EP2900895B1 - Device and method for laying a pipeline in a borehole - Google Patents
Device and method for laying a pipeline in a borehole Download PDFInfo
- Publication number
- EP2900895B1 EP2900895B1 EP13747378.1A EP13747378A EP2900895B1 EP 2900895 B1 EP2900895 B1 EP 2900895B1 EP 13747378 A EP13747378 A EP 13747378A EP 2900895 B1 EP2900895 B1 EP 2900895B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- drill
- pipeline
- head
- motor
- head tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 42
- 238000005553 drilling Methods 0.000 claims description 99
- 239000012530 fluid Substances 0.000 claims description 30
- 230000008878 coupling Effects 0.000 claims description 15
- 238000010168 coupling process Methods 0.000 claims description 15
- 238000005859 coupling reaction Methods 0.000 claims description 15
- 239000000463 material Substances 0.000 claims description 7
- 229920001903 high density polyethylene Polymers 0.000 claims description 4
- 239000004700 high-density polyethylene Substances 0.000 claims description 4
- 238000007599 discharging Methods 0.000 claims description 3
- 238000011010 flushing procedure Methods 0.000 claims 1
- 239000007788 liquid Substances 0.000 claims 1
- 230000000284 resting effect Effects 0.000 claims 1
- 230000008569 process Effects 0.000 description 15
- 238000005520 cutting process Methods 0.000 description 8
- 239000000523 sample Substances 0.000 description 8
- 239000002689 soil Substances 0.000 description 6
- 238000005452 bending Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000007257 malfunction Effects 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000005420 bog Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 239000010720 hydraulic oil Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B7/00—Special methods or apparatus for drilling
- E21B7/20—Driving or forcing casings or pipes into boreholes, e.g. sinking; Simultaneously drilling and casing boreholes
- E21B7/201—Driving or forcing casings or pipes into boreholes, e.g. sinking; Simultaneously drilling and casing boreholes with helical conveying means
- E21B7/203—Driving or forcing casings or pipes into boreholes, e.g. sinking; Simultaneously drilling and casing boreholes with helical conveying means using down-hole drives
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B7/00—Special methods or apparatus for drilling
- E21B7/20—Driving or forcing casings or pipes into boreholes, e.g. sinking; Simultaneously drilling and casing boreholes
- E21B7/208—Driving or forcing casings or pipes into boreholes, e.g. sinking; Simultaneously drilling and casing boreholes using down-hole drives
Definitions
- the present invention relates to a device for laying a pipeline in a borehole and a corresponding method.
- WO 2012/095472 relates to a system and method for radially expanding a tubular member.
- the method includes the steps of bending the tubular member radially outward and in an axially reverse direction to form a flared tubular portion that extends around an unexpanded tubular portion, wherein the bending occurs in a bending zone; Increasing the length of the flared tubular portion by advancing the unexpanded tube portion in the axial direction relative to the flared tubular portion; Operating a drill string extending through the unexpanded tubular portion and provided with a drill at a borehole end to drill a borehole; and operating a directional drilling apparatus connected to the drill string to control the borehole along a predetermined path.
- a tube guide means for guiding a tube to be inserted into a substrate comprising a main frame for holding the components of the tube guide means and at least two guide elements for engaging and guiding a tube, said at least two guide elements define a passage opening, wherein the passage opening has an axial axis has, corresponding to an axial direction of the tube, characterized in that the pipe guiding device further comprises an auxiliary frame, wherein the at least two guide elements are mounted on the auxiliary frame, wherein the auxiliary frame is attached to the main frame and wherein the auxiliary frame in relation to the main frame around a axial axis is rotatable.
- the borehole is driven by means of a Richtbohrtechnikmaschines and this tracked a jacket tube.
- the jacket tube is advanced simultaneously and uniformly with the directional drilling tool and aligned the front end of the jacket tube through the front part of the directional drilling tool.
- HDD Horizontal Directional Drilling
- MT controlled pipe jacking
- the HDD process is done in three steps. First, a controlled pilot hole is driven from the starting point to the target point of a hole. thereupon This pilot hole is widened in quasi “reverse” in one or more steps to such a large diameter that the pipe provided for laying in the last step can then be drawn into the expanded hole.
- the pull-in is usually also "backwards" from the destination to the starting point. Due to the process, large work surfaces are required both at the start and at the destination.
- the MT method allows the single-phase installation of a pipeline, since a borehole is created at the same time and the pipeline composed of individual pipes is successively laid therein.
- a disadvantage of the MT method is the low range with small pipe diameters.
- the achievable bore length for the MT process is only approx. 50 m to approx. 150 m.
- this is due to the fact that the supply of primary energy according to the rules of the art is hydraulic.
- the pressurized hydraulic oil must be supplied from outside via hose lines. The resulting power losses are immense and thus limit the achievable bore lengths.
- Another disadvantage of the MT method is the fact that the specific type of control of MT drill heads requires at least one seal per control joint is. Due to their design, these are only designed for pressure ranges up to approx. 3.5 bar. Higher compressive strengths can be achieved only with great effort and then represent a potential starting point for accidents. This restriction can be particularly significant for landings, where the exit points can be 50 m and more below the water level.
- the aim of the present invention is to avoid the disadvantages of the known approaches while maintaining a controlled and controlled installation, and in particular to provide a method and a device for laying a pipeline in a borehole in which large work surfaces are not required both at the start and at the destination are in which the number of operations compared to the HDD method is reduced and its performance over the MT method in the said diameter range is improved.
- a first aspect of the invention relates to a device for laying a pipeline in a borehole, as defined in claim 1.
- Another aspect of the invention relates to a method of laying a pipeline in a wellbore as defined in claim 15.
- the device according to the invention and the method according to the invention can be used advantageously in particular for laying pipelines which have a diameter of approximately 100 mm to 500 mm and have lengths of approximately 100 m to approximately 2,000 m ,
- Fig. 1 shows a schematic representation of an embodiment of the device according to the invention in an overview.
- the illustrated embodiment includes the drill bearing 8 (see Fig. 1b ), which is partially disposed inside a pipe to be laid in the bottom 10 3 and coupled to a drill pipe 6 and connected to a control tube 18.
- the drill pipe 6 is connected to a surveying pipe 16 (see Fig. 1b ) as an example of a position determining unit and an angled drilling motor 7 with a drill head 2 (see Fig. 1a ) is provided by a feed device 5 with a rotary motor 9 (see Fig. 1d ) operated and advanced.
- Fig. 1a shows a schematic representation of the detail A of the embodiment of Fig.1 ,
- the working face 19 of the borehole 1 in the ground 10 lies opposite the boring head 2, which is fastened to the angled boring motor 7 and is driven by the boring motor 7.
- the parallel to the longitudinal axis of the drill string 7 (not angled) part of the drill motor 7 is guided by a centering 20, wherein the drill motor 7 of the head tube 18 is enclosed in such a way that extends at least the foremost part of the drill head 2 from the control tube 18, although it is ensured that the drill motor 7 and the drill head 2 does not strike the control tube 18 during rotation about the longitudinal axis of the drill string 6.
- the end of the control tube 18 facing the working face 19 preferably directly adjoins the drill head 2.
- the control tube 18 corresponds in (in particular outer) diameter of the pipeline 3 to be laid (see Fig. 1b ).
- the control tube may also have a relative to the pipeline in a modification not shown here also have an enlarged in the millimeter or centimeter range outer diameter.
- a control ring 24 is mounted in this embodiment.
- the control ring 24 has, as exemplified here, each a wedge-shaped front and back and supports the desired direction changes.
- the respective wedge-shaped configuration of front and rear side can preferably be designed so that the control ring 24 has a triangular cross section, in which the base side of the triangle rests on the control tube 18 and the top of the triangle opposite the tip in a range of 60 to 90% the length of the base (starting from the top of the triangle 19 facing the working face) is located.
- control ring has a cross section which is designed wedge-shaped only on the side facing the working face 19 (eg right triangle), although the wedge-shaped configuration on the front and back is advantageous in that both propulsion as well as a retraction of the control tube 18 wedging at an edge can be avoided.
- the maximum diameter of the control 24 is advantageously no larger than the inner diameter of a borehole resulting in straight propulsion.
- the arrows 29 represent the outlet direction of the drilling fluid 12 from the drill head, while the arrows 30 indicate the flow direction of the bottom 10 and possibly cuttings loaded drilling fluid 12.
- a plurality of passages 17 are provided in the wall of the control tube 18, which allows drilling fluid 12 to flow through the interior of the control tube 18 and in this way in the head tube 18 got ground or cuttings so that it does not lead to an accumulation of material inside the control tube 18, which would hinder operation of the drilling motor 7 or a rotation of the drilling motor 7 via the drill string.
- control tube 18 is designed as a flexible control tube.
- the head tube comprises or consists of high density polyethylene (HDPE).
- HDPE high density polyethylene
- Crucial for the flexible head tube in this embodiment is that it is flexurally flexible and can accept the angling of the angled bore motor 7.
- rigid, articulated pieces may be used as the head tube 18.
- Directional drilling is possible with a flexible control tube 18 as described with respect to FIGS. 3a-3c will be described.
- control tube 18 approximately abuts the drill head 2.
- the flexible control tube 18 follows in this case the direction and thus the angle of the angled drilling motor 7.
- the control tube 18 on the drill head 2 and / or on the drill bearing 8 and / or any number of times over the length of Control tube 18 may be mounted on the drill motor 7.
- the control tube 18 is free and independent of rotation of the drill string 6 and / or the drill motor 7 movable.
- the control tube 18 may also be fixedly connected to the drill head 2. For a rotation of the control tube 18 together with the drill head 2 is possible.
- control tube 18 can also be firmly connected to the drill bearing 8, whereby rotation of the control tube 18 is only possible together with the drill bearing 8.
- control tube 18 can not be firmly connected to both the drill head 2 and the drill bearing 8, as this would prevent the operation of the entire system.
- the drill head which is adjoined by the control tube, preferably has an outer diameter that is greater in the millimeter or centimeter range than the outer diameter of the control tube.
- the control tube again has an outer diameter, which is also increased in the millimeter or centimeter range in relation to the outer diameter of the pipeline.
- All bearings of the flexible control tube 18 may be provided as a sealed bearing. This can be prevented that drilling fluid 12 and / or cuttings in the Head tube 18 penetrate.
- the control tube 18 is not flooded in this case, that is filled with air, it has a significantly lower weight.
- the ability to drill upwards is hereby improved because such a control tube 18 offers increased buoyancy over its environment filled with drilling fluid 12. It is therefore possible in this embodiment, an easier drilling in the direction of overground.
- the control tube 18 on no passages 17.
- the nozzle for discharging the drilling fluid 12 from the drill head is configured such that drilling fluid 12 does not exit the drill head in the direction of the working face 19 according to the arrows 29, but is additionally guided in the other direction into the interior of the control tube 18 becomes.
- the removal of material from the interior of the control tube 18 is further optimized, so that the operation of the drilling motor 7 is not hindered.
- Fig. 1b shows a schematic representation of the detail B of the embodiment of Fig.1 ,
- the Bohrlagers 8 On the face side is the inner part of the Bohrlagers 8 (see Fig. 3a, 3b ) is connected to the surveying pipe 16.
- a measuring probe 13 which transmits measured values with respect to a position of the surveying tube 16 (and thus ultimately with respect to the drilling motor 7 and the drill head 2) via cable 14 to the surface, is arranged in the surveying tube 16.
- the surveying pipe 16 in turn is firmly connected to the angled drilling motor 7 (see Fig. 1a ), so that the coincidence of position of the surveying pipe 16 and the drilling motor 7 results.
- the surveying tube is also centered in the control tube 18 by means of a centering 20.
- the control tube 18 is connected to the non-rotating, outer part of the Bohrlagers 8 at its side facing the working face.
- On the opposite side of the working face of the inner part of the Bohrlagers 8 is connected to the drill pipe 6, while the outer part of the Bohrlagers on the side facing away from the working face is connected to a first single pipe 4 to be laid pipe 3.
- the drill bearing 8 is characterized in that it forwards the feed forces and torques introduced by the drill pipe 6 to the surveying pipe 16 (and thus to the components connected to the surveying pipe 16) to the control pipe 18 and the pipe 3 but only axial forces (forces acting in the longitudinal direction of the drill pipe) and no torque transfers.
- the measuring tube 16 arranged in the measuring probe 13 is in this embodiment, based on the principle of the gyroscope probe, which also has accelerometer and an electric solder.
- All measured values are transmitted via a cable 14 that leads in the interior of the drill pipe 6 to the surface.
- a wired signal line may also be used, as long as the circumstances of the drilling and laying operation allow such alternatives.
- the basic technique of determining the position of the drilling motor and the drill head is known to those skilled in the HDD method, for example, so that no further details have to be discussed here.
- the measuring probe 13 can not be arranged in the surveying pipe 16, ie on the face side of the drilling bearing 8, but on the opposite side of the drilling bearing, ie in the first single pipe 4. In another embodiment, a measuring probe 13 on both sides the Bohrlager 8 be arranged, or at any other position.
- a nozzle can additionally be provided on the face side of the drilling journal 8, which feeds the drilling fluid 12 in the direction of the working face 19 starting from the surroundings of the drilling bearing 8.
- a back pressure within the Verresssrohres 16 is generated, which counteracts the drilling pressure of the drilling fluid, which emerges from the drill head 2.
- the relative pressure in the surveying tube 16 can be reduced, whereby a malfunction or malfunction of the drilling assembly can be avoided.
- Fig. 1c shows a schematic representation of the detail C of the embodiment of Fig.1 .
- the drill string 6 extends through the pipe 3 and is guided by a centering 20 in the interior of the pipe 3.
- the diameter of the working face 19 is greater than the outer diameter of the pipe 3, so that between the ground 10 around the borehole and the pipe 3 results in an annular space 11 through which in particular bored with bored material drilling fluid 12 can flow.
- the centering 20 is here provided with inner rollers 22, which allow a relative rotation of the drill pipe 6 and centering 20, without appreciable torques would be involved or would be involved.
- the axes of the inner rollers 22 extend parallel to the longitudinal axis of the drill string 6.
- the centering also has outer rollers 21 whose axes in the illustration shown extend perpendicular to the plane, so that a substantially free displacement of the centering 20 relative to the pipe 3 in the direction of the drill string 6 results.
- retaining rings 31 are provided in front of and behind the centering on the drill pipe 6.
- At least one element (or part-element) of which the drill string is composed may be configured in the form of a screw tube and / or at least one centering may be in the form of a screw conveyor, these conveying means being designed such that During rotation of the drill pipe during drilling, a conveying action for drilling fluid (which is loaded with soil or cuttings) in the area between the pipeline and drill pipe leads in the direction of overground.
- Fig. 1d shows a schematic representation of the detail D of the embodiment of Fig.1 .
- the pipe itself is composed of individual tubes 4, which are successively introduced into the borehole 1.
- the respective last individual pipe 4 of the pipeline 3 is connected to the feeding device 5 in a pressure-resistant manner (possibly also with a tensile strength and / or torsion-proof) via a connecting device 15 which is adjustable in length.
- feed forces can be applied directly from the feed device 5 to the pipe 3. This can be useful, for example, if the friction in the borehole is very large and requires additional feed forces.
- the "normal" feed forces for the drilling and laying operation are transmitted from the feed device 5 via the drill pipe 6 to the drill bearing 8.
- the drilling bearing 8 forwards the pressure forces introduced by the drill pipe 6 as pressure forces on the surveying pipe 16, the angled drilling motor 7 and the drill head 2 and on the control tube 18 and in the form of tensile forces on the pipeline 3.
- the drill string 6 is connected to the rotary motor 9 of the feed device 5.
- rotary motor 9 drill pipe 6, surveying pipe 16, angled drilling motor 7 and drill head 2 are also rotated (continuously).
- the drill head 2 is additionally rotated in the form of a superimposed rotational movement. With simultaneous advance of the drill set a straight hole 1 is created in this way (see Fig. 2b ).
- the rotation of the drilling motor 7 with the drill head is illustrated by the dashed representation in another angular direction.
- drill pipe 6, surveying pipe 16, angled drilling motor 7 and drill head 2 are rotated by the rotary motor 9 of the feed device 5 into a specific position detectable by the measuring probe 13, a curved borehole along the respective orientation of the angle piece in the angled drilling motor will be produced as the drilling process continues 7 created, but then the drill pipe 6 is no longer rotated and only the drill motor 7 drives the drill head 2.
- Drilling fluid 12 used for the drilling process is pumped to the drill head 2 by the advancing device 5, the drill pipe 6, the drill bearing 8, the surveying pipe 16 and the angled drilling motor 7. There, the drilling fluid 12 enters the wellbore 1 (see arrows 29 in FIG Fig. 1a ) and mixes with the soil 10 or cuttings loosened by the drill head 2. The drilling fluid mixed with soil 10 and / or cuttings then flows through annular space 11 between pipeline 3 and borehole 1 to above ground (see arrows 30).
- the centering 20 is formed with a seal 25, so that the drilling fluid 12 is prevented from penetrating into the interior between the drill motor 7 and control tube 18 or drill pipe 6 and pipe 3.
- An advantage of this design is that then, for example, air-filled Interior between the drill motor 7 and control tube 18 or drill pipe 6 and pipe 3 acts as a buoyant body against the filled with drilling fluid 12 annulus 11 and thereby the normal forces in the borehole 1 are significantly reduced. This in turn can result in significantly lower feed forces, so that such an approach is recommended, for example, especially in soft soils.
- the drilling fluid 12 which is mixed with the bottom 10 and, if appropriate, cuttings, additionally flows through the interior of the pipeline 3 to above ground.
- the centerings 20 and the drill bearing 8 are to be formed with corresponding passages. It is to be regarded as advantageous in this design that thereby the pressure in the annular space 11 is reduced and thus outbreaks of the drilling fluid 12 to the surface of the day ("blower" gennant) can be better avoided. This variant appears advisable especially for clayey soils.
- a corresponding borehole is provided in the area of the advancing device, more precisely between the respectively last single pipe and the connecting device, so that also via this borehole a compressive force from the drill pipe can be introduced to the pipeline.
- Fig. 2a-2c show schematic illustrations of aspects of a drilling and laying operation, in particular the direction control of the drilling and laying operation.
- FIG. 5 illustrates how a downhole curved section in this example is created following a straight borehole section.
- the working direction of the boring head 2 is fixed in a specific position as described above.
- a curved borehole 1 is now created.
- Fig. 2b It is shown how the drilling and laying process takes place in a planned straight borehole section.
- the drill head 2 is not only rotated about its own axis, but also by rotation of the (not shown) drill pipe 6 with the associated components in addition to the axis of the drill pipe 6 and the Pipe 3.
- the working direction of the drill head 2 is permanently changed, whereby in the end a straight borehole section is created.
- Fig. 2c is basically the same process as in Fig. 2a shown, however, the borehole 1 is executed here with a curvature down.
- Fig. 3a-3c show schematic illustrations of aspects of a drilling and laying operation, in particular the direction control of the drilling and laying operation according to the embodiment with flexible head tube 18th
- Fig. 3a is different from Fig. 2a to see that the control tube 18 rests against the drill head 2 and is connected thereto.
- This connection can be fixed, such that the control tube 18 rotates together with the drill head 2, or be stored, such that the drill head 2 can rotate independently of the control tube 18.
- the direction of the drill head 2 is fixed in one direction, in this case upwards, whereby directional drilling, in this case consequently in the direction of overground, is made possible.
- the borehole 1 in this case has a curvature upwards.
- Fig. 3c is basically the same process as in Fig. 2a shown, but the hole 1 is here, analogous to Fig. 2c , executed with a curvature down.
- the device has a centering 20.
- the centering 20 may only connect the drill motor 7 firmly to the control tube 18 when the control tube 18 is mounted on the drill head 2, since otherwise independent of the drilling gear rotation of the drill head 2 is prevented.
- the centering 20 must be used as a bearing be educated.
- the device has no centering 20, in yet another embodiment, two or more centerings 20 are provided.
- Fig. 4a shows a schematic detail of the drilling of an embodiment
- Fig. 4b a schematic detail of the drilling of a modified embodiment shows.
- the outer part of the drilling journal 8 is here connected by means of screw connections 27 (for example grub screws) to the control tube 18 and to the first individual tube 4 of the pipeline 3.
- Screw connections 27 for example grub screws
- Alternative connection types e.g. by means of welded joints - are possible, but may have as in the case of welding disadvantages of heat on the drill bearing 8 during assembly and / or a more difficult disassembly compared to screw 27.
- non-positive and positive threaded connection can also be a purely positive Connection can be achieved, for example by undercuts.
- Fig. 4b the use of doublings 26 is shown. These doublings 26 make it possible to use a drilling journal 8 for different diameters of control tubes 18 and pipelines 3. This has significant economic benefits since such doublings 26 (unlike the rest of the drilling journal 8) are very inexpensive to manufacture.
- connection of drilling bearing 8 with the Verresssrohr 16 and the drill pipe 6 via typical threads that are otherwise known and common in the drilling area, for example, for connecting individual elements of a drill pipe or a connection of a drilling motor.
- typical threads that are otherwise known and common in the drilling area, for example, for connecting individual elements of a drill pipe or a connection of a drilling motor.
- alternative connections are readily possible provided the relevant technical requirements are met.
- Fig. 5 shows a schematic flow diagram of an embodiment of a method according to the invention in the case that a drill bearing between the drill motor and drill pipe is provided.
- a drill string is coupled to a drill bit angled or angled with respect to the longitudinal axis of the drill string, which coupling is an indirect coupling, by coupling the drill motor to a drill bearing and coupling the drill bearing to the drill string for transmission of a drill bit Torque and a compressive force and possibly a tensile force is created.
- the drill pipe can be coupled to the drill motor without any intermediate connection, in which case the drill bearing is provided on the side of the drill pipe in the direction of a feed device. It is also possible to combine both alternatives.
- a control tube which encloses the drill motor with the drill head, wherein the drill head extends in operation in the direction of the working face of the head tube.
- the drill bearing is connected to the pipeline to be laid and the head tube.
- the control tube is connected to the local side of the Bohrlagers this, wherein the pipeline (more precisely, the first single pipe to be assembled and laid pipeline) with is connected to the drill bearing on the opposite side.
- the pipeline more precisely, the first single pipe to be assembled and laid pipeline
- Other versions are also possible.
- connection of the control tube and drill bearing results indirectly through the connection of drilling and pipe and a connection of pipe and head tube.
- a “direct coupling" of the drill motor and drill pipe does not preclude the provision of a surveying pipe (as discussed above) between the drill motor and drill pipe, similarly, in the case of "indirect coupling", the drill motor may be provided with a surveying pipe.
- a surveying pipe as discussed or another position determining unit is provided on the drilling motor.
- the method includes rotating the drill string to rotate the drill motor with the drill head and rotate the drill bit about its longitudinal axis with the drill motor independent of rotation of the drill string.
- the method includes rotating the drill string until a position determining unit of the drilling motor indicates a position at which the drilling motor is angled or angled in the direction of the curvature, and at step 106 rotating the drill head about its longitudinal axis with the angled drill motor.
- a pressure force acting in the direction of the longitudinal axis of the drill pipe is exerted on the drill bearing by the drill pipe as a tensile and / or tensile force acting through the drill bearing as a tensile force acting in a longitudinal direction of the pipeline. or compressive force on the pipeline and as a force acting in the longitudinal direction of the control tube pressure force is passed.
- steps 101, 102 and 103 may also be varied.
- An implementation of the invention provides a method for laying a pipeline in a borehole, wherein the borehole 1 is created by a controllable boring head 2 and the boring head 2 has a larger diameter than the pipeline 3 and the respective position of the boring head 2 in the ground 10 a arranged in a surveying pipe 16 measuring probe 13 is determined and transmitted via at least one cable 14 to overground, the drilling process to create the borehole 1 and the laying process for laying the pipe 3 in the borehole 1 take place simultaneously, the pipe 3 during the drilling and Laying process is successively composed of individual tubes 4, which required for the drilling and laying process Feed force is generated by a feed device 5 and transmitted via a drill pipe 6 to a drill bearing 8 and the drill bearing 8 both via the Verniersrohr 16 and the angled drill motor 7 on the drill head 2 and on the control tube 18 and the pipe 3, for the drilling process required torque is generated by the angled drill motor 7 and transmitted to the drill head 2, the control of the drill head 2 is made via a rotary motor 9 located on the feed device 5 and
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Earth Drilling (AREA)
Description
Die vorliegende Erfindung betrifft eine Vorrichtung zur Verlegung einer Rohrleitung in einem Bohrloch und ein entsprechendes Verfahren.The present invention relates to a device for laying a pipeline in a borehole and a corresponding method.
In der Vergangenheit wurden zahlreiche Verfahren und Vorrichtungen entwickelt, um Rohrleitungen in Bohrlöchern im Boden zu verlegen und somit sensible Bereiche an der Geländeoberfläche zu unterqueren, für die eine Verlegung im offenen Rohrgraben aus beispielsweise technischen, ökologischen, rechtlichen und/oder wirtschaftlichen Gründen nicht möglich oder erwünscht ist. Eine solche grabenlose Verlegung kann insbesondere dort sinnvoll sein, wo die Oberfläche im Verlegungsbereich mit schweren Baumaschinen nicht befahren werden kann (z.B. Moore, Gewässer) oder wo aus ökologischer Sicht keine Baugenehmigung erteilt werden kann (z.B. in Naturschutzgebieten) oder wo der Einsatz konventioneller Verlegetechniken zu teuer wäre (z.B. bei der Querung von Gewässern oder Eisenbahnlinien).In the past, numerous methods and devices have been developed for laying pipelines in boreholes in the ground and thus traversing sensitive areas on the terrain surface for which laying in an open trench for technical, environmental, legal and / or economic reasons is not possible or is desired. Such a trenchless laying can be particularly useful where the surface in the laying area with heavy construction machinery can not be driven (eg bogs, waters) or where from an ecological point of view, no planning permission can be granted (eg in nature reserves) or where the use of conventional laying techniques expensive (eg crossing waterways or railway lines).
Bei einem in
Unter den bekannten grabenlosen Rohrverlegetechniken, die aktuell eingesetzt werden, finden sich die Horizontalbohrtechnik (Horizontal Directional Drilling, HDD) und der gesteuerte Rohrvortrieb (Microtunneling, MT).Among the well-known trenchless piping techniques currently in use are Horizontal Directional Drilling (HDD) and controlled pipe jacking (Microtunneling, MT).
Beim HDD-Verfahren wird in drei Arbeitsschritten vorgegangen. Zunächst wird eine gesteuerte Pilotbohrung vom Startpunkt zum Zielpunkt einer Bohrung aufgefahren. Sodann wird diese Pilotbohrung quasi im "Rückwärtsgang" in einem oder mehreren Schritten auf einen so großen Durchmesser aufgeweitet, das die für die Verlegung vorgesehene Rohrleitung im letzten Arbeitsschritt dann in das aufgeweitete Bohrloch eingezogen werden kann. Das Einziehen erfolgt in der Regel ebenfalls "rückwärts" vom Ziel- zum Startpunkt. Verfahrensbedingt sind sowohl am Start- als auch Zielpunkt große Arbeitsflächen erforderlich.The HDD process is done in three steps. First, a controlled pilot hole is driven from the starting point to the target point of a hole. thereupon This pilot hole is widened in quasi "reverse" in one or more steps to such a large diameter that the pipe provided for laying in the last step can then be drawn into the expanded hole. The pull-in is usually also "backwards" from the destination to the starting point. Due to the process, large work surfaces are required both at the start and at the destination.
Mit dem HDD-Verfahren können Rohrleitungen von ca. 50 mm bis ca. 1.400 mm Durchmesser und in Längen von ca. 50 m bis über 3.000 m verlegt werden.With the HDD process, pipelines from approx. 50 mm to approx. 1,400 mm in diameter and lengths of approx. 50 m to more than 3,000 m can be laid.
Nachteile des HDD-Verfahrens liegen im Bedarf nach großen Arbeitsflächen sowohl am Start- als auch am Zielpunkt und im dem mit der Vielzahl von Arbeitsschritten verbundenen Zeitaufwand.Disadvantages of the HDD method are the need for large work surfaces both at the start and at the destination and in the associated with the large number of steps time.
Demgegenüber ermöglicht das MT-Verfahren die einphasige Verlegung einer Rohrleitung, da gleichzeitig ein Bohrloch erstellt und die aus Einzelrohren sukzessive zusammengesetzte Rohrleitung darin verlegt wird.In contrast, the MT method allows the single-phase installation of a pipeline, since a borehole is created at the same time and the pipeline composed of individual pipes is successively laid therein.
Nachteilig beim MT-Verfahren ist jedoch die geringe Reichweite bei kleinen Rohrleitungsdurchmessern. Für den hier relevanten Durchmesserbereich von ca. 100 mm bis ca. 500 mm liegt die erreichbare Bohrungslänge beim MT-Verfahren nur bei ca. 50 m bis ca. 150 m. Dies liegt unter anderem daran, dass die Zuführung der Primärenergie nach den Regeln der Technik hydraulisch erfolgt. Da aber wegen der kleinen Durchmesser keine Hydraulikaggregate im Bohrkopf positioniert werden können, muss das unter Druck stehende Hydrauliköl von außerhalb über Schlauchleitungen zugeführt werden. Die dabei entstehenden Leistungsverluste sind immens und beschränken damit die erreichbaren Bohrungslängen.A disadvantage of the MT method, however, is the low range with small pipe diameters. For the relevant diameter range of approx. 100 mm to approx. 500 mm, the achievable bore length for the MT process is only approx. 50 m to approx. 150 m. Among other things, this is due to the fact that the supply of primary energy according to the rules of the art is hydraulic. However, because of the small diameter no hydraulic units can be positioned in the drill head, the pressurized hydraulic oil must be supplied from outside via hose lines. The resulting power losses are immense and thus limit the achievable bore lengths.
Ein weiterer Nachteil beim MT-Verfahren ist darin zu sehen, dass durch die spezifische Art der Steuerung von MT-Bohrköpfen mindestens eine Dichtung je Steuergelenk erforderlich ist. Diese sind bauartbedingt aber lediglich für Druckbereiche bis ca. 3,5 bar ausgelegt. Höhere Druckfestigkeiten lassen sich nur unter großem Aufwand erreichen und stellen dann einen potentiellen Ansatzpunkt für Havarien dar. Diese Einschränkung kann besonders bei Anlandungsbohrungen bedeutsam werden, wo die Austrittspunkte 50 m und mehr unter dem Wasserspiegel liegen können.Another disadvantage of the MT method is the fact that the specific type of control of MT drill heads requires at least one seal per control joint is. Due to their design, these are only designed for pressure ranges up to approx. 3.5 bar. Higher compressive strengths can be achieved only with great effort and then represent a potential starting point for accidents. This restriction can be particularly significant for landings, where the exit points can be 50 m and more below the water level.
Ziel der vorliegenden Erfindung ist es, unter Beibehaltung einer kontrollierten und gesteuerten Verlegung die Nachteile der bekannten Ansätze zu vermeiden und insbesondere ein Verfahren und eine Vorrichtung zum Verlegen einer Rohrleitung in einem Bohrloch bereitzustellen, bei dem nicht sowohl am Start- als auch Zielpunkt große Arbeitsflächen erforderlich sind, bei dem die Zahl der Arbeitsschritte im Vergleich zum HDD-Verfahren reduziert ist und dessen Leistungsfähigkeit gegenüber dem MT-Verfahren im genannten Durchmesserbereich verbessert ist.The aim of the present invention is to avoid the disadvantages of the known approaches while maintaining a controlled and controlled installation, and in particular to provide a method and a device for laying a pipeline in a borehole in which large work surfaces are not required both at the start and at the destination are in which the number of operations compared to the HDD method is reduced and its performance over the MT method in the said diameter range is improved.
Ein erster Aspekt der Erfindung betrifft eine Vorrichtung zur Verlegung einer Rohrleitung in einem Bohrloch, wie sie in Anspruch 1 definiert ist.A first aspect of the invention relates to a device for laying a pipeline in a borehole, as defined in
Ein weiterer Aspekt der Erfindung betrifft ein Verfahren zur Verlegung einer Rohrleitung in einem Bohrloch, wie es in Anspruch 15 definiert ist.Another aspect of the invention relates to a method of laying a pipeline in a wellbore as defined in
Merkmale vorteilhafter Ausführungsformen sind insbesondere in den Unteransprüchen definiert. Die für jeweils einen Aspekt der Erfindung beschriebenen besonderen Ausführungsformen oder Ausführungsbeispiele sind ebenso als Ausführungsformen oder Ausführungsbeispiele für andere Aspekte der Erfindung anzusehen.Features of advantageous embodiments are defined in particular in the subclaims. The particular embodiments or embodiments described for each aspect of the invention are also to be considered as embodiments or embodiments of other aspects of the invention.
Es wird erwartet, dass die erfindungsgemäße Vorrichtung und das erfindungsgemäße Verfahren insbesondere für eine Verlegung von Rohrleitungen vorteilhaft eingesetzt werden kann, die einen Durchmesser von ca. 100 mm bis 500 mm aufweisen und über Längen von ca. 100 m bis zu ca. 2.000 m verfügen.It is expected that the device according to the invention and the method according to the invention can be used advantageously in particular for laying pipelines which have a diameter of approximately 100 mm to 500 mm and have lengths of approximately 100 m to approximately 2,000 m ,
Im Folgenden werden einzelne Aspekte und vorteilhafte Ausführungsbeispiele der Erfindung unter Bezug auf die beiliegenden Zeichnungen näher erläutert. Hierbei zeigt:
- Fig. 1
- eine schematische Darstellung eines Ausführungsbeispiels der erfindungsgemäßen Vorrichtung im Überblick,
- Fig. 1a
- eine schematische Darstellung eines ersten Details des Ausführungsbeispiels von
Fig. 1 , - Fig. 1b
- eine schematische Darstellung eines zweiten Details des Ausführungsbeispiels von
Fig. 1 , - Fig. 1c
- eine schematische Darstellung eines dritten Details des Ausführungsbeispiels von
Fig. 1 , - Fig. 1d
- eine schematische Darstellung eines vierten Details des Ausführungsbeispiels von
Fig. 1 , - Fig. 2a-2c
- schematische Illustrationen von Aspekten eines Bohr- und Verlegevorgangs,
- Fig. 3a-3c
- schematische Illustrationen eines Bohr- und Verlegevorgangs eines weiteren Ausführungsbeispiels,
- Fig. 4a
- eine schematische Detaildarstellung der Bohrlagers eines Ausführungsbeispiels,
- Fig. 4b
- eine schematische Detaildarstellung des Bohrlagers eines abgewandelten Ausführungsbeispiels, und
- Fig. 5
- ein schematisches Ablaufdiagramm eines Ausführungsbeispiels eines erfindungsgemäßen Verfahrens.
- Fig. 1
- a schematic representation of an embodiment of the device according to the invention at a glance,
- Fig. 1a
- a schematic representation of a first detail of the embodiment of
Fig. 1 . - Fig. 1b
- a schematic representation of a second detail of the embodiment of
Fig. 1 . - Fig. 1c
- a schematic representation of a third detail of the embodiment of
Fig. 1 . - Fig. 1d
- a schematic representation of a fourth detail of the embodiment of
Fig. 1 . - Fig. 2a-2c
- schematic illustrations of aspects of a drilling and laying operation,
- Fig. 3a-3c
- schematic illustrations of a drilling and laying operation of a further embodiment,
- Fig. 4a
- a schematic detail of the Bohrlagers of an embodiment,
- Fig. 4b
- a schematic detail of the Bohrlagers a modified embodiment, and
- Fig. 5
- a schematic flow diagram of an embodiment of a method according to the invention.
Das dargestellte Ausführungsbeispiel umfasst das Bohrlager 8 (siehe
Der Ortsbrust 19 des Bohrlochs 1 im Boden 10 liegt der Bohrkopf 2 gegenüber, der an dem abgewinkelten Bohrmotor 7 befestigt ist und von dem Bohrmotor 7 angetrieben wird. Der zur Längsachse des Bohrgestänges 7 parallele (nicht abgewinkelte) Teil des Bohrmotors 7 wird von einer Zentrierung 20 geführt, wobei der Bohrmotor 7 von dem Steuerrohr 18 in einer Weise umschlossen wird, dass sich zumindest der vorderste Teil des Bohrkopfs 2 aus dem Steuerrohr 18 erstreckt, wobei allerdings sichergestellt ist, dass der Bohrmotor 7 und der Bohrkopf 2 bei einer Rotation um die Längsachse des Bohrgestänges 6 nicht am Steuerrohr 18 anschlagen. Bevorzugt schließt das der Ortsbrust 19 zugewandten Ende des Steuerrohrs 18 direkt an den Bohrkopf 2 an.The working
Das Steuerrohr 18 entspricht im (insbesondere Außen-)Durchmesser der zu verlegenden Rohrleitung 3 (siehe
Am vorderen Ende des Steuerrohrs 18 ist in diesem Ausführungsbeispiel ein Steuerring 24 angebracht. Der Steuerring kann allerdings auch weggelassen werden. Der Steuerring 24 weist, wie hier beispielhaft dargestellt, jeweils eine keilförmige Vorder- und Rückseite auf und unterstützt die angestrebten Richtungsänderungen. Die jeweils keilförmige Ausgestaltung von Vorder- und Rückseite kann vorzugsweise so ausgeführt sein, dass der Steuerring 24 einen Dreiecksquerschnitt aufweist, bei dem die Grundseite des Dreiecks am Steuerrohr 18 anliegt und die der Grundseite des Dreiecks gegenüberliegende Spitze sich in einem Bereich von 60 bis 90% der Länge der Grundseite (ausgehend von der der Ortsbrust 19 zugewandten Spitze des Dreiecks) befindet. Es ist allerdings auch möglich, dass der Steuerring einen Querschnitt aufweist, der lediglich auf der der Ortsbrust 19 zugewandten Seite keilförmig ausgestaltet ist (z.B. rechtwinkliges Dreieck), obgleich die keilförmige Ausgestaltung auf Vorder- und Rückseite insofern von Vorteil ist, als dass sowohl bei Vortrieb als auch bei einem Zurückziehen des Steuerrohrs 18 ein Verkeilen an einer Kante vermieden werden kann. Der maximale Durchmesser des Steuerings 24 ist vorteilhafterweise nicht größer als der Innendurchmesser eines Bohrlochs, dass sich bei geradem Vortrieb ergibt.At the front end of the
Die Pfeile 29 stellen die Austrittsrichtung der Bohrflüssigkeit 12 aus dem Bohrkopf dar, während die Pfeile 30 die Ablaufrichtung der mit Boden 10 und ggf. Bohrklein beladenen Bohrflüssigkeit 12 angeben.The
In der Nähe der Zentrierung 20, die eine Abdichtung gegenüber Bohrflüssigkeit 12 mittels der Dichtung 25 erreicht, sind in der Wandung des Steuerrohrs 18 mehrere Durchlässe 17 vorgesehen, die es Bohrflüssigkeit 12 erlaubt, durch das Innere des Steuerrohrs 18 zu fließen und auf diesem Wege in das Steuerrohr 18 gelangten Boden oder Bohrklein mitzuführen, so dass es nicht zu einer Ansammlung von Material im Inneren des Steuerrohrs 18 kommt, die einen Betrieb des Bohrmotors 7 bzw. ein Drehen des Bohrmotors 7 über das Bohrgestänge behindern würde.In the vicinity of the centering 20, which achieves a seal against
In einem weiteren Ausführungsbeispiel ist das Steuerrohr 18 als flexibles Steuerrohr ausgestaltet. Insbesondere wird bevorzugt, dass das Steuerrohr Polyethylen mit hoher Dichte (HDPE) aufweist oder daraus besteht. Entscheidend für das flexible Steuerrohr in diesem Ausführungsbeispiel ist, dass es biegeflexibel ist und die Abwinkelung des abgewinkelten Bohrmotors 7 annehmen kann. Alternativ zu einem gesamten flexiblen Steuerrohr 18 können in einem anderen Ausführungsbeispiel kurze, starre, mit Gelenken verbundene Stücke als Steuerrohr 18 verwendet werden. Mit einem flexiblen Steuerrohr 18 ist ein Richtungsbohren möglich, wie es mit Bezug auf
In diesem Ausfühungsbeispiel wird bevorzugt, dass das Steuerrohr 18 an dem Bohrkopf 2 in etwa anliegt. Bei einer Drehung des Bohrgestänges 6 folgt das flexible Steuerrohr 18 in diesem Fall der Richtung und damit dem Winkel des abgewinkelten Bohrmotors 7. In diesem Ausführungsbeispiel kann das Steuerrohr 18 am Bohrkopf 2 und/oder am Bohrlager 8 und/oder beliebig oft über die Länge des Steuerrohres 18 am Bohrmotor 7 gelagert sein. Damit ist das Steuerrohr 18 frei und unabhängig von einer Drehung des Bohrgestänges 6 und/oder des Bohrmotors 7 bewegbar. Alternativ kann das Steuerrohr 18 auch fest mit dem Bohrkopf 2 verbunden sein. Damit ist eine Drehung des Steuerrohres 18 zusammen mit dem Bohrkopf 2 möglich. Alternativ kann das Steuerrohr 18 auch fest mit dem Bohrlager 8 verbunden werden, wodurch eine Drehung des Steuerrohres 18 nur gemeinsam mit dem Bohrlager 8 möglich ist. Selbstverständlich kann das Steuerrohr 18 nicht mit sowohl dem Bohrkopf 2 als auch dem Bohrlager 8 fest verbunden sein, da damit der Betrieb des gesamten Systems verhindert würde.In this embodiment, it is preferred that the
Vorzugsweise besitzt der Bohrkopf, an den sich das Steuerrohr anschließt, einen Außendurchmesser, der im Millimeter- oder Zentimeterbereich gegenüber dem Außendurchmesser des Steuerrohrs größer ist. Hierbei wird weiter bevorzugt, dass das Steuerrohr wiederum einen Außendurchmesser aufweist, der gegenüber dem Außendurchmesser der Rohrleitung ebenfalls im Millimeter- oder Zentimeterbereich vergrößert ist.The drill head, which is adjoined by the control tube, preferably has an outer diameter that is greater in the millimeter or centimeter range than the outer diameter of the control tube. In this case, it is further preferred that the control tube again has an outer diameter, which is also increased in the millimeter or centimeter range in relation to the outer diameter of the pipeline.
Sämtliche Lagerungen des flexiblen Steuerohres 18 können als dichte Lager vorgesehen sein. Damit kann verhindert werden, dass Bohrflüssigkeit 12 und/oder Bohrklein in das Steuerrohr 18 eindringen. Indem das Steuerrohr 18 in diesem Fall nicht geflutet ist, also luftgefüllt ist, weist es ein deutlich geringeres Gewicht auf. Außerdem wird die Fähigkeit nach oben zu bohren hiermit verbessert, da ein derartiges Steuerrohr 18 gegenüber seiner Umgebung, die mit Bohrflüssigkeit 12 gefüllt ist, einen erhöhten Auftrieb bietet. Es ist also in diesem Ausführungsbeispiel ein leichteres Bohren in Richtung übertage möglich. In diesem Beispiel weist das Steuerrohr 18 keine Durchlässe 17 auf.All bearings of the
In einem weiteren Ausführungsbeispiel ist die Düse zum Austritt der Bohrflüssigkeit 12 aus dem Bohrkopf derart ausgestaltet, dass Bohrflüssigkeit 12 nicht nur in Richtung der Ortsbrust 19 gemäß den Pfeilen 29 aus dem Bohrkopf austritt, sondern zusätzlich in die andere Richtung in das Innere des Steuerrohrs 18 geleitet wird. Dadurch wird es in vorteilhafter Weise ermöglicht, dass in das Steuerrohr 18 gelangter Boden bzw. Bohrklein auch durch die zusätzliche, in das Steuerrohr eingeführte Bohrflüssigkeit 12 ausgespült wird. Dadurch wird der Abtransport von Material aus dem Inneren des Steuerrohrs 18 weiter optimiert, damit der Betrieb des Bohrmotors 7 nicht behindert wird.In a further exemplary embodiment, the nozzle for discharging the
Auf der Ortsbrustseite ist der innere Teil des Bohrlagers 8 (siehe
Das Bohrlager 8 zeichnet sich dadurch aus, dass es vom Bohrgestänge 6 eingeleiteten Vorschubkräfte und Drehmomente auf das Vermessungsrohr 16 (und damit auf die mit dem Vermessungsrohr 16 verbundenen Komponenten) weiterleitet, auf das Steuerrohr 18 und die Rohrleitung 3 jedoch nur Axialkräfte (Kräfte, die in Längsrichtung des Bohrgestänges wirken) und keine Drehmomente überträgt.The
Bei der im Vermessungsrohr 16 angeordneten Messsonde 13 handelt es in diesem Ausführungsbeispiel um eine auf dem Prinzip des Kreiselkompass basierenden Messsonde, die zusätzlich über Beschleunigungsmesser und ein elektrisches Lot verfügt. Damit kann eine Richtung (Azimut) als auch eine Neigung (Inklination) des Vermessungsrohrs ebenso wie die Stellung des Knickstücks des abgewinkelten Bohrmotors 7 (die für die Bohrrichtung relevant ist (siehe
In einem weiteren Ausführungsbeispiel kann die Messsonde 13 nicht im Vermessungsrohr 16, also auf der Ortsbrustseite des Bohrlagers 8 angeordnet sein, sondern auf der gegenüberliegenden Seite des Bohrlagers, also im ersten Einzelrohr 4. In einem weiteren Ausführungsbeispiel kann auch jeweils eine Messsonde 13 auf beiden Seiten des Bohrlagers 8 angeordnet sein, oder an einer beliebigen anderen Position.In a further embodiment, the measuring
Weiterhin kann in einem Ausführungsbeispiel auf der Ortsbrustseite des Bohrlagers 8 zusätzlich eine Düse angebracht sein, die Bohrflüssigkeit 12 in Richtung der Ortsbrust 19 ausgehend von der Umgebung des Bohrlagers 8 einspeist. Damit wird ein Gegendruck innerhalb des Vermessungsrohres 16 erzeugt, der dem Bohrdruck der Bohrflüssigkeit, die aus dem Bohrkopf 2 austritt, entgegenwirkt. Hierdurch kann der relative Druck im Vermessungsrohr 16 reduziert werden, wodurch eine Fehlfunktion oder Störung der Bohranordnung vermieden werden kann.Furthermore, in one exemplary embodiment, a nozzle can additionally be provided on the face side of the
Das Bohrgestänge 6 erstreckt sich durch die Rohrleitung 3 und wird durch eine Zentrierung 20 im Inneren der Rohrleitung 3 geführt. Der Durchmesser der Ortsbrust 19 ist größer als der Außendurchmesser des Rohrleitung 3, so dass sich zwischen dem Boden 10 um das Bohrloch und der Rohrleitung 3 ein Ringraum 11 ergibt, durch den insbesondere mit abgebohrtem Material beladene Bohrflüssigkeit 12 fließen kann.The
Die Zentrierung 20 ist hier mit Innenrollen 22 versehen, die ein relatives Verdrehen von Bohrgestänge 6 und Zentrierung 20 erlauben, ohne dass dabei nennenswerte Drehmomente involviert wären bzw. übertragen würden. Die Achsen der Innenrollen 22 erstrecken sich parallel zur Längsachse des Bohrgestänges 6. Die Zentrierung weist zudem Außenrollen 21 auf, deren Achsen in der gezeigten Darstellung senkrecht zur Zeichnungsebene verlaufen, so dass sich eine im Wesentlichen freie Verschiebbarkeit der Zentrierung 20 gegenüber der Rohrleitung 3 in Richtung des Bohrgestänges 6 ergibt.The centering 20 is here provided with
Zu einer Fixierung der Zentrierung 20 gegenüber einer Verschiebung in Längsrichtung des Bohrgestänges 6 gegenüber dem Bohrgestänge 6 sind Halteringe 31 vor und hinter der Zentrierung am Bohrgestänge 6 vorgesehen.To a fixation of the centering 20 against a displacement in the longitudinal direction of the
In einer nicht dargestellten Abwandlung kann wenigstens ein Element (oder Teil-Element), aus dem sich das Bohrgestänge zusammensetzt, in Form eines Schneckenrohrs ausgestaltet sein und/oder wenigstens eine Zentrierung in Form einer Förderschnecke ausgestaltet sein, wobei diese Fördermittel so ausgeführt sind, dass sich bei einer Drehung der Bohrgestänges beim Bohren eine Förderwirkung für in dem Bereich zwischen Rohrleitung und Bohrgestänge befindlicher Bohrflüssigkeit (die mit Boden oder Bohrklein beladen ist) in Richtung übertage ergibt.In a modification, not shown, at least one element (or part-element) of which the drill string is composed may be configured in the form of a screw tube and / or at least one centering may be in the form of a screw conveyor, these conveying means being designed such that During rotation of the drill pipe during drilling, a conveying action for drilling fluid (which is loaded with soil or cuttings) in the area between the pipeline and drill pipe leads in the direction of overground.
Dargestellt ist der übertätige Teil der gesamten Anordnung mit der Vorschubvorrichtung 5 und dem Drehmotor 9. Beim Verlegen der Rohrleitung 3 wird die Rohrleitung selbst aus Einzelrohren 4 zusammengesetzt, die sukzessive in das Bohrloch 1 eingebracht werden. Das jeweils letzte Einzelrohr 4 der Rohrleitung 3 ist über eine (ggf. auch mehrere) längenverstellbare Verbindungsvorrichtung 15 mit der Vorschubvorrichtung 5 druckfest (ggf. auch zugfest und/oder verdrehungsfest) verbunden. Dadurch können Vorschubkräfte direkt von der Vorschubvorrichtung 5 auf die Rohrleitung 3 aufgebracht werden. Dies kann z.B. sinnvoll sein, wenn die Reibung im Bohrloch sehr groß ist und zusätzliche Vorschubkräfte erfordert.Shown is the überätige part of the entire arrangement with the feed device 5 and the
Die "normalen" Vorschubkräfte für den Bohr- und Verlegevorgang werden jedoch bei dem vorliegenden Ausführungsbeispiel von der Vorschubvorrichtung 5 über das Bohrgestänge 6 auf das Bohrlager 8 übertragen. Das Bohrlager 8 leitet die vom Bohrgestänge 6 eingeleiteten Druckkräfte als Druckkräfte auf das Vermessungsrohr 16, den abgewinkelten Bohrmotor 7 und den Bohrkopf 2 sowie auf das Steuerrohr 18 und in Form von Zugkräften auf die Rohrleitung 3 weiter.However, in the present embodiment, the "normal" feed forces for the drilling and laying operation are transmitted from the feed device 5 via the
Das Bohrgestänge 6 ist mit dem Drehmotor 9 der Vorschubvorrichtung 5 verbunden. Bei (kontinuierlicher) Rotation des Drehmotors 9 werden Bohrgestänge 6, Vermessungsrohr 16, abgewinkelter Bohrmotor 7 und Bohrkopf 2 ebenfalls (kontinuierlich) gedreht. Bei hinzukommendem Antrieb des abgewinkelten Bohrmotors 7 (der seine Antriebsenergie in dem Fachmann bekannter Weise aus der durch ihn hindurch strömenden Bohrflüssigkeit 12 bezieht) wird zusätzlich der Bohrkopf 2 in Form einer überlagerten Drehbewegung rotiert. Bei gleichzeitigem Vorschub der Bohrgarnitur wird auf diese Weise ein gerades Bohrloch 1 erstellt (siehe
Werden Bohrgestänge 6, Vermessungsrohr 16, abgewinkelter Bohrmotor 7 und Bohrkopf 2 von dem Drehmotor 9 der Vorschubvorrichtung 5 in eine bestimmte, durch die Messsonde 13 feststellbare Position gedreht, so wird bei Fortsetzung des Bohrvorgangs ein gekrümmtes Bohrloch entlang der jeweiligen Ausrichtung des Winkelstücks im abgewinkelten Bohrmotor 7 erstellt, wobei dann allerdings das Bohrgestänge 6 nicht mehr gedreht wird und lediglich der Bohrmotor 7 den Bohrkopf 2 antreibt.If
Für den Bohrprozess verwendete Bohrflüssigkeit 12 wird durch die Vorschubvorrichtung 5, das Bohrgestänge 6, das Bohrlager 8, das Vermessungsrohr 16 und den abgewinkelten Bohrmotor 7 zum Bohrkopf 2 gepumpt. Dort tritt die Bohrflüssigkeit 12 in das Bohrloch 1 ein (siehe Pfeile 29 in
Im hier dargestellten Ausführungsbeispiel ist die Zentrierung 20 mit einer Dichtung 25 ausgebildet, so dass die Bohrflüssigkeit 12 an einem Eindringen in den Innenraum zwischen Bohrmotor 7 und Steuerrohr 18 bzw. Bohrgestänge 6 und Rohrleitung 3 gehindert wird. Vorteilhaft bei dieser Ausführung ist, dass der dann beispielsweise luftgefüllte Innenraum zwischen Bohrmotor 7 und Steuerrohr 18 bzw. Bohrgestänge 6 und Rohrleitung 3 als Auftriebskörper gegenüber dem mit Bohrflüssigkeit 12 gefüllten Ringraum 11 wirkt und dadurch die Normalkräfte im Bohrloch 1 deutlich reduziert werden. Dies kann wiederum signifikant niedrigere Vorschubkräfte zur Folge haben, so dass sich eine solche Vorgehensweise z.B. besonders in weichen Böden empfiehlt.In the embodiment shown here, the centering 20 is formed with a
In einer alternativen (und hier nicht dargestellten) Ausführung fließt die mit Boden 10 und ggf. Bohrklein vermischte Bohrflüssigkeit 12 zusätzlich durch das Innere der Rohrleitung 3 nach übertage. Hierzu sind die Zentrierungen 20 sowie das Bohrlager 8 mit entsprechenden Durchlässen auszubilden. Als vorteilhaft bei dieser Auslegung ist anzusehen, dass dadurch der Druck im Ringraum 11 reduziert wird und somit Ausbrüche der Bohrflüssigkeit 12 zur Tagesoberfläche ("Ausbläser" gennant) besser vermieden werden können. Diese Ausführungsvariante erscheint insbesondere für tonige Böden angeraten.In an alternative embodiment (and not shown here), the
In einer Abwandlung des hier diskutierten Ausführungsbeispiels ist alternativ und/oder ergänzend zu dem im Inneren des Bohrlochs vorgesehenen Bohrlager ein entsprechendes Bohrlager im Bereich der Vorschubvorrichtung vorgesehen, genauer zwischen dem jeweils letzten Einzelrohr und der Verbindungsvorrichtung, so dass auch über dieses Bohrlager eine Druckkraft vom Bohrgestänge auf die Rohrleitung eingeleitet werden kann.In a modification of the embodiment discussed here, as an alternative and / or in addition to the borehole provided in the borehole, a corresponding borehole is provided in the area of the advancing device, more precisely between the respectively last single pipe and the connecting device, so that also via this borehole a compressive force from the drill pipe can be introduced to the pipeline.
In
In
In
In
Beim Geradeausbauen in
In
In den
Zu erkennen sind in
Der äußere Teil des Bohrlagers 8 wird hier mittels Schraubverbindungen 27 (z.B. Madenschrauben) mit dem Steuerrohr 18 sowie dem ersten Einzelrohr 4 der Rohrleitung 3 verbunden. Alternative Verbindungsarten - z.B. mittels Schweißverbindungen - sind möglich, haben aber möglicherweise wie im Fall des Schweißens Nachteile einer Wärmeeinwirkung auf das Bohrlager 8 während der Montage und/oder einer schwierigeren Demontage im Vergleich zu Schraubverbindungen 27. Neben der kraft- und formschlüssigen Schraubverbindung kann unter Umständen auch eine rein formschlüssige Verbindung erreicht werden, beispielsweise durch Hinterschneidungen.The outer part of the
In
Die Verbindung von Bohrlager 8 mit dem Vermessungsrohr 16 und dem Bohrgestänge 6 erfolgt über typische Gewinde, die auch ansonsten im Bohrbereich z.B. zur Verbindung einzelnen Elemente eines Bohrgestänges oder eines Anschlusses eines Bohrmotors bekannt und verbreitet sind. Allerdings sind alternative Verbindungen ohne weiteres möglich, sofern die relevanten technischen Anforderungen erfüllt werden.The connection of
In Schritt 101 wird ein Bohrgestänge mit einem gegenüber der Längsachse des Bohrgestänges abgewinkelten oder abwinkelbaren Bohrmotor mit einem Bohrkopf gekoppelt, wobei diese Koppelung eine mittelbare Koppelung ist, die durch ein Koppeln des Bohrmotors mit einem Bohrlager und ein Koppeln des Bohrlagers mit dem Bohrgestänge zur Weiterleitung eines Drehmoments und einer Druckkraft sowie ggf. einer Zugkraft erstellt wird.In
Alternativ kann das Bohrgestänge auch ohne Zwischenschaltung mit dem Bohrmotor gekoppelt werden, wobei dann das Bohrlager auf der Seite des Bohrgestänges in Richtung einer Vorschubvorrichtung vorgesehen wird. Es zudem möglich, beide Alternativen miteinander zu kombinieren.Alternatively, the drill pipe can be coupled to the drill motor without any intermediate connection, in which case the drill bearing is provided on the side of the drill pipe in the direction of a feed device. It is also possible to combine both alternatives.
In Schritt 102 wird ein Steuerrohr vorgesehen, das den Bohrmotor mit dem Bohrkopf umschließt, wobei sich der Bohrkopf im Betrieb in Richtung der Ortsbrust aus dem Steuerrohr erstreckt.In
In Schritt 103 wird das Bohrlager mit der zu verlegenden Rohrleitung und dem Steuerrohr verbunden. Im Fall dieses Ausführungsbeispiels, bei dem das Bohrgestänge und der Bohrmotor mittelbar unter Einfügung des Bohrlagers miteinander gekoppelt werden, wird das Steuerrohr auf der ortsbrustseitigen Seite des Bohrlagers mit diesem verbunden, wobei die Rohrleitung (genauer das erste Einzelrohr der zusammenzusetzenden und zu verlegenden Rohrleitung) mit dem Bohrlager auf der gegenüberliegenden Seite verbunden wird. Es ist hierbei insbesondere vorgesehen, dass im Bereich des Bohrlagers das Steuerrohr und die Rohrleitung aneinander stoßen und miteinander fluchten, wenn das Bohrlager an den jeweiligen Innenseiten mit dem Steuerrohr und der Rohrleitung mit diesen verbunden wird. Andere Ausführungen sind allerdings ebenfalls möglich.In
Erfolgt die Kopplung von Bohrmotor und Bohrgestänge direkt, ist also das Bohrlager im Bereich der Vorschubvorrichtung (und des Drehmotors) vorgesehen, ergibt sich die Verbindung von Steuerrohr und Bohrlager mittelbar durch die Verbindung von Bohrlager und Rohrleitung und eine Verbindung von Rohrleitung und Steuerrohr.If the coupling of drill motor and drill string directly, so the Bohrlager in the field of feed device (and the rotary motor) is provided, the connection of the control tube and drill bearing results indirectly through the connection of drilling and pipe and a connection of pipe and head tube.
Es sei darauf hingewiesen, dass eine "direkte Kopplung" von Bohrmotor und Bohrgestänge nicht das Vorsehen eines Vermessungsrohrs (wie oben diskutiert) zwischen Bohrmotor und Bohrgestänge ausschließt, entsprechend kann auch beim "mittelbaren Koppeln" der Bohrmotor mit einem Vermessungsrohr versehen sein. Vorteilhafterweise wird ein Vermessungsrohr wie diskutiert oder eine andere Lagebestimmungseinheit am Bohrmotor vorgesehen.It should be noted that a "direct coupling" of the drill motor and drill pipe does not preclude the provision of a surveying pipe (as discussed above) between the drill motor and drill pipe, similarly, in the case of "indirect coupling", the drill motor may be provided with a surveying pipe. Advantageously, a surveying pipe as discussed or another position determining unit is provided on the drilling motor.
Für ein planmäßig gerades Verlegen der Rohrleitung umfasst das Verfahren in Schritt 104 ein Drehen des Bohrgestänges zur Rotation des Bohrmotors mit dem Bohrkopf und Drehen des Bohrkopfes um dessen Längsachse mit dem Bohrmotor unabhängig von einer Rotation des Bohrgestänges.For straightforward routing of the tubing, in
Für ein gekrümmtes Verlegen der Rohrleitung umfasst das Verfahren in Schritt 105 ein Drehen des Bohrgestänges, bis eine Lagebestimmungseinheit des Bohrmotors eine Position angibt, bei der der Bohrmotor in Richtung der Krümmung abgewinkelt oder abwinkelbar ist, und in Schritt 106 ein Drehen des Bohrkopfes um dessen Längsachse mit dem abgewinkelten Bohrmotor.For a curved routing of the tubing, in
Beim Verlegen der Rohrleitung (also während der Schritte 104 bzw. 105 und 106) wird durch das Bohrgestänge eine in Richtung der Längsachse des Bohrgestänges wirkende Druckkraft auf das Bohrlager ausgeübt, die durch das Bohrlager als eine in einer Längsrichtung der Rohrleitung wirkende Zug- und/oder Druckkraft auf die Rohrleitung und als eine in Längsrichtung des Steuerrohrs wirkende Druckkraft weitergegeben wird.During installation of the pipeline (ie during
Es ist zu bemerken, dass die Reihenfolge der Schritte 101, 102 und 103 auch variiert werden kann.It should be noted that the order of
Eine Implementierung der Erfindung sieht ein Verfahren zur Verlegung einer Rohrleitung in einem Bohrloch vor, wobei das Bohrloch 1 von einem steuerbaren Bohrkopf 2 erstellt wird und der Bohrkopf 2 einen größeren Durchmesser aufweist als die Rohrleitung 3 und die jeweilige Position des Bohrkopfs 2 im Boden 10 mittels einer in einem Vermessungsrohr 16 angeordneten Messsonde 13 ermittelt und über mindestens ein Kabel 14 nach übertage übertragen wird, der Bohrvorgang zur Erstellung des Bohrlochs 1 und der Verlegevorgang zur Verlegung der Rohrleitung 3 in dem Bohrloch 1 gleichzeitig stattfinden, die Rohrleitung 3 während des Bohr- und Verlegevorgangs sukzessive aus Einzelrohren 4 zusammengesetzt wird, die für den Bohr- und Verlegevorgang erforderliche Vorschubkraft von einer Vorschubvorrichtung 5 erzeugt und über ein Bohrgestänge 6 auf ein Bohrlager 8 und vom Bohrlager 8 sowohl über das Vermessungsrohr 16 und den abgewinkelten Bohrmotor 7 auf den Bohrkopf 2 als auch auf das Steuerrohr 18 und die Rohrleitung 3 übertragen wird, das für den Bohrvorgang erforderliche Drehmoment von dem abgewinkelten Bohrmotor 7 erzeugt und auf den Bohrkopf 2 übertragen wird, die Steuerung des Bohrkopfs 2 über einen auf der Vorschubvorrichtung 5 befindlichen Drehmotor 9 vorgenommen und die Drehbewegungen des Drehmotors 9 über das Bohrgestänge 6, das Vermessungsrohr 16 und den abgewinkelten Bohrmotor 7 auf den Bohrkopf 2 übertragen werden, die für den Bohrvorgang erforderliche Bohrflüssigkeit 12 durch das Bohrgestänge 6 und den Bohrmotor 7 zum Bohrkopf 2 gepumpt wird und der während des Bohrvorgangs von dem Bohrkopf 2 gelöste Boden 10 hydraulisch von der Bohrflüssigkeit 12 durch den Ringraum 11 aus dem Bohrloch 1 gefördert wird, wobei, nachdem der Bohrkopf 2 den Zielpunkt 17 erreicht hat, das Bohrlager 8, das Steuerrohr 18, das Vermessungsrohr 16, der abgewinkelte Bohrmotor 7 und der Bohrkopf 2 von der Rohrleitung 3 getrennt werden und das Bohrgestänge 6 von der Vorschubvorrichtung 5 aus der Rohrleitung 3 herausgezogen wird.
Claims (15)
- A device for laying a pipeline (3) in a borehole (1), having
a drill motor (7) angled or able to be angled relative to the longitudinal axis of a drill pipe (6) for a drill head (2) provided for a drive of the drill head (2) independently of a rotation of the drill pipe (6),
a position determination unit (16) for determining and transmitting a rotational position of the angled drill motor (7), and
a head tube (18) at least partially enclosing the drill motor (7), the drill head (2) extending from the head tube (18) in the direction of a working face (19) during operation,
characterized by
a drill bearing (8) for coupling to the drill pipe (6) for receiving a compressive force acting in the direction of a longitudinal axis of the drill pipe (6) and for connecting to the pipeline (3) for transferring the compressive force as a tensile and/or compressive force acting in the longitudinal direction of the pipeline (3). - The device according to claim 1,
wherein the head tube (18) is reversibly deformable, wherein the head tube (18) in particular comprises or consists of a flexible material, in particular high-density polyethylene (HDPE) and/or the head tube (18) comprises a plurality of articulated elements connected to each other. - The device according to claim 2,
having a one- or multi-part centring device for directly or indirectly coupling the head tube (18) to the drill motor (7), said motor drill being disposed so that the head tube (18) is deformed according to the rotational position of the drill motor (7), wherein the centring device in particular is designed for tightly closing off the drill head (2) or the drill motor (7), preferably for a tightly closing off the passage of air and/or drilling fluid. - The device according to claim 1,
wherein the head tube (18) is provided with a control ring (24) in a region of its outer side facing the working face (19) for supporting following of a curvature of the borehole (1) through the head tube (18), in particular having a control ring (24) having a cross-section in the form of a triangle, the base side thereof resting against the outer side of the head tube (18), wherein preferably the tip of the triangle is disposed above a half of the base side of the triangle facing away from the working face (19). - The device according to claim 1,
wherein the head tube (18) is provided with a seal opposite the working face (19), the drill head (2) or the drill motor (7) extending through said seals, wherein the seal is provided with an eccentric opening for drill head (2) or drill motor (7) and is designed for rotating relative to the head tube (18) and/or wherein the seal is designed to be deformable for receiving the movement of the drill head (2) or drill motor (7) during operation. - The device according to claim 5,
wherein the device is designed for pressurizing the interior of the head tube (18), in particular by a liquid. - The device according to any one of the preceding claims,
further having a rinsing element for discharging drilled material that has entered into the head tube (18), wherein the rinsing element is designed in particular for using drilling fluid (12), wherein the flushing element is preferably disposed in the region of a termination of the head tube (24) facing away from the working face (19) and acts in the direction of the working face (19) and/or the rinsing element is disposed in the region of the drill head (2) and acts away from the working face (19), wherein the head tube (18) comprises discharge openings (17) at a rinsing element acting away from the working face (19) particularly preferably in a region facing away from the working face (19). - The device according to any one of the preceding claims,
wherein the drill bearing (6) comprises one or more false edges (26) for adjusting the outer diameter of the drill bearing (6) to a diameter of the pipeline (3). - The device according to any one of the preceding claims,
wherein the device is designed for draining drilling fluid (12) laden with bored material through a space (11) between the borehole (1) and an outer side of the pipeline (3) and/or through a space between the drill pipe (6) and an inside of the pipeline (3). - The device according to any one of the preceding claims,
having one or more centring devices (20) for the drill motor (7), the position determination unit (16) and/or one or more elements of the drill pipe (6) in the head tube (18) and/or in the pipeline (3), wherein the maximum outer diameter of the one or more centring devices (20) is preferably smaller by 1 to 10 mm than the respective minimum inner diameter of the head tube (18) or the pipeline (3). - The device according to claim 10,
further having the drill pipe (6), wherein the drill pipe (6) is provided with at least two retaining rings (31) for positioning a centring device (20) on the drill pipe (6). - The device according to any one of the claims 10 to 11,
wherein at least one centring device (20) is designed for rotating the centring device (20) about a longitudinal axis of the drill pipe (6) relative to the drill motor (7), the position determination unit (16) or the drill pipe (6) and for shifting the centring device (20) along the longitudinal axis of the drill pipe (6) relative to the pipeline (3), wherein the centring device (20) preferably comprises rollers (22) on the inner side thereof, the axes thereof being aligned parallel to the longitudinal axis of the drill pipe (6), and rollers (21) on the outer side thereof, the axes thereof being aligned in a plane perpendicular to the longitudinal axis of the drill pipe (6). - The device according to any one of the preceding claims,
further having the drill pipe (6), wherein the device is designed for discharging drilling fluid (12) laden with drilled material through a space between drill pipe (6) and an inner side of the pipeline (3), wherein the drill pipe (6) is designed at least partially as a screw tube and/or the device is provided with a centring device (20) designed as a screw conveyor. - The device according to any one of the preceding claims,
wherein the drilling bearing (6) is provided during operation as a connecting element for the head tube (18) and the pipeline (3) in the region of a beginning of a drill string and/or as a thrust element for already laid pipeline elements (4) between one end of the last laid pipeline element (4) and a feed device (5). - A method for laying a pipeline (3) in a borehole (1), having the steps:coupling (101) a drill pipe (6) to a drill motor (7) angled or able to be angled relative to the longitudinal axis of the drill pipe (6) for a drill head (2), the coupling (101) being an indirect coupling via a drill bearing (8) and/or a coupling without the interposition of a drill bearing (8),providing (102) a head tube (18) at least partially enclosing the drill motor (7), the drill head (2) extending from the head tube (18) in the direction of the working face (19) during operation,connecting (103) the drill bearing (8) to the pipeline (3) to be laid and the head tube (18), the head tube (18) and the pipeline (3) being connected thereto on sides of the drill bearing (8) opposite each other in the case of only indirect coupling (101) of drill pipe (6) and drill motor (7) and otherwise the head tube (18) being connected indirectly to the drill bearing (8) via the pipeline (3),wherein the method for laying the pipeline (3) straight according to the plan comprises:turning (104) the drill pipe (6) for rotating the drill motor (7) with the drill head (2) and turning (104) the drill head (2) about longitudinal axis thereof with the drill motor (7) independently of a rotation of the drill pipe (6), andwherein the method for curved laying of the pipeline (3) comprises:turning (105) the drill pipe (6) until a position determination unit (16) of the drill motor (7) indicates a position at which the drill motor (7) is angled or can be angled in the direction of the curvature,turning (106) the drill head (2) about the longitudinal axis thereof with the angled drill motor (7),wherein during the laying of the pipeline (3) by the drill pipe (6), a compressive force acting in the direction of the longitudinal axis of the drill pipe (6) is exerted on the drill bearing (8) and transfers through the drill bearing (8) as a tensile and/or compressive force on the pipeline (3) acting in a longitudinal direction of the pipeline (3) and as a compressive force acting in the longitudinal direction of the head tube (18).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102012217822.8A DE102012217822A1 (en) | 2012-09-28 | 2012-09-28 | Device and method for laying a pipeline in a borehole |
PCT/EP2013/066508 WO2014048627A2 (en) | 2012-09-28 | 2013-08-06 | Device and method for laying a pipeline in a borehole |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2900895A2 EP2900895A2 (en) | 2015-08-05 |
EP2900895B1 true EP2900895B1 (en) | 2019-06-05 |
Family
ID=48949137
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13747378.1A Active EP2900895B1 (en) | 2012-09-28 | 2013-08-06 | Device and method for laying a pipeline in a borehole |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP2900895B1 (en) |
DE (1) | DE102012217822A1 (en) |
DK (1) | DK2900895T3 (en) |
WO (1) | WO2014048627A2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014009630A1 (en) * | 2014-06-27 | 2015-12-31 | Rüdiger Kögler | Method and device for creating a borehole |
DE202016008021U1 (en) * | 2015-05-29 | 2017-01-30 | Herrenknecht Ag | System for laying underground cables or underground cables in the ground near the surface |
CN112796655B (en) * | 2020-12-31 | 2023-03-31 | 成都环境工程建设有限公司 | Pipeline is laid with boring hole device under town road |
CN114659436B (en) * | 2022-03-30 | 2024-03-29 | 西安建筑科技大学 | Method for measuring axial deformation of back-dragging pipeline |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3839760C1 (en) * | 1988-11-25 | 1990-01-18 | Gewerkschaft Walter Ag | Double rotary drilling apparatus for making directionally accurate bores, in particular horizontal bores |
DE3902868C1 (en) * | 1989-02-01 | 1990-06-07 | Eastman Christensen Co., Salt Lake City, Utah, Us | |
DE19612902C2 (en) * | 1996-03-30 | 2000-05-11 | Tracto Technik | Direction drilling method and apparatus for performing the method |
CN103415673B (en) * | 2011-01-14 | 2016-05-18 | 国际壳牌研究有限公司 | For radial dilatation pipe fitting and carry out the method and system of directed drilling |
DE112012002117T5 (en) * | 2011-05-16 | 2014-03-20 | Gebr. Van Leeuwen Boringen B.V. | Pipe guiding device, pipe slide, roller block and method for laying a pipe in a substrate |
-
2012
- 2012-09-28 DE DE102012217822.8A patent/DE102012217822A1/en not_active Withdrawn
-
2013
- 2013-08-06 WO PCT/EP2013/066508 patent/WO2014048627A2/en active Application Filing
- 2013-08-06 DK DK13747378.1T patent/DK2900895T3/en active
- 2013-08-06 EP EP13747378.1A patent/EP2900895B1/en active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
EP2900895A2 (en) | 2015-08-05 |
DK2900895T3 (en) | 2019-08-19 |
WO2014048627A3 (en) | 2014-10-16 |
DE102012217822A1 (en) | 2014-04-03 |
WO2014048627A2 (en) | 2014-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2085566B1 (en) | Drilling assembly | |
DE3035876C2 (en) | ||
EP2553201B1 (en) | Method for producing a horizontally drilled bore hole in the ground and horizontal drilling device | |
EP2505762B1 (en) | Drilling device and method for horizontal drilling | |
DE202016008021U1 (en) | System for laying underground cables or underground cables in the ground near the surface | |
EP2553202B1 (en) | Method for operating a horizontal drilling device and horizontal drilling device | |
EP2863003A2 (en) | Expanding tool and device for expanding a passage in the ground | |
EP2900895B1 (en) | Device and method for laying a pipeline in a borehole | |
EP0860638B1 (en) | Device and process of laying ceramic tubes without excavation | |
DE102016003749B4 (en) | Drilling rig for drilling holes in rock and / or rocks | |
WO2009095046A1 (en) | Method for trenchless laying of pipelines | |
WO2015197828A1 (en) | Method and device for creating a borehole | |
WO2012056011A1 (en) | Method for the underground placement of a pipeline | |
EP2553203B1 (en) | Horizontal drilling device | |
DE102012112411B3 (en) | Thrust boring steering device for controllably driving tubular string into ground, has conveyor worm which is led up to spray head by connecting ring of universal joint | |
WO2011015341A1 (en) | Mounting device for a geothermal probe | |
WO2011015342A1 (en) | Geothermal probe mounting device | |
EP3387208B1 (en) | Method and device for trenchless laying of a cable or pipe in the ground | |
DE102019127115A1 (en) | System and method for establishing house connections | |
DE9002368U1 (en) | Propulsion unit | |
DE102013018585A1 (en) | Method for magnification of bore hole in e.g. clay floor and laying of pipeline into enlarged bore hole, involves rotating outer fitting opposite to direction of inner fitting, and inserting pipeline into bore hole at drilling device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20150428 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20170920 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20181115 |
|
TPAC | Observations filed by third parties |
Free format text: ORIGINAL CODE: EPIDOSNTIPA |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1140142 Country of ref document: AT Kind code of ref document: T Effective date: 20190615 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502013012948 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20190816 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190605 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190605 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190905 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190605 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190605 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190605 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190605 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190905 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190605 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190906 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190605 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190605 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190605 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190605 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190605 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191007 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191005 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190605 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190605 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502013012948 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190605 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: BOHLEN & DOYEN GMBH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502013012948 Country of ref document: DE Representative=s name: EISENFUEHR SPEISER PATENTANWAELTE RECHTSANWAEL, DE Ref country code: DE Ref legal event code: R081 Ref document number: 502013012948 Country of ref document: DE Owner name: BOHLEN & DOYEN BAU GMBH, DE Free format text: FORMER OWNER: BOHLEN & DOYEN BAUUNTERNEHMUNG GMBH, 26639 WIESMOOR, DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190605 |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: BOHLEN & DOYEN BAU GMBH |
|
26N | No opposition filed |
Effective date: 20200306 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190605 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190806 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190831 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190605 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190831 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20190831 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20200528 AND 20200603 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190806 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190831 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1140142 Country of ref document: AT Kind code of ref document: T Effective date: 20190806 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190806 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190605 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190605 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20130806 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190605 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230525 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20230823 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20230824 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20230821 Year of fee payment: 11 Ref country code: DK Payment date: 20230823 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240911 Year of fee payment: 12 |