EP2904880B1 - Method for operating a lamp unit for producing ultraviolet radiation and suitable lamp unit for this purpose - Google Patents
Method for operating a lamp unit for producing ultraviolet radiation and suitable lamp unit for this purpose Download PDFInfo
- Publication number
- EP2904880B1 EP2904880B1 EP13762118.1A EP13762118A EP2904880B1 EP 2904880 B1 EP2904880 B1 EP 2904880B1 EP 13762118 A EP13762118 A EP 13762118A EP 2904880 B1 EP2904880 B1 EP 2904880B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- lamp
- gas discharge
- voltage
- discharge lamp
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 22
- 230000005855 radiation Effects 0.000 title claims description 11
- 238000001816 cooling Methods 0.000 claims description 38
- 229910000497 Amalgam Inorganic materials 0.000 claims description 28
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 claims description 16
- 229910052753 mercury Inorganic materials 0.000 claims description 15
- 239000007789 gas Substances 0.000 description 72
- 239000003570 air Substances 0.000 description 9
- 238000005259 measurement Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 5
- 238000013461 design Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 230000007257 malfunction Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000001954 sterilising effect Effects 0.000 description 2
- 238000004659 sterilization and disinfection Methods 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B41/00—Circuit arrangements or apparatus for igniting or operating discharge lamps
- H05B41/14—Circuit arrangements
- H05B41/36—Controlling
- H05B41/38—Controlling the intensity of light
- H05B41/39—Controlling the intensity of light continuously
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B41/00—Circuit arrangements or apparatus for igniting or operating discharge lamps
- H05B41/14—Circuit arrangements
- H05B41/36—Controlling
- H05B41/38—Controlling the intensity of light
- H05B41/39—Controlling the intensity of light continuously
- H05B41/392—Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor
Definitions
- Known gas discharge lamps for generating ultraviolet radiation have a tubular discharge vessel made of quartz glass with a discharge space and two electrodes arranged within the discharge space.
- the discharge space is filled with a filling gas, for example an inert gas.
- the emission power depends in particular on the mercury partial pressure in the discharge space.
- the mercury in many gas discharge lamps is introduced into the discharge space in the form of a solid amalgam alloy. An equilibrium is established in the discharge space between the liquid or solid mercury in the mercury depot and the mercury present in gaseous form in the discharge space.
- the binding of the mercury in the amalgam influences the temperature dependence of the mercury partial pressure in the discharge space and fundamentally contributes to the fact that high outputs and power densities can be achieved with gas discharge lamps with an amalgam depot.
- the balance between the mercury bound in the amalgam and the free mercury depends on the operating temperature of the gas discharge lamp, in particular on the temperature of the amalgam depot. There is an optimal operating temperature at which the emission power of the gas discharge lamp is at its maximum.
- the parameters of the gas discharge lamp that influence the operating temperature are designed for an appropriate emission power in relation to the given ambient conditions. However, this only applies as long as the actual ambient conditions roughly correspond to the specified ambient conditions.
- the operating temperature of a gas discharge lamp is often influenced by the ambient conditions. Excessive heating occurs, for example, when the ambient air temperature is high or when the gas discharge lamp is accommodated in a narrow space. This can lead to the gas discharge lamp no longer being operated at its operating optimum.
- a temperature control element In order to ensure a maximum emission power that is independent of the ambient conditions during the operation of the gas discharge lamp, it was proposed to set the temperature of the amalgam depot via a temperature control element.
- a temperature control element For example, from the DE 101 29 755 A1 an operating device for a T5 fluorescent tube with a temperature control point is known, in which a temperature sensor for determining the temperature is arranged in the area of the temperature control point. Depending on the determined temperature, the temperature control point is tempered by a controllable filament heater, which ensures an optimal mercury vapor pressure in the fluorescent tube.
- a temperature sensor arranged on the surface of a lamp only detects the temperature changes of the surface. This takes place comparatively slowly, so that a regulation of the mercury partial pressure via the surface temperature has a certain inertia.
- determining the radiation emission with a UV sensor is only suitable to a limited extent for regulating and optimizing the emission power, since the one-off measurement of a non-maximum emission power does not allow any conclusions to be drawn about the cause of the non-maximum emission power.
- Possible reasons for a non-maximum emission power can be either too high or too low a temperature of the lamp, so that it can only be decided on the basis of further measured lamp parameters whether the lamp needs to be cooled or heated in order to increase its emission power.
- a regulation of the radiation emission using a UV sensor therefore requires the use of a further sensor - for example a temperature sensor - and is therefore also sluggish.
- the disclosure document DE 28 37 447 discloses a method for changing the voltage in a high intensity mercury discharge lamp in which the lamp is operated with constant current and the lamp voltage is monitored during operation. If the lamp voltage rises above a predetermined limit value, a pulsed gas flow is directed onto the outer surface of the lamp in order to maintain the desired voltage level.
- the invention is therefore based on the object of specifying a method for operating a lamp unit with a high emission power, which ensures rapid adaptation to changed operating conditions, which enables simple and inexpensive operation of the lamp unit, and which also enables the lamp unit to be operated independently of it Design enables.
- this object is achieved according to the invention based on a method of the type mentioned at the beginning in that the gas discharge lamp is a low-pressure amalgam lamp and is continuously cooled by the cooling unit during operation of the lamp unit.
- the emission power of a gas discharge lamp is primarily dependent on the temperature of the plasma generated by the gas discharge lamp.
- An optimal emission performance is obtained when the gas discharge lamp has an optimal plasma temperature.
- gas discharges of conventional lamp units are controlled either to an optimal temperature, for example of the lamp bulb, or to an optimal emission power during operation.
- conventional lamp units have a temperature sensor for determining the temperature or a UV sensor for determining the emission power, as well as a temperature control element that can be controlled as a function of the determined temperature or UV emission power.
- these two measurement parameters only allow an indirect conclusion to be drawn about the plasma temperature of the gas discharge lamp. Their value is also dependent on other influencing variables, for example the geometry of the lamp unit or the air flow within the lamp unit.
- indirect detection of the plasma temperature of the gas discharge lamp by means of an external temperature sensor or a UV sensor is therefore dispensed with.
- the operating temperature of the gas discharge lamp is determined via a voltage sensor which determines the voltage applied to the gas discharge lamp during operation of the lamp unit.
- the voltage measurement enables direct conclusions to be drawn about the current plasma temperature; on the other hand, it is independent of the geometry of the lamp unit, so that optimum operation of the lamp unit is made possible independent of the design of the lamp unit.
- the fact that the temperature sensor or UV sensor is dispensed with also enables an inexpensive and simple operating method.
- the comparatively sluggish temperature measurement or emission power measurement is omitted. According to the invention, these are replaced by a voltage measurement with low inertia, which results in a fast Adaptation of the lamp operating parameters to temperature changes of the gas discharge lamp and thus short reaction times are made possible.
- the method according to the invention assumes the application of an essentially constant lamp current to the gas discharge lamp.
- An essentially constant lamp current is to be understood as meaning a lamp current which deviates from its nominal value by at most ⁇ 2% during operation of the lamp.
- the corresponding lamp voltage is mainly dependent on the plasma temperature of the gas discharge lamp.
- the reason for this is the mercury partial pressure in the discharge vessel of the gas discharge lamp, which increases exponentially with increasing temperature, so that a lower operating voltage is associated with an increased mercury partial pressure. Consequently, the optimum operating temperature corresponds to a corresponding lamp voltage, the setting of which consequently leads to an operating temperature corresponding to the lamp voltage.
- the current lamp voltage that is to say the actual value of the lamp voltage
- the control unit is then transmitted to the control unit.
- the actual value can be transmitted by the control unit or by the voltage sensor. In the simplest case, the control unit reads out the actual values of the voltage sensor.
- the control unit compares the actual value with a previously provided nominal value of the lamp voltage and determines any deviation.
- a UV sensor is used to determine the emission power of the gas discharge lamp as a function of the lamp voltage, the lamp voltage at which the emission power of the gas discharge lamp is maximum being selected as the nominal value.
- the target value of the lamp voltage can be determined in general for all lamps of a certain type or individually for each lamp.
- a cooling element is provided for cooling the gas discharge lamp.
- the control unit sends a control signal regulating the cooling output to the cooling element in order to set the operating temperature.
- the control signal can vary depending on the amount of the deviation.
- the electronic ballast contains the voltage sensor and determines the actual value of the lamp voltage.
- the lamp unit has an electronic ballast with which the gas discharge lamp is operated.
- a ballast with a voltage sensor enables a simple, inexpensive and compact design of the lamp unit.
- Optimal emission values are achieved when the nominal value of the lamp voltage is determined individually at the factory for each gas discharge lamp, and then the individually determined nominal value is stored in a memory element connected to the gas discharge lamp, which is read out by the control unit when the gas discharge lamp is switched on.
- the optimum operating temperature and thus also the lamp voltage can also vary between identical gas discharge lamps due to the manufacturing process.
- a setpoint value of the lamp voltage that is individually determined at the factory for each gas discharge lamp enables optimal operation of the individual gas discharge lamps with a high emission power.
- the individual target value is stored in a memory element connected to the gas discharge lamp, it is connected to the individual gas discharge lamp in such a way that the target value can be made available to the control unit when the gas discharge lamp is switched on.
- a memory element enables an automatic target value adjustment when a lamp is changed.
- the memory element is preferably an electronic memory element, for example an EEPROM or PROM memory module.
- the nominal value of the lamp voltage can also be designed as machine-readable inscription on the lamp, preferably on the lamp cap.
- the gas discharge lamp is labeled with the target value of the lamp voltage, the target value being provided to the control unit once when the lamp is changed by manually entering the target value on the control unit.
- the storage element is an electronic storage element and if the storage element is read out when the gas discharge lamp is switched on.
- Electronic storage elements have two limit temperatures, namely a maximum storage temperature and a maximum operating temperature.
- the maximum storage temperature indicates the temperature up to which the electronic storage element can be stored without any loss of quality.
- the maximum operating temperature describes the maximum temperature at which the storage element can be operated without malfunctions.
- the storage element temperature is preferably below 150 ° C. during operation of the gas discharge lamp. Temperatures below 150 ° C do not affect the quality of the storage element.
- the memory element is read out at temperatures below 125 ° C.
- the storage element is read out when the gas discharge lamp is switched on, so that the temperature of the storage element is less than 125 ° C. during reading. This avoids a malfunction of the memory element.
- a storage element connected to the gas discharge lamp is usually heated during operation of the gas discharge lamp.
- the temperature of the storage element depends on its spatial position in relation to the gas discharge lamp.
- the storage element is preferably located in or on the base of the gas discharge lamp. A storage element arranged in this way can easily be connected to the electrical supply of the lamp, since the cables for the electrical supply of the lamp also lead into the base.
- the actual value of the lamp voltage is determined during operation of the lamp unit at regular time intervals, preferably at a frequency of 1 min -1 to 10 min -1 .
- the regular determination of the actual value of the lamp voltage enables the cooling output to be continuously adapted to the current operating state of the gas discharge lamp. If the actual value of the lamp voltage is determined with a frequency of less than 1 min -1 , the cooling output can only be adapted slowly to changed operating conditions. If there is an interval of more than 1 minute between two measurements of the actual value of the lamp voltage, the UV emission power can decrease comparatively sharply, which can impair the irradiation result. Since the lamp voltage also reacts to a change in the cooling capacity with a certain delay responds, there is no noticeable improvement at a frequency of more than 10 min -1 .
- the gas discharge lamp is continuously cooled by the cooling unit during operation of the lamp unit.
- Continuous cooling of the gas discharge lamp has the advantage that the gas discharge lamp can be both heated and cooled by adapting the cooling power.
- a reduction in the cooling capacity causes the gas discharge lamp to be heated; an increase in the cooling capacity leads to a lower temperature of the gas discharge lamp.
- a cooling element that generates an air flow is, for example, a fan, a blower or a fan. Since these cooling elements use air for cooling, they can be used flexibly. A method in which such a cooling element is used can be carried out inexpensively.
- the temperature control element is a cooling element for cooling the gas discharge lamp.
- a voltage sensor for determining the actual value of a lamp voltage is provided, the control unit having an input to which the actual value of the lamp voltage is applied as an input signal.
- Such a lamp unit is suitable for use in the method described above. Because a voltage sensor is provided which determines the actual value of the lamp voltage, this actual value can be used as a basis for controlling the cooling capacity of the cooling element.
- the control unit accordingly has an input for the actual value of the lamp voltage.
- the output signal of the control unit generated on the basis of the actual value of the lamp voltage is finally used to set the cooling capacity of the cooling element.
- the gas discharge lamp is operated on an electronic ballast.
- An electronic ballast with an integrated voltage sensor - compared to a device without this sensor - can be manufactured without considerable effort or high additional costs and it contributes to a compact design of the lamp unit.
- the gas discharge lamp comprises an electronic storage element in which the nominal value of the lamp voltage is stored.
- Electronic memory elements are, for example, EEPROM or PROM memory modules.
- An electronic storage element connected to the gas discharge lamp ensures that the setpoint value of the lamp voltage can be made available to the control unit when the gas discharge lamp is switched on.
- the memory element also enables an automatic setpoint adjustment, for example when changing a lamp.
- a storage element arranged in the base area of the gas discharge lamp can easily be connected to an electrical supply for the lamp, since the cables for the electrical supply of the lamp already lead through the base.
- the storage element is integrated into a connector plug of the gas discharge lamp.
- the gas discharge lamp has a connector plug for contacting a power supply.
- a memory element integrated in the connection plug enables simple electrical contacting of the connection element and simple reading of the memory element.
- the gas discharge lamp has an inscription which defines the setpoint value of the lamp voltage.
- FIG. 1 shows a lamp unit for the generation of ultraviolet radiation, to which the reference numeral 10 is assigned as a whole.
- the lamp unit is composed of a low-pressure amalgam lamp 11, an electronic ballast 14 for the low-pressure amalgam lamp 11, an axial fan 15 for cooling the low-pressure amalgam lamp 11 and a control unit 16 for the axial fan 15.
- a radial fan is provided instead of the axial fan 15, instead of the axial fan 15, a radial fan is provided.
- the low-pressure amalgam radiator 11 consists of a light tube made of quartz glass, which is closed at both ends with pinches 17 through which a power supply 18 is passed. Two helical electrodes 18a, 18b are arranged inside and at opposite ends of the light tube.
- the light tube encloses a discharge space 12.
- the discharge space 12 is filled with a gas mixture of argon and neon (50:50).
- An amalgam depot 13 is also located within the discharge space 12.
- the low-pressure amalgam lamp 11 is operated with an essentially constant lamp current. It is characterized by a nominal power of 200 W (with a nominal lamp current of 4.0 A), a light length of 50 cm, a spotlight outer diameter of 28 mm and a power density of around 4 W / cm.
- the low-pressure amalgam radiator 11 is operated on the electronic ballast 14, which is connected to the low-pressure amalgam radiator 11 via the connection lines 20.
- the electronic ballast 14 also has a mains voltage connection 19.
- the electronic ballast detects during operation 14 the actual values of the lamp voltage U L and the lamp current I L by means of an integrated voltage sensor.
- the electronic ballast 14 finally provides the determined lamp voltage U L as an input signal for the control unit 16.
- a memory element 22 in the form of an EEPROM is connected to the low-pressure amalgam lamp 11, on which a setpoint value of the lamp voltage determined individually at the factory for the low-pressure amalgam lamp 11 is stored.
- the control unit 16 reads out the nominal value of the lamp voltage when the low-pressure amalgam lamp 11 is switched on. During the operation of the low-pressure amalgam lamp 11, the control unit 16 queries the actual value of the lamp voltage U LIST at regular time intervals, that is to say at a frequency of 5 min -1 .
- the control unit 16 compares the actual value of the lamp voltage U LIST with the set value U LSOLL stored on the memory element , determines the deviation of the actual value from the set value and outputs a control signal that regulates the cooling capacity of the axial fan 15 .
- the diagram in Figure 2 shows the UV emission UV output and the lamp voltage U L of the low-pressure amalgam lamp 11 according to FIG Figure 1 with air cooling with constant air volume depending on the air temperature. Both the UV emission and the lamp voltage were determined simultaneously for the low-pressure amalgam lamp.
- the abscissa shows the air temperature T in ° C.
- the right ordinate of the diagram shows the ultraviolet radiation emission "UV output" of the low-pressure lamp in mW / cm 2
- the left ordinate of the diagram shows the lamp voltage U L in volts.
- the curve 2 also describes the curve of the lamp voltage as a function of the temperature.
- An operating temperature (III) of 52.5 ° C. thus corresponds to a lamp voltage of 108.6 V. It corresponds to a maximum emission power of the low-pressure amalgam lamp 11.
Landscapes
- Circuit Arrangements For Discharge Lamps (AREA)
- Discharge Lamps And Accessories Thereof (AREA)
Description
Die vorliegende Erfindung betrifft ein Verfahren zum Betreiben einer Lampeneinheit zur Erzeugung ultravioletter Strahlung, aufweisend eine Gasentladungslampe mit einem Entladungsraum, der für ein Quecksilberdepot zugänglich ist, ein elektronisches Vorschaltgerät und ein über eine Steuereinheit einstellbares Temperierelement zur Temperierung der Gasentladungslampe, wobei die Gasentladungslampe mit einem Lampenstrom und einer Lampenspannung betrieben wird, und wobei während einer Betriebsphase an der Gasentladungslampe ein im Wesentlichen konstanter Lampenstrom anliegt, das Temperierelement ein Kühlelement zur Kühlung der Gasentladungslampe ist, und das Verfahren folgende Verfahrensschritte aufweist:
- (a) Ermitteln eines Ist-Werts der Lampenspannung mittels eines Spannungssensors,
- (b) Übermitteln des Ist-Werts der Lampenspannung an die Steuereinheit,
- (c) Vergleichen des Ist-Werts mit einem Soll-Wert der Lampenspannung durch die Steuereinheit,
- (d) Ausgabe eines Steuersignals durch die Steuereinheit an das Kühlelement zur Einstellung der Kühlleistung.
- (a) determining an actual value of the lamp voltage by means of a voltage sensor,
- (b) transmission of the actual value of the lamp voltage to the control unit,
- (c) the control unit compares the actual value with a target value of the lamp voltage,
- (d) Output of a control signal by the control unit to the cooling element for setting the cooling output.
Bekannte Gasentladungslampen zur Erzeugung ultravioletter Strahlung weisen ein röhrenförmiges Entladungsgefäß aus Quarzglas mit einem Entladungsraum, sowie zwei innerhalb des Entladungsraums angeordnete Elektroden auf. Der Entladungsraum ist mit einem Füllgas, beispielsweise einem Edelgas, gefüllt.Known gas discharge lamps for generating ultraviolet radiation have a tubular discharge vessel made of quartz glass with a discharge space and two electrodes arranged within the discharge space. The discharge space is filled with a filling gas, for example an inert gas.
Bei Gasentladungslampen hängt die Emissionsleistung insbesondere vom Quecksilberpartialdruck im Entladungsraum ab. Um höhere Betriebstemperaturen zu ermöglichen, ist bei vielen Gasentladungslampen das Quecksilber in Form einer festen Amalgamlegierung in den Entladungsraum eingebracht. Im Entladungsraum stellt sich ein Gleichgewicht zwischen dem im Quecksilberdepot flüssig beziehungsweise fest und dem im Entladungsraum gasförmig vorliegenden Quecksilber ein. Die Bindung des Quecksilbers im Amalgam beeinflusst die Temperaturabhängigkeit des Quecksilberpartialdruckes im Entladungsraum und trägt grundsätzlich dazu bei, dass bei Gasentladungslampen mit einem Amalgamdepot hohe Leistungen und Leistungsdichten erzielbar sind.In the case of gas discharge lamps, the emission power depends in particular on the mercury partial pressure in the discharge space. To enable higher operating temperatures, the mercury in many gas discharge lamps is introduced into the discharge space in the form of a solid amalgam alloy. An equilibrium is established in the discharge space between the liquid or solid mercury in the mercury depot and the mercury present in gaseous form in the discharge space. The binding of the mercury in the amalgam influences the temperature dependence of the mercury partial pressure in the discharge space and fundamentally contributes to the fact that high outputs and power densities can be achieved with gas discharge lamps with an amalgam depot.
Allerdings hängt bei einer Gasentladungslampe mit einem Amalgamdepot das Gleichgewicht zwischen dem im Amalgam gebundenen und dem freien Quecksilber von der Betriebstemperatur der Gasentladungslampe, insbesondere von der Temperatur des Amalgamdepots, ab. Es existiert eine optimale Betriebstemperatur, bei der die Emissionsleistung der Gasentladungslampe maximal ist.However, in a gas discharge lamp with an amalgam depot, the balance between the mercury bound in the amalgam and the free mercury depends on the operating temperature of the gas discharge lamp, in particular on the temperature of the amalgam depot. There is an optimal operating temperature at which the emission power of the gas discharge lamp is at its maximum.
Die die Betriebstemperatur beeinflussenden Parameter der Gasentladungslampe, beispielswiese die nominale Spannung und der nominale Strom, sind zwar bezogen auf vorgegebene Umgebungsbedingungen auf eine angemessenen Emissionsleistung ausgelegt. Dies gilt jedoch nur solange die tatsächlichen Umgebungsbedingungen in etwa den vorgegebenen Umgebungsbedingungen entsprechen. Die Betriebstemperatur einer Gasentladungslampe wird in der Praxis häufig von den Umgebungsbedingungen beeinflusst. Eine übermäßige Erwärmung tritt beispielsweise bei einer hohen Umgebungslufttemperatur oder bei der Unterbringung der Gasentladungslampe auf engem Raum auf. Dies kann dazu führen, dass die Gasentladungslampe nicht mehr in ihrem Betriebsoptimum betrieben wird.The parameters of the gas discharge lamp that influence the operating temperature, for example the nominal voltage and the nominal current, are designed for an appropriate emission power in relation to the given ambient conditions. However, this only applies as long as the actual ambient conditions roughly correspond to the specified ambient conditions. In practice, the operating temperature of a gas discharge lamp is often influenced by the ambient conditions. Excessive heating occurs, for example, when the ambient air temperature is high or when the gas discharge lamp is accommodated in a narrow space. This can lead to the gas discharge lamp no longer being operated at its operating optimum.
Um während des Betriebs der Gasentladungslampe eine von den Umgebungsbedingungen unabhängige maximale Emissionsleistung zu gewährleisten, wurde vorgeschlagen, die Temperatur des Amalgamdepots über ein Temperierelement einzustellen. So ist beispielsweise aus der
Darüber hinaus ist aus der
Allerdings erfasst ein auf der Oberfläche einer Lampe angeordneter Temperatursensor nur die Temperaturänderungen der Oberfläche. Diese erfolgen vergleichsweise langsam, so dass eine Regelung des Quecksilberpartialdrucks über die Oberflächentemperatur eine gewisse Trägheit aufweist.However, a temperature sensor arranged on the surface of a lamp only detects the temperature changes of the surface. This takes place comparatively slowly, so that a regulation of the mercury partial pressure via the surface temperature has a certain inertia.
Darüber hinaus ist auch die Bestimmung der Strahlungsemission mit einem UV-Sensor nur bedingt zur Regelung und Optimierung der Emissionsleistung geeignet, da die einmalige Messung einer nicht maximalen Emissionsleistung keinen Rückschluss auf die Ursache der nicht maximalen Emissionsleistung erlaubt. Mögliche Gründe für eine nicht maximale Emissionsleistung können sowohl eine zu hohe als auch eine zu niedrige Temperatur der Lampe sein, so dass nur unter Zugrundelegung weiterer gemessener Lampenparameter entschieden werden kann, ob die Lampe gekühlt oder erwärmt werden muss, um ihre Emissionsleistung zu erhöhen. Eine Regelung der Strahlungsemission unter Einsatz eines UV-Sensors bedingt daher die Verwendung eines weiteren Sensors - beispielsweise eines Temperatursensors - und ist somit auch träge.In addition, determining the radiation emission with a UV sensor is only suitable to a limited extent for regulating and optimizing the emission power, since the one-off measurement of a non-maximum emission power does not allow any conclusions to be drawn about the cause of the non-maximum emission power. Possible reasons for a non-maximum emission power can be either too high or too low a temperature of the lamp, so that it can only be decided on the basis of further measured lamp parameters whether the lamp needs to be cooled or heated in order to increase its emission power. A regulation of the radiation emission using a UV sensor therefore requires the use of a further sensor - for example a temperature sensor - and is therefore also sluggish.
Die Offenlegungsschrift
Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren zum Betreiben einer Lampeneinheit mit einer hohen Emissionsleistung anzugeben, das eine schnelle Anpassung an veränderte Betriebsbedingungen gewährleistet, das einen einfachen und kostengünstigen Betrieb der Lampeneinheit ermöglicht, und das darüber hinaus einen Betrieb der Lampeneinheit unabhängig von deren Bauform ermöglicht.The invention is therefore based on the object of specifying a method for operating a lamp unit with a high emission power, which ensures rapid adaptation to changed operating conditions, which enables simple and inexpensive operation of the lamp unit, and which also enables the lamp unit to be operated independently of it Design enables.
Hinsichtlich des Verfahrens wird diese Aufgabe ausgehend von einem Verfahren der eingangs genannten Gattung erfindungsgemäß dadurch gelöst, dass die Gasentladungslampe ein Niederdruck-Amalgamstrahler ist und während des Betriebs der Lampeneinheit von der Kühleinheit kontinuierlich gekühlt wird.With regard to the method, this object is achieved according to the invention based on a method of the type mentioned at the beginning in that the gas discharge lamp is a low-pressure amalgam lamp and is continuously cooled by the cooling unit during operation of the lamp unit.
Die Emissionsleistung einer Gasentladungslampe ist vorrangig von der Temperatur des von der Gasentladungslampe erzeugten Plasmas abhängig. Eine optimale Emissionsleistung wird erhalten, wenn die Gasentladungslampe eine optimale Plasmatemperatur aufweist. Da allerdings die Plasmatemperatur einer direkten Messung nicht zugänglich ist, werden Gasentladungen herkömmlicher Lampeneinheitenwährend des Betriebs entweder auf eine optimale Temperatur, beispielsweise des Lampenkolbens, oder auf eine optimale Emissionsleistung gesteuert. Herkömmliche Lampeneinheiten weisen hierzu einen Temperatursensor zur Bestimmung der Temperatur oder einen UV-Sensor zur Bestimmung der Emissionsleistung sowie ein in Abhängigkeit von der ermittelten Temperatur beziehungsweise UV-Emissionsleistung steuerbares Temperierelement auf. Diese beiden Messparameter ermöglichen allerdings nur indirekt einen Rückschluss auf die Plasmatemperatur der Gasentladungslampe. Ihr Wert ist darüber hinaus von weiteren Einflussgrößen, beispielsweise der Geometrie der Lampeneinheit oder der Luftführung innerhalb der Lampeneinheit abhängig.The emission power of a gas discharge lamp is primarily dependent on the temperature of the plasma generated by the gas discharge lamp. An optimal emission performance is obtained when the gas discharge lamp has an optimal plasma temperature. However, since the plasma temperature cannot be measured directly, gas discharges of conventional lamp units are controlled either to an optimal temperature, for example of the lamp bulb, or to an optimal emission power during operation. For this purpose, conventional lamp units have a temperature sensor for determining the temperature or a UV sensor for determining the emission power, as well as a temperature control element that can be controlled as a function of the determined temperature or UV emission power. However, these two measurement parameters only allow an indirect conclusion to be drawn about the plasma temperature of the gas discharge lamp. Their value is also dependent on other influencing variables, for example the geometry of the lamp unit or the air flow within the lamp unit.
Beim erfindungsgemäßen Verfahren wird daher auf eine indirekte Erfassung der Plasmatemperatur der Gasentladungslampe mittels eines externen Temperatursensors oder eines UV-Sensors verzichtet. Stattdessen ist vorgesehen, dass die Bestimmung der Betriebstemperatur der Gasentladungslampe über einen Spannungssensor erfolgt, der die während des Betriebs der Lampeneinheit an der Gasentladungslampe anliegende Spannung bestimmt. Durch die Spannungsmessung wird einerseits ein direkter Rückschluss auf die aktuelle Plasmatemperatur ermöglicht; sie ist anderseits unabhängig von der Geometrie der Lampeneinheit, so dass ein optimaler Betrieb der Lampeneinheit unabhängig von der Bauform der Lampeneinheit ermöglicht wird. Dadurch, dass auf den Temperatursensor beziehungsweise UV-Sensor verzichtet wird, wird darüber hinaus ein kostengünstiges und einfaches Betriebsverfahren ermöglicht. Weiterhin entfällt die vergleichsweise träge Temperaturmessung oder Emissionsleistungsmessung. Diese sind erfindungsgemäß durch eine Spannungsmessung geringer Trägheit ersetzt, wodurch eine schnelle Anpassung der Lampenbetriebsparameter an Temperaturänderungen der Gasentladungslampe und damit kurze Reaktionszeiten ermöglicht werden.In the method according to the invention, indirect detection of the plasma temperature of the gas discharge lamp by means of an external temperature sensor or a UV sensor is therefore dispensed with. Instead, it is provided that the operating temperature of the gas discharge lamp is determined via a voltage sensor which determines the voltage applied to the gas discharge lamp during operation of the lamp unit. On the one hand, the voltage measurement enables direct conclusions to be drawn about the current plasma temperature; on the other hand, it is independent of the geometry of the lamp unit, so that optimum operation of the lamp unit is made possible independent of the design of the lamp unit. The fact that the temperature sensor or UV sensor is dispensed with also enables an inexpensive and simple operating method. Furthermore, the comparatively sluggish temperature measurement or emission power measurement is omitted. According to the invention, these are replaced by a voltage measurement with low inertia, which results in a fast Adaptation of the lamp operating parameters to temperature changes of the gas discharge lamp and thus short reaction times are made possible.
Das erfindungsgemäße Verfahren setzt das Anliegen eines im Wesentlichen konstanten Lampenstroms an der Gasentladungslampe voraus. Unter einem im Wesentlichen konstanten Lampenstrom ist ein Lampenstrom zu verstehen, der während des Betriebs der Lampe um höchstens ± 2% von seinem nominalen Wert abweicht.The method according to the invention assumes the application of an essentially constant lamp current to the gas discharge lamp. An essentially constant lamp current is to be understood as meaning a lamp current which deviates from its nominal value by at most ± 2% during operation of the lamp.
Bei einer Gasentladungslampe, die mit einem konstanten Lampenstrom betrieben wird, ist die korrespondierende Lampenspannung hauptsächlich von der Plasmatemperatur der Gasentladungslampe abhängig. Ursache hierfür ist der Quecksilberpartialdruck im Entladungsgefäß der Gasentladungslampe, der mit zunehmender Temperatur exponentiell ansteigt, so dass mit einem erhöhten Quecksilberpartialdruck eine geringere Betriebsspannung einhergeht. Folglich entspricht der optimalen Betriebstemperatur eine korrespondierende Lampenspannung, deren Einstellung konsequenterweise zu einer der Lampenspannung entsprechenden Betriebstemperatur führt.In the case of a gas discharge lamp that is operated with a constant lamp current, the corresponding lamp voltage is mainly dependent on the plasma temperature of the gas discharge lamp. The reason for this is the mercury partial pressure in the discharge vessel of the gas discharge lamp, which increases exponentially with increasing temperature, so that a lower operating voltage is associated with an increased mercury partial pressure. Consequently, the optimum operating temperature corresponds to a corresponding lamp voltage, the setting of which consequently leads to an operating temperature corresponding to the lamp voltage.
Zur Einstellung der Betriebstemperatur wird erfindungsgemäß zunächst die aktuelle Lampenspannung, also der Ist-Wert der Lampenspannung, mittels eines Spannungssensors bestimmt, die anschließend an die Steuereinheit übermittelt wird. Das Übermitteln des Ist-Wertes kann durch die Steuereinheit oder durch den Spannungssensor erfolgen. Im einfachsten Fall liest die Steuereinheit die Ist-Werte des Spannungssensors aus.To set the operating temperature, according to the invention, first the current lamp voltage, that is to say the actual value of the lamp voltage, is determined by means of a voltage sensor, which is then transmitted to the control unit. The actual value can be transmitted by the control unit or by the voltage sensor. In the simplest case, the control unit reads out the actual values of the voltage sensor.
Die Steuereinheit vergleicht den Ist-Wert mit einem zuvor bereitgestellten Soll-Wert der Lampenspannung und ermittelt eine eventuelle Abweichung.The control unit compares the actual value with a previously provided nominal value of the lamp voltage and determines any deviation.
Zur Ermittlung des Soll-Werts der Lampenspannung wird mit einem UV-Sensor die Emissionsleistung der Gasentladungslampe in Abhängigkeit von der Lampenspannung bestimmt, wobei als Soll-Wert die Lampenspannung gewählt wird, bei der die Emissionsleistung der Gasentladungslampe maximal ist. Die Bestimmung des Soll-Werts der Lampenspannung kann generell für alle Lampen eines bestimmten Typs oder individuell für jede Lampe erfolgen.To determine the nominal value of the lamp voltage, a UV sensor is used to determine the emission power of the gas discharge lamp as a function of the lamp voltage, the lamp voltage at which the emission power of the gas discharge lamp is maximum being selected as the nominal value. The target value of the lamp voltage can be determined in general for all lamps of a certain type or individually for each lamp.
Zur Einstellung der Betriebstemperatur beziehungsweise der Lampenspannung ist schließlich ein Kühlelement zur Kühlung der Gasentladungslampe vorgesehen. In Abhängigkeit von der ermittelten Abweichung gibt die Steuereinheit zur Einstellung der Betriebstemperatur ein die Kühlleistung regulierendes Steuersignal an das Kühlelement. Das Steuersignal kann in Abhängigkeit vom Betrag der Abweichung variieren.Finally, to set the operating temperature or the lamp voltage, a cooling element is provided for cooling the gas discharge lamp. Depending on the determined deviation, the control unit sends a control signal regulating the cooling output to the cooling element in order to set the operating temperature. The control signal can vary depending on the amount of the deviation.
Bei einer vorteilhaften Modifikation des erfindungsgemäßen Verfahrens ist vorgesehen, dass das elektronische Vorschaltgerät den Spannungssensor enthält und den Ist-Wert der Lampenspannung ermittelt.In an advantageous modification of the method according to the invention, it is provided that the electronic ballast contains the voltage sensor and determines the actual value of the lamp voltage.
Die Lampeneinheit weist ein elektronisches Vorschaltgerät auf, mit dem die Gasentladungslampe betrieben wird. Ein Vorschaltgerät mit einem Spannungssensor ermöglicht eine einfache, günstige und kompakte Bauform der Lampeneinheit.The lamp unit has an electronic ballast with which the gas discharge lamp is operated. A ballast with a voltage sensor enables a simple, inexpensive and compact design of the lamp unit.
Optimale Emissionswerte werden erreicht, wenn der Soll-Wert der Lampenspannung für jede Gasentladungslampe werksseitig individuell bestimmt wird, und dann der individuell bestimmte Soll-Wert in einem mit der Gasentladungslampe verbundenen Speicherelement gespeichert wird, das beim Einschalten der Gasentladungslampe von der Steuereinheit ausgelesen wird.Optimal emission values are achieved when the nominal value of the lamp voltage is determined individually at the factory for each gas discharge lamp, and then the individually determined nominal value is stored in a memory element connected to the gas discharge lamp, which is read out by the control unit when the gas discharge lamp is switched on.
Die optimale Betriebstemperatur und damit auch die Lampenspannung können herstellungsbedingt auch zwischen baugleichen Gasentladungslampen variieren. Ein werksseitig individuell für jede Gasentladungslampe bestimmter Soll-Wert der Lampenspannung ermöglicht einen optimalen Betrieb der einzelnen Gasentladungslampen mit einer hohen Emissionsleistung. Dadurch, dass der individuelle Soll-Wert in einem mit der Gasentladungslampe verbunden Speicherelement gespeichert wird, ist dieser mit der individuellen Gasentladungslampe derart verbunden, dass der Soll-Wert beim Einschalten der Gasentladungslampe der Steuereinheit zur Verfügung gestellt werden kann. Darüber hinaus ermöglicht ein solches Speicherelement eine automatische Soll-Wert-Anpassung bei einem Lampenwechsel. Vorzugsweise ist das Speicherelement ein elektronisches Speicherelement, beispielsweise ein EEPROM- oder PROM-Speicherbaustein. Der Soll-Wert der Lampenspannung kann darüber hinaus auch als maschinenlesbare Beschriftung auf der Lampe, vorzugsweise auf dem Lampensockel, ausgeführt sein.The optimum operating temperature and thus also the lamp voltage can also vary between identical gas discharge lamps due to the manufacturing process. A setpoint value of the lamp voltage that is individually determined at the factory for each gas discharge lamp enables optimal operation of the individual gas discharge lamps with a high emission power. Because the individual target value is stored in a memory element connected to the gas discharge lamp, it is connected to the individual gas discharge lamp in such a way that the target value can be made available to the control unit when the gas discharge lamp is switched on. In addition, such a memory element enables an automatic target value adjustment when a lamp is changed. The memory element is preferably an electronic memory element, for example an EEPROM or PROM memory module. The nominal value of the lamp voltage can also be designed as machine-readable inscription on the lamp, preferably on the lamp cap.
In einer alternativen Ausführungsform ist vorgesehen, dass die Gasentladungslampe mit dem Soll-Wert der Lampenspannung beschriftet ist, wobei das Bereitstellen des Soll-Wertes an die Steuereinheit einmalig beim Lampenwechsel durch manuelle Eingabe des Soll-Wertes an der Steuereinheit erfolgt.In an alternative embodiment it is provided that the gas discharge lamp is labeled with the target value of the lamp voltage, the target value being provided to the control unit once when the lamp is changed by manually entering the target value on the control unit.
Es hat sich bewährt, wenn das Speicherelement ein elektronisches Speicherelement ist, und wenn das Speicherelement beim Einschalten der Gasentladungslampe ausgelesen wird.It has proven useful if the storage element is an electronic storage element and if the storage element is read out when the gas discharge lamp is switched on.
Elektronische Speicherelemente weisen zwei Grenztemperaturen, nämlich eine maximale Lagertemperatur und eine maximale Betriebstemperatur auf. Die maximale Lagertemperatur gibt an, bis zu welcher Temperatur das elektronische Speicherelement ohne Qualitätsverluste gelagert werden kann. Die maximale Betriebstemperatur beschreibt die maximale Temperatur, bei der das Speicherelement ohne Fehlfunktionen betrieben werden kann.Electronic storage elements have two limit temperatures, namely a maximum storage temperature and a maximum operating temperature. The maximum storage temperature indicates the temperature up to which the electronic storage element can be stored without any loss of quality. The maximum operating temperature describes the maximum temperature at which the storage element can be operated without malfunctions.
Vorzugsweise liegt die Speicherelement-Temperatur während des Betriebs der Gasentladungslampe unterhalb von 150 °C. Temperaturen unterhalb von 150 °C beeinträchtigen die Qualität des Speicherelements nicht.The storage element temperature is preferably below 150 ° C. during operation of the gas discharge lamp. Temperatures below 150 ° C do not affect the quality of the storage element.
Temperaturen oberhalb von 125 °C können die Funktionsfähigkeit elektronischer Speicherelemente beeinträchtigen. Das Speicherelement wird bei Temperaturen unterhalb von 125 °C ausgelesen. Das Auslesen des Speicherelements erfolgt beim Einschalten der Gasentladungslampe, so dass die Temperatur des Speicherelements während des Auslesens weniger als 125°C beträgt. Hierdurch wird eine Fehlfunktion des Speicherelements vermieden.Temperatures above 125 ° C can impair the functionality of electronic storage elements. The memory element is read out at temperatures below 125 ° C. The storage element is read out when the gas discharge lamp is switched on, so that the temperature of the storage element is less than 125 ° C. during reading. This avoids a malfunction of the memory element.
Ein mit der Gasentladungslampe verbundenes Speicherelement wird in der Regel während des Betriebs der Gasentladungslampe erwärmt. Die Temperatur des Speicherelements hängt von dessen räumlicher Position bezogen auf die Gasentladungslampe ab. Vorzugsweise befindet sich das Speicherelement im oder am Sockel der Gasentladungslampe. Ein derart angeordnetes Speicherelement kann einfach mit der elektrischen Versorgung der Lampe verbunden werden, da auch die Kabel zur elektrischen Versorgung der Lampe in den Sockel führen.A storage element connected to the gas discharge lamp is usually heated during operation of the gas discharge lamp. The temperature of the storage element depends on its spatial position in relation to the gas discharge lamp. The storage element is preferably located in or on the base of the gas discharge lamp. A storage element arranged in this way can easily be connected to the electrical supply of the lamp, since the cables for the electrical supply of the lamp also lead into the base.
Es hat sich als günstig erwiesen, wenn der Ist-Wert der Lampenspannung während des Betriebs der Lampeneinheit in regelmäßigen Zeitabständen, vorzugsweise mit einer Frequenz von 1 min-1 bis 10 min-1, ermittelt wird.It has proven to be beneficial if the actual value of the lamp voltage is determined during operation of the lamp unit at regular time intervals, preferably at a frequency of 1 min -1 to 10 min -1 .
Das regelmäßige Ermitteln des Ist-Wertes der Lampenspannung ermöglicht eine fortlaufende Anpassung der Kühlleistung an den aktuellen Betriebszustand der Gasentladungslampe. Erfolgt die Ermittlung des Ist-Werts der Lampenspannung mit einer Frequenz von weniger als 1 min-1, kann die Kühlleistung nur langsam an veränderte Betriebsbedingungen angepasst werden. Liegt zwischen zwei Messungen des Ist-Werts der Lampenspannung ein Zeitabstand von mehr als 1 Minute, kann die UV-Emissionsleistung vergleichsweise stark absinken, wodurch das Bestrahlungsergebnis beeinträchtigt werden kann. Da auch die Lampenspannung mit einer gewissen Verzögerung auf eine Änderung der Kühlleistung reagiert, ergibt sich bei einer Frequenz von mehr als 10 min-1 keine nennenswerte Verbesserung mehr.The regular determination of the actual value of the lamp voltage enables the cooling output to be continuously adapted to the current operating state of the gas discharge lamp. If the actual value of the lamp voltage is determined with a frequency of less than 1 min -1 , the cooling output can only be adapted slowly to changed operating conditions. If there is an interval of more than 1 minute between two measurements of the actual value of the lamp voltage, the UV emission power can decrease comparatively sharply, which can impair the irradiation result. Since the lamp voltage also reacts to a change in the cooling capacity with a certain delay responds, there is no noticeable improvement at a frequency of more than 10 min -1 .
Erfindungsgemäß ist vorgesehen, dass die Gasentladungslampe während des Betriebs der Lampeneinheit von der Kühleinheit kontinuierlich gekühlt wird.According to the invention it is provided that the gas discharge lamp is continuously cooled by the cooling unit during operation of the lamp unit.
Eine kontinuierliche Kühlung der Gasentladungslampe hat den Vorteil, dass durch die Anpassung der Kühlleistung die Gasentladungslampe sowohl erwärmt als auch gekühlt werden kann. Eine Verringerung der Kühlleistung bewirkt eine Erwärmung der Gasentladungslampe, eine Erhöhung der Kühlleistung führt zu einer geringeren Temperatur der Gasentladungslampe.Continuous cooling of the gas discharge lamp has the advantage that the gas discharge lamp can be both heated and cooled by adapting the cooling power. A reduction in the cooling capacity causes the gas discharge lamp to be heated; an increase in the cooling capacity leads to a lower temperature of the gas discharge lamp.
Es hat sich bewährt, wenn die Gasentladungslampe mit einem von dem Kühlelement erzeugten Luftstrom gekühlt wird.It has proven useful if the gas discharge lamp is cooled with an air flow generated by the cooling element.
Ein Kühlelement, das einen Luftstrom erzeugt, ist beispielsweise ein Ventilator, ein Gebläse oder ein Lüfter. Da diese Kühlelemente Luft zur Kühlung verwenden, sind sie flexibel einsetzbar. Ein Verfahren, bei dem ein solches Kühlelement eingesetzt wird, ist kostengünstig durchzuführen.A cooling element that generates an air flow is, for example, a fan, a blower or a fan. Since these cooling elements use air for cooling, they can be used flexibly. A method in which such a cooling element is used can be carried out inexpensively.
Bei der Lampeneinheit zur Durchführung des Verfahrens ist das Temperierelement ein Kühlelement zur Kühlung der Gasentladungslampe. Ein Spannungssensor zur Bestimmung des Ist-Wertes einer Lampenspannung ist vorgesehen, wobei die Steuereinheit einen Eingang aufweist, an dem der Ist-Wert der Lampenspannung als Eingangssignal anliegt.In the lamp unit for carrying out the method, the temperature control element is a cooling element for cooling the gas discharge lamp. A voltage sensor for determining the actual value of a lamp voltage is provided, the control unit having an input to which the actual value of the lamp voltage is applied as an input signal.
Eine solche Lampeneinheit ist für den Einsatz im zuvor beschriebenen Verfahren geeignet. Dadurch, dass ein Spannungssensor vorgesehen ist, der den Ist-Wert der Lampenspannung ermittelt, kann dieser Ist-Wert einer Steuerung der Kühlleistung des Kühlelements zugrunde gelegt werden. Die Steuereinheit weist dementsprechend einen Eingang für den Ist-Wert der Lampenspannung auf. Das auf Basis des Ist-Wert der Lampenspannung generierte Ausgangssignal der Steuereinheit dient schließlich der Einstellung der Kühlleistung des Kühlelements.Such a lamp unit is suitable for use in the method described above. Because a voltage sensor is provided which determines the actual value of the lamp voltage, this actual value can be used as a basis for controlling the cooling capacity of the cooling element. The control unit accordingly has an input for the actual value of the lamp voltage. The output signal of the control unit generated on the basis of the actual value of the lamp voltage is finally used to set the cooling capacity of the cooling element.
Es hat sich bewährt, wenn der Spannungssensor in das elektronische Vorschaltgerät integriert ist, und dass das elektronische Vorschaltgerät einen Ausgang zur Ausgabe des Ist-Wertes der Lampenspannung aufweist.It has proven useful if the voltage sensor is integrated in the electronic ballast and that the electronic ballast has an output for outputting the actual value of the lamp voltage.
Die Gasentladungslampe wird an einem elektronischen Vorschaltgerät betrieben. Ein elektronisches Vorschaltgerät mit integriertem Spannungssensor ist - verglichen mit einem Gerät ohne diesen Sensor - ohne erheblichen Aufwand oder hohen Zusatzkosten zu fertigen und es trägt zu einer kompakten Bauform der Lampeneinheit bei.The gas discharge lamp is operated on an electronic ballast. An electronic ballast with an integrated voltage sensor - compared to a device without this sensor - can be manufactured without considerable effort or high additional costs and it contributes to a compact design of the lamp unit.
In einer vorteilhaften Ausgestaltung der Lampeneinheit ist vorgesehen, dass die Gasentladungslampe ein elektronisches Speicherelement umfasst, in dem der Soll-Wert der Lampenspannung gespeichert ist.In an advantageous embodiment of the lamp unit it is provided that the gas discharge lamp comprises an electronic storage element in which the nominal value of the lamp voltage is stored.
Elektronische Speicherelemente sind beispielsweise EEPROM- oder PROM-Speicherbausteine. Ein mit der Gasentladungslampe verbundenes elektronisches Speicherelement gewährleistet, dass der Soll-Wert der Lampenspannung beim Einschalten der Gasentladungslampe der Steuereinheit zur Verfügung gestellt werden kann. Durch das Speicherelement wird darüber hinaus eine automatische Sollwert-Anpassung, beispielsweise bei einem Lampenwechsel ermöglicht.Electronic memory elements are, for example, EEPROM or PROM memory modules. An electronic storage element connected to the gas discharge lamp ensures that the setpoint value of the lamp voltage can be made available to the control unit when the gas discharge lamp is switched on. The memory element also enables an automatic setpoint adjustment, for example when changing a lamp.
Es hat sich bewährt, wenn das Speicherelement im Bereich des Sockels der Gasentladungslampe angeordnet ist.It has proven itself when the storage element is arranged in the area of the base of the gas discharge lamp.
Ein im Sockelbereich der Gasentladungslampe angeordnetes Speicherelement kann einfach mit einer elektrischen Versorgung der Lampe verbunden werden, da bereits die Kabel zur elektrischen Versorgung der Lampe durch den Sockel führen.A storage element arranged in the base area of the gas discharge lamp can easily be connected to an electrical supply for the lamp, since the cables for the electrical supply of the lamp already lead through the base.
In einer alternativen ebenso bevorzugten Ausführungsform ist das Speicherelement in einen Anschlussstecker der Gasentladungslampe integriert.In an alternative, equally preferred embodiment, the storage element is integrated into a connector plug of the gas discharge lamp.
Die Gasentladungslampe weist eine mit einem Anschlussstecker versehene zur Kontaktierung einer Stromversorgung auf. Durch ein im Anschlussstecker integriertes Speicherelement werden eine einfache elektrische Kontaktierung des Anschlusselements und ein einfaches Auslesen des Speicherelements ermöglicht.The gas discharge lamp has a connector plug for contacting a power supply. A memory element integrated in the connection plug enables simple electrical contacting of the connection element and simple reading of the memory element.
In einer weiteren vorteilhaften Ausgestaltung der Vorrichtung ist vorgesehen, dass die Gasentladungslampe eine Beschriftung aufweist, die den Soll-Wert der Lampenspannung festlegt.In a further advantageous embodiment of the device it is provided that the gas discharge lamp has an inscription which defines the setpoint value of the lamp voltage.
Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen näher beschrieben. Im Einzelnen zeigt in schematischer Darstellung:
-
Figur 1 - eine Lampeneinheit zur Erzeugung ultravioletter Strahlung mit einem Niederdruck-Amalgamstrahler, und
-
Figur 2 - ein Diagramm, in dem die UV-Emission und die Lampenspannung des Niederdruck-Amalgamstrahlers in Abhängigkeit von der Kühlluft-Temperatur dargestellt ist.
- Figure 1
- a lamp unit for generating ultraviolet radiation with a low-pressure amalgam radiator, and
- Figure 2
- a diagram in which the UV emission and the lamp voltage of the low-pressure amalgam lamp is shown as a function of the cooling air temperature.
Der Niederdruck-Amalgamstrahler 11 besteht aus einem Leuchtrohr aus Quarzglas, das an beiden Enden mit Quetschungen 17 verschlossen ist, durch die eine Stromversorgung 18 geführt ist. Innerhalb und an entgegengesetzten Enden des Leuchtrohres sind zwei wendelförmige Elektroden 18a, 18b angeordnet. Das Leuchtrohr umschließt einen Entladungsraum 12. Der Entladungsraum 12 ist mit einer Gasmischung aus Argon und Neon (50:50) gefüllt. Innerhalb des Entladungsraumes 12 befindet sich außerdem ein Amalgamdepot 13.The low-
Der Niederdruck-Amalgamstrahler 11 wird mit einem im Wesentlichen konstanten Lampenstrom betrieben. Er zeichnet sich durch eine Nominal-Leistung von 200 W (bei einem nominalen Lampenstrom von 4,0 A), eine Leuchtlänge von 50 cm, einen Strahler-Außendurchmesser von 28 mm und durch eine Leistungsdichte von etwa 4 W/cm aus.The low-
Der Niederdruck-Amalgamstrahler 11 wird an dem elektronischen Vorschaltgerät 14 betrieben, das mit dem Niederdruckamalgamstrahler 11 über die Anschlussleitungen 20 verbunden ist. Das elektronische Vorschaltgerät 14 weist darüber hinaus einen Netzspannungsanschluss 19 auf. Während des Betriebs ermittelt das elektronische Vorschaltgerät 14 mittels integrierten Spannungssensors die Ist-Werte der Lampenspannung UL und des Lampenstroms IL.The low-
Das elektronische Vorschaltgerät 14 stellt die ermittelte Lampenspannung UL schließlich als Eingangssignal für die Steuereinheit 16 bereit. Darüber hinaus ist mit dem Niederdruck-Amalgamstrahler 11 ein Speicherelement 22 in Form eines EEPROM verbunden, auf dem ein für den Niederdruck-Amalgamstrahler 11 werksseitig individuell bestimmter Soll-Wert der Lampenspannung gespeichert ist. Die Steuereinheit 16 liest den Soll-Wert der Lampenspannung beim Einschalten des Niederdruck-Amalgamstrahlers 11 aus. Während des Betriebs des Niederdruck-Amalgamstrahlers 11 fragt die Steuereinheit 16 in regelmäßigen Zeitabständen, das heißt, mit einer Frequenz von 5 min-1 den Ist-Wert der Lampenspannung ULIST ab.The
Die Steuereinheit 16 vergleicht den Ist-Wert der Lampenspannung ULIST mit dem auf dem Speicherelement gespeicherten Soll-Wert ULSOLL, ermittelt die Abweichung des Ist-Wertes vom Soll-Wert und gibt ein Steuersignal aus, das die Kühlleistung des Axial-Lüfters 15 regelt.The
Da der Axial-Lüfter 15 den Niederdruck-Amalgamstrahler 11 während des Betriebs der Lampeneinheit 10 kontinuierlich kühlt, kann die Temperatur des Niederdruck-Amalgamstrahlers 11 beispielsweise durch eine Erhöhung der Lüfter-Geschwindigkeit relativ gekühlt oder durch eine Verringerung der Lüfter-Geschwindigkeit relativ erwärmt werden.Since the
Das Diagramm in
Die Temperaturabhängigkeit der UV-Emission ist durch den Kurvenverlauf 1 beschrieben. Demzufolge wird bei diesem Strahler eine maximale Strahlungsemission (I) von 0,252 mW/cm2 bei einer Betriebstemperatur (II) von 52,5 °C erhalten.The temperature dependence of the UV emission is described by
Weiterhin ist der Verlauf der Lampenspannung in Abhängigkeit von der Temperatur durch die Kurve 2 beschrieben. Eine Betriebstemperatur (III) von 52,5 °C entspricht somit einer Lampenspannung von 108,6 V. Sie entspricht einer maximalen Emissionsleistung des Niederdruck-Amalgamstrahlers 11.The
Claims (6)
- A method for operating a lamp unit for generating ultraviolet radiation, the lamp unit including a gas discharge lamp having a discharge chamber accessible for a mercury charge, an electronic ballast, and a temperature control element adjustable by a control unit for controlling a temperature of the gas discharge lamp, wherein the gas discharge lamp is operated with a lamp current and a lamp voltage, and wherein during an operating phase an essentially constant lamp current is applied to the gas discharge lamp, wherein the temperature control element is a cooling element for cooling the gas discharge lamp, and wherein the method comprises the following method steps:(a) determining an actual value of the lamp voltage by a voltage sensor,(b) transmitting the actual value of the lamp voltage to the control unit,(c) comparing the actual value with a desired value of the lamp voltage by the control unit,(d) outputting a control signal by the control unit to the cooling element for setting a cooling power,
characterized in that in that the gas discharge lamp is a low-pressure amalgam lamp and, which is continuously cooled by the cooling element during operation of the lamp unit. - The method according to claim 1, characterized in that the electronic ballast includes the voltage sensor and determines the actual value of the lamp voltage.
- The method according to claim 1 or 2, characterized in that the desired value of the lamp voltage for each gas discharge lamp is determined individually at the factory, wherein the individually determined desired value is stored in a memory element connected to the gas discharge lamp, and wherein the memory element is read out by the control unit when the gas discharge lamp is switched on.
- The method according to claim 3, characterized in that the memory element is an electronic memory element, and in that the memory element is being read when the gas discharge lamp is switched on.
- The method according to any one of the preceding claims, characterized in that the actual value of the lamp voltage is determined at regular time intervals during operation of the lamp unit, preferably at a frequency of 1 min-1 to 10 min-1, while the lamp unit is operating.
- The method according to any one of the preceding claims, characterized in that the gas discharge lamp is cooled with an air current generated by the cooling element.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102012109519.1A DE102012109519B4 (en) | 2012-10-08 | 2012-10-08 | Method for operating a lamp unit for generating ultraviolet radiation and suitable lamp unit therefor |
PCT/EP2013/068911 WO2014056670A1 (en) | 2012-10-08 | 2013-09-12 | Method for operating a lamp unit for producing ultraviolet radiation and suitable lamp unit for this purpose |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2904880A1 EP2904880A1 (en) | 2015-08-12 |
EP2904880B1 true EP2904880B1 (en) | 2020-09-09 |
Family
ID=49165746
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13762118.1A Active EP2904880B1 (en) | 2012-10-08 | 2013-09-12 | Method for operating a lamp unit for producing ultraviolet radiation and suitable lamp unit for this purpose |
Country Status (6)
Country | Link |
---|---|
US (1) | US20150264785A1 (en) |
EP (1) | EP2904880B1 (en) |
JP (1) | JP6022069B2 (en) |
CN (1) | CN104704925A (en) |
DE (1) | DE102012109519B4 (en) |
WO (1) | WO2014056670A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014104851B4 (en) * | 2014-04-04 | 2017-03-30 | Heraeus Noblelight Gmbh | Device for sterilization by means of ultraviolet radiation |
DE102016120672B4 (en) * | 2016-10-28 | 2018-07-19 | Heraeus Noblelight Gmbh | Lamp system with a gas discharge lamp and adapted operating method |
EP4210086A1 (en) * | 2018-01-24 | 2023-07-12 | Xylem Europe GmbH | Germicidal amalgam lamp with temperature sensor for optimized operation |
DE102019135736A1 (en) * | 2019-12-23 | 2021-06-24 | Prominent Gmbh | Method for monitoring the vapor pressure in a metal halide lamp |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2837447A1 (en) * | 1977-08-29 | 1979-03-15 | Union Carbide Corp | METHOD FOR CHANGING THE VOLTAGE IN A HIGH INTENSITY MERCURY DISCHARGE LAMP |
US20040021428A1 (en) * | 2002-04-08 | 2004-02-05 | Nordson Corporation | Lamp control system |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4533853A (en) * | 1983-03-25 | 1985-08-06 | Xerox Corporation | Mechanism and method for controlling the temperature and output of a fluorescent lamp |
JPH01122558A (en) * | 1987-11-06 | 1989-05-15 | Toshiba Corp | Bactericidal lamp device |
DE10100724A1 (en) * | 2001-01-10 | 2002-07-11 | Philips Corp Intellectual Pty | High pressure gas discharge lamp with cooling device |
DE10129755A1 (en) | 2001-06-20 | 2003-01-02 | Wilken Wilhelm | Control gear for fluorescent tubes with built-in cooling point |
US7654696B2 (en) * | 2002-12-11 | 2010-02-02 | Koninklijke Philips Electronics, N.V. | Lighting unit |
ES2329056T3 (en) | 2004-04-20 | 2009-11-20 | Guido Kohler | FLUID STERILIZATION DEVICE. |
DE102005022375A1 (en) * | 2005-05-13 | 2006-11-16 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Electric lamp and lighting system and method of operating an electric lamp or lighting system |
US20090289582A1 (en) * | 2008-05-23 | 2009-11-26 | Nordson Corporation | Lamp assemblies, lamp systems, and methods of operating lamp systems |
US20150162179A1 (en) * | 2011-11-29 | 2015-06-11 | Koninklijke Philips N.V. | Method of calibrating a system comprising a gas-discharge lamp and a cooling arrangement |
-
2012
- 2012-10-08 DE DE102012109519.1A patent/DE102012109519B4/en not_active Expired - Fee Related
-
2013
- 2013-09-12 US US14/433,895 patent/US20150264785A1/en not_active Abandoned
- 2013-09-12 EP EP13762118.1A patent/EP2904880B1/en active Active
- 2013-09-12 WO PCT/EP2013/068911 patent/WO2014056670A1/en active Application Filing
- 2013-09-12 JP JP2015536035A patent/JP6022069B2/en not_active Expired - Fee Related
- 2013-09-12 CN CN201380052271.5A patent/CN104704925A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2837447A1 (en) * | 1977-08-29 | 1979-03-15 | Union Carbide Corp | METHOD FOR CHANGING THE VOLTAGE IN A HIGH INTENSITY MERCURY DISCHARGE LAMP |
US20040021428A1 (en) * | 2002-04-08 | 2004-02-05 | Nordson Corporation | Lamp control system |
Also Published As
Publication number | Publication date |
---|---|
JP6022069B2 (en) | 2016-11-09 |
US20150264785A1 (en) | 2015-09-17 |
EP2904880A1 (en) | 2015-08-12 |
WO2014056670A1 (en) | 2014-04-17 |
DE102012109519A1 (en) | 2014-04-10 |
JP2016504706A (en) | 2016-02-12 |
DE102012109519B4 (en) | 2017-12-28 |
CN104704925A (en) | 2015-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2904880B1 (en) | Method for operating a lamp unit for producing ultraviolet radiation and suitable lamp unit for this purpose | |
DE4426664B4 (en) | Device for starting and operating a high-pressure discharge lamp | |
EP2907527B1 (en) | Operating method for an irradiation device | |
EP0607599B1 (en) | Process and circuit for stably driving a high pressure sodium lamp | |
EP3532434B1 (en) | Lighting system with gas discharge lamp and corresponding driving method | |
DE102006033672A1 (en) | Lighting system with a discharge lamp and an electronic ballast and method for operating a lighting system | |
DE19618119C2 (en) | Method for controlling the energy of radiation pulses of an excimer laser | |
EP1045619A1 (en) | Calibration method of operating parameters of a lamp ballast | |
DE69915181T2 (en) | Quartz glass, optical element and fiber optic device resistant to ultraviolet and radioactive radiation, and manufacturing method therefor | |
DE102009014942B3 (en) | Dimmable amalgam lamp and method of operating the amalgam lamp in dimming | |
DE10013041A1 (en) | Operating light with fluorescent lamp involves setting manufacturer's rated loading for detected lamp type in normal operation, reducing/ending if critical temperature reached/exceeded | |
DE102009011211A1 (en) | Electric ballast for a gas discharge lamp with controlled filament heating when dimming | |
DE20122035U1 (en) | Control gear for fluorescent tubes with built-in cooling point | |
EP1691587B1 (en) | Method and apparatus to regulate and control a heating coil for lamps | |
EP2075034B1 (en) | Irradiation system for solariums | |
EP0852894A1 (en) | Thermally-protected control apparatus containing electrical components | |
WO2009030266A1 (en) | Temperature control for a discharge lamp | |
EP2153703B1 (en) | Circuit arrangement, and method for the operation of a fluorescent lamp | |
DE1085267B (en) | X-ray diagnostic apparatus with initial loading | |
DE102008042127A1 (en) | Method for controlling a gas discharge lamp and control device | |
DE102008021351A1 (en) | Method for operating a discharge lamp and lighting system with a discharge lamp | |
DE10058551A1 (en) | Device for use with a source of high voltage and a discharge tube lamp in a high-voltage circuit has a temperature-dependent control for a tube current at a constant output voltage from the source. | |
EP2289290A1 (en) | Method for operating a mercury low-pressure lamp, a quick-start mercury low-pressure lamp and use thereof | |
DE102004057998A1 (en) | Equipment for laser pumping with pump energy source(s) and transmitter pump energy into laser medium, with transmitter so set-up that pumped has preset energy distribution so that energy of pumped laser medium follows preset energy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20150224 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20180530 |
|
17Q | First examination report despatched |
Effective date: 20180717 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
GRAL | Information related to payment of fee for publishing/printing deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR3 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
INTC | Intention to grant announced (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200326 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1313216 Country of ref document: AT Kind code of ref document: T Effective date: 20200915 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502013015119 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20201027 Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201209 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201209 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201210 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20201022 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210111 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210109 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502013015119 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200912 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20210610 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200912 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200930 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200930 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200930 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1313216 Country of ref document: AT Kind code of ref document: T Effective date: 20200912 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200912 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20211001 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20210912 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211001 Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210912 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230530 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502013015119 Country of ref document: DE Representative=s name: MEWBURN ELLIS LLP, DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240927 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240925 Year of fee payment: 12 |