of the oligohyaluronic acid used in the present invention include sugar chains of 2 units (4 sugars) or more and 8 units (16 sugars) or less when a unit consisting of N-acetylglucosamine and glucuronic acid is defined as 1 unit. A sugar chain of 2 units (4 sugars) to 4 units (8 sugars) is further preferred, and a sugar chain of 2 units (4 sugars) is most preferred.
-
- For the sugar chains specifically listed above, a hydroxy group and/or a carboxy group in each sugar residue constituting each sugar chain may be protected with a protective group. The protective group is, for example, a protective group generally known to those skilled in the art which is introduced for the purpose of protecting the hydroxy group and/or the carboxy group in the sugar residue through chemical reaction. More specific examples thereof can include, but are not limited to, an alkyl group (methyl group, ethyl group, etc.), a benzyl group, an acyl group (acetyl group, benzoyl group, pivaloyl group, etc.), a tertbutyldimethylsilyl group, a tert-butyldiphenylsilyl group, a phenacyl group, and an allyl group.
- In the present specification, the "glycosylated amino acid" is an amino acid bonded to a sugar chain. In the present specification, the "amino acid" is used in the broadest sense and includes natural amino acids, for example, serine (Ser), asparagine (Asn), valine (Val), leucine (Leu), isoleucine (Ile), alanine (Ala), tyrosine
- (Tyr), glycine (Gly), lysine (Lys), arginine (Arg), histidine (His), aspartic acid (Asp), glutamic acid (Glu), glutamine (Gln), threonine (Thr), cysteine (Cys), methionine (Met), phenylalanine (Phe), tryptophan (Trp), and proline (Pro) as well as nonnatural amino acids such as amino acid variants and derivatives. Considering this broad definition, those skilled in the art should naturally understand that examples of the amino acid used in the present specification include: L-amino acids; D-amino acids; chemically modified amino acids such as amino acid variants and amino acid derivatives; amino acids that do not serve as protein constituents in vivo, such as norleucine, β-alanine, and ornithine; and chemically synthesized compounds having the properties of amino acids generally known to those skilled in the art. Examples of the nonnatural amino acids include α-methylamino acids (α-methylalanine, etc.), D-amino acids (D-aspartic acid, D-glutamic acid, etc.), histidine-like amino acids (2-amino-histidine, β-hydroxy-histidine, homohistidine, α-fluoromethyl-histidine, α-methyl-histidine, etc.), amino acids having extra methylene in their side chains ("homo"amino acids), and amino acids in which a carboxylic acid functional group amino acid in a side chain is replaced by a sulfonic acid group (cysteic acid, etc.).
- In the present specification, the binding site between the sugar chain and the amino acid in the "glycosylated amino acid" is not particularly limited and is preferably the reducing end of the sugar chain to which the amino acid is bonded. The amino acid to be bonded to the sugar chain is not particularly limited by its type, and any of natural amino acids, nonnatural amino acids, and D-amino acids can also be used. The glycosylated amino acid is preferably glycosylated Asn as in a N-linked sugar chain, or glycosylated Ser or glycosylated Thr as in an O-linked sugar chain, from the viewpoint that the glycosylated amino acid is structurally identical or similar to an in vivo glycopeptide (glycoprotein).
- The sugar chain and the amino acid may be bonded to each other without the mediation of a linker or may be bonded to each other via a linker. When the sugar chain and the amino acid are bonded to each other via a linker, the amino acid in the glycosylated amino acid is preferably an amino acid having two or more carboxy groups in the molecule, such as aspartic acid or glutamic acid; an amino acid having two or more amino groups in the molecule, such as lysine, arginine, asparagine, histidine, or tryptophan; an amino acid having a hydroxy group in the molecule, such as serine, threonine, or tyrosine; an amino acid having a thiol group in the molecule, such as cysteine; or an amino acid having an amide group in the molecule, such as asparagine or glutamine, from the viewpoint of easy bonding to the linker. Particularly, the amino acid in the glycosylated amino acid is preferably aspartic acid, glutamic acid, lysine, arginine, serine, threonine, cysteine, asparagine, or glutamine, more preferably cysteine or asparagine, from the viewpoint of reactivity.
- When the sugar chain and the amino acid are bonded to each other via a linker, any linker used in the art can be widely used. Examples of the linker can include:
-NH-(CH2)a-(CO)-CH2-
wherein a represents an integer and is preferably an integer of 0 to 4, though there is no limitation unless it inhibits the linker functions of interest;
C1-10 polymethylene;
-CH2-R-
wherein R represents a group formed by the elimination of one hydrogen atom from a group selected from the group consisting of alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, a carbocyclic group, a substituted carbocyclic group, a heterocyclic group, and a substituted heterocyclic group; and
-(CO)-(CH2)a-(CO)-
wherein a represents an integer and is preferably an integer of 0 to 4, though there is no limitation unless it inhibits the linker functions of interest. - According to one embodiment, when the sugar chain and the amino acid are bonded without the mediation of a linker in the glycosylated amino acid according to the present invention, for example, a hydrogen atom on the side chain amino group of asparagine may be replaced by the reducing end of the sugar chain. In this case, a leaving group present in the reducing end of the sugar chain is not limited and may be, for example, chlorine, bromine, or fluorine.
- According to one embodiment, when the sugar chain and the amino acid are bonded via a linker in the glycosylated amino acid according to the present invention, for example, a hydrogen atom on the side chain thiol group of cysteine is bonded to the reducing end of the sugar chain via the linker (e.g., in the case of a linker -CH2-CONH-, the reducing end of the sugar chain is bonded to the nitrogen atom in the linker). In this case, a leaving group in the linker bonded to the reducing end of the sugar chain is not limited and may be, for example, chlorine, bromine, or fluorine.
- In the present specification, the "glycosylated polypeptide" is not particularly limited as long as the glycosylated polypeptide is a compound in which at least one sugar chain is added to a protein (or polypeptide or peptide). In the present specification, the glycosylated polypeptide may be used interchangeably with a "glycoprotein" or a "glycopeptide". The glycosylated polypeptide may be a polypeptide containing the glycosylated amino acid mentioned above. The binding manner between the sugar chain and the amino acid in the glycosylated polypeptide, and the types of amino acids constituting the polypeptide, etc., may be defined similarly to those in the glycosylated amino acid according to the present invention. The amino acid (residue) at which the polypeptide is bonded to the sugar chain is not limited to the N or C terminus of the polypeptide and may be any appropriate amino acid (residue) constituting the polypeptide. The amino acid residues in the glycosylated polypeptide according to the present invention may be preferably 2 to 100 amino acid residues, more preferably 2 to 10 amino acid residues. In the glycosylated polypeptide according to the present invention, the amino acids other than the amino acid at which the polypeptide is bonded to the sugar chain can be relatively arbitrarily selected. Those skilled in the art understand that according to one embodiment, the amino acid at which the polypeptide is bonded to the sugar chain is, for example, asparagine, cysteine, lysine, or glutamine, while the amino acids other than the amino acid at which the polypeptide is bonded to the sugar chain (e.g., an amino acid to be bonded to the (glycosylated) linker moiety) are not particularly limited.
- The amino acid constituting the glycosylated amino acid or the glycosylated polypeptide according to the present invention is preferably an amino acid present in vivo, from the viewpoint of administering the compound of the present invention or the salt thereof into an organism.
- According to one embodiment, the glycosylated linker of the present invention can be a thioalkyl-type glycosylated linker.
- In the present specification, the thioalkyl-type glycosylated linker refers to a glycosylated linker that is capable of binding to the physiologically active substance via a thioester bond and has an alkyl structure in its structure.
- In the present specification, the thioalkyl-type glycosylated linker also includes a glycosylated linker that is capable of binding to the physiologically active substance via a thioester bond and has an alkynyl or alkenyl structure in its structure.
- More specifically, the thioalkyl-type glycosylated linker is a glycosylated linker represented by the formula (A) wherein
X represents a sulfur atom (S) having a leaving group;
R1 is substituted or unsubstituted C1-C5 alkyl, substituted or unsubstituted C2-C5 alkenyl, or substituted or unsubstituted C2-C5 alkynyl, or R1 represents -R3-R4-, -R4-R5-, or -R3-R4-R5-, wherein R3 and R5 each represent substituted or unsubstituted C1-C5 alkyl, substituted or unsubstituted C2-C5 alkenyl, or substituted or unsubstituted C1-C5 alkynyl, and R4 represents substituted or unsubstituted C5-C16 aryl, substituted or unsubstituted C5-C16 heteroaryl, or a sulfur atom (S);
Y may be present or absent in the formula (A), and when Y is present in the formula (A), Y represents -CO-or -CONH- (provided that C is bonded to R1 in the formula (A) and N is bonded to R2 in the formula (A)); and
R2 is a sugar chain, a glycosylated amino acid, or a glycosylated polypeptide, or R2 represents -R6-R7, wherein R6 represents a sugar chain, a glycosylated amino acid, or a glycosylated polypeptide, and R7 represents a hydrogen atom (H), -NH2, substituted or unsubstituted C1-C5 alkyl, substituted or unsubstituted C5-C16 aryl, substituted or unsubstituted C5-C16 heteroaryl, a nucleic acid, or PEG. - According to one embodiment, the glycosylated linker of the present invention can be a thioaryl-type glycosylated linker.
- In the present specification, the thioaryl-types glycosylated linker refers to a glycosylated linker that is capable of binding to the physiologically active substance via a thioester bond and has an aryl structure in its structure.
- More specifically, the thioalkyl-type glycosylated linker is a glycosylated linker represented by the formula (A) wherein
X represents a sulfur atom (S) having a leaving group;
R1 represents substituted or unsubstituted C1-C5 aryl or substituted or unsubstituted C5-C16 heteroaryl;
Y may be present or absent in the formula (A), and when Y is present in the formula (A), Y represents -CO- or -CONH- (provided that C is bonded to R1 in the formula (A) and N is bonded to R2 in the formula (A)); and
R2 is a sugar chain, a glycosylated amino acid, or a glycosylated polypeptide, or R2 represents -R6-R7, wherein R6 represents a sugar chain, a glycosylated amino acid, or a glycosylated polypeptide, and R7 represents a hydrogen atom (H), -NH2, substituted or unsubstituted C1-C5 alkyl, substituted or unsubstituted C5-C16 aryl, substituted or unsubstituted C5-C16 heteroaryl, a nucleic acid, or PEG. - According to a preferred embodiment of the present invention, sugar chains in the compound comprising a glycosylated linker moiety and a physiologically active substance moiety according to the present invention or the salt thereof are preferably homogeneous. In the present specification, "sugar chains are homogeneous" means that the glycosylation site, the type of each sugar constituting the sugar chain, binding order, and binding pattern between sugars are identical among glycosylated linker moieties when sugar chains are compared among the glycosylated linker moieties. In the case of preparation intended to add a plurality of identical sugar chains into a glycosylated linker moiety, "sugar chains are homogeneous" also means that the type of each sugar constituting the sugar chain, binding order, and binding pattern between sugars are identical when the structures of the added plurality of sugar chains are compared within the glycosylated linker moiety. Specifically, "sugar chains are homogeneous" means that at least 90% or more, preferably 95% or more, more preferably 99% or more sugar chains are structurally uniform when sugar chains are compared among the glycosylated linker moieties or within the glycosylated linker moiety.
- The ratio of homogeneous sugar chains or the ratio of homogeneously glycosylated linkers can be measured by a method using, for example, HPLC, capillary electrophoresis, NMR, or mass spectrometry.
- The glycosylated amino acid or the glycosylated polypeptide in which amino acid sequence and/or sugar chains are substantially homogeneous, used in the present invention, can be produced by a glycosylation step in combination with a peptide production method generally known to those skilled in the art, such as solid-phase synthesis, liquid-phase synthesize, cell-based synthesis, separation and extraction of a natural product. For such a method for producing the glycosylated polypeptide, see, for example, International Publication Nos.
WO 2010/021126 andWO 2004/005330 . - For the method for producing the sugar chain for use in the glycosylation step, see, for example, International Publication Nos.
WO 03/008431 WO 2004/058984 ,WO 2004/008431 ,WO 2004/058824 ,WO 2004/070046 , andWO 2007/011055 . - According to one embodiment, the glycosylated polypeptide used in the present invention may include, but is not limited to, for example: glycosylated amino acids or glycosylated polypeptides in which a sugar chain unbound with an amino acid is bonded directly or via a linker to an amino acid or an amino acid on a polypeptide; glycosylated polypeptides derived from these glycosylated amino acids or glycosylated polypeptides as a result of elongating the already added sugar chain by the further addition of a sugar or a sugar chain to the added sugar chain; glycosylated polypeptides in which one or more (e.g., 2 to 30, preferably 2 to 10) amino acids are bonded to, for example, an amino group and/or a carboxy group, in a glycosylated amino acid and an amino acid or a polypeptide is further linked thereto; and glycosylated polypeptides in which a sugar chain bound with an amino acid is bonded to an amino acid on a polypeptide via a linker.
- Alternatively, the glycosylated amino acid or the glycosylated polypeptide having the desired sugar chain structure may be efficiently obtained by the transfer of various sugars (e.g., fucose) to the glycosylated amino acid or the glycosylated polypeptide according to the present invention using glycosyltransferase. For example, the glycosylated amino acid or the glycosylated polypeptide having the desired sugar chain structure containing fucose can be obtained by the transfer of fucose using glycosyltransferase (fucosyltransferase). Also, the glycosylated amino acid or the glycosylated polypeptide having the desired sugar chain structure with a distinctive binding pattern can be obtained depending on the glycosyltransferase used.
- Generally commercially available fucose or chemically synthesized fucose can be used as the fucose.
- Generally commercially available, naturally occurring, or genetically recombined fucosyltransferase can be used. The fucosyltransferase used can be appropriately selected according to the type of the fucose to be transferred. Specific examples thereof can include fucosyltransferase V (human, recombinant, plasma-derived, serum-derived, milk-derived, or liver-derived), which is an enzyme transferring fucose to N-acetylglucosamine at the non-reducing end of sugar chain asparagine. Alternatively, fucose may be transferred by shifting the equilibrium by pH adjustment or the like using fucose hydrolase.
- In the present specification, the "nucleic acid" refers to DNA or RNA in which nucleotides each composed of a base (adenine, guanine, thymine, cytosine, or uracil), a sugar residue, and phosphate are bonded through a phosphoester bond, and has 2 to 2000 nucleotide residues.
- In the present specification, the "PEG" is a polymer of ethylene glycol and can be represented by, for example, "(-CH2-CH2-O-)n" (wherein n represents an integer of 2 to 10000).
- According to one embodiment, the glycosylated linker of the present invention is preferably a glycosylated linker represented by the formula (A): X-R1-Y-R2, wherein
X represents an oxygen atom (O) having a leaving group or a sulfur atom (S) having a leaving group;
R1 is aryl such as benzyl or tolyl, or R1 represents -R3-R4-R5-, wherein R3 represents -CH2CH2-, R4 represents a sulfur atom (S), and R5 represents -CH2- (i.e., R1 is thioether represented by -CH2CH2SCH2-);
Y represents -CO-; and
R2 represents NH-sugar chain, glycosylated Asn, glycosylated Cys, or glycosylated Asn or glycosylated Cys with one or more (e.g., 2, 3, 4, or 5) amino acids added to the C terminus. - The glycosylated linker of the present invention can be produced by solid-phase synthesis, liquid-phase synthesis, or the like.
- In the case of producing the glycosylated linker represented by the formula (A): X-R1-Y-R2 by, for example, solid-phase synthesis, appropriate compounds are bonded onto a resin in the order of R2, Y (only in the case where Y is present), R1, and X on the resin. In this operation, R2, Y, R1, and X may be sequentially bonded onto the resin on a constituent basis, or a compound corresponding to two or more consecutive constituents may be bonded onto the resin. As an example of bonding a compound corresponding to two or more consecutive constituents onto the resin, for example, R2 having a leaving group is first bonded onto the resin. Next, one compound of X-R1-Y having a leaving group at the end of Y can be condensed with R2 on the resin so that the leaving groups of R2 and Y are eliminated to prepare the glycosylated linker represented by the formula (A): X-R1-Y-R2 on the resin. The compound corresponding to two or more consecutive constituents is not limited to X-R1-Y and also includes other combinations of two or more selected from the 4 constituents X, R1, Y, and R2.
- Hereinafter, a more specific production example by the solid-phase synthesis method will be shown. Specifically, the production method by the solid-phase synthesis method comprises the steps of:
- bonding a compound of R2 (sugar chain, glycosylated amino acid, glycosylated polypeptide, etc.) having a leaving group onto a resin;
- bonding Y having at least two leaving groups to R2 on the resin, wherein R2 and Y bind to each other by the elimination of the leaving groups of R2 and Y;
- bonding a compound corresponding to the R1 moiety having at least two leaving groups to Y-R2 on the resin, wherein Y and R1 bind to each other by the elimination of the leaving groups of Y and R1;
bonding a compound corresponding to the X moiety having at least two leaving groups to R1-Y-R2 on the resin, wherein R1 and X bind to each other by the elimination of the leaving groups of R1 and X; and
separating X-R1-Y-R2 synthesized on the resin from the resin. - In a production example in which, for example, one compound corresponding to the X-R1-Y moiety is used and bonded onto a resin in the method for producing the glycosylated linker by the solid-phase synthesis method, the glycosylated linker can be prepared by a production method comprising the steps of:
- bonding a compound of R2 (sugar chain, glycosylated amino acid, glycosylated polypeptide, etc.) having a leaving group onto a resin;
- bonding a compound of X-R1-Y having a leaving group at the end of Y to R2 on the resin so that Y is condensed with R2 by the elimination of the leaving groups of R2 and Y to form X-R1-Y-R2 on the resin; and
- separating X-R1-Y-R2 synthesized on the resin from the resin.
- In the method for producing the glycosylated linker by the solid-phase synthesis method, the glycosylated linker formed on the resin can be further linked to an amino acid (more specifically, the oxygen atom having a leaving group or the sulfur atom having a leaving group, represented by X can be further linked to an amino acid) without being cleaved from the resin. This eliminates the need of separating the glycosylated linker from the resin and can produce the compound comprising a physiologically active substance moiety and a glycosylated linker moiety on the resin.
- The resin for use in solid-phase synthesis can be any resin usually used in solid-phase synthesis. For example, chlorine-functionalized 2-chlorotrityl chloride resin (manufactured by Merck KGaA), amino group-functionalized Amino-PEGA resin (manufactured by Merck KGaA), NovaSyn TGT alcohol resin having a hydroxy group (manufactured by Merck KGaA), Wang resin (manufactured by Merck KGaA), HMPA-PEGA resin (manufactured by Merck KGaA), or Link Amide resin (manufactured by Merck KGaA) can be used. Alternatively, a linker may be located between the Amino-PEGA resin and the amino acid. Examples of such a linker can include 4-hydroxymethylphenoxyacetic acid (HMPA) and 4-(4-hydroxymethyl-3-methoxyphenoxy)-butylacetic acid (HMPB). For example, H-Cys(Trt)-Trityl NovaPEG resin (manufactured by Merck KGaA), which is a resin bonded in advance at a C-terminal amino acid, may be used.
- In the case of amidating the C terminus of an amino acid or a peptide present in the glycosylated linker produced by solid-phase synthesis, for example, amino group-functionalized Rink-Amide-PEGA resin (manufactured by Merck KGaA) can be used. The C-terminal amino acid of the amino acid or the peptide in the glycosylated linker can be amidated by the cleavage between this resin and the peptide with an acid.
- The 2-chlorotrityl chloride resin is preferred because the racemization of terminal Cys can be prevented when a peptide chain is elongated in solid-phase synthesis.
- When the step of bonding a compound corresponding to the R2 moiety (sugar chain, glycosylated amino acid, glycosylated polypeptide, etc.) onto the resin involves bonding a glycosylated amino acid onto the resin, a glycosylated amino acid with an amino acid protected with a lipid-soluble protective group is bonded thereto. In the case of bonding a glycopolypeptide onto the resin, desired amino acids and glycosylated amino acids can be sequentially bonded onto the resin to synthesize the glycosylated polypeptide on the resin.
- Examples of the lipid-soluble protective group can include carbonate or amide protective groups such as a 9-fluorenylmethoxycarbonyl (Fmoc) group, a t-butyloxycarbonyl (Boc) group, a benzyl group, an allyl group, an allyloxycarbonyl group, and an acetyl group. In the case of introducing the lipid-soluble protective group to the amino acid, for example, an Fmoc group, 9-fluorenylmethyl-N-succinimidyl carbonate and sodium bicarbonate can be added and reacted to introduce the Fmoc group. The reaction is preferably carried out at 0 to 50°C, preferably at room temperature, for approximately 1 to 5 hours.
- A commercially available product also can be used as the amino acid protected with the limpid-soluble protective group. Examples thereof can include Fmoc-Ser-OH, Fmoc-Asn-OH, Fmoc-Val-OH, Fmoc-Leu-OH, Fmoc-Ile-OH, Fmoc-Ala-OH, Fmoc-Tyr-OH, Fmoc-Gly-OH, Fmoc-Lys-OH, Fmoc-Arg-OH, Fmoc-His-OH, Fmoc-Asp-OH, Fmoc-Glu-OH, Fmoc-Gln-OH, Fmoc-Thr-OH, Fmoc-Cys-OH, Fmoc-Met-OH, Fmoc-Phe-OH, Fmoc-Trp-OH, Fmoc-Pro-OH, Boc-Ser-OH, Boc-Asn-OH, Boc-Val-OH, Boc-Leu-OH, Boc-Ile-OH, Boc-Ala-OH, Boc-Tyr-OH, Boc-Gly-OH, Boc-Lys-OH, Boc-Arg-OH, Boc-His-OH, Boc-Asp-OH, Boc-Glu-OH, Boc-Gln-OH, Boc-Thr-OH, Boc-Cys-OH, Boc-Met-OH, Boc-Phe-OH, Boc-Trp-OH, and Boc-Pro-OH.
- Examples of the amino acid protected with the lipid-soluble protective group in which the protective group is introduced in the side chain can include Fmoc-Arg(Pbf)-OH, Fmoc-Asn(Trt)-OH, Fmoc-Asp(OtBu)-OH, Fmoc-Cys(Acm)-OH, Fmoc-Cys(StBu)-OH, Fmoc-Cys(tBu)-OH, Fmoc-Cys(Trt)-OH, Fmoc-Glu (OtBu)-OH, Fmoc-Gln(Trt)-OH, Fmoc-His(Trt)-OH, Fmoc-Lys(Boc)-OH, Fmoc-Ser(tBu)-OH, Fmoc-Thr(tBu)-OH, Fmoc-Trp(Boc)-OH, Fmoc-Tyr(tBu)-OH, Boc-Arg(di-Z)-OH, Fmoc-Asp(OBzl)-OH, Boc-Cys(Bzl)-OH, Boc-Glu(OBzl)-OH, Boc-His(Dnp)-OH, Boc-Lys(2-Cl-Z)-OH, Boc-Ser(Bzl)-OH, Boc-Thr(Bzl)-OH, Boc-Trp(For)-OH, and Boc-Tyr(Bzl)-OH.
- Examples of the glycosylated amino acid with an amino acid protected with a lipid-soluble protective group can include Fmoc-glycosylated Asn and Boc-glycosylated Asn.
- Amino acids glycosylated by the sugar chains mentioned above having identical sugar chain structures are used as these glycosylated amino acids. Such sugar chains can be obtained by any method known in the art. For example, the chemical synthesis of sugar chains (see, e.g., J. Seifert et al. Angew Chem Int. Ed. 2000, 39, pp. 531-534), separation from a natural or artificial sugar chain source, or a commercially available product can be used as a specific approach, though there is no limitation. The glycosylated amino acids having identical structures in the approach are not limited, and, for example, the separation of sugar chains having identical structures from a natural or artificial sugar chain source can be carried out by a method described in, for example,
WO 2004/058789 . Specifically, a mixture containing sugar chain asparagine (sialylglycopeptide - (SGP)) is isolated from a natural sugar chain source such as a chicken egg by a method described in, for example, Seko et al., Biochim Biophys Acta. 1997; 1335 (1-2): 23-32. A lipid-soluble protective group (e.g., Fmoc) is introduced into the sugar chain asparagine to obtain a sugar chain asparagine derivative mixture. This mixture can be subjected to chromatography so that sugar chains having various structures contained in the mixture are separated according to their structures. Alternatively, sugar chain asparagine having a particular structure with or without various protective groups is available from, for example, GlyTech, Inc.
- The reaction for bonding the amino acid or the glycosylated amino acid to the resin is preferably carried out, for example, by placing a resin in a solid-phase column, washing this resin with a solvent, and then adding an amino acid solution thereto. Examples of the solvent for washing can include dimethylformamide (DMF), 2-propanol, and dichloromethane. Examples of the solvent for dissolving the amino acid can include dimethyl sulfoxide (DMSO), DMF, and dichloromethane. The binding reaction between the resin and the amino acid or the glycosylated amino acid can be carried out at 0 to 50°C, preferably at room temperature, for approximately 10 minutes to 30 hours, preferably approximately 15 minutes to 24 hours.
- In this reaction, a condensing agent can be used, such as dicyclohexylcarbodiimide (DCC), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (WSC/HCl), diphenylphosphorylazide (DPPA), carbonyldiimidazole (CDI), diethyl cyanophosphonate (DEPC), 1,3-diisopropylcarbodiimide (DIC), benzotriazol-1-yloxy-trispyrrolidinophosphonium hexafluorophosphate (PyBOP), 3-diethoxyphosphoryloxy-1,2,3-benzotriazin-4(3H)-one (DEPBT), 1-hydroxybenzotriazole (HOBt), hydroxysuccinimide (HOSu), dimethylaminopyridine (DMAP), 1-hydroxy-7-azabenzotriazole (HOAt), 3-hydroxy-4-oxo-3,4-dihydro-5-azabenzo-1,2,3-triazine (HODhbt), hydroxyphthalimide (HOPht), pentafluorophenol (Pfp-OH), 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU), O-(6-chloro-1H-benzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate (HCTU), O-(7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphonate (HATU), or O-benzotriazol-1-yl-1,1,3,3-tetramethyluronium tetrafluoroborate (TBTU). The ratio between the amino acid or the glycosylated amino acid and the dehydration condensation agent used is usually 1 to 10 parts by weight, preferably 2 to 5 parts by weight, of the dehydration condensation agent with respect to 1 part by weight of the amino acid or the glycosylated amino acid.
- When a sugar chain having sialic acid at the nonreducing end is used, the sialic acid may be dissociated by acid treatment in a cleavage step from the resin. Accordingly, for introducing the sugar chain having sialic acid to the linker moiety prior to the cleavage step using an acid, it is preferred to use a sugar chain in which the carboxy group of the sialic acid on the sugar chain to be introduced is protected with a protective group. Examples of the protective group for the carboxyl group of the sialic acid include an aryl group including a benzyl (Bn) group or the like, an alkyl group including an ethyl group (Et) and a methyl group (Me) or the like, a diphenylmethyl group, a phenacyl group, an alkoxy group, and a phenacyl group in which a hydrogen atom bonded to ring structure-forming carbon is substituted by a nitro group or the like. More specifically, a protective group that protects the carboxy group of the sialic acid as shown in, for example, -COOBn, -COOEt, -COOMe, -COOCH(Ph)2, -COOCH2COPh, - COOCH2PhOMe, -COOCH2Ph(OMe)2, -COOCH2PhNO2, or - COOCH2Ph(NO2)2 is preferred. Such protection of the carboxy group of the sialic acid with a benzyl group or the like can prevent the elimination of the acid-labile sialic acid.
- The protection reaction of the carboxy group of the sialic acid on the sugar chain can be carried out by a method well known to those skilled in the art. The protective group in the carboxy group of the sialic acid protected with, for example, a benzyl group, a diphenylmethyl group, or a phenacyl group can also be deprotected by a method well known to those skilled in the art. For example, the deprotection reaction can be carried out by hydrolysis under basic conditions, though there is no limitation. The deprotection reaction is preferably carried out at usually 0 to 50°C, preferably 0 to 40°C, more preferably 0 to 30°C. Usually, the reaction time is preferably approximately 5 minutes to 5 hours. After the completion of the reaction, the reaction product is preferably neutralized with a weak acid such as phosphoric acid or acetic acid and then appropriately purified by a method known in the art (e.g., high-performance liquid column chromatography (HPLC)).
- When R2 is a nucleic acid or PEG, the corresponding compound can also be appropriately bonded to the resin by a method well known to those skilled in the art.
- When R2 is a sugar chain, a non-glycosylated linker structure is synthesized on a resin, and a sugar chain can be added to the end of the linker after cleavage and isolation from the resin to produce the glycosylated linker. The linker to be glycosylated is designed so as to have, for example, a thiol group at the end. As a result, the thiol group present at the end of the linker after the isolation from the resin can be bonded to a haloacetylated complex-type sugar chain derivative (or a haloacetamidated complex-type sugar chain derivative) to introduce the sugar chain to the end of the linker.
- Also, when R2 is a nucleic acid or PEG, a non-nucleic acid- or non-PEG-added linker structure is synthesized on a resin, and a nucleic acid or PEG can be added to the end of the linker after cleavage and isolation from the resin to produce the nucleic acid- or PEG-added linker. The linker to which a nucleic acid or PEG is to be added is designed so as to have, for example, a thiol group at the end. As a result, the thiol group present at the end of the linker after the isolation from the resin can be bonded to a nucleic acid or PEG in a haloacetylated form (or a haloacetamidated form) or the like to introduce the nucleic acid or PEG.
- Even when R2 is a glycosylated amino acid or a glycosylated polypeptide, only a non-glycosylated linker structure may be synthesized beforehand on a resin, and a sugar chain can then be bonded to the R2 moiety. The reaction for bonding the sugar chain to R2 may be carried out on the resin subsequently to the solid-phase synthesis or may be carried out after separation from the resin. When the sugar chain is bonded thereto on the resin subsequently to the solid-phase synthesis, the glycosylation step may be carried out after synthesis of the physiologically active substance moiety or may be carried out before synthesis of the physiologically active substance moiety.
- In order to add a sugar chain to the synthesized compound having a linker or linker moiety and a physiologically active substance moiety, a haloacetylated complex-type sugar chain derivative (or a haloacetamidated complex-type sugar chain derivative) can be reacted with the linker (containing unprotected Cys) or the compound (containing unprotected Cys) having a linker moiety and a physiologically active substance moiety, as mentioned above, so that the sugar chain is reacted with the thiol group of the unprotected Cys for bonding to the peptide. This reaction is preferably carried out at usually 0 to 80°C, preferably 10 to 60°C, more preferably 15 to 35°C, in a phosphate buffer solution, a tris-HCl buffer solution, a citrate buffer solution, acetonitrile, DMSO, or a mixed solution thereof. The reaction time is usually approximately 10 minutes to 24 hours, preferably, usually approximately 30 minutes to 5 hours. After the completion of the reaction, preferably, the reaction product is appropriately purified by a method known in the art (e.g., HPLC).
- The haloacetylated complex-type sugar chain derivative (or the haloacetamidated complex-type sugar chain derivative) is a compound in which a hydroxy group bonded to carbon at the
position 1 of the reducing end of, for example, a complex-type asparagine-linked sugar chain is substituted by -NH-(CH2)a-(CO)-CH2X (wherein X represents a halogen atom, and a represents an integer and is preferably an integer of 0 to 4, though there is no limitation unless it inhibits the linker functions of interest). - As a more specific example, the reaction between the haloacetylated complex-type sugar chain derivative and the Cys-containing peptide can be carried out at room temperature in a phosphate buffer solution. After the completion of the reaction, a glycosylated polypeptide substituted by glycosylated Cys can be obtained by HPLC purification.
- Alternatively, the reaction may be carried out in a mixed solution of an organic solvent such as DMSO, DMF, methanol, or acetonitrile with the buffer solution mentioned above. In this respect, the organic solvent can be added at a ratio ranging from 0 to 99% (v/v) to the buffer solution. For an unprotected Cys-containing peptide low soluble in the buffer solution, the addition of such an organic solvent is preferred because the solubility in the reaction solution can be improved.
- Also, the reaction may be carried out in an organic solvent such as DMSO, DMF, methanol, or acetonitrile, or a mixed solution thereof. In this respect, the reaction is preferably carried out in the presence of a base. Examples of the base can include DIPEA, triethylamine, pyridine, and 2,4,6-collidine.
- Furthermore, the reaction may be carried out in a mixed solution of a buffer solution supplemented with guanidine hydrochloride or urea. The guanidine hydrochloride or the urea can be added at a final concentration of 1 M to 8 M to the buffer solution. The addition of this guanidine hydrochloride or urea is also preferred because the solubility of the peptide low soluble in the buffer solution can be improved.
- The reaction between the nucleic acid or PEG in a haloacetylated form (or a haloacetamidated form) or the like and the Cys-containing peptide can also be appropriately carried out by a method generally known to those skilled in the art.
- For the step of bonding a compound corresponding to the Y moiety to R2 on the resin, the step of bonding a compound corresponding to the R1 moiety to Y-R2 on the resin, and the step of bonding a compound corresponding to the X moiety to R1-Y-R2 on the resin, those skilled in the art can appropriately design and select the compound corresponding to each constituent and condense the compound with R2 on the resin.
- For bonding a compound corresponding to two or more consecutive constituents onto the resin, those skilled in the art can also appropriately design and select the compound and reaction conditions.
- A moiety corresponding to X (an oxygen atom having a leaving group or a sulfur atom having a leaving group) in the glycosylated linker may require a protective group for synthesis. Examples of the protective group for the oxygen atom can include a trityl group, a methoxytrityl group, a t-butyl group, and a benzyl group. Examples of the protective group for the sulfur atom can include a trityl group, a methoxytrityl group, a t-butyl group, a t-butylthio group, and an Acm group. The protective group can be introduced thereto by a well known conventional method.
- The step of separating the glycosylated linker (represented by the formula (A): X-R1-Y-R2) synthesized on the resin from the resin is preferably carried out by treatment with an acid. Examples of the acid can include a mixed solution of trifluoroacetic acid (TFA), triisopropylsilane, ethanedithiol, and water (90:5:2.5:2.5), a mixed solution of acetic acid and trifluoroethanol (50:50), and HCl.
- When a compound in which a glycosylated linker and a physiologically active substance are bonded to each other is synthesized on a resin, the step of separating the compound from the resin is also preferably carried out by treatment with an acid. The acid used and the reaction conditions can be set to the same as the conditions for separating the glycosylated linker from the resin.
- The glycosylated linker thus produced binds, at the oxygen atom having a leaving group or the sulfur atom having a leaving group, to a physiologically active substance. The glycosylated linker can enhance the water solubility of a physiologically active substance by binding to the physiologically active substance as described above. In addition, the glycosylated linker can preferably reduce the antigenicity of the physiologically active substance.
- The glycosylated linker bonded to the physiologically active substance can release the physiologically active substance within a given time under particular temperature and pH conditions depending on its structure. This released physiologically active substance maintains its original functions. The physiologically active substance released from the glycosylated linker exerts its original functions, for example, in vivo.
- When the bonding between the glycosylated linker moiety and the physiologically active substance moiety is a thioester bond rather than an ester bond, the hydrolysis rate can be accelerated. Also, a glycosylated linker having a thioaryl structure among the thioester bonds is hydrolyzed more rapidly than a glycosylated linker having a thioalkyl structure.
- Those skilled in the art can design a glycosylated linker having a desired release time of the physiologically active substance by appropriately changing the structure of the glycosylated linker moiety.
- In the present invention, the physiologically active substance can bind to the glycosylated linker moiety as a result of partial alteration (modification) of the structure of the physiologically active substance. However, once the glycosylated linker moiety is cleaved, the physiologically active substance is released. Preferably, the released physiologically active substance is structurally the same as the compound before the bonding to the glycosylated linker moiety (before the modification). In the present specification, the physiologically active substance unbound with the glycosylated linker is referred to as an "unmodified physiologically active substance". Preferably, the unmodified physiologically active substance has the original pharmacokinetic, immunogenic, toxicological, or pharmacological properties of the physiologically active substance itself. The properties may be altered or modified, for example. Preferably, the "compound comprising a glycosylated linker moiety and a physiologically active substance moiety, or the salt thereof" according to the present invention releases the unmodified physiologically active substance through the cleavage of the glycosylated linker moiety under predetermined conditions.
- Preferably, the glycosylated linker of the present invention has no adverse effect on the pharmacokinetic, immunogenic, toxicological, or pharmacological properties, etc., of its binding partner physiologically active substance.
- In the present specification, the "physiologically active substance" is not limited and means a substance that has a certain effect or influence either directly or indirectly on the physiological activity of an organism. The physiologically active substance may be intended to be used in vitro and in vivo. The physiologically active substance may exert no function in itself in vivo. In a certain embodiment, the physiologically active substance may be used interchangeably with a drug. The physiologically active substance may include substances useful as vaccines or medicines as well as substances that have no direct effect or influence on the physiological activity of an organism, for example, diagnostic agents. Also, the physiologically active substance may include naturally occurring substances as well as partial deletion, modification, or substitution products (also referred to as derivatives) thereof. The physiologically active substance may further include artificially synthesized substances (e.g., substances produced by a biological approach such as recombinant DNA technology or by a chemical synthetic approach such as a solid-phase peptide synthesis method) and fusion products of a portion of a naturally occurring substance and a portion of an artificially synthesized substance. Thus, the physiologically active substance according to the present invention also includes substances fused with, for example, a reporter protein such as GFP (green fluorescent protein) or a fluorescent dye such as fluorescein.
- The physiologically active substance according to the present invention has at least one carboxy group. The physiologically active substance according to the present invention binds at the at least one carboxy group carried by the physiologically active substance to the glycosylated linker. The physiologically active substance according to the present invention is preferably a low-molecular physiologically active substance or a biopolymer having at least one carboxy group.
- In the present specification, the "biopolymer" may mean a macromolecular organic compound among the physiologically active substances. On the other hand, the "low-molecular physiologically active substance" may mean a low-molecular organic compound among the physiologically active substances. The biopolymer may be, for example, a polymer compound such as a protein, a nucleic acid, or a polysaccharide, or a portion thereof, or may be artificially synthesized. The low-molecular physiologically active substance may be, for example, a substance that can interact with the biopolymer in vivo, or may be artificially synthesized. In the present specification, however, the biopolymer and the low-molecular physiologically active substance may be the same as each other in some cases.
- According to one embodiment, preferably, the biopolymer according to the present invention is a protein, a polypeptide, a polynucleotide, or a peptide nucleic acid having at least one carboxy group, or contains the "protein, polypeptide, polynucleotide, or peptide nucleic acid" in a portion of its structure. In the present specification, the portion derived from the protein or the polypeptide is also referred to as a "peptide moiety".
- In the present specification, the "protein" is not particularly limited as long as the protein is composed of a plurality of amino acids joined through amide bonds. The protein includes known proteins, novel proteins, or their variants. In the present specification, the "variant" is a naturally or artificially partially altered compound of the protein. Examples of such alteration include alkylation, acylation (e.g., acetylation), amidation (e.g., C-terminal amidation of the protein), carboxylation, esterification, disulfide bond formation, glycosylation, lipidation, phosphorylation, hydroxylation, dehydration condensation, or labeling component bonding of one or more amino acid residues in the protein. Alternatively, examples of the variant include partial deletion, substitution, or fusion products of the structures of known proteins or novel proteins. When the biopolymer as the physiologically active substance is a protein, the protein may be synthesized by use of, but not limited to, a method generally known to those skilled in the art, for example, solid-phase synthesis, liquid-phase synthesis, cell-based synthesis, or separation and extraction of a naturally occurring protein.
- In the present specification, the "polypeptide" and the "peptide" are used interchangeably with the protein, as a rule. However, the polypeptide and the peptide may be used to represent a portion of the structure of the protein or to represent a relatively short amino acid chain without assuming a higher order structure (a fragment of the protein). The polypeptide or the peptide according to the present invention may also include, for example, dipeptide composed of 2 amino acids joined, tripeptide composed of 3 amino acids joined, tetrapeptide composed of 4 amino acids joined, and oligopeptide typically composed of 10 or less amino acids joined.
- In the present specification, the "polynucleotide" includes, but is not limited to: single- or double-stranded DNA or RNA having 2 to 2000 nucleotide residues; single- or double-stranded siRNA, miRNA, or nucleic acid (DNA or RNA) aptamers; and chemically modified compounds thereof. Examples of such modification include, but are not limited to, modification with other chemical groups that further impart electric charge, polarizability, hydrogen bond, electrostatic interaction, or fluxionality to the whole or a portion of the polynucleotide. The polynucleotide may be an oligonucleotide having 20 base pairs or a smaller size.
- In the present specification, the "peptide nucleic acid" is not limited and means a modified nucleic acid having a N-(2-aminoethyl)glycine backbone converted from the sugar phosphate backbone of a nucleic acid (DNA or RNA). The peptide nucleic acid may be further modified by a method generally known to those skilled in the art.
- According to one embodiment, the biopolymer according to the present invention includes, but is not limited to, for example, adrenocorticotropic hormone (ACTH), oxytocin, adenosine deaminase, agalsidase, α1 antitrypsin, α1 protease inhibitor, alteplase, amylin, Symlin, anistreplase, ancrod serine protease, antithrombin III, antitrypsin, aprotinin, asparaginase, atosiban, biphalin, bivalirudin, bone morphogenetic protein, pancreatic trypsin inhibitor, cadherin fragment, calcitonin (e.g., salmon-derived), collagenase, complement C1 esterase inhibitor, conotoxin, cytokine receptor fragment, DNase, dynorphin A, endorphin, enfuvirtide, enkephalin, erythropoietin, exendin (exendin-3 or exendin-4, etc.), factor VII, factor VIIa, factor VIII, factor VIIIa, factor IX, fibrinolysin, fibroblast growth factor (FGF), growth hormone-releasing peptide 2 (GHRP-2), follicle-stimulating hormone, gramicidin, ghrelin, desacyl ghrelin, granulocyte colony-stimulating factor (G-CSF), galactosidase, glucagon, glucagon-like peptide (exenatide, GLP-1, GLP-2, etc.), glucocerebrosidase, granulocyte macrophage colony-stimulating factor (GM-CSF), heat shock protein (HSP), phospholipase-activating protein (PLAP), chorionic gonadotropin, hemoglobin, hirudin, human serine protease inhibitor, hyaluronidase, iduronidase, immunoglobulin (IgG Fc region, etc.), interleukin (1α, 1β, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, or 21, etc.), IL-1 receptor antagonist (IL-1ra), insulin, insulin-like growth factor, insulin-like growth factor-binding protein (IGFBP), interferon (α (α2a, αx2b, α2c, etc.), β (β1a and β1b), γ (γ1a and γ1b), λ, ω, ε, κ, etc.), intracellular adhesion molecule, keratinocyte growth factor (KGF), P-selectin glycoprotein ligand (PSGL), transforming growth factor, lactase, leptin, leuprolide, luteinizing hormone, natriuretic peptide (ANP, BNP, or CNP, or fragments thereof), neuropeptide Y, pancrelipase, pancreatic polypeptide, papain, parathyroid hormone (parathormone, etc.), platelet-derived growth factor (PDGF), pepsin, peptide YY, platelet-activating factor acetylhydrolase (PAF-AH), prolactin, protein A, protein C, thymosin α1, octreotide, selection, sermorelin, soluble tumor necrosis factor receptor, superoxide dismutase (SOD), somatropin (growth hormone), somatoprim, somatostatin, streptokinase, sucrase, terlipressin, tetanus toxin C fragment, tilactase, thrombin, thymosin, thyroid-stimulating hormone, thyrotropin, tumor necrosis factor (TNF), TNF receptor, tissue plasminogen activator (tPA), thyroid hormone (calcitonin, etc.), urodilatin, urate oxidase, urokinase, hapten, vaccines containing antigens or the like (cancer vaccines, HIV antigens, hepatitis A vaccines, hepatitis B vaccines (HBs antigens, etc.), influenza vaccines, Lyme disease vaccines, etc.), vascular endothelial growth factor (VEGF), chemerin), HER2 protein (human epithelial growth factor receptor), epithelial growth factor (EGF), vasoactive intestinal peptide, vasopressin, ziconotide, lectin, choline esterase, amylase, and pepsin, and variants thereof, and fragments thereof.
- According to one embodiment, examples of the low-molecular physiologically active substance according to the present invention include central nervous system stimulants, anti-infective agents, anti-allergic agents, immune-regulating agents, anti-obesity agents, anticoagulants, antidiabetic agents, anticancer agents, antineoplastic agents, antimicrobial agents, antimycotic agents, analgesics, contraceptives, anti-inflamnatory agents, steroids, vasodilators, vasoconstrictors, and cardiovascular agents having at least one carboxy group.
- According to one embodiment, the low-molecular physiologically active substance according to the present invention includes, but is not limited to, for example, acarbose, alaproclate, alendronate, amantadine, amikacin, amineptine, aminoglutethimide, amisulpride, amlodipine, amotosalen, amoxapine, amoxicillin, amphetamine, amphotericin B, ampicillin, amprenavir, amrinone, anileridine, apraclonidine, apramycin, articaine, atenolol, atomoxetine, avizafone, baclofen, benazepril, benserazide, benzocaine, betaxolol, bleomycin, bromfenac, brofaromine, carvedilol, cathine, cathinone, carbutamide, cephalexin, clinafloxacin, ciprofloxacin, deferoxamine, delavirdine, desipramine, daunorubicin, dexmethylphenidate, dexmethylphenidate, diaphenylsulfone, dizocilpine, dopamine, dobutamine, dorzolamide, doxorubicin, duloxetine, eflornithine, enalapril, epinephrine, epirubicin, ergoline, ertapenem, esmolol, enoxacin, ethambutol, fenfluramine, fenoldopam, fenoterol, fingolimod, flecainide, fluvoxamine, fosamprenavir, frovatriptan, furosemide, fluoxetine, gabapentin, gatifloxacin, gemifloxacin, gentamycin, grepafloxacin, hexylcaine, hydralazine, hydrochlorothiazide, icofungipen, idarubicin, imiquimod, isoproterenol, isradipine, kanamycin A, ketamine, labetalol, lamivudine, levobunolol, levodopa, levothyroxine, lisinopril, lomefloxacin, loracarbef, maprotiline, mefloquine, melphalan, memantine, meropenem, mesalazine, mescaline, methyldopa, methylenedioxymethamphetamine, metoprolol, milnacipran, mitoxantrone, moxifloxacin, norepinephrine, norfloxacin, nortriptyline, neomycin B, nystatin, oseltamivir, pamidronic acid, paroxetine, pazufloxacin, pemetrexed, perindopril, phenmetrazine, phenelzine, pregabalin, procaine, pseudoephedrine, protriptyline, reboxetine, ritodrine, sabarubicin, salbutamol, serotonin, sertraline, sitagliptin, sotalol, spectinomycin, sulfadiazine, sulfamerazine, sertraline, spectinomycin, sulfalene, sulfamethoxazole, tacrine, tamsulosin, terbutaline, timolol, tirofiban, tobramycin, tocainide, tosufloxacin, trandolapril, tranexamic acid, tranylcypromine, trimetrexate, trovafloxacin, valaciclovir, valganciclovir, vancomycin, viomycin, viloxazine, zalcitabine, penicillin, cephalosporin, streptomycin, destomycin, kasugamycin, tylosin, erythromycin, oleandomycin, spiramycin, lincomycin, colistin, bacitracin, salinomycin, monensin, lasalocid, tetracycline, chloramphenicol, virginiamycin, sulfadimethoxine, oxolinic acid, piromidic acid, difurazone, zearalenone, deoxynivalenol, patulin, fumonisin, ochratoxin, tetrodotoxin, okadaic acid, saxitoxin, and gonyautoxin.
- The compound of the present invention in which a glycosylated linker and a physiologically active substance are bonded to each other can be produced by bonding the physiologically active substance to the glycosylated linker synthesized and isolated by the method mentioned above.
- The bonding between the glycosylated linker and the physiologically active substance is achieved via an ester bond or a thioester bond through the condensation reaction of the oxygen atom (O) having a leaving group or the sulfur atom (S) having a leaving group in the glycosylated linker with at least one carboxy group of the physiologically active substance.
- The conditions for this condensation reaction can be appropriately set by those skilled in the art. For example, a condensing agent such as PyBOP, DMAP, or HCTU can be used in the condensation reaction. For example, a solvent such as DMF, DMSO, or dichloromethane can also be used in the condensation reaction. The condensation reaction can be carried out, for example, by dissolving a peptide with protected amino acid side chains and a glycosylated linker having a thiol group in DMF and adding PyBOP and DIPEA to the solution. When the physiologically active substance is a peptide, this reaction is preferably carried out at a low temperature (-15°C to -30°C) because the isomerization of the C-terminal amino acid of the peptide can be suppressed.
- When the physiologically active substance is a peptide, each side chain of the peptide is preferably protected with a protective group. The protective group with which the side chain of the peptide is protected can be deprotected after the bonding between the glycosylated linker and the peptide. A protective group well known to those skilled in the art can be used for protecting the side chain of the peptide, and, for example, the protective group for the amino acid used in the solid-phase synthesis mentioned above can be used. Those skilled in the art can appropriately carry out the introduction of the protective group to the peptide and its deprotection.
- When the physiologically active substance is a polypeptide or the like, amino acids, etc., constituting the physiologically active substance can be sequentially bonded directly to the glycosylated linker bonded on the resin during the solid-phase synthesis to produce the compound comprising a glycosylated linker moiety and a physiologically active substance moiety. The reaction conditions for synthesizing the physiologically active substance moiety by the solid-phase synthesis method on the resin can be appropriately set by those skilled in the art.
- According to one embodiment, the present invention preferably provides a compound or a salt thereof obtainable by any of the production methods mentioned above. The obtainable compound or salt thereof is not limited to those produced by any of the production methods mentioned above and also includes those produced by other production methods.
- According to another embodiment, the present invention preferably provides a compound or a salt thereof obtained by any of the production methods mentioned above.
- According to a preferred embodiment, by use of the glycosylated linker of the present invention, a physiologically active substance can be readily dissolved, as the "compound comprising a glycosylated linker moiety and a physiologically active substance moiety, or the salt thereof", in an aqueous solution or an emulsion prepared from the aqueous solution, regardless of whether or not the physiologically active substance is poorly soluble. After the dissolution, the glycosylated linker moiety can be cleaved to release the unmodified physiologically active substance.
- The glycosylated linker moiety according to the present invention is cleaved through hydrolysis reaction from the "compound comprising a glycosylated linker moiety and a physiologically active substance moiety, or the salt thereof". According to a preferred embodiment, the glycosylated linker moiety may be cleaved by autohydrolysis from the "compound comprising a glycosylated linker moiety and a physiologically active substance moiety, or the salt thereof" through its intramolecular catalysis. However, the cleavage is not intended to exclude, for example, biological cleavage such as cleavage by an enzyme present in vivo (e.g., examples of the enzyme include esterase that cleaves an ester bond).
- According to a preferred embodiment, a feature of the compound of the present invention or the salt thereof is that after the dissolution in an aqueous solution or an emulsion, the cleavage of the glycosylated linker moiety is accelerated in a manner dependent on pH and/or temperature (pH- and/or temperature-dependent cleavage). The compound of the present invention or the salt thereof and the glycosylated linker of the present invention may be preserved, for example, at a low temperature (e.g., - 80°C to 4°C) and/or a low pH (e.g.,
pH 1 to pH 4). The step of preparing the "compound comprising a glycosylated linker moiety and a physiologically active substance moiety, or the salt thereof" by bonding the physiologically active substance to the glycosylated linker moiety may be carried out, for example, at a low temperature (e.g., 0°C to 25°C) and/or a low pH (e.g.,pH 1 to pH 7). The "compound comprising a glycosylated linker moiety and a physiologically active substance moiety, or the salt thereof" and the glycosylated linker may be stabilized by the protection of the N-terminal amino group of the glycosylated amino acid with a protective group such as a C1-C16 acyl group, an Fmoc group, or an Alloc group. - Preferably, the compound of the present invention or the salt thereof may be used at a temperature and a pH close to physiological conditions (e.g., the in vivo physiological environment of a mammal or a similar environment, for example, 35°C to 43°C and pH 6.8 to 7.8).
- According to a preferred embodiment, by use of the compound of the present invention or the salt thereof, the physiologically active substance can be efficiently dissolved in an aqueous solution or an emulsion prepared from the aqueous solution. Thus, according to a preferred embodiment, by use of the compound of the present invention or the salt thereof, even a low water-soluble (poorly soluble) physiologically active substance can be filter-sterilized. According to a preferred alternative embodiment, by use of the compound of the present invention or the salt thereof, even a low water-soluble physiologically active substance can be administered to an organism.
- According to a preferred alternative embodiment, by use of the compound of the present invention or the salt thereof, even a highly water-soluble physiologically active substance can be dissolved with higher efficiency in an aqueous solution or an emulsion prepared from the aqueous solution. Thus, advantageously, the present invention reduces "losses" that may be caused by the insolubility, etc., of a substance in the course of preparing a preparation containing an expensive physiologically active substance or administering such a preparation.
- According to a preferred alternative embodiment, the glycosylated linker of the present invention having a known half-life in a solvent can be appropriately selected, thereby controlling the release duration and timing of the unmodified physiologically active substance to be released into an in vitro environment or an in vivo environment. The glycosylated linker of the present invention is also advantageous to the delivery of, for example, a physiologically active substance desired to exert its effects immediately at the desired site after administration to an organism.
- According to a particularly preferred embodiment, the "compound comprising a glycosylated linker moiety and a physiologically active substance moiety, or the salt thereof" according to the present invention can provide improved water solubility compared with an unmodified physiologically active substance. The improved water solubility is preferably 2 times to 1,000,000 times, more preferably 10 times to 1,000,000 times, further preferably 100 times to 1,000,000 times, still further preferably 500 times to 1,000,000 or more times the water solubility of the unmodified physiologically active substance in terms of molar concentration. Those skilled in the art can appropriately select the "compound comprising a glycosylated linker moiety and a physiologically active substance moiety, or the salt thereof" or the glycosylated linker having necessary water solubility according to the use and purpose of the physiologically active substance.
- The molar absorption coefficient (specific absorbance) necessary for determining the solubility of the "compound comprising a glycosylated linker moiety and a physiologically active substance moiety, or the salt thereof" according to the present invention, or the unmodified physiologically active substance may be determined by ultraviolet-visible spectroscopy (e.g., a wavelength in the ultraviolet-visible region, such as 280 nm) using, as a sample, a solution having a known protein concentration measured by a method generally known to those skilled in the art, for example, an amino acid composition analysis method or a nitrogen quantification method.
- According to one aspect, the present invention also provides a composition comprising the compound comprising a glycosylated linker moiety and a physiologically active substance moiety, or the salt thereof.
- The "composition" of the present invention comprises one or more compounds of the present invention or salts thereof and optionally contains one or more additional components (active and/or inert ingredient(s)). The composition of the present invention is not particularly limited by its use and may be used in, for example, an assay system (e.g., an in vitro assay system).
- According to one embodiment of the present invention, the sugar chain structure of the glycosylated linker moiety can be homogeneous, as described above. In this case, preferably, the glycosylated linker moiety contained in the composition comprising the compound comprising this glycosylated linker moiety and a physiologically active substance moiety, or the salt thereof is not only homogeneous in sugar chain structure but also in its whole structure. "The structure of the glycosylated linker moiety are homogeneous" means that the glycosylation site in the glycosylated linker moiety, the type of each sugar constituting the sugar chain, the binding order of the sugar chain, the binding pattern between sugars, and the structure constituting the linker moiety are identical among glycosylated linker moieties contained in the composition(s) when sugar chains and linker moieties are compared among these glycosylated linker moieties. Specifically, "the structure of the glycosylated linker moiety are homogeneous" means that at least 90% or more, preferably 95% or more, more preferably 99% or more sugar chain structures and linker moieties are uniform among the glycosylated linker moieties contained in the composition(s).
- Particularly, the composition or the like comprising the glycosylated linker moiety in which sugar chains are homogeneous has constant quality and is particularly preferred in the field of the production of medicines, assays, etc. The ratio of homogeneous sugar chains or the ratio of homogeneously glycosylated linkers can be measured by a method using, for example, HPLC, capillary electrophoresis, NMR, or mass spectrometry.
- The "pharmaceutical composition" of the present invention is a composition suitable for medical uses and is formulated in the form of an ordinary pharmaceutical composition using diluents or excipients usually used, such as a filler, an expander, a binder, a wetting agent, a disintegrant, a surfactant, and a lubricant. Examples of such a pharmaceutical composition include, but are not limited to, tablets, pills, powders, solutions, suspensions, emulsions, granules, capsules, suppositories, and injections. The medical uses of the pharmaceutical composition may target diseases or disorders involving a physiologically active substance contained as the physiologically active substance moiety in the composition. When the physiologically active substance is, for example, GLP-1 or its derivative, the medical uses may target diabetes mellitus or the like. Those skilled in the art can similarly understand other medical uses, also in view of the types of diseases or disorders involving each physiologically active substance.
- In the present specification, the "pharmacologically acceptable carrier" is not particularly limited. The addition of the pharmacologically acceptable carrier may influence the absorbability or concentration in blood of the "compound comprising a glycosylated linker moiety and a physiologically active substance moiety, or the salt thereof" according to the present and cause change in its disposition.
- Particularly preferably, when an antigen is used as the physiologically active substance, the compound of the present invention or the salt thereof and the pharmaceutical composition of the present invention comprising the same may be used as a vaccine. According to a preferred embodiment, for example, even a poorly soluble antigen can be dissolved, as the compound of the present invention or the salt thereof, in an aqueous solution or an emulsion. In addition, the unmodified antigen can be released after cleavage of the glycosylated linker moiety in vivo. Preferably, the compound of the present invention or the salt thereof and the glycosylated linker of the present invention can be used in the development of various vaccines such as peptide vaccines.
- In the present specification, the "vaccine" (also called "immunogenic composition") means a substance capable of causing immune response when inoculated into an animal. The vaccine may contain an antigen or may express the antigen, thereby inducing immune response against the antigen. The pharmaceutical composition of the present invention used as a vaccine can be used not only in the prevention or treatment of viral infections, bacterial infections (sepsis, etc.), and communicable diseases but in the treatment, etc., of any disease that may be related to immune response, for example, cancers and autoimmune diseases (e.g., type I diabetes mellitus, multiple sclerosis, and articular rheumatism).
- The "antigen" is a molecule containing one or more epitopes and can be any molecule capable of inducing antigen-specific immune response by stimulating the immune system of a host. The immune response may be humoral immune response and/or cellular immune response. Although approximately 3 to several (e.g., 5 or 6) amino acids may serve as one epitope, one epitope in a protein typically contains 7 to 15 amino acids, for example, 8, 9, 10, 12, or 14 amino acids. According to one embodiment, the antigen is preferably a peptide or an epitope. When the antigen is used in the treatment of cancers, such a peptide is also called cancer peptide.
- Also, the pharmaceutical composition of the present invention (including that for use as a vaccine) may be administered to an organism. The pharmaceutical composition of the present invention is not particularly limited by its administration method and is administered by a method suitable for various dosage forms, the age, sex, and disease severity of a patient, and other conditions. Examples of methods for administering tablets, pills, solutions, suspensions, emulsions, granules, and capsules include oral administration. Alternatively, an injection can be administered either alone or as a mixture with an ordinary fluid replacement such as glucose or an amino acid through an intravenous, intramuscular, intracutaneous, subcutaneous, or intraperitoneal route. A suppository is administered into the rectum. Particularly, the pharmaceutical composition of the present invention used as a vaccine may be administered through subcutaneous injection, intramuscular injection, an oral route, a stump form, intracutaneous injection, or the like.
- The dose of the pharmaceutical composition of the present invention (including that for use as a vaccine) can be appropriately selected according to the usage, the age, sex, and disease severity of a patient, and other conditions. The frequency of administration can be appropriately selected according to the usage, the age, sex, and disease severity of a patient, and other conditions. For example, 3 times/day, twice/day, once/day, or less frequent administration (e.g., once/week or once/month) according to the stability thereof in blood may be selected. The pharmaceutical composition of the present invention may confer sustained release properties to the physiologically active substance by gradual cleavage of the sugar chain linker moiety. Alternatively, the pharmaceutical composition of the present invention may confer fast acting properties to the physiologically active substance by rapid cleavage of the sugar chain linker moiety.
- In a certain aspect, the present invention also relates to use of the glycosylated linker or the "compound comprising a glycosylated linker moiety and a physiologically active substance moiety, or the salt thereof" for the production of a therapeutic or preventive drug for diseases or disorders targeted by a physiologically active substance. In an alternative aspect, the present invention also relates to use of the glycosylated linker or the "compound comprising a glycosylated linker moiety and a physiologically active substance moiety, or the salt thereof" for the treatment or prevention, etc., of diseases or disorders targeted by a physiologically active substance. When the physiologically active substance is, for example, HER2 or its derivative, the targeted disease may be cancer or the like (e.g., breast cancer). Those skilled in the art can similarly understand the types of diseases or disorders targeted by each of other physiologically active substances.
- The glycosylated linker of the present invention configured to contain an added sugar chain having biodegradable nature has a reduced adverse effect on organisms compared with a linker configured to contain added PEG. As a result, long-term administration as a pharmaceutical composition to organisms is expected.
- In the present specification, the aqueous solution may be any liquid of a substance (e.g., acetate) dissolved in water as a solvent and includes every aqueous solution generally known to those skilled in the art and every novel aqueous solution.
- In the present specification, the emulsion is not limited and may be any preparation from the aqueous solution. The emulsion may be an oil-in-water (O/W) emulsion or a water-in-oil (W/O) emulsion, though there is no limitation. Methods generally known to those skilled in the art may be used as methods for dispersion and emulsification in the aqueous solution.
- The "subject" to which the compound of the present invention or the salt thereof, or the pharmaceutical composition of the present invention is administered (applied) includes, but is not limited to, animals (humans, nonhuman mammals (e.g., mice, rats, dogs, cats, rabbits, cattle, horses, sheep, goats, and pigs), and non-mammalian animals (e.g., fish, reptiles, amphibians, and bird)), plants, insects, bacteria, and cells derived therefrom(including cultured cells), tissues, and organs, etc. Alternatively, the "subject" may be an artificial environment (e.g., an in vitro reaction system). Preferably, the "subject" according to the present invention is a human.
- The term "aspect" or "embodiment" (e.g., "one aspect", "one embodiment", or "another embodiment") used in the present specification indicates a preferred profile of the present invention and is not intended to limit the scope of the present invention to the predetermined aspect or embodiment. Those skilled in the art should naturally understand that every combination of the aforementioned aspects and embodiments of the present invention is possible unless there is a technical contradiction. Those skilled in the art understand that, for example, every combination of substituents is disclosed in an aspect or an embodiment unless there is a technical contradiction.
- The terms used in the present specification are given for illustrating particular embodiments and are not intended to limit the present invention.
- The term "comprising" used in the present specification means that described items (members, steps, factors, numbers, etc.) are present, and does not exclude the presence of the other items (members, steps, factors, numbers, etc.), unless the context evidently requires different interpretation.
- All terms (including technical terms and scientific terms) used herein have the same meanings as those understood in a broad sense by those skilled in the art to which the present invention belongs, unless otherwise defined. The terms used herein should be interpreted as having meanings consistent with meanings in the present specification and related technical fields and should not be interpreted in an idealized or excessively formal sense, unless otherwise defined.
- The embodiments of the present invention may be described with reference to a schematic diagram. However, such a schematic diagram may be exaggerated for the purpose of clear illustration.
- The terms such as "first" or "second" are used for expressing various factors. However, these factors are understood to be not limited by these terms. These terms are used merely for differentiating one factor from the other factors. For example, the first factor may be described as the second factor, and vice versa, without departing from the scope of the present invention.
- Hereinafter, the present invention will be described in more detail with reference to Examples. However, the present invention can be embodied in various aspects and must not be interpreted as being limited to Examples described herein.
- Some abbreviations used in Examples will be described below:
- Ac: Acetyl (group)
- AcOH: Acetic acid
- Asn: Asparagine
- Boc: tert-Butyloxycarbonyl group
- BrAc: Bromoacetamide
- Cys: Cysteine
- DIC: Diisopropylcarbodiimide
- DIPEA: N,N-Diisopropylethylamine
- DMAP: 4-Dimethylaminopyridine
- DMF: N,N-Dimethylformamide
- DMSO: Dimethyl sulfoxide
- DTT: Dithiothreitol
- ESI-MS: electrospray ionization mass spectrometry
- Fmoc (group): 9-Fluorenylmethyloxycarbonyl (group)
- HCL: Hydrochloric acid
- HCTU: O-(6-Chloro-1H-benzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate
- HMPB: 4-Hydroxymethyl-3-methoxyphenoxy-butyric acid
- HMBA: 4-Hydroxymethyl-benzoic acid
- HOBt: 1-Hydroxybenzotriazole
- HPLC: High-performance liquid chromatography
- H2O: Water
- MSNT: 1-(Mesitylene -2-sulfonyl)-3-nitro-1,2,4-triazole(1-(Mesitylene-2-sulfonyl)-3-nitro-1,2,4-triazole)
- PBS: Phosphate-buffered saline
- Pbf: 2,2,4,6,7-Pentamethyldihydrobenzofuran-5-sulfonyl
- SPPS: Solid-phase peptide synthesis
- tBu: tert-Butyl group
- TFA: Trifluoroacetic acid
- Trt: Trityl group
- In Examples below, a compound in which a glycosylated linker and a physiologically active substance are bonded to each other is referred to as a conjugate. For example, a conjugate in which a glycosylated linker having an asialo sugar chain at cysteine in the linker is bonded to a portion of a physiologically active substance HER2 (portion containing the 8th to 16th amino acids in the amino acid sequence of HER) is referred to as a glycosylated (Cys (asialo)-type) linker-HER2 (8-16) conjugate.
- HER2(8-16) is a peptide corresponding to the 8th to 16th amino acid residues in the amino acid sequence of the HER2/neu protein, which is a member of the HER (human epidermal growth factor receptor) family. This HER2(8-16) has the ability to bind to HLA-A24, one of HLA (human leukocyte antigen) molecules, and exhibits the ability to induce cytotoxic T lymphocyte (CTL) by HLA-mediated antigen presentation, and this peptide fragment has been identified as a tumor vaccine candidate peptide (Tanaka, H., et al., Brit. J. Cancer, 84 (1), 94-99, 2001).
-
- Rink-Amide-PEGA resin (100 µmol) was placed in a column for solid-phase synthesis and washed with dichloromethane and DMF. After the washing, a DMF (2,5 mL) solution containing Fmoc-Cys(Trt)-OH (234 mg, 0.399 mmol), HCTU (157 mg, 0.380 mmol), and 2,4,6-trimethylpyridine (79.6 µL, 0.600 mmol) was added thereto, and the mixture was shaken at room temperature for 10 minutes. After 10 minutes, the resin was washed with DMF, and this condensation operation was then repeated once again. After the completion of the second condensation operation, the resin was washed with DMF and dichloromethane. After the washing, the Fmoc protective group was removed by treatment with 20% piperidine in DMF to obtain
resin 2 bonded to Cys(Trt). Theresin 2 was washed with DMF. Then, a DMF (2.5 mL) solution of 4-hydroxymethyl-benzoic acid (61.1 mg, 0.402 mmol), HCTU (157.8 mg, 0.381 mmol), and DIPEA (104.5 µL, 0.600 mmol) was added thereto, and the mixture was shaken at room temperature. After 1 hour, the resin was washed with DMF and dichloromethane to obtain compound 3 bonded to HMBA-Cys(Trt) on the resin. - An aliquot of the resin bonded to the compound 3 (100 µmol) was placed in a column for solid-phase synthesis. A dichloromethane (5.0 mL) solution containing Fmoc-Leu-OH (176.7 mg, 0.500 mmol), MSNT (148.2 2 mg, 0.500 mmol), and N-methylimidazole (27.9 µL, 0.350 mmol) was added thereto, and the mixture was shaken at room temperature for 1 hour. After the shaking for 1 hour, the resin was washed with dichloromethane and DMF. After the washing, the Fmoc protective group was removed by treatment with 20% piperidine in DMF to obtain Leu-HMBA-Cys(Trt) 4 on the resin. After washing with DMF, compound 5: Fmoc-Arg (Pbf)-Trp (Boc)-Gly-Leu-Leu-Leu-Ala-Leu-Leu-HMBA-Cys (Trt) (SEQ ID NO: 1) was synthesized on the resin by a solid-phase peptide synthesis method according to the Fmoc method using a Prelude (trademark) peptide synthesizer. The condensation reaction in the solid-phase synthesis method was carried out in DMF using HCTU as a condensing agent and N-methylmorpholine as a base.
- The Fmoc protective group on the
compound 5 was removed by treatment with 20% piperidine in DMF. The resin was washed with DMF and dichloromethane. Then, TFA:triisopropylsilane:ethanedithiol:water (= 90:5:2.5:2.5) was added thereto, and the mixture was shaken at room temperature for 3 hours. To the filtrate, cooled ether was added to obtain crude peptide 6: Arg-Trp-Gly-Leu-Leu-Leu-Ala-Leu-Leu-HMBA-Cys (SEQ ID NO: 2) as precipitates. - The obtained crude peptide 6 (15.5 mg) was dissolved in a DMSO-0.1 M phosphate buffer solution (pH 7.4) mixed solution (9/1, v/v, 240 µL) containing 50 mM DTT. To the solution, a DMSO-0.1 M phosphate buffer solution (pH 7.4) mixed solution (9/1, v/v, 946 µL) containing 30 mM asialo-BrAc 7 dissolved therein was added thereto, and the mixture was shaken at room temperature for 2 hours.
- This fraction was further purified by HPLC [column: SHISEIDO CAPCELL PAK C18 UG-120 (5 µm), φ20 x 250 mm, flow rate: 7.0 mL/min, eluent A: 0.1% AcOH in water, eluent B: 0.09% AcOH/10% waster/90% acetonitrile, gradient A:B = 75:25 → 60:40 (30 min) linear concentration gradient elution] to obtain a glycosylated (Cys (asialo)-type) linker-HER2 (8-16) conjugate (compound 1) (17.2 mg, 5.79 µmol).
ESI-MS calcd for C127H204N20O58S [M+2H]2+ 1485.7, [M+3H]3+ 990.8, [M+4H]4+ 743.3, found 1485.7, 990.8, 743.3. -
- The crude peptide 6 (15.5 mg) obtained in Example 1-1 was dissolved in a DMSO-0.1 M phosphate buffer solution (pH 7.4) mixed solution (9/1, v/v, 240 µL) containing 50 mM DTT. To this mixed solution, a DMSO-0.1 M phosphate buffer solution (pH 7.4) mixed solution (9/1, v/v, 3.8 mL) containing 7.5 mM disialo-BrAc 9 was added, and the mixture was shaken at room temperature for 5 hours.
- The reaction solution was purified by HPLC [column: SHISEIDO CAPCELL PAK C18 UG-120 (5 µm), φ20 x 250 mm, flow rate: 7.0 mL/min, eluent A: 0.1% TFA in water, eluent B: 0.09% TFA/10% water/90% acetonitrile, gradient A:B = 62:38 → 52:48 (30 min) linear concentration gradient elution] to obtain a fraction containing a glycosylated (Cys (disialo)-type) linker-HER2 (8-16) conjugate (compound 8): Arg-Trp-Gly-Leu-Leu-Leu-Ala-Leu-Leu-(sugar chain added-linker: HMBA-Cys (disialo)) (SEQ ID NO: 4).
- This fraction was further purified by HPLC [column: SHISEIDO CAPCELL PAK C18 UG-120 (5 µm), φ20 x 250 mm, flow rate: 7.0 mL/min, eluent A: 0.1% AcOH in water, eluent B: 0.09% AcOH/10% waster/90% acetonitrile, gradient A:B = 70:30 → 50:50 (30 min) linear concentration gradient elution] to obtain a glycosylated (Cys (disialo)-type) linker-HER2(8-16) conjugate (compound 8) (21.8 mg, 6. 13 µmol).
ESI-MS calcd for C149H238N22O74S [M+2H]2+ 1776.8, [M+3H]3+ 1184.8, [M+4H]4+ 888.9, found 1776.8, 1184.8, 888.9. - Solubility in an aqueous solution was measured for the glycosylated (Cys (asialo)-type) linker-HER2(8-16) conjugate (compound 1) and the glycosylated (Cys (disialo)-type) linker-HER2 (8-16) conjugate (compound 8) obtained in Examples 1-1 and 1-2, respectively, and an unmodified HER2 (8-16) peptide (compound 10) having no glycosylated linker (Arg-Trp-Gly-Leu-Leu-Leu-Ala-Leu-Leu) (SEQ ID NO: 5).
[Formula 35]
Arg-Trp-Gly-Leu-Leu-Leu-Ala-Leu-Leu 10
- More specifically, the test subject glycosylated (Cys (asialo)-type) linker-HER2(8-16) conjugate (compound 1), glycosylated (Cys (disialo)-type) linker-HER2 (8-16) conjugate (compound 8), or unmodified HER2 (8-16) peptide (compound 10) was collected in an amount of approximately 4.5 mg into a microtube, and 30 µL of water was added thereto. The microtube was shaken at 25°C for 15 minutes and then centrifuged at 16100 × g at 25°C for 10 minutes. After the centrifugation, the absorbance of the supernatant portion at 280 nm was measured in the microtube. From the obtained value, the concentration was calculated to determine solubility. The molar absorption coefficients of the glycosylated (Cys (asialo)-type) linker-HER2 (8-16) conjugate (compound 1) and the glycosylated (Cys (disialo)-type) linker-HER2 (8-16) conjugate (compound 8) at 280 nm were determined by dividing the absorbance of the peptide chain moiety in the glycosylated (Cys (asialo)-type) linker-HER2 (8-16) conjugate (compound 1) or the glycosylated (Cys (disialo)-type) linker-HER2 (8-16) conjugate (compound 8) at 280 nm by a concentration determined by amino acid analysis. The molar absorption coefficient ε280 of the unmodified peptide at 280 nm was calculated according to the following expression generally known to those skilled in the art:
(Reference: C. N. Pace et al., Prot. Sci., 1995, 4, 2411-2423). - As a result, the HER2(8-16) peptide unbound with the glycosylated linker had a solubility of 0.22 mg/mL (2.1 × 102 µM)) in water. In this respect, the precipitation of the HER2(8-16) peptide was able to be visually confirmed in the microtube. On the other hand, the glycosylated (Cys (asialo)-type) linker-HER2(8-16) conjugate (compound 1) was confirmed to have a solubility of 144 mg/mL or higher in water. Surprisingly, the precipitation of the glycosylated (Cys (asialo)-type) linker-HER2(8-16) conjugate (compound 1) was unable to be confirmed even at a concentration of 144 mg/mL. Also, the glycosylated (Cys (disialo)-type) linker-HER2(8-16) conjugate (compound 8) was confirmed to have a solubility of 121 mg/mL or higher in water. Surprisingly, the precipitation of the glycosylated (Cys (asialo)-type) linker-HER2(8-16) conjugate (compound 8) was unable to be confirmed even at a concentration of 121 mg/mL. These results demonstrated that the solubility of the glycosylated (Cys (asialo)-type) linker-HER2(8-16) conjugate (compound 1) and the glycosylated (Cys (disialo)-type) linker-HER2(8-16) conjugate (compound 8) in an aqueous solution is improved by 190 or more times the solubility of the unmodified HER2(8-16) peptide (compound 10) in terms of molar concentration (Table 1A).
[Table 1A] Table 1A Solubility of glycosylated linker-HER2(8-16) conjugate in water Sample Solubility (µM) Solubility (mg/mL) Unmodified HER2(8-16) (compound 10) 2.1×102 0.22 Glycosylated (Cys (asialo)-type) linker-HER2(8-16) conjugate (compound 1) > 4.1×104 >144 Glycosylated (Cys (disialo)-type) linker-HER2(8-16) conjugate (compound 8) > 4.7×104 >121 - Solubility in a 0.1% aqueous acetic acid (AcOH) solution was further measured for the glycosylated (Cys (asialo)-type) linker-HER2(8-16) conjugate (compound 1), the glycosylated (Cys (disialo)-type) linker-HER2(8-16) conjugate (compound 8), and the unmodified HER2(8-16) peptide (compound 3) having no glycosylated linker in the same way as in the preceding measurement of solubility in the aqueous solution.
- As a result, the HER2(8-16) peptide unbound with the glycosylated linker had a solubility of 0.52 mg/mL (4.9 × 102 µM)) in the aqueous acetic acid solution. In this respect, the precipitation of the HER2(8-16) peptide was able to be visually confirmed in the microtube. On the other hand, the glycosylated (Cys (asialo)-type) linker-HER2(8-16) conjugate (compound 1) was confirmed to have a solubility of 110 mg/mL or higher in the aqueous acetic acid solution. Surprisingly, the precipitation of the glycosylated (Cys(asialo)-type) linker-HER2(8-16) conjugate (compound 1) was unable to be confirmed even at a concentration of 110 mg/mL. Also, the glycosylated (Cys (disialo)-type) linker-HER2 (8-16) conjugate (compound 8) was confirmed to have a solubility of 104 mg/mL or higher in the aqueous acetic acid solution. Surprisingly, the precipitation of the glycosylated (Cys (asialo)-type) linker-HER2 (8-16) conjugate (compound 8) was unable to be confirmed even at a concentration of 104 mg/mL. These results demonstrated that the solubility of the glycosylated (Cys (asialo)-type) linker-HER2 (8-16) conjugate (compound 1) and the glycosylated (Cys (disialo)-type) linker-HER2 (8-16) conjugate (compound 8) in an aqueous solution is improved by 69 or more times the solubility of the unmodified HER2(8-16) peptide (compound 10) in terms of molar concentration (Table 1B).
[Table 1B] Table 1B Solubility of glycosylated linker-HER2(8-16) conjugate in aqueous acetic acid solution (0.1% AcOH) Sample Solubility (µM) Solubility (mg/mL) Unmodified HER2(8-16) (compound 10) 4.9×102 0.52 Glycosylated (Cys (asialo)-type) linker-HER2(8-16) conjugate (compound 1) >3.7×104 >110 Glycosylated (Cys (disialo)-type) linker-HER2(8-16) conjugate (compound 8) >3.4×104 >104 - The hydrolysis behaviors of the glycosylated (Cys (asialo)-type) linker-HER2(8-16) conjugate (compound 1) and the glycosylated (Cys (disialo)-type) linker-HER2(8-16) conjugate (compound 8) obtained in Examples 1-1 and 1-2, respectively, were traced. Hydrolysis reaction was started by the addition of a buffer solution (acetate buffer solution (pH 4.0) or PBS (pH 7.4)) preset to a reaction temperature (25°C or 37°C) to each of the freeze-dried glycosylated (Cys (asialo)-type) linker-HER2(8-16) conjugate (compound 1) and glycosylated (Cys (disialo)-type) linker-HER2 (8-16) conjugate (compound 8). The temperature during the reaction was kept at a constant temperature (25°C or 37°C) using a block incubator. A given amount of each solution was injected to HPLC at appropriate time intervals to trace the hydrolysis reaction. The relative starting material concentration was determined from an HPLC peak area corresponding to the starting material. The relative concentration of the starting material was plotted against incubation time. As a result, a linear plot was obtained, indicating that the hydrolysis reaction was primary reaction. Also, the terminal half-life t1/2 of the starting material was calculated according to the expression t1/2 = ln(2) / k (wherein k represents the slope of the linear plot). The half-lives of the glycosylated (Cys (asialo)-type) linker-HER2(8-16) conjugate (compound 1) and the glycosylated (Cys (disialo)-type) linker-HER2(8-16) conjugate (compound 8) under each condition are shown in Tables 2 and 3.
[Table 2] Table 2 Hydrolysis half-life of glycosylated (Cys (asialo)-type) linker-HER2(8-16) conjugate (compound 1) Entry Solvent Temperature Half- life 1 Acetate buffer solution (pH 4.0) 25°C > 30 days 2 Acetate buffer solution (pH 4.0) 37°C days 3 PBS (pH 7.4) 25°C 146 hours 4 PBS (pH 7.4) 37°C 78 hours [Table 3] Table 3 Hydrolysis half-life of glycosylated (Cys (disialo)-type) linker-HER2(8-16) conjugate (compound 8) Entry Solvent Temperature Half- life 1 Acetate buffer solution (pH 4.0) 25°C > 30 days 2 Acetate buffer solution (pH 4.0) 37°C > 30 days 3 PBS (pH 7.4) 25°C 121 hours 4 PBS (pH 7.4) 37°C 106 hours - The glycosylated (Cys (asialo)-type) linker-HER2(8-16) conjugate (compound 1) and the glycosylated (Cys (disialo)-type) linker-HER2(8-16) conjugate (compound 8) were both confirmed to be gradually hydrolyzed to produce the unmodified HER2(8-16) peptide (compound 10). As shown in Tables 2 and 3, the hydrolysis rate was confirmed to be faster at a higher pH (comparison between
Entries 1 and 3 (25°C) and comparison betweenEntries 2 and 4 (37°C)). Also, the hydrolysis rate was confirmed to be faster at a higher temperature under the condition of pH 7.4 (comparison between Entries 3 and 4). Both thecompound 1 and thecompound 8 where very stable under the conditions of pH 4.0 and 37°C, and the formedhydrolysate 10 was only 1% or less of the starting material after the 48-hour tracing, showing that these compounds are hardly hydrolyzed under these conditions. The peptide having the disialo sugar chain-attached linker exhibited a faster hydrolysis rate than that of the peptide having the asialo sugar chain-attached linker under the conditions of pH 7.4 and 25°C. On the other hand, the peptide having the disialo sugar chain-attached linker exhibited a slower hydrolysis rate than that of the peptide having the asialo sugar chain-attached linker under the conditions of pH 7.4 and 37°C. As seen from these results, a preferred hydrolysis rate under particular conditions can also be adjusted by selecting the type of the sugar chain to be added. -
- Rink-Amide-PEGA resin (100 µmol) was placed in a column for solid-phase synthesis and washed with dichloromethane and DMF. After the washing, a DMF (2.5 mL) solution containing Fmoc-Cys (tButhio)-OH (173.4 mg, 0.402 mmol), HCTU (157 mg, 0.380 mmol), and 2,4,6-trimethylpyridine (79.6 µL, 0.600 mmol) was added thereto, and the mixture was shaken at room temperature for 10 minutes. After 10 minutes, the resin was washed with DMf. After the washing, the Fmoc protective group was removed by treatment with 20% piperidine in DMF to obtain compound 11 bonded to Cys(StBu(tButhio)) on the resin. The compound 11 on the resin was washed with DMF. Then, a DMF (2.5 mL) solution containing 4-hydroxymethyl-benzoic acid (60.8 mg, 0.400 mmol), HCTU (157 mg, 0.380 mmol), and DIPEA (104.5 µL, 0.600 mmol) was added thereto, and the mixture was shaken at room temperature. After 10 minutes, the resin was washed with DMF and dichloromethane to obtain compound 1-2 bonded to HMBA-Cys(StBu) on the resin. To the compound 12 on the resin, a dichloromethane (5.0 mL) solution, containing Fmoc-Leu-OH (176.3 mg, 0.499 mmol), MSNT (149.0 mg, 0.503 mmol), and N-methylimidazole (27.9 µL, 0.350 mmol) was added, and the mixture was shaken at room temperature for 3 hours. The resin was washed with dichloromethane and DMF, and the Fmoc protective group was then removed by treatment with 20% piperidine in DMF to obtain compound 13 bonded to Leu-HMBA-Cys(StBu) on the resin. After washing with DMF, compound 14: Fmoc-Arg(Pbf)-Trp(Boc)-Gly-Leu-Leu-Leu-Ala-Leu-Leu-HMBA-Cys(StBu) (SEQ ID NO: 6) with protected amino acid side chains was synthesized on the resin bonded to the protected peptide by a solid-phase peptide synthesis method according to the Fmoc method using a Prelude (trademark) peptide synthesizer. The condensation reaction was carried out in DMF using HCTU as a condensing agent and N-methylmorpholine as a base.
- A DMF solution (1 mL) containing a 0.2 M aqueous ammonium bicarbonate solution (500 µL) and 0.1 M DTT dissolved therein was added to an aliquot (10 µmol) of the resin bonded to the compound 14, and the mixture was shaken at room temperature. After 6 hours, the resin was washed with DMF to obtain compound 15: Fmoc-Arg (Pbf)-Trp(Boc)-Gly-Leu-Leu-Leu-Ala-Leu-Leu-HMBA-Cys (SEQ ID NO: 7) on the resin. To the
compound 15, a DMSO-DMF mixed solution (1/1, v/v, 500 µL) containing asialo-BrAc 7 (52.8 mg, 30.0 µmol) and DIPEA (10.5 µL, 60.3 µmol) dissolved therein was added, and the mixture was shaken at room temperature for 12 hours to obtain compound 16: Fmoc-Arg(Pbf)-Trp(Boc)-Gly-Leu-Leu-Leu-Ala-Leu-Leu-(sugar chain added-linker: HMBA-Cys (asialo)) (SEQ ID NO: 8) on the resin. The resin was washed with DMF, and the Fmoc protective group was then removed by treatment with 20% piperidine in DMF. The resin was washed with DMF and dichloromethane. Then, trifluoroacetic acid:triisopropylsilane:ethanedithiol:water (= 90:5:2.5:2.5) was added thereto, and the mixture was shaken at room temperature for 3 hours. To the filtrate, cooled ether was added to obtaincrude peptide 1 as precipitates. The obtained crude peptide 1 (15.5 mg) was purified by HPLC [column: SHISEIDO CAPCELL PAK C18 UG-120 (5 µm), φ20 x 250 mm, flow rate: 7.0 mL/min, eluent A: 0.1% TFA in water, eluent B: 0.09% TFA/10% water/90% acetonitrile, gradient A:B = 65:35 → 53.9:46.6 (24 min) linear concentration gradient elution] to obtain a glycosylated (Cys (asialo)-type) linker-HER2 (8-16) conjugate (compound 1): Arg-Trp-Gly-Leu-Leu-Leu-Ala-Leu-Leu-(sugar chain added-linker: HMBA-Cys (asialo)) (5.0 mg, 1.7 µmol). -
- The asialo-BrAc 7 (131.7 mg, 75 µmol) dissolved in a phosphate buffer solution (0.1 M, pH 6.72, 4.0 mL) was gradually added dropwise to ethanedithiol (63 µL, 750 µmol, 10 eq) dissolved in a phosphate buffer solution (0.1 M, pH 6.72, 4.0 mL), and reacted at room temperature for 40 minutes. The completion of the reaction was confirmed by HPLC, and the reaction product was then purified by HPLC [column: SHISEIDO CAPCELL PAK C18 UG-120 (5 µm), φ20 x 250 mm, flow rate: 7.0 mL/min, eluent A: 0.1% TFA in water, eluent B: 0.09% TFA/10% water/90% acetonitrile, gradient A:13 = 99:1 (0-1 min) → 80:20 (30 min)] to obtain the target compound 17 (11.8.3 mg, yield: 89%) as a glycosylated linker having a thiol group. ESI-MS calcd for C66H111N5O46S2: [M+2H]2+ 888.36, found 888.34.
-
- The peptide with protected amino acid side chains synthesized on the resin using a Prelude (trademark) peptide synthesizer was excised from the resin by treatment with an AcOH-TFE (1/1, v/v) solution. The filtrate was concentrated to dryness under reduced pressure to obtain a peptide (compound 18): Boc-Arg (Pbf)-Trp (Boc)-Gly-Leu-Leu-Leu-Ala--Leu-Leu (SEQ ID NO: 9) with protected amino acid side chains.
- The obtained peptide (compound 18) (63.5 mg, 41.8 µmol), the glycosylated linker (compound 17) (41.5 mg, 23.4 µmol) having a thiol group, and PyBOP (121.8 mg, 234 µmol) were dissolved in DMF (1 mL) and cooled to -15°C in a nitrogen atmosphere. To this solution, DIPEA (40.0 µL, 40.7 µmol) was added, and the mixture was stirred at - 15°C. After 3 hours, TFA (100 µL) was added thereto, and the mixture was concentrated to dryness under reduced pressure. To the obtained residue, a TFA-H2O (95/5, v/v) solution (1 mL) was added, and the mixture was stirred for 3 hours. To the solution, ether was added to obtain a crude peptide as precipitates. The obtained crude peptide was purified by HPLC, [column: SHISEIDO CAPCELL PAK C18 UG-120 (5 µm), φ20 x 250 mm, flow rate: 7.0 mL/min, eluent A: 0.1% TFA in water, eluent B: 0.09% TFA/10% water/90% acetonitrile, gradient A:B = 65:35 → 35:55 (30 min) linear concentration gradient elution] to obtain a thioalkyl-type glycosylated linker-HER2 (8-16) conjugate (compound 20): Arg-Trp-Gly-Leu-Leu-Leu-Ala-Leu-Leu-(sugar chain added-linker: SCH2CH2SCH2CONH (asialo)) (SEQ ID NO: 10) (6.9 mg, yield: 10.5%).
ESI-MS calcd for C118H196N18O55S2: [M+2H]2+ 1406.52, [M+3H]3+ 938.01, found 1406.10, 937.73. -
- Trityl chloride (2.0 g, 7.1 mmol) was allowed to act on 4-mercaptophenylacetic acid (compound 22) (1.0 g, 6.1 mmol) in dichloromethane to obtain compound 23 (2.8 g). A DMF (2.0 mL) solution containing the compound 23 (320 µmol), HOBt (50.7 mg, 375 µmol), and DIC (54 µL, 522 µmol) was added to compound 24 (62 µmol) bonded to a glycopeptide (Asn(asialo)-Gly) consisting of 2 amino acid residues on Rink-Amide-PEGA resin, and the mixture was shaken at room temperature for 1 hour to obtain compound 25 on the resin. The resin was washed with DMF and dichloromethane. Then, a TFA:triisopropylsilane:water (= 92.5:5:2.5) solution was added thereto, and the mixture was shaken at room temperature for 3 hours. Then, the filtrate was concentrated under reduced pressure to obtain compound 26 (19.6 mg, 10 µmol, yield: 16%) as a glycosylated linker.
ESI-MS calcd for C76H120N8O49S: [M+2H]2+ 981.34, found 981.37. - The compound 26 (8.6 mg, 4.4 µmol) as a glycosylated linker, the peptide (compound 18) (35.0 mg, 23.0 µmol) with protected amino acid side chains, and PyBOP (22.8 mg, 43.8 µmol) were dissolved in DMF, (0.4 mL) and cooled to - 15°C in a nitrogen atmosphere. To this solution, DIPEA (7.5 µL, 76.4 µmol) was added, and the mixture was stirred at -5°C to -10°C. After 2.5 hours, TFA (50 µL) was added thereto, and the mixture was concentrated to dryness under reduced pressure. To the obtained residue, a TFA-H2O (95/5, v/v) solution (1 mL) was added, and the mixture was stirred for 3 hours. To the solution, ether was added to obtain a crude peptide as precipitates.
- The obtained crude peptide was purified by HPLC [column: SHISEIDO CAPCELL PARK C18 UG-120 (5 µm), φ20 x 250 mm, flow rate: 7.0 mL/min, eluent A: 0.1% TFA in water, eluent B: 0.09% TFA/10% water/90% acetonitrile, gradient A:B = 65:35 → 35:55 (30 min) linear concentration gradient elution] to obtain a thioaryl-type glycosylated linker-HER2(8-16) conjugate (compound 21): Arg-Trp-Gly-Leu-Leu-Leu-Ala-Leu-Leu-(sugar chain added-linker: 4-thiobenzoic acid-Asn(asialo)-Gly) (SEQ ID NO: 11) (2.3 mg, yield: 17.5%).
ESI-MS calcd for C128H205N21O58S1: [M+2H]2+ 1500.09, [M+3H]3+ 1000.39, found 1499.67, 1000.08. - The solubility of the thioalkyl-type glycosylated linker-HER2(8-16) conjugate (compound 20) and the thioaryl-type glycosylated linker-HER2(8-16) conjugate (compound 21) in water was measured in the same way as in Example 1-3 except that the thioalkyl-type glycosylated linker-HER2(8-16) conjugate (compound 20) and the thioaryl-type glycosylated linker-HER2(8-16) conjugate (compound 21) were used instead of the glycosylated (Cys (asialo)-type) linker-HER2(8-16) conjugate (compound 1) and the glycosylated (Cys (disialo)-type) linker-HER2(8-16) conjugate (compound 7). For comparison, the solubility of the unmodified HER2(8-16) peptide (compound 10) was measured. As a result, the HER2(8-16) peptide unbound with the glycosylated linker had a solubility of 0.22 mg/mL (2.1 × 102 µM)) in water. In this respect, the precipitation of the HER2(8-16) peptide was able to be visually confirmed in the microtube. On the other hand, the thioalkyl-type glycosylated linker-HER2(8-16) conjugate (compound 20) was confirmed to have a solubility of 77.4 mg/mL or higher in water. Surprisingly, the precipitation of the thioalkyl-type glycosylated linker-HER2(8-16) conjugate (compound 20) was unable to be confirmed even at a concentration of 77.4 mg/mL. Also, the thioaryl-type glycosylated linker-HER2(8-16) conjugate (compound 21) was confirmed to have a solubility of 76.7 mg/mL or higher in water. Surprisingly, the precipitation of the thioaryl-type glycosylated linker-HER2(8-16) conjugate (compound 8) was unable to be confirmed even at a concentration of 76.7 mg/mL. These results demonstrated that the solubility of the thioalkyl-type glycosylated linker-HER2(8-16) conjugate (compound 20) and the thioaryl-type glycosylated linker-HER2 (8-16) conjugate (compound 21) in an aqueous solution is improved by 100 or more times the solubility of the unmodified HER2 (8-16) peptide (compound 10) in terms of molar concentration.
[Table 4] Table 4 Solubility of thioalkyl-type or thioaryl-type glycosylated linker-HER2(8-16) conjugate in aqueous solution Sample Solubility (µM) Solubility (mg/lL) Unmodified HER2(8-16) (compound 10) 2.1 × 102 0.22 Thioalkyl-type glycosylated linker-HER2(8-16) conjugate (compound 20) >2.8 × 104 >77.4 Thioaryl-type glycosylated linker-HER2(8-16) conjugate (compound 21) > 2.6 × 104 >76.7 - The hydrolysis behaviors of the thioalkyl-type glycosylated linker-HER2(8-16) conjugate (compound 20) and the thioaryl-type glycosylated linker-HER2(8-16) conjugate (compound 21) obtained in Examples 3-1 and 3-2, respectively, were traced. Specifically, the hydrolysis behaviors were traced in the same way as in Example 1-4 except that the freeze-dried thioalkyl-type glycosylated linker-HER2(8-16) conjugate (compound 20) and thioaryl-type glycosylated linker-HER2 (8-16) conjugate (compound 21) were used instead of the freeze-dried glycosylated (Cys (asialo)-type) linker-HER2(8-16) conjugate (compound 1) and glycosylated (Cys (disialo)-type) linker-HER2(8-16) conjugate (compound 8), and the reaction temperature was set to 4°C, 25°C, or 37°C.
- As a result of conducting the hydrolysis test and then HPLC analysis on the thioalkyl-type glycosylated linker-HER2(8-16) conjugate (compound 20), the production of the unmodified HER2(8-16) peptide (compound 10) was confirmed. The chemical formula given below represents the hydrolysis reaction of the thioalkyl-type glycosylated linker-HER2(8-16) conjugate (compound 20), wherein the compound 27 represents a glycosylated linker resulting from the hydrolysis reaction of the
compound 20. - The relative concentration of the starting material was plotted against incubation time as to the thioalkyl-type glycosylated linker-HER2(8-16) conjugate (compound 20) in the same way as in Example 1-4. The obtained graph is shown in
Figures 1A and 1B . The half-life of the thioalkyl-type glycosylated linker-HER2(8-16) conjugate (compound 20) under each condition is shown in Table 5.[Table 5] Table 5 Hydrolysis half-life of thioalkyl-type glycosylated linker-HER2(8-16) conjugate (compound 20) Entry Solvent Temperature Half- life 1 Acetate buffer solution (pH 4.0) 25°C > 30 days 2 Acetate buffer solution (pH 4.0) 37°C 24 days 3 PBS (pH 7.4) 4°C 9.6 days 4 PBS (pH 7.4) 25°C 5.1 days 5 PBS (pH 7.4) 37°C 32 hours - As shown in Table 5, the hydrolysis half-life in PBS (pH 7.4) was 5 days at 25°C and, by contrast, was 32 hours at 37°C. These results demonstrated that the thioalkyl-type glycosylated linker-HER2(8-16) conjugate (compound 20) exhibits a faster hydrolysis rate at a higher temperature (comparison between
Entries 1 and 2 (pH 4.0) and comparison among Entries 3, 4, and 5 (pH 7.4)). As a result of observing the influence of pH at 37°C, the hydrolysis half-life in the acetate buffer solution (pH 4.0) was 24 days. The hydrolysis was therefore confirmed to be promoted at a higher pH (comparison betweenEntries 2 and 5). Thus, the thioalkyl-type glycosylated linker-HER2(8-16) conjugate (compound 21) having a thioester bond, as with the glycosylated linker-HER2 (8-16) conjugate (compound 1 or 8) having an ester bond, was confirmed to exhibit a faster hydrolysis rate at a higher temperature and/or pH. - As a result of hydrolyzing the thioaryl-types glycosylated linker-HER2(8-16) conjugate (compound 21), followed by HPLC analysis, the production of the unmodified HER2(8-16) peptide (compound 10) was confirmed, as also found in the thioalkyl-type glycosylated linker-HER2(8-16) conjugate (compound 20). The chemical formula given below represents the hydrolysis reaction of the thioaryl-type glycosylated linker-HER2(8-16) conjugate (compound 21), wherein the compound 28 represents a glycosylated linker resulting from the hydrolysis reaction of the compound 21.
- The relative concentration of the starting material was also plotted against incubation time as to the thioaryl-type glycosylated linker-HER2(8-16) conjugate (compound 21). The obtained graph is shown in
Figures 2A and2B . The half-life of the thioaryl-type glycosylated linker-HER2(8-16) conjugate (compound 21) under each condition is shown in Table 6.[Table 6] Table 6 Hydrolysis half-life of thioaryl-type glycosylated linker-HER2(8-16) conjugate (compound 21) Entry Solvent Temperature Half- life 1 Acetate buffer solution (pH 4.0) 25°C 19 days 2 Acetate buffer solution (pH 4.0) 37 ° C 10 days 3 PBS (pH 7.4) 4°C 66 hours 4 PBS (pH 7.4) 25 °C 25 hours 5 PBS (pH 7.4) 37 °C 4.0 hours - As shown in Table 6, the hydrolysis half-life in PBS (pH 7.4) was 66 hours at 4°C and 25 hours at 25°C and, by contrast, was 4.0 hours at 37°C. These results demonstrated that the thioaryl-type glycosylated linker-HER2(8-16) conjugate (compound 21) exhibits a faster hydrolysis rate at a higher temperature (comparison between
Entries 1 and 2 (pH 4.0) and comparison among Entries 3, 4, and 5 (pH 7.4)). As a result of observing the influence of pH at 37°C, the hydrolysis half-life in the acetate buffer solution (pH 4.0) was 10 days. The hydrolysis was therefore confirmed to be promoted at a higher pH (comparison betweenEntries 2 and 5). Thus, the glycosylated linker-HER2(8-16) conjugate having a thioester bond, as with the glycosylated linker-HER2(8-16) conjugate having an ester bond, was confirmed to exhibit a faster hydrolysis rate at a higher temperature and/or pH. - The hydrolysis rates of the asialo sugar chain-attached linker-HER2 (8-16) conjugates, compounds 20, 21, and 1, in PBS (pH 7.4) at 37°C were ranked in the order of the thioaryl-type glycosylated linker-HER2(8-16) conjugate (compound 21) having a thioester bond (4.0 hours) > the thioalkyl-type glycosylated linker-HER2(8-16) conjugate (compound 20) having a thioester bond (32 hours) > the glycosylated linker-HER2(8-16) conjugate (compound 1) having an ester bond (78 hours) (
Figure 3 ). These results showed that the thioester-type exhibits a faster hydrolysis rate than that of the ester-type. These results also demonstrated that among the thioester-type forms, the thioaryl-type is hydrolyzed faster than the thioalkyl-type. - This chemerin 9 has agonistic activity against a G protein coupled receptor ChemR23 and therefore has the potential as a therapeutic and/or preventive agent for immunological diseases, inflammatory diseases, and diabetes mellitus. Chemerin 9, however, is known to undergo degradation by protease in vivo and be therefore very unstable (patent literature Japanese Patent Laid-Open No.
2010-229093 US2003096299 ) were bonded via an ester bond. - Rink-Amide-PEGA resin (100 µmol) was placed in a column for solid-phase synthesis and washed with dichloromethane and DMF. After the washing, a DMF (2.5 mL) solution containing Fmoc-Cys(Trt)-OH (234 mg, 0.399 mmol), HCTU (157 mg, 0.380 mmol), and 2,4,6-trimethylpyridine (79.6 µL, 0.600 mmol) was added thereto, and the mixture was shaken at room temperature for 10 minutes. After 10 minutes, the resin was washed with DMF, and this condensation operation was then repeated once again. After the completion of the second condensation operation, the resin was washed with DMF and dichloromethane. After the washing, the Fmoc protective group was removed by treatment with 20% piperidine in DMF to obtain
compound 2 bonded to Cys (Trt) on the resin. Thecompound 2 on the resin was washed with DMF. Then, a DMF (2.5 mL) solution of 4-hydroxymethyl-benzoic acid (61.1 mg, 0.402 mmol), HCTU (157.8 mg, 0.381 mmol), and DIPEA (104.5 µL, 0.600 mmol) was added thereto, and the mixture was shaken at room temperature. After 1 hour, the resin was washed with DMF and dichloromethane to obtain compound 3 bonded to HMBA-Cys (Trt) on the resin. - A dichloromethane (2.5 mL) solution containing Fmoc-Ser(tBu)-OH (96.9 mg, 0.253 mmol), MSNT (74.1 mg, 0.250 mmol), and N-methylimidazole (14.0 µL, 0.1.77 mnol) was added to an aliquot (50 µmol) of the obtained resin bonded to the compound 3, and the mixture was shaken at room temperature for 1 hour. After the shaking for 1 hour, the resin was washed with dichloromethane and DMF. After the washing, the Fmoc protective group was removed by treatment with 20% piperidine in DMF to obtain compound 30 bonded to Ser(tBu)-HMBA-Cys(Trt) on the resin. After washing with DMF, compound 31: Fmoc-Tyr(tBu)-Phe-Pro-Gly-Gln(Trt)-Phe-Ala-Phe-Ser(tBu)-HMBA-Cys(Trt) (SEQ ID NO: 13) bonded to the peptide with protected amino acid side chains was synthesized on the resin by a solid-phase peptide synthesis method according to the Fmoc method using a Prelude (trademark) peptide synthesizer. The condensation reaction in the solid-phase synthesis method was carried out in DMF using HCTU as a condensing agent and N-methylmorpholine as a base.
- The Fmoc protective group on the compound 31 was removed by treatment with 20% piperidine in DMF. The resin was washed with DMF and dichloromethane. Then, TFA:triisopropylsilane:ethanedithiol:water (= 90:5:2.5:2.5) was added thereto, and the mixture was shaken at room temperature for 3 hours. To the filtrate, cooled ether was added to obtain crude peptide 32: Tyr-Phe-Pro-Gly-Gln-Phe-Ala-Phe-Ser-HMBA-Cys (SEQ ID NO: 14) as precipitates.
- The obtained crude peptide 32 (14.2 mg), disialo-BrAc 9 (41.6 mg, 17.7 µmol), and TCEP (16.0 mg, 55.8 µmol) were dissolved in a 0.2 M phosphate buffer solution (pH 6.8, 1.15 mL) containing 7 M guanidine hydrochloride and reacted at room temperature. After 3 hours, the reaction solution was purified by HPLC [column: SHISEIDO CAPCELL PAK C18 UG-120 (5 µm), φ20 x 250 mm, flow rate: 7.0 mL/min, eluent A: 0.1% AcOH in water, eluent B: 0.09% AcOH/10% water/90% acetonitrile, gradient A:B = 70:30 → 55:45 (10 min) linear concentration gradient elution] to obtain a glycosylated (Cys (disialo)-type) linker-chemerin 9 conjugate (compound 29): Tyr-Phe-Pro-Gly-Gln-Phe-Ala-Phe-Ser-(sugar chain added-linker: HMBA-Cys (disialo)) (SEQ ID NO: 15) (19.0 mg, 5.33 µmol).
ESI-MS calcd for C151H217N19O77S [M+3H]3+ 1187.8, [M+4H]4+ 891.1, [M+5H]5+ 713.1, found 1187.8, 891.1, 713.1. - The hydrolysis behavior of the glycosylated (Cys (disialo)-type) linker-chemerin 9 conjugate (compound 29) obtained in Example 4-1 was traced. Specifically, the hydrolysis behavior was traced in the same way as in Example 1-4 except that the freeze-dried glycosylated (Cys (disialo)-type) linker-chemerin 9 conjugate (compound 29) was used instead of the freeze-dried glycosylated (Cys (asialo)-type) linker-HER2(8-16) conjugate (compound 1) and glycosylated (Cys (disialo)-type) linker-HER2(8-16) conjugate (compound 8), and an acetate buffer solution (pH 4.0), PBS (pH 7.4), and a borate buffer solution (pH 9.0) were used as buffer solutions.
- As a result of hydrolyzing the glycosylated (Cys (disialo)-type) linker-chemerin 9 conjugate (compound 29), followed by HPLC analysis, the production of the unmodified chemerin 9 peptide Tyr-Phe-Pro-Gly-Gln-Phe-Ala-Phe-Ser (compound 33) having the amino acid sequence of chemerin 9 was confirmed. The chemical formula given below represents the hydrolysis reaction of the glycosylated (Cys (disialo)-type) linker-chemerin 9 conjugate (compound 29).
- The relative concentration of the starting material was plotted against incubation time as to the glycosylated (Cys (disialo)-type) linker-chemerin 9 conjugate (compound 29) in the same way as in Example 1-4. The obtained graph is shown in
Figure 4 . The half-life of the glycosylated (Cys (disialo)-type) linker-chemerin 9 conjugate (compound 29) under each condition is shown in Table 7.[Table 7] Table 7 Hydrolysis half-life of glycosylated (Cys (disialo)-type) linker-chemerin 9 conjugate (compound 29) in buffer solution Entry Solvent Temperature Half- life 1 Acetate buffer solution (pH 4.0) 37°C > 30 days 2 PBS (pH 7.4) 37°C 45 hours 3 Borate buffer solution (pH 9.0) 37°C 0.83 hours 4 Borate buffer solution (pH 9.0) 25°C 2.4 hours 5 50 mM aqueous NaOH solution 25°C < 2 minutes - As shown in Table 7, the formed hydrolysate (compound 33) under the condition of 37°C in the acetate buffer solution (0.1 M, pH 4.0) was only 1% or less of the starting material (compound 29) after the 49-hour tracing, showing that the compound is hardly hydrolyzed (note that the elimination of sialic acid present at the non-reducing end in the sugar chain structure was observed; and the content of the desialylated form was increased from 4.7% to 8.7% before and after the start of the hydrolysis behavior test). On the other hand, it was found that the hydrolysis reaction proceeded in PBS (pH 7.4) and the borate buffer solution (pH 9.0) to obtain the unmodified peptide (compound 33) having the amino acid sequence of chemerin 9. The half-life determined from the obtained curve was 45.0 hours (1.9 days) at 37°C in PBS. As a result of tracing the hydrolysis behavior at 37°C in the borate buffer solution (0.1 M, pH 9.0), the half-life was 0.83 hours (50 minutes).
- As a result of dissolving the glycosylated (Cys (disialo)-type) linker-chemerin 9 conjugate (compound 29) in a 50 mM aqueous sodium hydroxide solution, this compound disappeared completely in 2 minutes to produce the unmodified peptide (compound 33) having the amino acid sequence of chemerin 9. The hydrolysis under basic conditions was confirmed to be very rapid, as reported in the literature.
- The glycosylated (Cys (disialo)-type) linker-chemerin 9 conjugate (compound 29), as with the other compounds, was confirmed to exhibit a faster hydrolysis rate at a higher pH (
Entries - After the hydrolysis behavior test, the reaction solution was subjected to HPLC [column: SHISEIDO CAPCELL PAK C18 UG-120 (5 µm), φ4.6 x 250 mm, flow rate: 0.7 mL/min, eluent A: 0.1% TFA in water, eluent B: 0.09% TFA/10% water/90% acetonitrile, gradient A:B = 95:5 → 50:50 (20 min) linear concentration gradient elution] analysis. As a result, the peak of the glycosylated linker moiety (compound 34) was confirmed at a retention time of 10.2 minutes.
- ESI-MS of compound 34: (m/z) calcd for C97H153N9O65S[M+2H]2+ 1258.93, [M+3H]3+ 839.62, found 1258.98, 839.65.
- From these results, it can be expected that the conjugate with the bonded glycosylated linker of the present invention can be prepared in a solution having a low pH at room temperature before administration without causing the hydrolysis of the compound and can be hydrolyzed under in vivo conditions after administration to exert the original activity of the peptide.
-
Claims (23)
- A glycosylated linker for bonding to a physiologically active substance having at least one carboxy group, wherein
the glycosylated linker is represented by the following formula (A):
X-R1-Y-R2 (A)
whereinX represents an oxygen atom (O) having a leaving group or a sulfur atom (S) having a leaving group;R1 is substituted or unsubstituted C1-C5 alkyl, substituted or unsubstituted C5-C16 aryl, substituted or unsubstituted C5-C16 heteroaryl, substituted or unsubstituted C2-C5 alkenyl, or substituted or unsubstituted C2-C5 alkynyl, or R1 represents -R3-R4-, -R4-R5, or -R3-R4-R5-, wherein R3 and R5 each represent substituted or unsubstituted C1-C5 alkyl, substituted or unsubstituted C2-C5 alkenyl, or substituted or unsubstituted C2-C5 alkynyl, and R4 represents substituted or unsubstituted C5-C16 aryl, substituted or unsubstituted C5-C16 heteroaryl, or a sulfur atom (S);Y may be present or absent, and when Y is present, Y represents -CO- or -CONH- (provided that C is bonded to R1 and N is bonded to R2); andR2 is a sugar chain, a glycosylated amino acid, or a glycosylated polypeptide, or R2 represents -R6-R7, wherein R6 represents a sugar chain, a glycosylated amino acid, or a glycosylated polypeptide, and R7 represents a hydrogen atom (H), -NH2, substituted or unsubstituted C1-C5 alkyl, substituted or unsubstituted C5-C16 aryl, substituted or unsubstituted C5-C16 heteroaryl, a nucleic acid, or PEG, andthe glycosylated linker becomes capable of binding to the carboxy group of the physiologically active substance by the elimination of the leaving group in the oxygen atom (O) or the sulfur atom (S). - The glycosylated linker according to claim 1, wherein
the glycosylated linker is a glycosylated linker represented by the following formula (A):
X-R1-Y-R2 (A)
whereinX represents a sulfur atom (S) having a leaving group;R1 represents -R3-R4-, -R4-R5-, or -R3-R4-R5-, wherein R3 and R5 each represent substituted or unsubstituted C1-C5 alkyl, substituted or unsubstituted C2-C5 alkenyl, or substituted or unsubstituted C2-C5 alkynyl, and R4 represents substituted or unsubstituted C5-C16 aryl, substituted or unsubstituted C5-C16 heteroaryl, or a sulfur atom (S);Y may be present or absent, and when Y is present, Y represents -CO- or -CONH- (provided that C is bonded to R1 and N is bonded to R2); andR2 represents a sugar chain, a glycosylated amino acid, or a glycosylated polypeptide. - The glycosylated linker according to claim 1, wherein
the glycosylated linker is a glycosylated linker represented by the following formula (A):
X-R1-Y-R2 (A)
whereinX represents an oxygen atom (O) having a leaving group or a sulfur atom (S) having a leaving group;R1 represents -R3-R4- or -R4-R5-, wherein R3 and R5 each represent substituted or unsubstituted C1-C5 alkyl, substituted or unsubstituted C2-C5 alkenyl, or substituted or unsubstituted C2-C5 alkynyl, and R4 represents substituted or unsubstituted C5-C16 aryl or substituted or unsubstituted C5-C16 heteroaryl;Y may be present or absent, and when Y is present, Y represents -CO- or -CONH- (provided that C is bonded to R1 and N is bonded to R2); andR2 represents a sugar chain, a glycosylated amino acid, or a glycosylated polypeptide. - The glycosylated linker according to claim 1, wherein
the sugar chain in the "glycosylated amino acid or glycosylated polypeptide" represented by R2 or R6 is bonded to Asn or Cys in the amino acid or the polypeptide. - The glycosylated linker according to claim 1, wherein
the sugar chain in the "sugar chain, glycosylated amino acid, or glycosylated polypeptide" represented by R2 or R6 consists of 4 or more sugar residues. - The glycosylated linker according to claim 1, wherein
the sugar chain in the "sugar chain, glycosylated amino acid, or glycosylated polypeptide" represented by R2 or R6 is a biantennary complex-type sugar chain, a triantennary complex-type sugar chain, or a tetraantennary complex-type sugar chain. - The glycosylated linker according to claim 6, wherein
the sugar chain is a biantennary complex-type sugar chain selected from the group consisting of a disialo sugar chain, a monosialo sugar chain, an asialo sugar chain, a di-GlcNAc sugar chain, and a dimannose sugar chain. - The glycosylated linker according to claim 1, wherein
the sugar chain in the "sugar chain, glycosylated amino acid, or glycosylated polypeptide" represented by R2 or R6 is a sugar chain represented by the following formula: - The glycosylated linker according to claim 1, wherein
the sugar chain in the "glycosylated amino acid or glycosylated polypeptide" is bonded to the amino acid or the polypeptide without the mediation of a linker. - A compound comprising a glycosylated linker moiety derived from a glycosylated linker according to any one of claims 1 to 9 and a physiologically active substance moiety, or a salt thereof, wherein
the physiologically active substance has at least one carboxy group, and
the glycosylated linker moiety is bonded to the physiologically active substance moiety through an ester bond or a thioester bond formed with the carboxy group of the physiologically active substance moiety by the elimination of the leaving group in the oxygen atom (O) or the sulfur atom (S). - The compound according to claim 10 or a salt thereof, wherein
the physiologically active substance is a low-molecular physiologically active substance or a biopolymer. - The compound according to claim 10 or a salt thereof, wherein
the biopolymer is selected from the group consisting of a protein, a polypeptide, a polynucleotide, and a peptide nucleic acid. - The compound according to claim 10 or a salt thereof, wherein
the compound or the salt thereof has improved water solubility compared with an unmodified physiologically active substance. - The compound according to claim 10 or a salt thereof, wherein
the improved water solubility is 10 to 1,000,000 times the water solubility of the "unmodified physiologically active substance" in terms of molar concentration. - The compound according to claim 10 or a salt thereof, wherein
the ester bond or the thioester bond formed between the oxygen atom (O) or the sulfur atom (S) in the glycosylated linker moiety and the carboxy group in the physiologically active substance moiety is cleaved in a manner dependent on pH and/or temperature. - A composition comprising a compound according to claim 10 or a salt thereof, wherein
sugar chains in the compound or the salt thereof are substantially homogeneous. - A pharmaceutical composition comprising(I) a compound according to claim 10 or a salt thereof, and(II) a pharmacologically acceptable carrier.
- The pharmaceutical composition according to claim 17, wherein
the physiologically active substance exerts its activity after administration to a subject. - The pharmaceutical composition according to claim 17, wherein
the pharmaceutical composition is used in vaccination. - A method for producing a compound comprising a glycosylated linker moiety and a physiologically active substance moiety, or a salt thereof, wherein
the glycosylated linker is represented by the following formula (A):
X-R1-Y-R2 (A)
whereinX represents an oxygen atom (O) having a leaving group or a sulfur atom (S) having a leaving group;R1 is substituted or unsubstituted C1-C5 alkyl, substituted or unsubstituted C5-C16 aryl, substituted or unsubstituted C5-C16 heteroaryl, substituted or unsubstituted C2-C5 alkenyl, or substituted or unsubstituted C2-C5 alkynyl, or R1 represents -R3-R4-, -R4-R5-, or -R3-R4-R5-, wherein R3 and R5 each represent substituted or unsubstituted C1-C5 alkyl, substituted or unsubstituted C2-C5 alkenyl, or substituted or unsubstituted C2-C5 alkynyl, and R4 represents substituted or unsubstituted C5-C16 aryl, substituted or unsubstituted C5-C16 heteroaryl, or a sulfur atom (S);Y may be present or absent, and when Y is present, Y represents -CO- or -CONH- (provided that C is bonded to R1 and N is bonded to R2); andR2 is a sugar chain, a glycosylated amino acid, or a glycosylated polypeptide, or R2 represents -R6-R7, wherein R6 represents a sugar chain, a glycosylated amino acid, or a glycosylated polypeptide, and R7 represents a hydrogen atom (H), substituted or unsubstituted C1-C5 alkyl, substituted or unsubstituted C5-C16 aryl, substituted or unsubstituted C5-C16 heteroaryl, a nucleic acid, or PEG, andthe physiologically active substance has at least one carboxy group,the method comprising the following step:(a) carrying out condensation reaction so as to form an ester bond or a thioester bond between the oxygen atom (O) or the sulfur atom (S) having a leaving group in the glycosylated linker and the carboxy group of the physiologically active substance. - The method for producing a compound or a salt thereof according to claim 20, wherein
the step of carrying out condensation reaction is carried out in a state where the glycosylated linker is bonded to a resin for solid-phase synthesis (but only in the case where the glycosylated linker has a glycosylated amino acid or a glycosylated polypeptide). - A method for producing a compound comprising a glycosylated linker moiety and a physiologically active substance moiety, or a salt thereof, wherein
the physiologically active substance has at least one carboxy group,
the method comprising the following steps:(a) bonding a linker represented by the following formula (B) to a resin,
the linker being represented by the following formula (B):
X-R1-Y-R2 (B)
whereinX represents an oxygen atom (O) having a leaving group or a sulfur atom (S) having a leaving group;R1 is substituted or unsubstituted C1-C5 alkyl, substituted or unsubstituted C5-C16 aryl, substituted or unsubstituted C5-C16 heteroaryl, substituted or unsubstituted C2-C5 alkenyl, or substituted or unsubstituted C2-C5 alkynyl, or R1 represents -R3-R4-, -R4-R5-, or -R3-R4-R5-, wherein R3 and R5 each represent substituted or unsubstituted C1-C5 alkyl, substituted or unsubstituted C2-C5 alkenyl, or substituted or unsubstituted C1-C5 alkynyl, and R4 represents substituted or unsubstituted C5-C16 aryl, substituted or unsubstituted C5-C16 heteroaryl, or a sulfur atom (S);Y may be present or absent, and when Y is present, Y represents -CO- or -CONH- (provided that C is bonded to R1 and N is bonded to R2); andR2 is an amino acid or a polypeptide, or R2 represents -R6-R7, wherein R6 represents an amino acid or a polypeptide, and R7 represents a hydrogen atom (H),-NH2, substituted or unsubstituted C1-C5 alkyl, substituted or unsubstituted C5-C16 aryl, substituted or unsubstituted C5-C16 heteroaryl, a nucleic acid, or PEG, whereinin this step, the carboxy group of the amino acid or the polypeptide represented by R2 in the linker binds to the resin;(b) bonding the linker bonded to the resin to the physiologically active substance, wherein the linker binds to the physiologically active substance through an ester bond or a thioester bond formed with the carboxy group of the physiologically active substance by the elimination of the leaving group in the oxygen atom (O) or the sulfur atom (S); and(c) adding a sugar chain to a side chain of the amino acid or the polypeptide represented by R2 in the linker. - A compound or a salt thereof obtainable by a production method according to claim 21 or 22.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012263752 | 2012-11-30 | ||
PCT/JP2013/081347 WO2014084110A1 (en) | 2012-11-30 | 2013-11-21 | Sugar chain-attached linker, compound containing sugar chain-attached linker and physiologically active substance or salt thereof, and method for producing same |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2926829A1 true EP2926829A1 (en) | 2015-10-07 |
EP2926829A4 EP2926829A4 (en) | 2016-11-09 |
EP2926829B1 EP2926829B1 (en) | 2018-07-25 |
Family
ID=50827748
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13859242.3A Active EP2926829B1 (en) | 2012-11-30 | 2013-11-21 | Sugar chain-attached linker, compound containing sugar chain-attached linker and physiologically active substance or salt thereof, and method for producing same |
Country Status (7)
Country | Link |
---|---|
US (1) | US10202469B2 (en) |
EP (1) | EP2926829B1 (en) |
JP (1) | JP6219308B2 (en) |
KR (1) | KR102227919B1 (en) |
CN (1) | CN104936613B (en) |
TW (1) | TWI642444B (en) |
WO (1) | WO2014084110A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2987863A4 (en) * | 2013-04-19 | 2017-04-19 | Glytech, Inc. | Method for producing activated sugar-chain derivative, and activated sugar-chain derivative |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106928313B (en) * | 2015-12-31 | 2020-12-11 | 深圳翰宇药业股份有限公司 | Synthesis method of C-terminal modified peptide |
US11566062B2 (en) * | 2017-12-20 | 2023-01-31 | Ares Trading S.A. | Methods for modulating protein mannosylation profiles using maduramycin, narasin, or salinomycin |
CN109329713B (en) * | 2018-12-01 | 2022-04-22 | 西华大学 | Method for degrading N-glycolylnersialic acid in yak meat |
CN111569083B (en) * | 2020-05-25 | 2024-09-27 | 杭州濡湜生物科技有限公司 | Targeting vector suitable for anti-African swine fever virus siRNA drug and application thereof |
CN113121718B (en) * | 2021-05-13 | 2022-09-23 | 东南大学 | Roselle polysaccharide PSGP-2 and preparation method and application thereof |
Family Cites Families (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3873887T2 (en) * | 1987-12-02 | 1993-02-04 | Neorx Corp | FILLABLE IMMUNE CONJUGATE FOR THE DELIVERY AND RELEASE OF AGENTS IN A NATURAL FORM. |
US5017693A (en) * | 1987-12-02 | 1991-05-21 | Neorx Corporation | Methods for introducing a sulfhydryl amino or hydroxyl groups to a compound |
JPH0778081B2 (en) * | 1990-07-19 | 1995-08-23 | 静岡大学長 | Method for synthesizing functionalized polymer |
JP2604930B2 (en) * | 1990-12-14 | 1997-04-30 | 株式会社ディ・ディ・エス研究所 | Hyaluronic acid and chondroitin derivatives |
JP2527885B2 (en) * | 1992-09-02 | 1996-08-28 | 株式会社ディ・ディ・エス研究所 | Heparin derivatives |
JP2001505872A (en) * | 1996-09-09 | 2001-05-08 | ジーランド ファーマシューティカルズ アクティーゼルスカブ | Peptide prodrug containing α-hydroxy acid linker |
DE69612205T2 (en) * | 1996-12-16 | 2001-08-30 | De Staat Der Nederlanden Vertegenwoordigd Door De Minister Van Welzijn, Volksgezondheid En Cultuur | Process for coupling polysaccharides and proteins |
US6441293B1 (en) | 2000-04-28 | 2002-08-27 | Labarbera Anthony | System for generating percussion sounds from stringed instruments |
KR100885149B1 (en) | 2001-06-19 | 2009-02-23 | 오츠카 가가쿠 가부시키가이샤 | Process for producing sugar chain asparagine derivative |
US6664043B2 (en) * | 2001-07-03 | 2003-12-16 | Bayer Corporation | Acridinium ester labels having hydrophilic modifiers |
US20030096299A1 (en) | 2001-07-09 | 2003-05-22 | Valerie Wittamer | Natural ligand of G protein coupled receptor ChemR23 and uses thereof |
US7943763B2 (en) | 2002-07-05 | 2011-05-17 | Otsuka Chemical Holdings Co., Ltd. | Process for preparing glycopeptides having asparagine-linked oligosaccharides, and the glycopeptides |
DE02020425T1 (en) * | 2002-09-11 | 2004-07-15 | Fresenius Kabi Deutschland Gmbh | Hasylated polypeptides, especially hasylated erythropoietin |
BR0314227A (en) * | 2002-09-11 | 2005-10-25 | Fresenius Kabi De Gmbh | Hydroxyalkyl Starch Derivatives |
TWI335920B (en) | 2002-12-24 | 2011-01-11 | Yasuhiro Kajihara | Sugar chain asparagine derivatives, sugar chain asparagine and sugar chain and manufacture thereof |
CN100378128C (en) | 2002-12-26 | 2008-04-02 | 大塚化学株式会社 | Three-branched sugar-chain asparagine derivatives, the sugar-chain asparagines, the sugar chains, and processes for producing these |
KR100876518B1 (en) | 2002-12-26 | 2008-12-31 | 오츠카 가가쿠 가부시키가이샤 | Oligosaccharide Asparagine Derivatives And Preparation Method thereof |
ES2701175T3 (en) | 2003-02-04 | 2019-02-21 | Glytech Inc | Process to produce asparagine derivative of sugar chain |
JP2007501870A (en) * | 2003-08-08 | 2007-02-01 | フレゼニウス・カビ・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング | Complex of hydroxyalkyl starch and G-CSF |
WO2005094898A2 (en) | 2004-03-23 | 2005-10-13 | Amgen Inc. | Chemically modified protein compositions and methods |
TW200643033A (en) * | 2005-03-08 | 2006-12-16 | Chugai Pharmaceutical Co Ltd | Conjugate of water-soluble modified hyaluronic acid and glp-1 analogue |
TWI342880B (en) | 2005-07-19 | 2011-06-01 | Otsuka Chemical Co Ltd | Method for producing sugar chain derivatives, and sugar chain derivatives |
KR101462454B1 (en) * | 2006-03-29 | 2014-11-17 | 가부시키가이샤 도우사 고가쿠 겐큐쇼 | Method for production of peptide thioester compound |
AU2008264750C1 (en) * | 2007-06-19 | 2013-01-10 | Glytech, Inc. | GLP-1 peptide having sugar chain attached thereto |
CN101335984B (en) | 2007-06-25 | 2011-11-16 | 华为技术有限公司 | Household miniature base station access control method and system |
EP3981761A3 (en) | 2008-02-01 | 2022-08-24 | Ascendis Pharma A/S | Intermediates for prodrugs |
RU2543157C2 (en) * | 2008-06-17 | 2015-02-27 | Глитек,Инк. | Glycated peptide glp-1 |
PT2330114T (en) | 2008-08-19 | 2017-11-17 | Glytech Inc | Glycoprotein production method and screening method |
US8597632B2 (en) * | 2008-10-03 | 2013-12-03 | Glycan Biosciences Llc | Anionic oligosaccharide conjugates |
JP2010229093A (en) | 2009-03-27 | 2010-10-14 | Banyu Pharmaceut Co Ltd | New chemerin r agonist |
JPWO2011007747A1 (en) * | 2009-07-16 | 2012-12-27 | 株式会社糖鎖工学研究所 | Glycosylated AILIM extracellular domain and method for producing the same |
US20120264684A1 (en) * | 2009-10-30 | 2012-10-18 | Yasuhiro Kajihara | Glycosylated Form of Antigenic GLP-1 Analogue |
KR101682466B1 (en) * | 2010-02-01 | 2016-12-05 | 롯데정밀화학 주식회사 | Acetylated cellulose ether and articles comprising the same |
-
2013
- 2013-11-21 KR KR1020157016613A patent/KR102227919B1/en active IP Right Grant
- 2013-11-21 CN CN201380071159.6A patent/CN104936613B/en active Active
- 2013-11-21 EP EP13859242.3A patent/EP2926829B1/en active Active
- 2013-11-21 WO PCT/JP2013/081347 patent/WO2014084110A1/en active Application Filing
- 2013-11-21 JP JP2014550150A patent/JP6219308B2/en active Active
- 2013-11-21 US US14/647,702 patent/US10202469B2/en active Active
- 2013-11-25 TW TW102142793A patent/TWI642444B/en active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2987863A4 (en) * | 2013-04-19 | 2017-04-19 | Glytech, Inc. | Method for producing activated sugar-chain derivative, and activated sugar-chain derivative |
US9879097B2 (en) | 2013-04-19 | 2018-01-30 | Glytech, Inc. | Method for producing activated sugar chain derivative and activated sugar chain derivative produced therefrom |
Also Published As
Publication number | Publication date |
---|---|
US10202469B2 (en) | 2019-02-12 |
TW201438743A (en) | 2014-10-16 |
TWI642444B (en) | 2018-12-01 |
CN104936613A (en) | 2015-09-23 |
JP6219308B2 (en) | 2017-10-25 |
EP2926829B1 (en) | 2018-07-25 |
KR20150102009A (en) | 2015-09-04 |
CN104936613B (en) | 2018-05-22 |
WO2014084110A1 (en) | 2014-06-05 |
JPWO2014084110A1 (en) | 2017-01-05 |
KR102227919B1 (en) | 2021-03-15 |
US20150306235A1 (en) | 2015-10-29 |
EP2926829A4 (en) | 2016-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6929610B2 (en) | Improved peptide preparation | |
JP6684396B2 (en) | Improved peptide preparations for insulin resistance | |
US10202469B2 (en) | Sugar chain-attached linker, compound containing sugar chain-attached linker and physiologically active substance or salt thereof, and method for producing same | |
CA2227891C (en) | Conjugation-stabilized therapeutic agent compositions, delivery and diagnostic formulations | |
KR102365582B1 (en) | Improved peptide pharmaceuticals for insulin resistance | |
ES2532116T3 (en) | Peptides derived with A-B-C-D and their therapeutic uses | |
ES2590679T3 (en) | Glycopolyallylation of proteins other than blood coagulation proteins | |
KR101324828B1 (en) | An single chain-insulin analog complex using an immunoglobulin fragment | |
JP2003206236A (en) | Conjugation-stabilized polypeptide composition | |
ES2856055T3 (en) | Glycopolysialylation of proteins other than blood clotting proteins | |
CN104114575B (en) | Compound, composition with hypoglycemic effect and application thereof | |
EP2924053B1 (en) | Glycosylated linker, compound containing glycosylated linker moiety and physiologically active substance moiety or salt thereof, and methods for producing said compound or salt thereof | |
CN111194223B (en) | Drug molecules with better binding affinity to albumin | |
JP2009536670A (en) | Compositions and methods for increasing cell permeability of compounds | |
ES2687801T3 (en) | Polypeptide presenting chains of sialylated sugars attached thereto | |
JP6987741B2 (en) | Method for Producing Physiologically Active Polypeptide Bond | |
ES2693273T3 (en) | Pharmaceutical preparation | |
TW201321404A (en) | Sugar-chain added polypeptide and pharmaceutical composition containing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20150610 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
RA4 | Supplementary search report drawn up and despatched (corrected) |
Effective date: 20161011 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: A61K 47/48 20060101AFI20161005BHEP Ipc: C07K 1/107 20060101ALI20161005BHEP Ipc: A61K 47/26 20060101ALI20161005BHEP Ipc: A61K 47/36 20060101ALI20161005BHEP |
|
17Q | First examination report despatched |
Effective date: 20170511 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602013040973 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: A61K0039000000 Ipc: A61K0047540000 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C07K 14/71 20060101ALI20180116BHEP Ipc: C07K 1/107 20060101ALI20180116BHEP Ipc: A61K 47/61 20170101ALI20180116BHEP Ipc: C07K 7/06 20060101ALI20180116BHEP Ipc: A61K 47/54 20170101AFI20180116BHEP Ipc: A61K 38/08 20060101ALI20180116BHEP Ipc: C08B 37/00 20060101ALI20180116BHEP Ipc: A61K 47/64 20170101ALI20180116BHEP Ipc: A61K 47/26 20060101ALI20180116BHEP Ipc: A61K 47/36 20060101ALI20180116BHEP |
|
INTG | Intention to grant announced |
Effective date: 20180207 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: YOSHIDA, KENTA Inventor name: OCHIAI, HIROFUMI |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
GRAL | Information related to payment of fee for publishing/printing deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR3 |
|
GRAR | Information related to intention to grant a patent recorded |
Free format text: ORIGINAL CODE: EPIDOSNIGR71 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
INTC | Intention to grant announced (deleted) | ||
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
INTG | Intention to grant announced |
Effective date: 20180615 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: SERVOPATENT GMBH, CH Ref country code: AT Ref legal event code: REF Ref document number: 1021060 Country of ref document: AT Kind code of ref document: T Effective date: 20180815 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602013040973 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20180725 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180725 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1021060 Country of ref document: AT Kind code of ref document: T Effective date: 20180725 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181026 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180725 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180725 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181025 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180725 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180725 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180725 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180725 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181125 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181025 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PK Free format text: BERICHTIGUNGEN |
|
RIC2 | Information provided on ipc code assigned after grant |
Ipc: C08B 37/00 20060101ALI20180116BHEP Ipc: C07K 1/107 20060101ALI20180116BHEP Ipc: A61K 47/64 20170101ALI20180116BHEP Ipc: A61K 47/36 20060101ALI20180116BHEP Ipc: A61K 47/26 20060101ALI20180116BHEP Ipc: A61K 47/61 20170101ALI20180116BHEP Ipc: C07K 14/71 20060101ALI20180116BHEP Ipc: C07K 7/06 20060101ALI20180116BHEP Ipc: A61K 47/54 20170101AFI20180116BHEP Ipc: A61K 38/08 20190101ALI20180116BHEP |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180725 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180725 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180725 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602013040973 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180725 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180725 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180725 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180725 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180725 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180725 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180725 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180725 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20190426 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181121 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180725 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20181130 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180725 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181121 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181121 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180725 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180725 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PCAR Free format text: NEW ADDRESS: WANNERSTRASSE 9/1, 8045 ZUERICH (CH) |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180725 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20131121 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180725 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20230928 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20230929 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20230926 Year of fee payment: 11 Ref country code: CH Payment date: 20231202 Year of fee payment: 11 |